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Abstract

Security issues will play an important role in the majority of communication and computer
networks of the future. As the Internet becomes more and more accessible to the public, se-
curity measures will have to be strengthened. Elliptic curve cryptosystems allow for shorter
operand lengths than other public-key schemes based on the discrete logarithm in finite
fields and the integer factorization problem and are thus attractive for many applications.

This thesis describes an implementation of a crypto engine based on elliptic curves. The
underlying algebraic structures are composite Galois fields GF ((2n)m) in a standard base
representation. As a major new feature, the system is developed for a reconfigurable plat-
form based on Field Programmable Gate Arrays (FPGAs). FPGAs combine the flexibility
of software solutions with the security of traditional hardware implementations. In partic-
ular, it is possible to easily change all algorithm parameters such as curve coefficients, field
order, or field representation.

The thesis deals with the design and implementation of elliptic curve point multiplication ar-
chitectures. The architectures are described in VHDL and mapped to Xilinx FPGA devices.
Architectures over Galois fields of different order and representation were implemented and
compared. Area and timing measurements are provided for all architectures. It is shown
that a full point multiplication on elliptic curves of real-world size can be implemented on
commercially available FPGAs.
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Chapter 1

Introduction

1.1 Motivation

The latest breakthroughs in reconfigurable hardware technology are making recon-

figurable computing more attractive to a wide range of applications. Today’s pro-

grammable devices can accommodate very large digital designs with performances

suitable in many high speed applications. At the same time, Internet popularity is

growing very rapidly with applications ranging from computer/voice networks, elec-

tronic commerce and electronic banking. An open environment such as the Internet

presents a threat to its users by compromising the privacy and integrity of every

transaction. The necessity for security has fueled research in the area of crypto-

graphic protocols and encryption algorithms. Since the Internet provides a diverse

environment of heterogeneous systems, it is impossible to find one algorithm that

meets the needs of all users. Consequently the need for a versatile approach to cryp-

tographic services is obvious. Luckily, advancements in reconfigurable computing

bring the possibility of reconfigurable cryptographic implementations into the real

1



CHAPTER 1. INTRODUCTION 2

world.

Reconfigurable devices are of particular interest when considered for the use in cryp-

tographic applications because of high degree of flexibility when compared to tradi-

tional ASIC solutions. Most modern cryptographic protocols such as SET and IPSEC

are defined to be algorithmically independent. This means that several algorithms

can be used for the same security service. For instance, a given protocol may al-

low RSA, DSA, or elliptic curves as digital signature algorithm. Moreover, today’s

cryptographic systems often rely on a hybrid approach that utilizes both private and

public-key schemes. With configurable computing, it is possible to reuse a device

to do both tasks faster than a software solution. A third reason why reconfigurable

devices are attractive for cryptographic applications is that virtually all parameters

of the design can be altered. For example, implementing elliptic curve (EC) systems

in reconfigurable environment means that we have the capability to alter the curve

parameters for each individual encryption stream. Also, the underlying arithmetic

functions such as the finite field multipliers and adders can be changed with respect

to field order or basis representation. Thus implementations based on reconfigurable

hardware preserve the flexibility of software solutions while providing the security

of a hardware solution. Also, with the introduction of partially reconfigurable de-

vices, soon it will be possible to accommodate private and public-key schemes on the

same device and be able to reconfigure only the desired functions while the device is

functioning.

The work described here presents an elliptic curve (EC) implementation in Field

Programmable Gate Arrays (FPGAs). At the time of this work there has not been

any other documented effort in this particular area. Elliptic curves as cryptographic

algorithms have been studied since the mid-1980s. The use of elliptic curves in cryp-

tography is advantageous for many reasons. Elliptic curve cryptography allows for
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shorter key lengths without compromising the security of the system. In comparison

to more conventional methods of public-key encryption such as RSA and systems

based on the discrete logarithm problem which necessitate key lengths of about 1024

bits, EC systems use 160 bit operands. This translates to increased performance over

both types of public-key algorithms. From a security standpoint, EC systems provide

better long term security due to the lack of sub-exponential attacks which can be

applied to the DL problem in finite fields. Finally, EC encryption is currently being

strongly reviewed for standardization by the IEEE standards committee in P1363 [1].

1.2 Thesis Outline

We begin this thesis with a description of previous work related to this research.

Thus, Chapter 2 summarizes hardware and software implementations of elliptic curve

systems. In addition, recent research in finite fields arithmetic architectures is pre-

sented.

Chapter 3 dives right into theory with explanation of different arithmetic constructs

considered for the realization of our elliptic curve system. This chapter is rather

short but it provides a good background for Chapter 4 that describes elliptic curves

for cryptographic protocols. In this chapter, some history and background is provided

followed by explanation of elliptic curve group operation.

In Chapter 5, the entire design and implementation cycle is described. We felt strongly

that the methodology chapter is quite necessary considering the very practical nature

of this work. This chapter presents a road map for the entire research project. First,

a brief overview is given describing how things were done and how one task relates

to another. In addition, the tools that were used during the course of the project are
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explained. Associated with these tools are procedures for the development of each

step of the design cycle.

In Chapter 6, reconfigurable hardware is described and few design considerations are

discussed. More specifically, this chapter describes different design approaches that

have been considered during the course of the project. Advantages and disadvantages

of these options are presented in the context of FPGA architecture.

Chapters 7, 8, 9, 10 describe the final design. Chapter 7 presents a design overview

and describes the individual components of the system architecture. Chapters 8, 9,

and 10 provide a bottom-up approach in describing the control hierarchy of the system

architecture. In Chapter 8 operations in GF ((2n)m) are described form a control point

of view. Then, Chapter 9 develops the sequence that is necessary to realize group

operation on EC. Finally, Chapter 10 presents the top level control structure that

defines I/O operations and realizes point multiplication by a scalar integer.

Chapter 11 discuses our results and provides absolute timing analysis of the system.

Thus timing results for point multiplication and individual double and add operations

are derived from gathered data. Chapter 12 quickly concludes this written work with

a short summary and recommendations for future research in this area.



Chapter 2

Previous Work

Previous work that aided in the development of this design include hardware and

software realizations of point multiplication as well as implementation of Galois field

arithmetic. The following summarizes previous work in these areas.

2.1 Hardware EC Implementations

Hardware realization of EC system results in higher performance and security at the

expense of higher cost and reduced flexibility. Also, because of the large operands nec-

essary in cryptographic applications, hardware solutions exhibit slower development

cycles resulting in relatively few reports on EC in hardware. A hardware imple-

mentation of elliptic curve cryptosystem has been described as a co-processor unit

by [6]. This VLSI implementation utilized optimal normal base representation for

arithmetic in GF (2155). The use of projective coordinates eliminated the need for

inversion which is the most costly operation. Similar approaches to the hardware

5
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realization were described in [25] and [26]. Our approach differs from previously de-

scribed implementations since we use composite field arithmetic in polynomial base

representation.

2.2 Software EC Implementations

Software implementations of EC cryptosystem include [39, 11, 12, 45]. In [39], an

elliptic curve system is implemented for a key exchange protocol. The implementation

is simplified by choosing the curve parameter a equal to zero. The system architecture

relies on arithmetic in GF (2155) using polynomial representation and an optimized

inversion algorithm based on Euclidean division. The implementation performed

multiplication of a new elliptic curve point in 7.8 milliseconds on a DEC Alpha 3000

RISC machine.

Composite fields arithmetic has also been utilized in some previous elliptic curve

implementations. Two different versions of this method were introduced. In [12],

an elliptic curve cryptosystem was based on arithmetic in GF ((28)13) using a mixed

normal/polynomial base representation. More recently, [45] and [11] describe elliptic

curve cryptosystem implemented over GF ((216)11). In both contributions different

subfield arithmetic methods are analyzed and optimized for the specific implementa-

tion. Both contributions use a polynomial base representation and look-up tables for

subfield arithmetic. In [45], inversion is achieved through a version of the Euclidean

algorithm, whereas [11] uses a method based on exponentiation.
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2.3 Overview on Finite Field Arithmetic Architec-

tures

There are two main areas of application for finite field arithmetic: channel coding,

in particular for the wide-spread Reed-Solomon codes [44], and public-key cryptog-

raphy [41]. Although channel codes and cryptographic algorithms both make use of

Galois fields, the field orders needed differ dramatically: channel codes are typically

restricted to arithmetic with field elements which are represented by up to eight bits,

whereas public-key algorithms rely on field sizes of several hundred bits. The major-

ity of publications concentrate on finite field architectures for relatively small fields

suitable for the implementation of channel codes.

Multiplication in GF (2k) is usually considered the crucial operation which determines

the speed or throughput of a crypto system. Finite field architectures can be classified

into bit serial (one output bit per clock cycle) and bit parallel ones (all output bits

are computed within one clock cycle.) The majority of schemes are based on either of

these two types. Architectures which are of hybrid-type (partially serial, and partially

parallel), as used in this work, have been introduced in [36].

Bit parallel architectures tend to be faster than bit serial ones. According to the

space-time trade-off paradigm, however, the former ones require more chip area in

VLSI implementations. Bit serial multipliers have a space complexity of order O(k)

for arithmetic in GF (2k). Bit parallel architectures usually have O(k2) elementary

gates as a lower complexity bound. More recently, however, new types of bit parallel

architectures have been proposed with complexities below the k2 bound [2, 3, 38,

33, 34]. These architectures are either based on multiple field extensions or on fast

convolution methods such as the Karatsuba-Ofman algorithm (for an overview see

[32, Chapter 3].)
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Another classification of Galois field architectures is possible with respect to the base

representation of field elements. The most popular bases are standard (or polyno-

mial or canonical), normal base, and dual base. Each base representation has certain

advantages; polynomial and dual base representations are well suited for bit parallel

multipliers, whereas normal base representation allows for very efficient exponentia-

tion.

There have been a few attempts to compare different types of arithmetic architec-

tures for Galois fields. The focus is mainly on architectures for channel codes. In [16]

multipliers for the field GF (28) are compared for polynomial, dual, and normal rep-

resentation. In [17] architectures are compared from a high-level description point of

view. Again, the multipliers in the three different base representations are compared.

A study in [35] compares architectures for the fields GF (2k), k = 8, 16, 24, 32, where

architectures in polynomial, dual, normal basis, and with multiple field extensions

are considered.

In [37], configurable computing platforms were used to compare various bit parallel

Galois Field multipliers in FPGAs and EPLDs. The work done in this area has shown

that bit parallel architectures are suitable for reconfigurable devices.

2.3.1 Finite Field Architectures for Cryptography

There is a relatively small number of published works on Galois field architectures

which are especially designed for cryptographic applications. Many of the bit serial

architectures mentioned in the previous section, however, also extend to cryptographic

applications. The O(k2) complexity bound of parallel multiplier architectures would

result in unrealistically large arithmetic units for most public-key algorithms. So far,

normal base and polynomial base representations have been used for cryptographic
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applications. Optimal normal base representations [30] are of special interest in this

context because of their moderate complexity.

There are three relevant reported implementations which gain their security from the

discrete logarithm (DL) in finite fields. Reference [9] deals with various aspects of

bit serial architectures in Galois fields for cryptographic applications. An implemen-

tation of an exponentiation unit in GF (2333) using polynomial base representation

allows a data throughput of 15 kb/sec. Reference [4] contains a detailed description

of an implementation of an exponentiation unit in the field GF (2593). The implemen-

tation uses an optimal normal base representation of field elements. The reported

maximum throughput is 300 kb/sec. In addition, there is the early description of

an implementation of a cryptosystem over GF (2127) [48]. This field order, however,

does not provide adequate security against today’s powerful DL attacks. The hybrid

architecture used in our design was introduced for cryptographic applications in [36].

It will be reviewed in Section 3.4.



Chapter 3

Arithmetic Operations

Our EC implementation utilizes Galois Fields of characteristic 2 with a standard base

representation. More specifically, we use a relatively new architecture type which

is based on composite fields GF((2n)m). Composite fields allow faster arithmetic

architectures as described in [36]. Our implementation utilizes the multiplication

module also to perform squaring in order to reduce the number of processing elements

(PEs) and the routing to and from each PE.

3.1 Galois Fields

We assume that the reader is familiar with arithmetic in Galois fields (see e.g., [24]).

In the following, we introduce the notation used throughout this thesis. Let GF (2n)

denote the subfield with field polynomial Q(y) = yn +
∑n−1

i=0 qiy
i where qi ∈ GF (2).

Also, let GF ((2n)m) denote the composite field with the field polynomial P (x) =

xm +
∑m−1

i=0 pix
i where pi ∈ GF (2n). In our implementation, we choose the subfield

to be small (n = 4, 8) so that a parallel multiplication architecture in the subfield

10
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is possible with a small area utilization. We consider composite fields with two field

extensions of degree n and m. Field elements are represented as polynomials with

maximum degree m− 1 over GF (2n).

3.2 Addition

Addition in GF (2n) is a very simple operation. Adding two polynomials where the

coefficients are reduced modulo 2 is accomplished with a bitwise XOR function. Fur-

thermore, adding polynomials based on composite fields does not complicate this op-

eration as each subfield element also has to be XORed. Thus, addition in GF ((2n)m)

requires n ·m XOR gates and can be computed in one clock cycle in addition to one

clock cycle for memory access.

3.3 Parallel Subfield Multiplication

In our EC implementation two types of multiplication schemes were applied for

subfield multiplication. One is based on a binary standard base representation and

the other utilizes composite fields. Applying two different techniques for parallel sub-

field multiplication can be useful when mapping these architectures to reconfigurable

devices since different types of devices may yield better or worse performance for a

given multiplier. The initial research that resulted from these tests was presented in

[37]. Since the complexity of parallel multipliers grows exponentially with the width

of the operands [23], a maximum of eight bits was used for the subfield extension n.
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3.3.1 Binary Standard Base Multiplication

We used the multiplication architecture introduced by Mastrovito in [22, 23]. Multi-

plication of A(y) ·B(y) = C(y) mod Q(y) is performed in GF (28) by realizing poly-

nomial multiplication and reduction in one step. All coefficients of the polynomials

are reduced modulo 2 and the resulting polynomial C ′(y) is reduced modulo Q(y).

This can be done through the following matrix multiplication:

C = ZB =


f0,0 · · · f0,n−1

...
. . .

...

fn−1,0 · · · fn−2,n−1




b0

b1

...

bn−1

 . (3.1)

where the matrix Z is named “product matrix”; Z = f(A(y), Q(y)). We realized

elliptic curve implementations with two different subfields, GF (24) and GF (28). The

four bit version has Q(y) = y4 + y+1 as the irreducible polynomial and the eight bit

one uses Q(y) = y8 + y5 + y3 + y2 + 1 for its irreducible polynomial. In both cases,

the multipliers are implemented inside the hybrid multiplier architecture described in

Section 3.4.

3.3.2 Composite Field Subfield Multiplication

In the last few years multiplication techniques over GF ((2n)m) have been developed

using multiple field extensions [3, 33]. Composite fields are Galois fields with two

extensions of degree n and m. Field elements are represented as polynomials with

maximum degree m− 1 over GF (2n).

The eight bit composite field multiplierwas considered such thatGF (28) ∼= GF ((24)2).

This means that the hybrid architecture for our EC implementation used a field
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GF (((24)2)m), where GF ((24)2) was the composite subfield. We used the following

approach for bit parallel multiplication in GF ((24)2). The ground field GF (24) has

a primitive polynomial Q(y) = y4 + y + 1. The second subfield extension has the

primitive polynomial R(z) = z2 + z+ω14 where ω is the primitive element in GF (24)

such that Q(ω) = 0. Multiplication of two field elements [a0 +a1z][b0 +b1z] mod R(z)

can be realized as [33]:

C(z) = A(z)B(z) mod R(z)

= [a0b0 + ω14a1b1] + z[(a0 + a1)(b0 + b1) + a0b0] (3.2)

= [c0 + c1z].

Thus, the composite subfield multiplier for GF ((24)2) utilizes Galois field arithmetic

in GF (24). This is a different approach from the eight bit Mastrovito’s multiplier

since it computes the result for GF (28) by using only GF (24) arithmetic.

3.4 Hybrid Multiplication

The parallel multiplier architectures described in Sections 3.3.1 and 3.3.2 can only be

implemented for relatively short operand lengths on FPGAs due to the high area re-

quirements. Thus, to implement a multiplication operation in fields such as needed for

elliptic curve system, e.g., with ≈ 160 bits, it is necessary to utilize a serial multiplier

based on a linear feedback shift register. This section details such architecture.

The composite field multiplier used in the EC implementation was described in detail

in [36]. This architecture is based on arithmetic in an extension field of GF (2n). The

extension degree is denoted by m, so that the field can be denoted by GF ((2n)m).
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Figure 3.1: General structure of a hybrid multiplier in GF ((2n)m)

For a standard basis multiplier, two field elements U, V are considered:

U(x) = um−1x
m−1 + · · ·+ u1x+ u0,

V (x) = vm−1x
m−1 + · · ·+ v1x+ v0,

where ui, vi ∈ GF (2n). Field multiplication with the two elements is performed by

the operation W (x) = U(x) × V (x) mod P (x), with W being the product element.

We restricted ourselves to irreducible extension field polynomial P (x) with binary

coefficients so that P (x) = xm +
∑m−1

i=0 pix
i, pi ∈ GF (2). Note that such polynomial

always exists if gcd(n,m) = 1. A possible hardware realization for this operation,

polynomial multiplication modulo the field polynomial, is shown in Figure 3.1. At

the kernel of the architecture is a linear feedback shift register (LFSR) of width n

and length m. The registers of the LFSR hold the wi coefficients. The coefficients pi

of the field polynomial are the feedback coefficients of the the LFSR. The feedback

coefficients are fixed in our implementation eliminating the need for the registers

holding the feedback polynomial and the AND gates near these registers.

Since our implementation considers composite field architectures, all connections in

Figure 3.1 are n bit wide buses and all arithmetic is performed in the subfield GF (2n).
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Figure 3.2: Serial multiplier optimized for consecutive square operations

Assuming bit parallel architectures for the subfield multiplication and addition in the

LFSR, the result is computed in m clock cycles. Thus multiplying m ·n bit operands

requires m clock cycles in addition to an extra clock cycle for memory operation.

3.5 Squaring

The multiplier architecture described in Section 3.4 can be modified to improve perfor-

mance when consecutive squaring operations are frequent. This can be accomplished

by providing a path back from the result registers to the operand registers. This is

shown in Figure 3.2. The path from W (x) to V (x) is controlled by a series of switches

that are enabled only when consecutive squares are issued. Implementing this feature

reduces memory access between each square operation to only one. Consequently,

a clock cycle is saved for each consecutive square operation. Although this solution

improves performance, our implementation of the EC engine does not realize such

architecture due to limitations of routing resources in the FPGA. This alternative re-

quires n ·m additional paths allocated for the hybrid multiplier resulting in very long
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compilation times of the place and route tools. This improvement however becomes

feasible with increased routing resources and better place and route tools or an ASIC

implementation.



Chapter 4

Introduction to Elliptic Curves

In this chapter we will introduce Elliptic Curves (EC) and describe how they can

be used to implement a public-key cryptosystem. Of particular interest are curves

over fields of characteristic 2 when implementing them in a digital system. Therefore

special emphasis is placed on the description of these curves. Finally, this chapter

describes elliptic curves over projective coordinates since this contribution realizes

such implementation.

4.1 Historical Background

Elliptic curves have been around for a long time in pure mathematics. In 1986 and

1987 elliptic curves have been proposed for cryptographic purposes [29, 19]. Two basic

arguments make the use of elliptic curves quite attractive. First, with elliptic curves

a wide variety of abelian groups could be formed allowing much more flexibility.

