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Abstract

As the popularity of wireless networks increases, so does the need to protect them. In recent years,
many researchers have studied the limitations of the security mechanisms that protect wireless
networks. There has also been much research in the power consumption introduced by the network
card. Technologies such as CPU and memory are increasing and so is their need for power, but
battery technology is increasing at a much slower rate, forming a “battery gap”. Because of this,
battery capacity plays a major role in the usability of the devices. Although the effect of the
network communication on a mobile device’s battery has been widely researched, there has been
less research on the effect of the security profile on energy usage.

In this thesis, we examine a method for analyzing trade-offs between energy and security
proposed by Colón Osorio et al. This research describes a method to identify the most appropriate
security profile for a given application, given battery constraints. The same method can also
be used to discover the minimum battery capacity to maintain a minimum security profile for a
predefined amount of time.

Trade-offs and optimality are analyzed using a cost-energy function, CE , and security measure,
SM . CE encompasses the energy required to use countermeasure M against a specific vulnerability,
Vi, as well as the energy consumed in bulk transfer. SM is a numerical representation of the
effectiveness of a set of security mechanisms which utilize the set of countermeasures to defend
against a set of vulnerabilities. Using CE and SM , we can compare different security profiles
using a trade-off model. Having defined such a framework, we investigate different instances and
examples where the use of the model is helpful in accessing trade-offs between security obtained
and energy consumed to achieve such security. This was first examined through an analytical
study, followed by experimentation.

The major contributions of this work are an energy-security trade-off model and its empirical
validation. This work extends the empirical experimentation done by other researchers such as
Potlapally et al., Karri et al., and Stemm and Katz on the relationship between energy and the
security of wireless communications in battery-constrained devices.
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Chapter 1

Introduction

The use of wireless networks is continuously increasing. The sales of embedded wireless devices
grows 66.2% each year[12]. Table 1.1 shows that hot spots are becoming more frequent in public
areas such as airports, hotels, and retail stores. Newer generations of mobile computing equipment
come with wireless support standard. In 2003, 55% of laptops sold had embedded wireless support
built in [12], and this percentage is expected to grow even more due to technologies like Intel’s
Centrino chip. Indeed, from corporate networks to home networks, the number of wireless networks
and clients is on the rise. As the world becomes more dependent on wireless networks, it needs to
improve the mechanisms that protect them.

A key limitation in wireless devices is the battery capacity. While memory and processor
technologies double with the introduction of every new semiconductor generation (roughly every
18 months), battery technology is increasing at the much slower rate of 5%-10% per year[17]. This is
causing a gap to form between the power required and the battery available (figure 1.1). Some may
argue that this is not important, because people often plug in their laptops during wireless network
usage. When we say wireless device we are mainly concerned with wireless handheld devices, which
are rarely plugged into a power supply during normal usage as their main advantage is unrestricted
mobility. Research in the power consumpition of wireless handhelds has been primarily done in
three areas:

1. energy utilization of the network interface card

2. overall impact of the NIC on mobile systems

3. power management techniques

Location 2001 2002 2003 2004 2005

Airports 85 152 292 378 423
Hotels 569 2,274 11,687 22,021 23,663

Retail Outlets 474 11,109 50,287 82,149 85,567
Enterprise Guesting Areas 84 624 1,762 3,708 5,413

Stations and Ports - 88 623 2,143 3,887
Community Hot Spots 2 266 5,637 20,561 30,659

Others - 240 790 1,526 2,156
Total Market 1,214 14,752 71,079 132,486 151,768

Source: Gartner Dataquest (June 2003)[10]

Table 1.1: Public WLAN Hot Spot locations worldwide, by type

1



Figure 1.1: growing gap between battery technology and power requirements[17]

There has been some research on the effect of wireless security on the total energy consumption,
showing case studies and possible energy optimizations. To our knowledge, there has been no
conclusive research on making intelligent trade-offs between security and energy consumption. If
trade-offs between security and energy can be represented in a mathematical form, then we can
use that information to better choose a security for a given application. This knowledge will lead
to optimal energy usage, with respect to the security profile.

The largest source of power drain on a wireless mobile client is packet transmission. Security
protocols, specifically the authentication portion, may require many or few transmissions, depend-
ing on the protocol. For instance, WEP authentication (discussed in section 2.2.1) contains only
two messages sent by the client whereas EAP-based methods require the client to send at least four
messages - a minimum 100% increase. The client needs to send a message to get a ticket-granting
ticket, and then for every service, a message requesting a ticket and a message for logging into
that service are required. The protocol has a direct impact on the number of transmissions, and
subsequently on the battery life.

In addition to the cost of transmission, there are large differences in energy consumed by
other factors of each protocol. The energy drained by cryptographic computations does matter,
as reducing the energy cost will extend the time that a mobile device can be used. Although
transmission is the biggest source of energy consumption, finding optimizations with respect to
the security profile are advantageous.

In this thesis, we first review current 802.11 security standards and their limitations. We then
use a model proposed by Colón Osorio et al.[4] to understand how such protocols affect the energy
consumption of a mobile device. More specifically, we attempt to quantify how much additional
power is expended by a mobile device int order to achieve a given security profile. This model
will be used to evaluate WEP (section 2.2), WPA (section 2.2.1), 802.1x/EAP (section 2.2.2), and
CCMP (section 2.2.3). They are first evaluated by analytical methods used to create a hypothesis,
and then compared with the empirical measurements of our experiment to support our hypothesis.

1.1 Previous Work

Much research has been conducted on the effects of the wireless card on mobile devices. However,
little of that research has focused on the security profile. Based on our literature survey, most of

2



Figure 1.2: Energy consumption described by Karri and Mishra[14]

the work in this area has been done in the transmission of packets and energy profiling.
Stemm and Katz[28] provided us with a model for breaking down energy expended in wireless

communication. They examined packets of b bytes, and derived costs for energy used in the idle
state (equation 1.1), transmission and reception of packets (equation 1.2), and the total energy
(equation 1.3).

Idle = I
b

B
(1.1)

SendRecv = aEa + dEd (1.2)

Energy = SendRecv + Idle (1.3)

In reviewing previous work closely related to our work, that is understanding the impact of
security mechanisms on the battery life of mobile devices, one manuscript is worth mentioning.
The manuscript at hand is that of Potpally et.al[25] which examined the energy consumed by a
PDA to communicate with a secure connection via wireless network. While their paper did not
use the same modelling that we employ here, it provided a solid foundation for an experimental
structure, as well as data that could be used in the verification of our experimental setup. This
paper made an attempt to analyze trade-offs between security and energy, but focused primarily
on the key-sizes of encryption algorithms rather than the security of the protocol as a whole.

Karri et al.[14] also had a related work, although they did not attempt to perform any trade-off
analysis. This case study measured the energy usage of an encryption algorithm, packet trans-
mission, receiving packets, and the idle state. A sample of their findings is depicted in figure 1.2.
They also examined the effect of compression on the power utilization.
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As stated previously, we are concerned with the number of messages that must be passed during
the authentication portion of the protocol. It follows that we need to take into account the amount
of disassociation and reassociation that occurs in a typical mobile session. Several studies have
been conducted where students analyze the traffic of their campus network[16][11][29][3]. Tang and
Baker traced wireless connections within buildings, as well as a metropolitan area network (MAN).
Additionally, a study conducted by U.C. San Diago and Microsoft attempted to characterize user
behavior with respect to wireless networks during a conference.

The most comprehensible and applicable of these studies are those by Kotz et al.[16][11] in 2002
and 2004. During their observations of wireless activity on the Dartmouth campus, they gathered
sufficient information to identify clients roaming between access points. In their 2004 study, they
found that half of all wireless clients roamed between access points. In their previous study, only
one third of the clients roamed. Indeed, they found that the number of wireless clients overall and
the percentage of those that were mobile had increased in two years. This observation of the rise
in roaming sessions supports and strengthens our claim that the cost of reassociation needs to be
factored into energy measurements.

1.2 Coverage and Overview of Thesis

In this thesis we provide a limited review of 802.11 security protocols. Specifically, the reviewed
protocols are WEP, TKIP, EAP, and CCMP, with descriptions of their encryption schemes as
well (RC4, AES, etc). It also includes a short introduction to wireless networks and how they
differ from wired networks from a security perspective. The experiment test bed and all of its
components are explained, as well as the overall energy equations used.

There are attacks on the 802.11 protocol which are unrelated to the security protocols described.
Namely, attacks involve tactics such as access point spoofing and sending packets at certain intervals
such that a denial of service is created. These attacks are on the underlying 802.11 protocol and
not on the security profiles examined in this paper. They are outside of the scope of this project.

This thesis does not include details or instruction on programming in Microsoft Embedded
Visual C++, Microsoft Foundation Classes, or National Instruments LabVIEW. In addition, we do
not include specifics of the experiment configuration process. Code used in this thesis is presented
in appendices A and C.

The rest of this thesis is organized as follows. Chapter 2 reviews differences between wired and
wireless networks, and standard wireless security profiles that exist today. Chapter 3 describes our
model for reasoning about energy-security trade-offs. Chapter 4 covers our preliminary analysis,
where we study the algorithms used in each protocol and form hypotheses about how the different
security mechanisms impact the battery. Our experimental design is illustrated in chapter 5 and
the results in chapter 6. Finally, we give a summary and conclusions in chapter7.
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Chapter 2

Background

2.1 A Brief Overview of Wireless Network

2.1.1 Summary of 802.11 Protocol

In order to understand the security protocols available for wireless networks, let us first examine
the 802.11 protocol. 802.11 is a MAC layer protocol which uses radio frequencies in unlicensed
portions of the spectrum, called the Industrial, Scientific, and Medical (ISM) bands. Currently,
those frequencies are 2.4 GHZ (802.11b and 802.11g) and 5 GHz (802.11a). The range of each
radio’s transmission creates a cell. If two access points are nearby, then there cells will overlap and
a client may connect to either of them, but not both.

In order for a client to connect to an access point, it first has to authenticate. This authenti-
cation is performed by a challenge-response. If authentication is successful, the client then needs
to associate with the access point. Should a client wander outside of its current cell, then it will
be disconnected and need to associate again. During a mobile session, a client may roam from one
access point to another within the same network. Here, the client will need to reassociate with
the new access point. When the client resides in an overlap between two such access points, then
it may constantly disassociate and reassociate as the signals fluctuate that change which is the
stronger access point. The states described here are expressed by figure 2.1

2.1.2 How Does Security on a WLAN Differ from a Wired LAN?

The greatest factor that separates wired and wireless security is the concept of physical security.
Before Wireless Local Area Networks (WLANs), access to internal networks could be limited to
those who were allowed to get in close proximity to machines on the network. Walls and doors
protected unauthorized users from gaining access. However, wireless signals leak outside these
boundaries. In the earlier years of WLAN deployment, companies would put access points inside
their firewalls, allowing anyone in range of the signal to crack their way in. This was known as the
”parking lot attack”[2].

Presently, similar tactics are still being employed. ”Wardriving” and ”Warchalking” are still
occurring. In these activities, the goal is to find an open network or breach the security, and gain
access to the network. It is not unusual to hear of someone who steals a neighbor’s Internet connec-
tion over a wireless network. Sometimes, the abuse is minor, unintrusive, and non-consequential.
However, this type of breach can have huge consequences attached. In a world where our Internet
usage may be subpoenaed, it is not wise to allow others to access a network that we are legally
responsible for.

