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Abstract

Recently, indoor geolocation technologies has been &tigatremendous attention.
For indoor environments, the fine time resolution of ultrgetand (UWB) signals en-
ables the potential of accurate distance measurement afittbet path (DP) between a
number of reference sources and the people or assets @dntelowever, Once the DP is
not available or is shadowed, substantial errors will beoohiced into the ranging mea-
surements, leading to large localization errors when nreasents are combined from
multiple sources. The measurement accuracy in undetertsd dath (UDP) conditions
can be improved in some cases by exploiting the geolocatifammation contained in
the indirect path measurements. Therefore, the dynami@spahavior of paths is an
important issue for positioning techniques based on TOAdirect paths.

The objectives of this thesis are twofold. The first is to gpalthe sensitivity of TOA
estimation techniques based on TOA of the direct path. weiestithe effect of distance,
bandwidth and multipath environment on the accuracy ofousiTOA estimation tech-
niques.The second is to study the sensitivity of multipatremeters pertinent to TOA
estimation techniques based on the TOA of the indirect p&tlesmainly looked into the
effect of distance, bandwidth, threshold for picking patdred multipath environment on
the number of multipath components(MPCs) and path pensigte

Our results are based on data from a new measurement cangmeidacted on the
3rd floor of AK laboratory. For the TOA estimation techniquxsed on DP, the line of
sight (LOS) scenario provides greatest accuracy and thesesEtimation techniques are
most sensitive to bandwidth availability in obstructecelof sight (OLOS) scenario. All
the TOA estimation algorithms perform poorly in the UDP saém although the use of

higher bandwidth can reduce the ranging error to some exiaded on our processed



results, The proposal for selecting the appropriate TOAedion technique with certain
constrains is given.

The sensitivity study of multipath parameters pertineninttirect-path-based TOA
estimation techniques shows that the number of MPCs is \engitive to the threshold
for picking paths and to the noise threshold. It generaltreases as the distance increase
while larger bandwidth always resolves more MPCs. The maili components behave
more persistently in line of sight (LOS) and obstructed lriesight (OLOS) scenarios
than in UDP scenarios, and the use of larger bandwidth arfeehitpreshold for picking

paths also result in more persistent paths.
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Chapter 1

Introduction

This Chapter is divided into three sections. Section 1.Viges the background and
motivation for this research. Section Section 1.2 highltsghe major contributions made
through this research. Section 1.3 provides an outline @fémaining chapters in this

thesis.

1.1 Background and Motivation

The use of radio signals for localization was originated iorM/War Il when the require-
ment for locating military targets and soldiers appeareduririyy the Vietham war, the
Global positioning system (GPS) [3] was introduced by lduimg a series of satellites to
support the military application. This technology becaroeeasible to commercial and
private use around 1990, and is still the most popular leadbn technology until now.
Another existing location finding system, the wireless edea 911 (E911), was intro-
duced by the FCC in 1996 and is used to provide relatively rateipositioning for the
outdoor environment [4]. These technologies, althougialved and accurate in outdoor

environments, can not achieve the satisfactory accuragydimor and urban areas with



serious multipath conditions and frequent occurrence aldikcted direct path (UDP)
conditions.

Indoor geolocation is motivated by a variety of envisiong@glecations for indoor
location sensing in commercial, public safety, and myitsettings [5, 1]. Examples of
such applications include tracking people with speciatisecating instrumentation and
other equipment in hospitals, locating equipment in wanskes, locating public safety
and military personnel in their indoor missions, and vasiparsonal robotics applications
[6].

As a result of the potential for such applications and sesjicmany researchers have
worked on various aspects of indoor geolocation. For thean@&nvironment, the fine
time resolution of ultra-wideband (UWB) signals enablespbtentiality of accurate dis-
tance measurement of the direct path (DP) between a numlvefesénce sources and
the people or assets of interest. However, the rich muhipavironment often causes
the received signal strength (RSS) of indirect paths to leatgr than that of the direct
path, sometimes resulting in undetected direct path (UDRYitions [1]. Once the DP
is not available or shadowed, substantial errors will beoohiced into the ranging mea-
surements hence leading to large localization errors wheasorements are combined
from multiple sources [7]. Discussions of these UDP cond#iand how they affect the
ranging/positioning accuracy can be found in [8, 9].

The measurement accuracy in UDP conditions can be improvedme cases by
exploiting the geolocation information contained in theirect path measurements [7], or
exploiting multipath signals by using them as additionahswements within a nonlinear
filter [10]. Both of these approaches will need the help okoihdirect paths in addition
to the DP component. The intuition for using multipath istténen in the absence of DP,
there will be multipath components that might show stable persistent behavior and

thus can be related to the DP to aid in more precise locadzali herefore, the dynamic



behavior of paths, which is time varying due to the motionha mobile terminal (MT)
and changes in the surrounding objects, is an importarg issmitigating the UDP error.
In this thesis, a comprehensive dynamic UWB channel meamntdatabase has
been created to study the sensitivity of time of arrival (T/&sed indoor localization
techniques. For direct path based TOA estimation, we méaalged into the sensitivity
of distance measurement error (DME). For multipath divgtsased TOA estimation, the
distance dependency of the available number of MPCs foiogatibn has been modeled
for both line of sight (LOS) and non-line of sight (NLOS) catahs. In addition, the
effect of bandwidth, path detection threshold and NLOS oerice on multipath param-
eters such as number of MPCs , and path persistency, is adalgzprovide a deeper

insight into wireless channel modeling for indoor geolcmat

1.2 Contribution of the Thesis

The contribution of the thesis can be summarized as follows:

1. Dynamic UWB channel measurements were conducted fordidfi@érent scenar-
ios: Mixed loop scenario, LOS corridor scenario, NLOS scenand UDP scenario.
The main difference between this measurement campaignhanorévious UWB chan-
nel measurement campaigns conducted in the Center for&&géhformation Network
Study (CWINS) is this: the interval between consecutive sneament points is much
smaller than in the previous measurements: 5 and 10cm desfan the dynamic mea-

surements compared with several meters for previous measmts).

2. The sensitivity of TOA estimation accuracy for DP basethteques was analyzed.

The effect of bandwidth, threshold for picking paths, andQ8, UDP occurrence on



distance measurement error (DME) was evaluated. The peafuce of different TOA
estimation techniques was also compared using variougreants to build a reference

for the selection of TOA estimation techniques

3. The sensitivity of measured multipath parameters pamtito TOA estimation
techniques using multipath diversity was also analyzec diktance dependency of the
available number of MPCs was modeled for each measuremenasc. The effect of
bandwidth, threshold for picking paths, and NLOS, UDP owmmce on the multipath
parameters such as number of MPCs, and path persistencywalaated using the com-

prehensive measurement data base tailored to indoor ge@ioc

1.3 Outline of the Thesis

The thesis is divided into six chapters. Chapter 1providesvarview of the thesis.

Chapter 2 provides an overview of the indoor geolocatiotesys. The system archi-
tecture and geolocation specific matrices are explainedh&umore, the classification of
typical indoor channel environments is introduced.

Chapter 3 outlines the procedure for the measurement cgmp@at was conducted
along with detailed procedure for post-processing the oredsdata. The measurement
scenario is also depicted.

Chapter 4 first introduces the direct-path-based TOA esitbmalgorithms used in
thesis and then provides the sensitivity study of theseritgos affected by adjusting
bandwidth, threshold for picking paths, and multipath emvinents.

Chapter 5 provides the sensitivity analysis results of ipatlh parameters pertinent to
indirect path based TOA estimation algorithms. This inekid proposed model for the

distance dependency of number of MPCs in LOS scenario andS\é¢@nario and also



the effect of bandwidth, threshold for picking paths, andRJ@xcurrence on number of
MPCs and path persistency.
Finally, Chapter 6 concludes the thesis and discusseshp@stirections of future

work.



Chapter 2

Indoor Geolocation and Channel

behavior

Localization and tracking are of great interest in many ijagpibn fields, such as robotics
and emergency systems. In terms of functioning environmantan distinguish between
indoor and outdoor positioning systems. Outdoor positigréystems, such as GPS or
GSM, are designed for application in wide areas. They ugypativide satisfactory cov-
erage and accuracy in open areas, but can't perform as wielloor environments and
urban canyon areas. Indoor systems are designed to deteanprecise position inside
buildings or at locations where GPS does not perform satisfiy.

Apart from systems based on use of cameras and certain sesseh as inertial
sensors), most positioning systems use some kind of a sigetaic to infer the distance
between the fixed elements (beacons) and the mobile terthiais to be located. The
metrics that are usually used are time of arrival(TOA), nest signal strength(RSS) and
angle of arrival(AOA), which will be further explained late

Radiofrequency (RF) is the signal that is most commonly useperform indoor

localization, because it is the backbone signal for wielesmmunications. Reusing



RF signals to perform localization can be accomplishedauttadditional hardware, re-
ducing the total cost of the localization system signifiganiany research groups are
currently working on localization using a standard proteaech as 802.11 (WLAN) or
802.15.3 (UWB).

A wide variety of algorithms have been tested for positiolcwation , but they all
suffer from none-line-of-sight(NLOS) errors: the problemfinding the intersection of
several spheres centered on the beacons and radius eqinldistances to the mobile
terminal accurately. In the concluding section of this ¢dbgpwe introduce different

channel profiles and their characteristics as the preparédr later discussion.

2.1 Indoor Geolocation Systems Architecture

Figure 2.1 illustrates a block diagram of the main compaonént wireless geolocation
system. The location sensing devices measure the locatbmncsibetween the mobile
terminal (MT) with respect to some number of known referepomts (RPs). The loca-
tion metrics include angle of arrival (AOA), time of arriy@OA), received signal strength
(RSS), and carrier signal phase of arrival (POA). The pasitig algorithm processes the
reported metrics to estimate the location coordinateseféloeiver. The display system
exhibits the location of the mobile terminal relative to theer. The accuracy of location
estimation is a function of the accuracy of the location mstand the complexity of the
positioning algorithm [2].