In other words, there are many groups that can be used for a discrete logarithm

one-way function. Second, there seems to be no sub-exponential attack known for

17
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solving the DL problem generated over elliptic curves. However the group operation

is considerably more complex than the group operation of systems based on the

DL in finite fields. This is the reason why EC have not initially caught on in the

cryptographic community from an implementation point of view. Because of this

increased complexity more research was necessary to show that EC implementation

will generate a secure and feasible protocol.

From an implementation perspective, EC over GF (2n) can prove to be very practical.

Implementing GF (2n) in a digital system is attractive due to the “binary” nature

of the subfield GF (2). Currently EC are being standardized by IEEE and ANSI

after many years of research by the, sometimes sceptical, crypto community. EC

provide for a shorter key and operation lengths making them attractive for many

implementation. As computational power increases and attack algorithms improve

very rapidly, it will be necessary to improve security by increasing the width of the

operands. From an implementation point of view, it is more feasible to widen data

paths for EC systems as they are much smaller than systems based on the DL in

multiplicative groups in finite fields or RSA. In fact, the implementation described

here is based on a slice architecture making it easier to increase the width of data in

the EC engine.

4.2 EC Crypto Engine Overview

Throughout the rest of the thesis a general algorithm model is followed for our EC

crypto engine. This model is shown in Figure 4.1. In Figure 4.1, the entire process is

divided into three levels.

The encryption level defines the I/O interface as well as the algorithm for achieving

point multiplication. The operation level defines control sequences necessary to re-
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I/O
Control

Point Multiplication
Control

Double FSM Add FSM

Encryption Level

Group Operation Level

Mult

GF((2n)m)

Add

GF((2n)m)

Mult GF(2 n) Add GF(2n)

Arithmetic Level

Figure 4.1: System hierarchy of crypto engine

alize point addition and point doubling. Finally, the arithmetic level describes the

individual functions that are instanced by the double or add protocols. The theoreti-

cal background for the encryption and group operation level will be developed in the

subsequent sections of this chapter. The theoretical background for the arithmetic

level was presented in Chapter 3.

4.3 EC Group Operation with Projective Coordi-

nates

4.3.1 Definitions

Some definitions may be helpful when describing the EC constructs. A few are pre-

sented below.
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• Group — a group (G,+) consists of the set G with an operation “+′′ on this

group satisfying the following rules:

1. group operation is associative and closed

2. there is an identity element γ such that a+ γ = a for all a ∈ G

3. there is an inverse element for all a ∈ G such that a+ a−1 = γ

• One way function — a function that provides for a computationally easy map-

ping from set X to set Y for all x ∈ X but becomes computationally infeasible

when mapping an element from set Y to set X for most y ∈ Y .

• Discrete logarithm (DL) problem — a particular one-way function with x, y ∈ G

such that the discrete logarithm of x to base y, denoted by logy(x), has a unique

integer solution z where x = yz.

4.3.2 Group Operation

The standard formulae for adding two points on an elliptic curve with affine coor-

dinates require 1 inversion which can be very costly in fields of order ≈ 2160 [28].

As a result, other solutions have been developed [28, 40] that eliminate the need to

invert in such large fields. This implementation realizes elliptic curves with projec-

tive coordinates. In the following, projective coordinate equations are derived for EC

equations over fields of characteristic 2.

A non-supersingular curve over Galois fields with characteristic two is defined as:

y2 + xy = x3 + a2x
2 + a6 (4.1)

It is important to mention here that non-supersingular curves are of particular interest

because they are not susceptible to sub-exponential attacks. Equation (4.1) together
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with the point at infinity O forms an elliptic curve where a2, a6 ∈ GF (2k), a6 6= 0

[28]. Points (x, y) which fulfill (4.1) together with the operation “+” generate a

group that can be used to implement a public-key scheme such as the one described

in Section 4.5. An extensive description of elliptic curves can be found in [40]. If

points P = (x1, y1) and Q = (x2, y2) are added, such that R = (x3, y3) = P + Q,

two cases must be distinguished. In the first case P and Q are different points (point

addition). In the second case P and Q are identical, i.e., x1 = x2 and y1 = y2, (point

doubling). Thus we have two instances of the + group operation defined as follows

[28]:

x3 =

 ( y1+y2

x1+x2
)2 + y1+y2

x1+x2
+ x1 + x2 + a2, if P 6= Q

x2
1 + a6

x2
1
, if P = Q

and

y3 =

 ( y1+y2

x1+x2
)(x1 + x3) + x3 + y1, if P 6= Q

x2
1 + (x1 + y1

x1
)x3 + x3, if P = Q

(4.2)

From the above equations, it is apparent that inversion is necessary to solve for the

third point on the curve. Since inversion is particularly costly in hardware, we will

consider an alternate point representation. This can be done if the elliptic curves are

considered with projective coordinates [28]. This transformation can be achieved by

mapping the set of points onto a homogeneous cubic equation of the form [40]:

E: y2z + xyz = x3 + a2x
2z + a6z

3 (4.3)

So points (x1, y1) and (x2, y2) are now represented by the point P = (x1 : y1 : 1) ∈ E

and point Q = (x2 : y2 : 1) ∈ E. Note that any two points are equivalent if

(x1, y1, z1) = λ(x2, y2, z2). Thus, dividing the coordinates of a point (x1, y1, z1) by

z1 results in (x1/z1 : y1/z1 : 1) ∈ E which is the inverse mapping from projective

coordinates to affine coordinates. At this point, we can use the addition formulas in
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Equation (4.2) to derive the equations for projective coordinates:

x′3 =
B2

A2
+
B

A
+
A

z1
+ a2,

y′3 =
B

A
(
x1

z1

+ x′3) + x′3 +
y1

z1

, (4.4)

where A = (x2z1 + x1) and B = (y2z1 + y1). Assigning z3 = A3z1 and multiplying

through the x3 and y3 coordinates will cancel the denominator portions from Equa-

tion (4.4), effectively removing inversion from the curve equations. This results in

the following addition formulae:

x3 = AD,

y3 = CD +A2(Bx1 +Ay1),

z3 = A3z1, (4.5)

where C = A+B and D = A2(A+a2z1)+z1BC. These addition formulae can be im-

plemented in 14 multiplications. With affine coordinates this operation would require

3 multiplications and one inversion. As a consequence, using projective coordinates

is more efficient until a polynomial inversion can be accomplished with less than 11

multiplications.

The equations for point doubling (P = Q) can be derived in a similar manner resulting

in:

x3 = AB,

y3 = x4
1A+B(x4

1 + y1z1 +A),

z3 = A3, (4.6)

where A = x1z1 and B = a6z
4
1 +x4

1. Here, we sacrifice 5 multiplications for one inver-

sion because we avoid two inversion computations by gaining 10 extra multiplications
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Equations (4.5) and (4.6) define the EC group operation over projective coordinates.

These equations are used in our EC implementation on reconfigurable hardware. They

are thus crucial for the remainder of the thesis.

At this point it is possible to provide an exact count for the number of operations

necessary to realize point doubling and point addition. In the case of point doubling

(Equation (4.6)), the computation of the intermediate values requires 6 multiplica-

tions and 1 addition in GF ((2n)m). More specifically, computing A results in 1 mul-

tiplication, and B results in 5 multiplications and 1 addition. Once the intermediate

values are calculated, x3 is obtained with 1 multiplication, y3 requires 3 multiplica-

tions and 3 additions, and z3 is obtained with 2 multiplications. Thus, point doubling

requires a total of 12 multiplications and 4 additions. Similar analysis of point ad-

dition can be performed to obtain an operation count for this sequence. Table 4.1

summarizes these complexity results for point doubling and point addition. One sees

Sequence Additions Multiplications

in GF ((2n)m) in GF ((2n)m)

Point Double 4 12

Point Add 7 14

Table 4.1: Operation count for point doubling and point addition

that saving the inversion required for affine coordinates comes at the cost of more

multiplications. Also, since the number of multiplications has increased, the designer

is forced to use more temporary registers for the intermediate values as more data

dependencies are present.



CHAPTER 4. INTRODUCTION TO ELLIPTIC CURVES 24

4.4 Point Multiplication on Elliptic Curves

The core operation in EC cryptosystems is point multiplication l · P where l is an

integer and P is a point on the curve. A single point multiplication requires multiple

computations of point addition (P 6= Q) and point (P = Q) doubling which were

described in Section 4.3. The standard method for point multiplication is the double-

and-add algorithm. For example, β = 10 · α is computed as β = 2(2(2α) + α) which

requires three doubling and one addition operation. Calculating l · P , where P is a

point on the curve, will yield a new point on the curve. This procedure forms the basis

for public key cryptography using EC. The double and add algorithm is analogous

to the square and multiply algorithm used for exponentiation [18]. The algorithm is

defined as follows:

Double and add algorithm:

1. l is an integer such that l = (lr, lr−1, . . . , l1, l0) is the binary representation of l

with most significant bit lr = 1.

2. Copy original point to temporary variable: temp←− P .

3. For index from (r-1) downto 0 do:

(a) DOUBLE: temp←− temp+ temp.

(b) if lindex = 1, then also ADD: temp←− temp+ P .

4. return temp which contains l · P .

Chapter 10 describes the hardware implementation of this algorithm. In general, l

has the same number of bits as the order of the point group used which in turn is

approximately equal to the order of the underlying finite field due to Hasse’s theorem
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[40]. Thus, for an EC over the composite field GF ((2n)m), the multiplier l has (n ·m)

bits of length. Average case analysis of the double-and-add algorithm will yield the

following number of double and add operations: one point multiplication requires

(n · m) − 1 double operations and ((n · m) − 1)/2 add operations [27]. Analysis

of the double equations in projective space developed in Section 4.3 shows that 12

multiplications/squarings and 4 field additions are needed for one double operation.

Similarly, an addition operation can be accomplished in 14 multiplications/squarings

and 7 field additions. Consequently, one point multiplication requires 19 · [(n ·m)−1]

field multiplications and 7.5 · [(n · m) − 1] field additions. Furthermore, since each

multiplication/squaring requires m + 1 clock cycles and each field addition can be

done in 2 clock cycles (please refer to Chapter 3), the total number of clock cycles

necessary to compute one point multiplication is

#clkcyc = 19[nm2 + nm−m− 1] + 15[(nm)− 1]. (4.7)

The results presented in this thesis provide the minimum clock period for our imple-

mentations. Using Equation (4.7) together with our results will provide the absolute

timing required for one point multiplication for all implemented architectures.

4.5 Elliptic Curve Cryptosystems

As a brief example of how EC system can be used in public-key cryptosystem, this

section will outline one of the most popular protocols. The Diffie-Hellman (D-H) key

exchange protocol can be based on elliptic curves. It is important to realize that

the protocol described below is only one example of a EC public-key protocol. In

particular, digital signature and encryption protocols are also possible as outlined in

the IEEE P1363 draft standard. All EC protocols have point multiplication as the
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central algorithmic component so that our crypto engine could be used for all EC

protocols.

4.5.1 Diffie-Hellman Key Exchange

A more detailed description of the general D-H key exchange is presented in [27, 42].

The goal of this protocol is to establish a secret session key between to parties over

an unsecure channel. The two parties, Alice and Bob, want to establish a secret key

without Oscar (the adversary) being able to compute this key. During the setup stage

Alice and Bob obtain the public parameter α with the coordinates (xα : yα : zα) ∈ E

which is a point on the elliptic curve. The rest of the algorithm proceeds as follows:

1a) Alice generates a random key: 1b) Bob generates a random key:

aA (private) aB (private)

2a) Alice computes a new point: 2b) Bob computes a new point:

βA = aA · α (public) βB = aB · α (public)

3a) Alice sends βA to Bob
βA−→
βB←− 3b) Bob send βB to Alice

4a) Alice computes: 4b) Bob computes:

aA · βB = aA(aB · α) = (xa : ya : za) aB · βA = aB(aA · α) = (xb : yb : zb)

After the final stage of the algorithm, Alice and Bob can compute the shared session

key Ks as Ks = xa/za = xb/zb. Oscar cannot regenerate the session key from the

public parameters α, βA, and βB because the two random integers, aA and aB, gen-

erated by Alice and Bob are private and were never transmitted over the unsecure

channel. The security of this scheme relies on the discrete logarithm problem for EC

which is believed to be intractable if “secure” curves (non-supersingular, suited group
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order) over sufficiently large fields are chosen [27]. Once the session key is established

between Alice and Bob, both parties can communicate securely using private key

algorithm such as DES which generally allows very high encryption speeds.



Chapter 5

Methodology

This chapter describes the process through which the design was conceived, defined,

implemented, and verified. The choice of tools and supporting devices is explained in

this chapter. Also, some remarks on the performance and effectiveness of the tools

are given.

5.1 The Design Cycle

The general design cycle for this work consisted of the following steps:

1. Research of arithmetic functions.

2. Research of elliptic curve constructs.

3. VHDL implementation of arithmetic functions.

4. Commitment to a specific implementation of elliptic curve field representation.

28
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5. Design of point multiplication elliptic curve engine.

6. Logic verification of the design.

7. Synthesis and logic optimization.

8. Device specific realization (place and route).

9. Back-annotated verification of the design.

The order of steps outlined above is more or less accurate. At some point of the

project, steps had to be retraced to ensure optimal or correct implementation. Since

not all algorithms can be easily implemented in hardware, careful consideration of

the implementation was necessary before committing to a specific option. By doing

the initial research into Galois Field arithmetic operations and their implementations

in hardware, a few guidelines were developed that aided in the choice of Galois field

representation and elliptic curve point representation. More specifically, standard

base representation for Galois field arithmetic was chosen and composite architec-

tures were mapped to reconfigurable devices [37]. Furthermore, projective coordinate

representation was chosen for the elliptic curve point representation. By using pro-

jective coordinates some inversion, which is by far the most complex operation, was

avoided. Thus at the and of initial research, commitment was made to realize the

elliptic curve engine with projective coordinates and standard base representation.

The next stage was the actual design of the digital system that realized the elliptic

curve group operation. During this stage many revisions were made to better fit the

design to a specific device (please refer to Chapter 6). The XILINX FPGA XC4000

family of devices was chosen as the target platform.

Because of the vast array of reconfigurable devices available today, VHDL implemen-

tations tend to become vendor specific. This is due to the fact that many vendors
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provide soft macros for predefined components. These macros take advantage of spe-

cific features in a given device making it nearly senseless to build equivalent functions

with VHDL. By choosing the XC4000XL family of devices, it was now possible to

identify useful macros for the elliptic curve design. Having the knowledge of these

macros and the initial research into elliptic curve constructs, a digital system was

developed in VHDL with macro instantiations.

Verification of the design was first performed on the logic level basis. This step

assured the correct functionality if all combinatorial and net delays were ignored.

Once the design was verified logically, synthesis and optimization was performed.

Timing constraints were set for each component and different iterations were done

until constraints were met. The next step was to actually map, place and route

the design into reconfigurable device. The choice of a specific device within the

XC4000 family depends on the area utilization report obtained through synthesis.

Finally, the output of the place and route step was used to perform back-annotated

simulation. This step verified the correct operation with net and combinatorial delays

that resulted from the place and route process.

5.2 Tools

The entire design, with the exception of vendor specific soft macros, was entered in

VHDL format. Once the design was developed in VHDL, boolean logic and major

timing errors were verified by simulating the gate level description with Synopsys

VHDL analyzer (vhdlan) version 1997.08. The next step involved synthesis of the

VHDL code with Synopsys (fpga analyzer) version 1997.08. The output of this

step was an optimized netlist describing the gate level design in XILINX format. The

most time consuming step was the compilation of the synthesized design with the
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place and route tools available from XILINX. The design presented routing challenges

for the tools resulting in a few iterations with different clock constraints. The slow

compile times associated with this step resulted in a limited amount of data that

could be gathered during this process. This step was accomplished with the XILINX

Design Manager tools version M1.3.7. The final step of the design flow was to verify

the design once again but this time with the physical net, CLB, and pad delays

introduced when the design was placed into a specific device. This final stage of the

design was accomplished with the same test benches and simulation models that were

used during the logic verification stage. Synopsys (vhdlan) was used once again to

verify back-annotated designs.

5.2.1 Xilinx Synopsys Interface

Figure 5.1 presents a flow chart diagram of the design flow with Xilinx-Synopsys-

Interface (XSI) tools. The XSI tools provide for a transitions between results obtained

from Synopsys synthesis and the Xilinx place and route tools. The XSI module in-

cludes all libraries necessary for Synopsys fpga analyzer to interpret gates into log-

ical blocks so that synthesis can be performed at this level. The design ware libraries

provided by Xilinx are automatically instantiated when possible. For example, if the

VHDL code contains addition “+” operations (such as the one used to increment

counters), the Synopsys tool will utilize Xilinx design ware libraries to instantiate

soft macros for such adder units. Synthesis results include report files on area and

timing utilization, design netlist and constraints that are used in the place and route

process, and Synopsys design files that describe the entire system.
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Figure 5.1: Design flow

5.2.2 Simulation and Verification

As previously stated, verification of the design is done at two points. First, it is applied

to the initial VHDL design. This verifies only the logic without delays. The input

to this verification process is a test bench written in VHDL, a model of the design

written in C, and the actual VHDL design. The test bench is used together with

the VHDL design to simulate the design. Then the results from the simulation are

compared against results obtained from the C model. Logical verification is complete

when all the test vectors are verified.

The post place and route verification uses the same C model and test bench (with few

modifications). The VHDL input model to this stage is different. Here the VHDL

model is obtained from the XILINX place and route tools. This VHDL model looks
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nothing like the original one and it includes a separate file defining all net, CLB,

and port delays associated with the placed design. Once again, verification process

involves testing all vectors against the C model results. A sample test bench can be

found in Appendix A and the C model is included in Appendix B.

5.2.3 Synthesis

Synopsys synthesis tools have only been available to us in the past year. The docu-

mentation that accompanied these tools was quite extensive and very helpful. This

and other literature helped in developing script files that could be launched from

within the fpga analyzer. These scripts would elaborate, compile, optimize the de-

sign, and prepare report summaries. A sample script file is provided in Appendix C.

One advantage of running this tool on an HP station was that multiple jobs could

be run concurrently resulting in faster turnaround and more time to try different

optimization options.

5.2.4 Place and Route

The place and route tools from Xilinx were used on the HP workstation as well. The

compilation proved to be very slow due to the complex routing task. Consequently,

this step was moved to a Windows environment so fast Pentium-based PCs could be

used. This is not to say that this tool runs better in Windows. It is just that the

availability of better hardware forced the migration to the Windows environment.

Even running on a 200MHz Pentium processor and 256MB of RAM, required several

days (close to a full week) for the GF ((24)9) design to be placed and routed.

The input to the place and route tools is a design netlist and constraints files generated
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by Synopsys, as well as possible user constraints file. The user constraints have higher

priority over the Synopsys constraints and may include additional constraints relaxing

the clock period or implementing pin assignment. As stated before, the output of this

process is a bit-stream file that can be used to directly program the device and the

back-annotated design that can be simulated for timing verification (please refer to

Figure 5.1).



Chapter 6

General Design Considerations

In this chapter we will describe the general constructs that define a digital system

and explore different topologies that may be suitable for FPGAs. Furthermore, the

control, data, and processing units will be introduced as the basic building blocks of

the (EC) implementation.

Before we describe the digital design of the entire EC cryptosystem, it is essential to

outline some of the more pronounced decisions that have to be made when considering

FPGA implementation. In this section we give a general overview of certain aspects of

the design that have to be considered when mapping a digital system into a Look-Up

Table (LUT) architecture such as the XILINX XC4000 devices.

