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Abstract

Recently, indoor geolocation technologies has been attracting tremendous attention.

For indoor environments, the fine time resolution of ultra-wideband (UWB) signals en-

ables the potential of accurate distance measurement of thedirect path (DP) between a

number of reference sources and the people or assets of interest. However, Once the DP is

not available or is shadowed, substantial errors will be introduced into the ranging mea-

surements, leading to large localization errors when measurements are combined from

multiple sources. The measurement accuracy in undetected direct path (UDP) conditions

can be improved in some cases by exploiting the geolocation information contained in

the indirect path measurements. Therefore, the dynamic spatial behavior of paths is an

important issue for positioning techniques based on TOA of indirect paths.

The objectives of this thesis are twofold. The first is to analyze the sensitivity of TOA

estimation techniques based on TOA of the direct path. we studied the effect of distance,

bandwidth and multipath environment on the accuracy of various TOA estimation tech-

niques.The second is to study the sensitivity of multipath parameters pertinent to TOA

estimation techniques based on the TOA of the indirect paths. We mainly looked into the

effect of distance, bandwidth, threshold for picking paths, and multipath environment on

the number of multipath components(MPCs) and path persistency.

Our results are based on data from a new measurement campaignconducted on the

3rd floor of AK laboratory. For the TOA estimation techniquesbased on DP, the line of

sight (LOS) scenario provides greatest accuracy and these TOA estimation techniques are

most sensitive to bandwidth availability in obstructed line of sight (OLOS) scenario. All

the TOA estimation algorithms perform poorly in the UDP scenario although the use of

higher bandwidth can reduce the ranging error to some extent. Based on our processed



results, The proposal for selecting the appropriate TOA estimation technique with certain

constrains is given.

The sensitivity study of multipath parameters pertinent toindirect-path-based TOA

estimation techniques shows that the number of MPCs is very sensitive to the threshold

for picking paths and to the noise threshold. It generally decreases as the distance increase

while larger bandwidth always resolves more MPCs. The multipath components behave

more persistently in line of sight (LOS) and obstructed lineof sight (OLOS) scenarios

than in UDP scenarios, and the use of larger bandwidth and higher threshold for picking

paths also result in more persistent paths.
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Chapter 1

Introduction

This Chapter is divided into three sections. Section 1.1 provides the background and

motivation for this research. Section Section 1.2 highlights the major contributions made

through this research. Section 1.3 provides an outline of the remaining chapters in this

thesis.

1.1 Background and Motivation

The use of radio signals for localization was originated in World War II when the require-

ment for locating military targets and soldiers appeared. During the Vietnam war, the

Global positioning system (GPS) [3] was introduced by launching a series of satellites to

support the military application. This technology became accessible to commercial and

private use around 1990, and is still the most popular localization technology until now.

Another existing location finding system, the wireless enhanced 911 (E911), was intro-

duced by the FCC in 1996 and is used to provide relatively accurate positioning for the

outdoor environment [4]. These technologies, although reliable and accurate in outdoor

environments, can not achieve the satisfactory accuracy inindoor and urban areas with
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serious multipath conditions and frequent occurrence of Undetected direct path (UDP)

conditions.

Indoor geolocation is motivated by a variety of envisioned applications for indoor

location sensing in commercial, public safety, and military settings [5, 1]. Examples of

such applications include tracking people with special needs, locating instrumentation and

other equipment in hospitals, locating equipment in warehouses, locating public safety

and military personnel in their indoor missions, and various personal robotics applications

[6].

As a result of the potential for such applications and services, many researchers have

worked on various aspects of indoor geolocation. For the indoor environment, the fine

time resolution of ultra-wideband (UWB) signals enables the potentiality of accurate dis-

tance measurement of the direct path (DP) between a number ofreference sources and

the people or assets of interest. However, the rich multipath environment often causes

the received signal strength (RSS) of indirect paths to be greater than that of the direct

path, sometimes resulting in undetected direct path (UDP) conditions [1]. Once the DP

is not available or shadowed, substantial errors will be introduced into the ranging mea-

surements hence leading to large localization errors when measurements are combined

from multiple sources [7]. Discussions of these UDP conditions and how they affect the

ranging/positioning accuracy can be found in [8, 9].

The measurement accuracy in UDP conditions can be improved in some cases by

exploiting the geolocation information contained in the indirect path measurements [7], or

exploiting multipath signals by using them as additional measurements within a nonlinear

filter [10]. Both of these approaches will need the help of other indirect paths in addition

to the DP component. The intuition for using multipath is that even in the absence of DP,

there will be multipath components that might show stable and persistent behavior and

thus can be related to the DP to aid in more precise localization. Therefore, the dynamic
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behavior of paths, which is time varying due to the motion of the mobile terminal (MT)

and changes in the surrounding objects, is an important issue in mitigating the UDP error.

In this thesis, a comprehensive dynamic UWB channel measurement database has

been created to study the sensitivity of time of arrival (TOA) based indoor localization

techniques. For direct path based TOA estimation, we mainlylooked into the sensitivity

of distance measurement error (DME). For multipath diversity based TOA estimation, the

distance dependency of the available number of MPCs for geolocation has been modeled

for both line of sight (LOS) and non-line of sight (NLOS) conditions. In addition, the

effect of bandwidth, path detection threshold and NLOS occurrence on multipath param-

eters such as number of MPCs , and path persistency, is analyzed to provide a deeper

insight into wireless channel modeling for indoor geolocation.

1.2 Contribution of the Thesis

The contribution of the thesis can be summarized as follows:

1. Dynamic UWB channel measurements were conducted for fourdifferent scenar-

ios: Mixed loop scenario, LOS corridor scenario, NLOS scenario and UDP scenario.

The main difference between this measurement campaign and the previous UWB chan-

nel measurement campaigns conducted in the Center for Wireless Information Network

Study (CWINS) is this: the interval between consecutive measurement points is much

smaller than in the previous measurements: 5 and 10cm distance for the dynamic mea-

surements compared with several meters for previous measurements).

2. The sensitivity of TOA estimation accuracy for DP based techniques was analyzed.

The effect of bandwidth, threshold for picking paths, and NLOS, UDP occurrence on

4



distance measurement error (DME) was evaluated. The performance of different TOA

estimation techniques was also compared using various constraints to build a reference

for the selection of TOA estimation techniques

3. The sensitivity of measured multipath parameters pertinent to TOA estimation

techniques using multipath diversity was also analyzed. The distance dependency of the

available number of MPCs was modeled for each measurement scenario. The effect of

bandwidth, threshold for picking paths, and NLOS, UDP occurrence on the multipath

parameters such as number of MPCs, and path persistency was evaluated using the com-

prehensive measurement data base tailored to indoor geolocation.

1.3 Outline of the Thesis

The thesis is divided into six chapters. Chapter 1provides an overview of the thesis.

Chapter 2 provides an overview of the indoor geolocation systems. The system archi-

tecture and geolocation specific matrices are explained. Furthermore, the classification of

typical indoor channel environments is introduced.

Chapter 3 outlines the procedure for the measurement campaign that was conducted

along with detailed procedure for post-processing the measured data. The measurement

scenario is also depicted.

Chapter 4 first introduces the direct-path-based TOA estimation algorithms used in

thesis and then provides the sensitivity study of these algorithms affected by adjusting

bandwidth, threshold for picking paths, and multipath environments.

Chapter 5 provides the sensitivity analysis results of multipath parameters pertinent to

indirect path based TOA estimation algorithms. This includes a proposed model for the

distance dependency of number of MPCs in LOS scenario and NLOS scenario and also

5



the effect of bandwidth, threshold for picking paths, and UDP occurrence on number of

MPCs and path persistency.

Finally, Chapter 6 concludes the thesis and discusses possible directions of future

work.
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Chapter 2

Indoor Geolocation and Channel

behavior

Localization and tracking are of great interest in many application fields, such as robotics

and emergency systems. In terms of functioning environment, we can distinguish between

indoor and outdoor positioning systems. Outdoor positioning systems, such as GPS or

GSM, are designed for application in wide areas. They usually provide satisfactory cov-

erage and accuracy in open areas, but can’t perform as well inindoor environments and

urban canyon areas. Indoor systems are designed to determine a precise position inside

buildings or at locations where GPS does not perform satisfactorily.

Apart from systems based on use of cameras and certain sensors (such as inertial

sensors), most positioning systems use some kind of a signalmetric to infer the distance

between the fixed elements (beacons) and the mobile terminalthat is to be located. The

metrics that are usually used are time of arrival(TOA), received signal strength(RSS) and

angle of arrival(AOA), which will be further explained later.

Radiofrequency (RF) is the signal that is most commonly usedto perform indoor

localization, because it is the backbone signal for wireless communications. Reusing
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RF signals to perform localization can be accomplished without additional hardware, re-

ducing the total cost of the localization system significantly. Many research groups are

currently working on localization using a standard protocol such as 802.11 (WLAN) or

802.15.3 (UWB).

A wide variety of algorithms have been tested for position calculation , but they all

suffer from none-line-of-sight(NLOS) errors: the problemof finding the intersection of

several spheres centered on the beacons and radius equals their distances to the mobile

terminal accurately. In the concluding section of this chapter, we introduce different

channel profiles and their characteristics as the preparation for later discussion.

2.1 Indoor Geolocation Systems Architecture

Figure 2.1 illustrates a block diagram of the main components in a wireless geolocation

system. The location sensing devices measure the location metrics between the mobile

terminal (MT) with respect to some number of known referencepoints (RPs). The loca-

tion metrics include angle of arrival (AOA), time of arrival(TOA), received signal strength

(RSS), and carrier signal phase of arrival (POA). The positioning algorithm processes the

reported metrics to estimate the location coordinates of the receiver. The display system

exhibits the location of the mobile terminal relative to theuser. The accuracy of location

estimation is a function of the accuracy of the location metrics and the complexity of the

positioning algorithm [2].

There are two common approaches to implementing a wireless indoor geolocation

system. The first approach is to design a signaling system anda network infrastructure of

location sensors focused primarily on geolocation applications [1]. The second approach

is to use an existing wireless network infrastructure such as a cellular network or wireless

LAN (WLAN) to locate a MT. The advantage of the first approach is that the physical
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Figure 2.1: Functional block diagram of a wireless geolocation system [1]

specialization, and therefore the overall design, is underthe control of the system de-

signer. As a result, the MTs can be designed as small wearabletags or stickers and the

complexity and density of the locating infrastructure can be customized to the accuracy

required for different applications. The advantage of the second approach is that it avoids

expensive and time-consuming infrastructure deployment.However, more intelligent al-

gorithms are needed in such systems to compensate for the lowaccuracy of the reported

metrics.

When considering system implementation, the advantage of the first approach is that

it is easier to implement super-resolution algorithm for higher time-domain resolution.

The system captures snapshots in the frequency domain and then through the spectral es-

timation, it is possible to obtain an accurate representation of the time domain. Another

emerging approach that has better accuracy and potential isUltra wideband (UWB) tech-

nology [1]. The large bandwidth provides high time domain resolution which in return

provides better ranging accuracy.

For the second approach, the use of the network infrastructure in indoor geolocation
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is also feasible but more complex algorithms are needed in order to compensate for over-

all performance. One current example is Ekahau positioningsoftware which utilizes the

existing WLAN infrastructure. Unlike the other positioning technologies, Ekahau does

not apply propagation methods that suffer from multipath, scattering and attenuation ef-

fects. Instead, Ekahau collects radio network sample points from different site location.

Each sample point contains received signal intensity (RSSI) and the related map coordi-

nates, stored in an area-specific positioning model for accurate tracking. Ekahau provides

average positioning accuracy approaching 1 meter. The software works with industry-

standard Wi-Fi (IEEE 802.11b,g) networks [11]. When it comes to system deployment,

a positioning model is created first. Then the positioning model is calibrated using RSSI

samples collected from the different points on the map. Thenthe tracking or positioning

can start as soon as the system is calibrated. In other words,this positioning algorithm

works with the WLAN infrastructure and no information aboutthe access point location is

required. Such technology depends on complex positioning algorithms and does not con-

centrate on the physical layer. In fact, it uses RSS as a metric instead of trying to extract

the TOA or AOA, which is more challenging task at the physicallayer. Needless to say,

when following the RSS method and bypassing the propagationissues the complexities

lie in the software itself.

2.2 Positioning Metrices

Wireless localization sensors operating in different environment measure RSS, AOA,

POA, TOA, and the signature of the delay power profile as location metrics [1].
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2.2.1 Angle of Arrival

In AOA-based indoor geolocation, directional antenna or antenna arrays are used to tri-

angulate the MT. Two or more reference points (RPs) are needed to determine the axis

value of the MT as shown in Fig 2.2. Commonly, measurements ofPOA and AOA in

large indoor and urban areas provide very unreliable results due to severe multipath prop-

agation and heavy shadow-fading conditions. The accuracy of the AOA measurement

Figure 2.2: AOA technique for geolocation

system is determined by the resolution of the directional antenna or antenna array and

the algorithms used to estimate the AOA simultaneously. Given the accuracy of AOA

measurement system, the number of reference points is determined by the MT position

with respect to the reference points. When the MT lies between the two reference points.

AOA measurements will not be able to provide the exact location of the MT on the line

between the two reference points. Hence, more than two reference points are normally

needed to improve the location accuracy.
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2.2.2 Received Signal Strength

The first RSS-based indoor geolocation system is the RADAR [12]. In RSS-based indoor

geolocation, the distance between the RP and MT can be calculated using the measured

power and a distance-power relationship. In wideband measurements, the effects of multi-

path fading are averaged over the spectrum of the signal. Fornarrowband systems, where

we have only one arriving pulse with fluctuating amplitude according to the multipath

fading characteristics, we need to average the signal over alonger period to make sure

that the multipath fading is averaged out [2]. Many statistical models are available for

relating RSS to the distance, developed mainly for telecommunication applications. The

common principle behind all statistical models for calculating the RSS in a distanced is

given by [2]:

RSSd = 10log10Pr = 10log10Pt − 10αlog10d + X (2.1)

wherePt is the transmitted power,d is the distance between the transmitter and the re-

ceiver, andα is the distance-power gradient of the environment. The random variable

X. The path loss model in indoor environment is highly site-specific. For example, the

value of power-distance gradient, which is a parameter of path loss model, varies over

a wide range between 15-20dB/decade and a value as high as 70dB/decade. Moreover,

the shadow fading will further decrease the stability of RSSvalue. As a result, the dis-

tance calculated from RSS is not very reliable. An alternative solution is the ray-tracing

algorithms, which can provide much more reliable RSS valuesby using the layout of the

building [2]. However, the drawback of ray-tracing algorithms is the computational com-

plexity and the labor cost incurred in getting the fine grained building floor plan as well

as information on construction materials.
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2.2.3 Time of Arrival

The TOA-based system measure distance based on an estimate of signal propagation de-

lay between a transmitter and a receiver since in free space or air, radio signals travel at

the constant speed of light. The TOA can be measured by eithermeasuring the phase

of received narrowband carrier signal or directly measuring the arrival time of a wide-

band narrow pulse [1]. The important parameters for TOA-based localization system is

the TOA of the direct line of sight (DLOS) path since it is the direct representation of

the physical distance between the transmitter and receiver. An example of the indoor

multipath and the geolocation specific parameters is shown in Fig 2.3.

