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ABSTRACT 

 

 
 TYRA-3 is a tyramine-activated G-protein coupled receptor in C. elegans. 

TYRA-3 is expressed in dopaminergic ADE and CEP neurons, suggesting it may play a 

role in modulating dopaminergic signaling.  Upon exogenous tyramine exposure, deletion 

mutants of tyra-3 are more susceptible to paralysis than wild type animals.  dat-1 deletion 

mutants, which contain abnormally high concentrations of synaptic dopamine, were also 

sensitive to paralysis with tyramine exposure.  cat-2 deletion mutants, which contain no 

detectable dopamine, were partially resistant to tyramine exposure.  Double mutants of 

cat-2;tyra-3 and dat-1;tyra-3 showed moderate sensitivity.  These results suggest that 

TYRA-3 inhibits dopamine release, but additional experiments are necessary to explain 

the phenotypes of the double mutants.   
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BACKGROUND 
 

 

 

G Protein-Coupled Receptors 

 

G protein-coupled receptors (GPCRs) are a very diverse and functionally 

significant family of proteins that serve to convey extracellular signals to intracellular 

pathways.  These receptors are coupled with heterotrimeric G-proteins, a family of 

proteins that uses GTP to generate the free energy necessary to propagate the intracellular 

signal.  Research on prototypical GPCRs suggests that they contain 7 transmembrane 

helices (Figure-1).  Upon binding the signaling ligand, which could be a hormone, lipid, 

chemokine, biogenic amine, neurotransmitter, etc., ionic interactions between the third 

and sixth helices are disrupted through conformational changes. This process is thought 

to activate the G-protein. GTP binds the active G-protein while GDP is released (Kroeze 

et al., 2003).    

 

Figure-1: Diagram of Prototypical GPCR.  Note the seven 

transmembrane domains (orange), and the α, β, and γ subunits of 

the cytoplasmic G-protein complex (Krishnamurthy et al., 2006).   
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The propagation of the GPCR-mediated intracellular signal proceeds in a widely 

varying fashion, depending on the specific GPCR.  Each G-protein consists of α, β, and γ 

subunits (red, yellow, and blue in the Figure).  The α subunit dissociates upon G-protein 

activation, and may participate in the cAMP or phosphatidylinositol signaling pathways.  

Different classes of Gα proteins have been identified.  Gs and Gi serve to activate or 

repress enzymatic or metabolic activity, respectively, through the cAMP pathway.  Gq 

protein, another common G-protein, activates the phosphatidylinositol pathway (Gilman, 

1987).  

Desensitization of the GPCR typically involves phosphorylation of the protein 

itself and/or interactions with a cytoplasmic protein known as β-arrestin.  β-arrestin binds 

the receptor-G-protein complex and signals endocytosis of the GPCR.  Once inside the 

cell, the ligand is degraded, β-arrestin is released from the complex, and the GPCR re-

associates with the membrane (Filmore, 2004).  Phosphroylation of the GPCR by a G-

protein coupled receptor kinase results in similar translocation followed by degradation 

or internalization (Tan et al., 2008).    

Approximately one thousand identified GPCRs in humans are particularly 

consequential in medicinal and behavioral research, as evidenced by the fact that nearly 

half of all pharmaceuticals on the market target this class of receptors (Voet et al., 2006).  

The function of most GPCRs is at least partially elucidated.  Many serve as receptors for 

sensory functions like sight and smell.  For the 300 or so non-sensory human GPCRs, 

over half have characterized natural ligands.   This information is frequently exploited in 

drug design, as pharmaceuticals are often targeted to mimic natural ligands to either 

suppress or activate GPCR signaling (Filmore, 2004) Approximately half of non-sensory 
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GPCRs remain uncharacterized; with no endogenous ligands identified, these receptors 

are referred to as orphan GPCRs.  Recently, investigations into trace monoamines in 

vertebrates and invertebrates have begun to elucidate the role of some of these orphan 

GPCRs (Borowsky et al., 2001). 