5



Figure 2.1: 802.11 State Machine [21]

2.2 Wireless Security Protocols

We shall now review wireless security protocols, in order of appearance on the market.

2.2.1 WEP

The Wired Equivalent Privacy (WEP) protocol was created as a way to ensure the same level of
privacy for wireless communication as there is for wired communications. Its goals, as with any
security mechanism, is to provide confidentiality, integrity, and availability to the wireless network.
Unfortunately, WEP accomplishes none of these goals. It is a very poor protocol and was nearly
removed from the 802.11 standard in a vote by the IEEE in June 2001 (54%-46%)[22].

WEP Encryption

The encryption scheme used in WEP is a very simple one: it uses the RC4 stream cipher to
generate a pseudo-random keystreams which it XORs with the plaintext to encrypt. To decrypt,
XOR the keystreams with the ciphertext.

keystream = RC4(IV + key)

C = P ⊕ keystream

P = C ⊕ keystream

RC4 is a keyed stream cipher containing two different functions - the key scheduling algorithm
(KSA) and the pseudo-random generator algorithm (PRGA)[8]. In WEP, the RC4 key is the
concatenation of a 24-bit initialization vector (IV) and the shared secret key common to the access
point and all its users. The same RC4 key will always produce the same keystream. Since the
only varying piece of this is the IV, that means that there will only be at most 224 different
keystreams generated. While that may seem like a large number, it may be exhausted in seven
hours of maximum full-frame transmission on an 802.11b network [6]. This small space causes
keystreams to repeat, which is in violation of a key concept in the security of stream ciphers - the
same keystream should never be used twice.

To help alleviate this problem, the IV space was increased to 128 bits. Unfortunately, this did
not solve the problem, since IV’s are still reused it was never enforced that more than one IV had
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to be used in the first place. Vendors could set their devices to only go between 0 and 224, and
the WEP protocol has no way of preventing or detecting this.

The RC4 cipher itself also has security issues. The key scheduling algorithm has been shown to
leak information about the key, one byte at a time. By collecting about 60 messages of a special
form, an attacker can guess the secret with a high probability of being correct [8].

Integrity Check

The WEP integrity check is weak. It uses a cyclic redundancy check like the one used to detect
random errors in networking. The distinction between random and intentional changes is very
important. The output space of this integrity check value (ICV) is only 32 bits, which is poor
for collision resistance. It is unkeyed and linear, so anyone can compute it. Someone could easily
change or spoof a packet, and it would go undetected because it has an ICV that matches.

Authentication

WEP uses a simple challenge/response protocol that is also quite poor. The challenge exchange
goes as follows[2]:

AP → client : challenge

client → AP : IV, {challenge, ICV }wepKey

This is completely unacceptable as an authentication scheme. By capturing the clear challenge,
the encrypted challenge, and the IV, an unauthorized user can gain access by doing simple math.

keystream = C ⊕ P

An attacker could gain access to the network without knowing the shared secret.

2.2.2 WPA

One of the reasons that WEP has remained in the 802.11 standard is that it is widely deployed and
implemented in hardware. WI-FI Protected Access (WPA) is a set of improvements over WEP
that are compatible with existing hardware.

The Temporal Key Integrity Protocol

The Temporal Key Integrity Protocol (TKIP) is a modified version of WEP’s encryption scheme.
Like WEP, it uses the RC4 stream cipher to generate a keystream which is then XORed with the
plaintext. What TKIP brings to the table is a way of creating keystreams which are unique to
each packet. This is done by mixing the transmitter address (TA) into the key, giving each user a
unique key per session, and by using the IV as a counter. If an IV value is not the one expected,
then it is discarded. When the IV space is almost exhausted, a new key is negotiated.

Michael

The TKIP specification also names a new message integrity code (MIC) called Michael. Michael is
a non-linear hash function that produces a 64-bit output. Unlike the CRC used in WEP, Michael
is keyed. Only those who know the secret can compute a valid hash. However, it should be noted
that the output space is still small, allowing the possibility of finding or guessing a valid hash.

7
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EAP Reqeust / ID

EAP Response / ID EAP Response / ID

Protocol-specific messages

Success / FailureEAP Success / Failure

EAP key (optional)

AuthenticatorSupplicant Authentication Server

(b) Basic EAP messages
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2.2.3 802.1x/EAP Authentication

802.1x is a flexible framework which has been created for authentication in PPP protocol. This
framework can also be applied to a wireless network to allow key distribution for TKIP with existing
hardware. 802.1x defines the idea of port-based access control; conceptually access control will
require involves two ports: a controlled port and an uncontrolled port. Access to the uncontrolled
port can be gained at any time, and this port leads to the authentication service. The controlled
port can only be accessed after authentication and authorization have taken place, as denoted by
the switch in figure 2.3(a). In wireless networks, the controlled port is the AP’s connection to the
network, and the uncontrolled port goes to an authentication server, such as RADIUS (remote
authentication dial-in user service).

There are three parties identified in this authentication scheme. The supplicant is the entity
that wishes to be authenticated (wireless client). The authenticator is the entity with which the
supplicant is trying to authenticate (access point). Authentication is provided by the third party,
the authentication server, through communication with the authenticator. The supplicant and
authenticator send messages over the wireless medium, while the authenticator and authentica-
tion server communicate over a wire. The separation of services here is interesting because it is
something that was borrowed from the wired world. It is also interesting to note that a wire has
actually been introduced into the authentication process.

The extensible authentication protocol (EAP) is an outline for authentication that sits under-
neath a higher protocol (figure 2.3(b)). For instance, SSL could be used on top of EAP. Protocols
which are currently available from vendors deploying TKIP and EAP (Cisco Systems for example)
include protocols such as EAP-TLS (transport layer security), LEAP (Cisco’s lightweight EAP),
EAP-TTLS (tunneled transport layer security), and PEAP (protected EAP). Each variant has its
own methods, such as mutual authentication vs. client-only authentication, and certificates vs.
username/password.

2.2.4 CCMP

WPA was not intended as a permanent solution to our wireless security dilemma. On June 25, 2004,
IEEE TGi approved the newest wireless security standard, 802.11i, which includes a new protocol,
Counter CBC-MAC Protocol (CCMP). This new protocol differs dramatically from WEP and
TKIP in how it encrypts data. While the previous protocols used the RC4 stream cipher, CCMP
uses the Advanced Encryption Standard (AES) block cipher.

When encoding data with block ciphers, the data is broken up into blocks of fixed and equal
length. AES was designed to accomodate 128, 192, or 256-bit blocks, but only blocks of 128 bits
are utilized by CCMP. Each block is encrypted independently of the rest and then linked together
by a specified mode of operation. Typically, a block cipher algorithms contain a forward cipher
function for encryption and an inverse cipher function for decryption, and this holds true for AES.
However, in CCMP, only the forward cipher function is needed.

In AES, each data block is stored as two-dimensional array thats size is determined by its
length. In CCMP, only 128-bit blocks are used, for both the key and plaintext. Therefore, all
data blocks are stored as 4x4 arrays, where each cell contains one byte. Figure 2.2.4 shows this
representation of the block.

b0 b4 b8 b12
b1 b5 b9 b13
b2 b6 b10 b14
b3 b7 b11 b15

Figure 2.4: AES representation of data
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(a) AES S-box matrix multiplication [5]

(b) AES S-box look-up table[15]

AES is comprised of a key scheduling algorithm, plus four additional functions which occur at
three different layers.

• key addition

• byte substitution

• shiftRow

• mixColumn

The key addition layer is the simplest. It is a simple bitwise xor of the data with the current
key. Here, the current key is one of the unique keys created in the key scheduling process. The
substitution layer is also quite straight forward. There is a matrix multiplication known as an
S-box, which introduces a non-linear transform of the data. This operations is shown in figure
2.5(a). The S-box can also be executed via look-up table, denoted in figure 2.5(b). For each octet
of data, the low-order and high-order nibbles are used as indices, and the result of (high, low)
in the S-box then replaces that octet. The diffusion layer consists of two operations, the first of
which is the shiftRow operation (figure 2.5(c)). Each row of the data block is shifted a specified
amount. Finally, the data undergoes the MixColumn operation (figure 2.5(d)), where each column
is multiplied by a 4x4 matrix.
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Each round applies all four these functions, except for the final round. In the final round, the
mixColumn operation is not applied.

b0 b4 b8 b12 no shift
b1 b5 b9 b13 → 3 positions
b2 b6 b10 b14 → 2 positions
b3 b7 b11 b15 → 1 positions

(c) AES ShiftRow operation
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(d) AES MixComlumn operation

Figure 2.5: AES diffusion layer

Counter CBC-MAC (CCM) mode is a new mode of operation that was created to both authen-
ticate and encrypt. Here, the term “authenticate” refers to verifying the origin of the message.
This new mode combines two old modes. Counter mode (CTR) is used for confidentiality, and
cipher block chaining mode (CBC) is used for authentication (figures 2.6(a) and 2.6(b), respec-
tively). CCM uses standard CTR mode, but a variation on the standard usage of CBC known as
CBC-MAC. This adaptation uses an IV of zero, and uses the final block (which may or may not
be truncated) as a MAC.

There are processes which comprise CCM, generation-encryption and decryption-verification.
Generation-encryption takes in a nonce, payload, and associated data (if any), and applies a
formatting function that breaks the inputs into blocks. From this state, CBC is applied to produce
the MAC, counter blocks are generated, and the plaintext is encrypted with AES in CTR mode.

To decrypt a message, the ciphertext is first run through counter mode decryption. This will
produce the distorted payload and MAC. The payload, nonce, and associated data are then checked
for validity. If they are invalid then an error message is returned. If they are valid, then they are
formatted into blocks and the CBC-MAC is applied to verify the MAC tag. If the MAC verifies
the payload, then plaintext payload is returned. Otherwise, an error message is returned.

CCMP uses the 802.1x framework for authentication. There are no standard EAP methods
that are part of the security standard, but stronger methods are recommended.

The 802.11i security standard includes, in addition to CCMP, WPA. This remains for backward
compatibility with legacy wireless devices.

AES

IV

m1

c1

AES

IV+1

m2

c2

AES

IV+2

m3

c3

(a) AES in counter mode

AES AES AES

IV

M1 M2 M3

C1 C2 C3

(b) AES cipher block chaining mode

Figure 2.6: CTR and CBC modes
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Chapter 3

Analyzing Trade-offs Between
Energy and Security

3.1 Energy-Security Trade-off Model

Colón Osorio et al.[4] described a model to calculate the energy consumed by using a countermea-
sure (Mk) to protect against a certain vulnerability (Vi). First, we defined the total energy cost
as the sum of energy consumed to launch all countermeasures included in the protocol (equation
3.1).

CE
total =

∑

i

CE(Mk, Vi) (3.1)

Secondly, we defined the measure of security a given countermeasure M provides as SM . Be-
cause there is currently no known method for empirically measuring the security of a protocol, we
use a subjective estimate based on the effort/time needed to break the protocol. This incorporates
the key size, known weaknesses, and the availability of tools designed for attacking these protocols.

