
1

Online Photovoltaic Monitoring System

A Major Qualifying Project Report

Submitted to the faculty

Of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

By

Ali Magzari

Date: April 15, 2015

Advisor:

Professor Susan M. Jarvis

2

Abstract	
The goal of this project is to create an online photovoltaic monitoring system. This is achieved
by designing a photovoltaic system, building the analog circuitry for proper voltage and current
readings, and creating a webserver that displays the monitored data in a user-friendly charting
interface. The webserver is in WAN (Wide Area Network) and could therefore be accessed
anywhere in the world that benefits from an Internet connection. The project could potentially be
adapted to service different types of photovoltaic systems to insure proper functioning and data
monitoring.

3

Acknowledgements	
I would like to thank the following:

My advisor, Professor Susan M. Jarvis for her constant encouragements and guidance throughout
the project. I appreciate her patience in dealing with the most disorganized student. Her
understanding and support are the only motives that granted me strength to complete this project.

My friend, Eric Willcox for helping me design the solar panels acrylic support for this project.
His rendering skills are stupendous.

My friend, Velin Dimitrov for introducing the theoretical person that I am to Washburn Shops
and laser cutting technology.

My Mother, Lalla Najat for her unconditional love and support. She would telepathically know
when things went wrong and call me in the middle of the night to offer me comfort. Life without
her would stand meaningless. Je t’aime Maman.

4

Table	of	Contents	
Abstract ... 2

Acknowledgements ... 3

List of Figures ... 6

List of Tables .. 7

Executive Summary .. 8

1.0 Introduction ... 9

2.0 Background ... 10

2.1 Prior Art .. 10

2.1.0 Fronius Datalogger easy/pro/Web ... 10

2.1.1 BenQ/AUO Solar Monitoring System ... 10

2.1.2 SolarEdge Zigbee-Ethernet Gateway ... 11

2.2 Photovoltaic System Modeling and Simulation .. 12

3.0 Design ... 21

3.1 Hardware: Physical and Electrical Layout .. 21

3.1.0 Solar Panels and Physical Setup .. 21

3.1.1 Analog Circuitry, Boards, and Parts .. 23

3.1.2 The Internet of Things ... 28

3.2 Software: Data Processing and Monitoring .. 28

3.2.0 Arduino sketch summary ... 29

3.2.1 HTML codes summary .. 30

3.2.2 Router Configuration ... 30

4.0 Results ... 30

4.1 Default Page .. 30

4.2 Photovoltaic Data History Page .. 32

4.3 Project Description Page ... 34

4.4 People Page ... 34

4.5 Shading Effects and Measurements .. 35

5.0 Conclusions and Future Work .. 37

Works Cited .. 38

Appendices .. 41

5

A1. PARALLAX 750-00031 Datasheet ... 41

A2. MCP6001/2/4 Datasheet .. 42

A3. 1N4148 Datasheet .. 43

A4. Arduino Sketch: OPVMS.ino .. 44

A5. HC.htm code .. 53

A6. Home.htm code .. 60

A7. People.htm code ... 62

6

List	of	Figures	
Figure 1: FRONIUS IG Datalogger Box (LLC, 2013) ... 10
Figure 2: BenQ AUO Solar 19.M2M01.002 (ECODIRECT, n.d.) .. 11
Figure 3: SolarEdge Zigbee-Ethernet Gateway .. 11
Figure 4: Ideal Solar Cell Model .. 12
Figure 5: General I-V Curve for Diode and Solar Cell ... 14
Figure 6: Realistic Solar Cell Model .. 14
Figure 7: Calculated I-V Model of KC85T at STC .. 18
Figure 8: Calculated I-V Model of KC85T at 25, 50, and 75 degrees Celsius 19
Figure 9: Experimental I-V Curve of KC85T at 25, 50, and 75 degrees Celsius (KYOCERA) .. 19
Figure 10: Calculated I-V Model of KC85T at selected irradiance levels 20
Figure 11: Experimental I-V Curve of KC85T at selected irradiance levels (KYOCERA) 20
Figure 12: Structure of the Photovoltaic System Model ... 21
Figure 13: Solar Panels mounted on Acrylic Frame ... 22
Figure 14: Experiment Rack ... 22
Figure 15: Arduino Mega 2560 Top View ... 23
Figure 16: PV Circuit and Measurement Nodes ... 24
Figure 17: PV Circuit and measurement Nodes with Voltage Dividers 25
Figure 18: Voltage Follower Circuit ... 25
Figure 19: MCP6004 Amplifier Pin Diagram .. 26
Figure 20: PV System Solar Module Alignment .. 27
Figure 21: PV circuit with Bypass and Blocking Diodes ... 27
Figure 22: Arduino Ethernet Shield Top View (Arduino, Arduino Ethernet Shield, 2015) 28
Figure 23: Communications Diagram ... 29
Figure 24: Router Port Forwarding Configuration ... 30
Figure 25: Webserver Default Page .. 31
Figure 26: 04/08/2015 Data Chart .. 32
Figure 27: Voltage Values on 04/08/2015 at 05:57 .. 32
Figure 28: Voltage Values on 04/08/2015 at 19:29 .. 33
Figure 29: Voltage Values on 04/08/2015 at 08:19 .. 33
Figure 30: Solar Path on 04/08/2015 .. 34
Figure 31: Project Description Page ... 34
Figure 32: People Page ... 35
Figure 33: PARALLAX 750-00031 Specifications (PARALLAX) ... 41

7

List	of	Tables	
Table 1: Electric Specifications of KC85T under STC (KYOCERA) ... 17
Table 2: Calculated Parameters of KC85T at STC ... 18
Table 3: Microcontroller Specifications (Arduino, n.d.) .. 23
Table 4: Maximum Voltage at the Circuit Nodes ... 24
Table 5: PV System Monitoring Pin Connections .. 26
Table 6: Shaded Panel and Voltage Consequences .. 36

8

Executive	Summary	
The photovoltaic system used in this project consists of two parallel strings each formed of three
panels in series. To complete the circuit, a 100kΩ resistor is used as a load to the system. That
way, we could measure the current going through the load rather than limiting ourselves to the
0A open circuit current. Every panel is known to have a 9V,111.11mA maximum ratings. To
insure the operational safety of the microcontroller board responsible of data collection
(Arduino), a voltage divider has been set up at the positive terminal of every panel to lower the
photovoltaic maximum voltage range (0V-27V) to the acceptable voltage range of the analog
input rant of the ADC in the Arduino (0V-5V). For the current issue, a voltage follower was
placed at the measuring node of the voltage divider to isolate the photovoltaic current from the
microcontroller analog pins.

An Ethernet shield was utilized to transfer the collected data to the designed webserver. The
design of the webserver was simplified to consist of two major parts: Real-time Data visualized
as a list in the default page of the webserver and Data History which displays the voltage and
current values of the system on a chart system over the course of the day selected by the user.

So far, the results have been satisfying and the goals of the project reached. It would be however
necessary in the future to ameliorate this project by taking into account other variables such as
temperature. Investigating and displaying how the system I-V curve is changing during shading
and other events would be a great addition to the project.

9

1.0	Introduction	
Energy harvesting has been the subject of core scientific attention for many years now.
Renewable energy was first targeted toward industrial projects where it was solely applied at the
macro level. However, harmful fossil fuels emissions and extravagant oil prices increased the
public awareness greatly. That caused a potential turning point where green energy became a
major focus in several market sectors that directly impact the consumers. Solar energy has been
particularly researched and utilized in multiple areas such as domestic power production.

Solar energy proved to be a great alternative in terms of power cost reduction and energy
sustainability. On the other hand, such system requires regular maintenance to insure its proper
operation. Seemingly insignificant factors such as dust and shading could lower the output power
of one cell, thus reducing the power output of the entire photovoltaic system. Periodic
inspections of individual components wiring is also recommended to reduce the chance of failure
of the photovoltaic system.

Several products have emerged in the market to monitor the power generated by photovoltaic
systems to lower the number of necessary onsite inspections. These products could be classified
in two distinct groups: traditional string inverter power sensors and smart micro-inverters. The
former technology suffers from a lack of precision because it ignores the health condition of
every solar panel and instead conveys the information about the total string. Although this may
still be helpful, pinpointing the fault will require potential onsite inspections. On the other hand,
smart micro-inverters monitor the power of every panel in the system. Being fairly new to the
market, this technology is very expensive and seems to be out of reach for most individuals. The
high cost is explained by the necessity of placing an inverter for each solar panel and the
complex software package that delivers the service.

This report presents the proof of concept of a solution to this problem. The developed unit is a
customized webserver that logs the voltage data of every single module of the system along with
the total voltage and current and makes them available within the Wide Area Network. This
solution -compared to prior arts- is a less expensive alternative that may in the future enable any
household to enjoy the advantages of solar energy to the fullest.

10

2.0	Background		
This chapter is divided into two major sections. The first section covers some of the prior art
while the second section deals with a study of the solar cell at the semiconductor level. The later
section is not only reserved for this project but seems a promising base for research in the
subject.

2.1	Prior	Art	
This section reports few of the emerging photovoltaic monitoring technology. This technology is
basically developed to provide the user with a better insight of the performance of his/her
photovoltaic system.