Figure 2.3: Multipath profile and important paths for geolocation [1]

Using the narrowband ranging technique, the phase of a received carrier signal,φ,

and the TOA of the signal,τ , are related byτ = φ/ωc, whereωc is the carrier frequency

in radians. In outdoor scenario applications such as GPS, the DLOS path always exists,

and accurate measurement of the carrier phase is possible. But in indoor environments,
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the severe multipath environment causes huge measurement errors, sometimes larger than

the actual distance between the transmitter and receiver. Therefore, the conclusion is that

the phase-based distance measurement using narrowband carrier signal is not a suitable

solution for indoor geolocation.

Figure 2.4: Phasor diagram for narrowband signaling on a multipath channel [2]

Another widely used technique is the wideband signal approach where the direct se-

quence spread spectrum (DSSS) method is the most commonly used form, as this tech-

nique performs better than competing systems at suppressing interference [13]. In such

a system a known pseudo-noise (PN) signal, which is modulated using a modulation

technique (such as BPSK, QPSK, etc), is multiplied by the carrier signal, which is thus

replaced by a wide bandwidth signal with a spectrum equivalent to that of the noise signal.

Usually, in order to measure the time of arrival of the signal, a sliding correlator or

a matched filter is used at the receiver which cross-correlates the received signal with a

stored reference PN sequence. The arrival time of the first correlation peak is used as the

time measurement.

Due to the scarcity of the available bandwidth in practice, DSSS ranging systems may

not be able to provide adequate accuracy. On the other hand, it is always desirable to
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achieve higher ranging accuracy using the same bandwidth. Inspired by high resolution

spectrum estimation techniques, a number of researchers have studied super-resolution

techniques for time-domain analysis [14].

Finally, the most recent accurate and promising technique is the UWB approach. As

the bandwidth of UWB systems is usually several GHz, the ranging accuracy is of the

order of centimeter. This fact can be determined from the relationship:

d =
c

BW
(2.2)

where d denotes the absolute resolution, and BW is the bandwidth of the signal. The large

bandwidth of UWB systems enables them to resolve multiple paths and combat multipath

fading and interference. However, such systems have a limited range and building pen-

etration, due to the high attenuation associated with the high-frequency content of the

signal. From our measurement experience, the coverage range of UWB signal for an ob-

structed line of sight (0LOS) scenario is only about 16 meter. The actual deployment of

the UWB systems in the US is subject to FCC approval. The main concern of the FCC

is the interference of the UWB devices to, among other licensed services such as GPS

systems operating in the 1.5GHz frequency band. A significant amount of research work

is underway to assess the effect of the UWB interference on the GPS receivers.

2.3 TOA and Channel Profile in indoor areas

As the MT travels in an indoor environment, the multipath profile between the transmitter

and MT keeps changing. For geolocation applications, we focus on the behavior of the

DLOS path. The performance of TOA estimation varies substantially in different envi-

ronments. Here, we classify the channel profile based on the behavior of DLOS path. The

channel profiles were obtained by applying the inverse Chirp-Z transform to the frequency
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domain measurement followed by a Hanning window.

The measurement is classified according to the availabilityand the strength of the

DLOS path. The factors that affect categorizing the different profiles are receiver sensi-

tivity and system dynamic range. The receiver sensitivity is the noise floor level of the

system where any paths below that level are treated as noise because the receiver can not

differentiate them from noise. The threshold for picking paths is defined as the ratio of

the power of the strongest path to the power of the weakest detectable path in a measured

profile. For this categorization, a threshold was used in order to distinguish between a de-

tected direct path (DDP), non-dominant direct path (NDDP) and a undetected direct path

(UDP). This threshold was selected based on the larger valueof the measured system

noise floor (receiver sensitivity) and the side-lobes of thefiltering window used (thresh-

old for picking paths). This ensured that the first peak of thechannel profile is detected

correctly. From these multipath conditions, DDP is the easiest to detect from the profile

as can be seen from Fig 2.5.
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Figure 2.5: DDP measured channel profile at 200MHz bandwidth

Because it has a distinct strong first path, this category hasan advantage in TOA
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estimation accuracy.

When the first detected path becomes weaker but remains abovethe threshold, the

profile is categorized as NDDP, which is shown in Fig 2.6. For this case, the inaccuracy

of TOA estimation can be mitigated significantly by using a more complex RAKE receiver

to resolve the multipath and intelligently detect the TOA ofthe DLOS path.
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Figure 2.6: NDDP measured channel profile at 200MHz bandwidth

For the UDP profile, which is shown in Fig 2.7, substantial error in TOA estimation

can occur due to the loss of DLOS path. The power of the first path is below the path

detection threshold and another path which is not the representation of physical distance

between the transmitter and receiver is mistakenly interpreted as the DLOS path. This

causes significant error in indoor positioning applications. In this unfavorable situation,

neither GPS nor a RAKE receiver can accurately detect the TOA. If practical considera-

tions regarding the dynamic range of the system are neglected, then there are essentially

two categories: DDP and NDDP. However, in reality, the implemented receiver will have

limitations such as sensitivity and dynamic range and this will create situations where the

DLOS path can’t be detected. The existence of these UDP conditions and how they affect
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the ranging accuracy are discussed in [8, 9]. Since the UDP condition brings most of the

troubles to indoor geolocation applications when comparedto other conditions, identifi-

cation of UDP profile and mitigating the ranging errors in UDPcondition are crucial to

positioning applications. In [15], the author proposed themethod of using a binary hy-

pothesis test on multipath parameters such as received power of the first path and RMS

delay spread to identify UDP conditions, and from our measurement results, we found

that the ratio between the five strongest paths’ power and thetotal received signal power

is also a feasible metric to differentiate UDP condition from other conditions [16]. Nor-

mally, in DDP and NDDP condition, the DLOS path and a few strongest path contribute

a significant portion of the received power. However, in UDP condition, they are not the

dominant portion of received signal power. After UDP identification, the next step for
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Figure 2.7: UDP measured channel profile at 200MHz bandwidth

accurate indoor positioning would be mitigating the errorscaused by UDP influence. The

measurement accuracy in UDP conditions can be improved in some cases by exploiting

the geolocation information contained in the indirect pathmeasurements, as described in

[7], or exploiting multipath signals by using them as additional measurements within a
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nonlinear filter [10]. An effective solution would be to exploit other multipath compo-

nents to aid in the localization by using time difference of arrival (TDOA) of consecutive

locations on the receiver’s pathway, given that a specific path can be tracked using AOA

information.
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Chapter 3

UWB Measurement Campaign

In the previous chapters, we have introduced the concept of dynamic channel measure-

ment, which is a challenging task due to the measurement system limitation. In the early

days, all wide band measurements were aimed at telecommunication applications, where

the interests are mainly around the coverage and rms delay spread analysis, which is di-

rectly related to the achievable throughput. The main objective of the indoor channel

measurements is to establish a realistic foundation for theevaluation of indoor channel

models. Measurements targeted for indoor geolocation application have been carried out

in Center for Wireless information Networks (CWINS) since 1998 [17, 18, 19]. These

measurement campaigns, however, did not focus on the dynamic behavior since the data

sets are all collected at separated points at least 1 meter apart from each other. They were

mainly conducted to study the distance measurement error behavior for different envi-

ronments such as LOS environment, OLOS environment and UDP environment. For the

purpose of our research, we developed a new measurement system which is suitable for

dynamic channel measurement. Dynamic sounding is much morechallenging than tradi-

tional static measurement, since it requires consecutive measurements during the move-

ment of the MT (receiver), and the step between two consecutive measurements should
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be kept the same for all the measurement locations, which requires accurate control of

the MT’s motion. Moreover, since the step size in dynamic measurement is much smaller

than in static measurement, a manual dynamic measurement campaign can be extremely

time consuming and the measured database huge. For example,our first measurement

scenario is the loop around the CWINS lab. With the measurement step size of 5cm, we

took measurements at 931 different locations to traverse the 46.55 meter distance around

the loop.

The measurement campaign which we will discuss in detail in this chapter is an effort

to study the dynamic behavior of a multipath channel and the influence of bandwidth,

threshold for picking paths and UDP occurrence on multipathparameters pertinent to

indoor geolocation. The measurement campaign is composed of two experimental steps.

Step 1 is designed to study the effect of bandwidth, threshold for picking paths, and UDP

occurrence on multipath parameters. The transmitter location was fixed and the receiver

moved around a loop which contains different propagation conditions. Step 2 is to study

the distance effect on multipath parameters and compare theinfluence of micro-metal and

macro-metal obstructions on multipath parameters. In thischapter, we first describe the

measurement system and then explain the procedure for post-processing the data. Finally,

the measurement scenario is outlined.

Section 3.1 outlines the measurement scenario and explainsthe reason for selecting

these scenarios. Section 3.2 provides a detailed description of the measurement system

used to collect the data samples and the data post-processing technology. Section 3.3

presents the preliminary measurement results and proposesa UDP detection technology.
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3.1 Measurement Scenario

The campaign of measurement was conducted on the third floor of Atwater Kent(AK)

Labratories at Worcester Polytechnic Institute(WPI). TheAK building was built in 1906

and underwent two major remodelings and additions in 1934 and 1981. Therefore, in

some areas within the building, there is more than one exterior-type wall. The exterior

walls of this building are heavy brick, the interior walls are made of aluminum studs and

sheet rock, the floors are made with metallic beams, the doorsand windows are metallic,

and many other metallic objects are spread over various laboratory areas. The excessive

number of metallic objects and heavy and multiple external walls makes this building a

very harsh environment for radio propagation. As a result, this environment is suitable

for the indoor geolocation experiment since the DLOS path will be attenuated seriously

in most locations. The measurement campaign was conducted on the third floor of AK

building. The first step of the campaign procedure is to select the location of measurement

points.

The main purpose of the first set of measurements is to study the effect of bandwidth,

threshold for picking paths and UDP occurrence on multipathparameters. We used the

loop around AK 320 (CWINS lab) as the measurement site.

Fig 3.1 shows the measurement site plan and the measured points. The transmitter

antenna was fixed at a position inside the CWINS laboratory asshown in fig 3.1, close

to a metallic beam on the upper left side. The receiver antenna was secured on a bar

carried by the robot.This loop was designed to include different receiver location classes.

We controlled the robot to move 5 cm at a time, each time stopping to take two mea-

surements. The total distance of the loop was 46.55m which corresponds to 931 different

receiver locations and931 × 2 = 1862 bandwidth swept measurements by the VNA.

The solid green line part in the loop denotes the DDP conditions in which there is no
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blockage between transmitter and receiver or only one wall with window between them.

The dashed line part denotes the Shadowed UDP (SUDP) conditions in which the DP

between the transmitter and receiver is undetectable due tometallic obstruction. The blue

line part denotes the Natural UDP (NUDP) conditions in whichseveral walls along with

long distance between transmitter and receiver cause the DPto drop below the threshold

for picking paths, making it undetectable.

In other words, prior to conducting the measurement, it was desirable to see what

happens to the multipath parameters as the receiver moves between DDP, SUDP and

NUDP conditions. Would the measured channel profile change from DDP to SUDP and

NUDP as the power of the first path weakens? Would the number ofMPCs increase at

UDP locations? Would the path become less persistent in UDP locations? The answers to

these questions can provide insight into how the channel behaves dynamically. In radio

propagation, it is well known that metallic objects reflect most of the propagating wave

and weaken the transmitted signal. Hence, it would be interesting to see whether or not

the metallic chamber, metallic beam, and metallic objects would produce UDP conditions

or not.

The main purpose of the second set of measurements is to relate the effect of distance

on multipath parameters and provide comparison for the later scenarios with similar re-

ceiver route but different transmitter location producingdifferent propagation condition

between the receiver and transmitter. We used the corridor on the third floor of AK lab-

oratory as the route of the receiver. The transmitter was fixed on a point in the corridor,

and the receiver moved smoothly from the transmitter with a measurement step size 0.1m

as shown in Fig 3.2. The distance range of this scenario is 1 to30m, because there is no

blockage between the transmitter and receiver, as well as possibly waveguide effect of the

corridor, making the UWB signal covers this range.

The purpose of the third set of measurements is to study the effect of micro-metal
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Figure 3.1: Measurement scenario 1 at 3rd floor of AK laboratory

objects blockage on multipath parameters and compare this result with that of the LOS

measurements. We used the same receiver route but moved the transmitter inside the

CWINS lab to a location that is the symmetric point of the transmitter location used for

scenario 2 behind the wall. The distance range of this scenario is 1 to 16m, corresponding

to 161 different measurement locations. Because of the attenuation caused by micro-metal

objects and wall, the UWB signal lost its coverage beyond thedistance of 16m.

The purpose of the fourth set of measurements is to analyze the effect on macro-metal

objects blockage (here referring to the anechoic chamber) on multipath parameters and

compare this result with the results of the LOS measurementsand OLOS measurements,

we define this scenario the UDP scenario. Since we intended tohave the anechoic cham-

ber blockage all the time for this scenario, the route of the receiver is slightly different

from the LOS scenario and the OLOS scenario. However, we again moved the receiver

from the proximity of the transmitter to locations further apart from the transmitter. The
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Figure 3.2: Measurement scenario 2 ,LOS senario

signal coverage in UDP condition is only around 10 meters.

3.2 Measurement Setup and Post Processing Technology

With frequency domain sounders, the RF signal is generated and received using a vector

network analyzer (VNA), which makes the measurement setup quite simple. The sound-

ing signal is a set of narrow-band sinusoids that are swept across the band of interest.

The maximum sweep time is limited by the channel coherence time. If the sweep time is

longer than than the channel coherence time, the channel maychange during the sweep.

Therefore, in order to prevent the channel from fast variation, we conducted measure-

ments when there were fewer people or other scatterers in thearea.

The performance of the frequency domain sounding is also limited by the maximum
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Figure 3.3: Measurement scenario 3 ,OLOS senario

channel delay. the upper bound for the detectable delayτmax can be defined by the number

of frequency points used per sweep and the bandwidth B (frequency span to be swept), as

given by:

τmax = (Nsmp − 1)/B (3.1)

whereNsmp is the number of sampled frequency points. The main component of our mea-

surement system is a 40GHz HP-8363B network analyzer. Fig 3.5shows the measurement

system and its components.

