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Abstract  
 

 

This MQP presents a solution to the time consuming and expensive process of snow removal. 

Eleven initial designs were generated and analyzed in terms of forces, weight, cost, safety, energy 

efficiency, storage/installation and internal forces. Finally a cable guided shovel design was selected for 

further analysis, design refinement and prototyping. The final design consists of a shovel that is driven 

along taut cables fixed parallel to the path to be cleared. The cables pass through either side of the 

shovel and through a motor-pulley assembly mounted to the shovel. Opposing frictional forces on the 

shovel blade and cable were determined to size the motors and cable. A prototype device was 

assembled to test its performance using mulch as the substitute for snow. 
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Chapter 1: Introduction 
 

 I proposed this project for my MQP in A Term of 2015 to Professor Pratap Rao. It was accepted 

as a 3 term MQP that lasted through B, C, and D Term. I wanted to work on a snow accumulation 

prevention device because of the realization of the crippling impact that a strong snow season could 

have on busy families. Just the task of shoveling out of your driveway everyday if you have a busy 

schedule can be a highly inconvenient and a morale draining task, especially first thing in the morning. It 

can also be a financial burden on families with low income when heating oil bills are already so high. The 

initial goal was to design a device that cleared a path continuously using air flow, but that idea was 

changed to a cable guided shovel that oscillated on the driveway in regular intervals. Much later in the 

project I realized that the automation aspect of having the device oscillate on the driveway was a coding 

intensive task so it was discontinued. Also, the cable guided shovel required a “snow flipping device” 

that does the job of transferring the shoveled snow off the edges of the driveway, however the design 

and mechanics of that part was not pursued due to time constraints. Thus this report concentrates 

mainly on the snow moving part of the assembly. 

 As one goes through this report it is important to remember that it is laid out in a chronological 

order, so as calculations are being done, the designs, clearing path, method of implementation, etc. 

undergo changes until the “Testing Setup” section. Many of the calculations were done in inches during 

setup therefore you might notice a lot of non-rounded SI approximations. An acronym that you will 

come across in later sections is CGA which is short for Cord Gripping Assembly. In the beginning of this 

project I referred to the Shaft Collars as pulleys because initial designs were drafted in that manner. 

However during prototyping, VEX parts were used for implementing the CGA and shaft collars were used 

instead of pulleys.      
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Chapter 2: Identification of Need 
 

The winter of 2014-2015 was a particularly harsh winter with Worcester City regaining the title 

of Snowiest City in America (Telegram-Staff). Worcester received about 115.6 inches of snow( ~ 9.6 

feet). This translates to a lot of energy, time, and safety risks taken to clear snow from roads and 

buildings. For example, the cost of clearing driveways alone in the 2014-2015 season would have 

reached about $700 at $35 per service for 20 snow days.  

Snow blowers are effective, but heavy and cumbersome to be used easily by everyone. If there 

is a strong wind, the snow that is being blown ends up in the user’s face, which can be very 

uncomfortable. There are also maintenance costs (spark plug, oil, tires) and operating costs (gas, 

battery). They are expensive and wear being exposed to the elements and varying temperatures. Snow 

ploughs are fast and sometimes the only option in case of heavy snow fall. Each cleaning service is about 

$35 dollars and if there are 20 snow days, that is, a total of $700.00 spent on snow removal for one 

winter season. For many middle income households, this is just another unnecessary burden on top of 

other bills. 

Shoveling by hand is very hard especially with wet snow. It is really backbreaking work that is 

time consuming, and can only be done by people who are physically capable of doing so.  Others would 

have to call a cleaning service.  

Finally, road salt is effective only for light snowfalls, not for heavy storms.  Also, they are known to have 

bad effects on waterbodies and vegetation.  

Thus the need boiled down to a device that can keep snow from preventing snow from 

accumulating on asphalt surfaces, in an energy efficient manner, that does not use road salt or melting 

solutions.  
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Chapter 3: Background Research 
 

Methods of snow removal other than shoveling, ploughing, snow blowing, water spraying or salting are 

presented below. 

1) Electric Radiant Heat Mats and Wires by Warmly Yours 

 

  

 

 

 

 

 

 

The wires are laid under concrete, asphalt, or pavers and heat is conducted through the wires to the 

surface of the material. As expected this is method takes long to conduct heat to the surface so its not a 

instant solution. The standing water can cause a lot of water damage on the pavement which can be 

harmful. 

Cost: more than $5000.00 for 33’X 18’ driveway wiring (for heating circuit parts only, does not include 

pavers, asphalt or concrete and labor costs. Grand total might be $10,000) (WarmlyYours, 2015) 

 

 

 

 

 

 

 

 

Figure 1 - Heating Elements By Warmly Yours 
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2) Carpeted Snow melting heat mats by HeatTrak 

 

 

 

 

 

 

 

 

 

 

This is a mat that is laid on top of any given surface to melt the snow.  There is no installation required. 

The mats are made of an electrically operated heating element placed between two surfaces of non-slip 

rubber. 

Cost: $10,700 for a 33’X18’ area mats (cannot be used as a driveway mat, because it is stated on the 

website that: We do not recommend the mats for parking lots or any other driveway that has a lot of 

vehicular traffic) (HeatTrak, 2015) 

 

 

 

 

 

 

 

 

 

 

Figure 2 - Heating Mats by HeatTrak 
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3) Japanese Road Sprinkler Systems (Tajima, Japan): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 -Road Snow Melting System Tajima 
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Water is sprayed on the road to melt the falling snowflakes (perspectivedetective, 2009); however this 

system cannot be applied in New England, because this system is meant for warmer climates. Whereas 

if it were used in New England, ice would form once the temperature falls. The average low temperature 

rarely goes below freezing in Tajima, whereas in Massachusetts, below freezing temperatures in the 

winter months is a normal occurrence  

- Weather data Tajima 

 http://www.worldweatheronline.com/v2/weather-averages.aspx?q=TJH&tp=1 

 

- Weather data Massachusetts: 

http://www.usclimatedata.com/climate/worcester/massachusetts/united-

states/usma0502/2015/1 

 

Apart from the aforementioned solution there were no intrinsically different designs in the market 

or in any existing patents. This meant that the existing solutions would not be energy efficient, cheap, 

easily operable, or environmentally safe. 

 Therefore a completely new design based on the concept of keeping the snow from settling on 

the ground in the first place was pursued. Two major areas of research that helped this endeavor was 

the ice resistant nanomaterial panels and air flow. The nanomaterial panels were based on the design of 

the slippery sides of the pitcher plant. Liquids surrounding the nanostructures on the side of the plant 

create a slippery surface that helped the plant obtain its food. This idea was being pursued at MIT who 

had engineered a superhyrdophobic surface which repels water (Bullis, 2014).  Although this idea was 

very interesting, the practicality of obtaining and paying for such expensive panels that are not widely 

marketed was simply out of the budget allotted for this project. 

