

Ant-Like Robotic Platform

Certain materials are included under the fair use exemption of the U.S. Copyright Law and have been prepared according to the fair use guidelines and are restricted from further use.

Aeacus Team Introduction

Student Members:

Neal Anderson - Mechanical Engineering

Dan Praetorius - Robotics & Mechanical Engineering

Colin Roddy - Robotics & Mechanical Engineering

Advising Professors:

Dr. Stephen S. Nestinger

Dr. William R. Michalson

Special Thanks:

Blake Alberts - Electrical and Computer Engineering

Conceptual Genesis

The Problem:

Social and political consciousness regarding the importance of efficient, persistent recycling of materials has increased exponentially in modern times. Yet state-of-the-art methods of sorting such recyclable materials lag behind desired goals.

With this in mind, what solutions can we develop to address this problem?

Conceptual Genesis

Aeacus' Solution:

Utilization of a eusocial swarm capable of collaboratively manipulating objects in hostile and unstructured environments.

Project Goals:

To design and construct a biologically inspired robotic platform that is able to navigate the difficult terrain of a landfill and has the ability to further develop swarm behaviors and additional sensory systems

Design Specifications

- Ant-Like Hexapod Robot
- > ~5 Pounds
- Lifting Capacity: 2X body weight
- Operational Life: 30 45 minutes
- Body Length: 15 Inches
- Walking Speed: 2X body length per second
- > Ad-hoc network

- Statically stable when walking
- Complex task completion via simple execution
- Highly efficient network
- Naturally talented at searching and centrally gathering items

Initial Design

Initial frame design

Pros

- Lightweight frame
- Combination direct and pulley driven legs
- > Partially modular

Cons

- High stresses in central frame
- Too small to fit needed motors

Final Design

- Robust plastic frame
- Completely pulley driven legs
- Modular sub-systems
- Stresses dissipated through frame

Final design of robot

Head Assembly

The Robot

Tail Assembly

The Robot

Tail Assembly

Leg Assembly

Head Assembly

Panning

Lifting Worcester Polytechnic Institute

Fully-extended grippers

Head Assembly

Tail Assembly

Tail Mount

Center of gravity with tail down

Center of gravity with tail up

Center of Gravity

Center of gravity with 10lb weight

Modular Attachment Points

Central Body

Worcester Polytechnic Institute

Electronics Housings

Central Body

Worcester Polytechnic Institute

Control Architecture

Main Controller

Gumstix Overo FE COM

- ➤ Texas Instruments OMAP3530 ➤ 600 MHz ARM Cortex-A8
- >256 MB RAM
- ➤ Onboard DSP and GPU
- ≽802.11bg WiFi, Bluetooth

Leg Controller

Microchip PIC18F26K22

- > 8-bit, 16 MHz
- > PWM and direction output
- > Feedback
 - Current Sensors
 - > Potentiometers
- > ICSP capable for online debugging

Motor Drivers

• 3x 12V @ 2A peak

Communications Bus

- Physical layer: RS-485
 - Full-duplex, up to 10 Mbps
 - Master \leftrightarrow Slaves

- Link layer: Custom protocol
 - Derived from MODBUS
 - Joints individually addressable
 - Read/write all controller setpoints

Header Byte						
7	Status: ACK/NAK (1,0)					
6	Command Enable (enabled when sending a command)					
5	ACK/NAK Enable (enabled when responding)					
4	Broadcast Enable (enabled when broadcasting to all)					
3						
2	Source Address (0 to 9 ASCII – 0x30)					
1						
0						
Header Byte						

Byte	Field	Character	Hex	Description	
1	Start Transmission	STX	0x02	Signal start of transmission	
2	Leg Address	1 to 9	ASCII	Specific leg controller	
2		0	0x30	Master controller	
3	Header			See table	
	Command Type	R	0x52	Read value	
4		W	0x57	Write value	
		D	0x44	Returned data	
		?	0x3F	Ping	
	Sub-command	Р	0x50	Position	
5		V	0x56	Velocity	
,		С	0x43	Current	
		T	0x54	Torque	
6	Joint Number	0 to 9	ASCII	Joint number	
7	Sign	+ or -	ASCII	Data sign	
8	Data		ASCII	Data digit 1	
9			ASCII	Data digit 2	
10		0 to 9	ASCII	Data digit 3	
11			ASCII	Data digit 4	
12				Data digit 5	
13			ASCII	Data digit 6	
14	End Transmission	ETX	0x03	Signal end of transmission	
15	Checksum	0 to F	ASCII	High byte	
16	(CRC-16)	0 to F	ASCII	Low byte	

Packet Format

- > Two primary periodic gaits: tripod and wave
- Non-periodic gaits position legs individually
- All are statically and dynamically stable

Wave gait: millipedes

Tripod gait: ants

Worcester Polytechnic Institute