The measurement system is composed of the network analyzer,two UWB antennas,

a power amplifier at the transmitter end, a low noise amplifierat the receiver end, and the

’ER1’ robot system. The network analyzer is controlled by a laptop computer through

wireless network, where a program is used to select the desired parameters of the mea-

surement scenario. The laptop initializes the network analyzer preceding each measure-

26



0 200 400 600 800 1000 1200 1400
100

200

300

400

500

600

X pixels

Y
 p

ix
e

ls

Senario4 UDP senario

Tx location Receiver locations

micro metals

anechoic chamber

Figure 3.4: Measurement scenario 3 ,UDP senario

ment, where start and stop sweeping frequencies are selected along with the number of

desired samples and the data collected at the completion of each measurement. The trans-

mitted signal passes through a 30dB amplifier before going tothe channel. The receiver

attenuates and pre-amplifies the incoming signal with a low noise amplifier (LNA) before

passing it to the network analyzer. For the analysis in the thesis, The VNA was used to

sweep the frequency spectrum of 3-8GHz with 1.5625MHz sampling interval, yielding

3200 frequency domain measurement samples at each location. The transmitter and re-

ceiver are a pair of disc-cone UWB antennas connected to the VNA by low-loss, high

quality doubly shielded cables.

Both the transmitter and receiver are fixed at a height of 1.3mduring the measurement.

The overall measurement system has a noise level of -90dB. A power amplifier at the

transmitter side and a low noise amplifier (LNA) at the receiver side are used to supply
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Figure 3.5: Frequency dynamic measurement system

Figure 3.6: Ultrawide band cone antennas

the experimental system with enough power to propagate as far as 30 meters in LOS

scenario.

System calibration involves connecting the cables back-to-back without the antennas.
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(a) architecture of Er1 robot system (b) User interface

Figure 3.7: ER1 robot system

This removes the delay and attenuation of the cables. The second step of system calibra-

tion is connecting the antennas and performing a 1-meter LOSfree space calibration. This

removes the delay and gain caused by the antennas. As a result, the CIR after calibration

in this case would be a single path occurring at 0ns.

The dynamic measurements were conducted by enrolling the ’ER1’ robot system to

carry our receiver antenna during the measurement campaign[20]. We used software to

control the robot moving with a step size of 5cm (for the first scenario), 10cm (for the

other scenarios), then stopping to take two measurements. The ’ER1’ robot system has

three wheels, one of which is implemented with directional sensor, there’s also a camera

on top of the robot system, hence we can make sure that the robot was moving along a

straight path during the measurement. The speed and step size of movement can also be

precisely controlled from the user end.

The measured frequency response data was windowed with a Hanning window in

order to reduce the noise sidelobes. Although some other window functions such as

Kaiser window provides higher dynamic range, the Hanning window is selected for its

much faster decaying sidelobes which significantly reducesthe interfering effect of strong
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multipath components in peak detection. For the analysis inthis thesis, 5GHz down to

50MHz bandwidth chunks were parsed out of the measured frequency domain data with

a center frequency of 5.5GHz. After obtaining frequency domain measurements, we used

an inverse chirp Z transform to obtain channel impulse response (CIR) [19]. Specifi-

cally, 50MHz of bandwidth provides time-domain resolutionin the order of△t50MHz =

20ns =⇒ 6m(accuracy), while 5GHz provides△t5GHz = 0.2ns =⇒ 0.06m(accuracy).

The desired parameters such as amplitudes and delay of each path are detected from the

time-domain channel profile using a peak detection algorithm.
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Figure 3.8: Sample frequency domain and time domain channelprofile

Figure 3.8 shows a sample frequency domain measurement and its corresponding

time-domain profile. Notice the frequency selective fadingin the frequency domain and

the time-domain profile illustrating multipath componentsarriving at different delays.
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3.3 Preliminary Results and a UDP Identification Tech-

nology

In this section, we present some measurement results in order to illustrate the different

channel behavior in different scenarios. Fig 3.9 shows there are more MPCs at UDP loca-

Figure 3.9: TOA of different paths for the Loop scenario

tions than the number of MPCs at DDP locations for the loop scenario. One explanation

would be that the power of the strongest path in UDP conditions is weaker compared

to that in DDP conditions, bringing more MPCs above the threshold for picking paths.

Because the distance between transmitter and receiver doesnot keep increasing, we can’t

find any relationship between the distance and number of MPCsin this figure.

Figure 3.10 shows that for the LOS condition, the time of arrival (TOA) of the strongest

LOS component increases as the robot moves away from the Tx. Also observable in the

graph are the higher order reflections. These reflections arecaused by the back and forth

reflections at the two end of the corridor, which can be shown by comparing their path

length to the actual geometric reflected path length. The delay, distance profile shown in
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Figure 3.10: TOA of different paths for the LOS scenario

Figure 3.10 further substantiate the following observations: When the Tx is close to the

Rx, the number of MPCs is small due to the strong LOS componentand the threshold for

picking paths (which means we only consider those paths within α dB of the strongest

paths as eligible paths). Most MPCs are below the threshold at the beginning. As the Rx

moves away from the Tx, more paths will be resolved due to the reduction of the gain of

the strongest path. After a certain break point, the number of MPCs will start to decrease

due to distance reducing the gain of more paths and decreasing them to below the noise

floor threshold.

However, for OLOS condition, due to at least one wall separation, even when the Tx

and Rx are at the closest distance, the strongest path between them is much weaker com-

pared to that in LOS condition. Hence, all the resolvable paths above the noise floor will

be counted as eligible paths. The cutoff effect of thresholdfor picking paths is weaker.

As the receiver moves away, the number of MPCs will keep decreasing due to more paths

becoming weaker and falling below the noise floor. In the end,resolvable paths disappear

when the receiver moves beyond the coverage range of the Tx. In our case, this limitation
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for OLOS is around 16m.
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Figure 3.11: TOA of different paths for the OLOS scenario

When there is the metallic chamber between the Tx and Rx, the coverage of the UWB

signal is further reduced to around 9m, which is expected because of the very short wave-

length and low transmission power of the UWB signal.
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Figure 3.12: TOA of different paths for the UDP scenario
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As the UDP occurrence has a strong effect on multipath parameters, and our measure-

ment scenario 1, the loop scenario, contained mixed conditions including DDP, SUDP

and NUDP. After pre-examining our measurement results fromscenario 1, we found a

methodology to distinguish between DDP and UDP conditions by investigating the ra-

tio between the sum of the power of the 5 strongest paths to thetotal received signal

power.This idea comes from [21] in which the authors state that: the strongest return

does not carry significant power with respect to the other returns in None-Line-of-Sight

(NLOS) locations. So we investigated the ratio of the sum of the 5 strongest paths’ pow-

ers to the total received power:ε =
P5strongestpaths

Ptotal
. Those locations withε larger than

a certain thresholdζ , are considered to be DDP locations; whereas the locations with ε

smaller thanζ are considered to be UDP locations.

We can denote this as:































H0 : ε ≥ ζ, DDP |d = cτ1

H1 : ε < ζ, UDP |d < cτ1

(3.2)

Whereτ1 is the TOA of the FDP. For our measurement scenario, we findζ = 0.2 is a

suitable value to identify the UDP conditions. The identification result is shown in Fig

3.13(a).

Compared with Fig 2, results match well with the physical environment. We also ex-

amined another established UDP identification method [22] which basically uses the in-

fluence of UDP occurrence onτrms to identify it. The author in [22] observed that the

distance influences the delay spread of UWB environments as :

τrms(d) = 10d0.3nsec (3.3)
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Figure 3.13: Power ratio method andτrms method for UDP identification

In addition, the following dependency of the threshold for picking pathsδds can be de-

rived:

τrms(δds, d) = (−4.13δ−0.75
ds + 1.44)τ 2

RMS0dB(d) (3.4)

Whereτ 2
RMS0dB(d) is the RMS delay spread with a threshold for picking paths of 20dB.

Therefore, the combined threshold used in this method to distinguish DDP and UDP

condition is:

Θds,n =































τRMS(δds, d̂) + τmin θds > τmin

Θds,n−1 θds ≤ τmin

(3.5)

Using this method, the identification result is shown in Fig 3.13(b).

Comparing Fig 3.1 with Fig 3.13(a) and 3.13(b), our ratio method provides more

consistent result, since theτrms method marks measurement locations at the upper right

part and lower right part of the loop as UDP locations which are actually DDP locations.
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Chapter 4

Sensitivity Analysis for Direct Path

Estimation

For TOA based localization system, the biggest challenge isto estimate the TOA of the

direct path (DP) accurately. NLOS and UDP are critical conditions that substantially

degrade the accuracy of the estimation and in turn lower the performance of the whole

positioning system. One of the ways to fight against these effects is to utilize the other

indirect paths when the DP is blocked. However, there is another source of TOA estima-

tion error, which can only be mitigated by increasing the system bandwidth or employing

super-resolution algorithms [14], that is the multipath error. It is well known that in-

creasing system bandwidth enhances the time-domain resolution and as a result improve

the accuracy of TOA estimation. Another way to improve the time domain resolution

is to implement advanced signal processing techniques called frequency-domain super-

resolution TOA estimation technique designed by applying the super-resolution spectrum

estimation techniques to the frequency-domain channel response, which can be modeled

as a harmonic signal model. Different TOA estimation algorithms provide different time

domain resolutions and create different levels of difficulties in implementation. For DP
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based method We compare their performances in different environments and with differ-

ent bandwidth availability by looking at the parameter DME:

DME = (TOAFDP − TOADLOS) · C (4.1)

whereTOAFDP is the TOA estimation of the first detected path (FDP) andTOADLOS is

the real TOA of the direct line of sight (DLOS) path, andC is the speed of light. Usually,

we use the FDP of the channel profile, received above the detection threshold, to estimate

the TOA of the DLOS path, and therefore, determine the distance between a transmitter

and a receiver. As explained in [2], the wireless signal power in free space decreases with

the square of distance and for FDP, the power distance gradient is even higher. Hence,

the performance of different TOA estimation algorithms is very sensitive to distance vari-

ation. When the receiver is moved beyond a certain range to the transmitter, the FDP can

not be correctly picked by TOA estimation algorithms.

4.1 TOA Estimation Algorithms

In the narrowband ranging technique, the phase difference between received and transmit-

ted carrier signals is used to measure the distance between two points. The TOA of signal

τ , and phaseφ, are related byτ = φ/ωc, whereωc is the carrier frequency in radians.

However, unlike the situation for outdoor applications such as GPS, the severe multipath

condition of the indoor geolocation environment causes substantial errors in phase mea-

surements. Hence, phase-based distance measurement usinga narrowband carrier signal

can’t provide an accurate estimate of distance in a heavy multipath environment.

Since the narrowband ranging technique is not suitable for indoor positioning appli-

cations, naturally, we would seek solutions using widebandsignals. The simplest TOA

estimation algorithm is directly using the Inverse FourierTransform (IFT) after window-
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ing the frequency domain measurement data. For this application,a Hanning window is

used to avoid leakage and false peaks by reducing the side-lobes of the time domain re-

sponse at the cost in reduced resolution. When the time domain response over part of the

time period is desired, the chirp-z transform (CZT) is preferred, providing flexibility in

the choice of time domain parameters at a cost in longer computational times as compared

with the IFT. The peak detection algorithm then selects the peak that is closest to the real

TOA.

Figure 4.1: Block diagram of an IFT TOA estimation algorithm

Another wideband signal that has been widely used in rangingsystem is the direct-

sequence spread-spectrum (DSSS) signal. In such a system, asignal coded by a known

pseudo-noise (PN) sequence is transmitted. Then a receivercross-correlates the received

signal with a locally generated PN sequence using a sliding correlator or a matched filter

[23, 2]. In order to simulate DSSS signal-based cross-correlation technique, the frequency

response of a raised-cosine pulse with roll-off factor 0.25is first applied to the frequency

domain response. Then, the resultant frequency response isconverted to the time domain

using the IFT for TOA estimation. Figure 4.2 shows the process implementing a DSSS

estimation algorithm. As mentioned earlier, a peak detection algorithm is used to estimate

the TOA of the DLOS path.

One of the hurdles for accurate TOA estimation is the limitedbandwidth and its high
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Figure 4.2: Block diagram of DSSS TOA estimation algorithm

price. Meanwhile, it is always desirable to achieve higher ranging accuracy using the

same bandwidth. These requirements entail the use of super-resolution techniques for

time-domain analysis such as described in [14].

The multipath indoor radio propagation channel is usually modeled as a low-pass

equivalent impulse response given by:

h(t) =
Lp−1
∑

k=0

αkδ(t − τk) (4.2)

whereLp is the total number of multipath components,αk = |αk|e
jθk and τk are the

complex attenuation and propagation delay of thekth path, respectively. The multipath

components are indexed such that the propagation delaysτk, 0 ≤ k ≤ Lp − 1, are in

ascending order. Therefore,τ0 is the TOA of DLOS path and important for accurate

ranging. The Fourier transform of (4.2) is the frequency domain channel response:

H(f) =
Lp−1
∑

k=0

αke
−j2πfτk (4.3)

This model is well known in the spectral estimation field [24]. Consequently, any

spectral estimation techniques that are suitable for a harmonic signal model can be ap-

plied to the frequency response of multipath indoor radio channel to perform time-domain
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analysis. In the reminder of the thesis, the MUSIC algorithm[25] is used to demonstrate

the performance of super-resolution TOA estimation algorithm.

The discrete measurement data are obtained by sampling channel frequency response

H(f) atL equally spaced frequencies. Considering additive white noise in the measure-

ment process, the sampled discrete frequency-domain channel response is given by

x(l) = H(fl) + ω(l) =
Lp−1
∑

k=0

αke
−j2π(f0+l∆f)τk + ω(k) (4.4)

wherel = 0, 1, ...L− 1 andω(l) denotes additive white measurement noise with zero

mean and varianceσ2
ω. We can then write this signal model in vector form as

x=H+w=Va+w (4.5)

where

x = [x(0) x(1) ... x(L − 1)]T

H = [H(f0) H(f1) ... H(fL−1)]
T

w=[w(0) w(1) ... w(L-1)]T

V=[v(τ0) v(τ1) ... v(τLp−1)]T

a = [α′

0 α′

1 ... α′

Lp−1]
T

and

v(τk)=[1 e−j2π∆fτk ... e−j2π(L−1)∆fτk ]T

α′

k =αke
−j2πf0τk ,

The MUSIC super-resolution algorithm is based on eigen-decomposition of the auto-

correlation matrix of the preceding signal model in (4.5).