 

GPCR Ligands 

Classical biogenic amines such as serotonin, norepinephrine, and dopamine act as 

neurotransmitters that activate GPCRs.  These classical amine neurotransmitters represent 

the primary mechanism by which neurons communicate.  A neurotransmitter binding to a 

neuronal GPCR may trigger relay, amplification, or modulation of neuronal signaling 

(Lauder, 1993).  These signaling pathways, though influenced by very small ligand 

concentrations, can have broad consequences in motor, cognitive, affective, and arousal 

functions (Xie and Miller, 2009).  This is evident from the dramatic effects of many 

psychotropic drugs.  For example, medications to treat Parkinson’s disease target 

dopamine-specific GPCRs in an effort to improve coordination and decrease tremors; 

however, the side effects from these dopamine replacement therapies include tics, 

hallucinations and mood disturbances (Snyder, 2005).  Beta-blockers also have diverse 

consequences; often used to treat heart conditions and anxiety, they compete with 

norepinephrine for GPCR binding.  Beta-blockers are designed to target a limited class of 

norepinephrine-associated GPCRs and affect melatonin release, intraocular pressure, 

circulation, and numerous other diverse physical processes (Elliot, 2008). The classical 

neurotransmitters and their associated GPCRs are extraordinarily consequential in 

nervous system function. 
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Trace Amine Neurotransmitters 

 Recently, a class of trace biogenic amines have been identified as possible 

neurotransmitters and neuromodulators.  These trace monoamines, including β-

phenylethylamine, tryptamine, octopamine, and tyramine, are present in minute 

concentrations in mammalian tissues, and constitute less than 1% of the biogenic amines 

in most heterologously expressed brain regions (Borowsky et al., 2001; Bunzow et al., 

2001).  However, judging by the remarkably significant consequences from miniscule 

variations in classical neurotransmitter activity, it is likely that even such small 

concentrations of these trace amines can play important physiological roles.  A better 

understanding of the functions of trace amines and their GPCRs may provide important 

explanations for the pathology of under characterized psychiatric disorders.  

 Tyramine in particular has been implicated as a possible contributing factor in 

depression, migraine headaches, schizophrenia, and attention deficit hyperactivity 

disorder (Wragg et al., 2007).  Such hypotheses are relatively recent; tyramine was 

traditionally thought to be solely a metabolic byproduct or biosynthetic precursor of 

octopamine (Pirri et al., 2009).  TAAR1, a G-protein coupled receptor widely expressed 

in the mammalian brain, was identified in 2001 as having a high affinity for tyramine 

(Borowsky et al., 2001). TAAR1 protein is expressed in the dorsal and ventral caudate 

nucleus, putamen, substantia nigra, nucleus accumbens, ventral tegmental area, locus 

coeruleus, amygdale, and raphe nucleus; many of these are monoaminergic regions. In 

the substantia nigra, TAAR1 is co-localized with the dopamine transporter in some 
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dopaminergic neurons, suggesting that tyramine binding to TAAR1 may indirectly 

regulate dopamine transporter activity (Xie and Miller, 2009).  

 The TAAR1 GPCR signals via the cAMP pathway.  Tyramine binding results in 

activation of cAMP production, therefore it is likely coupled to the Gs heterotrimeric G 

protein (Tan et al., 2008). Genomic screening has identified six other trace amine 

associated receptors in humans, though their functions are not well characterized (Miller 

et al., 2005).  Despite evidence of tyramine binding to the mammalian GPCRs, results do 

not conclusively prove that tyramine is the physiological endogenous ligand for these 

receptors. Nonetheless, experimental data strongly suggest that tyramine does function as 

a neurotransmitter in vertebrates. 