6.1 Synchronous vs. Asynchronous Design

Although synchronous designs are more popular and easier to implement, asyn-

chronous designs exhibit properties that are desirable in many digital systems. One

35
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major attribute of asynchronous designs is that handshaking between processing el-

ements is more defined absolving the need for a centralized clock signal. Conversely,

synchronous designs rely on a clock signal whose period must be greater than the

longest combinatorial delay. Some other more prominent advantages of asynchronous

designs are presented in [15]. However, asynchronous design have many disadvan-

tages when considered in the context of FPGA design. As much as we would like

to attempt a design of an (EC) digital system using asynchronous methodology, [13]

suggests that such an approach necessitates elimination of all hazards, synchroniza-

tion of events and very precise timing requirements of all functional blocks in the

design. Timing glitches due to poor combinatorial design can be avoided with careful

consideration. However, timing glitches produced by the place and route tools are,

for the most part, very hard to control. It is these glitches that render asynchronous

designs on FPGAs infeasible at this point. Few attempts have been made to develop

reconfigurable devices capable of asynchronous operation [13, 14]. Thus, until such

devices become readily accessible, FPGA implementations are limited to synchronous

methodology.

Our implementation is developed in synchronous methodology. With this approach,

the design becomes easier since the clock period is determined by the slowest combina-

torial delay between two registers. Consequently timing glitches occurring during any

transitions are allowed to settle before the computed values are registered. Figure 6.1

shows the general structure necessary to achieve synchronous operation. The imple-

mentation is mapped to an FPGA from Xilinx. More specifically, the XC4000 family

devices were chosen according to the size and/or routing resources necessary for a

given version of the implementation. The XC4000 FPGA is exceptionally suitable for

synchronous architecture due to the abundance of flip-flops in the device. Each Con-

figurable Logic Block (CLB) contains two flip-flops that can be configured as RAM or

registers [47]. Since the cryptographic algorithm requires wide data paths and plenty
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Figure 6.1: Synchronous design example

of storage capability, a register rich environment is very desirable.

6.2 Finite State Machines

The means for implementing state machines in the XC4000 family devices is another

consideration that needs some elaboration at this point. In particular the state ma-

chine encoding style has to be chosen to fully utilize the specific FPGA resources. In

a conventional ASIC design, binary or gray code state machine encoding is preferred

for efficient and minimal design [43]. Conversely, “one-hot encoded” state machines

implemented in ASIC device exhibit relatively large area with minimal gain in per-

formance. This is not the case with FPGA devices. As described in [10], one-hot

encoding becomes feasible when mapped to FPGAs due to the large number of flip-

flops available in the device. For many designs, the CLBs are used as LUTs leaving

the flip-flops untouched. Consequently, these resources can be utilized when one hot

encoded state machine is implemented [10]. The advantage of a one-hot encoding

lies in the representation of each state with an individual bit (flip-flop) resulting in
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decreased logic complexity associated with each state [7]. However, any FPGA device

has a limited number of routing and area resources thus implementing a one-hot en-

coded state machine is advantageous only in cases where there are enough resources

for the state machine and the rest of the design. Once the state machine becomes

too complex, [7] suggests that an external RAM may be required to store the control

program leaving only the sequencing mechanism inside the FPGA. This may become

significant in the design of EC state machine since the number of operations necessary

for point addition or point doubling is quite significant. The goal of our work was to

implement entire system (including all storage elements) in the XILINX FPGA since

this device provides for a very register rich environment.

6.3 Vendor Specific Design Components

Many FPGA manufacturers provide an array of arithmetic and storage macros that

take advantage of specific features in a particular device. Xilinx provides a design-

ware library filled with such macros in addition to LogiBlox components that can be

tailored to the designer’s specific need. Arithmetic functions such as adders use the

fast carry chains available on the device. Also RAM/ROM elements mapped with

available macros fully utilize the CLB structure to achieve the most performance

out of a single CLB. In [10], many designs are analyzed to show the effectiveness of

the available macro functions. Our implementation takes advantage of the LogiBlox

functions for storage (RAM and registers) elements. Also, the design-ware library is

invoked by Synopsys tools to implement arithmetic functions necessary for counters

present in the control module.
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6.4 Control Architecture

The larger number of data dependencies necessitates extra control logic to schedule

the operations at the correct time. The control mechanism is composed of two state

machines (Double fsm and Add fsm) that assert certain data segments to either feed

the processing element (PE) or route the results from the processing element back to

the RAM bank. The two state machines work independently and never concurrently

since the double and add operations cannot be invoked at the same time. The Dou-

ble fsm and Add fsm start processing when a signal is asserted by the IO fsm that

controls the double-and-add sequence. Depending on how many registers will be nec-

essary to realize point addition and doubling, the control unit will also have to utilize

large multiplexers that route one out of q register outputs to the PEs. The same type

of scheme is needed on the other side of the PE to feed the correct register with the

result of a certain operation. These large multiplexers can be avoided if the registers

can be replaced with a RAM module. Our EC implementation uses LogiBlox RAM

to minimize on the utilization of registers and decrease the required routing resources.

The details of the control unit (CU) will be described in subsequent chapters.

6.5 Processing Elements

Since inversion is not necessary if projective coordinates are being used, the most

costly operation becomes multiplication. Besides multiplication, addition is also re-

quired, however this operation is trivial as described in the previous chapter. Chap-

ter 3 developed architectures for Galois field multiplication and addition. Further-

more, squaring optimizations were reviewed. The simplest approach for realizing

point addition and doubling is to use the smallest number of PEs. Consequently,
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for the implementation of our design, only one multiplication PE and one addition

PE is used. This approach also means that squaring is simply implemented with the

multiplication PE. Finally, the implementation does not assume parallel processing

of the multiplier PE and adder PE. The main reason for this is to reduce the control

logic and minimize routing. Once a working model of the first implementation is

accomplished more information regarding data routability and size of the final design

will be available making it easier to make decisions about further implementations.

6.6 Datapath Considerations

Routing capabilities of different reconfigurable devices is an important issue that needs

to be researched in more detail. Point addition and doubling requires multiplication of

polynomials of degree ≈ 160. This means that the device has to be capable of routing

and multiplexing 160 bits of data simultaneously. Consequently FPGA devices with

different topologies will exhibit different delays for such design.

6.6.1 Routing Topologies

The EC implementation or any digital system for that matter, requires many different

routing resources. Furthermore utilization of routing resources strongly depends on

the placement of logic blocks. Thus running place and route tools with different

timing, pad, or placement constraints will all result in different placement. This, in

turn, will effect the use of routing resources. For example, taking the serial multiplier

structure described in Section 3.4, and mapping it to a particular device will utilize

long lines for the feedback path and short lines to route data between registers which

are closer together. In addition, if the serial multiplier is too wide to fit in one
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column or one row, the placement tools will have to make a decision, based on timing

or pad constraints, on where to break up the slice architecture so as to meet these

constraints. It is very likely that the multiplier will be broken near the place where

the first feedback path is taken. In any case, it is apparent that different routing

resources are used for different purposes.

The XILINX FPGA devices have an array of different routing lines of which the

shortest lines are most abundant. However the use of an interconnect switch matrix

makes it possible to join two shorter lines in order to achieve longer connectivity.

Figure 6.2 shows the programmable switch that is provided at the corner of each

logic block in the XILINX FPGA. These structures provide great flexibility for the

Singles

Si
ng

le
s

Doubles

Doubles

Figure 6.2: XILINX programmable switch matrix

routing tools and are the main reason why the XILINX devices can achieve very high

utilization. The increased flexibility directly translates into longer compile times as

the place and route tools have a much harder time converging to the optimal result.
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6.6.2 Xilinx FPGA

The digital system developed in this work was mapped to a XILINX device. More

specifically, the XC40ddXL devices were considered (“dd” specifies a particular device

of given size). The XL devices are similar to the EX devices which are also available

from XILINX. The only difference is that the XL devices have more CLBs (area)

which in turn translates to more routing resources. For a detailed description of

these and other devices from XILINX, the reader is encouraged to look in [47] as

this section provides only a brief look at the structure of the XILINX XC4000 family

devices.

The basic structure of the XC4000 family devices is shown in Figure 6.3. This struc-

ture is based on a fine grain approach which means that logic or storage functions

are mapped into small blocks. Typically, these blocks are quite abundant in a single

device with each block having very few inputs and even fewer outputs. With this

fine grain approach, routing is a central issue as sufficient resources are necessary to

provide connectivity between all CLBs. The XILINX FPGA incorporates a matrix

of switch boxes that is placed over the CLB array. By programming the switch boxes

during the configuration stage, it is possible to connect any two CLBs together. As

a result of the fine grain architecture and the versatility of switch boxes, routing a

particular design (especially a large design) becomes very difficult. These are a few

of the reasons why long compilation times were experienced when trying to map the

final design into the device. The advantage of a fine grain structure is that it provides

for greater flexibility for the synthesis tools. Logic optimization becomes fine grained

as well which typically results in better performance.

The functional unit inside the XILINX FPGA is a configurable logic block (CLB)

which is shown in Figure 6.4. This block is composed of two 4-input (F and G

blocks) and one 3-input (H block) function generators. These elements are simple
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Programmable Switch Matrices CLB

Figure 6.3: XILINX SRAM based FPGA structure

look-up tables (LUTs) that can perform four or three input functions. Thus, logic is

not implemented in gates. This is an important point as one generator function can

behave like a number of gates while exhibiting a delay of only one level. The CLB also

has two flip-flops that can be implemented as RAM (as used in our implementation

for storage) or registers (as used in our implementation inside the serial multiplier).

With the LogiBlox application from XILINX, it is possible to implement a vast array

of storage elements and other functions.

The main reason for choosing the XL (EX) family of devices is the increased amount of

routing resources over the E devices. Routing in the XILINX FPGA is accomplished

through a hierarchal structure. Thus each row or column of routing lines between

CLBs has a number of different types of lines. These include single, double, quad,

long, and global lines. Single lines route signals between adjacent CLBs. Double lines
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Figure 6.4: CLB structure (simplified)

stretch over two CLBs. For a detailed description of the routing structure inside the

XILINX FPGA, please refer to [47]. Table 6.1 points out the difference in routing

resources between the E and EX family of devices. As can be seen, the EX and

consequently the XL family provide much more freedom to route data between CLBs.

Choosing these devices (ones with more routing resources), proved to be necessary

since the place and route tools had a difficult time routing even with the XL family.
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XC4000E XC4000EX/XL

Vertical Horizontal Vertical Horizontal

Singles 8 8 8 8

Doubles 4 4 4 4

Quads 0 0 12 12

Longlines 6 6 10 6

Direct 0 0 2 2

Connects

Globals 4 0 8 0

Carry Logic 2 0 1 0

Total 24 18 45 32

Table 6.1: Routing per CLB in XC4000 devices

6.7 Serial vs. Parallel Computation Consideration

Figure 6.5 shows the general design architecture. In this graphic, the control ar-

chitecture is shown as a series of multiplexers and signals used to enable individual

components. Thus the control mechanism is responsible for routing the correct sig-

nal to and from the processing elements (PEs), asserting the necessary registers or

issuing the correct RAM addresses, and enabling PEs for certain operations. The

PEs shown in the figure are enabled when necessary to process data introduced to

them. Please note that this figure supports only serial executions of every operation

we wish to implement because the output of the multiplexers only asserts one dat-

apath. It is easily seen with this graphic that implementing a parallel architecture

would require much wider data buses requiring increased routing. The routing that

has to be accomplished to implement the system in Figure 6.5 is quite involved since

each register is n · m bits wide. As a final note, it is important to stress that this

graphic shows a very general view of a digital system and can be used to implement

virtually any computation. The purpose of this is to help visualize the different parts



CHAPTER 6. GENERAL DESIGN CONSIDERATIONS 46

R0

R1

Ri

j:1i:1

P0

P1

Pj
n ·m
n ·m

n ·m

Figure 6.5: Top level design view

that constitute a system, even though the final design may look quite different from

this figure especially since a hardware description language (HDL) will be used to

realize it. Chapters 7 through 10 describe a particular elliptic curve implementation

using projective coordinates. These chapters will provide the reader with a detailed

description of our design.



Chapter 7

Design Overview

Our implementation had the goal of performing a complete EC point multiplication

over GF ((2n)m) with n · m ≥ 130. One major advantage of using an FPGA as

the target hardware is that the entire architecture can simply be reconfigured for

different values of n and m. We re-introduce the graphic presented in Section 4.2

in the context of hardware implementation. Figure 7.1 shows the partitioning of the

design into three levels. From the discussion in Section 4.2 it follows that the entire

“crypto engine” can be divided hierarchically into three levels.

• The Arithmetic Level describes the processing elements that perform Galois

field arithmetic. This is described in Chapter 8.

• The Group Operation Level combines the arithmetic modules as well as

storage element(s) and control mechanism into a system architecture that real-

izes a single point addition or doubling. This is described in Chapter 9.

• The Encryption Level defines the I/O interface, control sequences and initial-

ization commands that result in the realization of the double-and-add algorithm.

47
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Figure 7.1: System hierarchy

This is described in Chapter 10.

The description of the digital design is divided into four chapters. In this chapter, we

provide the general overview of the system putting emphasis on all static elements

of the design. Static elements include all components that do not define the control

mechanism of the design. Thus, storage elements and multiplexers are described in

this chapter. The heart of the design is the control structure which is defined in three

levels of hierarchy depicted in Figure 7.1. Because of the importance of this control

mechanism, three chapters (Chapter 8, Chapter 9, Chapter 10) are dedicated to its

description. The control engine can be thought of as the dynamic part of the design.

These static components receive instructions from the control module and perform a

certain task.
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7.1 Design Overview

A general description of a digital system defines the processing elements, storage com-

ponents, and control mechanism necessary to accomplish a certain task. Figure 7.2

shows the Register Transfer Level (RTL) view of the entire design. This is a coarse

view of the system emphasizing the major components of the design. In addition,

this diagram shows the I/O requirements as well as the datapath through the device.

Control_fsm

input/output 1 bit wide

input/output n*m bits wide

n*m

GF_Add

DP_RAM

GF_Mult

ready

Switch2 Switch1

Trst_buf ram_out<n*m-1 .. 0>

mult_vector<n*m-1 .. 0>

START_JOB

input_coord<n*m/3 .. 0>

n

n*m

n*m

Figure 7.2: System diagram

Besides the control mechanism, the design is broken into three other parts. The stor-

age elements such as RAM and registers are used to “latch” correct data between

clock cycles; this is typically a synchronous operation. Switch boxes are purely com-

binatorial. They can be thought of as generalized multiplexers since they are used
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to select slices of data during specific clock cycles. Finally, the processing elements

GF Add and GF Mult perform the arithmetic in GF ((2n)m). Point multiplication is

achieved through a long series of instructions given by the control mechanism. The

term “instructions” is used loosely here since the instruction is actually a bus of con-

trol signals routed to different blocks of the design. Putting all these signals together

will generate an instruction specific to a unique clock cycle during point multiplica-

tion computation. Thus, the general approach of computing a new point is to provide

correct data elements to the correct processing blocks at the correct time (right side

of Figure 7.2). Conversely, a computed intermediate result is routed back to the RAM

and written to the correct address at the correct time (left side of Figure 7.2). The

tri-state buffer shown in the figure is used at the completion of point multiplication

to route the result to output pins.

7.2 Storage

There are three types of storage elements in this design, two of which are part of the

hybrid multiplier. The serial multiplier is a linear feedback shift register. It has to

store intermediate results during each clock cycle of its operation. Consequently, some

type of storage is necessary. In particular, registers without clear/preset are used to

store the first operand in its entirety. This is the V (x) operand shown in Figure 3.1.

The clear/preset line is not needed here since these registers are always loaded with

V (x). However, the registers holding the result (W (x) in Figure 3.1), have to be reset

to all zeros before every serial multiplication is initiated. This is done while the V (x)

is being loaded to the upper register. A control signal, load gfm, is asserted by the

control architecture such that the result register can be cleared asynchronously.

The third storage element is the large RAM bank. This component stores up to
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16 elements (address width of four bits), with each element having n · m bits. For

instance, for the GF ((28)21) implementation 1688 bits of data can be stored in the

RAM element. Furthermore the RAM bank is dual ported to accommodate con-

current read and write cycles. With this feature, it is possible to write the result

of current computation while pre-fetching the first operand for the next operation.

Consequently, one clock cycle is saved on every operation. Memory access from the

PEs point of view is described later in this chapter. Here, only the general read/write

cycle is shown in Figure 7.3. DPO and SPO are the two output busses that provide

WCLK

OLD

OLD NEW

NEWDPO

SPO

DPRA

WE

D

A

Figure 7.3: Read/Write cycle for dual ported RAM

data to the PEs. DRPA is the address for DPO and A is the address for SPO (single

port output). DPO can be used to read or write resulting in the possibility of having

two concurrent reads (as is done for the add operation) or a read and a write (as is

done for the serial multiply operation).
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7.3 Data/Address Select

Two switches are utilized to select data on its way to or from the processing elements.

An additional switch is implemented to select instructions between Add FSM and

Double FSM (described in the next chapter). Switches 2 and 3 function just as

multiplexers but with the added complexity of some signal re-mapping. Switch 3,

on the other hand has some added functionality depending on the current operation.

The output vectors are provided with either one of the input vectors. If addition is

performed, OUT1 receives IN1 and OUT2 receives IN2. Thus the switch just passes

FSM Operation

Output GF Add GF Mult

OUT1[0 . . . slice− 1] IN1[0 . . . slice− 1] IN1[index . . .index+ slice− 1]

OUT1[slice . . .n ·m] IN1[slice . . .n ·m] XXX. . .XXX

OUT2[0 . . .n ·m] IN2[0 . . .n ·m] IN1[0 . . .n ·m]

Table 7.1: Operation of Switch 1

the vectors through in their entirety. During serial multiplication however, the switch

routes the entire IN1 to OUT2 on the first clock cycle and a “slice” of IN1 to OUT1

during the remaining cycles. Depending on the counter value provided by the control

mechanism, a different slice is passed to the multiplier through OUT1. Table 7.1

summarizes this behavior.

Switch 2 is located after the processing elements. The function of this component is

to select one out of three vectors. Two of the input vectors are n ·m bits wide while

the third one is (n · m) ÷ 3 bits wide. These inputs are selected according to the

type of operation that is being performed. During the load stage of the computation,

Switch 2 passes the input vector so that the initial curve coefficients can be loaded
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into the appropriate locations. The input vector is replicated three time inside Switch

2 and a data bus is built of the same width as the output (m · n). Table 7.2 defines

the functionality of Switch 2. Since the load operation only loads 1/3 of entire data

FSM Operation

Output Load GF Add Write GF Mult Write

OUT[block1] IN1[block1] Add result[block1] Mult result[block1]

OUT[block2] IN1[block1] Add result[block2] Mult result[block2]

OUT[block3] IN1[block1] Add result[block3] Mult result[block3]

Table 7.2: Operation of Switch 2

length for each clock cycle, a mechanism for selecting which RAM element to write

to is required. This is done with a write enable vector of width (m ·n). Thus, during

the first clock cycle of data load, 1/3 third of the bits in the write enable vector

are asserted. Consequently, only one third of the RAM width is written to and the

rest of the bits are irrelevant. Thus replicating the bits for the entire width inside

Switch 2 ensures that data gets written to the correct block of RAM without any

additional logic. The other solution would require extra logic that would assign the

input coordinates to the correct portion of the data bus for each clock cycle of the load

stage. With the approach outlined in Table 7.2, no additional logic is necessary at the

expense of extra routing resources. However, since the additional routing is confined

to only this component, single lines can be utilized when the design is mapped into a

particular device leaving the other resources free.