 Therefore it was decided that it would be best to proceed with the air flow design. This design 

involved the use of a strong laminar airflow over a driveway surface. The laminar air flow would be 

blown along one side of the driveway. As the layer of air flowed across the width of the driveway, it 

would act as a conveyor belt which takes the falling snow and deposits it on the other side of the 

driveway. This requires then that there be some allotted area on at least one side of the driveway that 

the snow can be transferred to. The following section details the preliminary designs. 

 

    

 

http://www.worldweatheronline.com/v2/weather-averages.aspx?q=TJH&tp=1
http://www.usclimatedata.com/climate/worcester/massachusetts/united-states/usma0502/2015/1
http://www.usclimatedata.com/climate/worcester/massachusetts/united-states/usma0502/2015/1
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Chapter 4: Preliminary Designs  

4.1 Design 1 – Blower with Axial Fans 
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4.2 Design 2 – Blower with Centrifugal Fan 
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4.3 Design 3 – Blower on Tent With Axial Fans 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



16 
 

4.4 Design 4 – Cyclical Flow Unit With Underground Blower 
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4.5 Design 5 – Cyclical Flow Above Ground Unit 
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Brush/Shovel Instead of Air: 

Other than the possible designs shown above, I had thought of another one which utilizes a brush/plow that pushes the snow 

to one side (detailed in Designs 6 & 7 below). Once the snow reaches the other side, the brushes will push it onto the panel, and the 

brushes will return to their original position. This panel will turn about an axis and will be equipped with a mechanism that allows it 

to launch the snow into an area away from the driveway. There is no air flow involved. However, the design criteria/ performance 

specifications from before still apply.    

Note: In Design 7, the exact mechanism for the snow flipping panel/flap wasn’t detailed in the drawing since I don’t know much 

about that mechanism yet. I think it could be simple as an electric motor turning a gear on the panel’s turning axis. (The turning 

motion will be an impulse force, which will be able to launch the snow.)  

Other mechanisms that might work: Spring loaded release, linear escapement mechanism, air bag underneath the turning 

panel/flap.       
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4.6 Design 6 – Brush/Shovel Blade With Heated Snow Gutter 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DESIGN 6 
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4.7 Design 7 – Brush/Shovel Blade With Snow Launching Panel 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DESIGN 7 



22 
 

Design Decision Matrix 
(Norton, 2006) 

Cost for 
Parts  
and Mfg. 

Cost for 
Installation 

Ease of 
Disassembling 
and Storage 
for Summer  

Energy  
Consumption 

Average Rank 

Design 1  
(Axial Fans- Ground) 
 

3 1 1 2 1.75 3 

Design 2 
(Centrifugal Blower- Ground) 
 

2 1 1.5 1.5 1.50 2 

Design 3 
(Axial Fans on Tent) 
 

4.5 1.5 2.5 1 2.38 6 

Design 4 
(Cyclical Flow- Centrifugal 
-Underground) 
 

5 5 1 1.5 3.13 7 

Design 5 
(Cyclical Flow- Centrifugal 
-Above Ground) 
 

4 1.5 1.5 1.5 2.13 5 

Design 6 
(Brush W/ Heated Snow Drain) 
 

2 3 2 0.25 1.81 4 

Design 7 
(Brush W/ Snow Launching Panel/Flap) 
 

2.5 1 1 0.5 1.25 1 
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4.8 Design Decision Matrix Results and Designing Actuators for Design 7 Concept 
 

In this matrix, the winning design is the one with the lowest score. That happened to be Design 

7, the “Brush/ Shovel Blade with Snow Launching Panel”. In second place was Design 2 the “Blower with 

Centrifugal Fan”. 

As mentioned earlier, the Design Decision Matrix was one of the initial filtering steps that was 

used to narrow down to a specific design. These design specifications were mostly qualitative in nature 

such as cost, storage and installation difficulty. Those parameters could not hold up to empirical 

scrutiny, which is why in the following sections, new designs for actuators for Design 7 will be presented. 

This will be done while simultaneously performing force analyses on them. It was decided that the 

laminar air flow concept would not be furthered as the fans were very expensive and testing would 

require multiple ones since effective use involved blowing air into a wide open space and not some 

closed system.   

 The actuator designs in the following sections improve upon the concepts introduced in Designs 

6 and 7. The main aim for the force analysis was to be to able find where maximum forces occurred in 

the actuators and what their magnitudes would be. This is because the maximum force within the 

actuators directly correlates with the parameters for support forces, installation difficulty and structural 

weaknesses. And comments could be made about those parameters empirically, based on the idea that 

the lower the max force within the system is, the lesser the values for those parameters are going to be. 

This, along with an energy analysis was done for each design.  
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4.8.1 Energy Calculations for Design 2 

 Note: Output opening Dimensions: 5.48m X 0.03m 
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4.8.2 Energy Calculations for Brush Device 
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4.9 Design 7.1 – Spring Launcher Actuator   

 

 

Free Body Diagram 
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Snow Weight 

 
This is the horizontal distance (width of driveway) 

 For slushy snow 

 

 

 

 

 

 

Shovel Weight  

Material : Alloy Steel, mass calculated by SolidWorks 
Other Weights 

  

  

Total Normal Force 

 

Friction between Shovel and Ground 

 

Kinetic friction between steel and concrete  

Friction factor obtained from 

(http://www.academia.edu/5307385/WTC2005-

63579_FRICTION_BETWEEN_STEEL_AND_ASPHALT_WITHO

UT_GOUGING_UNDER_REPRESENTATIVE_IMPACT_PRESSU

RES)  

 

Work done to overcome shovel friction  

ddriveway 4.57m

snow 800
kg

m
3



hsnow 2cm

Widthshovel 0.6m

Areaclear Widthshovel ddriveway 2.742m
2



Vsnow Areaclear hsnow  0.055m
3



Msnow snow Vsnow 43.872kg

Wsnow Msnow g 430.237N

Mshovel 9.67kg Mother 2kg

Wshovel 9.67kg g 94.83N Wother Mother g 19.613N

Fnormal Wshovel Wother 114.444N

Ns Wshovel Wother 114.444N

s 0.75

Fsg s Ns 85.833N

Wsg Fsg ddriveway 392.255J
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Energy  

Assuming that snow travels in a parabolic form 

Let us take this equation 

 

 

 

Assuming the above graph is the trajectory for the snow. 