Finally, with knowledge of CE and SM , we can obtain greater insight by applying equation 3.2.
This is called the Countermeasure Energy Quotient. Given a set of protocols that meet a minimum
requirement for security profile or battery lifetime, this quotient allows us to identify the optimal
protocol. The optimal protocol is that which maximizes QM .

QM =
SM

CE
total

(3.2)

3.2 An Instance of the Energy-Security Trade-off Model

This model suggests that vulnerabilities be divided to provide the three services of security. Specif-
ically,

• V1 = Robustness of the cryptographic algorithm(confidentiality)

• V2 = Robustness of the integrity check (integrity)

• V3 = Robustness of the authentication, authorization and access protocol (availability)

Integrity checks and encryption may be grouped together, but for security purposes have been
seperated. Authentication, authorization, and access have been split despite the fact that they
all are associated with availability. The reason behind this is related to message passing. Some
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64-bit WEP 128-bit WEP CKIP+MMH WPA-LEAP AES-CCM
key not renegotiated

when exhausted 0 0 0 1 1
known (practical)

attacks on cipher 0 0 0 0 1
key discovery through

packet collection 0 0 1 1 0

birthday attack 1.52588E-05 1.52588E-05 1.5259E-05 0.125 1

origin not protected 0 0 0 0 1

bit-flipping attack 0 0 1 1 1

anyone can compute 0 0 1 1 1
authentication without

secret 0 0 0 0 1

open authentication

allowed 0 0 0 1 1
authenticate

hardware, not person 0 0 0 1 1

1.52588E-05 1.000015259 5.00001526 8.125 11

Vulnerability

encryption

integrity

availability

Table 3.1: Security proxy

protocols, such as WEP, group these operations into one. However, protocols exist where each of
these steps requires a message. Protocols which use ticket granting mechanisms, such as Kerberos,
are examples of this.

The energy expenditure function associated with each countermeasure M1,M2, and M3, CE(Mk, Vi),
is defined by the protocol itself and the parameters used. For example, in WEP, the countermea-
sure against V1 is simply the RC4 stream cipher. In this case, the energy expenditure to achieve
the desired level of security is CE(Klength, Vi) = f(# of computations to encrypt)

3.3 Security Proxy

To our knowledge, there is currently no empirical means of measuring the security of a protocol.
In this thesis, we have derived a proxy as an estimate. Our proxy is simply an ordinal scale that
ranks security profiles by counting vulnerabilities and the countermeasures against them. It is
important to note that because this scale is ordinal, the numbers have no meaning on their own.
Meaning can only be obtained by saying x R y, where R is a relation. This also means that our
quotient, QM , is on an ordinal scale.

The aspects of each protocol are rated against the classic categories of attacks. If it withstands
the attack, then it receives a 1 in that category. If not, then it receives a 0. For vulnerabilities
that are not simply a ’yes’ or ’no’, but vary in difficulty, such as brute force and birthday attacks,
ratios are used to assign a number between 0 and 1. This method of comparison assumes that all
vulnerabilities are equal. This is not an accurate assumption, as some vulnerabilities are worse
than others. For instance, one vulnerability may only affect a single message by rearranging blocks
within it, making it gibberish, while another vulnerability may render the entire network unusable.
Clearly, the latter has a more severe impact than the former. While our assumption is not true in
practice, we believe that our proxy is sufficient for purposes of illustrating the model.
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Chapter 4

Analytical Study

The first part of understanding the relationship between security countermeasures and energy
consumption consisted of an analytical study involving WEP, WPA, and CCMP. Each of the
computational algorithms was examined for a specified packet size based on RFC information and
observations. This study provided insight, but was clearly not sufficient.

In order to perform a valid analysis, we obtained code for 802.11i from an IEEE member [13].
This code includes C files for CCMP MPDU encryption, TKIP key mixing, RC4, and Michael.
This code was created to follow the algorithms described in the drafts exactly, not implement any
efficiency improvements.

Based on these algorithms, we comprised the graphs shown in figures 4.1 and 4.2. The first
contains the cost of encryption and the integrity check, and the latter just the encryption. We
can see that for encryption only, AES is the cheapest in terms of computation, while WEP and
TKIP are almost the same. This is a because both WEP and TKIP use the RC4 stream cipher,
and TKIP only adds a little extra computation for the key mixing.

When the integrity check is factored in, AES and TKIP become the most expensive. This is
due to the relatively high cost of the integrity function to that of WEP’s.

In addition, we conducted and earlier analysis which contained an estimation of authentication
costs, shown in figure 4.3. Unfortunately, the EAP authentication methods that we selected in
this analysis were not included in the experiment due to lack of support. However, we can still see
that the cost of EAP methods is far greater than that of WEP’s authentication.

Based on our preliminary analysis we quickly concluded that the most significant element af-
fecting the energy consumption of a wireless device security protection mechanism will be that
associated with authentications. Similarly, we speculated that there will be very little differences
across cryptographic protocols from an energy consumption perspective. While only one authen-
tication is required to start a session, weak signals, reassociation, and roaming can all cause more
authentications to take place. Therefore, it can be assumed that a session may have multiple
authentication handshakes.
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Cost of encryption and integrity countermeasures (estimated)
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Figure 4.1: computations for confidentiality and integrity countermeasures
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Figure 4.2: computations for confidentiality countermeasures
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Cost of encryption in different authentication protocols (estimated)
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Figure 4.3: computations for availability countermeasures
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Chapter 5

Experiment

5.1 Experiment Overview

The experiment was constructed for a basic scenario where we have a mobile device that wishes
to retrieve a web page via the wireless channel. The test bed, depicted in figure 5.2, consists of
a wireless client (supplicant), access point (authenticator), and RADIUS server (authentication
server). Component information is described in table 5.1

Power measurements were obtained using Labview 7.1 by National Instruments[24]. This prod-
uct obtains signals via a data acquisition (DAQ) card that connects to the PC. For this experiment,
we used a 6062E multifunction DAQ card with a CB-68LP connector block. A Radio Shack Uni-
versal Breadboard was used for all wire connections.

In order to determine the power consumed, Labview measured the voltage drop over a 0.47
Ohm resistor to determine the current (equation 5.1). Using Joule’s law (equation 5.2), we can
determine the total power consumed (in Watts) during the measurement period. First, the current
at each point (the sample rate is 1 millisecond) is calculated. The area under this curve is calculated
and then multiplied by the voltage supplied by the AC adapter (5 volts). The total energy (Joules)
used to perform each transaction is then calculated by multiplying the power consumed by time
in seconds (equation 5.3).

I =
V

R
(5.1)

P = I × V (5.2)

component vendor model relevant specs

web server, RADIUS
server, measurement
system

Toshiba Satellite A75-S206 2.8 GHz Mobile Intel Pen-
tium4 Processor 518, 512
MB DDR SDRAM, Win-
dows XP Professional SP2

mobile client Compaq iPAQ Pocket PC 3955 400 MHz Intel PXA250
Application Processor, 64
MB RAM, Windows Mo-
bile 2003

access point Cisco Sys-
tems, Inc.

Aironet 1231G 802.11g radio

measurement equipment National In-
struments

Labview 7.1 Academic
Starter Kit

DAQ 6062E, CB-68LP
connector block
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Figure 5.1: Experiment setup

Figure 5.2: Experiment setup
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E = P × t (5.3)

The iPAQ is connected directly to the measurement system via serial port. This allows us to
send signals at the start and stop of each transaction, isolating the exact period that our transaction
takes place.

To measure the cost of disconnection and reassociation, we use the access point to kill the con-
nection between itself and the client. This may be done through either the command line interface
or the web interface. However, the deauthentication via web interface takes longer to complete,
and thus may complete the deauthentication outside of our measurement window. Because of this,
we used the CLI.

To deauthenticate the client from the access point, enter enable mode and use the following
command (where 000f.8fef.aab2 is our client card’s MAC address).

WSSRL#clear dot11 client 000f.8fef.aab2

5.2 Network Infrastructure

The test bed was completely isolated from WPI’s network in order to prevent interference and
uncontrolled events (such as changes to the data). To prevent others from accidentally connecting
to our test bed, we disabled beacon messages from being transmitted by the access point and
enabled MAC filtering.

It was discovered during the experiment that running additional applications on the mea-
surement system increased the frequency of LabVIEW errors. The errors that were encountered
occurred because the input buffer was not emptied before more data was written to it. Because
data was overridden, some results were invalid and the experiment had to be repeated.

5.3 Software

Apache 2, distributed by the Apache group, was chosen as the web server for this experiment.
Apache is one of the most commonly used web servers, and is free under the GPL. Our server runs
a basic installation which does not include CGI processing or additional features, such as SSL.

During the creation of this experiment, the packet analyzer Ethereal[7] was used to capture TCP
and UDP traffic. This was necessary for verification that transactions were completing properly,
and was exceedingly useful for troubleshooting. TCP traffic was observed to verify HTTP requests
and responses, while UDP captures were used to verify RADIUS transactions.

The PDA runs a special browser written for this project. The browser is extremely basic - it
was designed with only three functions:

• send get requests to our web server

• receive and display ASCII representation of of objects

• send a signal to Labview at the start and end of every transaction

The address bar is a drop-down list of all the possible pages in the experiment. This removes
the need to type in the URL for each scenario, therefore increasing speed and reducing error rate.
Once the URL has been selected and the download button has been pressed, the application sends
a start signal to Labview, retrieves all objects associated with the URL, and then sends Labview a
stop signal. A message is displayed in the single-line text area indicating whether or not the page
was successfully downloaded. The multi-line text area displays the ASCII representation of each
object.
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(a) browser interface (b) dropdown address list

Figure 5.3: The simple browser used for the experiment
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This application was developed using Microsoft Embedded Visual C++ [20]. This development
environment was selected due to its integration with Microsoft ActiveSync, Microsoft Foundation
Classes (MFC), and a variety of sample applications. Their HTTP sample application provided
the base code for our tool. The code for this application is located in appendix C.

LabVIEW was used to gather all voltage measurements. The code used was heavily based on
an example by National Instruments [23]. Analog input is acquired continuously in between two
digital triggers. The recorded waveforms are written to files for later analysis. Our LabVIEW code
is located in appendix A .

Once waveforms were obtained, they were run through two perl scripts. The first script,
power.pl, calculates the power consumed in each run. The second script, average.pl, finds the
average of the power expenditure in two different ways - over the entire data set, and over the
IQR. There were often runs that were unusually long and greatly affected the results, so the IQR
average was the one used for our measurements. Perl code used in this experiment is located in
appendix B.

The RADIUS (remote authentication dial-in user service) software selected for this project
was Funk Steel-belted RADIUS Enterprise Edition (SBR EE)[9]. Funk Software offers a fully-
functional free 30-day trial of this server. The selection of this software was based on the supported
interoperability with Cisco’s products and proprietary protocols (LEAP and EAP-FAST). However,
no EAP-FAST functionality could be found. Cisco Systems claimed that SBR EE supported EAP-
FAST, but nowhere in Funk’s documentation could we find a way to enable it. The authentication
methods supported by Funk are LEAP, MD5-Challenge, TLS, and MS-CHAP-V2.