There are two common approaches to implementing a wirefeksor geolocation
system. The first approach is to design a signaling systena aetivork infrastructure of
location sensors focused primarily on geolocation appbtoa [1]. The second approach
is to use an existing wireless network infrastructure swsch eellular network or wireless

LAN (WLAN) to locate a MT. The advantage of the first approastthat the physical
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Figure 2.1: Functional block diagram of a wireless geoliocesystem [1]

specialization, and therefore the overall design, is unklercontrol of the system de-
signer. As a result, the MTs can be designed as small weatiaddeor stickers and the
complexity and density of the locating infrastructure canchstomized to the accuracy
required for different applications. The advantage of #@sd approach is that it avoids
expensive and time-consuming infrastructure deploymidotvever, more intelligent al-
gorithms are needed in such systems to compensate for thaclowacy of the reported
metrics.

When considering system implementation, the advantageedirst approach is that
it is easier to implement super-resolution algorithm faghar time-domain resolution.
The system captures snapshots in the frequency domain endhitough the spectral es-
timation, it is possible to obtain an accurate represemaif the time domain. Another
emerging approach that has better accuracy and potentidlegswideband (UWB) tech-
nology [1]. The large bandwidth provides high time domaisotation which in return
provides better ranging accuracy.

For the second approach, the use of the network infrasteiatundoor geolocation



is also feasible but more complex algorithms are neededdierdo compensate for over-
all performance. One current example is Ekahau positiosaftyvare which utilizes the
existing WLAN infrastructure. Unlike the other positiogitechnologies, Ekahau does
not apply propagation methods that suffer from multipatiattering and attenuation ef-
fects. Instead, Ekahau collects radio network sample pdiom different site location.
Each sample point contains received signal intensity (R&Sd the related map coordi-
nates, stored in an area-specific positioning model forratedracking. Ekahau provides
average positioning accuracy approaching 1 meter. Thevamtworks with industry-
standard Wi-Fi (IEEE 802.11b,g) networks [11]. When it cen@ system deployment,
a positioning model is created first. Then the positioningleids calibrated using RSSI
samples collected from the different points on the map. Ttherracking or positioning
can start as soon as the system is calibrated. In other wibiidspositioning algorithm
works with the WLAN infrastructure and no information abthg access point location is
required. Such technology depends on complex positiongayithms and does not con-
centrate on the physical layer. In fact, it uses RSS as acriesiead of trying to extract
the TOA or AOA, which is more challenging task at the physlagker. Needless to say,
when following the RSS method and bypassing the propagasues the complexities

lie in the software itself.

2.2 Positioning Metrices

Wireless localization sensors operating in different emunent measure RSS, AOA,

POA, TOA, and the signature of the delay power profile as lonanetrics [1].

10



2.2.1 Angle of Arrival

In AOA-based indoor geolocation, directional antenna deana arrays are used to tri-
angulate the MT. Two or more reference points (RPs) are metddetermine the axis
value of the MT as shown in Fig 2.2. Commonly, measuremen@4 and AOA in

large indoor and urban areas provide very unreliable resgluke to severe multipath prop-

agation and heavy shadow-fading conditions. The accuratlyeoAOA measurement

RP1 RP2

A

:;:f'f'@ o

gt

Figure 2.2: AOA technique for geolocation

system is determined by the resolution of the directionéérama or antenna array and
the algorithms used to estimate the AOA simultaneously.eGithe accuracy of AOA
measurement system, the number of reference points isydatt by the MT position
with respect to the reference points. When the MT lies betviikre two reference points.
AOA measurements will not be able to provide the exact locatif the MT on the line
between the two reference points. Hence, more than twoergerpoints are normally

needed to improve the location accuracy.
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2.2.2 Received Signal Strength

The first RSS-based indoor geolocation system is the RADAR |h RSS-based indoor
geolocation, the distance between the RP and MT can be atdulising the measured
power and a distance-power relationship. In wideband nieagents, the effects of multi-
path fading are averaged over the spectrum of the signahd&oowband systems, where
we have only one arriving pulse with fluctuating amplitudeading to the multipath
fading characteristics, we need to average the signal olarger period to make sure
that the multipath fading is averaged out [2]. Many statatmodels are available for
relating RSS to the distance, developed mainly for telecamaation applications. The
common principle behind all statistical models for caltinig the RSS in a distancéis
given by [2]:

RSS; = 10log10 P, = 10log1o P — 10alogiod + X (2.1)

where P, is the transmitted powetd is the distance between the transmitter and the re-
ceiver, andx is the distance-power gradient of the environment. Theaangariable

X. The path loss model in indoor environment is highly siteesfic. For example, the
value of power-distance gradient, which is a parameter tf f[wss model, varies over

a wide range between 15-20dB/decade and a value as high B&dé@dde. Moreover,
the shadow fading will further decrease the stability of R@tie. As a result, the dis-
tance calculated from RSS is not very reliable. An alteusegiolution is the ray-tracing
algorithms, which can provide much more reliable RSS vahyessing the layout of the
building [2]. However, the drawback of ray-tracing algbnts is the computational com-
plexity and the labor cost incurred in getting the fine grdibailding floor plan as well

as information on construction materials.