2.1.0	Fronius	Datalogger	easy/pro/Web	
Fronius is one of the leaders in energy conversion in the United States of America. Fronius
Datalogger easy/pro (Figure 1) collects the data from the inverter and sends it to a personal
computer for further processing using a software such as Solar.access. The logger is large
enough to save data over a period up to 3 years. Once connected to a modem, the remote
monitoring featured is created (LLC, 2013). Fronius Datalogger Web on the other hand does
need a modem. It uses Ethernet technology and acts as a web server that makes a website
accessible to the public. The product price varies from $276.55 to $736.00 depending on
specifications and vendors (Google, n.d.).

 Figure 1: FRONIUS IG Datalogger Box (LLC, 2013)

	
2.1.1	BenQ/AUO	Solar	Monitoring	System	

The AUO monitoring package consists of a data logger device for real-time performance
monitoring and web portal for Internet access to collected data. AUO is inclusively compatible
with AC Unison solar power products. This package is sold at $616.95 by Ecodirect
(ECODIRECT, n.d.).

11

Figure 2: BenQ AUO Solar 19.M2M01.002 (ECODIRECT, n.d.)

2.1.2	SolarEdge	Zigbee‐Ethernet	Gateway	
This product not only connects an inverter to a gateway point but also allows wireless
connectvity among inverters themselves (CIVICSOLAR, wireless-communication-products).The
cost of this communication product is of $451.50 (CIVICSOLAR, SolarEdge Zigbee-Ethernet
Gateway , n.d.). Not that this product only provides connectivity and is not responsible for data
logging.

Figure 3: SolarEdge Zigbee-Ethernet Gateway

These products are essentially used for power data logging. Some of them need an external
modem for data publishing while others have communication parts charged of data transfer and
monitoring. Although performing well, these products are not as attractive to the public due to
their allocated prices in the market.

12

2.2	Photovoltaic	System	Modeling	and	Simulation	
Before getting started in the design process of any monitoring system, an appropriate knowledge
of the properties of the devices to be monitored is recommended. In this project, the individual
modules of a photovoltaic system are the candidates to be examined. Based on the fact that a
module is defined as an array of solar cells (usually connected in series) (Eckstein, 1990), the
mathematical model of a solar cell is presented first. This chapter also compares few techniques
used by scientists in order to extract photovoltaic parameters solely from a commercial datasheet.
Those parameters are very important in the creation of a characteristic equation that would
describe the I-V curve of the solar module in question. That is critical in visualizing the solar cell
behavior under multiple physical conditions such as shading. Finally, a simulation of an entire
photovoltaic system using MATLAB/Simulink is provided to confirm theoretical results and
anticipate future system behaviors.

2.2.0	Solar	Cell	Model	(Ideal	and	Realistic)	
The ideal solar cell model consists of a current source connected in parallel with a diode
(Rodrigues, Melicio, Mendes, & Catalao, 2011) as shown in Figure 4.

Figure 4: Ideal Solar Cell Model

The cell current I is formulated as:

ܫ ൌ ௉ܫ െ ஽ (1)ܫ

where IP is the photo-generated current, and ID is the diode current.

A diode is simply a pn junction that consists of an n-type semiconductor containing free moving
electrons being in contact with a p-type material where holes are dominating (Sedra & Smith,
2010). The diode current ID is defined by the Shockley equation (Hambley, 2011) shown below.

஽ܫ ൌ ௦ܫ ൤exp ൬

ݍ ஽ܸ

݊݇ܶ
൰ െ 1൨ (2)

where Is is the saturation current, VD is the voltage across the diode, n is the ideality factor, q is

13

the electrical charge magnitude of an electron 1.60217646 ൈ 10ିଵଽܥ, k is the Boltzmann’s
constant 1.386503 ൈ 10ିଶଷܭ/ܬ, and T is the junction temperature in Kelvin.

The diode operates in three major regions. The diode is said to be forward-biased when its
voltage is positive. In this region, the current increases exponentially in function of the voltage as
it is depicted in equation (2). When VD is negative, the diode is reverse-biased and maintains a
relatively low and negative constant current until it enters the reverse-breakdown region where
the diode current decreases exponentially (Hambley, 2011).

When a solar cell is exposed to light, photons with energy greater than the band gap energy of
the diode excites the semiconductor, thus forming electron-hole pairs. These pairs are separated
by the internal electric field of the diode to create an electric current that is proportional to the
provided light intensity (Walker, 2001). Combining equations (1) and (2), the output cell current
is represented as follows:

ܫ ൌ ௉ܫ െ ௦ܫ ൤exp ൬

ݍ ஽ܸ

݊݇ܶ
൰ െ 1൨ (3)

From equation (1), it can be deduced that the I-V curve of a solar cell is formed by reflecting the
I-V curve of its modeling diode across the horizontal axis (voltage) and up-shifting it by the
value of the photo-generated current as shown in the figure below.

14

Figure 5: General I-V Curve for Diode and Solar Cell

In reality however, there are power losses due to various reasons such as the material resistivity,
contact levels (Rekioua & Matagne, 2012), p-n junction leakages, crystal defects and impurities
(Kaiser, 2010). Series and Shunt resistances are therefore added to the model to account for the
voltage and current losses respectively. A more realistic model is shown in the figure below.

Figure 6: Realistic Solar Cell Model

Using Kirchhoff’s current law, the solar cell characteristic equation (Eq. 3) becomes:

0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

8

9
Diode I-V Curve

V
D
 (V)

I D
 (

A
)

0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

8

9
Ideal Solar Cell I-V curve

V
D
 (V)

I
(A

)

15

ܫ ൌ ௉ܫ െ ௦ܫ ൤exp ൬

஽ܸ ൅ ௦ܴܫ
்ܸ ݊

൰ െ 1൨ െ ஽ܸ ൅ ௦ܴܫ
ܴௌு

 (4)

Where ்ܸ is the junction thermal voltage defined as
௞்

௤
.

2.2.1	Extraction	of	Solar	Cell	Parameters	from	Datasheet	
In the previously developed model, the I-V characteristic of a solar cell is based on five
parameters ሺܫ௉, ,௦ܫ ݊, ܴ௦, ܴௌுሻ.		Why are these parameters so important?

Most of solar modules datasheets provide four main parameters: short-circuit current ܫ௦௖, open-

circuit voltage ௢ܸ௖, maximum current and voltage points ൫ܫ௠௣௣, ௠ܸ௣௣൯ (Rekioua & Matagne,

2012). Most of the time, an I-V curve is also provided at nominal temperature and irradiance and
other few selected test conditions. Therefore, predicting the value of a specific V-I point at any
other condition would not be error-free. In fact, the accuracy of the approximation is limited by
the defined step size of both horizontal and vertical axes of the provided I-V graph and the
corecteness level of the used extrapolation method. Finding the parameters necessary to define
the I-V characteristic equation solves this problem.

One of the experimental methods used to extract those patrameters is the measurementt of the
solar cell module I-V values at multiple illumination levels (Bouzidi, Cheggar, & Bouhemadou,
2007). That requires the use of laboratory equipment and the hassle of handling solar panels that
could be larger depending on the application. Other common methods is to use the following
relations (Technologies, 2012) to calculate the series and shunt resistances.

ܴௌு ൌ

∆ ௦ܸ௖

௦௖ܫ∆
 (5)

ܴௌ ൌ

∆ ௢ܸ௖

௢௖ܫ∆
 (6)

The above expressions are calculated by estimating the slope of the datasheet I-V curve at the
open-circuit and short-circuit points. This method does not require the use of laboratory
equipment but is not freed of potential measurements inaccuracies. Adding to that, the photo-
generated current ܫ௉ is usually approximated to the short-circuit current ܫ௦௖ (El Tayyan, 2012)
and the reverse saturation current ܫ௦ is estimated by the following equation (Villalva, Gazoli, &
Filho, 2009):

௦ܫ ൌ

௦௖ܫ

݌ݔ݁ ቀ ௢ܸ௖
்ܸ݊ ቁ െ 1

 (7)

16

All the methods mentioned above are acceptable but show a great deal of inconvenience (i.e. the
necessity to take module measurements) and uncontrolled parameter estimations. The problem
resides in the fact that multiple parameters are approximated. That does not seem robust
especially when parameter evaluations depend on other estimated variables. To take into account
those variable dependences, it is logical to evaluate a system of five equations to solve for the
five unknowns parameters. Unfortunately, semiconductor physics does not offer us clean linear
equations where linear matrix theory techniques could easily find the system’s solutions. Instead,
nonlinear and transcendental equations such as (4) were developed. The rest of this section
presents a numerical solution proposed by the authors in (Villalva, Gazoli, & Ruppert, 2009) that
produces an I-V curve based on datasheet parameters. The suggested method is commented
along its technical description with exterior arguments that may not necessarily reflect the
motivations of the authors in (Villalva, Gazoli, & Ruppert, 2009).