Switch 3 is internal to the control mechanism. It’s purpose is to select instructions

streams coming in from the I/O, DOUBLE, and ADD state machines. The I/O state

machine control is enabled during the load and unload stages of computation. This

control is only enabled twice per point computation as coordinates have to be loaded
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and unloaded to/from the engine only once. Table 7.3 summarizes the operation of

FSM Operation

Output Load Unload DOUBLE ADD

RAM WRT EN block none all all

RAM WRT ADDR LD WRT none DBL WRT ADD WRT

RAM RD ADDR none UNLD RD DBL RD ADD RD

Table 7.3: Operation of Switch 3

Switch 3 and shows the control signals that are multiplexed. The RAM WRT EN

signal is a bus which is (m · n) bits wide. During the write operation, it is entirely

enabled for DOUBLE and ADD sequences. For the load sequence, this vector is

enabled on a per block basis. Double and add control is enabled during computations

depending on the current operation. As mentioned previously, repeated double and

add operations are performed to achieve point multiplication. Thus engine control

signals are effectively mapped to the double or add control.

7.4 Datapath Requirements

This section outlines combinatorial delays and resulting clock requirements of indi-

vidual blocks of the design. Combinatorial components have to be considered in the

context of datapath and absolute delay between clocked components. In addition,

clocked resources determine the clock period required to operate these individual

component. Thus, to thoroughly analyze the data path, delays associated with data

movements and control sequencing have to be known. Finally, timing analysis is per-

formed to estimate minimum clock period of the system after datapath delays are

derived.
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7.4.1 Combinatorial Components

Combinatorial components include all the switches and the addition module. The

maximum path delay through Switch 1 has to be considered when computing the

minimum clock period because this component is in the path between the RAM

module and the multiplier. Switch 3 multiplexes the control signals from the double

and add state machines. As a result, this component also contributes a delay that

defines the clock period. After the result is computed, it is passed through Switch 2.

This switch is also controlled by the state machine. However, since the multiplication

result is not ready until the next falling edge of the clock, the control signal selecting

the addition or multiplication result has nearly half a period to settle. Thus, by the

time valid data from the processing elements arrives, Switch 2 is already selecting

the correct input. Consequently, only the delay associated with routing the result

through this component has to be considered.

7.4.2 Clocked Resources

Clocked resources in the design include the multiplier, the control logic, and the RAM

module. Furthermore, the control logic is partitioned into three state machines. Thus

the slowest state machine will determine the clock of the entire control module. The

RAM bank is structured with a slice architecture resulting in a concurrent memory

access to all slices. The parallel load of data and address assures that each memory

element is provided with data at the same time. Thus any delay associated with

this component is due to the setup and hold parameters of a RAM slice specified by

the manufacturer. In this case, XILINX is the manufacturer since the design utilizes

a soft macro. Using this macro guarantees the necessary clock period specified by

XILINX. The multiplier is also based on a slice architecture but with a feedback path.
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Consequently, the clock period depends on the array size making this component

implementation specific.

7.4.3 System Timing Analysis

The coarse description of the EC digital system in Figure 7.2 shows the flow of data

inside the architecture. The data flows counter clockwise originating at the RAM

element. After passing through combinatorial delay of Switch 1, data enters one of

two processing elements. Once the result is computed, it is moved through Switch

2 and back to the RAM bank. This is the basic data flow during double or add

computation. During the load stage the input coordinates are routed to the RAM

bank through Switch 1. Thus only the combinatorial delay through this block effects

the data arrival time. Once the computation is completed (double and add operations

have been sequenced), the result located in the top three RAM locations is moved

to the output pins through a tri-state buffer. Consequently, the delay through the

tri-state gates is taken into account when specifying the hold time for the output pins

of the device.

To estimate the system clock speed two steps are necessary. First, all combinatorial

delays through each synchronous path have to be summed and the minimum clock

period for each path has to be derived. Consequently due to the synchronous nature

of this implementation, the path with the highest period determines the system clock

speed.

In our implementation, three distinct paths can be derived. The first path realizes

the load operation. As mentioned previously, combinatorial delay associated with

this path includes Switch 1 in addition to the pad delays. The pad delays can be

ignored as the synthesis and place and route tools can schedule the clock according
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to constraints. These constraints allow us to specify the setup time associated with

pad delay. Thus, the load path delay cab be approximated to be:

load path = tds1||tds3

where tds1 is associated with arrival time of data and tds3 determines the arrival time of

control signals to the RAM module. The symbol || is used to show parallel operation.

Thus, the longest delay determines the path.

The second possible path is realized during the unload operation. This occurs after

point multiplication is completed and it is determined solely by the tri-state buffers

and the output enable signal controlled by the state machine. This path has the

following propagation delay:

unload path = tdtrst||tden

where tdtrst is the delay of the buffer and tden is the time required by the control state

machine to assert the enable signal.

The last synchronous path that can be analyzed is derived during the arithmetic

computation. This path includes either of the processing elements. When the addition

module is used, two clock cycles are allocated for result to settle before it is written to

the RAM bank. Consequently, the combinatorial delay associated with this operation

is one half of all delays in the data path. Thus the delay during addition is:

add path = (tds1 + tdadd + tds2)÷ 2||tds3

When considering the data path associated with multiplication, both clock edges

have to be analyzed. More specifically, data has to have enough time to get to the

multiplier before the falling edge of the clock and enough time to get to the RAM

module before the rising edge of the clock. Thus the clock cycle can be divided into
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two parts:

mult path high = tds1 + tds3||tds3 = tds1 + tds3

mult path low = tds2||tds3

The summation of both of these results will result in the data path delay for the

multiplication operation:

mult path all = mult path high + mult path low

Finally, the system clock is determined by the longest combinatorial delay:

system path = mult path all ||add path ||load path||unload path

The above theoretical analysis serves as a guideline for timing constraints that can

be issued during the synthesis and/or place and route stages of our implementation.

Assuming that all other clocked resources can run at this clock speed this estimate

provides a good measure of the system clock. This analysis does not include setup and

hold time requirements of clocked components as these values are highly dependent

on the place and route tools used and the optimization constraints applied.



Chapter 8

Arithmetic Level

As described previously, multiplication and addition is performed in GF ((2n)m). This

section defines the control architecture that was developed to realize these function.

Multiplication is done slice serially and addition can be performed in one clock cycle.

With each architecture, a low level state machine is described. From the hierarchal

view the Galois field operations described in this section form the arithmetic level.

These function blocks together with the corresponding control structure compose the

next higher level which is the double and add or group operation level. The group

operation level is described in Chapter 9 and the encryption level is described in

Chapter 10. The higher levels ensure that the arithmetic operations are performed

in the correct sequence to realize point multiplication.

8.1 Multiplication in Hardware

Galois field multiplication is accomplished through a slice architecture described in

Section 4.2. As stated initially, one multiplication requires m+1 clock cycles. That’s

59
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m clock cycles for the multiplication and an additional cycle to write the result into

memory. The two operands required for multiplication are read from memory as

shown in Figure 8.1. The first operand that has to be loaded in to the internal

registers of the multiplier is read during the write cycle of the previous operation.

While this operand is registered, the registers holding the result are cleared so that

the new multiplication sequence can start. The second operand is read from memory

- fetch operand 2
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- write previous result

- fetch operand 1

Figure 8.1: Memory access for multiplication

during the first clock cycle of multiplication stage. This operand is then introduced

to the multiplier one slice per clock cycle. Switch 1 shown in Figure 7.2 is responsible

for selecting the correct slice and routing it to the multiplier. The timing diagram in

Figure 8.1 shows the relative timing delay associated with Galois field multiplication.

From a control point of view, the state machine for this serial multiplication requires

three states. This state machine is the lowest level hierarchy of the control mechanism.

In Chapter 9, the group operation control structure is described.

This means that the underlying arithmetic control is at a lower level and is described

in this section. Figure 8.2 shows the control signals associated with each state of
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Galois field multiplication. The load stage reads the second operand from memory

(the first operand is read during write stage of previous computation). The calculate

stage loops through slice − 1 clock cycles and controls the output of Switch 1. In

Rd_Addr = op2

Wrt_En = 1
Wrt_Addr = op3

Wrt_Addr = op3

Rd_Addr = op2

Rd_Addr = op1

LD_Gfm = 1

counter ++

counter < slices -1

counter = slices -1

Previous
Write

Mult_Load

Mult_Calc

Mult_Wrt

IDLE

reset

reset

reset

next operation

Figure 8.2: Arithmetic level FSM for Galois field multiplication

the write stage of the multiplication, the result is written to a third memory location

and a new operand is read for the next computation. After the write, the state

multiplication sequence is completed and a new operation can begin immediately.

One important design characteristic is the operation of the multiplier relative to the

operation of the control structure. Because of the combinatorial delay of control
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signals, the multiplier cannot start its operation until the correct data is ready to be

latched in. Thus the multiplier operates on the falling edge of system clock while the

rest of the system runs of the rising edge. The combinatorial delay associated with

reading the correct memory location and routing this data to the multiplier has to be

less than half the system clock cycle unless the clock has a duty cycle greater than 0.5.

The result of serial multiplication is ready half a clock cycle before the rising edge.

Consequently, Switch 2 has to deliver this result in less the half a clock cycle. This

approach introduces a latency of half clock cycle during multiplication as opposed to

an delay of entire clock cycle that would be necessary if the multiplier was clocked

on the rising edge.

8.2 Addition in Hardware

Since addition can be done with a simple bitwise XOR function only one clock cycle

is necessary to compute the result. Figure 8.3 shows the memory access for a Galois

field addition operation. As shown, both of the operands are read at the same time

and passed through Switch 1 to the adder. During the same clock cycle the result

is computed. The additional clock cycle is necessary to write the result back to

memory and to read one operand if multiplication is the next operation. Addition

is purely combinatorial and latching of intermediate data is not necessary. Thus

addition requires two clock cycles which is relatively fast in comparison to Galois

field multiplication. Because of the low complexity of this function, the state machine

controlling this process is rather simple. This state machine, shown if Figure 8.4, only

has two states. In the load state two memory locations are addressed simultaneously

so that both of the operands can be introduces to the adder at the same time. The

next state writes the result of the addition into memory and performs read operations

for the next computation. No counter is necessary for this sequence as each state only
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IDLE

Rd_Addr = next operand
Switch1_a = 0

Rd_Addr = op1
Wrt_Addr = op2
Wrt_En = 1
Switch2 _add = 1
Switch1_a = slices -1Load

reset

reset

previous operation

next operation

Add
Write

Add

Figure 8.4: Arithmetic level FSM for GF addition

lasts one clock period. This simplifies the control structure for the addition operation.

After the completion of this operation, a new addition or multiplication can begin on

the next clock.
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8.3 State Machine Encoding

The two small state machines that realize addition and multiplication in GF ((2n)m)

are embedded in the higher level state machine. More specifically, the two state ma-

chines that describe Group Operation Level perform either addition or multiplication

in ordered sequence. Each addition and multiplication is defined as shown in Fig-

ure 8.4 and Figure 8.2 respectively. Before synthesis takes place, the hierarchal state

machine is flattened. Consequently, state encoding for the Arithmetic Level and the

Group Operation Level state machines is the same. The encoding schemes that we

implemented in these state machines are described in Chapter 9.



Chapter 9

Group Operation Level

This chapter describes the design of the control mechanism that allows for a sequential

computation of the third point on the elliptic curve given two points. The process is

divided into two distinct operations. One of them realizes point doubling (P = Q)

and the other implements point addition (P 6= Q). It is essential to remember

that the set of operations for point doubling is significantly different from operations

realizing point addition. For this reason, the control mechanism can be viewed as

having two separate sequence schedulers. These schedulers are controlled by a third

state machine which defines the Encryption Level. As shown in Figure 9.1, the

control mechanism exhibits a hierarchal structure. I/O state machine is the root of

all control issuing commands to either double or add state machines. Furthermore,

the I/O FSM provides control signals to the switches. This state machine is described

in Chapter 10. These control signals are used by the switches to select the appropriate

control between double or add control signals.

The chapter is divided into two sections. Section 9.1 describes the control sequence

for the point double operation and Section 9.2 outlines the control sequence for the

65
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Figure 9.1: Internal architecture of control

point add operation. Both sections are further divided describing the precomputation

and computations stages of each sequence.

9.1 Double Sequence Operations

As previously mentioned the set of operations that have to be performed to realize

point doubling are as follows:

xk = AB

yk = x4
k−1A+B(x2

k−1 + yk−1zk−1 +A)

zk = A3
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where A = (xk−1zk−1), B = (a6z
4
k−1 + x4

k−1). These operations can be broken down

into two stages. The first stage performs precomputations of intermediate values.

These values are then passed to the calculation stage that computes the three coordi-

nates xk, yk, zk using the intermediate values. The term ‘passing’ is used loosely here

since the actual data does not have to move when entering the computation stage.

Furthermore, the actual design of point double or point add sequencer is not real-

ized in two separate stages. The description given here distinguishes between these

stages only for clarity reasons in that the reader will have an easier time following

the mapping between the given equations and the corresponding operations. Thus

the precomputation stage for point double realizes the intermediate value A and B

and computation stage uses these results to compute the desired point. The resulting

point coordinates are stored in memory locations 0h-2h and can be used again to

perform either point doubling or addition on the next clock cycle.

9.1.1 Precomputation Stage

The precomputation stage is responsible for computing the value of A and B as well

as two more intermediate values x4
k−1, and x2

k−1 that are used in the computation

stage. The value a6 which is one of the curve parameters, is stored in the lower

memory location and is read only in the precomputation stage of the point double

algorithm.

Since the calculation of B requires x4
k−1 and the calculation of x4

k−1 requires x2
k−1,

the values have to be computed sequentially. Storing these values in lower memory

locations will help in the next stage as they will not have to be recomputed. This is

a classic example of time space trade-off. In this case, more space is sacrificed so that

the number of operations can be reduced. The abundance of memory locations makes
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this choice easier and all intermediate results that are necessary in the computation

stage are preserved.

Initial State:

The initial values assumed prior to the k-th double computation are as follows:

RAM0 = xk−1

RAM1 = yk−1

RAM2 = zk−1

RAM3 = x0

RAM4 = y0

RAM5− RAM13 = empty

RAM14 = a6

RAM15 = a2

Double Precomputation Sequence:

Depending on the number of data dependencies between each computation, the se-

quence can be scheduled in such fashion so that memory writes occur concurrently

with some computation. This will save one clock cycle for each operation. The sim-

plest way of ensuring that memory writes can be scheduled concurrently with the

next computation is to make sure that the result from the previous computation is

not used in the next one. Thus, for a point double precomputation stage, the sequence

shown in Table 9.1 was developed.

Figure 9.2 shows the corresponding memory allocation for the sequences outlined

above. In state 7 of the precomputation stage, the last computation is performed as

shown in the figure depicting the active registers.
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# Operation Result Write

1. RAM8 = (RAM2)2 z2
k−1 none

2. RAM5 = (RAM0)2 x2
k−1 RAM8

3. RAM6 = (RAM8)2 z4
k−1 RAM5

4. RAM8 = (RAM5)2 x4
k−1 RAM6

5. RAM7 = RAM14 · RAM6 z4
k−1 · a6 RAM8

6. RAM9 = RAM0 · RAM2 xk−1 · yk−1 = A RAM7

7. RAM7 = RAM7 + RAM8 z4
k−1 · a6 + x4

k−1 = B RAM9

Table 9.1: Double fsm precomputation sequence

0 1 2 3 4 5 6 7 8 9 10 11 12 13 1514

0 1 2 3 4 5 6 7 8 9 10 11 12 13 1514

0 1 2 3 4 5 6 7 8 9 10 11 12 13 1514

0 1 2 3 4 5 6 7 8 9 10 11 12 13 1514

0 1 2 3 4 5 6 7 8 9 10 11 12

- original curve coordinates

13 1514
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- active permanent RAM element

- active temporary RAM element

- curve parameters

Figure 9.2: Memory allocation table for double precomputation stage

Check: By quick substitution it is possible to verify that the result after precompu-
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tation stage is indeed the desired one.

RAM9 = RAM0 · RAM2 = xk−1 · zk−1 = A
√

RAM8 = (RAM5)2 = ((RAM0)2)2 = RAM04 = x4
k−1

√

RAM5 = (RAM0)2 = x2
k−1

√

RAM7 = RAM7 + RAM8 = RAM14 · RAM6 + RAM52

= RAM14 · RAM82 + (RAM02)2

= RAM14 · (RAM22)2 + (RAM02)2

= a6 · z4
k−1 + x4

k−1 = B
√

Final State:

The state of memory after the last operation in the precomputation stage is passed

to the computation stage. The active registers contain the following information:

RAM0 = xk−1

RAM1 = yk−1

RAM2 = zk−1

RAM3 = x0

RAM4 = y0

RAM5 = x2
k−1

RAM7 = B

RAM8 = x4
k−1

RAM9 = A

RAM10− RAM13 = empty

RAM14 = a6

RAM15 = a2

Note that the computation stage does not need the value of xk−1, since x2
k−1 and x4

k−1

are already computed. This frees that memory location for the use in the computation

stage. It is also important to realize that RAM3 and RAM4 were not written to or read
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from during this stage. This is because point doubling operation does not require the

original coordinates that are stored at these memory locations.

9.1.2 Computation Stage

At the end of this stage the following results should be calculated:

xk = AB

yk = x4
k−1A+B(x2

k−1 + yk−1zk−1 +A)

zk = A3

where A and B are the results of precomputation calculations.

Initial State:

The initial state of this stage is the final state of the precomputation stage:

RAM0 = xk−1

RAM1 = yk−1

RAM2 = zk−1

RAM3 = x0

RAM4 = y0

RAM5 = x2
k−1

RAM7 = B

RAM8 = x4
k−1

RAM9 = A

RAM10− RAM13 = empty

RAM14 = a6

RAM15 = a2

At this point four memory locations are still free and can be used in the computa-

tion stage. The intermediate values computed in the previous stage are depicted as
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temporary memory locations in Figure 9.3. Once these values serve their purpose,

the memory location is freed and ready to be written again. Locations marked as

permanent in the memory allocation tables are the final results for that particular

stage. Thus at the end of the double sequence, permanent locations are RAM0, RAM1,

and RAM2 containing the k-th point coordinates.

Computation Sequence:

Table 9.2 outlines the sequence for the computations stage of the double operation.

# Operation Result Write

1. RAM6 = RAM1 · RAM2 yk−1zk−1 RAM7†

2. RAM5 = RAM9 + RAM5 x2
k−1 +A RAM6

3. RAM1 = (RAM9)2 A2 RAM5

4. RAM6 = RAM5 + RAM6 x2
k−1 + yk−1zk−1 +A RAM1

5. RAM2 = RAM1 · RAM9 zk RAM6

6. RAM1 = RAM6 · RAM7 B(x2
k−1 + yk−1zk−1 +A) RAM2

7. RAM6 = RAM8 · RAM9 A · x4
k−1 RAM1

8. RAM0 = RAM7 · RAM9 xk RAM6

9. RAM1 = RAM6 + RAM1 yk RAM0

10. RAM1

† - last result from precomputation stage

Table 9.2: Double fsm computation sequence

At the end of this sequence, the last memory write is performed to store the result for

yk. Seeing as how the computation of yk is quite complicated, this result is obtained

last. Thus the total number of states required for this computation is ten, and the

number of clock cycles necessary for each state depends on the type of operation as-

signed to that state. For example, state 1 involves multiplication therefore it requires
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multiple clock cycles. However, state 9 only performs addition of polynomials that

can be done with a bitwise XOR function within one clock cycle.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 1514

0 1 2 3 4 5 6 7 8 9 10 11 12 13 1514

0 1 2 3 4 5 6 7 8 9 10 11 12 13 1514

0 1 2 3 4 5 6 7 8 9 10 11 12 13 1514

0 1 2 3 4 5 6 7 8 9 10 11 12 13 1514

0 1 2 3 4 5 6 7 8 9 10 11 12 13 1514

- original curve coordinates
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- curve parameters

Figure 9.3: Memory allocation for double computation stage

Figure 9.3 shows the memory usage for the corresponding sequences outlined above.