12



2.2.3 Time of Arrival

The TOA-based system measure distance based on an estimsageab propagation de-
lay between a transmitter and a receiver since in free spaag, sadio signals travel at
the constant speed of light. The TOA can be measured by eitkasuring the phase
of received narrowband carrier signal or directly meagythre arrival time of a wide-

band narrow pulse [1]. The important parameters for TOAetdscalization system is
the TOA of the direct line of sight (DLOS) path since it is thieedt representation of
the physical distance between the transmitter and receirrexample of the indoor

multipath and the geolocation specific parameters is showg 2.3.

Strongest path,

 important in localization
DLOS path important ’

in localization

A

Other paths, important for
telecommunication but not for
/localization

ites

“ Time

Paths close to the first
path, important in
localization

Figure 2.3: Multipath profile and important paths for gealban [1]

Using the narrowband ranging technique, the phase of aveste&arrier signalg,
and the TOA of the signat;, are related by = ¢/w,., wherew, is the carrier frequency
in radians. In outdoor scenario applications such as GRDHOS path always exists,

and accurate measurement of the carrier phase is possibten Bixdoor environments,
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the severe multipath environment causes huge measuremanst sometimes larger than
the actual distance between the transmitter and receitiereiore, the conclusion is that
the phase-based distance measurement using narrowbaied sgnal is not a suitable

solution for indoor geolocation.

Composite receive
signal

Multipath signals

DLOS signal

v

Figure 2.4: Phasor diagram for narrowband signaling on dipath channel [2]

Another widely used technique is the wideband signal ambreéhere the direct se-
guence spread spectrum (DSSS) method is the most commadyfarsn, as this tech-
nique performs better than competing systems at suppgesgerference [13]. In such
a system a known pseudo-noise (PN) signal, which is modulaseng a modulation
technique (such as BPSK, QPSK, etc), is multiplied by thei@asignal, which is thus
replaced by a wide bandwidth signal with a spectrum equitatethat of the noise signal.

Usually, in order to measure the time of arrival of the sigmasliding correlator or
a matched filter is used at the receiver which cross-cog®ldte received signal with a
stored reference PN sequence. The arrival time of the firstletion peak is used as the
time measurement.

Due to the scarcity of the available bandwidth in practicBSS ranging systems may

not be able to provide adequate accuracy. On the other hiarsdalivays desirable to

14



achieve higher ranging accuracy using the same bandwidgpired by high resolution
spectrum estimation techniques, a number of researcheesdbadied super-resolution
techniques for time-domain analysis [14].

Finally, the most recent accurate and promising technigjtiea UWB approach. As
the bandwidth of UWB systems is usually several GHz, the irapngccuracy is of the

order of centimeter. This fact can be determined from thegtirship:

d:

S (2.2)

where d denotes the absolute resolution, and BW is the baltidwni the signal. The large
bandwidth of UWB systems enables them to resolve multipllespand combat multipath
fading and interference. However, such systems have ealiménge and building pen-
etration, due to the high attenuation associated with tga-frequency content of the
signal. From our measurement experience, the coverage dng\WB signal for an ob-
structed line of sight (OLOS) scenario is only about 16 melde actual deployment of
the UWB systems in the US is subject to FCC approval. The mamcern of the FCC
is the interference of the UWB devices to, among other liedrnservices such as GPS
systems operating in the 1.5GHz frequency band. A signifiaamount of research work

is underway to assess the effect of the UWB interference @GS receivers.

2.3 TOA and Channel Profile in indoor areas

As the MT travels in an indoor environment, the multipathfipedoetween the transmitter
and MT keeps changing. For geolocation applications, wadamn the behavior of the
DLOS path. The performance of TOA estimation varies sulbstinin different envi-

ronments. Here, we classify the channel profile based onghauor of DLOS path. The

channel profiles were obtained by applying the inverse CAifansform to the frequency
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domain measurement followed by a Hanning window.

The measurement is classified according to the availalaliy the strength of the
DLOS path. The factors that affect categorizing the difié@rofiles are receiver sensi-
tivity and system dynamic range. The receiver sensitigtthe noise floor level of the
system where any paths below that level are treated as nexseibe the receiver can not
differentiate them from noise. The threshold for pickinghsais defined as the ratio of
the power of the strongest path to the power of the weakesttdtie path in a measured
profile. For this categorization, a threshold was used et distinguish between a de-
tected direct path (DDP), non-dominant direct path (NDDiR) a undetected direct path
(UDP). This threshold was selected based on the larger ltize measured system
noise floor (receiver sensitivity) and the side-lobes offtltering window used (thresh-
old for picking paths). This ensured that the first peak ofadhannel profile is detected
correctly. From these multipath conditions, DDP is the estsio detect from the profile

as can be seen from Fig 2.5.

DDP profile (200MHz BW)

|
_a0- L/Expected TOA

© Threshold for pricking péths

Path power (dB)

150 200 250 300 350
Time (ns)

Figure 2.5: DDP measured channel profile at 200MHz bandwidth

Because it has a distinct strong first path, this categoryalmaadvantage in TOA
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estimation accuracy.

When the first detected path becomes weaker but remains ahevhreshold, the
profile is categorized as NDDP, which is shown in Fig 2.6. ks tase, the inaccuracy
of TOA estimation can be mitigated significantly by using aenxmmplex RAKE receiver

to resolve the multipath and intelligently detect the TOAld DLOS path.