The ideality factor n, also known as the emission coefficient is usually bounded between the
values 1 and 2 (Hambley, 2011). The factor value ݊ ∈ ሾ1, 2ሿ governs the curvature of the
semiconductor characteristic curve (Carrero, Amador, & Arnaltes, 2007). Nevertheless, 1 is an
adequate modeling choice (Alonso, 2005). The algorithm runs on the former condition with the
idea that curve fitting techniques could be used at the end for accuracy purposes. The series
resistance lowers the voltage that is originally produced by a value no higher than the difference

between open-circuit and maximum-point voltages. For that reason, ܴௌ ∈ ቂ0,
௏೚೎,೙ି௏೘ೌೣ

ூ೘ೌೣ
ቃ. After

each iteration, ܴௌ obtains a new value and becomes ܴௌ ൅ Meanwhile, the parallel resistance .ݔ
ܴ௉ is solved so that there is only one set ሺܴௌ, ܴ௉ሻ that satisfies the existence of the maximum
point. Equation (4) is multiplied by the maximum-point voltage ௠ܸ௔௫ to be set equal to the
experimental maximum power point (datasheet). Once arranged, the equation provides a new
definition of the shunt resistance that is:

ܴ௉ ൌ

௠ܸ௔௫ሺ ௠ܸ௔௫ ൅ ௠௔௫ܴௌሻܫ

௠ܸ௔௫ܫ௣ െ ௠ܸ௔௫ܫ௦݁݌ݔ ቀ
௠ܸ௔௫ ൅ ௠௔௫ܴௌܫ

ௌܰ݊
ݍ
݇ܶቁ ൅ ௠ܸ௔௫ܫ௦ െ ௠ܲ௔௫

 (8)

where ܰܵ is the number of cells in series of the solar panel in question.

Since the characteristic equation (4) is transcendental, it is impossible to formulate an analytical solution
where the voltage V is on one side, and the current I on the other side. Instead, Newton-Raphson method
is used to solve for ܫ ൌ .ݍܧ ሺ4ሻ over a reasonable range of V values. Using a current divider in the circuit

shown in Figure 6, the nominal photo-generated current is defined as follows:

௉,௡ܫ ൌ

ሺܴௌ ൅ ܴ௉ሻ

ܴ௉
ௌ஼ (9)ܫ

Equation 7 is strengthened to become:

17

௦ܫ ൌ
௉ܫ െ

௢ܸ௖
ܴ௉

݌ݔ݁ ቀ ௢ܸ௖
்ܸ݊ ቁ െ 1

 (10)

Note that all of the above calculations solve for the five parameters at nominal temperature and
irradiance conditions (ܶ ൌ ܥ25° ൅ 273.15 and ܩ ൌ 1000ܹ/݉ଶ). The photo-generated current
is both linearly dependent on the light irradiance and affected by temperature change (De Soto,
Klein, & Beckman, 2005):

௉ܫ ൌ ൫ܫ௉,௡ ൅ ݇ூ∆்൯

ܩ
௡ܩ

 (11)

where ܲܫ,݊ is the nominal calculated light generated current, ݇ܫ the current-temperature factor, ∆ܶ	the

difference between actual and nominal temperatures, ܩ	݀݊ܽ	݊ܩ the actual and nominal irradiances.

The short circuit dependence on temperature could be seen as follow:

௦ܫ ൌ
்∆௉݇ூܫ െ

௢ܸ௖݇௏∆்
ܴ௉

݌ݔ݁ ൬ ௢ܸ௖݇௏∆்
்ܸ݊ ൰ െ 1

 (12)

where ݇௏ is the voltage-temperature coefficient [%/°C].

2.2.2	Photovoltaic	System	Simulation	(Kyocera	KCT85T	in	MATLAB)	
KCT85T is a solar panel manufactured by Kyocera, a multinational electronics and ceramics
manufacturer headquartered in Kyoto, Japan. This section will use the numerical methodology
previously described to arrive at a complete mathematical model of a photovoltaic system. The
datasheet information of KC85T 87.348W max. power (Table 1) is used to simulate the I-V
behavior of the KC85T panel at selected temperature and irradiance levels.

Table 1: Electric Specifications of KC85T under STC (KYOCERA)

Maximum Power (Pmax) 87.348W
Maximum Powe Voltage (Vmpp) 17.4V
Maximum Power Current (Impp) 5.02A
Open Circuit Voltage (Voc) 21.7V
Short Circuit Current (Isc) 5.34A
Temperature Coefficient of Voc -8.21e-2V/°ܥ
Temperature Coefficient of Isc 2.12e-3A/°ܥ

18

Knowing that the present module contains 36 series cells, the I-V model of the module at
nominal conditions is shown below.

Figure 7: Calculated I-V Model of KC85T at STC

Note that the critical maximum point (17.4V, 5.02A). More precisely, not that the maximum
power derived from the model is 87.348002W, a slight 2.2897e-6 percent error from the
maximum power listed on the datsheet. By studying the generated curve however, both of the
short and open circuit pairs appear to be exact: (0V, 5.34A) and (21.7V, 0A) respectively. At this
nominal situation, the five parameters are calculated to be:

Table 2: Calculated Parameters of KC85T at STC

Rs Rp Ip Is n
0.3223Ω 620.060527Ω 5.342792V 3.43442e-10 1

Taking a step further, the I-V curve is modeled at 1000W/݉ଶ and other selected temperatures
 using equations (11 & 12) to recomputed the light generated and saturated (ܥand 75° ܥ50°)
currents in equation (4).

0 5 10 15 20
0

1

2

3

4

5
X: 17.4
Y: 5.02

I-V curve

V [V]

I
[A

]

19

Figure 8: Calculated I-V Model of KC85T at 25, 50, and 75 degrees Celsius

The experimental I-V curve present in the datasheet (Figure 9) is very similar to the modeled
curve shown above which highlights the accuracy of the used model.

Figure 9: Experimental I-V Curve of KC85T at 25, 50, and 75 degrees Celsius (KYOCERA)

Equations (11 & 12) are now used to modify the model at 25°ܥ and different irradiance levels:
1000, 800, 600, 400, and 200W/݉ଶ.

0 5 10 15 20
0

1

2

3

4

5

I-V curve

V [V]

I
[A

]

25 °C

50 °C
75 °C

20

Figure 10: Calculated I-V Model of KC85T at selected irradiance levels

Again, the experimental I-V curve present in the datasheet (Figure 11) seems to be similar to the
modeled curve shown above, which gives more confidence in this model.

Figure 11: Experimental I-V Curve of KC85T at selected irradiance levels (KYOCERA)

This modeling technique has proven to be accurate to model solar module behaviors and
characteristics. This model could be very useful in this project as it could determine and predict
the I-V behavior of the photovoltaic system while exposed to different levels of temperature and
irradiance.

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
I-V curve

V [V]

I
[A

]

1000W/m2

800W/m2

600W/m2

400W/m2

200W/m2

21

3.0	Design	
This chapter describes the design of the hardware and software aspects of the power monitoring
system prototype.

3.1	Hardware:	Physical	and	Electrical	Layout	
This section shows the hardware structure of the prototype. The prototype consists of a
photovoltaic array whose voltage and current are measured using a microcontroller-based
system. The microcontroller is also used to store the data and display them online. The data
storage and web application development are discussed in a later section.

3.1.0	Solar	Panels	and	Physical	Setup		
Photovoltaic panels are usually connected both in series and parallel to provide a desired voltage
and current according to the application. As a physical model, 6 photovoltaic panels have been
chosen to form 2 parallel strings of 3 panels connected in series as shown in the figure below.

String 1

1 2

String 2

4 5

3

6

Figure 12: Structure of the Photovoltaic System Model

The solar panel used in this model is a PARALLAX 750-00031 outputting a maximum of 9
DCV at 1W with the dimensions of 135x135mm. The datasheet is attached in Appendix A1. An
acrylic based support of about 508x355mm was manufactured to hold the panels in place as
shown below.

22

Figure 13: Solar Panels mounted on Acrylic Frame

The solar panels are connected to a breadboard circuitry while the whole prototype is supported
by a rack for stability and transportation purposes.

Figure 14: Experiment Rack

23

3.1.1	Analog	Circuitry,	Boards,	and	Parts	
The overall idea is connecting the photovoltaic system to a testing load and recording the voltage
levels of the individual solar panels and the current going through the load. A microcontroller is
responsible of reading the system data and processing them. The microcontroller board used in
this project is the Arduino Mega 2560 (Figure 15) whose specifications are shown below.

Table 3: Microcontroller Specifications (Arduino, n.d.)

Microcontroller ATmega2560
Operating Voltage 5V
Input Voltage (recommended) 7-12V
Input Voltage (limits) 6-20V
Digital I/O Pins 54
Analog Input Pins 16
DC Current per I/O Pin 40mA
DC Current for 3.3V Pin 50mA
Flash Memory 256 KB
SRAM 8 KB
EEPROM 4 KB
Clock Speed 16 MHz
Analog Input Resolution 10 bits (1024 values)

Figure 15: Arduino Mega 2560 Top View

The individual voltage of all six panels is recorded by connecting the positive terminals of the
solar modules to the corresponding analog inputs of the microcontroller board. The following
circuit shows the enumerated nodes at which the voltage could be captured.

24

Figure 16: PV Circuit and Measurement Nodes

RL is the testing load resistance representing an actual load that could be connected to the
photovoltaic system in real life. Since the Arduino analog input pins voltage maximum rating is
only 5V and the maximum output voltage of a singular panel is 9V, a voltage divider should be
used to avoid the device malfunction or/and ruin.

Let Vpmax be the maximum outputted voltage by each solar panel (9V).