In state 9 of the computation stage, the last operation is performed as shown in the

figure depicting the active registers at the end of the sequence.

Check: Checking the arithmetic again shows that at the end of this stage equations
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for point doubling have been satisfied:

RAM0 = RAM7 · RAM9 = A ·B = xk
√

RAM1 = RAM6 + RAM1 = RAM8 · RAM9 + RAM6 · RAM7

= RAM8 · RAM9 + (RAM6 + RAM5)RAM7

= RAM8 · RAM9 + (RAM1 · RAM2 + RAM9 + RAM5)RAM7

= x4
k−1A+B(yk−1zk−1 +A+ x2

k−1) = yk
√

RAM2 = RAM1 · RAM9 = RAM92 · RAM9

= RAM93 = A3 = zk
√

Final State:

The state of the registers after the last operation in the computation stage is the

desired result for point doubling with the three coordinates xk, yk, and zk in RAM0,

RAM1, and RAM2 respectively.

RAM0 = xk

RAM1 = yk

RAM2 = zk

RAM3 = x0

RAM4 = y0

RAM5− RAM13 = empty

RAM14 = a6

RAM15 = a2

Point doubling can be performed immediately after a previous point double since

the registers do not have to loaded with new values. Point addition can also be

started immediately following this stage as the memory locations containing original

coordinates were not overwritten.
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9.1.3 Summary

With the state machine sequence known for the precomputation and computation

stage, it is possible to estimate the number of clock cycles required for the point

doubling operation. First, general formulae are developed from which the number of

clock cycles can be calculated in terms of the degree of the polynomial used. If a

composite field architecture is used, the number of clock cycles will depend on the

number of slices necessary for a certain polynomial degree and the clock period will

depend on the degree of the subfield.

General Case

Storage Requirements: The maximum memory utilized is ten locations including

the “permanent” RAM locations holding the curve parameters. The total memory

required is 10 · n · m where n and m are the extension degrees of the composite

field GF((2n)m). For a secure elliptic curve system, m · n ≈ 160, thus a useful

implementation requires ≈ 1.6kb of storage. This is a minimum requirement and in

the implementation a memory block of depth 16 was used resulting in 16 · n ·m bits.

Thus roughly 2.56kb or 320 bytes of memory are implemented in the FPGA device.

Clock Cycles: In order to estimate the total number of clock cycles for point

doubling, the number of field multiplications, squarings, and additions has to be

computed. Furthermore, since the squaring operation is performed with multiplica-

tion, the number of clock cycles for the square operation are the same as for field

multiplication. Thus, the precomputation stage requires the following operations:

#MULT + #SQUARE = 6

#ADD = 1
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Similarly, the computation stage requires:

#MULT + #SQUARE = 6

#ADD = 2

#WRITE = 1

The last write cycle requires one clock cycle. Furthermore addition requires two

clock cycles as described in Section 3.2 and according to Section 3.4, multiplication

is computed in m + 1 clock cycles where m is the number of slices in the hybrid

multiplier architecture. Thus, the total number of clock cycles for point doubling is

12 · (m+ 1) + 4 · 2 + 1 = 12m + 21. (9.1)

In this case m determines the number of slices of the composite field architecture, and

n plays a major role in defining the minimum clock frequency of the serial multiplier.

Example GF((28)21)

The above formulae can now be used to estimate the time for one point doubling for

a possible elliptic curve scheme. As an example, GF((28)21) ≡ GF (2168) is used.

Storage Requirements: Once again, in theory, point doubling can be accom-

plished with 8 · 21 · 10 = 1.68Kb of memory. That is 10 memory locations times the

width of the point coordinate which is 8 · 21. When mapped into a XILINX FPGA,

the use of dual-ported RAM is allowed for depths of power of two. Consequently the

closest depth to 10 is 16 resulting in a memory bank composed of dual-ported blocks.

According to [47], a single memory block (16x1 DPMEM) requires one CLB. Thus

the entire memory block requires n ·m CLBs.
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Clock Cycles: The total number of clock cycles required to double one point on

this curve is 12 · 21 + 21 = 273. Since a composite architecture is utilized, the field

multiplication is reduced to a subfield operation. As a result, the minimum clock

period for this design is the time necessary for one multiplication in the subfield

GF(28). Previous research of the Galois Field multiplier on reconfigurable hardware

[37], has shown that one subfield multiplication can be done in 31.1 ns. Thus, with

a clock period of 60 ns (assuming 100% overhead for other combinatorial delay and

net delays), the time required for one point doubling is 60ns · 273 = 16.38µs. This

result is a rough estimate determined by a worst case scenario. By optimizing the

square algorithm or introducing a variable clock, the frequency can be significantly

improved resulting in a faster computation of point doubling.

9.2 Add Sequence Operations

Once again, the computation of the entire add sequence can be divided into the

precomputation stage followed be the computation stage. The final result of these

computations should yield the following:

xk = AD

yk = CD+A2(Bxk−1 +Ayk−1)

zk = A3zk−1

where A = (x0zk−1 + xk−1), B = (y0zk−1 + yk−1), C = A + B, and D = A2(A +

a2zk−1) + zk−1BC. For these computations, the curve parameter a2 is accessed from

memory location RAM15. Another important issue in point addition is the allocation

of more memory. Since P 6= Q, two points are necessary to calculate the result with

each point is described by three coordinates. It is important to note that only five

coordinates are necessary since point add equations are optimized such that z0 = 1.
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However, since the soft macro available from the vendor of the FPGA device realizes

memory of depth 16, extra memory locations are available.

9.2.1 Precomputation Stage

The precomputation stage computes all of the intermediate components that are A,

B, C, D, and A2.

Initial State:

The initial values needed for this stage are as follows:

RAM0 = xk−1

RAM1 = yk−1

RAM2 = zk−1

RAM3 = x0

RAM4 = y0

RAM5− RAM13 = empty

RAM14 = a6

RAM15 = a2

This algorithm requires one permanent value stored in memory location RAM15 and

five coordinates that describe the two points to be added. As a result, 6 ·m ·n bits are

stored before computation begins. These values are already in memory as a result of

the previous computation or previous load. Therefore no additional clock cycles are

required to load memory with initial coordinates.

Add Precomputation Sequence:

The data dependencies of the precomputation stage require a copy operation. The

intermediate result C is computed by adding A to B. Furthermore the result of an

addition operation is written back to one of the operands being added. Thus in order

to add A to B a memory location has to be preloaded with one of the operand. Since
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both A and B are needed in the computation stage, both have to be preserved, and

operand A has to be copied to the location where C will be stored.

The simplest way to copy one element from one memory location to another is to

implement constructs in the control architecture to provide a feedback loop from

data out to data in of the dual-ported RAM. This however requires additional rout-

ing resources which are limited in FPGA devices. Using this extra resources can be

prevented thanks to the simple nature of the addition unit. As described earlier,

addition in GF (2) is accomplished with an XOR gate. Thus, copying an element

can be done by adding it to the destination just as long as the destination is empty

(′′0000 . . . 000′′). To ensure that destination is empty another addition has to be per-

formed. Mainly, adding the destination to itself will reset this operand. Thus copying

an element requires two additions or four clock cycles. This is a relatively small price

to pay (extra 4 clock cycles) considering that this operation is only performed once

per point addition. Also, wide datapath (≈ 160 bits) would utilize a large amount of

the routing resources if the feedback path was implemented.

Figure 9.4 shows the status of all memory locations in every state of the sequence.

Since xk−1, yk−1, and zk−1 are needed in the computation stage, these memory loca-

tions (RAM0, RAM1, and RAM2) are marked as permanent in the figure. If a location

is marked as permanent, no other data can be written into it for the rest of the se-

quence in a given stage. At the end of the precomputation sequence the memory bank

is almost entirely filled with intermediate values that are passed to the calculation

stage. After the thirteenth operation only three memory locations are unused. Con-

sequently, the entire encryption engine can be realized with a minimum of thirteen

memory elements.
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# Operation Result Write

1. RAM6 = RAM6 + RAM6 reset RAM6 none

2. RAM5 = RAM3 · RAM2 x0zk−1 RAM6

3 RAM10 = RAM4 · RAM2 y0zk−1 RAM5

4. RAM5 = RAM0 + RAM5 x0zk−1 + xk−1 = A RAM10

5. RAM6 = RAM5 + RAM6 copy A to RAM6 RAM5

6. RAM10 = RAM1 + RAM10 y0zk−1 + yk−1 = B RAM6

7. RAM11 = (RAM5)2 A2 RAM10

8. RAM6 = RAM10 + RAM6 A+B = C RAM11

9. RAM7 = RAM2 · RAM15 a2zk−1 RAM6

10. RAM8 = RAM2 · RAM10 Bzk−1 RAM7

11. RAM7 = RAM5 + RAM7 A+ a2zk−1 RAM8

12. RAM9 = RAM7 · RAM11 A2(A+ a2zk−1) RAM7

13. RAM7 = RAM8 · RAM6 zk−1BC RAM9

14. RAM9 = RAM7 + RAM9 A2(A+ a2zk−1) + zk−1BC = D RAM7

Table 9.3: Add fsm precomputation sequence

Check:

RAM5 = RAM0 + RAM5 = RAM0 + RAM3 · RAM2

= x0zk−1 + xk−1 = A
√

RAM10 = RAM1 + RAM10 = RAM1 + RAM4 · RAM2

= y0zk−1 + yk−1 = B
√

RAM11 = (RAM5)2 = A2
√

RAM6 = RAM10 + RAM6 = A+B = C
√

RAM9 = RAM7 + RAM9 = RAM8 · RAM6 + RAM7 · RAM11

= RAM2 · RAM10 · C + (RAM5 + RAM7)A2

= RAM2 ·B ·C +A2(RAM5 + RAM2 · RAM15)

= zk−1BC +A2(zk−1a2 +A) = D
√
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Figure 9.4: Memory usage for addition precomputation stage

Final State:
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After the add precomputation stage memory bank contains the following results:

RAM0 = xk−1

RAM1 = yk−1

RAM2 = zk−1

RAM3 = x0

RAM4 = y0

RAM5 = A

RAM6 = C

RAM7− RAM8 = empty

RAM9 = D

RAM10 = B

RAM11 = A2

RAM12− RAM13 = empty

RAM14 = a6

RAM15 = a2

At the end of this stage only four memory locations are empty. However the interme-

diate values in all other locations will be discarded immediately after they are used

giving more storage area during the computation stage.

9.2.2 Computation Stage

Most of the work done to compute one point addition is done in the precomputation

stage where all intermediate values are calculated. The computation stage uses these

values to calculate xk, yk, and zk thus the sequence in this stage is shorter than in
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the precomputation stage. The final result computes the following equations:

xk = AD

yk = CD+A2(Bxk−1 +Ayk−1)

zk = A3zk−1

Initial State:

The initial values needed for this stage are as follows:

RAM0 = xk−1

RAM1 = yk−1

RAM2 = zk−1

RAM3 = x0

RAM4 = y0

RAM5 = A

RAM6 = C

RAM7− RAM8 = empty

RAM9 = D

RAM10 = B

RAM11 = A2

RAM12− RAM13 = empty

RAM14 = a6

RAM15 = a2

Computation Sequence:

This sequence requires a maximum of twelve memory locations that are utilized in

third operation (refer to Figure 9.5). It is important to note here that although only

twelve locations are necessary in this stage, the precomputation stage uses thirteen
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# Operation Result Write

15. RAM7 = RAM10 · RAM0 Bxk−1 RAM9†

16. RAM10 = RAM5 · RAM1 Ayk−1 RAM7

17. RAM0 = RAM5 · RAM9 AD = xk RAM10

18. RAM8 = RAM6 · RAM9 CD RAM0

19. RAM7 = RAM10 + RAM7 Ayk−1 +Bxk−1 RAM8

20. RAM10 = RAM2 · RAM11 A2zk−1 RAM7

21. RAM1 = RAM7 · RAM11 A2(Ayk−1 +Bxk−1) RAM10

22. RAM2 = RAM5 · RAM10 A3zk−1 = zk RAM1

23. RAM1 = RAM8 + RAM1 A2(Ayk−1 +Bxk−1) + CD = yk RAM2

24. RAM1

† - last result from precomputation stage

Table 9.4: Add fsm state operations

which is the maximum number needed to implement the entire cryptosystem. Con-

sequently, n ·m · 13 bits of storage space is required, n ·m · 2 of which is allocated for

the curve parameters (a2 and a6).

Figure 9.5 shows memory allocation for the computation stage of point addition. At

the end of the sequence, the result is available in the first three registers. This allows

for a point doubling or point addition to be performed on the next clock cycle.
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Figure 9.5: Memory usage for addition computation stage

Check:

RAM0 = RAM5 · RAM9 = AD = xk
√

RAM1 = RAM8 + RAM1 = RAM6 · RAM9 + RAM7 · RAM11

= RAM6 · RAM9 + (RAM10 + RAM7) · RAM11

= RAM6 · RAM9 + (RAM5 · RAM1 + RAM10 · RAM0) · RAM11

= CD + (Bxk−1 +Ayk−1)A2 = yk
√

RAM2 = RAM5 · RAM10 = RAM5 · RAM2 · RAM11

= A · zk−1 · A2 = zk−1A
3 = zk

√

Final State:

After this stage memory is returned to it’s idle state. Mainly, the first the addresses

are filled with the new coordinate (xk : yk : zk), the original coordinates, and the
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curve parameters being stored in the following location:

RAM0 = xk

RAM1 = yk

RAM2 = zk

RAM3 = x0

RAM4 = y0

RAM5− RAM13 = empty

RAM14 = a6

RAM15 = a2

9.2.3 Summary

In this section, the results from the precomputation and computation stages are

analyzed to generate formulae for storage requirements and maximum number of

clock cycles necessary for point addition. First, a general case is presented followed

by an example.

General Case

Storage Requirements: As previously mentioned, the precomputation stage re-

quires 13 memory elements. This is the absolute maximum number of elements needed

to realize the entire cryptosystem. For a secure elliptic curve system, m · n ≈ 160,

thus a useful implementation will require 160 · 13 = 2.08Kb of storage.
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Clock Cycles: The following arithmetic operations are required in the precompu-

tation stage:

#MULT + #SQUARE = 7

#ADD = 7

Similarly, the computation stage requires:

#MULT + #SQUARE = 7

#ADD = 2

#WRITE = 1

Since multiplication/squaring requires m + 1 clock cycles, addition requires 2 clock

cycles and last memory write is done in one clock cycle, the total number of clock

cycles for the entire point addition is is

14 · (m+ 1) + 9 · 2 + 1 = 14m + 33. (9.2)

In this case m determines the number of slices of the composite field architecture.

Comparing point add results with number of clock cycles necessary for point double

operation, shows that point double can be computed in approximately 80% of the

time required for point addition. This holds for m = 21.

Example GF((28)21) ≡ GF (2168)

The example used in point doubling can be used to estimate point addition. In

particular, GF((28)21) is used.

Storage Requirements: A total of 13 memory elements are needed with each

element having 8 · 21 = 168 bits. This results in total storage area of 2.184Kb of

storage.
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Clock Cycles: The total number of clock cycles required to add one point on this

curve is 14 · m + 33 where m = 21. This results in a total of 327 clock cycles,

each clock period being the length of time required for one subfield multiplication.

Using the same clock estimate of 60 ns, the total time for one point addition is

60ns · 327 = 19.62µs.

9.3 State Machine Encoding

Both of the state machines that sequence group operations are implemented with two

types of encoding schemes. In all, four state machines were developed: Double fsm 1hot,

Add fsm 1hot, Double fsm enum, and Add fsm enum. The two one-hot state machines

are used together to define the Group Operation Level control sequence. One-hot state

machines are explicitly defined in VHDL so that only one bit is used for each state.

This ensured that the synthesis tools did not apply a different encoding scheme to

this control structure. The other two state machines are defined with the enumer-

ated attribute. Coding VHDL for this type of state machines is much easier since

the state vector is much shorter. Enumerated state machine includes an attribute

that the synthesis tool understands and uses to develop optimal state encoding for

a particular state machine. Thus by synthesizing the enumerated and one-hot state

machines we can determine if one-hot encoding is appropriate for this design.



Chapter 10

Encryption Level

This chapter describes all control architectures associated with the Encryption Level.

Here, we describe the implementation of the double-and-add algorithm and define the

I/O interface.

10.1 Point Multiplication

The encryption level control sequence is responsible for all I/O operations as well as

the necessary initialization of RAM locations. Point double and point add operations

are controlled at the operation level described in Sections 9.1 and 9.2. However, point

multiplication by an integer is an additional process that utilizes the operation level

architecture. Depending on the length of the integer (often in the range of 160 bits)

the double or add command has to be issued to the operation level state machine(s)

which in turn calls the basic Galois field arithmetic functions. Thus the major task

of this state machine is to perform the double-and-add algorithm according to the

integer that is read from the input pins. In addition, the encryption level defines

89
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State Operation Clock Cycles

IDLE assert ready waits until

output signal START JOB

LOAD read point 5q †

coordinates into memory

DOUBLE issue DOUBLE sequence 12(m+ 2) ‡

command to DOUBLE fsm

ADD issue ADD sequence 7(2m+ 5) ‡

command to ADD fsm

UNLOAD write result of 3 †

calculated point to output pins
† - device/version specific definition

‡ - operation specific definition

Table 10.1: IO fsm state operations

the input and output interface to the FPGA. The state machine (IO fsm) is idle

until the START JOB signal is asserted by external logic. Besides the idle state,

the IO fsm can be in one of five states described in Table 10.1. The transitions

between states are controlled by the clock, state counters, and the mult vector that

defines the integer used to perform point multiplication. The general description of

the square-and-multiply algorithm is presented in [27] and can be adopted for the

double-and-add method used in EC cryptosystem. Thus, the IO fsm sequentially

scans mult vector one bit at a time starting with the second most significant bit. If a

particular bit is “1”, both double and add operations have to be performed. Only the

double operation is issued when a bit in mult vector is “0”. Thus we have on average

mn − 1 double commands and (mn − 1) ÷ 2 add commands. Figure 10.1 shows the

structure of the IO fsm with corresponding transitions. Depending on the size of the

device and the available number of pins, the I/O control can be implemented to match

the number of pins used to input the point coordinates. Our current implementation

writes each coordinate into memory within three clock cycles (i.e., q = 3). In other

words, only (m ·n)÷ 3 pins are necessary to write the point coordinates. The LOAD
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UNLOAD

IDLE

LOAD

counter3 = 3

counter3 ++

START_JOB = ’1’

counter1 ++

counter1 = 5q

counter2 --

mult_vector(counter2) = ’1’

counter2 > 0

counter2 = 0

counter2 = 0

ADD

DOUBLE

Figure 10.1: I/O finite state machine

Coordinate Operation

x0 load RAM0

load RAM3

y0 load RAM1

load RAM4

z0 load RAM2

Table 10.2: Load state of IO fsm

state realizes five different operations described in Table 10.2 with each operation

lasting q clock cycles. This results in a total of 5q clock cycles. During that time the

entire multiplication vector can also be clocked into the flip-flops available in each

IOB.

Once point multiplication is completed, the resulting coordinates which are stored in

the top three memory locations, are introduced to the output pins. More specifically,
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xnew is forwarded on the first clock cycle of the unload stage, ynew is forwarded on the

second clock cycle, and znew is forwarded on the last clock cycle of the unload stage.

After the last coordinate is unloaded, the ready signal is asserted informing external

logic that new computation can be started.

