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Abstract

Cellulose is one of the most abundant compounds found in nature. However,
the environmental conditions the substance is placed in is of utmost impor-
tance to the structure of the cellulose, and must be controlled to ensure opti-
mal strength and cohesiveness of the compound. Here, we developed a simple
statistical physics model to simulate how thermodynamic properties affect mi-
croscopic cellulose. Partition functions to represent the glucose molecules in
cellulose are constructed as the basis of the simulation. Depending on temper-
ature, the type of hydrogen bonds holding the cellulose together dynamically
change, until the point where the temperature becomes high enough to rupture
all hydrogen bonds. The Specific Heat calculated in the simulation agrees well
with cellulose’s experimental Specific Heat value. Though only a simple model,
the physics behind the simulation was able to reproduce experimental data with
high accuracy and provides insights into the microscopic behavior of cellulose.
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1 Background

Cellulose is a compound found in many different substances, mostly because
its abundance in organic plant cells. Cellulose grows to form microfibril which
accumulate to form strands in substances such as cotton. Cotton is a cellulose
substance that is able to withstand forces when woven without sheering and has
tensile strength comparable to that of steel. Cotton is essential to the textile
industry and the effects of thermodynamic properties on the substance are of
great importance to the processing of the material. Many of the properties of
cotton depend on pressure, temperature, and saturation of hydrogen-bonds in
the substance, and dictate how the material is able to perform on the macro-
scale; whether it is greatly rigid or not. The properties of cellulose that give
it such great strength and rigidity lead to insights into the formation of rigid
organic structures. The goal of this project is to derive a simple, yet meaning-
ful model of cellulose through non-rigorous statistical physics and mathematics.
The relatively simple, crystalline structure of the most abundant organic com-
pound on Earth has gifted us with a multitude of uses the natural fibers cellulose
creates. From the wood used in construction, to the cotton clothes in the closet,
this compound permeates through the entire world. On the microscopic level,
for this model, a sheet of cellulose will be modeled as a lattice, and is depicted
in figure 1.

(a) lattice shape
(b) microfibril structure

Figure 1: Cellulose sheets stacking atop another.

Cellulose microfibrils are made from stacking multiple sheets atop each other.
Microfibrils entangle en-mass to form the fine threads found in materials such
as cotton.

Cotton used in the textile industry must be maintained at conditions which
will not cause flaws in the final product, such as yarn and fabric. Throughout
the processing of cotton, many precautions are taken on the macro scale, how-
ever, the cellulose that the cotton is produced from is rarely thought of. The
importance of thermodynamics on the cellulose lattice is demonstrated on the
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macro scale. The properties of cotton on the macro scale are affected by the
sum of microscopic and atomic properties. When cotton grows, different pres-
sures, temperatures, and humidity’s affect the structure of the cotton fibers.
Depending on the dryness of the soil, or how much the cotton was rained on,
the structure of the cotton changes. The length of the fibers varies, the dis-
coloration varies, the fineness of the fibers varies, as well as the uniformity of
the fibers. All these properties play a large role in the processing of cotton
into products. The properties of the natural cotton transfer into the properties
of the spun cotton yarn which in turn transfers into the properties of woven
products. Wrinkles in cotton clothing once they have been dried is caused by
uneven distribution of saturation in the cotton, making that portion of the fab-
ric shrink, that is why an iron uses steam to saturate the wrinkled garments to
return them to their normal shape. In cotton yarn manufacturing, temperature
and humidity are heavily controlled to ensure the maximum quality of product.
Tensile strength of the cotton thread changes with the length of the fibers, as
well as the saturation of hydrogen bonds, in addition to the cotton fibers becom-
ing more or less permeable to air based on thermodynamic properties, which
essentially defines how fine the fibers are. On the microscopic scale, microfibrils
have variable lengths, largely depending availability of hydrogen bonds being
able to form. The microfibrils have properties that, once they coalesce, show
themselves in the properties of the cotton fibers.

Figure 2: Microfibrils coalescing in a plant cell wall. Cotton is the most pure
form in nature of cellulose, with 90 percent of the material being made up of
these glucose chains.