Launch Angle 

Height of vertex in meters  

Range in meters  

Launch Angle  

Launch Velocity 

 

x 0 0.1 10

y x( ) 4x x
2



0 2 4 6
0

2

4

6

y x( )

x

S 4m

r 4m

launch atan
4S

r









75.964deg

vf
r g

sin 2launch 
9.13

m

s

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Energy for Launching Snow in Air 

 

 

Total Energy for One Launch 

Total Energy = Energy for Launching snow in Air + Work done to overcome frictional energy 

 

This total energy should equal to the PE stored in the spring 

Choosing Electric Motor  

 where τ  is torque and n is the rpm 

30 seconds is the total time we are allotting 

the motor to fully compress the spring  
From before we have   

if we assumed that the shaft had an rpm of 60  

 

Torque of Motor has to be  

M Msnow Mshovel Mother 55.542kg

KElaunch
1

2








M vf

2
 2.315 10

3
 J

E KElaunch Wsg 2.707 10
3

 J

P
 2 n( )

60s

E P
E

30s
90.238W

n 60

P
 2 n( )

60s
solve  14.361874226081265186W s 14.362N m

 14.4N m
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Spring Specifications 

For these sections, all information and equations are obtained from Chapter 13 (Spring Design) 

of Norton Machine Design. 

We know that W=F*d, therefore we obtain, F from the total energy 

 

 where k is the spring constant, and y is the deflection 

 

 spring deflection, y is equal to length of the driveway, since that is how far the spring 

need to expand to clear snow off driveway 

Spring constant  

Diameter of Coils 
- Preferred range of C is from 4 to 12, I will choose 8 (Norton, Spring Design 

 

- Assuming d = 4mm 

 

  

Therefore, coil diameter D equals  

Determining Spring Material 

The spring material that we are analyzing is 228 ASTM/SAE 1085, Music Wire, because it is the 

toughest, most widely used material for small coil springs. It has the highest tensile and fatigue 

strength of all spring wire. (Norton Machine Design) 

F
E

ddriveway

592.374N

Fspring k y

Fspring F 592.374N

y ddriveway

k
Fspring

y
129.622

kg

s
2



C
D

d

C 8 d 0.004m

D C d 0.032m
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Length of Spring 

F - force on the spring 

D - coil diameter 

N.t - number of coils 

d - wire diameter 

G - shear modulus 

  

 

    

 

 

For squared ground ends 

Number of active coils  

Shut Length of Spring  

Cost of Spring 

Total Cost: $6.43 based on http://www.acxesspring.com/spring-calculator.html 

Max Force within System 

 

This Force occurs in the Spring when it is fully loaded. 

y
8 F D

3
 Na

d
4

G

F Fspring 592.374N D 0.032m d 0.004m G 80 10
9


N

m
2



y
8 F D

3
 Nt

d
4

G

solve Nt 602.71248569289890984 602.712

Nt 391

Na Nt 2 389

Ls Na d 1.556m

Fmax F 592.374N
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4.10 Design 7.2 – Scissor Arm Actuator 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Free Body Diagram 
 

Section View 
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In the Above FBD's please assume that there are roller balls at the base of points B and D. 

This is to allow screw jack to act as if were in the upright position. 
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Snow Weight 

 

 

 

 

 

 

 

Shovel Weight  

Material : Alloy Steel, mass calculated by SolidWorks 
Other Weights 

  

  

Friction between Shovel and Ground 

 

Kinetic friction between steel and concrete  

Friction factor obtained from 

(http://www.academia.edu/5307385/WTC2005-

63579_FRICTION_BETWEEN_STEEL_AND_ASPHALT_WITHO

UT_GOUGING_UNDER_REPRESENTATIVE_IMPACT_PRESSU

RES)  

 

Work done to overcome shovel friction  

Friction Between Snow and Ground 

 

  

ddriveway 4.57m

snow 800
kg

m
3



hsnow 2cm

Areasnow 0.6m 1 m 0.6m
2



Vs Areasnow hsnow  0.012m
3



Msnow snow Vs 9.6kg

Wsnow Msnow g 94.144N

Mshovel 9.67kg Mother 2kg

Wshovel 9.67kg g 94.83N Wother Mother g 19.613N

Ns Wshovel Wother 114.444N

s 0.75

Fsg s Ns 85.833N

Wsg Fsg ddriveway 392.255J

s 0.50

Fs s Wsnow 47.072N Ws Fs ddriveway 215.119J
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Determining Screw Friction 

Where N is the weight of the screw  

Where  and  is the coefficient of friction 

in the major and collar diameter 

  

 

 

Determining Components of Force at Point D 

  

  

On calculation we get  

 

 

 

N 3kg g 29.42N

 c  0.12 c 0.15

Fscrewfric  N c N 7.943N

F y 0 Fscrewfric FD cos ( ) 0

F x 0 Fsg Fsnow FD sin ( ) 0

 87deg

FD 202.30N

FDx FD sin ( ) 5.943 10
3

 N

FDy FD cos ( ) 311.486N
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Determine Torque Required to Start the Scissors  

Assume following dimensions  

single square thread screw 

 major diameter 

 minor diameter 

 pitch, distance between center of threads 

 friction of major diameter 

 friction of minor diameter  

 mean diameter 

Instead of W put in Fscrew 

  

Power Required for Overcoming Friction  

 

Work   

Power   

Obtaining Power Rating from Torque Equation 

 where τ  is torque and n is the rpm 

 

Total Power Rating for Motor 

 

d 22mm

dc 14mm

p 8mm

fc 0.12

f 0.15

dm d
p

2









 0.018m

Torque 
Fscrewfric dm

2









f  dm p

 dm f p










Fscrewfric fc dc

2









 9.504 10
4

 N m

Frictot Fsg Fscrewfric Fs 140.848N

W Frictot ddriveway 643.675J

Pfric
W

30s
21.456W

n 60

Ptorque
 2 n( )

60s
0.176W

Ptot Pfric Ptorque 21.632W
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Stress Within Screw 

For this Statically Indeterminate System, we will use Principle of Virtual Work 

Assuming that each Linkage has a length, L 

 based on height of Shovel Head 

 in radians (10 degrees) 

 

 

Assuming: 

 

1)  Arbitrary infinitesimal change in the position of the Shovel Head, δ .s 

2) Change in Energy of System = 0 

 

 

 Therefore 

 

 

 

 

Stress within Screw: 

 

Taking material as Cast Iron we see the Young's Modulus is 10^9 Pa or 1 GPa 

which is well over the max stress for the scissor device  

L 0.15m

 .17453

x 2 L sin ( )

y L cos ( )

x 2 L cos ( ) 

y L sin ( ) 