10.2 State Machine Encoding

This state machine that controls the encryption process was encoded using the enu-

merated type attribute. Thus, the task of choosing optimal state encoding scheme was

left for the synthesis tools in this case. We found that the synthesis tool performed

very well in defining the optimal state encoding scheme.

10.3 Point Multiplication Complexity

From the timing analysis performed in Sections 9.1.3 and 9.2.3, and the analysis of

double-and-add algorithm described in this chapter, it is possible to derive the number

of clock cycles necessary for the entire point multiplication in terms of the number of

slices (m) and width of arithmetic functions (n). Since each double sequence requires

12m + 21 (Equation 9.1) clock cycles and this operation is executed mn − 1 times,

the total clock cycles allocated for all double operations is:

doubletotal = (12m+ 21)(mn − 1) = 12m2n+ 21mn − 12m − 21

Similarly, each point addition requires 14m + 33 (Equation 9.2) clock cycles and it

is executed (mn − 1) ÷ 2 times. Thus the total clock cycles required for all point

additions is:

addtotal =
(14m+ 33)(mn − 1)

2
= 7m2n+ 16.5mn − 7m− 16.5
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The summation of both of these totals yields the number of clock cycles necessary for

the entire point multiplication:

#clk cyc = doubletotal + addtotal = 19m2n+ 37.5mn − 19m− 37.5. (10.1)

Equation 10.1 can be applied to our results presented in Chapter 11 to obtain the

time required for entire point multiplication.



Chapter 11

Results And Timing Analysis

This chapter discusses the results gathered during the course of the thesis work. Sec-

tion 11.1 gives a brief introduction outlining results from a system point of view.

In Section 11.3 timing and area results are given for all major modules of the de-

sign. The effects of the arithmetic composition on area and timing are discussed.

Finally, Section 11.4 derives timing and area performance of the entire system for

each composition that was implemented.

11.1 Introduction

The final implementation was realized for an EC multiplications architecture for four

different fields. Namely, GF ((24)9), GF ((24)33), GF ((28)21), and GF (((24)2)21) arith-

metic was used at the kernel of the architectures. These fields are isomorphic to

GF (236), GF (2132), GF (2168), and GF (2168) respectively. Obviously, the size of the

final design depends on the finite field chosen. Because of the slice architecture of the

design, implementing many different versions was possible with minor changes to the

94
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structure of the system. For example, changing the implementation from GF ((28)21)

to GF (((24)2)21), where the subfield GF (28) was replaced by the subfield GF ((24)2)

with bit-parallel arithmetic, only involved re-synthesis and re-compilation with differ-

ent subfield arithmetic structures and input parameters defining the slice and width

variables.

The device chosen for all implementations was the XC4062XLPG475-1. This device

has enough CLBs to fit the largest of the developed architectures. In fact, this

device has 2304 CLBs and the largest design used approximately 83% of the available

area. As it turns out, the place and route tools posed the greatest challenge during

the implementation phase of the design. The complexity of the design resulted in

unacceptable compile times. The long compile times was the reason that a relatively

small version overGF ((24)9) was also constructed. As a matter of fact, onlyGF ((24)9)

could be completely placed and routed into a device. Moreover, the small design

could only be implemented by relaxing timing constraints. This resulted in degraded

performance as the minimum period was approximately 300ns.

11.2 Metric

The results presented in this thesis were gathered from two different tools. With

the Synopsys tools which performed a design synthesis from the VHDL architecture

description, we obtained estimated clock periods for all designs and all components

of the design. In addition, area results were also reported by the Synopsys tools. In a

few instances, the timing results were not reported by Synopsys. This is due to the use

of LogiBlox components which are not interpreted by the Synopsys tools. Synthesis

of components containing LogiBlox did not report timing results as that information

is only known to the place and route tools. Utilization of LogiBlox does not greatly
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effect the Synopsys area reports because storage elements that were implemented with

LogiBlox are placed in the same CLB as the combinatorial logic. As mentioned earlier,

most flip-flops inside the CLBs are not utilized unless specific storage components are

used. Even though Synopsys area reports only include utilization of combinatorial

elements in the CLB (LUTs), we found that these results are quite accurate. This is

apparent when we compare Synopsys to XILINX area results for a specific component.

In most cases, area utilization reported by Synopsys is the same as the area reported

by the place and route tools.

The placed and routed design was verified with the procedure described in Chap-

ter 5. Point double, point addition and point multiplication were verified with back-

annotated design. The currently available place and route tools experience exponen-

tial growth of compilation times as the complexity of the design increases. Since

the small design (GF ((24)9)) took approximately 1.5 weeks (without any timing con-

straints), the larger designs would require a very long time. Consequently, the results

presented in Section 11.4 show estimated area and clock speeds based synthesis re-

sults provided by fpga analyzer. All of the designs are verified in RTL simulation.

In addition, the smallest design verified with back-annotated simulation. Since the

entire design is based on a slice architecture, verifying the correct operation of the

smallest implementation indicates a very high likelihood that the remaining designs

are correct also. The control mechanism functions are the same in all designs. The

only difference is the exit condition from the multiplication state as the counter has

to count to (slice− 1) clocks.

The results presented here include CLB counts as well as minimum clock periods.

The minimum clock period is a metric that defines the speed of the design. This

measurement is a standard way in which system performance is measured. Area re-

ports, on the other hand, provide a metric that is somewhat abstract when compared
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to gate equivalences. The XILINX CLB can be configured as logic gates and as mem-

ory. Depending on the implementation of the CLBs, gate count may vary. XILINX

reports that depending on the design, a CLB can implement anywhere between 15

and 48 gates equivalence [46]. If the design does not contain any memory elements,

the CLB is approximately equivalent to 15 CLBs. Additionally, a mixed design will

yield up to 48 gates per CLB and the estimated typical number of gates per CLB is

shown to be 28.5 [46]. We will use this metric to show the gate equivalence for system

results.

11.3 Modules

This section describes results gathered for all individual components. Section 11.3.1

outlines results for combinatorial elements and Section 11.3.2 describes the clocked

elements.

11.3.1 Combinatorial Components

In this section we compare results for all combinatorial components and outline the

relationship between choice of finite field and area and timing results. As previously

stated, we used the XILINX device XC4062XLPG475-1 to implement our design.

The Xilinx tools provided information regarding maximum combinatorial delay and

maximum path delay. Combinatorial delay is associated with the time required for

all logic and net delays within the design. Maximum path delay describes the longest

path within the design.
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Addition Element

Table 11.1 shows the timing and area results for the addition module. As shown

previously, the addition processing element is composed solely of XOR gates. Since

addition in GF (2k) is a bitwise XOR function, all bits are computed in parallel result-

ing in very predictable timing performance. The only addition element that could be

placed and routed was GF ((24)9) because of limited number of input/output pads

available on the XILINX devices. The device used for implementation includes 384

usable I/O pins and the larger designs require 3 · 132 and 3 · 168 I/O pins. The

Synopsys Results Device Results

Module Composition Area (CLB) Path Area (CLB) Path

Add PE GF ((24)9) 36 8.48ns 36 8.51ns

GF ((24)33) 132 8.48ns 132 † 8.51ns †

GF ((28)21) 168 8.48ns 168 † 8.51ns †

GF (((24)2)21) 168 8.48ns 168 † 8.51ns †
† - extrapolated result

Table 11.1: Addition results

estimated results are very accurate as the structure of this component is very regular.

Furthermore, the area results obtained from Synopsys can be generalized in terms of

field order of the arithmetic composition. More specifically, the area utilization for

addition element increases linearly with the field order. For an implementation in

GF ((2n)m), n ·m CLBs are required. In addition, because all bits are computed in

parallel, the timing result for the smallest addition unit reflects the delay through the

adder regardless of the width of the operation. Thus addition can be done in 8.48ns

independent of the finite field chosen.
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Switch 1

Switch 1 is used to route the correct data element to one of two processing elements.

Because of the wide datapath, this component could only be placed and routed in its

smallest form. Only GF ((24)9) version was placed and routed and verified with back-

annotated design. Consequently, the XILINX XC4062XLPG475-1 results for the re-

maining designs had to be estimated. This was done through a linear approximation.

Table 11.2 shows area utilization and timing performance of this component. The

Synopsys timing reports for GF ((24)9) compare very well (a discrepancy of 2.23ns)

with the results provided by the place and route tools. Once again, area utilization

Synopsys Results Device Results

Module Composition Area (CLB) Path Area (CLB) Path

Switch1 GF ((24)9) 35 35.40ns 36 37.63ns

GF ((24)33) 135 49.25ns 139 † 52.36ns †

GF ((28)21) 156 44.86ns 161 † 47.69ns †

GF (((24)2)21) 156 44.86ns 161 † 47.69ns †
† - extrapolated result

Table 11.2: Switch 1 results

scales linearly with the choice of the field. The added complexity associated with

larger finite fields is marginally apparent from the timing results for this component.

From these results, we can speculate that the combinatorial delay through Switch 1

is more dependent on the number of slices m defined in the architecture than on the

actual field size. As it is apparent from Table 11.2, GF ((24)33) exhibits longer com-

binatorial delay than GF ((28)21) and GF (((24)2)21) which have larger field orders.

This may be due to the physical constraint of the device. Since the die size is fixed,

there is a limited number of rows and columns of CLBs in a particular device. Thus

the architecture with fewer slices may be able to fit in one column.
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Switch 2

Timing and area results for Switch 2 are shown in Table 11.3. Switch 2 is placed

on the other side of the datapath routing results from the processing element to

the RAM bank. This component also requires a wide datapath. Consequently, only

GF ((24)9) was verified after the place and route process. A linear area complexity

with field choice is once again apparent. Additionally, synthesis results indicate that

Synopsys Results Device Results

Module Composition Area (CLB) Path Area (CLB) Path

Switch2 GF ((24)9) 37 22.08ns 37 27.88ns

GF ((24)33) 133 22.08ns 133 † 27.88ns †

GF ((28)21) 169 22.08ns 169 † 27.88ns †

GF (((24)2)21) 169 22.08ns 169 † 27.88ns †
† - extrapolated result

Table 11.3: Switch 2 results

combinatorial delay does not increase with the size of the field. This is because Switch

2 multiplexes all inputs in parallel. Comparing synthesis results with place and route

results, we see that area results are identical and timing results have a discrepancy

of 5.8ns.

Switch 3

Switch 3 is used to multiplex the control signals from Add fsm and Double fsm. This

component is controlled by IO fsm. Table 11.4 shows the synthesis and implementa-

tion results. Synthesis result for area utilization are very accurate. Since all compo-

sitions of Switch 3 could be placed and routed, it is possible to compare the timing

results for the synthesized design with the implemented design. From Table 11.4, we

can see that timing approximations provided by synthesis results compare very well



CHAPTER 11. RESULTS AND TIMING ANALYSIS 101

Synopsys Results Device Results

Module Composition Area (CLB) Path Area (CLB) Path

Switch3 GF ((24)9) 8 23.37ns 9 27.43ns

GF ((24)33) 8 23.37ns 8 21.52ns

GF ((28)21) 8 21.70ns 8 27.16ns

GF (((24)2)21) 8 21.70ns 8 25.00ns

Table 11.4: Switch 3 results

to the actual combinatorial delay obtained after the design is placed into a specific

device.

Switch 5

Switch 5 is a large tri-state buffer. As shown in Table 11.5, this component does not

use any CLBs since each tri-state gate is implemented in the I/O pad. The timing

results provided by the XILINX tools is far greater than the expected results obtained

through synthesis. This is due to the large path delay associated with routing the

signal from the multiplexer to the pad. Since this component required many IO pads,

the internal logic is placed so that all paths have similar delay. Consequently, the

design is placed near the center of the device resulting in large path delays between

the design and the pins. This of course is not an issue when the design is a component

Synopsys Results Device Results

Module Composition Area (IOB) Path Area (IOB) Net Path

Switch5 GF ((24)9) 73 13.50ns 73 31.76ns 36.24ns

GF ((24)33) 265 13.50ns 265 55.86ns 60.34ns

GF ((28)21) 337 13.50ns 337 46.89ns 51.37ns

GF (((24)2)21) 337 13.50ns 337 46.89ns 51.37ns

Table 11.5: Switch 5 results

of the entire system. In fact, the maximum combinatorial delay becomes the delay



CHAPTER 11. RESULTS AND TIMING ANALYSIS 102

through one CLB plus any delay associated with routing inputs to Switch 5 from

other components in the system architecture.

11.3.2 Clocked Components

Synthesis and implementation of clocked components requires a careful selection of

clock constraints. If this input parameter of the synthesis and place and route tools,

is chosen too optimistically, long compilation times will result without significant in-

crease in performance. Conversely, if the clock constraint is too relaxed, optimization

will be limited. Consequently, synthesis and implementation of these components

resulted in many iterations.

RAM Bank

As mentioned previously Synthesis results for the RAM bank are not available be-

cause only vendor specific components were used to implement this module. Thus,

Table 11.6 lists the results provided by the place and route tools. The RAM bank is

Device Results

Module Composition Area Timing

(CLB) (clk prd)

RAM Bank GF ((24)9) 36 34.04ns

GF ((24)33) 132 † 34.04ns †

GF ((28)21) 168 † 34.04ns †

GF (((24)2)21) 168 † 34.04ns †
† - LogiBlox approximation

Table 11.6: RAM bank results

composed of slices of memory blocks that are all independent of each other. The same
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address and reset signals are routed to all RAM blocks. Due to its regular structure,

the RAM bank clock period will have a fairly constant behavior for all finite fields

that were implemented. Furthermore, CLB usage scales linearly with the size of the

field.

Multiplication Element

The multiplication element also contains LogiBlox components inside the hybrid ar-

chitecture. Besides the LogiBlox registers, however, this component implements com-

binatorial logic to realize arithmetic in the subfield. Consequently, the area reported

by the synthesis tool is accurate but the timing cannot be derived. Table 11.7 shows

Synopsys Results Device Results

Module Composition Area Timing Area Timing

(CLB) (clk prd) (CLB) (clk prd)

Mult PE GF ((24)9) 73 NA 70 25.09ns

GF ((24)33) 265 NA 249 40.24ns

GF ((28)21) 673 NA 717 72.53ns

GF (((24)2)21) 778 NA 641 61.86ns

Table 11.7: Multiplication results

the results for the slice serial multiplier. The place and route results show that the

internal structure of GF ((28)21) and GF (((24)2)21) plays an important role on the per-

formance and area utilization. GF (((24)2)21) is smaller and faster than GF ((28)21)

although both architectures have finite fields of the same size. This result verifies the

findings in [37] bit parallel subfield multipliers were compared for FPGAs.
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I/O Finite State Machine

Table 11.8 shows the results for the element controlling the encryption level algorithm.

Area and timing results reported by synthesis and implementation tools are very

close. It is interesting to point out that the minimum clock period for GF ((24)33)

Synopsys Results Device Results

Module Composition Area Timing Area Timing

(CLB) (clk prd) (CLB) (clk prd)

I/O FSM GF ((24)9) 50 39.74ns 50 33.18ns

GF ((24)33) 95 68.59ns 97 69.06ns

GF ((28)21) 117 61.93ns 116 69.86ns

GF (((24)2)21) 117 61.93ns 116 69.86ns

Table 11.8: I/O state machine results

and GF ((28)21) is essentially identical. This is not surprising as the I/O state machine

does not depend on the size of the finite field. The surprising result is that the smallest

design GF ((24)9) has a performance that is two times better than the remaining

versions. We speculate that this is due to the few I/O buffers necessary for the small

design in comparison to the larger versions.

Double Finite State Machine

Two versions of state machines controlling the Group Operation Level were imple-

mented in the systems. One is one-hot encoded and the other was based on an

attribute that is understood by the synthesis tools. More specifically, enumerated

encoding was utilized. The use of enumerated encoding allows the synthesis tool to

encode the state machine with the optimal solution. It is apparent from Table 11.9,

that enumerated encoding style resulted in better area utilization for all architectures

and increased performance for the larger designs, i.e., GF ((28)21) and GF (((24)2)21).
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The one-hot encoded state machines were better suited for smaller field implemen-

Synopsys Results Device Results

Module Composition Area Timing Area Timing

(CLB) (clk prd) (CLB) (clk prd)

Double FSM GF ((24)9) 96 75.74ns 94 40.43ns

(one hot) GF ((24)33) 99 75.98ns 100 40.90ns

GF ((28)21) 97 75.74ns 98 48.89ns

GF (((24)2)21) 97 75.74ns 98 48.89ns

Double FSM GF ((24)9) 67 51.60ns 68 35.18ns

(enum) GF ((24)33) 71 51.60ns 74 42.52ns

GF ((28)21) 69 51.04ns 71 44.61ns

GF (((24)2)21) 69 51.04ns 71 44.61ns

Table 11.9: Double state machine results

tation. In addition, both area and timing results do not change drastically when a

different finite field is considered for the enumerated state machine. This is because

the complexity of the state machines does not increase significantly with field order.

For the one-hot encoded state machine, synthesis timing reports are much higher than

the actual implementation. This shows that the synthesis tools performed better with

enumerated encoding and that the XILINX tools had to perform more optimizations

with one-hot encoded state machine. This was true in both cases, Double fsm and

Add fsm.

Add Finite State Machine

The addition state machine is larger than the double state machine as described by the

sequence in Chapter 9. Consequently area utilization is increased and performance is

degraded. The results presented in Table 11.10 show similar behavior to the results

obtained for the double state machine. This is because the general structure of both

state machines is the same but the add state machine realizes a longer sequence.
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Synopsys Results Device Results

Module Composition Area Timing Area Timing

(CLB) (clk prd) (CLB) (clk prd)

Add FSM GF ((24)9) 125 117.10ns 126 62.94ns

(one hot) GF ((24)33) 130 120.23ns 133 64.28ns

GF ((28)21) 127 116.18ns 132 61.77ns

GF (((24)2)21) 127 116.18ns 132 61.77ns

Add FSM GF ((24)9) 89 51.36ns 91 45.92ns

(enum) GF ((24)33) 103 53.52ns 106 55.63ns

GF ((28)21) 85 55.01ns 89 48.09ns

GF (((24)2)21) 85 55.01ns 89 48.09ns

Table 11.10: Add state machine results

11.4 System

Synthesis and implementation of individual components shows the relative timing and

area results for each element as a stand-alone unit. However, once these components

are placed into the system, optimization can be performed between boundaries. This

results in better area utilization as modules can be packed together and optimized to

make full use of a CLB. This can be shown by summing up all area place and route

results for GF ((24)9):

Totalarea = 126 + 94 + 50 + 70 + 36 + 73 + 9 + 37 + 36 + 36 = 567.

This number, however, is by 6% larger than the 535 CLBs used for the complete

design. The summation yields a higher count than the actual implementation as

depicted in Table 11.11. This shows that boundary optimization can reduce the

number of CLBs used to implement the system.

Table 11.11 also shows the estimated number of gate equivalences for each archi-

tecture. The largest design utilizes ≈ 54, 000 gates which could be mapped to a
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Synopsys Results

Module Composition n ·m Area Gate Equiv. Timing

(CLB) (est.) (clk prd)

System GF ((24)9) 36 520 14820 78.4ns

(one hot) GF ((24)33) 132 1249 35597 89.5ns

GF ((28)21) 168 1870 53295 88.9ns

GF (((24)2)21) 168 1891 53894 88.9ns

System GF ((24)9) 36 577 16445 49.5ns

(enum) GF ((24)33) 132 1199 34172 68.5ns

GF ((28)21) 168 1810 51585 61.3ns

GF (((24)2)21) 168 1894 53979 61.3ns

Table 11.11: Point multiplication after synthesis

very small ASIC device. All architectures result in a clock period less than 100ns.