There were three different wireless client programs installed on the PDA, Cisco’s Aironet Client
Utility (ACU), Funk Odyssey Client for PPC 4.0beta, and the Meetinghouse AEGIS client[19].
The reason for multiple clients lies in the authentication support provided by each one. ACU
could not be removed, as doing so also removed the driver for the wireless adapter. The only EAP
authentication methods supported by this device are LEAP and EAP-FAST, which could be used
in both open and WPA association modes.

Funk’s Odyssey client added support for WPA, however, it would not associate with the access
point. Upon examination with Ethereal, the problem seemed to lie in the client or AP. The
RADIUS server sent the RADIUS ACCEPT message, but the client would always disconnect and
start the authentication process over. Odyssey could clearly not be used with WPA, however,
it did offer more authentication methods to be used with open 802.1x authentication. Although
several other methods were configurable, only MD5-Challenge was common between it and SBR
EE.

The AEGIS client also had difficulty with association methods other than open and shared,
and was not used in testing. It did not add any configurations that we could not accomplish with
the other two client programs, and had the worst interface. It did not give much feedback, making
it very difficult to determine what was happening.

5.4 Workload

In any experimental setup of this nature, it is important to capture data while executing workloads
which are “closely” representative of actual Internet traffic. Fortunately, over the last several years
researchers have studied the problem of accurate representation of Internet workloads. In general,
the network community has settled on a model for network traffic which goes under the name of
“mice and elephants”. In this model, mice are small objects that are transferred often, such as
text messages, TCP acknowledgments, etc. Elephants are large objects, such as multimedia files,
of which there are fewer occurrences.

Several studies have been conducted which examine network loads and their effects on per-
formance. One such study out of the University of Washington[26] was used to construct the
data transmitted during our experiment. In their research, Saroiu et al. compared HTTP traffic
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Original data[26] Experiment Workload
- object size (KB) # of requests % of listed requests total instances in workload
1 9 1,412,104 22.305 22
2 2 3,007,720 47.509 48
3 333,000 21 0.0003 0
4 5 1,412,105 22.305 22
5 2,230 1,457 0.023 0
6 20 126,625 2 2
7 20 122,453 1.934 2
8 30 56,842 0.897 1
9 10 143,780 2.271 2
10 40 47,676 0.753 1

Table 5.1: Workload specifications

workload name object size (KB) workload construction
text2 2 single 2KB text-only HTML file
text5 5 single 5KB text-only HTML file
text9 9 single 9KB text-only HTML file
text10 10 single 10KB text-only HTML file
text20 20 single 20KB text-only HTML file
text30 20 single 30KB text-only HTML file
text40 40 single 40KB text-only HTML file
2img 2 48 <img src=...> in HTML file
5img 5 22 <img src=...> in HTML file
9img 9 22 <img src=...> in HTML file
10img 10 2 <img src=...> in HTML file
20img 20 2 <img src=...> in HTML file
30img 30 1 <img src=...> in HTML file
40img 40 1 <img src=...> in HTML file

Table 5.2: Workload

over various applications, such as WWW, Kazaa, and Gnutella. For this experiment, we are only
focusing on WWW traffic, since surfing the web is a common use of mobile devices.

Table 5.1 shows relevant data from the research of Saroiu et al.[26] This data comes from their
top ten bandwidth consuming objects. The data from this study became the basis for our workload
creation. In effect, we set out to reproduce workloads which highly correlates the type of objects
and traffic experienced by Saroiu, et al.[26] while at the same time making it possible to understand
the behavior of a handheld device. For each object, we use the number of requests over the total
number of requests in the top ten to discover how many instances of that object should appear.

Once this was done, three types of pages were constructed to model the Internet:

• text-only pages

• text and many smaller images

• text and fewer larger images

The text-only pages are stand-alone (call no additional objects), and there is one page for each
object size listed in table 5.2. Seven image pages were constructed for this experiment, also based
off the numbers in table 5.2. The HTML pages are the bare minimum, containing only the basic
opening and closing HTML tags and the img tags necessary to request each image. The number
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Figure 5.4: exporting image file for the experiment

of times that an image is called from its accompanying page corresponds with the instance field of
table 5.2.

The images used for this experiment were created using Adobe Photoshop Elements [1]. All
images are based on the same basic image, but vary in the title layer (which labels the image with
it’s size for easy identification) and the final dimensions and quality. After each image was finished
as a .psd file, it was exported for the web as a jpeg file. In order to achieve the desired file size, the
image dimensions and jpeg quality were altered until the file size was correct. Figure 5.4 shows
the screen used for this process.

The workload objects can be found in appendix D.
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Chapter 6

Results

6.1 Encryption

Figure 6.1 depicts our measurements of workload transfers when varying the encryption cipher.
For these measurements, the client adapter was configured using the Cisco ACU. All measure-
ments are taken after the client was authenticated and associated, so they convey only the cost of
confidentiality and integrity countermeasures.

Energy Results

(ACU client, post authentication)
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Figure 6.1: Energy used over workloads after association established

From this data, we can see that the impact of encryption on the battery life is very minimal.
Workloads which only requested one object, namely the text-only workloads, showed trivial energy
differences between profiles. This is no surprise, as all of the ciphers shown here are based on the
RC4 stream cipher and RC4 is very cheap in terms of energy. In the workloads that require more
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requests, specifically the 2img, 5img, and 9img workloads, you can see how the different variations
on WEP affect the total energy consumed. In these workloads we can see how the 128-bit ciphers
break further away from the rest. The cost of 64-bit WEP remains very close to that of no security.

Our first analysis, showed that adding TKIP key mixing and Michael to 128-bit WEP increased
the number of computations by about a 2%. This analysis did not use the same implementations
shown previously in chapter 4, but rather an informal diagram on a university website. When we
extended our analysis for variable message length using Johnston’s implementation[13], as shown
in chapter 4, we found the increase to be around 1.13%, for the sizes shown. Here, the largest
difference is 1.31%. This may be attributed to a different implementation in the client and access
point firmware. It is also likely that all operations in C, which is what we examined in our analysis,
do not consume the same amount of energy since some may be broken into more or fewer assembly
instructions.

Although the latest firmware for our access point supports AES-CCM, it currently only supports
it on certain AP models. Our AP is not one of those that supports AES-CCM at the present time,
despite the fact that it can be configured on the device. Because of this, we were not able to obtain
empirical measurements for this new protocol.

6.2 Authentication

Mobile clients do not necessarily stay connected to the same access point during an entire session.
Several factors may cause disconnection to occur. The client may wander outside the range of the
access point, the AP may deauthenticate when the authentication period expires, the connection
may be dropped due to low signal strength, etc.

In order to see the difference in cost of disconnection, we took measurements with three dif-
ferent authentication types: open, shared, and LEAP. LEAP is configured without WPA key
management, as WPA requires TKIP or AES-CCM as a cipher. Additionally, we could not per-
form open and shared authentication with TKIP or AES-CCM. Therefore, WPA measurements
are not grouped with these results. As anticipated, the differences between open and shared au-
thentication are trivial. To close the connection, we deauthenticated the client through the AP’s
CLI. We took measurements using two different clients, Cisco ACU and Funk Odyssey client, as
Odyssey supported additional EAP methods. The results are shown in figures 6.2(a) and 6.2(b),
respectively.

Both clients consume approximately the same amount of energy for open and shared authenti-
cation. However, in figure 6.2(b), the cost of LEAP authentication is significantly greater than in
figure 6.2(a). MD5-Challenge EAP authentication may not be compared between the clients, as
ACU does not support this method.

The 2img workload only transferred long enough to inject 3 disconnections. In order to gain
more data points, a new workload was created - the disconnect workload. This is simply an
extended version of 2img which should be long enough to insert 7 disconnections. However, due to
time constraints, only 0-5 disconnections are recorded. The results are shown in figures 6.3(a) and
6.3(b). These graphs also contain trend lines and correlation coefficients. For the Odyssey client,
our sample points create a line with little deviation from the data points. The trend lines for the
ACU client are not as tight, but still have a high correlation. While the energy usage is increased
with this new workload, the trends appears the same. The Odyssey client consumes significantly
more energy than ACU for LEAP authentication.

In order to identify the cause of this discrepancy, we performed some traces during disconnection
with Ethereal. Traces captured on the wired side (between the access point and RADIUS server)
were identical. For the wireless channel, we used an Orinoco wireless card on a laptop running the
Knoppix STD distribution. This configuration allowed us to put the card into promiscuous mode
and monitor the traffic exchange between the PDA and access point.

We collected 10 traces for each client, all of which had results similar to those shown in figure
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6.4. What we found is that the time between the reassociation request and subsequent WEP-
encrypted packet were 3 to 4 seconds apart with the Odyssey client, but only 1 and 2 seconds
apart with the ACU client. Although ACU sent more packets (because of the LLC transaction), it
completed about 1 to 2 seconds faster than Odyssey. Therefore, we conclude that the discrepancy
between the two clients is a result of time difference in the idle state.

While our final experimental setup used Windows Mobile 2003, we had previously used Pocket
PC 2002. We upgraded in order to achieve more configurations, as PPC 2002 did not support WPA
key management, and therefore did not support some of the newer ciphers. We did, however, take
some measurements while PPC 2002 was running on the PDA.

Figure 6.5 shows the results of measurements while the 2img workload was transferring, the
client adapter was configured with the Odyssey client, and the PDA had Pocket PC 2002 as its
OS. This graph varies greatly from figure 6.2(a), and looks similar to figure 6.2(b). However,
the cost of LEAP in figure 6.5 is almost double that of the cost in 6.2(b). We believe that the
reason behind this discrepancy lies in the 802.1x support. PPC 2002 requires that a program
called “802.1x Backport” be installed to use EAP authentication. Windows Mobile 2003, however
includes 802.1x support in the operating system.

As discussed in the analysis, we can assume that multiple authentication exchanges may take
place. In fact, a study of a campus WLAN[16] showed that 18% of sessions roam at least once. Of
those sessions, 60% roamed within a subnet, which means that they had to reauthenticate with a
new access point, but kept the same IP address. The remaining 40% had to undergo the complete
association in addition to DHCP process.
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Figure 6.2: Transfer of 2img workload with disconnection
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Figure 6.3: Transfer of disconnect workload with disconnection
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(a) ACU client

(b) Odyssey client

Figure 6.4: wireless traces of LEAP reauthentication
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(a) Discharge rate vs. battery efficiency[27] (b) Battery capacity vs. discharge rate[18]

Figure 6.6: Rate of battery discharge

6.3 Effect on Battery Life

The primary battery on our handheld device has a life of 1400mAh. The use of the wireless
card requires that the expansion pack also have a battery, which provides an additional 920mAh.
Equations 6.1 and 6.2 show the translation of these battery capacities into Joules. Both are rated
with 3.7V. This accounts for an energy capacity of 30,902.4 Joules.

3.7V × 1400mAh = 5, 180mWh

5, 180mWh × 3600
s

h
×

1W

1000mW
= 18, 648Ws

= 18, 648J (6.1)

3.7V × 920mAh = 3, 404mWh

3, 404mWh × 3600
s

h
×

1W

1000mW
= 12, 254.4Ws

= 12, 254.4J (6.2)

These estimates follow the assumption that battery power dissipates linearly. This is not true
in practice. Battery capacity, in fact, varies with the discharge rate (figure 6.6(a)). Figure 6.6(b)
shows a similar curve, with the percentage of the rated capacity and different temperatures.