 

Tyramine as an Invertebrate Neurotransmitter 

 The role of tyramine as a neurotransmitter in invertebrates has been convincingly 

demonstrated (Alkema et al., 2005; Pirri et al., 2009).  Tyramine-responsive GPCRs have 

been identified in fruit flies, locusts, honeybees, silk moths, and nematodes (Saudou et 

al., 1990; Blenau et al., 2000; Rex and Komuniecki, 2002; Ohta et al., 2003; Rex et al., 

2005).  As in vertebrates, dopamine and serotonin serve as classical neurotransmitters in 

invertebrates.  Invertebrates utilize octopamine as a major neurotransmitter in lieu of 

norepinephrine (Roeder et al., 2003).  In C. elegans, tyramine is a precursor in 

octopamine synthesis through the following pathway:  tyrosine decarboxylase (tdc-1) 

converts tyrosine into tyramine, followed by the conversion of tyramine to octopamine by 

tyramine β hydroxylase (tbh-1).  tdc-1 mutant animals, which lack both tyramine and 

octopamine, display distinct behavioral phenotypes from tbh-1 mutants, which lack only 
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octopamine. This suggests that tyramine independently influences behavior in C. elegans 

(Alkema et al., 2005).    

Wild type worms can exhibit behavioral changes in locomotion, feeding, egg-

laying, and foraging when abnormal tyramine signaling is induced.  C. elegans has three 

tyramine activated G protein coupled receptors—SER-2, TYRA-2, and TYRA-3—and a 

tyramine-gated chloride channel LGC-55 (Figure-2). lgc-55 is involved in reversals and 

head movements; tyramine has been conclusively shown to be the natural ligand for this 

channel, confirming its role as an inhibitory neurotransmitter in C. elegans (Pirri et al., 

2009).  Upon anterior touch, tyramine is released and through the actions of LGC-55, 

head oscillations are repressed and the animal reverses. lgc-55 is thought to play an 

important role in the C. elegans escape response from nematophagous fungi traps 

(Barron, 1977).  It is hypothesized that contact with the constricting hyphal rings, 

analogous to anterior touch, induces tyramine release through activation of tyraminergic 

RIM motor neurons. Tyramine binds LGC-55 which is postsynaptic to RIM neurons.  

Consequently, head movements are suppressed and the worm moves backward to escape 

the death trap (Pirri et al., 2009).   
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Figure-2: Tyramine Activates LGC-55, SER-2, TYRA-2, and 

TYRA-3.  LGC-55 is a tyramine-gated chloride channel, while 

SER-2, TYRA-2, and TYRA-3 are tyramine-activated G protein 

coupled receptors (Donnelly, personal communication) 

 

   SER-2 is a tyraminergic GPCR also implicated in the escape response.  When 

expressed in HEK293 cells, intracellular cAMP levels decrease upon exposure to 

tyramine, suggesting that SER-2 is Gi/o (GOA-1) coupled (Rex and Komuniecki, 2002).  

Tyramine has also been shown to increase Ca
2+

 levels in cells that express ser-2 (Rex et 

al., 2004).  ser-2 is expressed in neurons in the head and tail, pharyngeal cells, head 

muscles, diagonal muscles in males, and some posterior neurons. Generally, the receptor 

is expressed in sensory, inter- and motor neurons (Tsalik et al., 2003). Thus, mutations in 

ser-2 result in observable behavioral modifications. In contrast to the wild type, SER-2 

defective worms do not display increased pharyngeal pumping in the presence of 

endogenous tyramine (Rex et al., 2004). This behavioral phenotype suggests that SER-2 

could affect feeding and foraging behavior through tyraminergic neuromodulation. 

Additionally, ser-2 mutant worms appear to be defective in making deep ventral (omega) 

turns.  SER-2 is thought to enable completion of tight, closed omega turns through 

(Pirri et al., 2009) 
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inhibition of GABAergic signaling (Donnelly, personal communication).  Backward 

locomotion, suppression of head oscillations, and omega turns are observed as part of the 

C. elegans escape response from nematophagous fungi, thus both ser-2 and lgc-55 are 

thought to play a role in the tyramine-modulated escape (Donnelly and Alkema, personal 

communication). 