Below are listed the maximum voltage values at the different nodes:

Table 4: Maximum Voltage at the Circuit Nodes

Node Maximum Voltage
Nd0 9V
Nd1 2×9V=18V
Nd2 3×9V=27V
Nd3 9V
Nd4 2×9V=18V
Nd5 3×9V=27V

The voltages at the six nodes raise concern as they are higher than 5V (9V; 18V; 27V). A
solution would be placing a voltage divider at those nodes (Nd0-5). Let the voltage divider

consist of two resistors Rvd1 and Rvd2 with the output voltage being ௢ܸ ൌ ௜ܸ௡
ோ௩ௗଵ

ோ௩ௗଵାோ௩ௗଶ
. The

impedance fraction should ideally be 0.185 (27V/5V) in order to take advantage of the ADC full
resolution. The following resistor values would be used according to availability:

25

Rvd1=100kΩ.

Rvd2=330kΩ+100kΩ+10kΩ+2.2kΩ=442.2kΩ.

The fraction value therefore becomes 0.184 (100/542.2) which is very close to the ideal value of
0.185, thus allowing us to safely measure the voltage at those high nodes while taking advantage
of the full resolution range of the ADC. Note that 27V is the maximum open voltage of the three-
in-series modules while exposed to maximum light irradiance. As long as there is a load
connected to the photovoltaic system, 27V should never be an expected total voltage.

Figure 17: PV Circuit and measurement Nodes with Voltage Dividers

The voltage issue set aside, the current concern yet stands. The maximum current (short circuit)
is 111.11 mA which is high compared to the DC current per I/O (40mA). A good way to solve
this issue is the use of a voltage follower that would not let the current run from the photovoltaic
system into the analog pins.

Figure 18: Voltage Follower Circuit

A voltage follower (buffer) is built by using an operational amplifier by tying its negative input
to the output, thus creating a negative feedback loop. Due to high input impedance, no current
(ideally) shall flow into the amplifier. The output voltage would also adjust so that both of the
op-amp inputs voltages match. Now, whether, the output of the voltage divider and buffer circuit

26

are directly connected to the analog pins of the MCU or have to go through a shift register,
isolation is insured.

An appropriate operational amplifier would be operating at low single supply voltage since the
Arduino board only offers 3.3V and 5V output pins. It should also be rail-to-rail input/output so
that 0-5V remains the range of the collected voltage values. MCP600 (Appendix 3) seem to meet
those qualifications. Since six nodes are to be treated, 2 quad MCP6004 chips would be used.

Figure 19: MCP6004 Amplifier Pin Diagram

஽ܸ஽ being the positive voltage supply would be connected to the Arduino 5V output and ௌܸௌ
being the negative input supply would be connected to ground (single supply). ூܸேା would be
connected to the appropriate node while ூܸேି would be connected to ைܸ௎் to create a negative
feedback.

The following table shows the pins correspondence of the project prototype where the blue cells
represent pins from one MCP6004 and the violet ones the second MCP6004 chip.

Table 5: PV System Monitoring Pin Connections

Solar Panel
Number

Circuit Node MCP6004 Input
Pin

MCP6004 Output
Pin

MCU Analog
Inputs

0 Nd0 VinC+ VoutC A0
1 Nd1 VinD+ VoutD A1
2 Nd2 VinC+ VoutC A2
3 Nd3 VinD+ VoutD A3
4 Nd4 VinB+ VoutB A4
5 Nd5 VinA+ VoutA A5

The table above applies to the following solar module alignment.

27

Figure 20: PV System Solar Module Alignment

A last change to the analog circuitry is the addition of bypass and blocking diodes to reduce the
effects of shading. A bypass diode (BpD) is connected in parallel to every solar panel. That way,
in case a panel is totally shaded, the series circuit would not be broken and current would travel
through the corresponding bypass diode. A blocking diode (BlD) is connected in series with each
branch (string) to ensure that the current travels in only one direction in that particular string
(from the positive terminal of module 2 and 5 to the load resistor). Otherwise, in case of shaded
photovoltaic strings, current could travel from one string to the other and cause electrical failure.

Figure 21: PV circuit with Bypass and Blocking Diodes

The bypass and blocking diodes used in this circuit are 1N4148 (Datasheet in Appendix3).
1N4148 was chosen because of its parameters:

Reverse Voltage (VR): 75V
Average Forward Current (AFC): 150mA

VR is higher than the maximum module voltage diode min. rating(DMR) (9*1.25=11.25V) and
the total maximum branch voltage DMR (27*1.25=33.75V). AFC is also higher than the
maximum branch current DMR (111.11*1.25=138.89mA).

28

3.1.2	The	Internet	of	Things	
To connect the Arduino to the Internet, an important piece is necessary which is the Arduino
Ethernet Shield shown below.

Figure 22: Arduino Ethernet Shield Top View (Arduino, Arduino Ethernet Shield, 2015)

This shield is to be connected on top of the Arduino Mega board using SPI port. It is also
connected to the router through an RJ45 cable. Its operational voltage is 5V which is provided by
the Arduino board itself. This shield has slot that could potentially host a micro-SD card to log
all the monitored data in this project prior to online viewing.

3.2	Software:	Data	Processing	and	Monitoring	
The big picture is to program the Arduino microcontroller to record the desired data from the
circuitry, process it, and create a webserver to host the real-time data and a display its history
graph. There are several ways to achieve this goal. An easy way is the use of a service such as
Plotly: an online data visualization tool, that takes care of plotting the data once received from
the Arduino through an Ethernet connection. The downside of this solution is that the user loses
the luxury to design his/her own webserver since the graph is only viewed on the Plotly website.
It appears best then to opt for a more self-contained option such as the one developed by
(Everett, n.d.). The overall idea is to write an Arduino sketch that stores the desired data into an
SD card. An html file is used to design the webserver that lists the SD data files and displays the
data graph upon a click. The example operates with one sensor reading. It was modified to
display all of the six needed readings. The server design has been altered as well to serve
multiple web pages.

29

Figure 23: Communications Diagram

Two separate codes are used in this project:

- Arduino sketch: OPVMS.ino
This code is responsible of capturing the data, string them in an SD card, and act as a
webserver.

- HTML code: HC.htm
This code is stored in the SD card and uses Highcharts.js to chart the data strored in the
SD card.

- Other minor HTML codes are used to create other web pages such as the Project
Description and the People involved in the project.

3.2.0	Arduino	sketch	summary	
The Arduino sketch is composed of six main functions. The Setup function initializes the system
such as the SD card, Ethernet connection defined by the MAC address of the Ethernet shield
90:A2:DA:0D:7B:B6 and the designed server IP address 192.168.1.177. Note that “177” was a
random number allocated to the new “machine” on the network (the newly created webserver).
This function also initiates the UDP port to allow access to an NTP (Network Time Protocol)
server and get a synchronized time. The HtmlHeader functions are responsible of sending “OK”
or “404” messages according to necessity. For example, if the user clicks on a link that no longer
exists, an HtmlHeader404 function would be ready to send the 404 (Not Found) message. The
SendNTPpacket sends requests to the NTP server address. That is necessary for the function of
the getTime function that return the epoch time after parsing the UDP packed received from the
NTP server. The Loop function is known to be the heart of the sketch. All major data processing
occurs in it and all functions are called and used from it. More specifically, the analog pins are
monitored and the individual solar modules voltages and current calculated. This information

30

along the epoch time is then sent as a string to a file in the SD card in the data folder. There is a
file for every day. A string of data is added to its corresponding file every n seconds (in this case,
n=1 for debugging and troubleshooting purposes). The Arduino sketch is available in Appendix
4.

3.2.1	HTML	codes	summary	
HC.htm is the principal HTML code of the project as it is responsible for extracting the data
from the SD card data files and parsing it into separate series (Time, V0, V1, V2, V3, V4, V5, I).
It also calls Highcharts javascript to display this data into two different charts for the pleasure of
the user. Home.htm is the file that displays the project description. People.htm lists the people
involved in the project (Prof. Susan Jarvis: Advisor; Ali Magzari: Student WPI’15). HTML
codes are available in Appendices 5-7.

3.2.2	Router	Configuration	
Since the Ethernet shield is connected to the home router for internet access, the router was
configured to make the webserver accessible to the WAN (Wide Area Network). The home
router was accessed and was set to service port forwarding at port 8081.

Figure 24: Router Port Forwarding Configuration

4.0	Results	
This section showcases the results and achievements of this project.

4.1	Default	Page	
The webserver is accessible at LocalIpAddress:ForwardingPort: XX.XXX.XX.XXX:8081. The
local IP address was hidden for security reasons. Once that address is typed, the following
webpage appears.

31

Figure 25: Webserver Default Page

The default page has two main parts: the photovoltaic present data and data history. The present
data lists the real-time voltages and current of the PV system whereas the Data history lists daily
CSV data files. Upon a click, the history charts are displayed.

32

4.2	Photovoltaic	Data	History	Page	
As a proof of concept, an experiment was run. The photovoltaic panels were set facing the
windows of the home in which this project saw light for an entire 24 hour period on the
04/08/2015 from 00:00 to 23:59.

Figure 26: 04/08/2015 Data Chart

As shown in the figure above, two charts are loaded into the page. The top one display the
individual voltages of the solar panel and the total voltage versus time. The second chart displays
the current of the PV system versus time.