Rxx = E{xxH} = VAV H + σ2
wI , (4.6)
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whereA = E{aaH} and superscript H denotes the Hermitian, conjugate transpose, of a

matrix. Since the propagation delaysτk in (4.2) can be reasonably assumed all different,

the matrixV has full column rank, which means that the column vectors ofV are linearly

independent. If the magnitudesαk is assumed a constant and phase a uniform random

variable in[0, 2π], theLp × Lp covariance matrixA is non-singular. Therefore, from the

theory of linear algebra, by assumingL > Lp, the rank of the matrixV AV H is Lp, or

from another point of view, theL − Lp smallest eigenvalues ofRxx are all equal toσ2
w.

The eigenvectors corresponding toL − Lp smallest eigenvalues ofRxx are called noise

eigenvectors while the eigenvectors corresponding to theLp largest eigenvalues are called

signal eigenvectors. Hence, the L-dimensional subspace that contains the signal vectorx

is split into two orthogonal subspaces, known as signal subspace and noise subspace, by

the signal eigenvectors and noise eigenvectors, respectively [14]. Then the projection

matrix of the noise subspace is given by:

Pw = Qw(QH
w Qw)−1QH

w = QwQH
w (4.7)

whereQw = [qLp qLp+1 ... qL−1] andqk, Lp ≤ k ≤ L − 1, are noise eigenvectors.

Since the vectorv(τk), 0 ≤ k ≤ Lp − 1, must lie in the signal subspace, we have:

Pwv(τk) = 0, (4.8)

From this, the multipath delaysτk, 0 ≤ k ≤ Lp − 1, can be determined by finding the

delay values at which the time-domain MUSIC pseudospectrumreaches peak value.

SMUSIC(τ) =
1

‖ Pwv(τ) ‖2
=

1

vH(τ)P H
w Pwv(τ)

=
1

vH(τ)Pwv(τ)
=

1

‖ QH
w v(τ) ‖2
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=
1

L−1
∑

k=Lp

| qH
k v(τ) |2

Up to this point, the theoretical correlation matrixRxx was used. In practice, the cor-

relation matrix must be estimated from the measured data samples. Figure 4.3 illustrates

the function block diagram of super-resolution TOA estimation algorithm.

Figure 4.3: Block diagram of Super resolution TOA estimation algorithm

The input data vector,i.e., the estimate of channel frequency response given in (4.5)

is first used to estimate the correlation matrixRxx. Then the eigen-decomposition is per-

formed to determine theLp signal eigenvalues and their corresponding eigenvectors and

L−Lp noise eigenvalues and their corresponding eigenvectors. Once the pseudospectrum

is obtained, a peak detection algorithm selects the first peak to estimate the TOA of the

signal.

If we haveP snapshots of the measurement data, the estimate of the correlation matrix

is obtained from

R̂xx =
1

P

P
∑

k=1

x(k)x(k)H (4.9)

If only one snapshot of the measurement data of lengthN is available, the data se-

quence is divided intoM consecutive segments of lengthL and then the correlation matrix

is estimated as
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R̂xx =
1

M

M
∑

k=1

x(k)x(k)H (4.10)

whereM = N − L + 1 andx(k) = [x(k) ... x(k + L − 1)]T

For the super-resolution TOA estimation algorithm, the measurement data vectorx is

obtained by sampling the channel frequency response uniformly over a given frequency

band. In order to avoid aliasing in the time domain, similar to the time-domain Nyquist

sampling theorem, the frequency-domain sampling interval∆f is determined so as to

satisfy the condition1/∆f ≥ 2τmax, whereτmax = max(τLp−1) is the maximum delay

of the measured multipath radio propagation channel [14].

One issue that is not fulfilled in practice is the stationary data assumption. Without

this assumption, the correlation matrixRxx is not Hermitian,i.e., conjugate symmetric,

and Toeplitz,i.e., having equal elements along all diagonals. The estimate of the corre-

lation matrix can be improved using the following forward-backward correlation matrix

(FBCM).

R̂
(FB)

xx =
1

2
(R̂xx + JR̂

∗

xxJ) (4.11)

where the superscript∗ denotes conjugate, superscript FB stands for forward-backward

estimation, andJ is theL × L exchange matrix whose components are zero except for

ones on the anti-diagonal. This technique is widely used in spectral estimation with the

name modified covariance method and in linear least-square signal estimation with the

name forward-backward linear prediction (FBLP) [24].

One implicit assumption in the MUSIC method is that the noiseeigenvalues are all

equal,i.e.,λk = σ2
w for Lp ≤ k ≤ L− 1, which means the noise is white. However, when

the correlation matrix is estimated from a limited number ofdata samples in practice,

the noise eigenvalues are not equal. A slightly improved version on the MUSIC algo-
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rithm, known as the Eigenvector (EV) method, can be used to account for the potentially

different noise eigenvalues [14]. The pseudospectrum of the EV algorithm is defined as:

R̂EV (τ) =
1

L−1
∑

k=Lp

1

λk

| qH
k v(τ) |2

(4.12)

whereλk, Lp ≤ k ≤ L − 1, are the noise eigenvalues. The pseudospectrum of each

eigenvector is normalized by its corresponding eigenvalue. The EV method equals MU-

SIC method if the noise eigenvalues are equal. The performance of EV method is less

sensitive to inaccurate estimate of the parameterLp, which is highly desirable in practical

implementation [24]. In the following of this thesis, the EVmethod with FBCM is used

to estimate the TOA of the DLOS path.

4.2 Sensitivity of the TOA Estimation Techniques

Usually, we use the FDP of the channel profile, received abovethe detection threshold,

to estimate the TOA of the DLOS path, and therefore, determine the distance between a

transmitter and a receiver. As explained in [2], the wireless signal power in free space de-

creases as the square of distance and for FDP, the power distance gradient is even higher.

Hence, the performance of different TOA estimation algorithms is very sensitive to dis-

tance variation. When the receiver is moved beyond a certainrange to the transmitter, the

FDP can not be correctly picked by TOA estimation algorithms.

Another source of TOA estimation error is the limited bandwidth. In a single path

environment, the expected result is perfect. However, multipath environment, which al-

ways exists, seriously degrades the system performance by shifting the real peak to one

that comes from the combination of peaks around DLOS path, resulting in significant

TOA estimation error. As the transmission bandwidth of the system increases, the pulses
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arriving from different paths become narrower and easier todistinguish. As a result, the

estimate of TOA by FDP becomes closer to the expected TOA of the DLOS path, resulting

in a smaller distance measurement error.

The influence of threshold selection on the performance of algorithms should not be

underestimated either. The threshold can be set based solely on the noise level, which

requires noise variance estimation prior to leading edge selection. From our experiment

experience, setting the threshold only based on noise levelis not satisfactory, since if the

FDP is much weaker than the strongest path, some side-lobe peaks which are above the

noise floor level and earlier than than the DLOS path would be mistakenly interpreted

as the DLOS path. Moreover, different algorithms and windowing function will produce

different sidelobe intensity. There are two important quantities related to the detection of

MPCs at the receiver. The first is the sensitivity (φ) of the receiver, which determines the

ability of the receiver to detect signals above noise threshold. Signals below the sensitivity

of the receiver would not be detected. The second parameter is the dynamic range (α)

of the receiver which determines the ability of the receiverto detect weak signals in the

presence of stronger signals [26]. Hence, the eligible MPCswhich can be detected should

fulfill the following requirements:

|βSP |
2

|βi|2
≤ α (4.13)

|βi|
2 > φ (4.14)

whereβSP is the path gain of the strongest path andβi is the path gain of each MPC.

As we mentioned before, in OLOS conditions, when the DLOS path falls below the

detection threshold, we have a UDP condition. Under these conditions the FDP in the

profile has no relationship to the arrival time of the DLOS path. The system exhibits sub-
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stantially high distance measurement errors that can not beeliminated with the increase

in the bandwidth of the system. Two classes of unavoidable UDP conditions occur in typ-

ical indoor positioning scenario. The first kind of UDP is caused by large metallic object

such as a metallic beam, elevator or a chamber blocks the DLOSpath between the trans-

mitter and receiver, which is referred as shadowed UDP (SUDP) in literature [27]. The

second type of UDP condition occurs in areas of low received power in OLOS environ-

ments when, due to the large distance between the transmitter and receiver, the power of

the DLOS path falls below the detection threshold level. This category of UDP is called

natural UDP (NUDP) in literature [27].

It is interesting to adjust one of these elements and hold others stationary to see to

what extent the different TOA estimation algorithms are influenced by that element and

what is the optimal condition for the performance of different TOA estimation algorithms.

In the following part of this section, the TOA estimation algorithms along with our new

dynamic measurement database are used for statistical analysis. The parameter we used

to compare the performance of TOA estimation algorithms in different environment is the

distance measurement error (DME):

d̂ = (TOAFDP − TOADLOS) · C (4.15)

whereTOAFDP is the TOA estimation of the FDP andTOADLOS is the real TOA of

the DLOS path,C is the speed of light.

4.2.1 Effect of Distance on TOA Estimation

Earlier works in modeling of distance measurement error arebased on simulation results

and static empirical data with the constraint of limited distance range as well as sparse

bandwidth availability. Besides, the DME was calculated only by the simplest IFT algo-
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rithm [28]. The author in [28] proposed a DME-distance modelfor LOS scenario as:

d̂ = d(1 + G(0, σL)) (4.16)

whered̂ is the DME in meters,d is the distance between Tx and Rx andG is a random

variable with zero mean and standard deviationσL. The effect of distance on DME in

OLOS scenario is modeled as:

d̂ = d + WG · G(0, σG) + WEXPExp(λ) (4.17)

The DME distribution is considered as a mixture of two functions. The first one, is

the normal distributionG with 0 mean and standard deviationσG, while the second one is

an exponential distribution with mean1
λ
. Furthermore, the DME-distance model for UDP

scenario was not stressed in [28].

In this thesis, due to the improvement of the measurement system (we used a UWB

disc cone antenna (3 ∼ 10GHz) instead of traditional patched antenna (0.8 ∼ 1.2GHz)

and robot spatial measurement setup), wider coverage, smaller measurement sample inter-

val, and finer time domain resolution of MPCs are available. We also examined the effect

of distance on DME using two other advanced algorithms for performance comparison

purpose.

The effect of distance on DME for LOS scenario when bandwidthis 120MHz is shown

in Figures 4.4,4.5 and 4.6.

Notice that for the LOS scenario, the DME behaves differently when the Tx-Rx dis-

tance is within 25m and beyond 25m. Three different algorithms performs similarly when

the Tx is close to Rx, but the CZT method shows some advantage at longer distance. The

DLOS path can be correctly detected most of the time when the distance between Tx and

Rx is small. For those measurement points, The DME is mainly caused by the limitation
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Figure 4.5: LOS scenario0 ∼ 10m performance comparison of 3 algorithms

of bandwidth and the DME value is quite small as shown in figure4.7.

However, there are a few measurement points within 25 meter distance showing sig-

nificant ranging error, which may cased by bandwidth limitation shifting the real DLOS

peak to the combined peak with other MPCs. One example channel profile and estimation
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Figure 4.7: Channel profile and TOA estimation results(10m distance)

result is shown in Fig 4.8.

As the distance between Tx and Rx increases, the degradationof TOA estimation is

caused by the dynamic range of the receiver which means when the power of the strongest

MPC in the channel profile drops to a certain level, the systemmistakenly interprets some
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Figure 4.8: Channel profile and TOA estimation results for LOS scenario(9.4m distance)

sidelobe peaks as the DLOS path, which are actually impossible to be real MPCs. It

is also interesting to notice that the CZT algorithm, which requires minimum calculation

load, outperforms the other two more complex algorithms at longer distance measurement

points in the LOS scenario. One example of such a channel profile is illustrated in Fig 4.9.

From this figure, it is clear that super-resolution algorithm is more sensitive to sidelobe

influence at higher distance value.

The effect of distance on DME for OLOS scenario when bandwidth is 120MHz is

shown in Fig 4.10 and 4.11.

Notice that there are both positive and negative DME value atdifferent measurement

points. At the beginning, the DME increases with distance, however, the DME moves

gradually toward large negative value. From this behavior of DME with distance, we

suspect there are two factors influencing the DME and their combined function determines

the DME value finally.

Our speculation is confirmed by the following channel profiles.

Figure 4.12 confirms that when the Tx is close to the Rx, the DMEis mostly intro-
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Figure 4.9: Channel profile and TOA estimation results for LOS scenario(27m distance)
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Figure 4.10:

duced by the MPCs’ clutter and lack of bandwidth. The MPCs’ clutter is caused by the

reflections and transmissions in OLOS scenario, making the MPCs arriving at the receiver

in clutters. Hence, if the available bandwidth is not wide enough to resolve MPCs inside

each clutter, the FDP would be shifted from the DLOS path to a later arrived combined
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Figure 4.11: OLOS scenario performance comparison of 3 algorithms
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Figure 4.12: Channel profile and TOA estimation results for OLOS scenario(7.2m dis-
tance)

path, causing positive ranging error. Super-resolution algorithms are good at mitigating

this kind of errors and show superiority to other algorithms, which can be observed from

Fig 4.11. When the Tx is moved further away from the Rx, the determinant of DME shifts

to the dynamic range of the receiver, which is similar to the situation for the LOS sce-
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Figure 4.13: Channel profile and TOA estimation results for OLOS scenario(15.4m dis-
tance)

nario at greater distances. However, this serious degradation of ranging accuracy happens

at distances greater than 8m for OLOS scenario instead of 25mfor the LOS scenario.

The effect of distance on DME for the UDP scenario when bandwidth is 120MHz is

shown in Fig 4.14and Fig 4.15.
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Figure 4.14:
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Figure 4.15: OLOS scenario performance comparison of 3 algorithms

First, we note that the maximum measurement distance between the Tx and Rx is only

7.4 m and the DME shows significant positive value on most of the measurement points

even when the Rx is close to the Tx, which is caused by the unavailability of the DLOS

path in the UDP scenario. With the least available information about the DLOS path

among all scenarios, it is intuitive that the DME in the UDP scenario is greatest among all

the multipath conditions. The typical channel profile in UDPscenario with large positive

DME is shown in Fig 4.16.

Notice that the DME with the CZT method is around50ns × 10−9s/ns × 3 ×

108m/s = 15m , which is almost three times the distance between Tx and Rx. in

figure, as seen in 4.16. The dynamic range problem also plays an important role for TOA

estimation in a UDP scenario at greater distance value, which is reflected in Fig 4.14 as

some measurement points with significant negative DME value. One such typical channel

profile in UDP scenario is shown in Fig 4.17.
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Figure 4.16: Channel profile and TOA estimation results for UDP scenario(5.6m distance)
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Figure 4.17: Channel profile and TOA estimation results for UDP scenario(5.6m distance)

4.2.2 Effect of Bandwidth on TOA estimation

From our analysis of the influence of distance on DME, we have gained the intuition

that the TOA estimation accuracy varies significantly in different multipath environment

due to the differences among scenarios in DLOS path availability and the power-distance
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gradient. With the loss of DLOS path, the UDP scenario presents a major obstacle to

achieving accurate TOA estimation. Therefore, the mean andSTD of the DME are ex-

pected to be higher when compared with other scenarios such as LOS or OLOS.
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Figure 4.18: Mean and STD of DME for LOOP, LOS, OLOS and UDP scenarios. The
vertical lines denote the STD around each mean value

Fig 4.18 confirms that the performance of the basic IFT TOA estimation technique

degrades as the environment gets harsher. Among the four measurement scenarios, UDP

introduces the highest value of DME and can’t be remedied by use of wider bandwidth.