As temperature increases, cotton fibers begin to decompose and no longer
represent a strand. This behavior is a result of microscopic changes in the
material that cause a cascading reaction where the fiber can no longer maintain
its structure. In contrast, certain temperatures and pressures allow for the most
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tensile strength in a cotton fiber. Knowing the structure of a microfibril, which
is formed by the cellulose lattice created by many glucose molecules, we will
be able to predict microscopic properties of cellulose. Microscopic properties
should be able to lend an explanation to the seemingly increased rigidity of the
cellulose lattice.

2 Approach

2.1 Partition Function

This model is created from the sum of small components made of glucose
molecules and their potential hydrogen bonds[1], with bonds that connect glu-
cose to form chains being called ”Intra-chain bonds” and the bonds that connect
chains to other chains ”Inter-chain bonds” (Intra and Inter bonds for short).

(a) Glucose Molecule (b) Cellulose chain

Figure 3: Glucose molecules form cellulose chains.

Glucose will play the roll of the networks vertices, while the hydrogen bonds
will play the edges. The model is extended from one glucose molecule into multi-
ple glucose molecules with intra-chain bonds, forming cellulose chains. Multiple
chains are then connected to each other through inter-chain bonds, finally form-
ing the sheet.

Figure 4: Cellulose Sheet.
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All the hydrogen bonds involved have different states, strengths, and orien-
tations due to the structure of the glucose molecule. This causes some compli-
cation for the model, diverging further from the simple DNA zipper problem
[2]. The model must take into account the probability of each of these states
occurring, both intra-bonds and inter-bonds[3]. This will be tackled by creating
two separate partition functions, one for intra-bonds, and one for inter-bonds,
and later taking the product in order to simplify the process.

Intra-bonds have 8 unique states, 6 different hydrogen bond orientations(2
single bonds, 2 bifurcated bonds, and 3 combinations)[4] and has 1 state where
there is no hydrogen bond, with entropy being the only factor. From this, the
partition function for the intra-bonds can be constructed as shown in equation
1 below:

ZA = es + eεa + eεb + eεc + eεd + eεa+εd + eεb+εd + eεc+εd (1)

Inter-bonds have 5 unique states, with 4 different hydrogen bond orientations
(2 single bonds, 1 bifurcated bond, and 1 combination)[4] and also has a free
state. The inter-bond partition function is represented as

ZE = es + eεe + eεf + eεg + eεe+εf (2)

Therefore, the complete partition function of a single glucose molecule would
be where G = ZAZE . Where the total number of states for a single glucose
molecule is Ω = 40. The partition function of a cellulose sheet with n glucose
molecules would be approximately S ≈ Gn ≈ ZAnZEn, where the total number
of states for a sheet of n glucose molecules is Ω ≈ 40n.

These are approximations to show the derivation of the simple sheet’s par-
tition function with extraneous hydrogen bonds on the right and bottom edges.
The model takes into account the double counting hydrogen bonds on the right
and bottom edges of the cellulose sheet. The model must depend on the length
of the cellulose chain and the number of chains in a sheet to make it more
accurate.

S = ZA
n−cZE

n−g (3)

The equation above is the basis for the simulation created in order to model
the behavior of the cellulose lattice, and could model any lattice structure if the
intra-bond and inter-bond partition functions are changed accordingly.

2.2 Entropy

In order to test the validity of the model, experimental data must be compared
to the models predictions. The specific heat of a substance is a measurable
quantity associated with the thermodynamic properties of the substance.

The Gibbs entropy, which calculates the entropy of systems with different
probabilities for each of its states, can be calculated simply with the partition
function for the lattice. The partition function allows for calculation of the
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probabilities of different bonds, and with that probability the Gibbs entropy
can be calculated. The Gibbs entropy can be written as:

S = −kB
∑
i

piln pi, (4)

where the change in Gibbs entropy is simply equal to the difference of the
Gibbs final entropy and the Gibbs initial entropy

The Gibbs entropy does not take into account the possible motion of the
particles in the lattice, which is another source of entropy. In order to include
the motion of the particles in the lattice, we will include in the simulation the
motion of each particle as a system of four springs. This should account for the
translational and vibrational energies. Intra and inter-bonds are modeled as
springs with different spring constants depending on the strength of the bond.

Figure 5: Hydrogen Bonds represented as springs with different spring constants
in both x and y directions.