 TYRA-2 is another tyramine responsive GPCR in C. elegans.  Sequence 

homology suggests that it is likely Gi coupled.  Like SER-2, TYRA-2 protein expressed 

in COS-7 cells binds tyramine with a higher affinity than other physiologically relevant 

biogenic amines. TYRA-2 has a much more restricted expression than SER-2, as it has 

been identified only in specific pharyngeal neurons, amphid neurons, and neurons in the 

nerve ring, body and tail.  TYRA-2 is not expressed in muscle. Very little behavioral data 

is available, but it is predicted that TYRA-2 may play a similar role as SER-2 in the 

stimulation of pharyngeal pumping (Rex et al, 2005).    

 TYRA-3 is the most recently described tyramine activated GPCR in C. elegans. 

TYRA-3 was suspected as a possible tyramine receptor because of its sequence similarity 

to a newly characterized tyramine-specific GPCR in insects (Wragg et al., 2007).   

Preliminary data confirms a high affinity for tyramine.  Extrapolation from sequence 

similarities suggests that TYRA-3 is Gq coupled (Figure-3) (diagram left side) and thus 

affects signaling in the phosphatidylinositol pathway. TYRA-3 is essential for inhibition 

of aversive responses to dilute octanol (Wragg et al., 2007). Aside from this, the role of 

TYRA-3 in C. elegans behavior is largely unexplored.  It is hypothesized that tyra-3 may 

play a regulatory role in dopaminergic signaling because it is expressed in dopaminergic 

ADE/CEP neurons (Wragg et al., 2007).  
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Figure-3: Phylogenetic Relationships Among Biogenic Amine 

G-Protein-Coupled Receptors from Other Bilaterian Species.  
Note that C. elegans TYRA-3 (black box, left side) is Gq coupled 

(Wragg et al., 2007).    

 

 

Dopamine Signaling in C. elegans 

 Dopamine has been shown to play a role in numerous nematode behaviors, 

including learning and locomotion (McDonald et al., 2006). Dopamine is synthesized in 8 

neurons in hermaphrodite C. elegans: ADE(R and L), PDE(R and L), CEPD(R and L) 

and CEPV(R and L) (Figure-4) (Chase and Koelle, 2007).  The ADE and PDE neurons, 

also known as the anterior and posterior deirid sensilla, are involved in mechanical 

texture sensation. ADE neurons are located posteriorly and ventrally to the terminal bulb. 

The dorsal ADE process sends off a short branch on the side, which extends to the lateral 

wall and terminates as a cilium (Altun and Hall, 2008). PDE sensory neurons are located 
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next to dorsal body wall muscle along the lateral side of the posterior body. Neurons of 

the cephalic sensillia, the CEP neurons have cell bodies and dendrites that extend to the 

tip of the nose.  Like ADE and PDE neurons, CEP neurons are involved in 

mechanosensory functions (Altun and Hall, 2008).  

 

Figure 4: Dopaminergic Neurons in Male C. elegans.  ADE, 

CEPd, CEPv, and PDE neurons are dopaminergic neurons in 

both male and hermaphrodite C. elegans.  Note that ray neurons 

R5A, R7A and R9A are only present in males (Lints and 

Emmons, 1999). 

 

Two genes vital in regulating dopamine levels are cat-2 and dat-1 (Figure-5). 

Mutants in cat-2 and dat-1 genes display unique phenotypes that demonstrate the 

significance of dopaminergic signaling in the nematodes.  The cat-2 gene encodes 

tyrosine hydroxylase which catalyses the rate-limiting step in dopamine synthesis. 

Consequently, no dopamine is detectable in cat-2 mutant animals (Nass et al., 2002).  

These mutants fail to exhibit area-restricted search behavior.  Area-restricted search in C. 

elegans refers to the changes in turning frequency in response to food availability (Hills 

et al., 2004).  Wild type animals exhibit a high turning frequency in areas with food, and 

a low turning frequency in areas with no food. Cat-2 mutants have a low turning 

frequency under both conditions, suggesting that dopamine is required to stimulate 
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turning in response to food (Hills et al., 2004).  Additionally, wild type animals exhibit a 

basal slowing response when they encounter bacteria or a substance of comparable 

texture, whereas cat-2 mutants fail to slow locomotion in response to food (Sawin et al., 

2000).  As evidenced by these phenotypic changes, dopaminergic signaling is crucial for 

maintaining efficient foraging behaviors through modulation of turning and locomotory 

speed in C. elegans.  