Table 11.11 only shows results obtained through synthesis (with the exception of

GF ((24)9)). As mentioned previously, implementation results cannot be obtained due

to the long compile times of the place and route tools. However, the data presented

in Section 11.3 shows that synthesis reports are, for the most part, very accurate

when compared with the final device implementation. Comparing area results for

GF ((24)9), we can see that the results differ by only 3%. This leads us to specu-

late that such results are achievable and can be implemented with better place and

route tools. Furthermore, in an commercial environment, there is a greater emphasis

on implementation resulting in availability of better tools and supporting hardware

that can tackle the job of placing our design into the XILINX device. We were able

to verify our design in back-annotated form, only by relaxing the clock, resulting in

decreased performance. However, synthesis results have been shown to be quite ac-

curate, thus by using these values obtained from Synopsys, we were able to estimate

the time required for one point multiplication.

Using Equation 10.1 from Section 10.3, and the synthesis results presented in Ta-

ble 11.11, it is possible to estimate absolute timings for one point multiplication.
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These results are presented in Table 11.12. According to synthesis results, multipli-

Module Composition n ·m # of cycles clk prd Pt. Mult.

System GF ((24)9) 36 7297.5 78.4ns 0.57ms

(one hot) GF ((24)33) 132 87049.5 89.5ns 7.79ms

GF ((28)21) 168 72895.5 88.9ns 6.49ms

GF (((24)2)21) 168 72895.5 88.9ns 6.49ms

System GF ((24)9) 36 7297.5 49.5ns 0.36ms

(enum) GF ((24)33) 132 87049.5 68.5ns 5.97ms

GF ((28)21) 168 72895.5 61.3ns 4.47ms

GF (((24)2)21) 168 72895.5 61.3ns 4.47ms

Table 11.12: Point multiplication results

cation of a point on the curve with arithmetic in GF ((28)21) or GF (((24)2)21) can

be done in 4.47 milliseconds. Thus the two implementations with field order of 168

have a data throughput of 37.583kb/sec. This results is better than the best software

implementation (7.8ms) on a 165MHz DEC Alpha [39], using the somewhat smaller

field GF (2155). All of these results are based on synthesis estimations of the minimum

clock period and area utilization.



Chapter 12

Summary and Recommendations

12.1 Summary

From a design point of view, FPGAs provide a suitable environment for our im-

plementation. These register rich devices can accommodate large memory structures

and provide optimized macro cells that improve the speed performance of the system.

The fine grain device architecture allows for synthesis tools to perform optimization

almost at a gate level resulting in very efficient implementations.

The concept of reconfigurable hardware for elliptic curves is very attractive for various

reasons. Reconfigurable hardware provides a versatile environment that is desirable

when implementing modern cryptographic protocols. In the work described here,

we have shown that an elliptic curve cryptosystem can principally be implemented

on reconfigurable devices. There is however one limitation. The long compile times

required to place and route the EC design into a specific device are currently a

bottleneck during the development cycle. The available tools are improving very

rapidly and new, larger devices are being offered from many vendors every year.

109
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These improvements will make it possible to implement large and very complicated

designs in the near future.

With the synthesis tools available, it was possible to obtain estimated results for all

architectures. Furthermore, comparison of synthesis and implementation results, for

various large modules of our design, shows that synthesis results are very accurate.

Thus EC crypto engine can be implemented on XILINX FPGAs at the estimated

computation time of approximately 4.5msec.

12.2 Recommendations for Future Research

This thesis concentrated on achieving point multiplication on elliptic curves in re-

configurable hardware. To our knowledge, this approach has not been yet attempted

before. Below, we summarize some of the more important work that could still be

done from a design and implementation point of view.

12.2.1 New Design Considerations

We would recommend to investigate different alternatives for implementing the con-

trol structure. For example, the possibility of using RAM and counters to generate

the control vectors could be implemented.

Also, we would have liked to implement the system using two clocks to speed up

computation times.

Another important design alternative that should be researched further is the imple-

mentation of multiple arithmetic processing elements. This would allow for parallel
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operation effectively reducing the entire computation cycle by half. Such an alterna-

tive would also require more routing resources.

Conversely, we would like to implement another design with a narrower datapath.

Reducing datapath would result in longer computation cycle. However, such a design

would allow us to use smaller FPGAs and possibly implement the general design on

future smart cards.

12.2.2 Implementation Alternatives

From an implementation point of view, further research can be done to investigate

other reconfigurable devices. Soft macros can be re-mapped so that the design can

be implemented in EPLDs and CPLDs. Furthermore, devices from other vendors like

ALTERA, AT&T and Motorola could be used to implement our design. This would

allow us to research other place and route tools that may or may not perform better.

Future work could also concentrate on the actual system hardware implementation.

For instance, designing a PC plug-in board with reconfigurable cryptographic algo-

rithms seems like an attractive application.

Lastly, we would like to devote some time to try out one of the new devices that

will be available from XILINX in the near future. The new Virtex family of devices

use 0.25 micron, five layer metal process technology which will increase area, routing

resources, and speed performance.
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12.3 Concluding Remarks

In summary, we are very hopeful that the work presented here will provide some

insight into hardware implementation of complex cryptographic algorithms. Point

multiplication on elliptic curves is one of the most challenging computations used to

implement public-key protocols. This holds especially true for hardware implemen-

tations of which very few have been reported in the literature. It is our intention

to provide the reader with the issues concerning hardware implementation of elliptic

curves. Moreover, one of our goals was to show that cryptographic protocols can

be implemented in reconfigurable hardware. Wide datapaths associated with elliptic

curve implementation in hardware is of concern when trying to use FPGA devices.

However the limitation lies more in the tools rather than the resources available to

us.

In this thesis, we have shown that reconfigurable hardware is a viable solution for

public-key cryptography. In principal, elliptic curve point multiplication can be

achieved on FPGAs resulting in very flexible implementation with increased speed

performance over current software solution. As security issues become more and more

pronounced in the next few years and supporting FPGA tools improve, we hope that

reconfigurable hardware and elliptic curves will provide a viable solution.



Appendix A

Test Bench Sample

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_textio.all;

use work.array_types.all;

--

-- VHDL Architecture ALU.ALUtester.flow

--

-- Created:

-- by - mrosner.mrosner (pike.WPI.EDU)

-- at - 16:45:58 09/15/97

--

entity SYSTEM_TESTBENCH is

end SYSTEM_TESTBENCH;

ARCHITECTURE TEST OF SYSTEM_TESTBENCH IS

-- Architecture declarations

CONSTANT clk_prd : time := 50 ns;

constant width : positive := 8; --< bits in signle register

constant slices : positive := 21; --< number of registers in array

constant depth : positive := 4;

constant trinomial_coeff : positive := 2; --< (k) from p. 158 in Menezes

constant block_size : positive := 7;

SIGNAL clk : std_logic ;

SIGNAL reset : std_logic ;

SIGNAL START_JOB : std_logic;
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SIGNAL input_coord_pin : input_slice_array;

SIGNAL mult_vector : std_logic_vector((slices*width)-1 DOWNTO 0);

SIGNAL ram_out : slice_array;

SIGNAL ready : std_logic ;

SIGNAL iclk : std_logic;

PROCEDURE wait_clock(CONSTANT clk_ticks:integer) IS

VARIABLE i : integer := 0;

BEGIN

FOR i IN 1 TO clk_ticks*2 LOOP

WAIT UNTIL iclk’EVENT;

END LOOP;

END wait_clock;

component system

PORT(

clk : IN std_logic ;

reset : IN std_logic ;

START_JOB : IN std_logic;

input_coord_pin : IN input_slice_array;

mult_vector : IN std_logic_vector((slices*width)-1 DOWNTO 0);

ram_out : OUT slice_array;

ready : OUT std_logic

);

end component;

BEGIN

UUT : system

Port Map (

clk => clk,

reset =>reset,

START_JOB =>START_JOB,

input_coord_pin => input_coord_pin,

mult_vector =>mult_vector,

ram_out =>ram_out,

ready =>ready

);

flow_process: PROCESS

-- Process declarations

VARIABLE j : integer := 0;

VARIABLE d_var : unsigned(9 DOWNTO 0) := "0000000000";

VARIABLE b_var : unsigned(3 DOWNTO 0) := "0000";
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BEGIN

input_coord_pin(0) <= "00110011";

input_coord_pin(1) <= "00110011";

input_coord_pin(2) <= "00110011";

input_coord_pin(3) <= "00110011";

input_coord_pin(4) <= "00110011";

input_coord_pin(5) <= "00110011";

input_coord_pin(6) <= "00110011";

mult_vector <= "1011011010110110101101101011011010110110

1011011010110110101101101011011010110110

1011011010110110101101101011011010110110

101101101011011010110110101101101011011010110110";

reset <= ’1’;

wait_clock(1);

reset <= ’0’;

START_JOB <= ’1’;

wait_clock(1);

START_JOB <= ’0’;

wait_clock(6);

input_coord_pin(0) <= "10011001";

input_coord_pin(1) <= "10011001";

input_coord_pin(2) <= "10011001";

input_coord_pin(3) <= "10011001";

input_coord_pin(4) <= "10011001";

input_coord_pin(5) <= "10011001";

input_coord_pin(6) <= "10011001";

wait_clock(6);

input_coord_pin(0) <= "01110111";

input_coord_pin(1) <= "01110111";

input_coord_pin(2) <= "01110111";

input_coord_pin(3) <= "01110111";

input_coord_pin(4) <= "01110111";

input_coord_pin(5) <= "01110111";

input_coord_pin(6) <= "01110111";

wait_clock(3);

wait;

END PROCESS flow_process;

-- Architecture concurrent statements

clock_gen : PROCESS

BEGIN

iclk <= ’0’;

WAIT FOR clk_prd/2;

iclk <= ’1’;
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WAIT FOR clk_prd/2;

END PROCESS clock_gen;

clk <= iclk;

END TEST;

configuration CFG_TB of SYSTEM_TESTBENCH is

for TEST

for UUT : system

use configuration WORK.CFG_SYSTEM_RTL;

end for;

end for;

end CFG_TB;
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C Model

/*******************************************************************

This program is an Elliptic Curve emulator used to test a harware

implementation developed for FPGAs. This is in partial fullfillment

of a MS Thesis Degree at Worcester Polytechnic Intitute.

The current version of the program uses the smalles subfield multiplier

of GF(2^4) from which the architecture for GF(2^4)^2 is developed. This

arithmetic unit is then used to build the hybrid multiplier (hyb_mult)

and the hybrid adder (hyb_add). The hybrid adder performs a bitwise

XOR of two operand vectors.

Hyb_mult and hyb_add are then used to build on point addition

module (pt_add) and one point multiplication module (pt_mult).

Finaly, pt_add and pt_mult are used in conjunction with the

square-and-multiply algorithm to realize a multiplication

of a point on the curve bu an integer.

Input files: data_inX, data_inY, data_inZ -> X,Y,Z coord of original point

curve_def1 -> elliptic curve parameter (a_2)

curve_def2 -> elliptic curve parameter (a_6)

mult_in -> 168 bit multiplier used in S-A-M

programmer: Martin Rosner

last update: February 12, 1998

*******************************************************************/

#include <stdio.h>

#include "gfopsn.h"

#define SLICE 21

#define FEEDBACK 2

#define SLICE_WIDTH 8

117
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typedef struct cmp_bus_tag{

gfelt bus_lower;

gfelt bus_higher;

}cmp_bus;

void multcomp(cmp_bus *a_in,

cmp_bus *b_in,

cmp_bus *res_out);

void sumcomp(cmp_bus *a_in,

cmp_bus *b_in,

cmp_bus *res_out);

void copy_vector(cmp_bus original[SLICE],

cmp_bus new_copy[SLICE]);

void hyb_mult(cmp_bus u_in[SLICE],

cmp_bus v_in[SLICE],

cmp_bus w_out[SLICE]);

void hyb_add(cmp_bus u_in[SLICE],

cmp_bus v_in[SLICE],

cmp_bus w_out[SLICE]);

void reset_result(cmp_bus result[SLICE]);

void pt_double(cmp_bus a_opX[SLICE],

cmp_bus a_opY[SLICE],

cmp_bus a_opZ[SLICE],

cmp_bus curve_def1[SLICE],

cmp_bus c_opX[SLICE],

cmp_bus c_opY[SLICE],

cmp_bus c_opZ[SLICE]);

void pt_add(cmp_bus a_opX[SLICE], cmp_bus a_opY[SLICE],

cmp_bus a_opZ[SLICE], cmp_bus b_opX[SLICE],

cmp_bus b_opY[SLICE], cmp_bus b_opZ[SLICE],

cmp_bus curve_def2[SLICE], cmp_bus c_opX[SLICE],

cmp_bus c_opY[SLICE], cmp_bus c_opZ[SLICE]);

void print_vector(cmp_bus vector[SLICE]);

void scan_point(cmp_bus a_inX[SLICE], cmp_bus a_inY[SLICE],

cmp_bus a_inZ[SLICE], cmp_bus b_inX[SLICE],

cmp_bus b_inY[SLICE], cmp_bus b_inZ[SLICE],

cmp_bus curve_def1[SLICE], cmp_bus curve_def2[SLICE]);
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void scan_multiplier(int multiplier[SLICE]);

void curve_mult(cmp_bus a_inX[SLICE], cmp_bus a_inY[SLICE],

cmp_bus a_inZ[SLICE], cmp_bus curve_def1[SLICE],

cmp_bus curve_def2[SLICE], cmp_bus res_outX[SLICE],

cmp_bus res_outY[SLICE], cmp_bus res_outZ[SLICE],

int multiplier[SLICE]);

void scan_array(int multiplier[SLICE], int *outer_index, int *inner_index);

/********************************************************************/

/********************************************************************/

void main(void)

{

cmp_bus a_inX[SLICE];

cmp_bus a_inY[SLICE];

cmp_bus a_inZ[SLICE];

cmp_bus b_inX[SLICE];

cmp_bus b_inY[SLICE];

cmp_bus b_inZ[SLICE];

cmp_bus res_outX[SLICE];

cmp_bus res_outY[SLICE];

cmp_bus res_outZ[SLICE];

cmp_bus curve_def1[SLICE];

cmp_bus curve_def2[SLICE];

int multiplier[SLICE];

reset_result(res_outX);

reset_result(res_outY);

reset_result(res_outZ);

scan_multiplier(multiplier);

scan_point(a_inX, a_inY, a_inZ,

b_inX, b_inY, b_inZ,

curve_def1, curve_def2);

printf("\n*********\nOriginal point coordinates:\n");

printf("X-COORD\n");

print_vector(a_inX);

printf("\nY-COORD\n");

print_vector(a_inY);

printf("\nZ-COORD\n");

print_vector(a_inZ);

printf("\n*********Computing new point...\n");

curve_mult(a_inX, a_inY, a_inZ,

curve_def1, curve_def2,

res_outX, res_outY, res_outZ,
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multiplier);

printf("DONE...\n");

printf("\n*********\nNew point coordinates:\n");

printf("X-COORD\n");

print_vector(res_outX);

printf("\nY-COORD\n");

print_vector(res_outY);

printf("\nZ-COORD\n");

print_vector(res_outZ);

printf("\n");

}

/******************************************************************/

/* the following compute one product element in the Galois field */

/******************************************************************/

void multcomp(cmp_bus *a_in, cmp_bus *b_in, cmp_bus *res_out)

{

gfelt cnst;

/*intermediate results*/

gfelt cmult1, cmult2, cmult3, cadd1, cadd2, conout;

/*subfield polynomial modulus */

f = "10011";

/*subfield length */

N = 4;

gfinit();

/*constant multiplier*/

cnst = primpower(14);

cmult1 = prod(a_in->bus_lower, b_in->bus_lower);

cadd1 = sum(a_in->bus_lower, a_in->bus_higher);

cadd2 = sum(b_in->bus_lower, b_in->bus_higher);

cmult2 = prod(cadd1, cadd2);

cmult3 = prod(a_in->bus_higher, b_in->bus_higher);

conout = prod(cmult3, cnst);

res_out->bus_higher = sum(cmult1, cmult2);

res_out->bus_lower = sum(cmult1, conout);

}

/******************************************************************/

/* the following compute one sum element in the Galois field */

/******************************************************************/

void sumcomp(cmp_bus *a_in, cmp_bus *b_in, cmp_bus *res_out)
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{

f = "10011"; /*subfield polynomial modulus*/

N = 4; /*subfield length*/

gfinit();

res_out->bus_higher = sum(a_in->bus_higher, b_in->bus_higher);

res_out->bus_lower = sum(a_in->bus_lower, b_in->bus_lower);

}

void hyb_add(cmp_bus u_in[SLICE], cmp_bus v_in[SLICE], cmp_bus w_out[SLICE])

{

int i;

int slices = SLICE;

for(i=0; i<slices; i++){

sumcomp(&u_in[i],

&v_in[i],

&w_out[i]);

}

}

/********************************************************************/

/********************************************************************/

void hyb_mult(cmp_bus u_in[SLICE], cmp_bus v_in[SLICE], cmp_bus w_out[SLICE])

{

int slices = SLICE;

int feed_coef = FEEDBACK;

int i,j;

cmp_bus prod1[SLICE];

cmp_bus clk_res[SLICE];

cmp_bus temp;

reset_result(w_out);

for(i=slices-1; i>-1; i--){

for(j=0; j<slices; j++){

multcomp(&u_in[i],

&v_in[j],

&prod1[j]);

if(j==0){

/*first slice*/

sumcomp(&prod1[j],

&w_out[slices-1],

&clk_res[j]);

}

else if(j==feed_coef){

/*feedback slice*/

sumcomp(&prod1[j],
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&w_out[j-1],

&temp);

sumcomp(&temp,

&w_out[slices-1],

&clk_res[j]);

}

else {

/*all other slices*/

sumcomp(&prod1[j],

&w_out[j-1],

&clk_res[j]);

}

}

copy_vector(clk_res, w_out);

}

}

/********************************************************************/

/********************************************************************/

void copy_vector(cmp_bus original[SLICE], cmp_bus new_copy[SLICE])

{

int i;

int slices = SLICE;

for(i=0; i<slices; i++){

new_copy[i].bus_higher = original[i].bus_higher;

new_copy[i].bus_lower = original[i].bus_lower;

}

}

void reset_result(cmp_bus result[SLICE])

{

int i;

int slices = SLICE;

for(i=0; i<slices; i++){

result[i].bus_higher = 0x0;

result[i].bus_lower = 0x0;

}

}

/********************************************************************/

/********************************************************************/

void pt_double(cmp_bus a_opX[SLICE], cmp_bus a_opY[SLICE],

cmp_bus a_opZ[SLICE], cmp_bus curve_def1[SLICE],

cmp_bus c_opX[SLICE], cmp_bus c_opY[SLICE],

cmp_bus c_opZ[SLICE])

{
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cmp_bus tmp1[SLICE]; /*A*/

cmp_bus tmp2[SLICE];

cmp_bus tmp3[SLICE];

cmp_bus tmp4[SLICE];

cmp_bus tmp5[SLICE];

cmp_bus tmp6[SLICE];

cmp_bus tmp7[SLICE];