U 0

U Ftot x F y

U Wtot 2 L cos ( ) ( ) F L sin ( ) ( )

Fscrew 2cot ( ) W 7.301m kN

Areascrew
1

4









 dc
2





 1.539 10

4
 m

2



Fscrew

Areascrew

47.429m MPa
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Max Force in System 

 

The Max Force occurs at F.D 

Fmax FDx 5.943 10
3

 N
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4.11 Design 7.4 - Telescopic Extender Arm Actuator   

 

In this design the telescopic arm will be using air as the "hydraulic fluid" 
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Free Body Diagram 

 

- There are four compartments to the extending arm 

- Each of those is a separate cylinder/piston 

- The blue tubes carry the pressurized air into the cylinders 
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   7.700
kg

m
3



Max Shear Locations 
 

Choosing a Material for the Piston Cylinders 

I will be using the Chromium- Nickel Stainless Stell (ASTM A240), because it is used in heavy 

duty hydraulic cylinder construction and offers superior corrosion resistance for greater 

durability in harsh environments as given at this website:  

 

http://www.aksteel.com/pdf/markets_products/stainless/austenitic/316_316l_data_sheet.pdf 
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Dimensions of the Arm 

When extended the length of the arm has to equal the length of the driveway, 4.57 m 

 

Based on the FBD arrangement, the lengths and areas of the cylinders are as follows for a 4.57 m driveway 

Although the following may look confusing, it is just playing around with ratios to find the right 

dimensions 

 
 

 

 
 

 

 

 

Calculating Volume of cylinders, given that the walls have a 1.5 cm thickness 

 

 

 

 

Weight of Each Cylinder 

  

  

Le 4.57m

La 1.492m
Aa

La

3









2

0.247m
2



Lb 1.260m

Lc 1.061m
Ab

Lb

3









2

0.176m
2



Ld 0.756m

Ac

Lc

3









2

0.125m
2



Ad

Ld

3









2

0.064m
2



Va 3cm Aa 2cm La
2





 Ab 1.5 cm  0.049m

3


Vb 3cm Ab 2cm Lb
2





 Ac 1.5 cm  0.035m

3


Vc 3cm Ac 2cm Lc
2





 Ad 1.5 cm  0.025m

3


Vd 3cm Ad 2cm Ld
2





 0.013m

3


Wa Va  g 3.722N Wc Vc  g 1.912N

Wb Vb  g 2.656N Wd Vd  g 1.007N
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Choosing Bearing Type 

- We will look at the max shear the cylinder has to withstand in order to determine the right type of 

bearing for this application. We are choosing Cylinder A as it supports the weight of all the rest of 

the Telescopic Arm.  

- In this we will assume that the moment on the arm is 0 

Snow Weight 

 This is the horizontal distance (width of driveway) 

For slushy snow  

 

 

 

 

 

 

Shovel  

Material : Alloy Steel, mass calculated by SolidWorks 
Other Weights 

  

  

 
Max Shear Force 

- Since the telescopic arm is a square shape, a normal roller bearing wouldn't fit this application 

- So we will be using ball transfer (image below) 

- The make is SKF Type 3000, which can bear loads of up to 245 N 

- http://www.skf.com/binary/30-97863/Ball-Transfer-units.pdf 

ddriveway 4.57m

snow 800
kg

m
3



hsnow 2cm

Widthshovel 0.6m

Areaclear Widthshovel ddriveway 2.742m
2



Vsnow Areaclear hsnow  0.055m
3



Msnow snow Vsnow 43.872kg

Wsnow Msnow g 430.237N

Mshovel 9.67kg Mother 2kg

Wshovel 9.67kg g 94.83N Wother Mother g 19.613N

Vmax Wb Wc Wd Wshovel Wother 120.018N
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Bearing Chosen: SKF Ball Transfer, Type 3000, max load of 245 N 

Number of Ball Bearings to be Used 

Cylinder A will need to support V.max, which is   

- And since the rest of the cylinders will be supporting less than we don't need to calculate the values for 

those  

- It would seem one of the bearings would be more than enough for supporting each cylinder, but 

since the next cylinder inside it wouldn't be balanced, it is necessary to have 4 on the top and 

bottom and 2 on either side  

- We would need a total of 36 ball transfers 

Total Number of Ball Transfers: 36 

Price For Ball Transfers 

Using the price of a similar SKF Ball transfer @ $41.46 per piece we calculated the price to be: 

 

http://www.mscdirect.com/product/details/06377493 

Vmax 120.018N

Pball $1 493
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Bearing Fricition 
 

 

http://www.irusa.com.br/catalogos/Bosch%20-%20Rexroth/Esferas%20Transferidoras.pdf 

Assuming the highest coeffecient of friction of   

Normal force at Cylinder A 

Max Normal at A   

 

Normal force at Cylinder B 

Max Normal at B  

 

 0.008

Na Vmax

Fa  Na 0.96N

Nb Wc Wd Wshovel Wother 117.362N

Fb  Nb 0.939N
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Normal force at Cylinder C 

Max Normal at C  

 

Friction between Shovel and Ground 

 

Kinetic Friciton between steel and concrete  

Friction factor obtained from 

(http://www.academia.edu/5307385/WTC2005-

63579_FRICTION_BETWEEN_STEEL_AND_ASPHALT_WITHO

UT_GOUGING_UNDER_REPRESENTATIVE_IMPACT_PRESSU

RES)  

 

Work done to overcome shovel friction  

Friction Between Snow and Ground 

 

  

Total Friction Force 

 

Air Pressure Needed for 1 Sweep 

The air Pressure needed at each cylinder to be able to overcome Friction 

  

Nc Wd Wshovel Wother 115.451N

Fc  Nc 0.924N

Ns Wshovel Wother 114.444N

s 0.75

Fsg s Ns 85.833N

Wsg Fsg ddriveway 392.255J

s 0.50

Fs s Wsnow 215.119N Ws Fs ddriveway 983.092J

Ftot Fa Fb Fc Fsg Fs 303.774N

Atot Ab Ac Ad 0.365m
2

 Ptot

Ftot

Atot

832.294Pa
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The Max Force is present throughout the arm when it is fully extended. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Work done by Air on Cylinders 

Volume for expansion  

 we have   

Power Rating for Air Compressor 

 

A commercially available air compressor of 150 W is sufficient for this application.   