Even with 3GHz bandwidth, there is more than 3m DME in the UDP scenario when the

distance range between the Tx and Rx is only 7m. Notice that the DME in OLOS is

most sensitive to bandwidth availability. When bandwidth is scarce, The DME in OLOS

is much higher than that in the LOS scenario. However, when the system operates in an

environment with ample bandwidth, say, more than 1GHz bandwidth, the TOA estimation
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technique can perform in the OLOS scenario as well as in the LOS scenario.
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Figure 4.19: CCDF of ranging errors for LOS, OLOS, LOOP and UDP multipath condi-
tions at 20MHz bandwidth

Figure 4.19 shows the CCDF of ranging errors in different multipath environments at

low bandwidth (20MHz). The differences in ranging error among the four scenarios could

be explained in terms of the multipath and the strength of theDLOS path. For the LOS

and OLOS scenarios, the FDP is always the SP and the power of FDP (SP) is relatively

strong. Therefore, the only source of DME is the combinationof multipath components

due to the limitation of bandwidth. The paths arrive in clusters and the higher bandwidth

splits those clusters into distinguishable paths. For the loop and UDP scenarios, the major

difficulty for accurate ranging is correctly selecting the FDP. The power of both the FDP

and most of the multipath components is reduced significantly, making the FDP either

below the sensitivity threshold of the Rx or weaker than someside-lobe peaks of the SP.
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Nevertheless, the performance of TOA estimation techniques in all scenarios improves

with increasing system bandwidth. Meanwhile, the DME improvement for the loop and

UDP environments is limited. Figure 4.20 shows the CCDF of ranging errors at higher

bandwidth.
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Figure 4.20: CCDF of ranging errors for LOS, OLOS, LOOP and UDP multipath condi-
tions at 3GHz bandwidth

Comparing the two CCDFs at different bandwidths illustrates the improvement of

TOA estimation accuracy in all scenarios. However, the performance of the TOA esti-

mation technique in the Loop and UDP scenario is restricted by other factors other than

just bandwidth. As will be discussed later, different TOA estimation techniques, though

having the ability to reduce average distance error by some means, all failed to perform

satisfactorily in UDP scenarios.

58



4.2.3 Effects of TOA Estimation Algorithms

Up to this point, we have studied the effect of distance, and operating environment on

ranging accuracy. Another important issue is comparing theperformance of different

TOA estimation algorithms with the same constraints, such as same environment and

same bandwidth availability. This topic is crucial for the practical implementation of

a positioning system since normally the system bandwidth and the multipath condition

are fixed for a single localization system. Meanwhile, although intuitively, advanced

TOA estimation algorithms such as the DSSS technique and superresolution algorithm

outperform simple IFT method. This advantage in performance is gained at the cost of

much heavier computation load. Therefore, we need the following comparison results to

decide if it is worthwhile to implement an advanced TOA estimation algorithm for a given

positioning system.

In the following paragraphs, we will compare the performance of the TOA estimation

algorithms, namely IFT, DSSS, and EV/FBCM, which were described in Section 5.1

. Their performance in different bandwidths and multipath conditions will be analyzed.

The goal of this analysis is to provide a reference for the positioning system designer when

deciding which algorithm is optimal for a certain bandwidthand operating environment.

Following the process of previous section, the comparison is made between LOS, OLOS,

LOOP, and UDP scenarios, with bandwidth availability ranging from 20MHz∼3GHz.

Fig 4.21 illustrates the performance of IFT, DSSS and EV/FBCM algorithm for LOS

scenario in terms of mean and standard deviation of DME at different bandwidths.

At lower bandwidth, EV/FBCM performs slightly better than the DSSS algorithm

and IFT method. However, due to the availability of DLOS pathin the LOS scenario

and fewer reflectors in the environment, all the algorithms perform satisfactorily when

the available bandwidth is wider than 200MHz. Even with scarce bandwidth as low as

20MHz, the mean of DME is less than 3m.
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Figure 4.21: Mean and STD of ranging errors in LOS using different TOA estimation
algorithms

At 20MHz bandwidth, Fig 4.22 compares the CCDF of the three TOA estimation

algorithms showing the slight edge for EV/FBCM. This is not surprising since the main

barrier for accurate ranging in LOS scenario is bandwidth limitation, and EV/FBCM has

the ability to resolve the FDP more accurately. Figure 4.23 shows the CCDF at 1GHz.

With the increase in bandwidth, the DME for all algorithms approaches zero and the

standard deviation of DME is also reduced. Therefore, we have no doubt that using ad-

vanced algorithms such EV/FBCM in LOS scenario is not worthwhile since they require

much more computation resources and increase the positioning system’s reaction time.

For the OLOS scenario, as shown in Fig 4.24, the EV/FBCM algorithm and the DSSS

algorithm apparently perform better than the simple IFT method, especially at bandwidths

lower than 500MHz. The explanation for this is that the powerof the FDP is reduced seri-
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Figure 4.22: CCDF of ranging errors for LOS using different TOA estimation algorithms
at 20MHz bandwidth

ously by some kind of blockage (not metallic). Most of the time in an OLOS scenario, the

FDP is not the SP anymore. Hence, sometimes the peak detection algorithm will mistak-

enly interpret the SP or some sidelobe peaks of the SP as the DLOS path. Furthermore,

the multipath condition in the OLOS scenario is more severe compared with that of LOS

scenario, creating a further barrier to accurate ranging. At 20 MHz, the mean of rang-

ing error for IFT is 6.3m while it is 5m and 5.1m for DSSS and EV/FBCM respectively.

When the bandwidth exceeds 500MHz, the advantage of DSSS andEV/FBCM algorithm

almost vanishes.

The EV/FBCM algorithm and DSSS algorithm significantly improves the TOA es-

timation performance at bandwidths less than 500MHz. However, the more complex

EV/FBCM algorithm doesn’t show any advantage over the DSSS algorithm. As a result,
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Figure 4.23: CCDF of ranging errors for LOS using different TOA estimation algorithms
at 1GHz bandwidth

it is reasonable to implement the DSSS algorithm for TOA estimation in an OLOS sce-

nario at lower bandwidth, since it has the best performance while consuming less com-

putational resource than the EV/FBCM algorithm. However, when bandwidth is wider

than 500MHz, IFT algorithm is more attractive since it can provide similar accuracy with

lowest cost.

In UDP scenarios, EV/FBCM provides a significant advantage over the other two

algorithms. Although the amount of the advantage decreaseswith the increasing band-

width. Figure 4.27 shows the mean and STD of ranging error forUDP conditions. Notice

that the EV/FBCM outperforms the other algorithms even at higher bandwidths.

Although the DLOS path is not available in UDP scenario due tometallic shadowing

or the joint effect of power loss and shadowing, the EV/FBCM is able to select a path
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Figure 4.24: Mean and STD of ranging errors in OLOS using different TOA estimation
algorithms

closer to the DLOS path compared with the other 2 algorithms.One such channel profile

and estimation result are illustrated in Fig 4.28. Another issue we should emphasize is

the unavoidable larger DME in the UDP scenario compared withthat in other scenarios.

This is confirmed by the CCDF curves in Fig 4.29 and 4.30. Even at the bandwidth of

1GHz, none of the three algorithms can provide satisfactoryperformance. Therefore,

more recent research focuses on how to construct a cooperative localization network to

avoid as many UDP situations as possible.

Finally, we will look into the performance of different algorithms in the Loop sce-

nario, which comprises of LOS, OLOS and UDP conditions and resembles a realistic

office environment. Figure 4.31 presents the mean and standard deviation of DMEs at dif-

ferent bandwidths. Notice that the DSSS and EV/FBCM algorithms outperform the IFT
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Figure 4.25: CCDF of ranging errors for OLOS using differentTOA estimation algo-
rithms at 20MHz bandwidth

algorithm at bandwidths lower than 500MHz, and the three algorithms provide similar

accuracy at higher bandwidths. At bandwidth around 20∼40MHz, the DSSS and EV/F-

BCM algorithms are able to provide 1m lower DME than the IFT algorithm. In addition,

the CCDF of the estimation algorithms for the Loop environment shows how the DSSS

and EV/FBCM algorithms perform better than the IFT algorithm in lower bandwidth and

how this advantage diminishes at wider bandwidth.

Although DSSS and EV/FBCM outperform the IFT algorithm at lower bandwidths,

the EV/FBCM algorithm doesn’t show any advantage over the simpler DSSS algorithm,

which is similar to the situation in the OLOS scenario. Therefore, the optimal choice of

TOA estimation techniques in Loop scenarios is the DSSS algorithm when the bandwidth

is narrow (less than 500MHz) and the IFT algorithm when the bandwidth is wide.
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Figure 4.26: CCDF of ranging errors for OLOS using differentTOA estimation algo-
rithms at 1GHz bandwidth
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Figure 4.27: Mean and STD of ranging errors in UDP using different TOA estimation
algorithms
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Figure 4.28: Mean and STD of ranging errors in UDP using different TOA estimation
algorithms
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Figure 4.29: CCDF of ranging errors for UDP using different TOA estimation algorithms
at 20MHz bandwidth
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Figure 4.30: CCDF of ranging errors for UDP using different TOA estimation algorithms
at 1GHz bandwidth
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Figure 4.31: Mean and STD of ranging errors in Loop scenario using different TOA
estimation algorithms
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Figure 4.32: CCDF of ranging errors for Loop using differentTOA estimation algorithms
at 20MHz bandwidth
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Figure 4.33: CCDF of ranging errors for Loop using differentTOA estimation algorithms
at 1GHz bandwidth
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Chapter 5

Sensitivity Analysis for Multipath

Diversity

As we mentioned before, In TOA based indoor geolocation systems, the large positioning

errors are often caused by the UDP conditions where the DP can’t be detected due to ob-

structions. However, other multipath conditions such as obstructed line of sight (OLOS)

can not guarantee satisfactory accuracy either when the available bandwidth is low or the

received DLOS path power is weak (possibly caused by long distance between the trans-

mitter and receiver, or the threshold for picking paths is not chosen properly, causing the

sidelobes of the windowing function to interpreted as fake peaks). The bandwidth of the

system plays an important role in determining the accuracy of TOA estimation. In gen-

eral, as the bandwidth increases the distance measurement error decreases. However, for

harsh environments such as UDP scenarios, using the TOA of DPalone is not sufficient

to provide promising positioning.

In recent years,many extensive researches have been carried out in order to mitigate

the ranging errors from UDP links. Utilizing multipath diversity when the DP is not re-

liable comes naturally since there are always other paths available in UDP conditions.
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However,this technique requires a deeper knowledge of propagation characteristics. Pre-

vious research on channel modeling didn’t consider the dynamic behavior of the multipath

channel, such as the appearance and disappearance of paths due to movement of the MT.

This is mainly due to the lack of dynamic measurement campaigns to support realistic

modeling of a dynamic channel. The motion of the MT introduces both small and large

scale variations in the received signal. For the sake of thisresearch, we focused mainly

on the large scale variations induced by the motion of the MT,such as fluctuations of the

number of active multipath components (MPCs), transitionswhere paths appear and dis-

appear, variations in the propagation delays and powers, and the changes in the direction

of arrivals as the MT moves along its trajectory.

For indoor geolocation, the time difference of arrival (TDOA) of a certain path as the

MT moves along its pathway is important. Assuming we have DLOS path ranging on

points uniformly spaced along the pathway, we can keep trackof the difference between

the TOAs of this particular path and the DLOS path at these predefined points. If the

DLOS path is blocked at some locations during the MT’s motionbut that particular path

is still available, we can use the difference information and the path length of the par-

ticular path to calculate the length of DLOS path, which is the desired distance between

the transmitter and MT. This concept was first proposed in [7]. The concept of using

multipath components other than the DLOS path is illustrated in Fig 5.1

As the receiver moves, certain MPCs might exhibit ’smooth’ behavior in the UDP

region. The differential changes of these MPCs’ TOA and AOA are related to the concept

of path persistency. Therefore, the persistency of MPCs is an important issue in mitigating

the UDP error. To explain path persistency, we will considerthe following channel model

[1]

h(t, θ) =
N−1
∑

k=0

αkp(t − τk, θ − θk)e
jϕk (5.1)

where N is the number of MPCs,p(t) is the pulse (with a certain bandwidthω) transmit-

70



Figure 5.1: Illustration of using indirect paths

ted, andαk, τk, θk, ϕk are the amplitude, propagation delay (TOA), angle of arrival(AOA)

and phase of the kth MPC, respectively, which can be considered as traceable features

of the paths. Persistency is basically the lifetime of a particular path during which its

traceable features exhibit differential changes in accordance with the receiver’s differen-

tial motion. If we can track the paths that exhibit persistent behavior even when the DP

is not present, then we can use this additional information to properly adjust the ranging

measurements for true distance [7]. Due to the challenge of AOA measurement, from now

on, we only consider the TOA as traceable features to lookingat the path persistency. The

basic concept of path persistency is shown in Fig 5.2.

Because we want to use other multipath components to mitigate the distance mea-

surement error in UDP conditions, we are interested in the number of available MPCs.

The number of resolvable multipath components is importantfor evaluating the perfor-

mance of various types of diversity, modulation and equalization techniques (e.g., RAKE

receiver) [29]. A multipath component measured in a particular profile is defined to arrive

at the receiver at a particular excess delay binτk if the integrated power within a discrete
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Figure 5.2: Path persistency

excess delay intervalβ2
k (fig 5.3) is greater than the minimum detectable signal thresh-

old of the receiver. No multipath component exists ifβ2
k does not exceed the minimum

detectable signal threshold at the excess delay binτk.

Figure 5.3: Illustration of counting multipath components

Several researchers have analyzed the number of available multipath components in
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the sense of static channel modeling [30, 29]. They looked into the behavior of the number

of MPCs at certain locations with different transmitter receiver separated distances. Then

they studied the distribution of the number of MPCs for telecommunication applications.

However, due to measurement system limitation and target difference, they haven’t look

at the the dynamic behavior of number of MPCs and the effect ofbandwidth, threshold

for picking paths, and UDP occurrence on the number of MPCs, which is also important

for indoor geolocation. The analysis of the dynamic behavior of the number of MPCs

in different multipath conditions would provide an insightinto the resources that can be

used to aid the localization in harsh environments.