With these capacity values, we can now estimate the percentage of the battery that was con-
sumed during our experiment. Because we do not have the discharge rate available, we will assume
that the battery is at full capacity for each calculation.

Figure 6.7 depicts the percentage of the battery’s total energy consumed while transferring the
disconnect workload, with 0 to 5 disconnections occurring. From these results, we can determine the
approximate cost, in terms of battery percentage, for each reauthentication. These approximations
are shown in table 6.1.

open shared LEAP shared MD5 LEAP
(ACU) (ACU) (ACU) (Odyssey) (Odyssey) (Odyssey)

% battery capacity 0.0021 0.0027 0.0046 0.0024 0.0102 0.0248

Table 6.1: Percent battery used per reauthentication

We can see that open authentication with the ACU client has the lowest energy cost, at 0.0021%.
The client would have to be disconnected approximately 47,000 times in order for the entire battery
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Figure 6.7: Percent of energy consumed by transfer of disconnect workload with deauthentication

to be used. On the other end of the spectrum, LEAP authentication with the Odyssey client uses
0.0248% of the battery for each authentication. Under this profile, 4,000 disconnections will utlize
the entire battery. In practice, both of these numbers would be lower as the battery capacity will
reduce with each disconnection, and the battery will discharge at a faster rate. However, we can
still see that LEAP with the Odyssey client exhausts that battery in the order of 10 times faster
than open authentication.

The cost of each disconnection, in terms of time, is dependent on the frequency of usage. A
PDA, for example, may last 12 days without charging if it is not turned on. If it is in constant
use, however, it may only last 3 hours. Figures 6.8 and 6.9 give estimates of the time cost of
each disconnection, assuming 3 and 8 hours of battery life, respectively. These graphs show the
average delta between disconnection measurements, not the cost of transferring the workload with
disconnection. In this data, we see that the authentication profile that consumes the greatest
amount of energy only takes seconds off the battery life. It also shows that the longer the battery
life, the greater the energy impact of each reauthentication. Longer usage will all require more
authentication, as authentication expires after a fixed amount of time. Therefore, authentication
will tend to have a higher cost when the mobile device must be in use for longer periods of time.
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Profile SM CE Q

none 0 0 0

WEP 64 1.52588E-05 0.770240511 1.98104E-05

WEP 128 1.000015259 0.895729664 1.1164253

CKIP+MMH 5.000015259 0.861278412 5.805341442

WPA-LEAP 8.125 1.245524641 6.523355485

workload: 2img

Profile SM CE Q

none 0 0 0

WEP 64 1.52588E-05 0.787005339 1.93884E-05

WEP 128 1.000015259 0.858286429 1.16512999

CKIP+MMH 5.000015259 0.853118731 5.86086681

WPA-LEAP 8.125 1.246642802 6.517504444

workload: 5img

Profile SM CE Q

none 0 0 0

WEP 64 1.52588E-05 0.766275188 1.99129E-05

WEP 128 1.000015259 0.867573113 1.152658195

CKIP+MMH 5.000015259 0.901505405 5.546295378

WPA-LEAP 8.125 1.278303043 6.35608281

workload: 9img

Profile SM CE Q

none 0 0 0

WEP 64 1.52588E-05 0.787970407 1.93647E-05

WEP 128 1.000015259 0.775659462 1.289245226

CKIP+MMH 5.000015259 0.793237619 6.303300724

WPA-LEAP 8.125 1.17920814 6.890217022

workload: 10img

Profile SM CE Q

none 0 0 0

WEP 64 1.52588E-05 0.776328505 1.96551E-05

WEP 128 1.000015259 0.768444326 1.301350306

CKIP+MMH 5.000015259 0.802717582 6.228859776

WPA-LEAP 8.125 1.177750564 6.898744306

workload: 20img

Profile SM CE Q

none 0 0 0

WEP 64 1.52588E-05 0.779827861 1.95669E-05

WEP 128 1.000015259 0.779227161 1.283342405

CKIP+MMH 5.000015259 0.79340064 6.302005577

WPA-LEAP 8.125 1.171906383 6.93314766

workload: 30img

Profile SM CE Q

none 0 0 0

WEP 64 1.52588E-05 0.78215137 1.95087E-05

WEP 128 1.000015259 0.801750908 1.247289212

CKIP+MMH 5.000015259 0.801681715 6.236908196

WPA-LEAP 8.125 1.18176792 6.8752924

workload: 40img

Figure 6.10: Results applied to the trade-off model (image workloads)

6.4 Application of the Trade-off Model

The data shown in section 6.1 provides us with all information necessary to illustrate the usage of
our trade-off model. Figures 6.10 and 6.11 show the resulting calculations of applying one authen-
tication and one transfer of each workload. The WEP results assume shared key authentication. In
all cases, the quotient follows the intuition that more secure profiles have higher countermeasure-
energy quotient values. Of course, these results are highly dependent on our proxy, and trends
may change with a more comprehensive and accurate measure of security.

Examining the results for workload “text2”, we can see how putting restrictions on parameter
values yields the most appropriate protocol. If the transfer of this workload were limited to 1J,
then CKIP with MMH would be the best choice, as it gives the most security for that energy
constraint. Were a minimum security profile of 5 required, then the best option would be WPA
with LEAP authentication. Combining these two restraints so that both a minimum profile of 5 a
maximum energy consumption of 1J were required, then CKIP+MMH would be the only option
of those presented here.
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Profile SM CE Q

none 0 0 0

WEP 64 1.52588E-05 0.776336518 1.97E-05

WEP 128 1.000015259 0.776833221 1.287297

CKIP+MMH 5.000015259 0.777515253 6.430762

WPA-LEAP 8.125 1.160459201 7.001539

workload: text2

Profile SM CE Q

none 0 0 0

WEP 64 1.52588E-05 0.775072703 1.97E-05

WEP 128 1.000015259 0.776978357 1.287057

CKIP+MMH 5.000015259 0.780319861 6.407648

WPA-LEAP 8.125 1.165493172 6.971298

workload: text5

Profile SM CE Q

none 0 0 0

WEP 64 1.52588E-05 0.777134496 1.96E-05

WEP 128 1.000015259 0.779142175 1.283482

CKIP+MMH 5.000015259 0.782672134 6.388391

WPA-LEAP 8.125 1.163273358 6.984601

workload: text9

Profile SM CE Q

none 0 0 0

WEP 64 1.52588E-05 0.776139023 1.97E-05

WEP 128 1.000015259 0.781897125 1.27896

CKIP+MMH 5.000015259 0.78210542 6.39302

WPA-LEAP 8.125 1.164283272 6.978542

workload: text10

Profile SM CE Q

none 0 0 0

WEP 64 1.52588E-05 0.7773188 1.96E-05

WEP 128 1.000015259 0.790407784 1.265189

CKIP+MMH 5.000015259 0.787880451 6.34616

WPA-LEAP 8.125 1.169980582 6.94456

workload: text20

Profile SM CE Q

none 0 0 0

WEP 64 1.52588E-05 0.775360082 1.97E-05

WEP 128 1.000015259 0.795495689 1.257097

CKIP+MMH 5.000015259 0.793349112 6.302415

WPA-LEAP 8.125 1.170352306 6.942354

workload: text30

Profile SM CE Q

none 0 0 0

WEP 64 1.52588E-05 0.770252035 1.98E-05

WEP 128 1.000015259 0.789624674 1.266444

CKIP+MMH 5.000015259 0.788877697 6.338137

WPA-LEAP 8.125 1.17252514 6.929489

workload: text40

Figure 6.11: Results applied to the trade-off model (text-only workloads)
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Chapter 7

Conclusions

7.1 Summary

This work has shown that intelligent reasoning about trade-offs between energy and security is
an important research area. We reviewed the current limitations of security protocols utilized in
wireless networks. A preliminary analysis of energy-security trade-offs was conducted, examining
WEP, WPA and CCMP. The results yielded by this analysis suggested that there is an increase
in energy consumption when increasing the security of a particular protocol (i.e. increasing the
key size), but does not necessarily increase when changing to a more secure protocol. Because
this analysis was done simply by algorithm review, we also obtained empirical measurements via
experimentation. We measured energy consumed to retrieve web pages over a wireless network
with each of the security profiles described.

From this experiment, we found that the cost of the different encryption algorithms did not vary
significantly for our workload. The biggest factor in the encryption measurements was the number
of transmissions that took place, which was dependent on the workload. The cost of authentica-
tion, however, did have a significant impact on the battery life. The highest cost authentication
mechanisms are the EAP methods introduced in the later standards and are considered to pro-
vide a higher level of security. Applying limitations to energy and security parameters to our
results shows how the model can be applied to the selection of a security profile based on energy
restrictions.

Most of the current work of enhancing the robustness of wireless security protocols has adopted
techniques from wired-world counterparts. Clearly, such reasoning has the desired effect of in-
creased security; however, as our work has shown, such an approach has detrimental effects on
the utility of the wireless device. Namely, it accelerates the depletion of battery life. Our work
suggests that such consideration should be of importance moving forward in this area.

7.1.1 Future Work

The work presented in this thesis demonstrates how the trade-off model allows for optimal security
profile selection, with respect to energy. While we have obtained empirical measurements for
energy utilization, this is not the case with the security achieved by each profile. Indeed, the
method that was used is not entirely accurate, as there is currently no known way of empirically
measuring the security of a protocol. In order to obtain a better metric, it is necessary that we can
more accurately calculate the security provided by a given profile. The problem of measuring the
security of a protocol is very difficult one that has been heavily researched over the years. While
we may not be able to solve it for our purposes, we must, at minimum, derive a better security
proxy that more accurately reflects the differences and subtleties between the security of different
profiles.
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Currently, we know that lost connections and reassociation affects the number of messages sent
and therefore has an impact on the overall energy consumption. However, we do not know how
many associations and reassociations are normal within a single session. Further experimentation
is required that measures the number of reassociations that take place on an access point, both over
a campus and corporate network. This information will be used to modify our model and analytic
equations to better incorporate the number of messages and energy spent for authentication and
authorization during a typical session.
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Appendix A

LabVIEW Code

This code is heavily based on an example by National Instruments [23]. The main changes are

• The analog input reads data in and outputs it as a waveform instead of scaled data

• The VI prints waveform data out to a file

• Default values for buffer size and scan rate were increased

Figure A.1 shows the GUI, also referred to as the front panel, of our virtual instrument. Figure
A.2 shows the logic that the instrument follows.
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Figure A.1: LabVIEW code: front panel
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Figure A.2: LabVIEW code: block diagram
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Appendix B

Perl Code

#!/usr/bin/perl -w

###############################################################################

# power.pl

# Author: Kerry McKay

#

# This script calculates the instantaneous power from a waveform captured by

# the virtual instrument. For each point, it calculates the integral using rectangle

# approximation. This script outputs important information at the bottom of the

# output file. This line is used later by average.pl.

#

# Voltage files should all be placed in the same directory. This script takes

# that directory as an argument and calculates the inst. power for every point

# in every file that is present in $dir.

###############################################################################

my $dir = "";

my $rate = .001;

if (@ARGV != 1) {

print "\nUsage:\n";

print "\tshortpower.pl <directory name>\n\n";

exit(0);