NDDP profile

Expected TOA

Threshold for picking paths

Path power (dB)

0 50 100 150 200 250 300 350
Time (ns)

Figure 2.6: NDDP measured channel profile at 200MHz bandwidt

For the UDP profile, which is shown in Fig 2.7, substantiabem TOA estimation
can occur due to the loss of DLOS path. The power of the firgt gabelow the path
detection threshold and another path which is not the reptason of physical distance
between the transmitter and receiver is mistakenly inéteor as the DLOS path. This
causes significant error in indoor positioning applicagiom this unfavorable situation,
neither GPS nor a RAKE receiver can accurately detect the. Tgkactical considera-
tions regarding the dynamic range of the system are nedleitten there are essentially
two categories: DDP and NDDP. However, in reality, the impated receiver will have
limitations such as sensitivity and dynamic range and thiliscveate situations where the

DLOS path can’t be detected. The existence of these UDP tonsliand how they affect
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the ranging accuracy are discussed in [8, 9]. Since the UDHRitton brings most of the
troubles to indoor geolocation applications when comp#weaather conditions, identifi-
cation of UDP profile and mitigating the ranging errors in UBd#hdition are crucial to
positioning applications. In [15], the author proposed riethod of using a binary hy-
pothesis test on multipath parameters such as receivedr pétee first path and RMS
delay spread to identify UDP conditions, and from our measent results, we found
that the ratio between the five strongest paths’ power antbthkreceived signal power
is also a feasible metric to differentiate UDP conditiomfrother conditions [16]. Nor-
mally, in DDP and NDDP condition, the DLOS path and a few gfjest path contribute
a significant portion of the received power. However, in UDRdition, they are not the

dominant portion of received signal power. After UDP idé&aétion, the next step for

UDP profile

/Expected TOA

Threshold for picking paths

Path power (dB)
|

-100

-1101-

-120-

-130
0 50 100 150 200 250 300 350

Time (ns)
Figure 2.7: UDP measured channel profile at 200MHz bandwidth
accurate indoor positioning would be mitigating the ercagsed by UDP influence. The
measurement accuracy in UDP conditions can be improvednre sases by exploiting

the geolocation information contained in the indirect pagasurements, as described in

[7], or exploiting multipath signals by using them as aduhfll measurements within a

18



nonlinear filter [10]. An effective solution would be to erflother multipath compo-
nents to aid in the localization by using time difference wival (TDOA) of consecutive
locations on the receiver’s pathway, given that a specifib pan be tracked using AOA

information.
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Chapter 3

UWB Measurement Campaign

In the previous chapters, we have introduced the concepyrardic channel measure-
ment, which is a challenging task due to the measuremergraylghitation. In the early
days, all wide band measurements were aimed at telecomatiom@pplications, where
the interests are mainly around the coverage and rms detaggpnalysis, which is di-
rectly related to the achievable throughput. The main dbjeof the indoor channel
measurements is to establish a realistic foundation foetiauation of indoor channel
models. Measurements targeted for indoor geolocationcgtign have been carried out
in Center for Wireless information Networks (CWINS) sincg98 [17, 18, 19]. These
measurement campaigns, however, did not focus on the dgriahavior since the data
sets are all collected at separated points at least 1 mederfegom each other. They were
mainly conducted to study the distance measurement ert@avime for different envi-
ronments such as LOS environment, OLOS environment and UirFoeament. For the
purpose of our research, we developed a new measuremeatnsystich is suitable for
dynamic channel measurement. Dynamic sounding is much chalgenging than tradi-
tional static measurement, since it requires consecute@snorements during the move-

ment of the MT (receiver), and the step between two conseruteasurements should
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be kept the same for all the measurement locations, whiahrejaccurate control of
the MT’s motion. Moreover, since the step size in dynamicsueament is much smaller
than in static measurement, a manual dynamic measurentapan can be extremely
time consuming and the measured database huge. For exampligst measurement
scenario is the loop around the CWINS lab. With the measunéstep size of 5cm, we
took measurements at 931 different locations to traversd @5 meter distance around
the loop.

The measurement campaign which we will discuss in detallisxdhapter is an effort
to study the dynamic behavior of a multipath channel and nifleence of bandwidth,
threshold for picking paths and UDP occurrence on multigettameters pertinent to
indoor geolocation. The measurement campaign is compddea @xperimental steps.
Step 1 is designed to study the effect of bandwidth, threstoolpicking paths, and UDP
occurrence on multipath parameters. The transmitteritmcatas fixed and the receiver
moved around a loop which contains different propagatiorddmns. Step 2 is to study
the distance effect on multipath parameters and comparefthence of micro-metal and
macro-metal obstructions on multipath parameters. Indhépter, we first describe the
measurement system and then explain the procedure foppostssing the data. Finally,
the measurement scenario is outlined.

Section 3.1 outlines the measurement scenario and exjplengason for selecting
these scenarios. Section 3.2 provides a detailed deseripfithe measurement system
used to collect the data samples and the data post-progdssimnology. Section 3.3

presents the preliminary measurement results and propddB$ detection technology.