Another issue crucial to using the other multipath components when the DP is not

detectable is the appearance and disappearance of paths dueto movement of the receiver

or MT, which is also referred as path persistency in indoor geolocation applications [7].

Figure 5.4 illustrate the relationship between the TOA of the direct path and the path

reflected from a wall for a simplified scenario. As the mobile receiver moves along the

horizontal direction, during part of its route, the direct path is blocked, but the reflected

path is still available. The change in distance in the receiver direction of motion is related

to the length of the of the DP by:dxcosα = dldp. As the geometry of Fig 5.4 shows, for

the reflected path length, we havedxcosβ = dlrp. Therefore, we can calculate the change

in the length of the direct path from the change in the reflected path using

dldp = dlrp

cosα

cosβ
(5.2)

In other words, knowing the angleβ, between the arriving path and the direction

of movement, and the angleα, between the direction of movement and the DP, we can

estimate the changes of the length of the DP from the changes of the length of the reflected

path. This basic principle can be extended to paths reflectedfrom many objects and to the

three-dimensional case as well [27].
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Figure 5.4: Basic two path environement

In this chapter, the comprehensive measurement database isused for dynamic anal-

ysis. The main focus here is the dependency between the distance-related number of

MPCs and the effect of bandwidth, threshold for picking paths, and UDP occurrence on

the number of MPCs and path persistency. In section 5.1, the distance dependency or

number of MPCs is modeled for different scenarios, and the effect of bandwidth, thresh-

old for picking paths and UDP occurrence on number of MPCs is also studied. Section

5.2 first introduces the concept of average path lifetime (APL) and average path displace-

ment (APD), then discribes the effect of bandwidth, threshold for picking paths and UDP

occurrence on path persistency .

5.1 Behavior of the Number of MPCs

The number of MPCs has been studied in [30, 31] for telecommunication applications.

The author mainly looked into the distribution of the numberof MPCs at some selected lo-

cations. However, more research is needed for modeling the effect of distance, bandwidth
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and OLOS UDP occurrence on the number of MPCs for indoor geolocation applications.

Since the number of MPCs is sensitive to the threshold value used in post-processing, we

also specify the threshold used for picking MPCs from this point.

5.1.1 Distance Dependency of Number of Paths

As mentioned earlier, Fig 3.10 substantiates the followingobservations: When the Tx is

close to the Rx, the number of MPCs is small due to the strong LOS component and the

threshold for picking paths (which means we only consider those paths withinα dB of the

strongest paths as eligible paths). Most MPCs are below the threshold at the beginning.

As the Rx moves away from the Tx, more paths will be resolved due to the reduction of

the strength of the strongest path. After a certain break point, the number or MPCs will

start to decrease due to distance reducing the strengths of more paths and bringing them

below the noise floor threshold. Our inference is validated by the measurement result

which is shown in Fig 5.5.

However, for OLOS condition (Fig 5.6), due to at least one wall of separation, even

when the Tx and Rx are at the closest distance, the strongest path between them is much

weaker compared with that in the LOS condition. Hence, all the resolvable paths above

the noise floor will be counted as eligible paths. The cutoff effect of threshold for picking

paths is weaker. As the receiver moves away, the number of MPCs will keep decreasing

due to more paths becoming weaker than the noise floor. In the end, resolvable paths

disappear when the receiver moves beyond the coverage of theTx. In our case, this

limitation for OLOS is around 16m.

For UDP condition depicted in Fig(5.7), the number of MPCs decreases with distance

between the Tx and Rx similarly as the behavior in the OLOS scenario. However, since

the anechoic chamber made of metallic material always exists between the Tx and Rx,

the The power of all the MPCs is further reduced compared withthat in OLOS condition.
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Figure 5.5: LOS scenario number of paths dynamic behavior
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Figure 5.6: OLOS scenario number of paths dynamic behavior
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Therefore, for the same distance between the Tx and Rx, thereare fewer MPCs above the

noise floor. Meanwhile, the coverage of resolvable paths in UDP condition is only around

8m.
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Figure 5.7: OLOS scenario number of paths dynamic behavior

5.1.2 Other Parameters Affecting the Number of Paths

By analyzing measurement data from a LOS scenario, we observed a Rayleigh-like de-

pendency between the number of MPCs and distance. Hence, we first try to model the

relationship between number of MPCs and distance as a Rayleigh-like function as :

N = A
de(−d2

2σ2
)

σ2
+ χLOS, (5.3)

whered is the distance between the Tx and Rx inm. andA, σ andχLOS are the param-

eters need to be estimated.χLOS is a random variable that can be conveniently modeled
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with a normal distributionχLOS ∼ N(0, σχLOS
). Naturally, one expects an increase in

the number of MPCs with an increase in bandwidth, an increasein threshold for picking

paths, and a decrease in noise floor. For our specific environment and measurement sys-

tem, we fixed the threshold for picking paths at 30dB and noisefloor at -90dB. However,

the results showed that the Rayleigh-like function can’t fitthe measured data well when

the distance between the Tx and Rx is larger than 20m, as in figure 5.8 .
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Figure 5.8: Rayleigh model

Hence, we propose to model the dependence of number of MPCs and distance in LOS

condition as a two-piece exponential function. A distance break point exists and for our

LOS scenario, the break point is around 6.5m. The model basedon non-linear least square

regression is as:































N = (2 − e0.1032(d−dbp)) · NmaxLOS
+ χLOS, d≤ dbp

N = e−0.0956(d−dbp) · NmaxLOS
+ χLOS, d > dbp

(5.4)

whereNmaxLOS
is the number of MPCs at the break point distance, which is related
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to the bandwidth (in MHz)f as:NmaxLOS
= f 0.547, χ is a random variable with normal

distributionχLOS ∼ N(0, σχLOS
), andσχLOS

is related to bandwidthf as: σχLOS
=

f 0.212. Figures 5.11 and 5.12 show the relation betweenNmaxLOS
and bandwidth and the

CDF of measured and simulated number of MPCs using our two-piece model for LOS

scenario respectively. Figure 5.13 compares the performance of each model in RMSE

value at different bandwidth, which demonstrates the superiority of the two-piece model

over Rayleigh-like function model at higher bandwidth.
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Figure 5.9: Two piece model

For the NLOS scenario, the relationship between the number of MPCs, distance and

bandwidth can be modeled as

N = e−0.1309d · NmaxNLOS
+ χNLOS, (5.5)

whereNmaxNLOS
is the number of MPCs when the Rx is at the closest distance to the

Tx, which is related to the bandwidthf asNmaxNLOS
= f 0.5273, andχNLOS is a random

variable with normal distributionχNLOS ∼ N(0, σχNLOS
), whereσχNLOS

is related to the
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Figure 5.10: Two piece model performance for different bandwidths withoutχ variable
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Figure 5.11: Nmax versus bandwidth

bandwidthf as: σχNLOS
= f 0.2645. Figure 5.15 and 5.16 show the relationship between

NmaxNLOS
and bandwidth, and the CDF of measured and simulated number of MPCs us-

ing our model for NLOS scenario. Comparing Figs 5.12 and 5.16, model fits the number

of MPCs for LOS conditions slightly better than that for NLOScondition. This is reason-

80



−20 0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of MPCs

P
ro

b
a

b
ili

ty
>

A
b

c
is

s
a

CDF plot of number of MPCs and the modeled value

 

 

simulated value using model
measured data (100MHz)
measured data (1GHz)
measured data (2GHz)
measured data (5GHz)

Figure 5.12: CDF of measured and simulated number of MPCs
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Figure 5.13: RMSE of calculated number of paths using two models at different band-
width

able because NLOS condition is much more complex than LOS condition caused by the

blockage of walls and micro-metalic objects.

For a UDP scenario the relationship between the number of MPCs, distance and band-
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Figure 5.14: exponential function model for number of pathsat OLOS scenario
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Figure 5.15: Nmax versus bandwidth for OLOS environment

width can be modeled as

N = e−0.4714d · NmaxUDP
+ χUDP , (5.6)

whereNmaxUDP
is still a parameter related to the bandwidthf , which can be modeled
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Figure 5.16: CDF of measured and simulated number of MPCs in OLOS scenarios
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Figure 5.17: exponential function model for number of pathsat UDP scenario

asNmaxUDP
= f 0.5844, andχUDP is a random variable with normal distributionχUDP ∼

N(0, σχUDP
),whereσχUDP is related to the bandwidthf as:σχUDP

= f 0.1835. Figure 5.18

and 5.19and 5.20 show the relationship betweenNmaxUDP
and bandwidth, the results of

model fitting for different bandwidth, and the CDF of measured and simulated number of
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MPCs using our model for the UDP scenario. The CDF results show our model for the

number of MPCs matches well with the measured data in UDP scenario.
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Figure 5.18: Nmax versus bandwidth for UDP environment
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Figure 5.19: exponential model performance for different bandwidths withoutχ variable
in UDP scenario
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Figure 5.20: CDF of measured and simulated number of MPCs in UDP scenarios

5.2 Behavior of Path Persistency

The concept of path lifetime or path persistency has been proposed in [7, 31]. It de-

notes the lifetime of a particular path in which its traceable features exhibit differential

changes in accordance with the receiver’s differential motion. Due to the limitation of our

measurement system, we only look into the TOA of persistent paths.

5.2.1 What is Path Persistency?

To illustrate how we defined path persistency in terms of TOA,it is necessary to intro-

duce two different resolution terms used in time domain - theresponse resolution and the

range resolution. Time domain response resolution is defined as the ability to resolve two

closely-spaced responses, or a measure of how close two responses can be to each other

and still be distinguished from each other. It is inversely proportional to the measurement

frequency span, and is also affected by the window function used in the transform.

For example, using a normal window in the bandpass mode, we can calculate the
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Figure 5.21: Response resolution is equal to the 50% points of the impulse width

response resolution for responses of equal amplitude as: Response resolution= 50% im-

pulse width×speed of light as indicated in Fig 5.21.

Time domain range resolution is defined as the ability to locate a single response in

time. If only one response is present, range resolution is a measure of how closely we can

pinpoint the peak of that response. The range resolution is equal to the digital resolution

of the display, which is the time domain span divided by the number of points on the

display. Range Resolution=Tspan/(Points-1)

Figure 5.22shows the TOA of the earliest 10 paths’ length during the movement of

the Rx around the loop environment. We get the intuition thatthe paths’ TOA exhibit dif-

ferential changes in accordance with the motion of the receiver in the direct detected path

(DDP) conditions, which occur at the beginning and ending parts of the route. The solid

line is the actual distance and the dotted lines are the earliest 10 paths’ length calculated

by TOA multiplied by the speed of light.

Our measurement step size is 0.1m, which means a maximum difference in TOA of

δτ = 0.1/C = 0.33ns, (C = 3 × 108m/s) for a persistent path from one measurement
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Figure 5.22: Path length of the earliest 10 paths during the measurement loop

location to the next. If the TOA difference of a particular path between several consecutive

measurement points is withinδτ , then the distance range of these measurement points is

defined as the path lifetime of this path, which is illustrated in figure 5.23. Here we should

point out thatδτ refers to spatial resolution. It does not refer to the response resolution,

which is determined by signal bandwidth.

In this thesis, we investigated the effect of bandwidth, path detection threshold (α)and

NLOS, UDP occurrence on path persistency of the strongest path (SP) and first detected

path (FDP), which are important for geolocation application based on measurement re-

sults. The parameter we focused on is the average path life time (APL), and average path

displacement (APD).

APL and APD were first proposed in [7]. Buildings with simple internal structures

and with less clutter will provide better tracking under UDPconditions than buildings

with a large number of walls and metallic objects. Hence the number of persistent regions

(NPR) on an RX’s pathway is a metric useful in the characterization of buildings. APL

is the mean length of all different persistent regions on theRX’s motion path and is an
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Figure 5.23: Concept of path persistency

indicator of the average lifetime of a certain path. It showsfor how long a path will be

persistent in units of distance. It can be written as

APL =

∑NPR
i=1 li

NPR
, (5.7)

whereli is the lifetime of each persistent path in meters. Notice that low number of

persistent regions indicates higher APL meaning paths are more persistent.

The other metric is the APD which shows how much TOA difference there is between

different persistent regions on the average. It can be represented as

APD =

∑NTD
k=1 dpi

NTD
, (5.8)

wheredpi is the amount of displacement in meters when a switch occurs from one

persistent path to another and NTD is the number of total displacements.
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5.2.2 Parameters Affecting Path Persistency

For the loop scenario, which contains mixed channel profiles(LOS OLOS and UDP), the

path persistency results are summarized in Table 5.1 and Fig5.24.

Table 5.1: APL (m)and APD (m)for FDP and SP For Different Bandwidths and
α=10,20,30dB for the Loop scenario

Bandwidth
128MHz 320MHz 800MHz 2GHz 5GHz

FDP

α APL APDAPL APDAPL APDAPL APD APL APD
10dB 0.02 1.74 0.07 0.72 0.15 0.36 0.15 0.53 0.20 0.33
20dB 0.02 1.45 0.09 0.47 0.24 0.16 0.52 0.09 1.28 0.03
30dB 0.02 1.50 0.09 0.46 0.27 0.14 1.61 0.027.71 0.003

SP 10∼30dB 0.08 8.09 0.14 7.54 0.18 6.41 0.31 2.70 0.38 2.70
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Figure 5.24: APL and APD versus Bandwidth and the linear fit (α = 20dB)

Based on these results, we observed that

1.For the sameα, the APL of both FDP and SP increases with bandwidth. The rela-

tionship between the mean APL of FDP and bandwidth whenα = 20dB can be modeled

as:

APL = 0.0218BW + 0.0256 (5.9)
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whereBW is the bandwidth in units of 100MHz. The RMSE for this model is0.046m.

Choosing 20dB has been found to be suitable for detecting paths While the relationship

between the mean APL of SP and bandwidth can be modeled as :

APL = 0.0041BW + 0.0264 (5.10)

The RMSE for this model is 0.028m.

2.The APL of FDP is always larger than that of the SP since the power of paths suffers

easily in UDP conditions causing the SP to switch to another path more often.

3.The APL and APD of the strongest path are not sensitive toα since no matter which

α we choose, the power of SP is always within theα dB range of itself.

4.The APD of both the FDP and SP decreases as the bandwidth increases, but the

APD of FDP and SP stays at around 1.8m for FDP and 3.5m for SP forbandwidth greater

than 0.5GHz for FDP and 1.5GHz for SP respectively.

For the LOS scenario, the path persistency results are summarized in Table 5.2 and

Fig 5.25.