Price will be about $50- $150 

Total Price with ball bearings might cost about $1600.00  

Max Force in System 

 

V Aa La  Ab Lb  Ac Lc  0.724m
3



W Ptot V

0

V

V
1

V






d











 W Ptot V ln 0.724( ) 194.613J

P
W

10s
19.461W

Fmax Ftot 303.774N
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4.12 Design 7.5.3 - Cable Guided Shovel Actuator   

 

Free Body Diagram 
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 Z-Y Plane View (Bottom View) 

- In this design the cable acts like a track. There are two holes on either side, and a double pulley 

tensioner allows the shovel to pull itself to either side of the driveway.  

 

- The cable is in tension by being anchored at either side of the driveway.  
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Snow Weight 

 This is the horizontal distance (width of driveway) 

For slushy snow  

 

 

 

 

 

 

Shovel Weight  

Material : Alloy Steel, mass calculated by SolidWorks 
Other Weights 

  

  

Friction between Shovel and Ground 

 

Kinetic friction between steel and concrete  

Friction factor obtained from 

(http://www.academia.edu/5307385/WTC2005-

63579_FRICTION_BETWEEN_STEEL_AND_ASPHALT_WITHO

UT_GOUGING_UNDER_REPRESENTATIVE_IMPACT_PRESSU

RES)  

 

Work done to overcome shovel friction  

ddriveway 4.57m

snow 800
kg

m
3



hsnow 2cm

Widthshovel 0.6m

Areaclear Widthshovel ddriveway 2.742m
2



Vsnow Areaclear hsnow  0.055m
3



Msnow snow Vsnow 43.872kg

Wsnow Msnow g 430.237N

Mshovel 9.67kg Mother 2kg

Wshovel 9.67kg g 94.83N Wother Mother g 19.613N

Ns Wshovel Wother 114.444N

s 0.75

Fsg s Ns 85.833N

Wsg Fsg ddriveway 392.255J
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Friction Force On Pulley/ Cable 

For this design we will take the material of the pulley and the cable to be rubber. I chose rubber 

because the coefficient of friction between rubber and rubber is 1.15, which is very high.   

 

Larger μ  helps maintain contact between the pulley and the cable so that a smaller normal force 

required to maintain the same amount of traction.   

 

Assuming a Normal Force at points, E,F, G and H onto the cable,  

 

Friction force on Cable,  

Work done to overcome friction between pulley and cable 

(It's 2*F.c because there are two cables) 

 

Friction Between Snow and Ground 

 

  

Choosing Electric Motor  
 

Total Work required to overcome Friction, 

 where τ  is torque and n is the rpm 

30 seconds is the total time we are allotting 

the motor to fully compress the spring   

if we assumed that the shaft had an rpm of 60  

 

Torque of Motor has to be  

 1.15

Npc 15N

Fpc  Npc 17.25N

Wpc 2Fpc ddriveway 157.665J

s 0.50

Fs s Wsnow 215.119N Ws Fs ddriveway 983.092J

W Wsg Wpc Ws 1.533 10
3

 J

P
 2 n( )

60s

P
W

30s
51.1W

n 60

P
 2 n( )

60s
solve  8.1328854973582022585W s 8.133N m

 8.1N m
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Moment 

- In the first FBD there is a net moment that occurs as a result of F.cable on the top and F.cable and 

F.snow on the bottom 

 

- To counteract this, it was discussed that the weight in the pulley apparatus region should be 

increased, which would cause counteractive moment.   

Max Force in System 

The Max Force gets transferred through the cables as the motor tries to overcome the friction forces.   

 Fmax Fsg 2 Fpc 120.333N
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Max Force Within System

Spring Loaded Launcher

 (Chameleon Design)

593 N

Scissor Arms w/ Screw Jack

5943 N

Telescopic Arms

304 N

Rope Pulling Shovel

120.33 N

4.13 Max Force Within Actuator  
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After the calculations, it turned out that the “Rope Pulling Shovel” or Cable Guided Shovel- 

Design (7.5.3) was the best one, in terms of internal forces. It is also the second cheapest of the 

designs, the first being the Spring Launcher. The following sections will be about the prototype 

and its testing. 
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Chapter 5: Materials for Cable Guided 

Shovel Device 
 

 Some of the materials that were required for building this device were bought and some were 

acquired from the robotics lab in Atwater Kent and some I had at home. Below is a list of the items that 

were used to build the device and its testing setup. 

1) Heavy Duty Adjustable Rolling Snow Pusher With 6" Rubber Wheels  ($59.99) 

 

 

 

 

 

 

 

 

 

 

2) Chemical-Resistant Polyurethane Cord 1/4" Diameter ($18.50 for 25ft) 

 

 

 

 

 

 

 

Figure 4 - Shovel Blade 

Figure 5 - Polyurethane Cord 
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3) Shaft Collar, 16 Pack ($7.99) 

 

 

 

 

 

 

 

 

 

4) Shaft Coupler, 5 Pack ($4.99) 

 

 

 

 

 

 

 

 

5) Gusset Pack ($7.49) 

 

 

 

 

 

Figure 6 - Shaft Collars 

Figure 7 - Shaft Couplers 

Figure 8 - Gussets 
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6) Drive Shaft Pack ($5.49) 

 

 

 

 

 

 

7) Bearing Flat, 10 pack ($4.99) 

 

 

 

 

 

 

8) Aluminum C-Channel 1x3x1x35, 8 pack ($37.99) 

 

 

 

 

 

 

 

 

 

Figure 9 - Drive Shafts 

Figure 10 - Plastic Bearings 

Figure 11 - C Channel 
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9) Nut 8-32 Hex, 100 pack ($2.99) 

 

 

 

 

 

 

10) Screw 8-32 x 0.750", 100 pack ($9.99) 

 

 

 

 

 

 

 

 

 

11) 12V DC Motor 251rpm (2 Motors) GB37Y3530-12V-251R. ($29.00 for 1-> $58.00 total) 

 

 

 

 

 

 

 

Figure 12 - Nut 

Figure 13 - Screw 

Figure 14 - Motor 
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12) 18-2 Silver Stranded Lamp Wire ($3.70) 

  

  

 

 

13) Eyebolt, 1/2-13, 1In, Turned Wire ($1.52 for 4-> $6.08) 

 

Figure 16 - Eye Bolt 

14) White Wood Studs ($2.49 for 2-> $4.98) 

 

 

 

 

 

 

 

 

Total Cost: $230.18 

 

 

Figure 15 - Co-Axial Power Cord 

Figure 17 - Wooden Studs 
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 

Chapter 6: Testing Setup 
 

6.1 Cords 

One of the main unaddressed elements in the design process was the fixture method for the cords. The 

initial design was as shown below:  

 

 

 

However three major changes were made to this:  

1) The area where the edges of the holes on the shovel blade meet the polyurethane cord, high 

frictional forces were developing. This was not only an added opposing force on the motors but 

also the friction would wear away the cord, making it more likely to fail under high tension. 