} else {

$dir = $ARGV[0];

}

print "running on directory $dir\n";

# open directory $dir

opendir(DIR,$dir) or die("failed to open directory $dir: $!\n");

# create a directory for the results

mkdir("$dir-pwr", 0777) || die "cannot mkdir $dir/pwr: $!";

while (defined($file = readdir(DIR))) {

if ($file =~ /^\./) {
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# don’t do anything

} else {

# open each file in $dir for reading

print "Reading file: $file\n";

$path = "$dir/$file";

open(FILE, "< $path") or die "Couldn’t open $path for reading: $!\n";

# create and open file for output

($base, $ext) = split(/\./, $file);

$outfile = "$dir-pwr/$base-pwr.$ext";

open(OUTFILE, "> $outfile") or die "Couldn’t open $outfile for writing: $!\n";

# store the entire file in an array

@lines = <FILE>;

#grab the timestamp of the first reading

$i = 0; # counter

$first = 0;

do {

if ($lines[$i] =~ m/((\d)+\.(\d)+)(\t)+((\d)+\.(\d)+)/) {

$first = $1;

}

$i = $i+1;

} until ($first =~ m/((\d)+\.(\d)+)/);

print OUTFILE "starting at time $first:\n\n";

print OUTFILE "Calculating for file: $file\n";

print OUTFILE "\ntimestamp\tvoltage reading\t\tcurrent\t\tcurrent area\n";

# initialize

$tvolts = 0; #total volts

$ttime = 0; #total time

$current = 0; #instant current

$tcurrent = 0; #total current

$acurrent = 0; #area under the curve (estimated)

# prevtime holds the value of the last recorded time. This is needed for the summation

$prevtime = $first;

foreach $line (@lines) {

if ($line =~ /[a-zA-Z]+/) {

#line of text. skip

} elsif ($line =~ /(\t)+((\d)+\.(\d)+)/) {

# grab timestamp and voltage reading

($time, $volt) = split(/\t+/, $line);

if ($time < $prevtime) {

# Ignore this. Sometimes Labview repeats one of the early lines at the end.

# Using this line will alter the results.

42



} else {

# strip the newline off of power reading

$volt =~ s/\n//;

# C = V/R.

$current = $volt/(0.47);

# calculate running totals

$tcurrent += $current;

$acurrent += $current/1000; #each value represents 1 millisecond

$tvolts = $tvolts + $volt;

print OUTFILE "\n$time\t$volt\t\t$current\t\t$acurrent";

# update prevtime to current timestamp

$prevtime = $time;

}

}

}

# get total time

$ttime = $prevtime-$first; # use $prevtime, $time may be from a repeated line

$energy = $acurrent * 5; #5 volts is being supplied by AC adapter

# print totals for each column

print OUTFILE "\nTOTALS:\n";

print OUTFILE "\ntime\tvoltage reading\t\tcurrent\t\tcurrent area\t\tjoules\n";

print OUTFILE "\n$ttime\t$tvolts\t\t$current\t\t$acurrent\t\t$energy";

# close open filehandles

close(OUTFILE);

close(FILE);

}

}

closedir(DIR);
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#!/usr/bin/perl -w

#######################################################################

# average.pl

# Author: Kerry McKay

# v2

#

# This script is to be run after power.pl. It dives into each result

# directory and averages the joules consumed

#######################################################################

my $dir = "";

if (@ARGV != 1) {

print "\nUsage:\n";

print "\tanalysis.pl <directory name>\n\n";

exit(0);

} else {

$dir = $ARGV[0];

}

print "running on directory $dir\n";

$jtotal = 0;

$javerage = 0;

# open directory $dir

opendir(DIR,$dir) or die("failed to open directory $dir: $!\n");

# create and open file for output

$outfile = "$dir-averaged.txt";

open(OUTFILE, "> $outfile") or die "Couldn’t open $outfile for writing: $!\n";

print OUTFILE "\ntime\tvolt\t\tcurrent\t\tacurrent\t\tmicrojoules";

$size= 0; # holds the number of result files

# stores all the joule values to be used later for stats

$joulelist = "";

while (defined($file = readdir(DIR))) {

if ($file =~ /^\./) {

# don’t do anything

} else {

# open each file in $dir for reading

print "Reading file: $file\n";

$path = "$dir/$file";

open(FILE, "< $path") or die "Couldn’t open $path for reading: $!\n";

# store the entire file in an array, in reverse order so that the

# important line is on the top

$last = ""; #last result
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while ($line = <FILE>) {

# we’ re just waiting for the last line here

$last = $line;

}

print "$last\n";

($time, $volt, $current, $acurrent, $joules) = split(/\t+/, $last);

# strip the \n off of joules

$joules =~ s/\n//;

#print OUTFILE "time: $time\t\tcurrent: $current\t\tjoules: $joules\n";

print OUTFILE "\n$time\t$volt\t\t$current\t\t$acurrent\t\t$joules";

$jtotal = $jtotal + $joules;

$size++;

#store the joule info

$joulelist .= "$joules,";

close(FILE);

}

}

$javerage = $jtotal / $size;

print OUTFILE "\n\nraw results:\n";

print OUTFILE "TOTAL MICROJOULES:\t$jtotal\n";

print OUTFILE "AVERAGE MICROJOULES:\t$javerage\n";

# store the data lists into arrays

@joulearray = split(/,/, $joulelist);

#sort the data

@joulearray = sort {$a <=> $b} @joulearray;

$numruns = @joulearray; # the number of measurements that took place

print "runs: $numruns";

# Get the IQR

$q1 = int($numruns*.25);

$q3 = int($numruns*.75);

#store all values in the IQR in an array

@jouleiqr = @joulearray[$q1..$q3-1];

print "\n\nMICROJOULE IQR:\n";

foreach $line (@jouleiqr){

print "$line\n";

}

# and now, for the IQR averages
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$javerage = 0;

foreach $joule (@jouleiqr){

$javerage += $joule;

}

$javerage = $javerage/($q3-$q1);

print OUTFILE "\n\nIQR results:\n";

print OUTFILE "AVERAGE MICROJOULES:\t$javerage\n";

# print the sorted data data list

print OUTFILE "\n\nJoules:\n";

foreach $j (@joulearray) {

print OUTFILE "$j\n";

}

close(OUTFILE);

closedir(DIR);
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Appendix C

Embedded Visual C++ Code

For the sake of brevity, only the main source file is included.

// httpDlg.cpp : implementation file

//

// This is the main file of our browser. The code is heavily based

// on the "http" sample that comes with Embedded Visual Tools 3.0

#include "stdafx.h"

#include "Afxinet.h"

#include "http.h"

#include "httpDlg.h"

#include "Winbase.h"

/* disaplying the objects as they download adds additional time

* and uses additional energy. Therefore, they are not shown in the

* experiment. However, they may be enabled for debugging purposes

* by setting DEBUG to true. */

#define DEBUG false

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE__;

#endif

enum {

kErrorMin =0x10000000,

kError1 =0x10000001,

kError2 =0x10000010

};

/////////////////////////////////////////////////////////////////////////////

// CHttpSession object

// Http wants to use its own derivative of the CHttpSession class

// just so it can implement an OnStatusCallback() override.

47



// This code is direct from the sample

CMyHttpSession::CMyHttpSession(LPCTSTR pszAppName, DWORD dwContext, int nMethod)

: CInternetSession(pszAppName, dwContext, nMethod)

{

}

// This code is direct from the sample

void CMyHttpSession::OnStatusCallback(DWORD dwContext, DWORD dwInternetStatus,

LPVOID /* lpvStatusInfomration */, DWORD /* dwStatusInformationLen */)

{

CHttpDlg* pDlg = (CHttpDlg*)dwContext;

if(!pDlg)

return;

switch(dwInternetStatus)

{

case INTERNET_STATUS_RESOLVING_NAME:

if (DEBUG) {

pDlg->SetDlgItemText(IDC_MESSAGE, CString((LPCTSTR)IDS_IPLOOKING));

}

break;

case INTERNET_STATUS_NAME_RESOLVED:

if (DEBUG) {

pDlg->SetDlgItemText(IDC_MESSAGE, CString((LPCTSTR)IDS_IPFOUND));

}

break;

case INTERNET_STATUS_CONNECTING_TO_SERVER:

if (DEBUG) {

pDlg->SetDlgItemText(IDC_MESSAGE, CString((LPCTSTR)IDS_CONNECTING));

}

break;

case INTERNET_STATUS_CONNECTED_TO_SERVER:

if (DEBUG) {

pDlg->SetDlgItemText(IDC_MESSAGE, CString((LPCTSTR)IDS_CONNECTED));

}

break;

case INTERNET_STATUS_SENDING_REQUEST:

if (DEBUG) {

pDlg->SetDlgItemText(IDC_MESSAGE, CString((LPCTSTR)IDS_REQUEST));

}

break;

case INTERNET_STATUS_REQUEST_SENT:

if (DEBUG) {

pDlg->SetDlgItemText(IDC_MESSAGE, CString((LPCTSTR)IDS_SENT));

}

break;

case INTERNET_STATUS_RECEIVING_RESPONSE:

if (DEBUG) {

pDlg->SetDlgItemText(IDC_MESSAGE, CString((LPCTSTR)IDS_WAITING));

}

break;

case INTERNET_STATUS_RESPONSE_RECEIVED:
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if (DEBUG) {

pDlg->SetDlgItemText(IDC_MESSAGE, CString((LPCTSTR)IDS_RECEIVED));

}

break;

case INTERNET_STATUS_CLOSING_CONNECTION:

if (DEBUG) {

pDlg->SetDlgItemText(IDC_MESSAGE, CString((LPCTSTR)IDS_CLOSING));

}

break;

case INTERNET_STATUS_CONNECTION_CLOSED:

if (DEBUG) {

pDlg->SetDlgItemText(IDC_MESSAGE, CString((LPCTSTR)IDS_CLOSED));

}

break;

case INTERNET_STATUS_HANDLE_CREATED:

if (DEBUG) {

pDlg->SetDlgItemText(IDC_MESSAGE, CString((LPCTSTR)IDS_CONNECTED2));

}

break;

case INTERNET_STATUS_HANDLE_CLOSING:

if (DEBUG) {

pDlg->SetDlgItemText(IDC_MESSAGE, CString((LPCTSTR)IDS_DISCONNECTED));

}

break;

case INTERNET_STATUS_REQUEST_COMPLETE:

if (DEBUG) {

pDlg->SetDlgItemText(IDC_MESSAGE, CString((LPCTSTR)IDS_COMPLETED));

}

break;

case INTERNET_STATUS_REDIRECT:

if (DEBUG) {

pDlg->SetDlgItemText(IDC_MESSAGE, CString((LPCTSTR)IDS_REDIRECTED));

}

break;

}

}

// This code is direct from the sample

void ThrowHttpException(int nCode)

{

CInternetException* pEx = new CInternetException(nCode);