Random values of displacement from the center are chosen based on the
strength of the springs constants, temperature, and a random value between -1
and 1.

xdisplacement =
1

2
xmaxP

( T

Tmax
+
kx2 − kx1
kx2 + kx1

)
(5)

where the weighted spring constant factor is

kx2 − kx1
kx2 + kx1

(6)

8



Figure 6: Representation of the glucose molecule displaced from the equilib-
rium position in the xy-plane. The elastic constants kx1, kx2, ky1, ky2 and the
displacement (x, y) are indicated in the figure.

and the weighted temperature factor is

T

Tmax
(7)

and P is the probability between -1 and 1. Similar equations are used for
the y-axis. Using the Second Law of Thermodynamics for entropy

dS =
δQ

T
(8)

and the First Law of Thermodynamics of a quasi-static system that states
the following

dU = δQ−W (9)

allow to calculate the change in heat. The equation can be manipulated such
that we can express the work in terms of the force multiplied by the distance
traveled.

δQ = dU + Fdr (10)

Hooke’s law states that the force enacted on an object by a spring is

Fn = kn∆rn (11)
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and the potential energy is

PEn =
1

2
knrn

2 (12)

The spring constant value is calculated by taking a portion of the experimen-
tal hydrogen bond energy as the average vibrational energy. For instance, the
force and internal energy for x1 would be calculated by calculating the spring
constant

εx1 =
1

x

∫ x

0

PEdx (13)

εx1 =
1

6

kk1x
3

x
(14)

kk1 =
6εx1
x2

(15)

and calculating the distance the spring has been stretched

∆rx1 =
√

(x+ xd)2 + yd2 − x (16)

in order to find the force and potential energy

Fx1 = kk1∆rx1 (17)

dUx1 =
1

2
kk1∆rx1

2 (18)

For this model, the kinetic energy will be approximated as zero due to its
generally small contribution to the internal energy of a crystalline microscopic
system. Substituting these values into the first law equation leaves

δQ =
∑

Un + r
∑

Fn, (19)

per glucose molecule. The entropy of a single glucose molecule placed into
the physical constraints of the cellulose lattice should lend a clue to the nature
of the cellulose lattice and help to extrapolate a bigger picture. In addition from
the total calculated entropy, a prediction of the specific heat can be made. The
specific heat of the model can be compared to experimental data of the specific
heat and heat capacity of cellulose.

dS = C
dt

T
(Heat Capacity), (20)

Cp =
C

m
(Specific Heat) (21)

where C is the Heat Capacity and Cp the Specific Heat, which are essentially
derived the same, with slightly differing units based on a mass ratio.
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2.3 Heat Capacity

The heat capacity of a substance can be calculated with

TdS = CdT (22)

or

δQ = CdT (23)

The integral can be taken across an initial temperature to a final temper-
ature, and since the heat capacity is a function of temperature, it is the only
variable. ∫ Qf

Qi

δQ = C

∫ Tf

Ti

dT (24)

Qf −Qi = C(Tf − Ti) (25)

C =
Qf −Qi
Tf − Ti

(26)

Where, due to the quantized nature of the computer simulation,

Qi =

Ti∑
t=0

δQt (27)

where

δQ =
∑

Un + r
∑

Fn (28)

In addition to the Gibbs entropy, through the previous equations for Heat
Capacity and Specific Heat, the value of the Heat Capacity can be calculated,
which is a function of temperature. From the Heat Capacity, the Specific Heat
can be calculated, which can be compared to the experimental Specific Heat
values of cellulose.

3 Simulation

3.1 Simulation Definitions

The method of testing this model is a computer simulation created in Python[5].
The first step in the program was to define the constants that are to be used
throughout the simulation. The math, random, numpy, and pylab packages
were used for ease of use[6]. The distance between glucose molecules in a chain
is 5 angstrom while the distance between chains is defined as 8 angstrom [7].
The strength of a single hydrogen bond was defined as 5 kilocalories/mol [8].
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3.2 Computational Methods and Logic

The variation in the bond energies were used to calculate the values of the
spring constants, and in the case of no hydrogen bond, the van der Waals force
was used [9]. The first step is to define the partition function as a function of
temperature. Once the partition function exists, it is possible to calculate an
array of probabilities of each state that is defined. With a probability array, the
probable energies are calculated in the simulation. When calculating entropy,
the energies previously determined will be used. Adjustments can be made to
the partition function due to the fact that one of the states exclusively depends
on entropy (the free state). The Heat Capacity and Specific Heat can be ap-
proximated through a new method with the entropy, and taking into account
the molar mass of a glucose molecule.

