Ant-Like Robotic Platform Certain materials are included under the fair use exemption of the U.S. Copyright Law and have been prepared according to the fair use guidelines and are restricted from further use. ### **Aeacus Team Introduction** #### **Student Members:** Neal Anderson - Mechanical Engineering Dan Praetorius - Robotics & Mechanical Engineering Colin Roddy - Robotics & Mechanical Engineering ### **Advising Professors:** Dr. Stephen S. Nestinger Dr. William R. Michalson ### Special Thanks: Blake Alberts - Electrical and Computer Engineering ## Conceptual Genesis #### The Problem: Social and political consciousness regarding the importance of efficient, persistent recycling of materials has increased exponentially in modern times. Yet state-of-the-art methods of sorting such recyclable materials lag behind desired goals. With this in mind, what solutions can we develop to address this problem? ## Conceptual Genesis ### Aeacus' Solution: Utilization of a eusocial swarm capable of collaboratively manipulating objects in hostile and unstructured environments. ### **Project Goals:** To design and construct a biologically inspired robotic platform that is able to navigate the difficult terrain of a landfill and has the ability to further develop swarm behaviors and additional sensory systems ## Design Specifications - Ant-Like Hexapod Robot - > ~5 Pounds - Lifting Capacity: 2X body weight - Operational Life: 30 45 minutes - Body Length: 15 Inches - Walking Speed: 2X body length per second - > Ad-hoc network - Statically stable when walking - Complex task completion via simple execution - Highly efficient network - Naturally talented at searching and centrally gathering items ## Initial Design Initial frame design #### Pros - Lightweight frame - Combination direct and pulley driven legs - > Partially modular #### Cons - High stresses in central frame - Too small to fit needed motors # Final Design - Robust plastic frame - Completely pulley driven legs - Modular sub-systems - Stresses dissipated through frame Final design of robot **Head Assembly** ### The Robot Tail Assembly ### The Robot Tail Assembly Leg Assembly **Head Assembly** Panning Lifting Worcester Polytechnic Institute Fully-extended grippers **Head Assembly** Tail Assembly Tail Mount Center of gravity with tail down Center of gravity with tail up ## Center of Gravity Center of gravity with 10lb weight Modular Attachment Points Central Body Worcester Polytechnic Institute **Electronics Housings** Central Body Worcester Polytechnic Institute ### **Control Architecture** ### Main Controller #### Gumstix Overo FE COM - ➤ Texas Instruments OMAP3530 ➤ 600 MHz ARM Cortex-A8 - >256 MB RAM - ➤ Onboard DSP and GPU - ≽802.11bg WiFi, Bluetooth ## Leg Controller #### Microchip PIC18F26K22 - > 8-bit, 16 MHz - > PWM and direction output - > Feedback - Current Sensors - > Potentiometers - > ICSP capable for online debugging #### **Motor Drivers** • 3x 12V @ 2A peak ### **Communications Bus** - Physical layer: RS-485 - Full-duplex, up to 10 Mbps - Master \leftrightarrow Slaves - Link layer: Custom protocol - Derived from MODBUS - Joints individually addressable - Read/write all controller setpoints | Header Byte | | | | | | | |-------------|---|--|--|--|--|--| | 7 | Status: ACK/NAK (1,0) | | | | | | | 6 | Command Enable (enabled when sending a command) | | | | | | | 5 | ACK/NAK Enable (enabled when responding) | | | | | | | 4 | Broadcast Enable (enabled when broadcasting to all) | | | | | | | 3 | | | | | | | | 2 | Source Address (0 to 9 ASCII – 0x30) | | | | | | | 1 | | | | | | | | 0 | | | | | | | | Header Byte | | | | | | | | Byte | Field | Character | Hex | Description | | |------|--------------------|-----------|-------|------------------------------|--| | 1 | Start Transmission | STX | 0x02 | Signal start of transmission | | | 2 | Leg Address | 1 to 9 | ASCII | Specific leg controller | | | 2 | | 0 | 0x30 | Master controller | | | 3 | Header | | | See table | | | | Command Type | R | 0x52 | Read value | | | 4 | | W | 0x57 | Write value | | | | | D | 0x44 | Returned data | | | | | ? | 0x3F | Ping | | | | Sub-command | Р | 0x50 | Position | | | 5 | | V | 0x56 | Velocity | | | , | | С | 0x43 | Current | | | | | T | 0x54 | Torque | | | 6 | Joint Number | 0 to 9 | ASCII | Joint number | | | 7 | Sign | + or - | ASCII | Data sign | | | 8 | Data | | ASCII | Data digit 1 | | | 9 | | | ASCII | Data digit 2 | | | 10 | | 0 to 9 | ASCII | Data digit 3 | | | 11 | | | ASCII | Data digit 4 | | | 12 | | | | Data digit 5 | | | 13 | | | ASCII | Data digit 6 | | | 14 | End Transmission | ETX | 0x03 | Signal end of transmission | | | 15 | Checksum | 0 to F | ASCII | High byte | | | 16 | (CRC-16) | 0 to F | ASCII | Low byte | | Packet Format - > Two primary periodic gaits: tripod and wave - Non-periodic gaits position legs individually - All are statically and dynamically stable Wave gait: millipedes Tripod gait: ants Worcester Polytechnic Institute