THROW(pEx);

}

/////////////////////////////////////////////////////////////////////////////

// CHttpDlg dialog

CHttpDlg::CHttpDlg(CWnd* pParent /*=NULL*/)

: CDialog(CHttpDlg::IDD, pParent)

{

//{{AFX_DATA_INIT(CHttpDlg)
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// NOTE: the ClassWizard will add member initialization here

//}}AFX_DATA_INIT

// Note that LoadIcon does not require a subsequent DestroyIcon in Win32

m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);

}

void CHttpDlg::DoDataExchange(CDataExchange* pDX)

{

CDialog::DoDataExchange(pDX);

//{{AFX_DATA_MAP(CHttpDlg)

// NOTE: the ClassWizard will add DDX and DDV calls here

//}}AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CHttpDlg, CDialog)

//{{AFX_MSG_MAP(CHttpDlg)

ON_BN_CLICKED(IDC_DOWNLOADPAGE, OnDownloadpage)

//}}AFX_MSG_MAP

END_MESSAGE_MAP()

/////////////////////////////////////////////////////////////////////////////

// CHttpDlg message handlers

//

// Code from this point on is new or modified

BOOL CHttpDlg::OnInitDialog()

{

CDialog::OnInitDialog();

// Set the icon for this dialog. The framework does this automatically

// when the application’s main window is not a dialog

SetIcon(m_hIcon, TRUE); // Set big icon

SetIcon(m_hIcon, FALSE); // Set small icon

CenterWindow(GetDesktopWindow()); // center to the hpc screen

// populate the drop down list with the experiment pages

CComboBox *pPage = (CComboBox*)GetDlgItem(IDC_ADDRESS);

ASSERT(pPage != NULL);

pPage->AddString(CString("http://192.168.254.146/2_img.html"));

pPage->AddString(CString("http://192.168.254.146/5_img.html"));

pPage->AddString(CString("http://192.168.254.146/9_img.html"));

pPage->AddString(CString("http://192.168.254.146/10_img.html"));

pPage->AddString(CString("http://192.168.254.146/20_img.html"));

pPage->AddString(CString("http://192.168.254.146/30_img.html"));

pPage->AddString(CString("http://192.168.254.146/40_img.html"));

pPage->AddString(CString("http://192.168.254.146/text_2.html"));

pPage->AddString(CString("http://192.168.254.146/text_5.html"));

pPage->AddString(CString("http://192.168.254.146/text_9.html"));

pPage->AddString(CString("http://192.168.254.146/text_10.html"));

pPage->AddString(CString("http://192.168.254.146/text_20.html"));

pPage->AddString(CString("http://192.168.254.146/text_30.html"));
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pPage->AddString(CString("http://192.168.254.146/text_40.html"));

pPage->AddString(CString("http://192.168.254.146/disconnect.html"));

return TRUE;

}

void CHttpDlg::OnDownloadpage()

{

int myReturn = 0;

static HANDLE hPort = INVALID_HANDLE_VALUE;

TCHAR szAddress[INTERNET_MAX_HOST_NAME_LENGTH];

GetDlgItemText(IDC_ADDRESS, szAddress, INTERNET_MAX_HOST_NAME_LENGTH - 1);

SetDlgItemText(IDC_MESSAGE, _T("Download in progess"));

SetDlgItemText(IDC_EDIT_PAGE, _T(""));

// open the serial connection

openPort(hPort);

if (hPort == INVALID_HANDLE_VALUE ) {

MessageBox (TEXT("openPort failed"),

TEXT("Error"), MB_OK);

}

portConf(hPort);

TCHAR szAddress2[INTERNET_MAX_HOST_NAME_LENGTH];

char baseurl[256]="http://192.168.254.146/";

char t[4]; //for converting from int to char

if (CString(szAddress) == "http://192.168.254.146/2_img.html") {

for (int run=1; run<=100; run++) {

//send start signal

portWrite(hPort);

if (DownloadPage(szAddress) !=0) {

SetDlgItemText(IDC_EDIT_PAGE, CString("Download failed"));

CloseHandle(hPort);

exit(0);

}

for (int i=1; i<=48; i++){

sprintf(t, "%i", i); //so that CString likes us

CString url = CString("http://192.168.254.146/2k-") + t + ".jpg";

lstrcpy(szAddress2, url);

if (DownloadPage(szAddress2) != 0) {

SetDlgItemText(IDC_EDIT_PAGE, CString("Download failed"));

CloseHandle(hPort);
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exit(0);

}

}

//send stop signal

portWrite(hPort);

Sleep(500); //a small break so that the serial signals aren’t too close

}

SetDlgItemText(IDC_MESSAGE, CString("Download Complete"));

} else if (CString(szAddress) == "http://192.168.254.146/5_img.html"){

for (int run=1; run<=100; run++) {

//send start signal

portWrite(hPort);

if (DownloadPage(szAddress) !=0) {

SetDlgItemText(IDC_EDIT_PAGE, CString("Download failed"));

CloseHandle(hPort);

exit(0);

}

for (int i=1; i<=22; i++){

sprintf(t, "%i", i); //so that CString likes us

CString url = CString("http://192.168.254.146/5k-") + t + ".jpg";

lstrcpy(szAddress2, url);

if (DownloadPage(szAddress2) != 0) {

SetDlgItemText(IDC_EDIT_PAGE, CString("Download failed"));

CloseHandle(hPort);

exit(0);

}

}

//send stop signal

portWrite(hPort);

Sleep(500); //a small break so that the serial signals aren’t too close

}

SetDlgItemText(IDC_MESSAGE, CString("Download Complete"));

} else if (CString(szAddress) == "http://192.168.254.146/9_img.html"){

for (int run=1; run<=100; run++) {

//send start signal

portWrite(hPort);

if (DownloadPage(szAddress) !=0) {

SetDlgItemText(IDC_EDIT_PAGE, CString("Download failed"));

CloseHandle(hPort);

exit(0);

}
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for (int i=1; i<=22; i++){

sprintf(t, "%i", i); //so that CString likes us

CString url = CString("http://192.168.254.146/9k-") + t + ".jpg";

lstrcpy(szAddress2, url);

if (DownloadPage(szAddress2) != 0) {

SetDlgItemText(IDC_EDIT_PAGE, CString("Download failed"));

CloseHandle(hPort);

exit(0);

}

}

//send stop signal

portWrite(hPort);

Sleep(500); //a small break so that the serial signals aren’t too close

}

SetDlgItemText(IDC_MESSAGE, CString("Download Complete"));

} else if (CString(szAddress) == "http://192.168.254.146/10_img.html"){

for (int run=1; run<=100; run++) {

//send start signal

portWrite(hPort);

if (DownloadPage(szAddress) !=0) {

SetDlgItemText(IDC_EDIT_PAGE, CString("Download failed"));

CloseHandle(hPort);

exit(0);

}

for (int i=1; i<=2; i++){

sprintf(t, "%i", i); //so that CString likes us

CString url = CString("http://192.168.254.146/10k-") + t + ".jpg";

lstrcpy(szAddress2, url);

if (DownloadPage(szAddress2) != 0) {

SetDlgItemText(IDC_EDIT_PAGE, CString("Download failed"));

CloseHandle(hPort);

exit(0);

}

}

//send stop signal

portWrite(hPort);

Sleep(500); //a small break so that the serial signals aren’t too close

}

SetDlgItemText(IDC_MESSAGE, CString("Download Complete"));

} else if (CString(szAddress) == "http://192.168.254.146/20_img.html"){

for (int run=1; run<=100; run++) {
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//send start signal

portWrite(hPort);

if (DownloadPage(szAddress) !=0) {

SetDlgItemText(IDC_EDIT_PAGE, CString("Download failed"));

CloseHandle(hPort);

exit(0);

}

for (int i=1; i<=2; i++){

sprintf(t, "%i", i); //so that CString likes us

CString url = CString("http://192.168.254.146/20k-") + t + ".jpg";

lstrcpy(szAddress2, url);

if (DownloadPage(szAddress2) != 0) {

SetDlgItemText(IDC_EDIT_PAGE, CString("Download failed"));

CloseHandle(hPort);

exit(0);

}

}

//send stop signal

portWrite(hPort);

Sleep(500); //a small break so that the serial signals aren’t too close

}

SetDlgItemText(IDC_MESSAGE, CString("Download Complete"));

} else if (CString(szAddress) == "http://192.168.254.146/30_img.html"){

/* The start and stop signals are too close in this case. Run each 10 times

* and divide it by 10 later */

for (int run=1; run<=100; run++) {

//send start signal

portWrite(hPort);

for (int j=1; j<=9; j++) {

if (DownloadPage(szAddress) !=0) {

SetDlgItemText(IDC_EDIT_PAGE, CString("Download failed"));

CloseHandle(hPort);

exit(0);

} else {

for (int i=1; i<=1; i++){

sprintf(t, "%i", i); //so that CString likes us

CString url = CString("http://192.168.254.146/30k-") + t + ".jpg";

lstrcpy(szAddress2, url);

if (DownloadPage(szAddress2) != 0) {

SetDlgItemText(IDC_EDIT_PAGE, CString("Download failed"));

CloseHandle(hPort);

exit(0);

}

}

}
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}

//send stop signal

portWrite(hPort);

Sleep(500); //a small break so that the serial signals aren’t too close

}

SetDlgItemText(IDC_MESSAGE, CString("Download Complete-divide by 10"));

} else if (CString(szAddress) == "http://192.168.254.146/40_img.html"){

/* The start and stop signals are too close in this case. Run each 10 times

* and divide it by 10 later */

for (int run=1; run<=100; run++) {

//send start signal

portWrite(hPort);

for (int j=1; j<=10; j++) {

if (DownloadPage(szAddress) !=0) {

SetDlgItemText(IDC_EDIT_PAGE, CString("Download failed"));

CloseHandle(hPort);

exit(0);

} else {

for (int i=1; i<=1; i++){

sprintf(t, "%i", i); //so that CString likes us

CString url = CString("http://192.168.254.146/40k-") + t + ".jpg";

lstrcpy(szAddress2, url);

if (DownloadPage(szAddress2) != 0) {

SetDlgItemText(IDC_EDIT_PAGE, CString("Download failed"));

CloseHandle(hPort);

exit(0);

}

}

}

}

//send stop signal

portWrite(hPort);

Sleep(500); //a small break so that the serial signals aren’t too close

}

SetDlgItemText(IDC_MESSAGE, CString("Download Complete-divide by 10"));

} else if (CString(szAddress) == "http://192.168.254.146/disconnect.html"){

/* there actually is no file "disconnect.html". This case requests text2.html

* 200 times. This should allow us enough time to insert several disconnections.