Therefore during setup it was decided that the cord would not be fixed at an angle to the floor 

surface but parallel to it.  

An added advantage was that the cord gripping assembly now received the cord at one set 

position as opposed to varying angles depending on the position of the device relative to the 

fixed ends of the cord. 

2) The cord ended up being tensioned to 182 N, 76 N higher than original calculations (calculations 

follow). This was necessary because the diameter of the cord was 6.35 mm, whereas there was 

only a gap of 2mm at the CGA. The stretching was required to decrease the diameter of the cord 

down to 3mm. 

 

 

 

 

 

 

 

  

Driveway Surface 

Cord 

Shovel Blade 

Figure 19 - Cord Gripping Assembly (CGA), both shafts go through a set of 5 Shaft Collars (Pulleys) 

2mm width 

Figure 18 - Initial Cord Setup 
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Figure 20 - Right CGA with Tensioned Polyurethane Cord Running Through 

Figure 21 - Visible Difference of Tensioned Cord 



64 
 

3) And because of this increased tension force, fixture methods based on stakes in the ground 

were not going to be enough to hold the cord rigidly. Therefore the whole fixture methods was 

implemented as such on concrete floors with the help of staircase support frames: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22 - Making Use of Stairwell Support for Experimental Setup 

Figure 23 - Back View of Setup 



65 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 As shown above, two eyebolts were drilled into a wood stud which then was placed behind the 

staircase support frame, with one stud at each end of the clearing path.  The polyurethane cord was 

then looped through the device, tied to both studs and tightened until there was an optimal gripping 

force as well as easy movement at the CGA.    

 

 

 

 

 

 

 

 

Figure 24 - Eyebolts Used to Connect Cord to Wooden Studs 
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6.1.1 Calculations For Actual Tension in Cord (Device off) 

 

Given: 

1) The initial and final lengths of the cord are 𝑙𝑖  and 𝑙𝑓 , respectively 

 

2) The elastic modulus of the Polyurethane cord, 𝐸1 (Engineering-Toolbox, 2016a) 

 

3) Diameter of the stretched cord, 𝑑  

 

 

 

 

 

 

Solving for 𝐹 we get the tension within the cord: 

 

 

 

 

 

F 
F

A
solve F 181.81436458167089931Pa m

2
 181.814N

   

 

 

 

 

 

lf 2.4606m li 1.2128m l lf li 1.248m

E 0.025 GPa 25 MPa


F

A

 E


l

li









solve  2.5721470976253298153e7Pa 25.721 MPa

d 3mm 3 10
3

 m

A
 d

2
 
4

7.069 10
6

 m
2


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6.1.2 Calculations for Depth of Indentation of Cord in CGA for Generating Appropriate Friction 

 

 Since the cord needed to be gripped between the Shaft Collars to generate sufficient friction, we 

needed to know how much the cord need to be compressed by the shaft collars when it is pulled 

through the CGA. Since this was a contact mechanics problem, we used the depth of indentation 

formula based on the contact area between a sphere and plane.  

Given: 

1) Opposing Frictional Force, 𝐹𝑓  

 

2) Radius of the Cord, 𝑑 

 

3) Elastic Modulus of the Polyurethane and Shaft Collar, 𝐸1 and 𝐸2 

 

4) Poisson’s Ratio of Polyurethane and Shaft Collar, 𝑣1
2

 and 𝑣1
2

 (Boyce, 2003) and 

(Engineering-Toolbox, 2016b) 
 

The Depth of Indentation is given by the formula:  

𝑑 = (
9𝐹2

16𝑅𝐸`2
)

1/3

 

(Wikipedia-Contributors, 2016) 

The Adjusted Elastic Modulus is Given by: 

1

𝐸`
=
1 − 𝑣1

2

𝐸1
+
1 − 𝑣2

2

𝐸2
 

 

 

The frictional force bore by a single shaft (there are 4 shafts, with shaft collars on them, 2 shafts in each 

CGA, 2 CGA’s on either side of the shovel blade, please refer to Figures 19 and 20) 

 

 

Ff 158.65N

 

 Fsingle

Ff

4
39.663 N
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Elastic Moduli and Poisson’s Ratios of Polyurethane (𝐸1, 𝑣1) and Steel (𝐸2, 𝑣2) 

 

Radius of the Polyurethane Cord 

 

 

Adjusted Elastic Modulus 

 

Solving Equation for Depth of Indentation by one Collar 

 

 

 

 

Total Compression between 2 Collars 

 

 

Thus, the optimal compression of the cord would have been about 1.43mm. This was 0.43 mm 

higher than the actual achieved compression of 1mm. The initially calculated opposing friction force of 

158 N was based on much heavier device than the one finally assembled. So the compression was 

probably much higher than required. As for the tension in the cord, it needed to be tensioned that high 

to stretch the 6.35 mm diameter cord to about 3mm so that it could fit between the 2mm gap of collars 

in the CGA, it’s not that the tensioning actually had to be that high.  

 

 

  

 
 

 

 

 

 

E1 25MPa E2 200MPa

v2 0.28v1 0.49

Rcord 0.003m

E'
1

E'

1 v1
2

 
E1

1 v2
2

 
E2

 solve E' 28.568163638441320992MPa

d
9 Fsingle

2


16 Rcord E'
2













1

3

0.712 mm

dtot d 2 1.425 mm
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6.2 Electrical  

 The electrical wiring for this device is as shown below: 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 It is important to note that the polarity of the connecting wires of the motors are switched. This 

is because they are placed on the opposite sides of the CGA so that if the device is to move forward, the 

motor on the left needs to turn in a counterclockwise manner whereas the motor on the right, 

clockwise.  

Figure 25 - Wiring of Motors in Parallel to Power Supply 
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 The motors (DF Robot GB37Y3530, 251 RPM) were powered using a 12V AC adapter as per 

power rating requirements for that model. They were wired in a parallel setup because the motors were 

rated to run at 250 RPM at 12V which was too fast for this application. Wiring them in parallel helped to 

reduce the RPM. Under load, the motors had an RPM of about 40. Not only was the parallel wiring 

responsible for lowering the RPM but there were also significant friction forces at the plastic bearings as 

a result of the 3mm cord pushing against the shafts which rubbed on the plastic bearings increasing 

rotational friction. The calculations for the RPM under load are shown below and tabulated in Table 1. 