21



3.1 Measurement Scenario

The campaign of measurement was conducted on the third ffoatwater Kent(AK)
Labratories at Worcester Polytechnic Institute(WPI). Akebuilding was built in 1906
and underwent two major remodelings and additions in 19341881. Therefore, in
some areas within the building, there is more than one extgype wall. The exterior
walls of this building are heavy brick, the interior wall®anade of aluminum studs and
sheet rock, the floors are made with metallic beams, the dowrsvindows are metallic,
and many other metallic objects are spread over variousdatny areas. The excessive
number of metallic objects and heavy and multiple exterrallsamakes this building a
very harsh environment for radio propagation. As a reshis, €nvironment is suitable
for the indoor geolocation experiment since the DLOS pathbe attenuated seriously
in most locations. The measurement campaign was conduatéueahird floor of AK
building. The first step of the campaign procedure is to $éhedocation of measurement
points.

The main purpose of the first set of measurements is to stedgftect of bandwidth,
threshold for picking paths and UDP occurrence on multipattameters. We used the
loop around AK 320 (CWINS lab) as the measurement site.

Fig 3.1 shows the measurement site plan and the measureis.pdime transmitter
antenna was fixed at a position inside the CWINS laboratorshasvn in fig 3.1, close
to a metallic beam on the upper left side. The receiver aatevers secured on a bar
carried by the robot.This loop was designed to include difiereceiver location classes.
We controlled the robot to move 5 cm at a time, each time stapf take two mea-
surements. The total distance of the loop was 46.55m whiglegponds to 931 different
receiver locations anél31 x 2 = 1862 bandwidth swept measurements by the VNA.

The solid green line part in the loop denotes the DDP conaitioa which there is no
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blockage between transmitter and receiver or only one wigth window between them.
The dashed line part denotes the Shadowed UDP (SUDP) comglith which the DP
between the transmitter and receiver is undetectable duetallic obstruction. The blue
line part denotes the Natural UDP (NUDP) conditions in wisekieral walls along with
long distance between transmitter and receiver cause thte D®p below the threshold
for picking paths, making it undetectable.

In other words, prior to conducting the measurement, it wesirdble to see what
happens to the multipath parameters as the receiver movesdre DDP, SUDP and
NUDP conditions. Would the measured channel profile chargge DDP to SUDP and
NUDP as the power of the first path weakens? Would the numbBIREs increase at
UDP locations? Would the path become less persistent in @Bd&ibns? The answers to
these questions can provide insight into how the channedys=hdynamically. In radio
propagation, it is well known that metallic objects refleadshof the propagating wave
and weaken the transmitted signal. Hence, it would be ist&g to see whether or not
the metallic chamber, metallic beam, and metallic objeasld/produce UDP conditions
or not.

The main purpose of the second set of measurements is te tieéag¢ffect of distance
on multipath parameters and provide comparison for the stenarios with similar re-
ceiver route but different transmitter location producdifferent propagation condition
between the receiver and transmitter. We used the corriddnethird floor of AK lab-
oratory as the route of the receiver. The transmitter wasl forea point in the corridor,
and the receiver moved smoothly from the transmitter witreasnrement step size 0.1m
as shown in Fig 3.2. The distance range of this scenario is3Dito, because there is no
blockage between the transmitter and receiver, as wellssldg waveguide effect of the
corridor, making the UWB signal covers this range.

The purpose of the third set of measurements is to study feetedf micro-metal
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Figure 3.1: Measurement scenario 1 at 3rd floor of AK labayato

objects blockage on multipath parameters and comparedsistrwith that of the LOS
measurements. We used the same receiver route but movechtisenttter inside the
CWINS lab to a location that is the symmetric point of the smaitter location used for
scenario 2 behind the wall. The distance range of this saeisal to 16m, corresponding
to 161 different measurement locations. Because of thewsten caused by micro-metal
objects and wall, the UWB signal lost its coverage beyonditeance of 16m.

The purpose of the fourth set of measurements is to analgzeffiact on macro-metal
objects blockage (here referring to the anechoic chambenmultipath parameters and
compare this result with the results of the LOS measurenam<OLOS measurements,
we define this scenario the UDP scenario. Since we intendeav®the anechoic cham-
ber blockage all the time for this scenario, the route of #eeiver is slightly different
from the LOS scenario and the OLOS scenario. However, wenagaved the receiver

from the proximity of the transmitter to locations furthgraat from the transmitter. The
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Figure 3.2: Measurement scenario 2 ,LOS senario

signal coverage in UDP condition is only around 10 meters.

3.2 Measurement Setup and Post Processing Technology

With frequency domain sounders, the RF signal is generatddexeived using a vector
network analyzer (VNA), which makes the measurement setiite gimple. The sound-

ing signal is a set of narrow-band sinusoids that are swaptsadhe band of interest.
The maximum sweep time is limited by the channel coheremee.tlf the sweep time is

longer than than the channel coherence time, the channeth@age during the sweep.
Therefore, in order to prevent the channel from fast vamatwe conducted measure-
ments when there were fewer people or other scatterers eréae

The performance of the frequency domain sounding is alsibddrby the maximum
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Figure 3.3: Measurement scenario 3 ,0LOS senario

channel delay. the upper bound for the detectable dglaycan be defined by the number
of frequency points used per sweep and the bandwidth B (@sxyuspan to be swept), as
given by:

Tinaz = (Nsmp — 1)/ B (3.1)

whereN,,,, is the number of sampled frequency points. The main compgaieur mea-
surement system is a 40GHz HP-8363B network analyzer. b&h8ws the measurement
system and its components.