/*begin precomp stage*/

hyb_mult(a_opZ, a_opZ, tmp4); /*spd1*/

hyb_mult(a_opX, a_opX, tmp5); /*sdp2*/

hyb_mult(tmp4, tmp4, tmp6); /*spd3*/

hyb_mult(tmp5, tmp5, tmp4); /*spd4*/

hyb_mult(tmp6, curve_def1, tmp7); /*mpd1*/

hyb_mult(a_opX, a_opZ, tmp3); /*mpd2*/

hyb_add(tmp4, tmp7, tmp1);

copy_vector(tmp1, tmp7); /*apd1*/

/*end of precomp stage*/

/*begin computation stage*/

hyb_mult(a_opY, a_opZ, tmp6); /*mcd1*/

hyb_add(tmp3, tmp5, tmp1);

copy_vector(tmp1, tmp5); /*acd1*/

hyb_mult(tmp3, tmp3, tmp2); /*scd1*/

hyb_add(tmp5, tmp6, tmp1);

copy_vector(tmp1, tmp6); /*acd2*/

hyb_mult(tmp2, tmp3, c_opZ); /*mcd2*/

hyb_mult(tmp6, tmp7, tmp2); /*mcd3*/

hyb_mult(tmp4, tmp3, tmp6); /*mcd4*/

hyb_mult(tmp7, tmp3, c_opX); /*mcd5*/

hyb_add(tmp6, tmp2, c_opY); /*acd3*/

/*end of computation stage*/

}
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/********************************************************************/

/********************************************************************/

void pt_add(cmp_bus a_opX[SLICE], cmp_bus a_opY[SLICE],

cmp_bus a_opZ[SLICE], cmp_bus b_opX[SLICE],

cmp_bus b_opY[SLICE], cmp_bus b_opZ[SLICE],

cmp_bus curve_def2[SLICE], cmp_bus c_opX[SLICE],

cmp_bus c_opY[SLICE], cmp_bus c_opZ[SLICE])

{

cmp_bus tmp1[SLICE];

cmp_bus tmp2[SLICE];

cmp_bus tmp3[SLICE];

cmp_bus tmp4[SLICE];

cmp_bus tmp5[SLICE];

cmp_bus tmp6[SLICE];

cmp_bus tmp7[SLICE];

cmp_bus tmp8[SLICE];

cmp_bus tmp9[SLICE];

hyb_mult(b_opX, a_opZ, tmp5); /*mpa1*/

hyb_mult(b_opY, a_opZ, tmp3); /*mpa2*/

hyb_add(tmp5, a_opX, tmp1); /*apa1*/

copy_vector(tmp1, tmp5);

copy_vector(tmp5, tmp6); /*apa2*/

hyb_add(tmp3, a_opY, tmp1); /*apa3*/

copy_vector(tmp1, tmp3);

hyb_mult(tmp5, tmp5, tmp4); /*spa1*/

hyb_add(tmp3, tmp6, tmp1); /*apa4*/

copy_vector(tmp1, tmp6);

hyb_mult(a_opZ, curve_def2, tmp7); /*mpa3*/

hyb_mult(a_opZ, tmp3, tmp8); /*mpa4*/

hyb_add(tmp5, tmp7, tmp1); /*apa5*/

copy_vector(tmp1, tmp7);

hyb_mult(tmp7, tmp4, tmp9); /*mpa5*/

hyb_mult(tmp8, tmp6, tmp7); /*mpa6*/

hyb_add(tmp7, tmp9, tmp1); /*apa6*/
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copy_vector(tmp1, tmp9);

hyb_mult(tmp3, a_opX, tmp7); /*mca1*/

hyb_mult(tmp5, a_opY, tmp3); /*mca2*/

hyb_mult(tmp5, tmp9, c_opX); /*mca3*/

hyb_mult(tmp6, tmp9, tmp8); /*mca4*/

hyb_add(tmp3, tmp7, tmp1); /*aca1*/

copy_vector(tmp1, tmp7);

hyb_mult(tmp4, a_opZ, tmp3); /*mca5*/

hyb_mult(tmp4, tmp7, tmp2); /*mca6*/

hyb_mult(tmp3, tmp5, c_opZ); /*mca7*/

hyb_add(tmp8, tmp2, c_opY); /*aca2*/

}

/********************************************************************/

/********************************************************************/

void scan_point(cmp_bus a_inX[SLICE], cmp_bus a_inY[SLICE],

cmp_bus a_inZ[SLICE], cmp_bus b_inX[SLICE],

cmp_bus b_inY[SLICE], cmp_bus b_inZ[SLICE],

cmp_bus curve_def1[SLICE], cmp_bus curve_def2[SLICE])

{

int index;

FILE *inp1;

FILE *inp2;

FILE *inp3;

FILE *inp4;

FILE *inp5;

FILE *outp1;

index = 0;

if((inp1 = fopen("data_inX", "r")) == NULL)

{

printf("Open Failed\n");

/*end(1);*/

}

if((inp2 = fopen("data_inY", "r")) == NULL)

{

printf("Open Failed\n");

/*end(1);*/

}

if((inp3 = fopen("data_inZ", "r")) == NULL)
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{

printf("Open Failed\n");

/*end(1);*/

}

if((inp4 = fopen("curve_def1", "r")) == NULL)

{

printf("Open Failed\n");

/*end(1);*/

}

if((inp5 = fopen("curve_def2", "r")) == NULL)

{

printf("Open Failed\n");

/*end(1);*/

}

if((outp1 = fopen("data_out1", "w+")) == NULL)

{

printf("Open Failed\n");

/*end(1);*/

}

printf("\nnow scanning x-coord ...\n");

while((fscanf(inp1, "%x %x %x %x\n",

&(a_inX[index]).bus_higher,

&(a_inX[index]).bus_lower,

&(b_inX[index]).bus_higher,

&(b_inX[index]).bus_lower))==4){

printf("...slice %d: 1st pt -> %x%x; 2nd point -> %x%x\n",

index,

a_inX[index].bus_higher, a_inX[index].bus_lower,

b_inX[index].bus_higher, b_inX[index].bus_lower);

index ++;

}

printf("\nnow scanning y-coord ...\n");

index=0;

while((fscanf(inp2, "%x %x %x %x\n",

&(a_inY[index]).bus_higher,

&(a_inY[index]).bus_lower,

&(b_inY[index]).bus_higher,

&(b_inY[index]).bus_lower))==4){

printf("...slice %d: 1st pt -> %x%x; 2nd point -> %x%x\n",

index,

a_inY[index].bus_higher, a_inY[index].bus_lower,

b_inY[index].bus_higher, b_inY[index].bus_lower);

index ++;

}

printf("\nnow scanning z-coord ...\n");
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index=0;

while((fscanf(inp3, "%x %x %x %x\n",

&(a_inZ[index]).bus_higher,

&(a_inZ[index]).bus_lower,

&(b_inZ[index]).bus_higher,

&(b_inZ[index]).bus_lower))==4){

printf("...slice %d: 1st pt -> %x%x; 2nd point -> %x%x\n",

index,

a_inZ[index].bus_higher, a_inZ[index].bus_lower,

b_inZ[index].bus_higher, b_inZ[index].bus_lower);

index ++;

}

printf("\nnow scanning curvedef1 ...\n");

index=0;

while((fscanf(inp4, "%x %x\n",

&(curve_def1[index]).bus_higher,

&(curve_def1[index]).bus_lower))==2){

printf("%x%x\n",

curve_def1[index].bus_higher,

curve_def1[index].bus_lower);

index ++;

}

printf("\nnow scanning curvedef2 ...\n");

index=0;

while((fscanf(inp5, "%x %x\n",

&(curve_def2[index]).bus_higher,

&(curve_def2[index]).bus_lower))==2){

printf("%x%x\n",

curve_def2[index].bus_higher,

curve_def2[index].bus_lower);

index ++;

}

printf("SCANNED...\n");

fclose(inp1);

fclose(inp2);

fclose(inp3);

fclose(inp4);

fclose(inp5);

fclose(outp1);

}

/********************************************************************/

/********************************************************************/
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void scan_multiplier(int multiplier[SLICE])

{

int index;

FILE *inp;

index = SLICE-1;

if((inp = fopen("mult_int", "r")) == NULL)

{

printf("Open Failed\n");

/*end(1);*/

}

printf("\nnow scanning curve point multiplier ...\n");

while((((fscanf(inp, "%x\n", &multiplier[index]))==1) && (index > -1))){

printf("...slice %d: hex rep. -> %x\n", index, multiplier[index]);

index --;

}

}

/********************************************************************/

/********************************************************************/

void print_vector(cmp_bus vector[SLICE])

{

int index;

for(index=SLICE-1; index>-1; index--){

printf("%x%x",

vector[index].bus_higher, vector[index].bus_lower);

}

}

/********************************************************************/

/********************************************************************/

void curve_mult(cmp_bus a_inX[SLICE],

cmp_bus a_inY[SLICE], cmp_bus a_inZ[SLICE],

cmp_bus curve_def1[SLICE], cmp_bus curve_def2[SLICE],

cmp_bus res_outX[SLICE], cmp_bus res_outY[SLICE],

cmp_bus res_outZ[SLICE], int multiplier[SLICE])

{

cmp_bus tmpX[SLICE];

cmp_bus tmpY[SLICE];

cmp_bus tmpZ[SLICE];

int i,j;

int outer_bound, inner_bound;

int mask = 0x01;

int first = 1;

int double_count = 0;

int add_count = 0;

copy_vector(a_inX, tmpX);
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copy_vector(a_inY, tmpY);

copy_vector(a_inZ, tmpZ);

/*finds the first bit in the 168 bit integer*/

scan_array(multiplier, &outer_bound, &inner_bound);

/*start from the next bit after the one found in previous function*/

inner_bound--;

/*adjust mask to that bit position*/

mask = mask<<(inner_bound-1);

/*start S-A-M */

for(i=outer_bound; i>-1; i--){

if(first == 0){

inner_bound = SLICE_WIDTH;

mask = 0x80;

} else {

first = 0;

}

for(j=inner_bound; j>0; j--){

printf("******************\n");

printf("******************\n");

printf("Results for bit %d:\n", (i*(8))+j);

printf("i = %d:\n", i);

printf("INPUT:\n");

print_vector(a_inX);

printf("\n");

print_vector(a_inY);

printf("\n");

print_vector(a_inZ);

printf("\n");

pt_double(a_inX, a_inY, a_inZ,

curve_def1,

res_outX, res_outY, res_outZ);

copy_vector(res_outX, a_inX);

copy_vector(res_outY, a_inY);

copy_vector(res_outZ, a_inZ);

printf("...DOUBLE...\n");

double_count++;

print_vector(res_outX);

printf("\n");

print_vector(res_outY);

printf("\n");

print_vector(res_outZ);

printf("\n");
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if((mask & multiplier[i]) != 0){

printf("INPUT:\n");

print_vector(a_inX);

printf("\n");

print_vector(a_inY);

printf("\n");

print_vector(a_inZ);

printf("\n");

print_vector(tmpX);

printf("\n");

print_vector(tmpY);

printf("\n");

pt_add(a_inX, a_inY, a_inZ,

tmpX, tmpY, tmpZ,

curve_def2,

res_outX, res_outY, res_outZ);

copy_vector(res_outX, a_inX);

copy_vector(res_outY, a_inY);

copy_vector(res_outZ, a_inZ);

printf("...ADD...\n");

print_vector(res_outX);

printf("\n");

print_vector(res_outY);

printf("\n");

print_vector(res_outZ);

printf("\n");

add_count++;

}

mask=mask>>1;

}

}

copy_vector(a_inX, res_outX);

copy_vector(a_inY, res_outY);

copy_vector(a_inZ, res_outZ);

printf("Double operations performed = %d\n", double_count);

printf("Add operations performed = %d\n", add_count);

}

/********************************************************************/

/********************************************************************/

void scan_array(int multiplier[SLICE],

int *outer_index,

int *inner_index)

{

int i = SLICE;

int j;

int mask = 0x80;
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int empty = 1;

while((i>-1) && (empty==1)){

j = SLICE_WIDTH;

i--;

if((multiplier[i] & mask) == 0){

empty = 1;

} else {

empty = 0;

}

while((empty==1) && (j>0)){

j--;

}

mask = mask>>1;

}

*outer_index = i;

*inner_index = j;

}



Appendix C

Synosys Script

/* Sample Script for Synopsys to Xilinx Using */

/* FPGA Compiler targeting a XC4000EX device */

/* Set the name of the design"s top-level */

TOP = system

F1 = packages

F2 = dpmem

F3 = reg

F4 = reg_le

F5 = add2

F6 = add3

F7 = bit_add

F8 = mult2k4

F9 = madd4

F10 = const

F11 = mult

F12 = DOUBLE_fsm

F13 = ADD_fsm

F14 = IO_fsm

F15 = reg_bank

F16 = SWITCH1

F17 = SWITCH2

F18 = SWITCH3

F19 = SWITCH4

F20 = SWITCH5

F21 = add_array_lower

F22 = add_bank

F23 = HYBMULT

designer = "Martin Rosner"
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company = "WPI Crypto Group"

part = "4062XLPG475-1"

/* Analyze and Elaborate the design file. */

analyze -format vhdl "vhdl/" + F1 + ".vhd"

read -format edif "WORK/" + F2 + ".edn"

read -format edif "WORK/" + F3 + ".edn"

read -format edif "WORK/" + F4 + ".edn"

analyze -format vhdl "vhdl/" + F5 + ".vhd"

analyze -format vhdl "vhdl/" + F6 + ".vhd"

analyze -format vhdl "vhdl/" + F7 + ".vhd"

analyze -format vhdl "vhdl/" + F8 + ".vhd"

analyze -format vhdl "vhdl/" + F9 + ".vhd"

analyze -format vhdl "vhdl/" + F10 + ".vhd"

analyze -format vhdl "vhdl/" + F11 + ".vhd"

analyze -format vhdl "vhdl/" + F12 + ".vhd"

analyze -format vhdl "vhdl/" + F13 + ".vhd"

analyze -format vhdl "vhdl/" + F14 + ".vhd"

analyze -format vhdl "vhdl/" + F15 + ".vhd"

analyze -format vhdl "vhdl/" + F16 + ".vhd"

analyze -format vhdl "vhdl/" + F17 + ".vhd"

analyze -format vhdl "vhdl/" + F18 + ".vhd"

analyze -format vhdl "vhdl/" + F19 + ".vhd"

analyze -format vhdl "vhdl/" + F20 + ".vhd"

analyze -format vhdl "vhdl/" + F21 + ".vhd"

analyze -format vhdl "vhdl/" + F22 + ".vhd"

analyze -format vhdl "vhdl/" + F23 + ".vhd"

analyze -format vhdl "vhdl/" + TOP + ".vhd"

elaborate TOP

/* Set the current design to the reg_bank level. */

current_design F15

/* Don’t touch the logiblox*/

set_dont_touch (bank_i_*)

/* Set the current design to the HYBMULT level. */

current_design F23

/* Don’t touch the logiblox*/

set_dont_touch (BANK_REG_LE_*)

set_dont_touch (BANK_REG_*)

/* Set the current design to the top level. */

current_design TOP

remove_constraint -all

/* Uniquify the design and reset the schematic */
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uniquify

create_schematic -size infinite -gen_database

/* include timming and area contraints */

create_clock clk -period 100

set_input_delay 0 -clock clk { all_inputs()}

set_output_delay 0 -clock clk { all_outputs()}

set_operating_conditions WCCOM

/* Indicate which ports are pads. */

set_port_is_pad "*"

set_pad_type -no_clock all_inputs()

set_pad_type -clock clk

set_pad_type -slewrate LOW all_outputs()

insert_pads

/* link */

link

/* Synthesize the design.*/

/* compile -map_effort high -ungroup_all*/

compile -boundary_optimization -map_effort high

/* Write the design report files. */

sh rm -f "reports/" + TOP + ".old"

sh cat "reports/" + TOP + ".fpga" "reports/" + TOP + ".timing"\

"reports/" + TOP + ".cnst" > "reports/" + TOP + ".old"

report_fpga > "reports/" + TOP + ".fpga"

report_timing > "reports/" + TOP + ".timing"

report_constraint -verbose > "reports/" + TOP + ".cnst"

/* Write out an intermediate DB file to save state */

write -format db -hierarchy -output "db/" + TOP + "_compiled.db"

/* Replace CLBs and IOBs primitives (XC4000E/EX/XL only) */

replace_fpga

/* Set the part type for the output netlist. */

set_attribute TOP "part" -type string part

/* Write out the intermediate DB file to save state*/

write -format db -hierarchy -output "db/" + TOP + ".db"

/* Write out the timing constraints */

ungroup -all -flatten

write_script > "dc/" + TOP + ".dc"
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/* Save design in XNF format as <design>.sxnf */

write -format xnf -hierarchy -output "sxnf/" + TOP + ".sxnf"

/* XILINX primitive to convert Synopsys design constraints to Xilinx format*/

sh dc2ncf "dc/" + TOP + ".dc"



Appendix D

Simulation Results

D.1 GF ((24)9) Multilication Simulation

The next figure shows the short simulation of one Galois field multiplication. two

inputs to this hybrid multiplier are a op S1 and b op S1. The output is mult S2.

double fsm ld gfm is used to load enable the internal registers on the hybrid multi-

plier.
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Figure D.1: GF ((24)9) multiplication



APPENDIX D. SIMULATION RESULTS 138

D.2 GF ((24)9) Double Sequance

The following sequence of six figures shows the post place-and-route simulation re-

sults for the double group operation. The signals shown in the simulation sequence

are as follows:

clk ⇒ clock signal.

a op S1 ⇒ switch 1 output1.

b op S1 ⇒ switch 1 output2.

mult S2 ⇒ GF multiplier result.

double fsm lg gfm ⇒ GF multiplier load control signal from double state machine.

double fsm mux1 a() ⇒ switch 1 control signal from double state machine.

double fsm mux2 add ⇒ switch 2 control signal from double state machine.

double fsm wrt en ⇒ write enable control signal from double state machine.

dpo S1 ⇒ second RAM output port.

ram read addr()⇒ memory read address.

ram write addr()⇒ memory write/read address.

ram wrt en ⇒ memory write enable.

s2 DI ⇒ memory input data port.

done double io ⇒ asserted when group double is done.

IO FSM COMP MACHIN... ⇒ current state of I/O state machine.
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Figure D.2: GF ((24)9) double sequance
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Figure D.3: GF ((24)9) double sequance (cont.)
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Figure D.4: GF ((24)9) double sequance (cont.)
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Figure D.5: GF ((24)9) double sequance (cont.)
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Figure D.6: GF ((24)9) double sequance(cont.)
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Figure D.7: GF ((24)9) double sequance (cont.)
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D.3 GF ((24)9) Add Sequance

The following sequence of eight figures shows the post place-and-route simulation re-

sults for the add group operation. The signals shown in the simulation sequence are

as follows:

clk ⇒ clock signal.

a op S1 ⇒ switch 1 output1.

b op S1 ⇒ switch 1 output2.

mult S2 ⇒ GF multiplier result.

double fsm lg gfm ⇒ GF multiplier load control signal from double state machine.

double fsm mux1 a() ⇒ switch 1 control signal from double state machine.

double fsm mux2 add ⇒ switch 2 control signal from double state machine.

double fsm wrt en ⇒ write enable control signal from double state machine.

dpo S1 ⇒ second RAM output port.

ram read addr()⇒ memory read address.

ram write addr()⇒ memory write/read address.

ram wrt en ⇒ memory write enable.

s2 DI ⇒ memory input data port.

done double io ⇒ asserted when group double is done.

IO FSM COMP MACHIN... ⇒ current state of I/O state machine.
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Figure D.8: GF ((24)9) add sequance



APPENDIX D. SIMULATION RESULTS 147

Figure D.9: GF ((24)9) add sequance (cont.)



APPENDIX D. SIMULATION RESULTS 148

Figure D.10: GF ((24)9) add sequance (cont.)
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Figure D.11: GF ((24)9) add sequance (cont.)
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Figure D.12: GF ((24)9) add sequance (cont.)
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Figure D.13: GF ((24)9) add sequance (cont.)
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Figure D.14: GF ((24)9) add sequance (cont.)
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Figure D.15: GF ((24)9) add sequance (cont.)
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