4 Results and Discussion

4.1 Theoretical Results and Figures

Due to the different types of hydrogen bonds, the glucose molecules are expected
to have different ”preferred” bonds at different temperatures, pressures, volume,
chemical potential. The findings of the model predict these properties based on
temperature, with a link to volume based on molecular distances between the
molecules and the 3D nature of the microfibril structure.

(a) Probability of each Intra-bonds (b) Probability of types of bonds

Figure 7: Probabilities of intra-bonds (as described in section 2) at varying
temperatures. As expected, when the temperature increases the hydrogen bonds
begin to rupture.

As the temperature rises, hydrogen bonds rupture depending on their ener-
gies. When the entropy state becomes more likely than a bond state, the bond
state’s probability decreases rapidly.

The Gibbs entropy behaves according to the probability calculations. The
higher the temperature, the more likely fewer states are possible, until eventually
the Gibbs entropy goes to zero with only one likely state.
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Figure 8: Gibbs Entropy decreases with increased temperature as less states
become possible.

The thermodynamic change in entropy, however, is different. The change in
entropy increases before leveling off and becoming, for the most part, constant.

Figure 9: Average Change in Entropy represented on a logarithmic scale in-
creases up to an average value of 23kb.

The model finds that the change in entropy on average is about 23kb per
glucose molecule with heat added per degree averaging at 0.0567 kilocalories
per mole ◦K. Taking into account that the molar mass of a glucose molecule
is 0.180156 kilograms per mole, the Specific heat of the glucose that builds our
cellulose can be calculated.

Qadded = mcp∆T (29)

0.0567[
kcal

mol ◦K
] = 0.180156[

kilograms

mol
]cp (30)
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cp =
0.0567

0.180156
[

kcal

kilogram◦K
] (31)

cp = 0.31498
kcal

kilogram◦K
(32)

cp = 0.31498
calories

gram◦C
(33)

Figure 10: Specific Heat as a function of temperature. The theoretical value of
0.315 calories per gram is in good agreement with the experimental values [3].

4.2 Discussion

The model outputs cp = 0.315 calories per gram Celcius, which, compared to
cellulose’ experimental data of between cp = 0.31 and cp = 0.36 , is 87.5%
accurate on the low end and 94% accurate if the average is taken. [10]

5 Model Short-comings and Future Analysis

The model presented here is a simplified one and inaccuracies are therefor ex-
pected. One short-coming of the model would be the lack of a third dimensional
analysis in the model. The cellulose sheets do stack one on top of each other,
but without the hydrogen bonds and instead utilizing the van der Waals forces
completely. This means the glucose molecules have an entire other dimension
to move around in and by then will increase entropy. Another short-coming of
the model would be the simplified modeling of bonds as springs. While being
somewhat accurate, on the extremes of bond contraction and rupturing temper-
atures it seems that this method would not tell all. In addition, the model was
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also incomplete in the sense that it did not take into account the availability of
hydrogen bonds and it was assumed the cellulose was saturated [11] [12].

Further analysis could be taken to measure the effect of other thermody-
namic properties, such as pressure, volume, and chemical potential. Manipu-
lation of multiple properties at once could shed light on interesting properties
of the lattice structure. Some foundational work was completed for the other
thermodynamic properties. While not fully developed, the simulation results
are presented below.

5.1 Pressure

An analysis of the model’s theoretical pressure would basically start with a
quantified measurement of the pressure of each glucose molecule on the adjacent
glucose molecules. Each glucose molecule has 4 ”edges” with possibly unique
energies for each one. A partition function of the unique state can be created
from the energies in the original partition functions.

ZA = es + eεa + eεb + eεc + eεd + eεa+εd + eεb+εd + eεc+εd (34)

ZE = es + eεe + eεf + eεg + eεe+εf (35)

The statistical definition of pressure is defined

P = kbT
∂lnZ

∂A
, (36)

where P is the pressure, k is the Boltzmann constant , T is the temperature,
Z is the partition function for the molecule, and A is the area. The addition
of an adjacent molecule allows for a change in the system. The molecule has
only one state. We can construct the partition function when realizing the total
energy of the system is:

ε1 = εA + εB + εC + εD (37)

thus
Z1 = eε1β (38)

We can follow the same steps to get the energy and partition function for
molecule 2.