The measurement system is composed of the network anatyret)WB antennas,
a power amplifier at the transmitter end, a low noise amplifi¢he receiver end, and the
'ER1’ robot system. The network analyzer is controlled byaptbp computer through
wireless network, where a program is used to select theatkparameters of the mea-

surement scenario. The laptop initializes the networkyaalpreceding each measure-
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Figure 3.4: Measurement scenario 3 ,UDP senario

ment, where start and stop sweeping frequencies are sklalcieg with the number of
desired samples and the data collected at the completiacbfraeasurement. The trans-
mitted signal passes through a 30dB amplifier before goiriggachannel. The receiver
attenuates and pre-amplifies the incoming signal with a loissenamplifier (LNA) before
passing it to the network analyzer. For the analysis in tlesih The VNA was used to
sweep the frequency spectrum of 3-8GHz with 1.5625MHz sengphterval, yielding
3200 frequency domain measurement samples at each locatentransmitter and re-
ceiver are a pair of disc-cone UWB antennas connected to N Ny low-loss, high
quality doubly shielded cables.

Both the transmitter and receiver are fixed at a height of l8nmg the measurement.
The overall measurement system has a noise level of -90dBowepamplifier at the

transmitter side and a low noise amplifier (LNA) at the reeeside are used to supply
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Power amplifier
2~8GHz

Figure 3.6: Ultrawide band cone antennas

the experimental system with enough power to propagaterassf80 meters in LOS
scenario.

System calibration involves connecting the cables badbaitk without the antennas.
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Main comera

(a) architecture of Erl robot system (b) User interface

Figure 3.7: ER1 robot system

This removes the delay and attenuation of the cables. Tlmmndestep of system calibra-
tion is connecting the antennas and performing a 1-meterft€#pace calibration. This
removes the delay and gain caused by the antennas. As g teeuiR after calibration
in this case would be a single path occurring at Ons.

The dynamic measurements were conducted by enrolling tR&”Eobot system to
carry our receiver antenna during the measurement camfizdggn\We used software to
control the robot moving with a step size of 5cm (for the firstrgario), 10cm (for the
other scenarios), then stopping to take two measuremehis.’ER1’ robot system has
three wheels, one of which is implemented with directiomalsor, there’s also a camera
on top of the robot system, hence we can make sure that thé watsomoving along a
straight path during the measurement. The speed and seepfaizovement can also be
precisely controlled from the user end.

The measured frequency response data was windowed with aingawindow in
order to reduce the noise sidelobes. Although some othedomirfunctions such as
Kaiser window provides higher dynamic range, the Hanningdew is selected for its

much faster decaying sidelobes which significantly redticeterfering effect of strong
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multipath components in peak detection. For the analysikigthesis, 5GHz down to
50MHz bandwidth chunks were parsed out of the measureddreyudomain data with
a center frequency of 5.5GHz. After obtaining frequency donmeasurements, we used
an inverse chirp Z transform to obtain channel impulse respqCIR) [19]. Specifi-
cally, 50MHz of bandwidth provides time-domain resolutiarthe order ofAtsop . =
20ns = 6m(accuracy), while 5GHz provided\tsqp. = 0.2ns = 0.06m(accuracy).
The desired parameters such as amplitudes and delay of etdchne detected from the

time-domain channel profile using a peak detection algarith
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Figure 3.8: Sample frequency domain and time domain channéle

Figure 3.8 shows a sample frequency domain measurementsacdriesponding
time-domain profile. Notice the frequency selective fadmthe frequency domain and

the time-domain profile illustrating multipath componeatsving at different delays.
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3.3 Preliminary Results and a UDP ldentification Tech-

nology

In this section, we present some measurement results im twrdéustrate the different

channel behavior in different scenarios. Fig 3.9 showsthez more MPCs at UDP loca-
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Figure 3.9: TOA of different paths for the Loop scenario

tions than the number of MPCs at DDP locations for the loopage. One explanation
would be that the power of the strongest path in UDP condstisrweaker compared
to that in DDP conditions, bringing more MPCs above the thoés for picking paths.
Because the distance between transmitter and receivendoksep increasing, we can't
find any relationship between the distance and number of MP@ss figure.

Figure 3.10 shows that for the LOS condition, the time ofat{TOA) of the strongest
LOS component increases as the robot moves away from the [§g.obdservable in the
graph are the higher order reflections. These reflectionsaarged by the back and forth
reflections at the two end of the corridor, which can be showrdmparing their path

length to the actual geometric reflected path length. Thayddistance profile shown in
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Figure 3.10: TOA of different paths for the LOS scenario

Figure 3.10 further substantiate the following observaioNhen the Tx is close to the
Rx, the number of MPCs is small due to the strong LOS compaareshthe threshold for
picking paths (which means we only consider those pathsmwithdB of the strongest
paths as eligible paths). Most MPCs are below the threshdltkebeginning. As the Rx
moves away from the Tx, more paths will be resolved due togdection of the gain of
the strongest path. After a certain break point, the numbERCs will start to decrease
due to distance reducing the gain of more paths and decgetis@m to below the noise
floor threshold.