Table 5.2: APL (m)and APD (m)for FDP and SP For Different Bandwidths and
α=10,20,30dB for the LOS scenario

Bandwidth
100MHz 500MHz 1GHz 2GHz 5GHz

FDP

α APL APDAPL APDAPL APDAPL APD APL APD
10dB 0.22 1.56 0.74 1.14 1.61 1.15 2.39 1.2513.90 1.25
20dB 0.22 1.49 0.73 0.79 1.87 0.80 3.00 0.78 9.23 0.79
30dB 0.23 1.48 0.70 0.75 1.86 0.76 3.00 0.75 1.65 0.74

SP 10∼30dB 0.26 2.89 0.58 3.89 1.15 4.20 1.37 4.11 1.15 4.17

Based on these results, we observed that:

1. Most of the time, the APL of both FDP and SP increases with bandwidth. For

the same bandwidth, the mean APL of FDP increases as the threshold valueα decreases.
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Figure 5.25: APL and APD versus Bandwidth and the linear fit (α = 20dB) for LOS
scenario

The relationship between the mean APL of FDP and bandwidth whenα = 20dB can be

modeled as:

APL = 0.182BW − 0.01 (5.11)

whereBW is the bandwidth in units of 100MHz. The RMSE for this model is0.972m.

Choosing 20dB is reasonable since a 10dB threshold for picking paths would eliminate

most of the multipath components, making the number of available MPCs insignificant,

while if a 30dB threshold is used, the first path would be non-persistent, which is not the

fact for the LOS scenario. The relationship between the meanAPL of SP and bandwidth

can be modeled as

APL = 0.0194BW + 0.6141 (5.12)

The RMSE for this model is 0.274m.

2.The APL of FDP is always larger than that of the SP which is inaccordance with

the results for the loop scenario.

3.The APL and APD of the strongest path are not sensitive to the thresholdα for

picking paths .

4. The APD of FDP in the LOS scenario decreases as the bandwidth increases. How-
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ever, the APD for SP increases with bandwidth. The APD of FDP and SP stay at about

0.75m and 4m for the bandwidth greater than 1GHz.

For NLOS or OLOS scenario, the path persistency results are summarized in table 5.3

and figure 5.26.

Table 5.3: APL (m)and APD (m)for FDP and SP For Different Bandwidths and
α=10,20,30dB for the NLOS scenario

Bandwidth
100MHz 500MHz 1GHz 2GHz 5GHz

FDP

α APL APD APL APDAPL APDAPL APDAPL APD
10dB 0.11 3.01 0.25 1.65 0.37 1.62 0.48 1.63 0.69 1.83
20dB 0.11 3.06 0.25 1.69 0.40 1.68 0.57 1.73 0.69 1.90
30dB 0.11 3.07 0.25 1.69 0.40 1.68 0.57 1.73 0.69 1.90

SP 10∼30dB0.12 11.350.20 7.58 0.25 8.32 0.47 8.02 0.55 7.93
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Figure 5.26: APL and APD versus Bandwidth and the linear fit (α = 20dB) for NLOS
scenario

Based on these results, we observe that: 1. the APL of both FDPand SP increases

with bandwidth. However, comparing with the results for theLOS scenario, the APL of

FDP decreases due to walls and metallic objects blockage between the Tx and Rx. For

the same bandwidth, the mean APL of the FDP is not very sensitive to the thresholdα.

The relationship between the mean APL of FDP and bandwidth whenα = 20dB can be

modeled as

APL = 0.012BW − 0.215 (5.13)
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whereBW is the bandwidth in units of 100MHz. The RMSE for this model is0.0851m.

The relationship between the mean APL of SP and bandwidth canbe modeled as :

APL = 0.009BW + 0.169 (5.14)

The RMSE for this model is 0.057m.

2.The APL of the FDP is always larger than that of the SP, whichis in accordance

with the results for Loop and LOS scenario.

3.The APL and APD of the strongest path are not sensitive to the thresholdα for

picking paths.

4. The APD of both FDP and SP decreases as the bandwidth increases. The APD of

FDP and SP stay at about 2m and 8m after the bandwidth reaches 1GHz.

For the UDP scenario, the path persistency results are summarized in Table 5.4 and

Fig 5.27.

Table 5.4: APL (m)and APD (m)for FDP and SP For Different Bandwidths and
α=10,20,30dB for the UDP scenario

Bandwidth
100MHz 500MHz 1GHz 2GHz 5GHz

FDP

α APL APDAPL APDAPL APDAPL APDAPL APD
10dB 0.12 3.10 0.14 1.57 0.32 1.76 0.21 1.52 0.27 1.56
20dB 0.12 2.97 0.16 1.59 0.12 1.25 0.19 0.93 0.31 0.89
30dB 0.12 3.12 0.20 1.65 0.15 1.38 0.18 1.07 0.33 1.02

SP 10∼30dB 0.10 5.29 0.16 5.27 0.18 6.00 0.15 4.73 0.20 4.73

Based on these results, we observe that:

1. the APL of both FDP and SP increases with bandwidth. However, in contrast with

the results for of LOS and OLOS scenario, the APL of the FDP decreased significantly

due to the wall and micro-metal blockage between the Tx and Rx, causing the FDP to

jump among several different MPCs. For the same bandwidth, the mean APL of FDP is
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Figure 5.27: APL and APD versus Bandwidth and the linear fit (α = 20dB) for UDP
scenario

not very sensitive to the threshold valueα. The relationship between the mean APL of

FDP and bandwidth whenα = 20dB can be modeled as

APL = 0.005BW + 0.126 (5.15)

whereBW is the bandwidth in units of 100MHz. The RMSE for this model is0.057m.

The relationship between the mean APL of SP and bandwidth canbe modeled as :

APL = 0.001BW + 0.128 (5.16)

The RMSE for this model is 0.019m.

2.The APL of FDP is always larger than that of the SP but the difference between

them is not as significant as that for LOS and NLOS scenarios.

3.The APL and APD of the strongest path is not sensitive to thethresholdα for picking

paths .

4. The APD of both FDP and SP decreases as the bandwidth increases. The APD of

FDP and SP stay at about 1m and 4m for the bandwidth above 1GHz.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we have analyzed the effect of distance, bandwidth, environment and thresh-

old for picking paths on Multipath parameters such as distance measurement error, num-

ber of MPCs, and path persistency. The measurement databasewas constructed with

the collaboration of Ferit Akgul during the summer of 2008. The measurement campaign

was conducted in four different scenarios. The measurementcampaign was different from

previous measurement campaigns in that we used a robot assisted measurement system

to achieve spatially continuous measurements.

We begin our research with a review of existing indoor localization techniques was

presented. Due to the harshness of indoor propagation environments, there is the need

to study the dynamic channel behavior in depth in order to avoid or remedy the ranging

errors induced by UDP occurrence and multipath combination. Among different solutions

devised by researchers in the literature, one innovative way to combat TOA estimation

inaccuracy caused by UDP occurrence is to use the TOA information of indirect paths

together with geometric methods to calculate the lengths ofthe DLOS path . Recognizing
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the value of this technique, we were motivated to analyze thebehavior of number of

available paths and path persistency, which are important in the use of this technique.

First, we studied the effect of distance, bandwidth and multipath environment on TOA

estimation techniques. When the environment’s influence onTOA estimation is consid-

ered, the LOS scenario provides the lowest ranging error because the presence of strong

DLOS path. The performance of TOA estimation algorithms is more sensitive to band-

width in OLOS scenario. All the TOA estimation algorithms perform poorly in the UDP

scenario although the use of higher bandwidth helps to reduce the ranging error to some

extent. Based on our processed results, the optimal choice for the localization system de-

signer is to implement the simple IFT algorithm in the LOS scenario, DSSS algorithm in

the OLOS scenario with limited bandwidth, and the IFT algorithm with large bandwidth,

and superresolution algorithm in the UDP scenario with limited bandwidth while using

the IFT algorithm with large bandwidth. .

Then, the models for number of MPCs were built based on data from three different

indoor environments, and a statistical method was used to find the best-fit model. Accord-

ing to the models we developed, the number of MPCs is very sensitive to the threshold for

picking paths, and to the noise floor threshold, which shouldbe carefully selected by the

localization system designer. The number of MPCs generallydecreases as the distance in-

creases while larger bandwidths always provide better pathresolvability and more MPCs.

Harsher environments such as the UDP scenario will cause thenumber of MPCs to drop

more quickly as the distance increases, so that the coverageof the UDP scenario is the

smallest compared with other scenarios.

For path persistency, we first illustrated the definition of path persistency and its im-

portance for tracking when the DLOS path is not available. Then we gave the definition of

two parameters, APL and APD which were used for comparing thepath persistency under

different constraints. From our processed results, it is clear that the multipath components
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generally behave more persistently in LOS and OLOS scenariothan they do in the UDP

scenario, and larger bandwidth and higher threshold for picking paths also contributes to

finding a more persistent path.

6.2 Future Work

Accurate indoor geolocation remains a challenging problemthat still needs further re-

search. The work of this thesis will provide other researchers with increased knowledge

of the behavior of multipath parameters pertinent to indoorgeolocation. Better algorithms

are needed for utilizing indirect paths to calculate the length of the direct path in practical

implementation. Another potentially useful approach for mitigating the influence of UDP

occurrence and multipath environment is to implement a cooperative localization system

to avoid as many UDP links as possible or to use other sources of localization informa-

tion such as inertial measurement to aid the RF localizationsystem. For the selection

of differernt TOA estimation algorithms, one possible further research direction is to de-

sign new algorithms that can switch among different techniques dynamically based on

the known parameters such as system bandwidth and operatingenvironment. Gathering

moeore measurement data in different environments is also desirable. A more extensive

database will be valuable in refining our models to achieve closer correspondence to real-

world propagation environments.
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Appendix A

More CCDF Graphs
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Figure A.1: CCDF of ranging errors for LOS using different TOA estimation algorithms
at 80MHz bandwidth
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Figure A.2: CCDF of ranging errors for LOS using different TOA estimation algorithms
at 120MHz bandwidth
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Figure A.3: CCDF of ranging errors for LOS using different TOA estimation algorithms
at 500MHz bandwidth
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Figure A.4: CCDF of ranging errors for LOS using different TOA estimation algorithms
at 2GHz bandwidth
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Figure A.5: CCDF of ranging errors for LOS using different TOA estimation algorithms
at 3GHz bandwidth
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Figure A.6: CCDF of ranging errors for OLOS using different TOA estimation algorithms
at 80MHz bandwidth
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Figure A.7: CCDF of ranging errors for OLOS using different TOA estimation algorithms
at 120MHz bandwidth
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Figure A.8: CCDF of ranging errors for OLOS using different TOA estimation algorithms
at 500MHz bandwidth
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Figure A.9: CCDF of ranging errors for OLOS using different TOA estimation algorithms
at 2GHz bandwidth
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Figure A.10: CCDF of ranging errors for OLOS using differentTOA estimation algo-
rithms at 3GHz bandwidth
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Figure A.11: CCDF of ranging errors for Loop scenario using different TOA estimation
algorithms at 80MHz bandwidth
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Figure A.12: CCDF of ranging errors for Loop scenario using different TOA estimation
algorithms at 120MHz bandwidth
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Figure A.13: CCDF of ranging errors for Loop scenario using different TOA estimation
algorithms at 500MHz bandwidth
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Figure A.14: CCDF of ranging errors for Loop scenario using different TOA estimation
algorithms at 2GHz bandwidth
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Figure A.15: CCDF of ranging errors for Loop scenario using different TOA estimation
algorithms at 3GHz bandwidth
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Figure A.16: CCDF of ranging errors for UDP scenario using different TOA estimation
algorithms at 80MHz bandwidth
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Figure A.17: CCDF of ranging errors for UDP scenario using different TOA estimation
algorithms at 120MHz bandwidth
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Figure A.18: CCDF of ranging errors for UDP scenario using different TOA estimation
algorithms at 500MHz bandwidth
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Figure A.19: UDP scenario using different TOA estimation algorithms at 2GHz band-
width
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Figure A.20: UDP scenario using different TOA estimation algorithms at 3GHz band-
width
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Appendix B

MATLAB Codes for Parsing Data

1 %% convert network analyzer data to time domain

2 close all

3 clear all

4 clc

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6 %% For calculating Tx-RX distance

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8 % Nfile=291; %Number of measurement points

9 % txloc = [9 6.95]; %fixed transmitter point

10 % rxloc1 = [(13:-0.05:0)' 10.5 * ones(segm(1),1) ];

11 % rxloc2 = [zeros(segm(2),1) (10.45:-0.05:0)' ];

12 % rxloc3 = [(0.05:0.05:13)' zeros(segm(3),1) ];

13 % rxloc4 = [13 * ones(segm(4),1) (0.05:0.05:10)' ];

14 % rxloc = [rxloc1; rxloc2; rxloc3; rxloc4]; %Receiver point s

15 %calculate distance between Tx and Rx

16 % for k=1:size(rxloc,1)

17 % dist(k) = norm(rxloc(k,:) - txloc);

18 % end
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19 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

20 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

21 %% SETTINGS

22 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

23 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

24 ∆ = 1; % Delta x 5 cm processing

25 vec = [1: ∆:(Nfile-1)]; % Count vector

26 numpa=zeros(length(vec),1); % Number of path

27 makemovie = 0; % Switch for making movie

28 dbase =1;

29 c = 3e8; %Speed of signal

30 % Noise suppression in dB%

31 noise_suppr_db =20;

32 noise_suppr =10ˆ(noise_suppr_db/20);

33 % Time domain span%

34 tstart = 0;

35 tstop=320e-9;

36 % Frequency domain span (GHz)

37 BWstart = 3;

38 BWend = 8;

39 BW = BWend - BWstart;

40 % Average number of MPCs

41 avgnumpa=zeros(13,1);

42 drange=0; %select whether to put the dynamic range

43 numpamat=zeros(length(vec),13); %matrix of number of paths

44 % Matrix of number of paths for CDF plot

45 numpamat1=zeros(Nfile,13);

46 % Receiver sensitivity threshold

47 noi = 10ˆ(-90/20);

48 % side lobe threshold

49 side =10ˆ(-20/20);
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50 peak_width = 1;

51 % Used for calculation of APL of FDP

52 segcnt=1;

53 lenvec=zeros(1,length(vec));

54 lenvecmat=zeros(13,length(vec));

55 % Used for calculation of APL of SP

56 segcnt1=1;

57 lenvec1=zeros(1,length(vec));

58 lenvec1mat=zeros(13,length(vec));

59 flag_fig = 0;

60 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

61 tracking=0; % Switch for tracking the paths

62 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

63

64 %% plotting figure switches

65 plot_figure = 0;

66 % TOA of the FDP and SP versus moved distance

67 plot1=0;

68 % RMS delay versus moved

69 plot2=0;

70 % Received signal power versus moved distance

71 plot3=0;

72 % Distance between Tx and Rx

73 plot4=0;

74 % Number of MPCs versus bandwidth

75 plot5=0;

76 % Plot power of FDP and SP versus

77 % moved distance

78 plot6=0;

79 % Plot delay gain matrix

80 plot7=0;
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81 % Plot the difference between SP and FP power as

82 % a function of location

83 plot14=0;

84 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

85 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

86

87 %% Switch and save for making movie

88 if makemovie

89 mov = avifile([num2str(vec(1)) '-' num2str(vec( end )) ...