ε2 = εC + εE + εF + εG (39)

thus
Z2 = eε2β (40)

Taking into account that the changes in the partition function are not in-
finitesimal and are quantized, due to the real number of vertices lets the pressure
equation be transformed into:
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P = kbT
∆lnZ

∆A
(41)

where,
∆A = ∆x∆y (42)

It can further be extrapolated to:

Pn = kbT
lnZn − lnZn−1

∆x∆y
(43)

Simplifying more, the equation becomes:

Pn = kbT
ln( Zn

Zn−1
)

xy
(44)

with

Zn = eεnβ (45)

and

Zn−1 = eεn−1β (46)

The equation can be further simplified. First, it must be noticed that the
pressure only represents the area where either theres a change in x or a change
in y, an infinitesimally small change in distance should look like P∂x = ... or
P∂y = ... depending on the axes changing. But in the case of our quantized
system, it looks like P∆x = ... or P∆y = .... In addition, a portion of the
pressure function is

ln(Zn)− ln(Zn−1) (47)

because the nature of a single state partition function, this simplifies to

εnβ − εn−1β (48)

where β is a common factor, thus

εn − εn−1

kbT
(49)

If replaced back into the pressure equation,

Pn∆y =
εn − εn−1

∆x∆y
(50)

Pny =
1

∆x∆y

∆εn
∆y

(51)

It becomes apparent that the equation is in the proper form.
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Pny =
Fn
∆A

or Pnx =
Fn
∆A

(52)

Backtracking to an earlier form highlights the surprising lack of dependen-
cies on temperature on the final equation, with only the change energy playing
an important role in the equation with a constant x and y. However, the prob-
abilities of the energy are still affected by the temperature.

Pny =
∆εn

∆x∆y2
(53)

The pressure of the molecule will be affected by molecules that are not
adjacent to it, but the effect is inversely proportional to the distance from the
square, and diminishes very rapidly. In this model we will only account for
adjacent molecules.

Pressures will also be quantized. The amount of different pressures possible
would be equal to

Np = ((Number Of X States)2(Number Of Y States)2)
2

(54)

An observation of the equation aligns with the prediction of how the lattice
would behave. At exceedingly low temperatures, where only one state is prob-
able, or at exceedingly high temperatures where all states are equally probable
(or in the case of cellulose, all hydrogen bonds are broken) the pressure is seen
to reduce to:

where Zn => Zn−1, (55)

P ∝ ln Zn
Zn−1

=> ln(1) => 0 (56)

or

where εn => εn−1, (57)

P ∝ εn − εn−1 => 0 (58)
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Figure 11: Average Pressure Between Glucose Molecules.

The pressure increases steadily with temperature until bonds begin to break.
As certain bonds become preferable, the pressure fluctuates and upon all bonds
rupturing and the entropy state is all that remains, the pressure returns to zero.

5.2 Crystallinity

The crystallinity is another interesting product of the lattice structure of cel-
lulose [13] [14]. The crystallinity is dependent of the rigid structure and what
percentage of the lattice is amorphous. The crystallinity can be roughly calcu-
lated by

Ni = Number of molecules with bonds considered tomakeitcrystalline (59)

Nt = Number of molecules (60)

%C =
Ni
Nt

(61)

or

%C = 1− Pa (62)

where Pa is the probability of amorphous nature, and

Pa = Πi
1 Pamorphous bond i (63)

For example, if an amorphous molecule were to be defined as having no
intra-bonds, the crystallinity would look like,

Pa = Pamorphous intra
2 (64)
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or an amorphous molecule with one missing intra-bond and one missing
inter-bond,

Pa = Pamorphous intra × Pamorphous inter (65)

Thus,

%C = 1− Pa (66)

While not able to fully analyze the model, an early analysis of the model’s
results are shown in the graphs below.

(a) Normal Scale (b) Log Scale

Figure 12: Crystallinity with variable temperature.

A formal definition of the crystallinity still needs to be fully developed for
the model, but conceptually the model above would be a good place to start.