6.2.1 Calculations for Shaft RPM Under Load 

 

Given: 

1) Diameter and circumference of the shaft collars, 𝑑 and 𝑐 respectively  

2) Length of the clearing path, 𝑙 

3) Average time taken for forward cycle, 𝑡 

Since the motor shaft goes through the shaft collars, the diameter of the collars was needed 

because the collars were in direct contact with the cord. First the diameter and circumference of the 

collar is calculated. 

  

 

The length of the clearing path is used to determine the number of revolutions in one cycle. 

 

 

 

Number of revolutions are divided by the average time it takes for one forward cycle, then the RPM is 

found. 

 

Also, a simple “direction controller” was made so that the user 

could control the direction of the device, forward and back by switching the 

polarity. It is controlled by taking the positive and neutral wires from the 

12V AC adapter and touching the wires on the 

controller to go in one direction and reversing the 

  

 

 

 

 

 

d 11mm 0.011 m c  d 0.035 m

l 0.9525 m

revs
l

c
27.563

t 42.39 s

revs

t
0.65

1

s


RPM
revs

t









60 39.013
1

s

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wires to go in the opposite direction. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

     Figure 27 - 12 V AC Adapter 

 

Figure 26 - Direction Controller 
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6.3 Clearing Path 
The path that was delineated to be cleared was done using green tape as shown below. Initially 

the clearing path was 67.31cm X 178.43cm, but the dimensions were changed (length only) to 67.31cm 

X 95.25cm to facilitate clean up between trials thus reducing the amount of time for each trial. That’s 

why there are two rectangular boxes on the clearing path. Therefore only the first box was the one that 

was used for testing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28 - Mulch Spread into the Actual Testing Box 
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6.4 Mulch as Snow Substitute 
 

 The first prototype was finished in April, however the snows had stopped by that time. 

Therefore testing required the use of some other form of material which was similar to snow; wood 

mulch was chosen as this material. Dry wood mulch has a density similar to that of wind packed snow, 

380 kg/m^3 (Aqua-Scale, 2016). With mulch, multiple tests could be conducted on the path just by 

rearranging the mulch back onto the path after each trial. Also the present prototype necessitated the 

use of something other than snow, because of the possibility of a shorting due to the infiltration of 

water into the wiring or the motors was very likely. 

 

 

   

 

 

 

 

 

 

 

 

 6200 ml (2.356 kg) of mulch were spread at a thickness of 9mm ± 2mm onto the clearing path. 

The mulch had to be carefully spread within the dimensions of the clearing path marked by the green 

tape.  It had to be spread evenly onto the entire surface so that there was a uniform thickness that 

simulates snow accumulation. After the mulch was carefully placed, the device was then powered to 

move forward till it reached, then reversed till it reached the home position. At this point the amount of 

left over mulch on the path that falls within the inside border of the green tape would be gathered into 

a graduated cylinder mug, measured and recorded. Next the mulch would be rearranged onto the path 

for the next trial. This process was done 5 times.  

 

 

 

Figure 29 - Graduated Plactic Mug Used to Measure Mulch 
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Figure 30 - Mulch Spread a About a Thickness of 9mm 
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Chapter 7: Testing & Observations 
 

 Five trials were conducted in the manner outlined above. The time the device took for each 

forward and reverse cycle was recorded and RPM for both cycles calculated. Then the remaining mulch 

in the path would be gathered and measured. Table 1 below shows the time required for forwards and 

reverse cycles, their velocities, the initial and final mulch amounts in the clearing path, the removal 

efficiencies, mass of the mulch cleared, and finally the work done in remove that mass. Finally the 

average and standard deviation were calculated for each parameter. 

Table 1 

Trial # 

Time for  
Forward 
Cycle 
(s) 

Time for 
Reverse 
Cycle 
(s)  

Velocity 
Forward 
(m/s) 

Velocity 
Reverse 
(m/s) 

Motor RPM 
(Forward 
Cycle) 

Motor RPM 
(Reverse 
Cycle) 

1 46.34 48.17 0.020554596 0.019773718 35.68762505 34.3318361 

2 46.95 49.61 0.02028754 0.019199758 35.22395197 33.33530629 

3 46.68 48.65 0.020404884 0.019578623 35.42768948 33.99310473 

4 37.88 39.38 0.025145195 0.024187405 43.65798693 41.99503669 

5 34.12 37.62 0.027916178 0.025318979 48.46906638 43.95971677 

Data Analysis             

Average 42.394 44.686 0.022861679 0.021611697 39.69326397 37.52300012 

Standard 
Deviation 5.990265437 5.704807622 0.003490955 0.002902896 6.061121075 5.040111638 

Ave ± SD 
42.39 ± 5.99 44.67 ± 5.70 

0.0228 ± 
0.003 

0.0216 ± 
0.003 39.7 ± 6.06 37.52 ± 5.04 

 

Trial # 
Mulch Initial 
(m3) 

Mulch Final 
(m3) 

Removal 
Efficiency  
(%) 

Mass of 
Mulch 
Cleared (kg) 

Work Done 
(J) 

Power (W) 

1 0.0062 0.00061 90.16129032 2.1242 24.6981183 0.53297623 

2 0.0062 0.00079 87.25806452 2.0558 24.30185689 0.51761144 

3 0.0062 0.00071 88.5483871 2.0862 24.47797307 0.52437817 

4 0.0062 0.000605 90.24193548 2.1261 24.70912556 0.65230004 

5 0.0062 0.00063 89.83870968 2.1166 24.65408926 0.72257003 

Data Analysis             

Average   0.000669 89.20967742 2.10178 24.56823262 0.58996718 

Standard 
Deviation   7.97183E-05 1.285778288 0.030292936 0.175495933 0.09253937 

Ave ± SD 
  

0.000669 ± 
7.8E-05 89.21 ± 1.29 2.101 ± 0.03 24.57 ± 0.18 0.59 ± 0.09 
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7.1 Device Velocity 
 

 The device took an average of 0.0228 m/s (2.28 cm/s) to complete the forward cycle and 0.0216 

m/s (2.16 cm/s) to complete the reverse cycle. This was interesting because it had a higher velocity 

under the opposing force of the mulch than it did on the reverse cycle. This was interesting because the 

opposing force of the mulch was a fraction of the initial mulch load on the reverse cycle. I suspect that 

this may have been because of a misalignment of the cords, because the device would twist to the right 

only on the reverse cycle thus causing excessive friction to develop on right CGA. Or it also might have 

been because of a difference of tensioning between the two cords thus causing different gripping 

frictions at the CGA’s. However this is still curious that it should happen on only the reverse cycle. 