 

Figure-5: Diagram of DAT-1 and a Dopaminergic Neuron. 

DAT-1 is a dopamine reuptake transporter.  cat-2 encodes 

tyrosine hydroxylase, the rate-limiting step in dopamine 

synthesis (McDonald, personal communication).  

 

In contrast to cat-2 mutants, dat-1 mutant animals are thought to have potentiated 

dopamine activity. dat-1 encodes a dopamine transporter necessary for the re-uptake of 

dopamine into presynaptic neurons (Jayanthi et al., 1998).  Thus, loss-of-function 

mutations in dat-1 result in increased synaptic dopamine concentrations.  Intriguingly, 

dat-1 mutants paralyze rapidly when swimming in water while wild type worms continue 

to thrash. This suggests that dopamine spillover into extrasynaptic sites negatively 

regulates locomotion (McDonald et al., 2007).  Not all dopamine GPCRs are post 
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synaptic to dopaminergic neurons; spillover of dopamine into extrasynaptic sites could 

activate these GPCRs, leading to this unique phenotype (McDonald et al., 2007). 
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PROJECT PURPOSE 

 
 

 The purpose of this project was to determine the role of TYRA-3 in modulating 

dopaminergic signaling in C. elegans.  Using confocal microscopy, the expression pattern 

of TYRA-3::GFP was analyzed to confirm expression in dopaminergic cells.  Animals 

mutant in tyra-3, cat-2 (loss of dopamine synthesis), and dat-1 (loss of dopamine re-

uptake transporter), as well as double mutants, were studied using exogenous tyramine 

drug assays.  The goal of these experiments was to define neural circuits that may involve 

the interaction of TYRA-3 and dopaminergic signaling.     
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METHODS 

 

C. elegans Strains 

 All strains were obtained from the C. elegans Genetics Center (CGC) unless 

otherwise noted.  Worms were cultured at room temperature (22°-24°C) on nematode 

growth media (NGM) agar plates.  Plates were seeded with OP50 E. coli as a food source 

(Brenner, 1974).  The wild-type strain used was Bristol N2.  Mutant strains used in this 

study were tyra-3(ok325), lgc-55(tm2913), tdc-1(ok914), cat-2(tm2261, e1112), and dat-

1(ok157). A ptyra-3::TYRA-3::GFP rescue line from R. Komuniecki was also used. 

 Cat-2(tm2261) worms were backcrossed with N2 worms prior to experiments to 

eliminate background mutations.  cat-2;tyra-3 double mutants were made using this 

backcrossed tm2261 allele.  The cat2;tyra-3 cross was initiated by plating 8 cat-2 males 

with 2 tyra-3 hermaphrodites.  In F1 offspring, 8 males were picked and again plated with 

2 tyra-3 hermaphrodites.  In F2 offspring, approximately 12 L4 animals were isolated to 

individual plates and allowed to reproduce.  Homozygosity of cat-2;tyra-3 double 

mutants was confirmed using PCR from these progeny.  The same procedure was used to 

obtain dat-1;tyra-3 double mutants.   