6 Conclusion

The simple statistical model of the cellulose lattice with variable temperatures
was able to predict the physical properties of the compound quite accurately.
The relatively simple use of bond energies and entropy calculations are in good
agreement with the experimental data. There is much to expand on this model,
but a strong foundation has been laid for further research into the cellulose
lattice model. The model has shown to be accurate in predicting and modeling
some of the physical interactions of cellulose with thermodynamic properties.
Limiting factors to this model include the physical nature of springs in con-
trast to the actual nature of inter-molecular bonds, the 3D nature of the actual
material, along with a lack of interactivity between multiple thermodynamic
properties. Overestimation of the internal energy and underestimation of the
effect of the sheet stacking nature of cellulose could also be sources of problems.
Nevertheless, this simple model provides a viable approximation for such a com-
plex compound and can be further developed to predict optimal environments
for the processing of substances and products made of cellulose.
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7 Appendix A: Code

1

2 #-------------------------------------------

3 #--------------CELLULOSE MODEL --------------

4 #-------------------------------------------

5 #Robert Rinearson 2019

6

7 from mpl_toolkits.mplot3d import axes3d

8 import matplotlib.pyplot as plt

9 from scipy.interpolate import make_interp_spline , BSpline

10 from scipy.interpolate import spline

11 import scipy.interpolate as interpolate

12 from scipy.ndimage.filters import gaussian_filter1d

13 import scipy.ndimage

14

15

16 import math

17 import numpy as np

18 import random

19 import pylab

20

21 %matplotlib inline

22

23

24 chainLength = 10

25 chains = 7

26 angstrom = 1*(10**( -10))

27 x = angstrom * 5

28 y = angstrom * 8

29 xang = 5

30 yang = 8

31 mass = .180156 #kg/mol

32

33 hBondCaloriesPerMol = 5 #kilocalories

34 vanderwaalsCalories = 1 #kilocaleriespermol

35 k = 0.0019872041 #KiloCalories / mol

36 tMax = 300;

37

38 latticeSquares = (chainLength -1)*(chains -1)

39

40 s = 5.66

41 a = 1.5* hBondCaloriesPerMol

42 b = 1.6* hBondCaloriesPerMol

43 c = 1.1* hBondCaloriesPerMol

44 d = 1* hBondCaloriesPerMol

45 e = 1.1* hBondCaloriesPerMol

46 f = 1* hBondCaloriesPerMol

47 g = 1.5* hBondCaloriesPerMol

48 ad = a + d

49 bd = b + d

50 cd = c + d

51 ef = e + f

52

53

54 #------ ARRAYS

55
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56 intraEnergies = [s, a, b, c, d, ad , bd, cd]

57 interEnergies = [s, e, f, g, ef]

58

59 #---------- METHODS

60

61 #------------------------------

62 #----- PARTITION FUNCTION -----

63 #------------------------------

64

65 def intraPartition(temp):

66 partition = 0

67 for i in range(len(intraEnergies)):

68 if intraEnergies[i] <= k*temp *6.33 and i > 0:

69 state = 0

70 partition += state

71 else:

72 state = np.exp((- intraEnergies[i])/(k*temp))

73 partition += state

74 return partition

75

76 def interPartition(temp):

77 partition = 0

78 for i in range(len(interEnergies)):

79 if interEnergies[i] <= k*temp *6.33 and i > 0:

80 state = 0

81 partition += state

82 else:

83 state = np.exp((- interEnergies[i])/(k*temp))

84 partition += state

85 return partition

86

87

88 #-------------------------

89 #----- PROBABILITIES -----

90 #-------------------------

91

92 def intraProbabilities(temp):

93 probabilities = []

94 probs = np.zeros(len(intraEnergies))

95 partition = intraPartition(temp)

96 for i in range(len(intraEnergies)):

97 if intraEnergies[i] <= k*temp *6.33 and i > 0:

98 probability = 0

99 probs[i] = probability

100 else:

101 probability = np.exp((- intraEnergies[i])/(k*temp))/

partition

102 probs[i] = probability

103 return probs

104

105 def interProbabilities(temp):

106 probabilities = []

107 probs = np.zeros(len(interEnergies))

108 partition = interPartition(temp)

109 for i in range(len(interEnergies)):

110 if interEnergies[i] <= k*temp *6.33 and i > 0:

111 probability = 0
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112 probs[i] = probability

113 else:

114 probability = np.exp((- interEnergies[i])/(k*temp))/

partition

115 probs[i] = probability

116 return probs

117

118

119 #--------------------

120 #----- ENERGIES -----

121 #--------------------

122

123 def intraEnergy(temp):