 

 

 

 

 

 

 

 

 

 

 

 

The image above shows a top view of the device twisting to the right. Although one might point 

out that the source of this twisting might be the power cord under left side of the shovel blade, this 

twisting occurred even when the wire was not under the blade. It just so happened to go under the 

blade as I was taking a top view picture. The power cord needs to be pulled out of the way as the device 

reverses into the home position.  

 

 

 

Figure 31 - Twisting of Device to Its Right on Reverse Cycle 
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Another interesting observation was that the time required for the forward cycle in the first 

three trials took about 9-12 seconds longer than the last two trials. The only reason I can see why this 

occurred was because of varying current usages in the house. As I remember the drier and washing 

machine were running for a period of the time that the experiment was being conducted. This might 

have caused the voltage to drop. I know this because whenever the space heater or drier in the house is 

turned on, the lights become noticeably dimmer. 

 

7.2 Removal Efficiency  
 

 On average the device cleared about 89.21% of the initial mulch “accumulation” from the 

clearing path with the remaining parts shoved to the front and side of the path. A majority of the 

efficiency loss came as a result of left over mulch on the shovel tip as it reversed back to the home 

position. Without this, I suspect the efficiency would have been much closer to 100% because the 

remaining mulch on the clearing path were very small pieces as shown in the image below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32 - View of Clearing Path After Forward Cycle 
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Figure 33 - Top View of Clearing Path After Forward Cycle 
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7.3 Work & Power 
 

 The value for work was calculated based on the forward cycle, because useful work was done 

only during the forward cycle. The reverse cycle is only required to bring the device back to the home 

position. The maximum work done was 24.71 J in Trial # 4 and the min work done was 24.30 W in Trial # 

2. The average work done by the motors was calculated to be 24.57 J. This was lower than the initially 

calculated value of 190 J by 165 J. The 190 J was also calculated only for the forward cycle. The major 

contributing factors to this were three fold: 

1)   The shovel blade as initially designed was not metal but plastic, thus reducing the weight 

dramatically. The whole weight for the final assembly weighed 2.948 kg while initial shovel 

blade estimates alone reached 10kg. 

2) The length of the clearing path was decreased by about 0.2475m 

3) The coefficient of friction between the snow and asphalt of 0.75 was changed to a 

coefficient of friction of 0.62 between the mulch and concrete. And the coefficient of 

friction within the snow was not required anymore. A new coefficient of friction between 

the steel edge of the shovel and concrete of 0.45 was introduced. 

 

From Table 1 we can see the max power developed was 0.723 W in Trial # 5 and the minimum 

was 0.518 W developed in Trial # 2. The average power developed by the device was calculated to be 

0.589 W. The average value was extremely low compared to the initial estimate of 19 W, as a matter of 

fact it was only 3.1% of the initial estimate. Two of the major reasons for this was because:  

1)  The cycle period for the device was increased dramatically by more than 3-4 times as much 

from 10s to 36s-47s.  

2) The weight of the device went up, clearing path area decreased, and coefficients of friction 

also decreased, as discussed above in the work section. 

And since the power is dependent on time we can see a clear correlation between the power and 

velocity. The power increases in the last two trials since velocity is directly proportional to power 
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7.3.1 Calculations for Work and Power 

 

Friction Between the Steel Shovel Tip and Concrete Floor 

Given  

1) Length of the clearing path, 𝑑 

2) The coefficient of friction between the steel shovel tip and concrete, 𝜇𝑑  

3) Mass of the whole device, 𝑚𝑑  

 

 

 

 

 

Friction Between the Wood Mulch and Concrete Floor 

Given  

1) Length of the clearing path, 𝑑 

2) The coefficient of friction between the wood mulch and concrete, 𝜇𝑚    

3) Mass of the mulch depends on the Trial number; here we will be taking the average value of    

𝑚𝑚 = 2.101kg 

 

 

The work done to overcome the friction between the mulch and concrete is given by Wm 

 

 

 

 

 

 

   

 

   

 

d 95.25 cm 0.953 m

md 2.948kg Fd md g 28.91N  d 0.45

Wd Fd d  d 12.392J

mm 2.101kg Fm mm g 20.604N  m 0.62

Wm Fm d  m 12.168J
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Total Work for Opposing Force and Power 

Assuming that the average time for a forward cycle is 𝑡 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

t 42.39 s

Wtot Wd Wm 24.559J P
Wtot

t
0.579 W
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Chapter 8: Conclusion & Recommendations 
 

 As a conclusion, I think the whole design to prototype process went well. There were some 

initial troubles such as getting to understand the purpose of the Design Decision Matrix in the design 

process but I came to understand the benefits of a quantitative versus qualitative approach to the 

design process. Also, I learned about the importance of coming up with several viable ideas. It allows the 

best idea to be chosen while aiding in the development and improvement of existing ideas. I was also 

pleased that the prototype that was assembled was very similar to the one designed and was also strong 

enough to clear the mulch with ease. I am sure it could have handled loads three times as much as ones 

used for testing. And with the use of lower RPM, large gear ratio motors, I believe this device can be 

easily upgraded to taken on much larger loads. 

 I learned how a systematic approach could be taken right from designing the device to force 

analysis and energy analysis of the device.  We analyzed preliminary designs so that they can be 

individually tested and the best design could be chosen based on quantitative and empirical data. I was 

intrigued by the fact that there are formulas that can tell me how much a material needs to be indented 

to produce the appropriate frictional force.  

 A defect that needs to be addressed is the twisting motion that occurs on the reverse cycle. The 

source of the problem doesn’t seem to be clear. While it could be because the cords are not aligned 

parallel to each other, the twisting never occurs in the forward cycle. If it is because of varying tension 

within the cords,  I should be able to able observe that in the forward cycle, which I don’t.   

With regards to the practicality of this device, two major problems are that the design wasn’t 

advanced far enough to develop water proofing ideas for the electrical parts, making it non-operable for 

its intended use, clearing snow. And the second was that the device once setup on the driveway has no 

easy method to temporarily remove it to allow for traffic. This is because the cords are in tension and 

the supports which they are tied to will be fixed. These two aspects highly diminish the practicality of 

the device.  

 Some things to keep in mind when testing in the future is to use a power source that does not 

vary due to voltage fluctuations in a building. To set the right amount of tension in the cord there should 

be a better method to measure the elongation, using precise instruments and not sharpie markings like I 

had to resort to. To avoid the blades getting stuck on rough surfaces on the ground, the end of the blade 

should be made more rounder to help facilitate more efficient snow removal without the device getting 

stuck. 

 For videos taken in the Testing, please follow this link: bit.ly/1rhBe0j 

 

file:///C:/Users/Nithin/Desktop/MQP%20Pics/bit.ly/1rhBe0j
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