Figure 27: Voltage Values on 04/08/2015 at 05:57

33

Note that the voltage values from 00:00 where all zero due to the darkness until 05:57 where two
panels started producing low voltages. That could be explained by the start of civil twilight that
occurred at 05:50 on that day (timeanddate, 2015). The voltage values then rise to finally reach
the 0.00V mark at 19:29, eight minutes after sunset (19:21) and twenty minutes before the end of
civil twilight (19:49). All voltages after that point are null due to darkness.

Figure 28: Voltage Values on 04/08/2015 at 19:29

The highest recorded total voltage value is recorded at 08:19 (27.11V). overall the highest
voltage values are recorded between 08:00 and 09:00.

Figure 29: Voltage Values on 04/08/2015 at 08:19

As mentioned, the solar panels were kept inside the house (due to rain that could ruin the
unprotected breadboard wiring) facing the east windows. It explains why the highest voltage
values were not recorded around solar noon as it could have been if the panels were installed on
the roof. Due to the roof obstruction, the highest solar irradiance level that would penetrate the
room through the east windows would be in the range of 8:00 and 9:00 as shown in the diagram
below (SunEarthTools, 2015).

34

Figure 30: Solar Path on 04/08/2015

4.3	Project	Description	Page	
From the default pages, a ink could be clicked to view the project description.

Figure 31: Project Description Page

4.4	People	Page	
From the default and project description page, the following people page could be viewed.

35

Figure 32: People Page

From this page, the WPI Professor page could be viewed for further detail.

4.5	Shading	Effects	and	Measurements	
In this experiment, the solar modules are individually fully shaded and the voltages are recorded.
Using Figure 16, the following table shows the shaded cells and the corresponding module
voltages.

36

Table 6: Shaded Panel and Voltage Consequences

Shaded
Panel

VPanel0
(V)

VPanel1
(V)

VPanel2
(V)

VPanel3
(V)

VPanel4
(V)

VPanel5
(V)

None 3.98 4.85 5.14 5.01 4.64 4.35
0 0.00 4.93 5.64 3.82 3.92 3.76
1 4.72 -0.40 5.70 4.37 3.60 3.76
2 4.64 5.41 -0.40 4.29 3.90 3.50
3 2.70 3.55 4.16 0.00 5.09 5.11
4 2.92 3.66 4.19 5.94 -0.48 5.14
5 2.97 3.68 4.24 5.83 5.51 -0.61

Note that when fully shaded, Panel0 and Panel3 produce 0.00V. Since the negative terminals of
these panels are connected to ground, once they are shaded and the output voltage is set to null,
the voltage drop is logically 0.00V. The rest of the panels, however, show a negative voltage
drop across them when fully shaded. The main reason of that occurring is that their negative
terminal is not connected to ground but to the positive terminal of an unshaded module. When
the panel is shaded, the current goes through the bypass diode that is known to have a certain
voltage drop. In this case the observed voltage drops are: 0.40V; 0.48V; 0.61V.

 	

37

5.0	Conclusions	and	Future	Work	
The greater aspect of this project was the successful combination of several areas of electrical
engineering to produce an adequate proof of concept of an online photovoltaic monitoring
system. Microelectronics and semiconductor science were necessary to predict the behavior of
the photovoltaic system, hence the use of techniques such as bypass/blocking diodes and voltage
divers to insure the operational safety of the prototype. Knowledge of embedded systems and
computer science was very useful when it came to programming the Arduino board whose
language is based on C and C++. Html and Javascript were also languages used in formatting
and displaying data on the webserver.

One of the ways this project could be improved is to dedicate deeper attention to the different
building blocks of the project. This project was completed by one student that used a system
engineering approach to build the necessary building blocks. Due to time constraints, some areas
have received less attention than they deserve. For example, the photovoltaic modeling and
simulation explained in Section 2.2 is of great importance, but sadly could not be used in the
project.

The SD card on to the Ethernet shield stores the data and will eventually saturate one day. A
better option could be sending the collecting data to a Mysql database. Another improvement
would be the creation of a proper PCB (Printed Circuit Board) and packaging to protect the
underlying circuitry from weather conditions such as rain and snow that could cause the
malfunction of the prototype.

This project could serve as a starting point for other students in the future. They could choose to
either improve the whole project following a system engineering point of view or focus on a
particular aspect of the project (i.e. effects of shading).

	

38

Works	Cited	
Alonso, M. (2005). Caracterización y modelado de asociaciones de dispositivos fotovoltaicos.

Madrid: Centro de Investigaciones energéticas, Medioambientales y Tecnológicas
(Ciemat).

Arduino. (2015). Arduino Ethernet Shield. Retrieved from Qrduino:
http://www.arduino.cc/en/Main/ArduinoEthernetShield

Arduino. (n.d.). Arduino Uno. Retrieved from ARDUINO:
http://arduino.cc/en/Main/arduinoBoardUno

Bouzidi, K., Cheggar, M., & Bouhemadou, A. (2007). Solar cells parameters evaluation
considering the series and shunt resistance. 91(18).

Carrero, C., Amador, J., & Arnaltes, S. (2007). A single procedure for helping PV designers to
select silicon PV module and evaluate the loss resistances. 32(15).

CIVICSOLAR. (n.d.). SolarEdge Zigbee-Ethernet Gateway . Retrieved 04 26, 2013, from
CIVICSOLAR: http://www.civicsolar.com/product/solaredge-zigbee-interface-
gateway?utm_source=google_shopping&utm_medium=google_shopping&utm_campaig
n=google_shopping&gclid=CJWR2Pud6LYCFY87MgodUzUAkQ

CIVICSOLAR. (n.d.). wireless-communication-products. Retrieved 04 26, 2013, from
CIVICSOLAR:
http://www.civicsolar.com/sites/default/files/documents/wwwsolaredgeusfilespdfsproduc
tsinverterszigbee-wireless-communication-products-65748.pdf

De Soto, W., Klein, S. A., & Beckman, W. A. (2005). Improvement and validation of a model
for photovoltaic array performance. Solar Energy 80(2006).

Eckstein, J. H. (1990). Detailed Modelling of Photovoltaic System Components . University of
Wisconsin - Madison.

ECODIRECT. (n.d.). BenQ AUO Solar 19.M2M01.002. Retrieved 04 26, 2013, from
ECODIRECT, Clean Energy Solutions:
http://www.ecodirect.com/ProductDetails.asp?ProductCode=BenQ-AUO-19-M2M01-
002&gclid=CLvd2tue6LYCFQdgMgodBGIAOg

El Tayyan, A. A. (2012). PV system behavior based on datasheet. 9.

Everett. (n.d.). Arduino: Super Graphing Data Logger. Retrieved from Everett's Pjocts:
http://everettsprojects.com/2012/12/31/arduino-super-graphing-data-logger/

Google. (n.d.). Google Shopping. Retrieved 04 26, 2013, from Google:
http://www.google.com/shopping

39

Hambley, A. R. (2011). Elecrical Engineering Principles anApplications. Upper Saddle River:
Pearson Education.

Kaiser, T. J. (2010, 05 24). Lecture 08: Solar Cell Characterization. Retrieved 04 12, 2012, from
EE 580 - Solar Cell Basics for Teachers:
http://www.coe.montana.edu/ee/tjkaiser/ee580/Notes/MSUEE580-08Characterization.pdf

KYOCERA. (n.d.). KCT85T High efficiency multicrystal photovoltaic module. Retrieved 01 15,
2013, from Backwoods Solar Electric Systems:
http://www.backwoodssolar.com/catalog/Spec_Sheets/KC85T.pdf

LLC, F. U. (2013). Fronius Datalogger easy/pro. Retrieved 04 26, 2013, from FRONIUS
INTERNATIONAL: http://www.fronius.com/cps/rde/xchg/SID-16D84AA2-
C939179D/fronius_international/hs.xsl/83_16098_ENG_HTML.htm

PARALLAX. (n.d.). http://www.parallax.com/sites/default/files/downloads/750-00031-9V-1W-
Solar-Panel-Datasheet.pdf. Retrieved from http://www.parallax.com.

Rekioua, D., & Matagne, E. (2012). Optimization of Photovoltaic Power Systems: Modelization,
Simulation and Control. Springer.

Rodrigues, E., Melicio, R., Mendes, V., & Catalao, J. (2011). Simulation of a Solar Cell
considering Single-Diode Equivalent Circuit Model. ICREPQ. Bilbao.

Sedra, A. S., & Smith, K. C. (2010). Microelectronic Circuits. New York Oxford: Oxford
University Press.

SunEarthTools. (2015, april 08). Retrieved from
http://www.sunearthtools.com/dp/tools/pos_sun.php?lang=en

Technologies, A. (2012). IV and CV Characterizations of Solar/Photovoltaic Cells Using the
B1500A. Retrieved 12 04, 2012, from http://cp.literature.agilent.com/litweb/pdf/5990-
4428EN.pdf

timeanddate. (2015, april 12). Worcester, U.S.A. — Sunrise, sunset and daylength, April 2015.
Retrieved from timeanddate: http://www.timeanddate.com/sun/usa/worcester

Villalva, M. G., Gazoli, J. R., & Ruppert, E. F. (2009). Comprehensive approach to modeling
and simulation of photovoltaic arrays. IEEE Transactions on Power Electronics, 25(5),
1198--1208.