*/

for (int run=1; run<=100; run++) {

//send start signal

portWrite(hPort);

for (int j=1; j<=200; j++) {
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CString url = CString("http://192.168.254.146/text_2.html");

lstrcpy(szAddress2, url);

if (DownloadPage(szAddress2) != 0) {

SetDlgItemText(IDC_EDIT_PAGE, CString("Download failed"));

CloseHandle(hPort);

exit(0);

}

}

//send stop signal

portWrite(hPort);

Sleep(500); //a small break so that the serial signals aren’t too close

}

SetDlgItemText(IDC_MESSAGE, CString("Download Complete"));

} else {

/* The url is a text only page. Because the start and stop signals are too

* close for Labview to recognize, we need to request the page multiple times,

* and then divide the result by that many times afterwards. This last part

* must be done manually after the perl script that calculates average energy

* is run. */

for (int i=1; i<=1; i++) {

//send start signal

portWrite(hPort);

for (int j=1; j<=10; j++) {

if (DownloadPage(szAddress) !=0) {

SetDlgItemText(IDC_EDIT_PAGE, CString("Download failed"));

CloseHandle(hPort);

exit(0);

}

}

//send stop signal

portWrite(hPort);

Sleep(500); //a small break so that the serial signals aren’t too close

}

SetDlgItemText(IDC_MESSAGE, CString("Download Complete-divide by 10"));

}

//close handle to serial port

CloseHandle (hPort);

}

/**************************************************

* DownloadPage

*
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* This function was taken from the http sample program

* that comes with MS Embedded Visual Tools 3.0. It

* has very minor modifications to the original.

***************************************************/

int CHttpDlg::DownloadPage(LPTSTR szAddress)

{

int nRetCode = 0;

DWORD dwAccessType = PRE_CONFIG_INTERNET_ACCESS;

const TCHAR szHeaders[] = _T("Accept: text/*\r\nUser-Agent: WSSRL_get_tool\r\n");

BOOL bSuccess = TRUE;

// don’t allow caching. If we do, then we’ll get 304 responses and our test will be bad.

DWORD dwHttpRequestFlags = INTERNET_FLAG_DONT_CACHE;

CMyHttpSession session(CString("WSSRL"), (DWORD)this, dwAccessType);

CHttpConnection* pServer = NULL;

CHttpFile* pFile = NULL;

TRY

{

// check to see if this is a reasonable URL

CString strServerName;

CString strObject;

INTERNET_PORT nPort;

DWORD dwServiceType;

if (!AfxParseURL(szAddress, dwServiceType, strServerName, strObject, nPort) ||

dwServiceType != INTERNET_SERVICE_HTTP)

{

SetDlgItemText(IDC_EDIT_PAGE, CString((LPCTSTR)IDS_ERROR1));

ThrowHttpException(kError1);

}

session.EnableStatusCallback(TRUE);

pServer = session.GetHttpConnection(strServerName, nPort);

pFile = pServer->OpenRequest(CHttpConnection::HTTP_VERB_GET, strObject, NULL,

(DWORD)this, NULL, NULL, dwHttpRequestFlags);

pFile->AddRequestHeaders(szHeaders);

pFile->SendRequest();

DWORD dwRet;

pFile->QueryInfoStatusCode(dwRet);

if (dwRet == HTTP_STATUS_DENIED)

{

MessageBox (L"Access to the secured http site is denied!", L"Error", MB_OK);

return 0;

}

CString strNewLocation;
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pFile->QueryInfo(HTTP_QUERY_RAW_HEADERS_CRLF, strNewLocation);

// were we redirected?

// these response status codes come from WININET.H

if (dwRet == HTTP_STATUS_MOVED ||

dwRet == HTTP_STATUS_REDIRECT ||

dwRet == HTTP_STATUS_REDIRECT_METHOD)

{

CString strNewLocation;

pFile->QueryInfo(HTTP_QUERY_RAW_HEADERS_CRLF, strNewLocation);

int nPlace = strNewLocation.Find(_T("Location: "));

if (nPlace == -1)

{

SetDlgItemText(IDC_EDIT_PAGE, CString((LPCTSTR)IDS_ERROR2) );

ThrowHttpException(kError2);

}

strNewLocation = strNewLocation.Mid(nPlace + 10);

nPlace = strNewLocation.Find(’\n’);

if (nPlace > 0)

strNewLocation = strNewLocation.Left(nPlace);

// close up the redirected site

pFile->Close();

delete pFile;

pServer->Close();

delete pServer;

CString csMsg = CString((LPCTSTR)IDS_CAUTION) + strNewLocation;

SetDlgItemText(IDC_MESSAGE, csMsg);

// figure out what the old place was

if (!AfxParseURL(strNewLocation, dwServiceType, strServerName, strObject, nPort))

{

SetDlgItemText(IDC_EDIT_PAGE, CString((LPCTSTR)IDS_ERROR3));

ThrowHttpException(kError2);

}

if (dwServiceType != INTERNET_SERVICE_HTTP)

{

SetDlgItemText(IDC_EDIT_PAGE, CString((LPCTSTR)IDS_ERROR4));

ThrowHttpException(kError2);

}

// try again at the new location

pServer = session.GetHttpConnection(strServerName, nPort);

pFile = pServer->OpenRequest(CHttpConnection::HTTP_VERB_GET,

strObject, NULL, (DWORD)this, NULL, NULL, dwHttpRequestFlags);

pFile->AddRequestHeaders(szHeaders);

pFile->SendRequest();
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pFile->QueryInfoStatusCode(dwRet);

if (dwRet != HTTP_STATUS_OK)

ThrowHttpException(kError2);

}

TCHAR* szWEBPage = new TCHAR[MAX_WEBPAGE_SIZE+1];

if(szWEBPage)

{

szWEBPage[0] = L’\0’;

TCHAR* sz = new TCHAR[BUFFER_SIZE+1];

TCHAR* szwBuf = new TCHAR[(BUFFER_SIZE+1)*2];

sz[0] = L’\0’;

szwBuf[0] = L’\0’;

int n = 0;

pFile->SetReadBufferSize(BUFFER_SIZE*2);

while (pFile->ReadString(sz, BUFFER_SIZE))

{

wce_AsciiToWide(szwBuf, (const char*)sz);

n += _tcslen(szwBuf);

if(n >= MAX_WEBPAGE_SIZE)

break;

_tcscat(szWEBPage, szwBuf);

}

delete [] sz;

delete [] szwBuf;

/* this print will add lots of time to the test run.

* Only enable it for debugging purposes */

if (DEBUG) {

SetDlgItemText(IDC_EDIT_PAGE, szWEBPage);

}

}

delete [] szWEBPage;

pFile->Close();

pServer->Close();

}

CATCH (CInternetException, pEx)

{

// catch things wrong with parameters, etc

if (pEx->m_dwError < kErrorMin)

{

TCHAR szError[MAX_PATH]=TEXT("\0");

pEx->GetErrorMessage(szError,MAX_PATH,NULL);

SetDlgItemText(IDC_EDIT_PAGE, szError);

}
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bSuccess = FALSE;

}

AND_CATCH (CMemoryException, pMemory)

{

// catch things wrong with memory

SetDlgItemText(IDC_EDIT_PAGE,CString((LPCTSTR)IDS_MEMORYEXCEPTION));

pMemory->Delete();

bSuccess = FALSE;

}

END_CATCH_ALL

if (pFile != NULL)

delete pFile;

if (pServer != NULL)

delete pServer;

session.Close();

if(bSuccess && DEBUG) {

SetDlgItemText(IDC_MESSAGE, CString((LPCTSTR)IDS_DOWNLOADED));

}

return nRetCode;

}

/************************************************

* Serial Communication Code

*

* This is the code that we need in order to

* establish serial communication. This lets us

* acquire precisely the time period that we’re

* interested in.

*************************************************/

void CHttpDlg::openPort (HANDLE &hPort) {

// Open the serial port.

LPCTSTR lpszPortName = TEXT("COM1:");

hPort = CreateFile (lpszPortName, // Pointer to the name of the port

GENERIC_READ | GENERIC_WRITE,

// Access (read-write) mode

0, // Share mode

NULL, // Pointer to the security attribute

CREATE_ALWAYS,// How to open the serial port

0, // Port attributes

NULL); // Handle to port with attribute

// to copy

}

void CHttpDlg::portConf (HANDLE &hPort) {

DCB PortDCB;
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DWORD dwError;

// Initialize the DCBlength member.

PortDCB.DCBlength = sizeof (DCB);

// Get the default port setting information.

GetCommState (hPort, &PortDCB);

// Change the DCB structure settings.

PortDCB.BaudRate = 9600; // Current baud

PortDCB.fBinary = TRUE; // Binary mode; no EOF check

PortDCB.fParity = TRUE; // Enable parity checking

PortDCB.fOutxCtsFlow = FALSE; // No CTS output flow control

PortDCB.fOutxDsrFlow = FALSE; // No DSR output flow control

PortDCB.fDtrControl = FALSE;

// DTR flow control type

PortDCB.fDsrSensitivity = FALSE; // DSR sensitivity

PortDCB.fTXContinueOnXoff = FALSE; // XOFF continues Tx

PortDCB.fOutX = FALSE; // No XON/XOFF out flow control

PortDCB.fInX = FALSE; // No XON/XOFF in flow control

PortDCB.fErrorChar = FALSE; // Disable error replacement

PortDCB.fNull = FALSE; // Disable null stripping

PortDCB.fRtsControl = FALSE;

// RTS flow control

PortDCB.fAbortOnError = FALSE; // Do not abort reads/writes on

// error

PortDCB.ByteSize = 8; // Number of bits/byte, 4-8

PortDCB.Parity = 0; // 0-4=no,odd,even,mark,space

PortDCB.StopBits = 0; // 0,1,2 = 1, 1.5, 2

// Configure the port according to the specifications of the DCB

// structure.

if (!SetCommState (hPort, &PortDCB))

{

// Could not create the read thread.

MessageBox (TEXT("Unable to configure the serial port"),

TEXT("Error"), MB_OK);

dwError = GetLastError ();

}

}

void CHttpDlg::portWrite (HANDLE &hPort) {

char bytes[] = " ";

DWORD dwNumBytesWritten = 0;

CString prev;

if (!WriteFile (hPort, &bytes[0], 1, &dwNumBytesWritten, NULL)) {

// write failed

SetDlgItemText(IDC_EDIT_PAGE, CString("Failed to send serial signal\n"));

}

}
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Appendix D

Workload
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(a) 2 KB JPG image (b) 5 KB JPG image

(c) 9 KB JPG image (d) 10 KB JPG image

(e) 20 KB JPG image (f) 30 KB JPG image

(g) 40 KB JPG image
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Appendix E

Calibration

In order to validate our experiment, we performed a calibration test using the results of related
paper from Princeton University by Potlapally et al.[25]. This study was selected for calibration
because it is the basis for the experimental structure described in chapter 5. Because of this, the
experiments had much in common.

Although this paper performed its measurements on OpenSSL, they provided basic measure-
ments for RC4; namely energy used during key setup and energy used to encrypt a byte of data.
These are the numbers that we performed our calibration against. In order to capture the current
used by only the computation without the interference of other factors, namely energy associated
with the wireless card, a new application was created solely for this test. This application, like our
browser, transmits signals over the serial connection to start and stop the measurements. Radio
buttons allow the user to select RC4 key setup or RC4 encryption.

Potlapally et. al Our experiment
Compaq iPAQ H3670 (SA-11000 Strongarm) Compaq iPAQ H3955 (PAX250)
Familiar Linux Windows Mobile 2003
SCB-68 connector block CB-68LP connector block

Table E.1: Hardware and software differences between the Princeton experiment and our experi-
ment

Table E.2: calibration results
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