 

Worm Lysis and PCR 

Approximately 3-5 worms were picked and placed in 5 µL of 1X Prot K lysis 

buffer.  The worms were lysed at 65°C for 1 hour and 95°C for 15 minutes in an 

Eppendorf Thermocycler.   For each PCR reaction, a 25µL mix was used containing 2.5 

µL 10X PCR Buffer, 2.5 µL of 2 mM DNTPs, 0.1 µL Taq polymerase, 1.5 µL worm 
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lysate, 0.25 µL of each primer, and 17.9 µL dH2O.   Primers used for confirming cat-2  

deletion were tm2261 external forward (5’-GATTCTCCAACAACTGAACGACG-3’)  

and tm2261 external reverse (5’-GTGCTCTTCCTCCGTGTAGTC-3’).  Primers used for 

confirming dat-1 deletion were ok157 internal forward (5’-

GGGCTTATTGATTGCAGTGTTC-3’) and ok157 external reverse (5’-

CCCTCGCATTGACGAATTTG-3’).  The samples were heated at 94°C for 2 minutes in 

an Eppendorf Thermocycler, followed by 35 cycles consisting of 94°C for 15 seconds, 

60°C for 45 seconds, and 72°C for 1 minute.  Finally, the samples were heated at 72°C for 

5 minutes.  Agarose gel electrophoresis was used to visualize PCR products.  

 

Tyramine Behavioral Assays 

 Exogenous tyramine assays were conducted at room temperature (22°-24°C) on 

1.7% agar plates containing tyramine hydrochloride (Sigma) and 2 mM acetic acid.  

Young adult animals used were selected at the L4 stage 24 hours prior to assay.  For the 

assay, worms were transferred to drug plates for a 20 minute period.  The number of 

immobilized worms was scored every minute.  Only worms that had no significant 

movement for 5 seconds were counted as immobilized.  At least 9 trials of an average of 

12 worms each were performed for each drug and strain combination in this study.   

 

TYRA-3 Expression Analysis 

 ptyra-3::TYRA-3::GFP;lgc-55::mCherry and ptyra-3::TYRA-3::GFP;tdc-

1::mCherry were visually analyzed using confocal microscopy (Zeiss).  The images were 
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formatted using ImageJ software. Cell identification was done by comparing cell 

morphology to the known C. elegans neuronal diagram.  
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RESULTS 

 
 

TYRA-3 is a G-protein coupled receptor that has been shown to bind tyramine 

with high affinity (Wragg et al., 2007).  Its role in C. elegans behavior is largely 

unexplored.  To investigate the function of TYRA-3, worms with loss of function 

deletion mutations in the receptor were exposed to drug plates with various 

concentrations of tyramine.  These assays were performed in parallel with wild type and 

tyra-3 rescue mutants containing a ptyra3::TYRA::GFP extra-chromosomal array in the 

tyra-3 deletion background.  At a 10 mM tyramine concentration, a clear difference in 

immobilization between tyra-3 mutants and wild type worms was observed (Figure-6).  

tyra-3 mutants (red curve) were hyper-sensitive to paralysis in response to exogenous 

tyramine exposure.  The wild type phenotype (blue curve) was completely restored with 

the extra-chromosomal rescue (green curve). 
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Figure-6:  tyra-3 Loss of Function Mutants are Sensitive to 

Paralysis on 10 mM Tyramine.  Exogeneous tyramine 

behavioral assays were performed as described in Methods.  

Each point represents the mean of at least nine trials.  Error bars 

denote standard error. 

 

Confocal microscopy of the translational GFP fusion ptyra3::TYRA-3::GFP strain was 

used to analyze the TYRA-3 expression pattern.  The strain was crossed with lgc-55::mCherry 

and tdc-1::mCherry to visualize the relative positioning of cells.  TYRA-3::GFP was identified in 

dopaminergic CEP neurons (Figure-7) and in dopaminergic ADE neurons (Figure-8).  

Expression was observed in additional neurons that were not readily identifiable given lack of co-

expression with the known lgc-55::mCherry and tdc-1::mCherry reporters.  
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Figure-7: TYRA-3 Expression in Dopaminergic 

CEP Neurons.  The TYRA-3::GFP fusion protein 

fluoresces green. 

 

 

 

 

 

 

 

 

Figure-8: TYRA-3 Expression in Dopaminergic 

ADE Neurons. The TYRA-3::GFP fusion protein 

fluoresceses green. 