Villalva, M. G., Gazoli, R. J., & Filho, E. R. (2009). MODELING AND CIRCUIT-BASED
SIMULATION OF PHOTOVOLTAIC ARRAYS. Sao Paulo: IEEE.

40

Walker, G. (2001). Evaluating MPPT Converter Topologies Using A MATLAV PV Model.
Journal of Electrical & Electronic Engineering, 49-56.

 	

41

Appendices	

A1.	PARALLAX	750‐00031	Datasheet		

Figure 33: PARALLAX 750-00031 Specifications (PARALLAX)

42

A2.	MCP6001/2/4	Datasheet	

The rest of datasheet could be found at: http://www.mouser.com/ds/2/268/21733e-41017.pdf

43

A3.	1N4148	Datasheet	

The rest of datasheet could be found at: http://www.vishay.com/docs/81857/1n4148.pdf

44

A4.	Arduino	Sketch:	OPVMS.ino	
/***
* *** OPVMS ***
* ***

 * Author: Ali Magzari
 * Date: April 2015
 * This code is based on the Super Graphing Data Logger code
 * written by Everett Robinson in December 2012
*/

// Libraries
#include <SD.h>
#include <Ethernet.h>
#include <EthernetUdp.h>
#include <SPI.h>
#include <string.h>
#include <Time.h>
#include <EEPROM.h>
#include <EEPROMAnything.h>
#include <avr/pgmspace.h>

// Ethernet setup
byte mac[] = { 0x90, 0xA2, 0xDA, 0x0D, 0x7B, 0xB6 };
byte ip[] = { 192,168,1, 177 };
EthernetServer server(8081);

// NTP setup
unsigned int localPort = 8888;
IPAddress timeServer(132, 163, 4, 101);
//NTP time stamp is in the first 48 bytes of the message
const int NTP_PACKET_SIZE= 48;
byte packetBuffer[NTP_PACKET_SIZE];
EthernetUDP Udp;

// Data logger and Timer Control
const int analogPin = 0;
//The time the last measurement occurred.
unsigned long lastIntervalTime = 0;
//1 minute interval between measurements
#define MEASURE_INTERVAL 60000
//The time at which we should create a new week's file
unsigned long newFileTime;
#define FILE_INTERVAL 300
char charBuf[5]; // To store float data into a string

//A structure that stores file config variables from EEPROM
typedef struct{
 //Keeps track of when a newfile should be made.
 unsigned long newFileTime;
 //The path and filename of the current week's file
 char workingFilename[19];
} configuration;

configuration config;
//Actually make our config struct

45

// Strings stored in flash mem for the Html Header (saves ram)
prog_char HeaderOK_0[] PROGMEM = "HTTP/1.1 200 OK";
prog_char HeaderOK_1[] PROGMEM = "Content-Type: text/html";
prog_char HeaderOK_2[] PROGMEM = "";

// A table of pointers to the flash memory strings for the header
PROGMEM const char *HeaderOK_table[] = {
 HeaderOK_0,
 HeaderOK_1,
 HeaderOK_2
};

// A function for reasy printing of the headers
void HtmlHeaderOK(EthernetClient client) {

 char buffer[30]; //A character array to hold the strings from the flash
mem

 for (int i = 0; i < 3; i++) {
 strcpy_P(buffer, (char*)pgm_read_word(&(HeaderOK_table[i])));
 client.println(buffer);
 }
}

// Strings stored in flash mem for the Html 404 Header
prog_char Header404_0[] PROGMEM = "HTTP/1.1 404 Not Found";
prog_char Header404_1[] PROGMEM = "Content-Type: text/html";
prog_char Header404_2[] PROGMEM = "";
prog_char Header404_3[] PROGMEM = "<h2>File Not Found!</h2>";

// A table of pointers to the flash memory strings for the header
PROGMEM const char *Header404_table[] = {
 Header404_0,
 Header404_1,
 Header404_2,
 Header404_3
};

// Easy peasy 404 header function
void HtmlHeader404(EthernetClient client) {

 char buffer[30]; //A character array to hold the strings from the flash
mem

 for (int i = 0; i < 4; i++) {
 strcpy_P(buffer, (char*)pgm_read_word(&(Header404_table[i])));
 client.println(buffer);
 }
}

void setup() {
 Serial.begin(9600);
 // set the SS pin as an output (necessary!)
 pinMode(10, OUTPUT);

46

 digitalWrite(10, HIGH); // but turn off the W5100 chip!

 // see if the card is present and can be initialized:
 if (!SD.begin(4)) {
 //Serial.println("Card failed, or not present");
 // don't do anything more:
 return;
 }
 Serial.println("card initialized.");

 // The SD card is working, start the server and ethernet related stuff!
 Ethernet.begin(mac, ip);
 server.begin();
 Udp.begin(localPort);
 // make sure our config struct is syncd with EEPROM
 EEPROM_readAnything(0,config);
}

// A function that takes care of the listing of files for the
// main page one sees when they first connect to the arduino.
// it only lists the files in the /data/ folder. Make sure this
// exists on your SD card.
void ListFilesVoltage(EthernetClient client) {

 File workingDir = SD.open("/data");

 client.println("");

 while(true) {
 File entry = workingDir.openNextFile();
 if (! entry) {
 break;
 }
 client.print("<a href=\"/HC.htm?file=");
 client.print(entry.name());
 client.print("\">");
 client.print(entry.name());
 client.println("");
 entry.close();
 }
 client.println("");
 workingDir.close();
}

// A function to get the Ntp Time. This is used to make sure that the data
// points recorded by the arduino are referenced to some meaningful time
// which in our case is UTC represented as unix time (choosen because it
// works simply with highcharts without too much unecessary computation).
unsigned long getTime(){
// send an NTP packet to a time server
sendNTPpacket(timeServer);

 // wait to see if a reply is available
 delay(1000);
 if (Udp.parsePacket()) {
 // We've received a packet, read the data from it

47

 Udp.read(packetBuffer,NTP_PACKET_SIZE);
 // the timestamp starts at byte 40 of the received packet and is four
 // bytes or two words.
 // First, extract the two words:

 unsigned long highWord = word(packetBuffer[40], packetBuffer[41]);
 unsigned long lowWord = word(packetBuffer[42], packetBuffer[43]);
 // combine the four bytes (two words) into a long integer
 // this is NTP time (seconds since Jan 1 1900):
 unsigned long secsSince1900 = highWord << 16 | lowWord;
 // Unix time starts on Jan 1 1970. In seconds, that's 2208988800:
 const unsigned long seventyYears = 2208988800UL;
 // subtract seventy years:
 unsigned long epoch = secsSince1900 - seventyYears - 14400; //-14
 // return Unix time:
 return epoch;
 }
}

// send an NTP request to the time server at the given address,
// necessary for getTime().
unsigned long sendNTPpacket(IPAddress& address){

 // set all bytes in the buffer to 0
 memset(packetBuffer, 0, NTP_PACKET_SIZE);
 // Initialize values needed to form NTP request
 // (see URL above for details on the packets)
 packetBuffer[0] = 0b11100011; // LI, Version, Mode
 packetBuffer[1] = 0; // Stratum, or type of clock
 packetBuffer[2] = 6; // Polling Interval
 packetBuffer[3] = 0xEC; // Peer Clock Precision
 // 8 bytes of zero for Root Delay & Root Dispersion
 packetBuffer[12] = 49;
 packetBuffer[13] = 0x4E;
 packetBuffer[14] = 49;
 packetBuffer[15] = 52;

 // all NTP fields have been given values, now
 // you can send a packet requesting a timestamp:
 Udp.beginPacket(address, 123); //NTP requests are to port 123
 Udp.write(packetBuffer,NTP_PACKET_SIZE);
 Udp.endPacket();
}

// How big our line buffer should be for sending the files over the ethernet.
// 75 has worked fine for me so far.
#define BUFSIZ 75

void loop(){
 if ((millis() % lastIntervalTime) >= MEASURE_INTERVAL){ //Is it time for a
new measurement?

 char dataString[68] = "";
 int count = 0;
 unsigned long rawTime;

48

 rawTime = getTime();

 while((rawTime == 39) && (count < 12)){
 delay(5000);
 rawTime = getTime();
 count += 1;
 }
 if (rawTime != 39){

 //Decide if it's time to make a new file or not. Files are broken
 //up like this to keep loading times for each chart bearable.
 //Lots of string stuff happens to make a new filename if necessary.
 if (rawTime >= config.newFileTime){
 int dayInt = day(rawTime);
 int monthInt = month(rawTime);
 int yearInt = year(rawTime);
 char newFilename[18] = "";
 char dayStr[3];
 char monthStr[3];
 char yearStr[5];
 char subYear[3];
 strcat(newFilename,"data/");
 itoa(dayInt,dayStr,10);
 if (dayInt < 10){
 strcat(newFilename,"0");
 }
 strcat(newFilename,dayStr);
 strcat(newFilename,"-");
 itoa(monthInt,monthStr,10);
 if (monthInt < 10){
 strcat(newFilename,"0");
 }
 strcat(newFilename,monthStr);
 strcat(newFilename,"-");
 itoa(yearInt,yearStr,10);
 //we only want the last two digits of the year
 memcpy(subYear, &yearStr[2], 3);
 strcat(newFilename,subYear);
 strcat(newFilename,".csv");