124 probabilities = intraProbabilities(temp)

125 rand = random.random ()

126 val = 0

127 for i in range(len(intraEnergies)):

128 if rand <= (val + probabilities[i]):

129 return intraEnergies[i]

130 val += probabilities[i]

131

132 def interEnergy(temp):

133 probabilities = interProbabilities(temp)

134 rand = random.random ()

135 val = 0

136 for i in range(len(interEnergies)):

137 if rand <= (val + probabilities[i]):

138 return interEnergies[i]

139 val += probabilities[i]

140

141 def avgIntraEnergy(temp , times):

142 totalE = 0

143 for i in range(times):

144 totalE += intraEnergy(temp)

145 avgE = totalE / times

146 return avgE

147

148 def avgInterEnergy(temp , times):

149 totalE = 0

150 for i in range(times):

151 totalE += interEnergy(temp)

152 avgE = totalE / times

153 return avgE

154

155 #-------------------------

156 #----- GIBBS ENTROPY -----

157 #-------------------------

158

159

160 def edgeEntropy(probability):

161 if probability != 0:

162 entropy = -k * probability * np.log(probability)

163 return entropy

164 else:

165 return 0

166

167
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168 def entropyConstArray(temp):

169 intraProbs = intraProbabilities(temp)

170 interProbs = interProbabilities(temp)

171

172 entropy = 0

173 for i in range(len(intraProbs)):

174 entropy += edgeEntropy(intraProbs[i])

175

176 for j in range(len(interProbs)):

177 entropy += edgeEntropy(interProbs[j])

178 return entropy

179

180

181 def entropyMultiple(temp):

182 intraProbs = intraProbabilities(temp)

183 interProbs = interProbabilities(temp)

184 entropy = 0

185

186 for g in range(len(intraProbs)):

187 for h in range(len(interProbs)):

188 entropy += edgeEntropy(intraProbs[g]* intraProbs[h])

189

190 return entropy

191

192

193 #----------------------------

194 #----- PHYSICAL ENTROPY -----

195 #----------------------------

196

197 def physicalEntropy(temp):

198 intraEnergy1 = intraEnergy(temp)

199 intraEnergy2 = intraEnergy(temp)

200 interEnergy1 = interEnergy(temp)

201 interEnergy2 = interEnergy(temp)

202

203 kx1 = 6 * intraEnergy1 / (x**2)

204 kx2 = 6 * intraEnergy2 / (x**2)

205 ky1 = 6 * interEnergy1 / (y**2)

206 ky2 = 6 * interEnergy2 / (y**2)

207

208 kxReduced = (kx2 - kx1)/(kx2 + kx1)

209 kyReduced = (ky2 - ky1)/(ky2 + ky1)

210 randX = random.uniform(-1, 1)

211 randY = random.uniform(-1, 1)

212

213 if temp > tMax:

214 temp = tMax

215 tWeight = temp/tMax

216

217 xDisplacement = (1/2)*(x)*randX*( kxReduced + tWeight)

218 yDisplacement = (1/2)*(y)*randY*( kyReduced + tWeight)

219 rDisplacement = (xDisplacement **2 + yDisplacement **2) **(1/2)

220

221 x1Displacement = (((x + xDisplacement)**2) + yDisplacement **2)

**(1/2) - x

222 x2Displacement = (((x - xDisplacement)**2) + yDisplacement **2)

**(1/2) - x
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223 y1Displacement = (((y + yDisplacement)**2)+ xDisplacement **2)

**(1/2) - y

224 y2Displacement = (((y - yDisplacement)**2)+ xDisplacement **2)

**(1/2) - y

225

226 fx1 = -kx1*( x1Displacement)

227 fx2 = kx2*( x2Displacement)

228 fy1 = -ky1*( y1Displacement)

229 fy2 = ky2*( y2Displacement)

230 fTotal = ((fx1 + fx2)**2 + (fy1 + fy2)**2) **(1/2)

231 ux1 = (1/2) * kx1 * (x1Displacement **2)

232 ux2 = (1/2) * kx2 * (x2Displacement **2)

233 uy1 = (1/2) * ky1 * (y1Displacement **2)

234 uy2 = (1/2) * ky2 * (y2Displacement **2)

235

236 uTotal = abs(ux1) + abs(ux2) + abs(uy1) + abs(uy2)