 

 

 

 

 

 

Since TYRA-3 is expressed in dopaminergic neurons, additional drug assays were 

performed to investigate the influence of TYRA-3 on dopamine signaling.  dat-1 loss of 

function mutants lacking the dopamine reuptake transporter, as well as dat-1;tyra-3 

double mutants, were assayed on plates containing various concentrations of tyramine 

(Figure-9).  At 10 mM tyramine, both dat-1 (purple curve) and dat-1;tyra-3 mutants 

(turquoise curve) were more sensitive to paralysis than wild type (blue curve) and less 

sensitive to paralysis than tyra-3 mutants (red curve).  
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Figure-9: dat-1 and dat-1;tyra-3 Loss of Function Mutants 

are Moderately Sensitive to Paralysis on 10 mM Tyramine 

Plates.  Each point represents the mean of at least nine trials.  

Error bars denote standard error. 

 

 

 cat-2 and cat-2;tyra-3 loss of function mutants (producing no dopamine) were 

also tested on varying concentrations of tyramine (Figure-10).  At 10 mM tyramine, cat-

2;tyra-3 double mutants (pink curve) showed higher sensitivity than wild type and lower 

sensitivity than tyra-3 mutants, similar to dat-1 and dat-1;tyra-3 mutants.  cat-2 mutants 

(orange curve) showed a slight resistance to paralysis at 10 mM tyramine.  This 

phenotype was more pronounced at 20 mM tyramine (Figure-11).   
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Figure-10: cat-2;tyra-3 Loss of Function Mutants are 

Moderately Sensitive to Paralysis at 10 mM Tyramine.  Each 

point represents the mean of at least nine trials.  Error bars 

denote standard error. 
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Figure-11: cat-2 Loss of Function Mutants are Resistant to 

Paralysis at 20 mM Tyramine.  Each point represents the mean 

of at least nine trials.  Error bars denote standard error. 
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DISCUSSION 
 

 

 

 tyra-3 mutants, lacking a functional TYRA-3 G protein-coupled tyramine 

receptor, are more sensitive to paralysis than wild type worms upon exposure to 

exogenous tyramine.  tyra-3 mutants expressing a ptyra-3::TYRA-3::GFP 

extrachromosomal array display a wild type phenotype, confirming that the apparent  

tyramine sensitivity of tyra-3  is due to loss of function in the TYRA-3 receptor (Figure-

6). These results at first seem counter-intuitive, as one would predict that the loss of a 

tyramine receptor would make the worms more resistant to tyramine paralysis, but this 

may be partially explained by interactions between tyraminergic and dopaminergic 

signaling.  The strong expression of GFP tagged TYRA-3 in dopaminergic ADE and CEP 

neurons (Figure-7, Figure-8) suggests that the binding of tyramine to TYRA-3 could 

have some effect on dopaminergic signaling in these neurons. The time response curves 

for cat-2 and dat-1 mutant worms, which contain no dopamine and high synaptic 

dopamine, respectively, support a model involving suppression of dopamine signaling by 

the TYRA-3 receptor. 

 Contrary to sequence homology analysis that suggests TYRA-3 is Gq coupled 

(Wragg et al., 2007), the time response to tyramine exposure for tyra-3, cat-2, and dat-1 

mutants suggests that TYRA-3 is Gi coupled.  In principal, tyramine binding to TYRA-3 

leads to dissociation of the Gi protein.  The dissociated Gi protein suppresses enzymatic 

activity by inhibiting the production of cAMP from ATP (Gilman, 1987).  This change in 

enzymatic activity could ultimately down regulate dopaminergic signaling through a 

number of mechanisms.  Following this model, hypersensitivity of tyra-3 loss of function 
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mutants to tyramine may be due, in part, to lack of repression of dopamine release.  

Excessive dopamine signaling, as in dat-1 mutants, has been shown to cause paralysis in 

swimming assays (McDonald et al., 2007). Without inhibition of dopaminergic signaling 

by TYRA-3, spillover of dopamine into extrasynaptic sites negatively regulates 

locomotion. 