 //make sure we update our config variables:
 config.newFileTime += FILE_INTERVAL;
 strcpy(config.workingFilename,newFilename);
 //Write the changes to EEPROM. Bad things may happen if power is lost
midway through,
 //but it's a small risk we take. Manual fix with EEPROM_config sketch
can correct it.
 EEPROM_writeAnything(0, config);
 }

 //get the values and setup the string we want to write to the file
 int sensor0 = analogRead(0);
 int sensor1 = analogRead(1);
 int sensor2 = analogRead(2);
 int sensor3 = analogRead(3);
 int sensor4 = analogRead(4);

49

 int sensor5 = analogRead(5);
 int sensor6 = analogRead(6);
 int sensor7 = analogRead(7);

 char timeStr[12];
 char sensorStr0[6];
 char sensorStr1[6];
 char sensorStr2[6];
 char sensorStr3[6];
 char sensorStr4[6];
 char sensorStr5[6];
 char sensorStr6[6];
 char sensorStr7[6];
 //char sensorStr8[6];
 float RdvCf = 542.2/100;
 float BtV = 5.0/1023.0;
 float VCf = RdvCf*BtV;

 ultoa(rawTime,timeStr,10);
 strcat(dataString,timeStr);
 strcat(dataString,",");

 // PV Voltages in branch 1
 float V1 = analogRead(A0)*VCf;
 dtostrf(V1, 4, 2, charBuf);
 strcat(dataString,charBuf);
 strcat(dataString,",");
 float V2 = (analogRead(A1)-analogRead(A0))*VCf;
 dtostrf(V2, 4, 2, charBuf);
 strcat(dataString,charBuf);
 strcat(dataString,",");
 float V3 = (analogRead(A2)-analogRead(A1))*VCf;
 dtostrf(V3, 4, 2, charBuf);
 strcat(dataString,charBuf);
 strcat(dataString,",");

 // PV Voltages in branch 2
 float V4 = analogRead(A3)*VCf;
 dtostrf(V4, 4, 2, charBuf);
 strcat(dataString,charBuf);
 strcat(dataString,",");
 float V5 = (analogRead(A4)-analogRead(A3))*VCf;
 dtostrf(V5, 4, 2, charBuf);
 strcat(dataString,charBuf);
 strcat(dataString,",");
 float V6 = (analogRead(A5)-analogRead(A4))*VCf;
 dtostrf(V6, 4, 2, charBuf);
 strcat(dataString,charBuf);
 strcat(dataString,",");
 float VT = (V1+V2+V3+V4+V5+V6)/2;
 dtostrf(VT, 4, 2, charBuf);
 strcat(dataString,charBuf);
 strcat(dataString,",");

 // Pv Currents in branch 1 and 2

50

 float I = VT/(1*100);
 dtostrf(I, 6, 4, charBuf);
 strcat(dataString,charBuf);

 //open the file we'll be writing to.
 File dataFile = SD.open(config.workingFilename, FILE_WRITE);

 // if the file is available, write to it:
 if (dataFile) {
 dataFile.println(dataString);
 dataFile.close();
 // print to the serial port too:
 //Serial.println(Str4);
 Serial.println(dataString);
 }
 // if the file isn't open, pop up an error:
 else {
 //Serial.println("Error opening datafile for writing");
 }
 }
 else{
 Serial.println("Couldn't resolve a time from the Ntp Server.");
 }
 //Update the time of the last measurment to the current timer value
 lastIntervalTime = millis();
 }
 //No measurements to be made, make sure the webserver is available for
connections.
 else{
 char clientline[BUFSIZ];
 int index = 0;

 EthernetClient client = server.available();
 if (client) {
 // an http request ends with a blank line
 boolean current_line_is_blank = true;

 // reset the input buffer
 index = 0;

 while (client.connected()) {
 if (client.available()) {
 char c = client.read();

 // If it isn't a new line, add the character to the buffer
 if (c != '\n' && c != '\r') {
 clientline[index] = c;
 index++;
 // are we too big for the buffer? start tossing out data
 if (index >= BUFSIZ)
 index = BUFSIZ -1;

 // continue to read more data!
 continue;
 }

51

 // got a \n or \r new line, which means the string is done
 clientline[index] = 0;

 // Print it out for debugging
 Serial.println(clientline);

 // Look for substring such as a request to get the root file
 if (strstr(clientline, "GET / ") != 0) {
 // send a standard http response header
 HtmlHeaderOK(client);
 client.println("<h1>Welcome to OPVMS-2015</h1>");
 client.print("To read a description of the project, please click
on the following link: Project
Description");
 client.println("<h2>Photovoltaic Present Data</h2>");
 client.println("Below are listed the individual voltage and
current values of the solar panels of the PV system:

");

 int sensor0 = analogRead(0);
 int sensor1 = analogRead(1);
 int sensor2 = analogRead(2);
 int sensor3 = analogRead(3);
 int sensor4 = analogRead(4);
 int sensor5 = analogRead(5);
 int sensor6 = analogRead(6);
 int sensor7 = analogRead(7);

 float RdvCf = 542.2/100;
 float BtV = 5.0/1023.0;
 float VCf = RdvCf*BtV;

 float V1 = analogRead(A0)*VCf;
 float V2 = (analogRead(A1)-analogRead(A0))*VCf;
 float V3 = (analogRead(A2)-analogRead(A1))*VCf;
 float V4 = analogRead(A3)*VCf;
 float V5 = (analogRead(A4)-analogRead(A3))*VCf;
 float V6 = (analogRead(A5)-analogRead(A4))*VCf;
 float VT = (V1+V2+V3+V4+V5+V6)/2;
 float I = VT/100;

 client.print("PV Voltages

");
 client.print("Panel 1: "); client.print(V1);
 client.print("V
");
 client.print("Panel 2: "); client.print(V2);
 client.print("V
");
 client.print("Panel 3: "); client.print(V3);
 client.print("V
");
 client.print("Panel 4: "); client.print(V4);
 client.print("V
");
 client.print("Panel 5: "); client.print(V5);
 client.print("V
");
 client.print("Panel 6: "); client.print(V6);
 client.print("V
");
 client.print("Total : "); client.print(VT);
 client.print("V
");
 client.print("PV Current: "); client.print(I);

52

 client.print("V
");

 client.println("<h2>Photovoltaic Data History</h2>");
 client.println("Below are CSV files containing the PV collected
data.
");
 client.println("Click on the following links to view voltage and
currnet charts of the corresponding day:");
 ListFilesVoltage(client);
 client.print("To see the people involved in this project, click
on People");

 }
 else if (strstr(clientline, "GET /") != 0) {
 // this time no space after the /, so a sub-file!
 char *filename;

 filename = strtok(clientline + 5, "?"); // look after the "GET /"
(5 chars) but before
 // the "?" if a data file has been specified. A little trick,
look for the " HTTP/1.1"
 // string and turn the first character of the substring into a 0
to clear it out.
 (strstr(clientline, " HTTP"))[0] = 0;

 // print the file we want
 Serial.println(filename);
 File file = SD.open(filename,FILE_READ);
 if (!file) {
 HtmlHeader404(client);
 break;
 }

 Serial.println("Opened!");

 HtmlHeaderOK(client);

 int16_t c;
 while ((c = file.read()) > 0) {
 // uncomment the serial to debug (slow!)
 //Serial.print((char)c);
 client.print((char)c);
 }
 file.close();
 }
 else {
 // everything else is a 404
 HtmlHeader404(client);
 }
 break;
 }
 }
 // give the web browser time to receive the data
 delay(1);
 client.stop();
 }
 }}

53

A5.	HC.htm	code	
<!DOCTYPE HTML>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Super Graphing Data Logger!</title>

 <script type="text/javascript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.8.2/jquery.min.js"></scrip
t>
 <script type="text/javascript">
function getDataFilename(str){
 point = str.lastIndexOf("file=")+4;

 tempString = str.substring(point+1,str.length)
 if (tempString.indexOf("&") == -1){
 return(tempString);
 }
 else{
 return tempString.substring(0,tempString.indexOf("&"));
 }

}

query = window.location.search;

var dataFilePath = "/data/"+getDataFilename(query);

$(function () {
 var chart1;
 var chart2;

 $(document).ready(function() {

 // define the options
 var options = {

 chart: {
 renderTo: 'chart1',
 zoomType: 'x',
 spacingRight: 20
 },

 title: {
 text: 'Voltage levels of the PV Panels (1-6)'
 },

 subtitle: {
 text: 'Click and drag in the plot area to zoom in'
 },

 xAxis: {
 title: {
 text: 'Time of Day HH:MM'
 },
 type: 'datetime',

54

 maxZoom: 2 * 3600000
 },

 yAxis: {
 title: {
 text: 'Voltage(V)'
 },
 min: 0,
 },

 legend: {
 layout: 'vertical',
 align: 'right',
 verticalAlign: 'middle',
 borderWidth: 0
 },

 tooltip: {
 shared: true,
 crosshairs: true
 },

 plotOptions: {
 series: {
 cursor: 'pointer',
 lineWidth: 1.0,
 point: {
 events: {
 click: function() {
 hs.htmlExpand(null, {
 pageOrigin: {
 x: this.pageX,
 y: this.pageY
 },
 headingText: this.series.name,
 maincontentText:
Highcharts.dateFormat('%H:%M - %b %e, %Y', this.x) +':
 '+
 this.y,
 width: 200
 });
 }
 }
 },
 }
 },

 series: [{
 name: 'Panel volatge 1',
 marker: {
 radius: 2
 }
 }
 ,
 {name: 'Panel volatge 2',
 marker: {
 radius: 2
 }