237

238 dQ = uTotal + fTotal * rDisplacement

239 dS = dQ/temp

240 return dS

241

242

243 def avgPhysicalEntropy(temp , times):

244 total = 0

245 for i in range(times):

246 total += physicalEntropy(temp)

247 return total/times

248

249

250 #-------------------------

251 #----- HEAT CAPACITY -----

252 #-------------------------

253

254 def heatCap(tempInitial , tempFinal):

255 qTotal = 0

256 for i in range(tempInitial , tempFinal):

257 gibbs2 = entropyConstArray(tempFinal)

258 gibbs1 = entropyConstArray(tempInitial)

259 changeEntropy = gibbs2 -gibbs1

260 qTotal += (abs(avgPhysicalEntropy(i, 50)) + tempFinal*

changeEntropy)

261 heatCap = qTotal / (tempFinal - tempInitial)

262 return heatCap

263

264

265 def avgHeatCap(tempInitial , tempFinal , reps):

266 totalHeatCap = 0

267 for i in range(reps):

268 totalHeatCap += heatCap(tempInitial , tempFinal)

269 return totalHeatCap/reps

270

271

272 #--------------------

273 #----- PRESSURE -----

274 #--------------------

275

276 def pressureX(temp):
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277 #VERTEX 1

278 intraEnergy1 = intraEnergy(temp)

279 intraEnergy2 = intraEnergy(temp)

280 interEnergy1 = interEnergy(temp)

281 interEnergy2 = interEnergy(temp)

282

283 totalEnergy1 = intraEnergy1 + intraEnergy2 + interEnergy1 +

interEnergy2

284

285 #VERTEX 2

286 intraEnergy3 = intraEnergy(temp)

287 intraEnergy4 = intraEnergy(temp)

288 interEnergy3 = interEnergy(temp)

289 interEnergy4 = interEnergy(temp)

290

291 totalEnergy2 = intraEnergy3 + intraEnergy4 + interEnergy3 +

interEnergy4

292

293 deltaEnergy = abs(totalEnergy1 - totalEnergy2)

294 pressure = deltaEnergy / (xang*xang*yang)

295 return pressure

296

297 def pressureY(temp):

298 #VERTEX 1

299 intraEnergy1 = intraEnergy(temp)

300 intraEnergy2 = intraEnergy(temp)

301 interEnergy1 = interEnergy(temp)

302 interEnergy2 = interEnergy(temp)

303

304 totalEnergy1 = intraEnergy1 + intraEnergy2 + interEnergy1 +

interEnergy2

305

306 #VERTEX 2

307 intraEnergy3 = intraEnergy(temp)

308 intraEnergy4 = intraEnergy(temp)

309 interEnergy3 = interEnergy(temp)

310 interEnergy4 = interEnergy(temp)

311

312 totalEnergy2 = intraEnergy3 + intraEnergy4 + interEnergy3 +

interEnergy4

313

314 deltaEnergy = abs(totalEnergy1 - totalEnergy2)

315 pressure = deltaEnergy / (xang*yang*yang)

316 return pressure

317

318 def avgPressureX(temp , times):

319 totalP = 0

320 for i in range(times):

321 totalP += pressureX(temp)

322 avgP = totalP/times

323 return avgP

324

325 def avgPressureY(temp , times):

326 totalP = 0

327 for i in range(times):

328 totalP += pressureY(temp)

329 avgP = totalP/times
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330 return avgP

331

332

333 #-------------------------

334 #----- SPECIFIC HEAT -----

335 #-------------------------

336

337

338 def specificHeat(tempInitial , tempFinal):

339

340 q = 0

341 for i in range(tempFinal , tempInitial):

342 q += avgPhysicalEntropy(i, 30) * i

343 specificHeat = q/(mass*( tempFinal - tempInitial))

344 return specificHeat

345

346 #-------------------------

347 #----- CRYSTALLINITY -----

348 #-------------------------

349

350 def crystallinity(temp , intraNum , interNum):

351 intraProbs = intraProbabilities(temp)

352 interProbs = interProbabilities(temp)

353 intraProbMultiple = intraProbs [0]** intraNum

354 interProbMultiple = interProbs [0]** interNum

355 crystal = 1 - (intraProbMultiple * interProbMultiple)

356

357 return crystal

Listing 1: CODE FOR MODEL
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