90 '_' num2str(BWstart) 'G-' num2str(BWend) 'G_test_thr' ...

91 num2str(abs(noi)) '_' num2str(dbase) '.avi' ]);

92 end

93

94 %%

95 k = vec+1;

96 j = 1;

97 %Swiching between different bandwidths

98 frange=1:12; %%%for 5G

99 for q=frange;

100 %Originate parameters for each bandwidth

101 k=vec+1;

102 j=1;

103 segcnt=1;

104 segcnt1=1;

105 lenvec1=zeros(1,length(vec));

106 lenvec=zeros(1,length(vec));

107 numpa=zeros(length(vec),1);

108 power=zeros(length(vec),1);

109 pfir=zeros(length(vec),1);

110 rms=zeros(length(vec),1);

111 disp(num2str(q));
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112 for i=vec

113 %Display points which are times of 50

114 if mod(j,50)==0

115 disp([ 'Numpos: ' num2str(j)] )

116 end

117 %Load measurement data

118 if avg %Switch for averaging 2 data set

119 fname1 = [ 'scen3_pt' num2str(i) '_1.s1p' ];

120 fname2 = [ 'scen3_pt' num2str(i) '_2.s1p' ];

121 [Hf1, f1] = load_chmeas_s1p_dB( fname1, flag_fig );

122 [Hf2, f2] = load_chmeas_s1p_dB( fname2, flag_fig );

123 %%%% Time avg

124 %[zt_han1, t1] = CZT_Hanning( f1, Hf1, tstart, tstop, flag) ;

125 %[zt_han2, t2] = CZT_Hanning( f2, Hf2, tstart, tstop, flag) ;

126

127 %zt_han = (zt_han1 + zt_han2) / 2;

128 %t = t1;

129 %%%% Freq avg

130 Hf = (Hf1 + Hf2) / 2;

131 [zt_han, t] = CZT_Hanning( f1, Hf, tstart, tstop, flag);

132 else

133 fname = [ 'scen3_pt' num2str(i) '_1.s1p' ];

134 flag = 1; % Hanning -- > 1: apply 0: donot apply

135 [Hf, f] = load_chmeas_s1p_dB( fname, flag_fig );

136 factor = BW / 5;

137 lim = fix(length(f) * factor);

138 end

139 % Vector for Switching among different BW

140 bwvector=[100 200 500 1000 1500 ...

141 2000 2500 3000 3500 4000 4500 5000];

142 % Load frequency domain data with different
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143 % Bandwidth

144 Hf=Hf((5000-bwvector(q))/(2 * 5000) * 3200+1: ...

145 (5000-bwvector(q))/(2 * 5000) * 3200+1+bwvector(q)/5000 * 3200);

146 f=f((5000-bwvector(q))/(2 * 5000) * 3200 ...

147 +1:(5000-bwvector(q))/(2 * 5000) * 3200+1+bwvector(q)/5000 * 3200);

148 % Use chirp-Z transform to get time domain data

149 [zt_han, t] = CZT_Hanning( f, Hf, tstart, tstop, flag);

150 % Suppress noise before multipath

151 noi_ind = find(t < dist(j)/c);

152 zt_han(noi_ind) = zt_han(noi_ind)/noise_suppr;

153 % Find peaks

154 index = pkd_cir(abs(zt_han), noi, side, peak_width);

155 if index == 0

156 continue

157 end

158 numpa(j)=length(index);

159 pathindex=index; %%%%%%%

160 %%%%%%calculate the path's time of arrival %%%%%%%

161 % First path

162 firstpath(i+1) = min(t(pathindex)) * 3* 10ˆ8;

163 [val1 ind1]=sort(t(pathindex), 'ascend' );

164 % Strongest path

165 [val ind]=sort(20 * log10(abs(zt_han(pathindex))), 'descend' );

166 strpath(i+1)=t(pathindex(ind(1))) * 3* 10ˆ8;

167 % Calculate the magnitude difference between the FP and SP

168 pfir(j)=20 * log10(abs(zt_han(pathindex(ind1(1)))));

169 pstr(j)=20 * log10(abs(zt_han(pathindex(ind(1)))));

170 differp(j)=pstr(j)-pfir(j);

171 differl(j)=strpath(j)-firstpath1(j);

172

173 % Calculation for APL and APD
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174 % This is for FDP

175 if i>0

176 if abs(firstpath(i+1)-firstpath(i))<0.25

177 lenvec(segcnt)=lenvec(segcnt)+1;

178 else

179 jump(segcnt)=abs(firstpath(i+1)-firstpath(i));

180 segcnt = segcnt + 1;

181 end

182 end

183 % This is for SP

184 if i>0

185 if abs(strpath(i+1)-strpath(i))<0.25

186 lenvec1(segcnt1)=lenvec1(segcnt1)+1;

187

188 else

189 jump1(segcnt1)=abs(strpath(i+1)-strpath(i));

190 segcnt1 = segcnt1 + 1;

191

192 end

193 end

194 %Calculate the RMS delay spread%%%

195 tao=sum(abs(zt_han(pathindex)) ...

196 . * t(pathindex)')/sum(abs(zt_han(pathindex)));

197 taosqure=sum(abs(zt_han(pathindex)). * ...

198 (t(pathindex).ˆ2)')/sum(abs(zt_han(pathindex)));

199 rms(j)=sqrt(taosqure-taoˆ2);

200 % Path gain

201 gain{j,:} = abs(zt_han(pathindex));

202 % Path delay

203 delay{j,:} = t(pathindex);

204 % Total received power at each point
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205 power(j)=sum(gain{j,:}. * gain{j,:});

206 for ii=1:length(delay)

207 len(ii) = length(delay{ii,:});

208 end

209

210 if plot_figure

211 figure(2)

212 plot(t * 1e9,20 * log10(abs(zt_han)), 'g' , 'LineWidth' ,2)

213 title([ 'Point: ' num2str(i) ])

214 xlabel( 'Time (ns)' )

215 ylabel( 'Path power (dB)' )

216 ylim([-130 -30])

217 grid

218 hold on

219 plot(t(index) * 1e9,20 * log10(abs(zt_han(index))), 'k * ' )

220 hold on

221 plot([dist(i)/c * 1e9 dist(i)/c * 1e9], [-130 30], 'r--' );

222 end

223 if makemovie

224 F = getframe(gca);

225 mov = addframe(mov,F);

226 end

227 hold off

228 j=j+1;

229 end

230

231

232 % Delay matrix

233 delaymat = zeros(length(delay),max(len));

234 % Gain delay matrix

235 gainmat = zeros(length(delay),max(len));
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236 % Number of MPCs matrix

237 numpamat(:,q)=numpa;

238 % Persistent region matrix

239 % For FDP

240 lenvecmat(q,:)=lenvec;

241 % For SP

242 lenvecmat1(q,:)=lenvec1;

243 % FDP's APL for different bandwidth

244 meanlenvec(q)= mean(lenvec(find(lenvec))) * 0.1;

245 % FDP's APD for different bandwidth

246 meanjump(q)=mean(jump);

247 % SP's APL for different bandwidth

248 meanlenvec1(q)=mean(lenvec1(find(lenvec1))) * 0.1;

249 % SP's APD for different bandwidth

250 meanjump1(q)=mean(jump1);

251 % Average number of MPCs at different bandwidth

252 avgnumpa(q)=mean(numpa);

253 end

254

255

256

257

258

259 %if plot10

260 %figure(13)

261 %ii=1:931

262 %plot(ii * 0.05,firstpath(ii));

263 %xlabel('the unfolded path length to the starting point');

264 %ylabel('distance of the first path(m)');

265 %title('bandwidth=100MHz');

266 %ylim([0 30]);
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267 %figure(14)

268 %ii=1:931

269 %plot(ii * 0.05,strpath(ii));

270 %xlabel('the unfolded path length to the starting point');

271 %ylabel('the length of strongest path(m)');

272 %title('bandwidth=100MHz');

273 %ylim([0 30]);

274 % end

275

276

277 if plot8

278 figure(8)

279 q=0:12

280 plot((1-2/25 * q) * 50,avgnumpa(q+1));

281 xlabel( 'bandwidth(100MHz)' );

282 ylabel( 'average number of paths during the round trip' );

283 title( 'number of paths versus bandwidth' );

284 end

285

286 if plot1

287 figure(1)

288 i=1:931

289 plot(i,firstpath(i), 'g.' );

290 hold on

291 plot(i,dist(i), 'r' );

292 ylim([0 20])

293 %hold on

294 %legend('first path','second path',

295 %'third path','forth path','fifth path','actual distanc e')

296 plot([174 174],[0 20], 'r' ,[218 218], ...

297 [0 20], 'r' ,[560 560],[0 20], 'b' , ...
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298 [611 611],[0 20], 'b' ,[766 766],[0 20], 'g' ,[793 793],[0 20], 'g' );

299 xlabel( 'number of points' );

300 ylabel( 'path distance(m)' );

301 title( 'the first path(freq range[3 ¬8]GHz)' );

302 figure(2)

303 i=1:931

304 plot(i,strpath(i), 'g.' );

305 hold on

306 plot(i,dist(i), 'r' );

307 hold on

308 %legend('strongest path','second strongest',

309 plot([174 174],[0 30], 'r' ,[218 218],[0 30] ...

310 , 'r' ,[560 560],[0 30], 'b' ,[611 611],[0 30] ...

311 , 'b' ,[766 766],[0 30], 'g' ,[793 793],[0 30], 'g' );

312 ylim([0 30]);

313 xlabel( 'number of points' );

314 ylabel( 'path distance(m)' );

315 title( 'the strongest path (freq range[3 ¬8]GHz)' );

316 end

317

318 if plot2

319 figure(3)

320 ii=1:length(rms)

321 plot(ii,rms * 10ˆ9, 'r' );

322 xlabel( 'the unfolded path length to the starting point' );

323 ylabel( 'rmsdelay(ns)' );

324 hold on

325 plot([174 174],[0 100], 'r' , ...

326 [218 218],[0 100], 'r' ,[560 560],[0 100] ...

327 , 'g' ,[611 611],[0 100], 'g' ,[766 766] ...

328 ,[0 100], 'b' ,[793 793],[0 100], 'b' );
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329 title( 'rms delay(5GHz)' )

330 end

331

332

333 if plot3

334 figure(4)

335 jj=1:length(power)

336 plot(jj,10 * log10(power(jj)), 'r' );

337 hold on

338 plot([174 174],[-75 -40], ...

339 'r' ,[218 218],[-75 -40], ...

340 'r' ,[560 560],[-75 -40], 'b' ,[611 611],[-75 -40], 'b' );

341 xlabel( 'the unfolded path length to the starting point' );

342 ylabel( 'power(dBm)' );

343 end

344

345

346 if plot4

347 figure(5)

348 ii=1:931

349 plot(ii * 0.05,dist(ii), 'b' );

350 xlabel( 'unfolded path length from starting point' );

351 ylabel( 'distance between Tx and Rx(m)' );

352 title( 'distance variation during the measurement' );

353 end

354

355

356 if plot5

357 figure(6)

358 jj=1:length(numpa)

359 [ax,h(1),h(2)]=plotyy(jj,numpa(jj),jj,dist(jj));
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360 legend(h, 'number of paths' , 'distance between the Tx and Rx' )

361 hold on;

362 % plot([174 174],[0 300],'r',[218 218],[0 300],

363 %'r',[495 495],[0 300],'g',[611 611],[0 300],'g',

364 %[766 766],[0 300],'b',[793 793],[0 300],'b');

365 xlabel( 'number of the measurement points' );

366 ylabel( 'number of paths for the threshod used for DP detection' );

367 title( 'number of paths when bandwith is 5GHz(noi threshold -85dB) ' );

368 plot(dist,numpa');

369 axis([1 15 0 90]);

370 end

371

372

373

374 if plot6

375 figure(7)

376 jj=1:931

377 plot(jj,differp(jj), 'o' );

378 hold on

379 plot([174 174],[0 40], 'r' ,[218 218] ...

380 ,[0 40], 'r' ,[560 560],[0 40], 'g' , ...

381 [611 611],[0 40], 'g' , ...

382 [766 766],[0 40], 'b' ,[793 793],[0 40], 'b' );

383 xlabel( 'number of points' );

384 ylabel( 'difference of magnitude between the FP and SP(dB)' );

385 title( ' difference of gain between SP and FP versus location' );

386

387 figure(8)

388 jj=1:931

389 plot(jj,pfir(jj));

390 hold on
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391 plot([174 174],[-90 -40], 'r' ,[218 218] ...

392 ,[-90 -40], 'r' ,[560 560],[-90 -40], 'g' , ...

393 [611 611],[-90 -40], 'g' ,[766 766],[-90 -40], 'b' ,[793 793],[-90 -40], 'b' );

394 xlabel( 'number of points' );

395 ylabel( 'magitude of the FP(dB)' );

396 title( ' magnitude of FP versus location' );

397

398 figure(9)

399 jj=1:931

400 plot(jj,pstr(jj));

401 hold on

402 plot([174 174],[-85 -45], 'r' , ...

403 [218 218],[-85 -45], 'r' ,[560 560],[-85 -45], ...

404 'g' ,[611 611],[-85 -45], 'g' ,[766 766], ...

405 [-85 -45], 'b' ,[793 793],[-85 -45], 'b' );

406 xlabel( 'number of points' );

407 ylabel( 'magitude of the SP(dB)' );

408 title( ' magnitude of SP versus location' );

409

410 figure(10)

411 jj=1:931

412 plot(jj,differl(jj), 'o' );

413 ylim([0 18]);

414 hold on

415 plot([174 174],[0 18], 'r' , ...

416 [218 218],[0 18], 'r' ,[560 560],[0 18], 'g' , ...

417 [611 611],[0 18], 'g' ,[766 766],[0 18], 'b' ,[793 793],[0 18], 'b' );

418 xlabel( 'number of points' );

419 ylabel( 'difference of path length between the FP and SP(m)' );

420 title( ' difference of path length between SP and FP versus location ' );

421 end
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422

423 if plot7

424 figure(11)

425 pp=zeros(max(len),931);

426 for ii=1:931

427 pp(:,ii)=ii * ones(max(len),1);

428 end

429 mesh(pp,delaymat',(10 * log10(gainmat))');

430

431 end

432

433

434 if makemovie

435 mov = close(mov);

436 end

437 %grid
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