55

 }
 ,
 {name: 'Panel volatge 3',
 marker: {
 radius: 2
 }
 }
 ,
 {name: 'Panel volatge 4',
 marker: {
 radius: 2
 }
 }
 ,
 {name: 'Panel volatge 5',
 marker: {
 radius: 2
 }
 }
 ,
 {name: 'Panel volatge 6',
 marker: {
 radius: 2
 }
 },
 {name: 'Total voltage',
 marker: {
 radius: 2
 }
 }

]
 };

 // Load data asynchronously using jQuery. On success, add the data
 // to the options and initiate the chart.
 // http://api.jquery.com/jQuery.get/
 jQuery.get(dataFilePath, null, function(csv, state, xhr) {
 var lines = [],
 date,

 // set up the two data series
 voltageLevels1 = [];
 voltageLevels2 = [];
 voltageLevels3 = [];
 voltageLevels4 = [];
 voltageLevels5 = [];
 voltageLevels6 = [];
 voltageTotal = [];
 // inconsistency
 if (typeof csv !== 'string') {
 csv = xhr.responseText;
 }

 // split the data return into lines and parse them
 csv = csv.split(/\n/g);

56

 jQuery.each(csv, function(i, line) {

 // all data lines start with a double quote
 line = line.split(',');
 date = parseInt(line[0], 10)*1000;

 voltageLevels1.push([
 date,
 parseFloat(line[1])
]);
 voltageLevels2.push([
 date,
 parseFloat(line[2])
]);
 voltageLevels3.push([
 date,
 parseFloat(line[3])
]);
 voltageLevels4.push([
 date,
 parseFloat(line[4])
]);
 voltageLevels5.push([
 date,
 parseFloat(line[5])
]);
 voltageLevels6.push([
 date,
 parseFloat(line[6])
]);
 voltageTotal.push([
 date,
 parseFloat(line[7])
]);

 });

 options.series[0].data = voltageLevels1;
 options.series[1].data = voltageLevels2;
 options.series[2].data = voltageLevels3;
 options.series[3].data = voltageLevels4;
 options.series[4].data = voltageLevels5;
 options.series[5].data = voltageLevels6;
 options.series[6].data = voltageTotal;

 chart1 = new Highcharts.Chart(options);
 });
 });

 $(document).ready(function() {

 // define the options
 var options = {

 chart: {
 renderTo: 'chart2',
 zoomType: 'x',

57

 spacingRight: 20
 },

 title: {
 text: 'Current level of the PV System'
 },

 subtitle: {
 text: 'Click and drag in the plot area to zoom in'
 },

 xAxis: {
 title: {
 text: 'Time of Day HH:MM'
 },
 type: 'datetime',
 maxZoom: 2 * 3600000
 },

 yAxis: {
 title: {
 text: 'Current(mA))'
 },
 min: 0,
 startOnTick: false,
 showFirstLabel: false
 },

 legend: {
 //enabled: false
 layout: 'vertical',
 align: 'right',
 verticalAlign: 'middle',
 borderWidth: 0
 },

 tooltip: {
 shared: true,
 crosshairs: true
 },

 plotOptions: {
 series: {
 cursor: 'pointer',
 lineWidth: 1.0,
 point: {
 events: {
 click: function() {
 hs.htmlExpand(null, {
 pageOrigin: {
 x: this.pageX,
 y: this.pageY
 },
 headingText: this.series.name,
 maincontentText:
Highcharts.dateFormat('%H:%M - %b %e, %Y', this.x) +':
 '+
 Highcharts.numberFormat(this.y, 4),

58

 width: 200
 });
 }
 }
 },
 }
 },

 series: [{
 name: 'Current Level',
 marker: {
 radius: 2
 }
 }

]
 };

 // Load data asynchronously using jQuery. On success, add the data
 // to the options and initiate the chart.
 // http://api.jquery.com/jQuery.get/
 jQuery.get(dataFilePath, null, function(csv, state, xhr) {
 var lines = [],
 date,

 // set up the two data series
 currentLevel = [];

 // inconsistency
 if (typeof csv !== 'string') {
 csv = xhr.responseText;
 }

 // split the data return into lines and parse them
 csv = csv.split(/\n/g);
 jQuery.each(csv, function(i, line) {

 // all data lines start with a double quote
 line = line.split(',');
 date = parseInt(line[0], 10)*1000;

 currentLevel.push([
 date,
 parseFloat(line[8])
]);

 });

 options.series[0].data = currentLevel;

 chart2 = new Highcharts.Chart(options);
 });
 });

59

});
 </script>
 </head>
 <body>
 <p style="text-align:center;">Please allow 30 seconds for the charts
to load </p>
 <hr/>
<script
src="http://cdnjs.cloudflare.com/ajax/libs/highcharts/2.3.5/highcharts.js"></
script>

<!-- Additional files for the Highslide popup effect -->
<script type="text/javascript"
src="http://www.highcharts.com/highslide/highslide-full.min.js"></script>
<script type="text/javascript"
src="http://www.highcharts.com/highslide/highslide.config.js" charset="utf-
8"></script>
<link rel="stylesheet" type="text/css"
href="http://www.highcharts.com/highslide/highslide.css" />

<!--<div id="container" style="min-width: 400px; height: 400px; margin: 0
auto"></div>-->

<div id="chart1" style="min-width: 400px; height: 300px; margin: 0
auto"></div> <!-- Container for Chart A -->
<div class="spacer" style="height: 30px"></div>
<div id="chart2" style="min-width: 400px; height: 300px; margin: 0
auto""></div> <!-- Container for Chart B -->

 </body>
</html>

60

A6.	Home.htm	code	
<!DOCTYPE html>
<html>
<head>
 <title>Project Description</title>
 <style type="text/css">
 h1 {
 text-align: center;
 font-family: Times New Roman, Times, serif;
 font-size: 20pt;
 }
 p {
 font-family: Times New Roman, Times;
 font-size: 12pt;
 font-weight: normal;
 }
 </style>
</head>
<body>
 <h1>OPVMS-2015</br>Online Photovoltaic Monitoring System</h1>
 <h2>Introduction<h2>
 <p>OPVMS-2015 is an Arduino-based web server that monitors the voltage and
current values of individual solar panels in a photovoltaic system.</br>
 Solar energy is a type of renewable energy widely used in industrial and
residential applications. Although solar energy is considered to be</br>
 a good alternative in terms of power cost reduction and energy
sustainability, it requires regular maintenance to insure proper
operation.</br>
 Seemingly insignificant factors such as dust and shading could lower
the output power of one panel, thus reducing the power output of the</br>
 entire photovoltaic system. Periodic inspections of individual
components wiring is also recommended to reduce the chance of a system
failure.</br>
 This project offers a solution to this problem as it consists of
displaying the PV data over the WAN to be viewed at the user's
convenience.</p>
 <h2>Prototype Design</h2>
 <h3>Hardware: Physical and Electrical Layout</h3>
 <p>The PV prototype consists of six solar panels forming two parallel
branches of three panels connected in series across a test resistance load of
100kOhm . </p>
 <p>The solar panel used in this model is a PARALLAX 750-00031 outputting a
maximum of 9 DCV at 1W with the dimensions of 135x135mm.</p>

 <h3>Data Processing and Monitoring</h3>
 <p>An Arduino Mega is used to read the values of the panel voltages (V1-V6)
and the branch currents(I1-I2). An ethernet shield sits on top of the</br>
 Mega and is connected to the local house router via an RJ45 cable. The
router is reconfigured to port-forward the data so that is available in</br>
 the WAN (Wide Area Network) rather than just in the LAN (Local Area
Network) of the house.</p>
 <p>The software part was based on <a
href="http://everettsprojects.com/2012/12/31/arduino-super-graphing-data-
logger/">this project
 that provided an Arduino sketch and an html code that stores a sensor value
into the SD card of the</br>

61

 Ethernet shield and retrieves it to chart it using Highcharts. The code was
modified to store and retrieve 8 values, serve more pages, and display two
charts.</p>

 <p>To revisit the home page, click on Home.</p>
 <p>To see the people involved in this project, click on People.</p>
</body>
</html>

62

A7.	People.htm	code	
<!DOCTYPE html>
<html>
 <head>
 <title>People</title>
 </head>
 <body>
 <h3>Who are We?</h3>
 <h4>Susan M. Jarvis</h4>

 Adjunct Instructor, ECE WPI
 <p>Project Advisor

 Phone: +1-508-831-5325

 Fax: +1-508-831-5491

 sjarvis@wpi.edu</br></br></p>

 <h3>Ali Magzari</h3>
 <p>WPI'15

 Phone: +1-774-329-7024

 Fax: Needs Office first!

 amagzari@wpi.edu

 magzariali@gmail.com</p></br>

 <p>To revisit the home page, click on Home.</p>
 <p>To read a description of the project, please click on the
following link Project Description.</p>
 </body>
</html>