The phenotypes observed for dat-1 and cat-2 are consistent with previously 

established behaviors; dat-1 mutants paralyze when swimming, while cat-2 mutants 

display a lack of basal slowing when encountering food (Sawin et al., 2000).  

Hypersensitivity to paralysis of dat-1 loss of function mutants exposed to 10 mM 

tyramine (Figure-9) may be the result of excessive dopamine partially outweighing 

repressive effects of TYRA-3.  The partial resistance of cat-2 mutants to exogenous 

tyramine exposure (Figure-11) also supports the theory that dopamine release leads to 

the paralysis observed in dat-1 and tyra-3 mutants.  Sufficient tyramine exposure leads to 

paralysis in wild type worms, but without dopamine to repress locomotion, cat-2 mutants 

are resistant to this effect.  The effects of tyramine exposure on these mutants 

demonstrate a significant interaction between dopaminergic and tyraminergic nervous 

systems.  Dopamine contributes to the paralysis observed in dat-1, tyra-3 and wild type 

worms when exposed to exogenous tyramine.  tyra-3 mutants are the most sensitive to 

paralysis, supporting the hypothesis that tyramine binding to TYRA-3 inhibits dopamine 

release through suppression of the cAMP pathway  

According to this model, it was predicted that dat-1;tyra-3 mutants would be 

more sensitive to paralysis than dat-1 mutants, and cat-2;tyra-3 mutants would show the 

same resistance as cat-2 mutants.  However, this was not the case.  Both cat-2;tyra-3 and 
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dat-1;tyra-3 double mutants were similarly sensitive to paralysis on 10 mM tyramine 

plates (Figure-9, Figure-10).  This suggests that TYRA-3 is likely influencing 

locomotion through actions in other neurons in addition to ADE and CEP.  This 

hypothesis could be tested by rescuing the tyra-3 deletion through expression of a 

TYRA-3 extra-chromosomal array with a dopamine-specific promoter (ie, pdat-1).  This 

would express the functional TYRA-3 receptor only in dopaminergic cells.  By 

comparing the time response of these mutants on tyramine plates to results for tyra-3 and 

wild type worms, it may be possible to gain insight on the effects of TYRA-3 outside of 

dopaminergic signaling.  

 It would also be useful to cross the ptyra-3::TYRA-3::GFP worms with 

additional mCherry tagged mutants.  This could help with identification of neurons where 

TYRA-3 is expressed.  Since dopamine is often associated with attention (Chase and 

Koelle, 2007), an assay measuring attention behaviors in the worm could also be useful in 

establishing the actions of TYRA-3.  It is possible that tyramine binding to TYRA-3 in 

the escape response could serve to heighten attention in the worm.  Additionally, drug 

assays on aldicarb, an acetylcholine esterase inhibitor, could provide come clues about 

the interaction of TYRA-3 with other neurotransmitters. Excess acetylcholine 

concentration leads to paralysis by contracting body wall muscles, while a lack of 

acetylcholine causes resistance to paralysis (Nguyen et al., 2005).  If TYRA-3 is 

expressed in cholinergic or GABAergic neurons, it is expected that exposure to aldicarb 

and tyramine simultaneously will paralyze tyra-3 mutant animals at a different rate than 

wild type. 
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In context of the tyramine-modulated escape response from nematophagous fungi, 

tyramine binding to TYRA-3 could positively regulate locomotion.  Activation of LGC-

55 leads to suppression of head movements and initiates a reversal to escape the death 

trap (Pirri et al., 2009), then SER-2 modulates the omega turn so the worm can continue 

in the same direction moving forward (Donnelly, personal communication).  TYRA-3 

may inhibit dopamine, leading to an increase in velocity after the omega turn.  TYRA-3 

inhibition of dopamine may also prevent basal slowing and thus encourage escape.  The 

reaction of tyra-3 loss of function mutants to anterior touch could elucidate the role of 

tyra-3 in the escape response. Various parameters of the escape response, including 

turning, reversals, and locomotory speed of tyra-3 mutants could also be quantified and 

analyzed.   
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