However, for OLOS condition, due to at least one wall sepamatven when the Tx
and Rx are at the closest distance, the strongest path betiverm is much weaker com-
pared to that in LOS condition. Hence, all the resolvablégabove the noise floor will
be counted as eligible paths. The cutoff effect of threshaigicking paths is weaker.
As the receiver moves away, the number of MPCs will keep @estng due to more paths
becoming weaker and falling below the noise floor. In the eeshlvable paths disappear

when the receiver moves beyond the coverage range of thexDuricase, this limitation
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for OLOS is around 16m.
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Figure 3.11: TOA of different paths for the OLOS scenario

When there is the metallic chamber between the Tx and Rxaverage of the UWB
signal is further reduced to around 9m, which is expectedirse of the very short wave-

length and low transmission power of the UWB signal.
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Figure 3.12: TOA of different paths for the UDP scenario
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As the UDP occurrence has a strong effect on multipath paeasmend our measure-
ment scenario 1, the loop scenario, contained mixed camditincluding DDP, SUDP
and NUDP. After pre-examining our measurement results fsognario 1, we found a
methodology to distinguish between DDP and UDP conditiongisestigating the ra-
tio between the sum of the power of the 5 strongest paths toothé received signal
power.This idea comes from [21] in which the authors stag: tithe strongest return
does not carry significant power with respect to the othemrnstin None-Line-of-Sight
(NLOS) locations. So we investigated the ratio of the sunhefd strongest paths’ pow-
ers to the total received powesr: = Ptl;:%afmh Those locations with larger than
a certain threshold, are considered to be DDP locations; whereas the locatiaths=w

smaller thar( are considered to be UDP locations.

We can denote this as:

Hy: ¢>(, DDP|d=cn
(3.2)
Hy: e<(, UDP|d<cn
Wherer; is the TOA of the FDP. For our measurement scenario, wedird 0.2 is a
suitable value to identify the UDP conditions. The idendfion result is shown in Fig
3.13(a).
Compared with Fig 2, results match well with the physicaliemment. We also ex-
amined another established UDP identification method [23twbasically uses the in-
fluence of UDP occurrence om,,, to identify it. The author in [22] observed that the

distance influences the delay spread of UWB environments as :

Trms(d) = 10d".3nsec (3.3)
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Figure 3.13: Power ratio method and,, method for UDP identification

In addition, the following dependency of the threshold farkjng pathsé,, can be de-
rived:

Toms (0gs, d) = (—4.136;0™ 4+ 1.44)73,,50dB(d) (3.4)

Wherer3,,s0dB(d) is the RMS delay spread with a threshold for picking pathsOofe2
Therefore, the combined threshold used in this method tindissh DDP and UDP

condition is:

A

TrS (Oas, d) + Tonin 045 > TMIN
Ousn = (3.5)
Odsn—1 045 < TMin
Using this method, the identification result is shown in Fig3§b).
Comparing Fig 3.1 with Fig 3.13(a) and 3.13(b), our ratio moet provides more
consistent result, since the,,; method marks measurement locations at the upper right

part and lower right part of the loop as UDP locations whiaghaatually DDP locations.
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Chapter 4

Sensitivity Analysis for Direct Path

Estimation

For TOA based localization system, the biggest challenge éstimate the TOA of the
direct path (DP) accurately. NLOS and UDP are critical cbods that substantially
degrade the accuracy of the estimation and in turn lower gmpnance of the whole
positioning system. One of the ways to fight against thestffis to utilize the other
indirect paths when the DP is blocked. However, there isharatource of TOA estima-
tion error, which can only be mitigated by increasing thaetysbandwidth or employing
super-resolution algorithms [14], that is the multipatihoer It is well known that in-
creasing system bandwidth enhances the time-domain tesoand as a result improve
the accuracy of TOA estimation. Another way to improve timeetidomain resolution
is to implement advanced signal processing techniquescc&iéquency-domain super-
resolution TOA estimation technique designed by applyimegduper-resolution spectrum
estimation techniques to the frequency-domain channpbrese, which can be modeled
as a harmonic signal model. Different TOA estimation altjons provide different time

domain resolutions and create different levels of diffieglin implementation. For DP

36



based method We compare their performances in differemtaamaents and with differ-

ent bandwidth availability by looking at the parameter DME:

DME = (TOAppp — TOApros) - C (4.1)

whereT O Arpp is the TOA estimation of the first detected path (FDP) @A ;o5 IS
the real TOA of the direct line of sight (DLOS) path, afids the speed of light. Usually,
we use the FDP of the channel profile, received above thetawtghreshold, to estimate
the TOA of the DLOS path, and therefore, determine the digtdoetween a transmitter
and a receiver. As explained in [2], the wireless signal powé&ee space decreases with
the square of distance and for FDP, the power distance gitadieven higher. Hence,
the performance of different TOA estimation algorithmsesysensitive to distance vari-
ation. When the receiver is moved beyond a certain rangesttrdnsmitter, the FDP can

not be correctly picked by TOA estimation algorithms.

4.1 TOA Estimation Algorithms

In the narrowband ranging technique, the phase differeetveden received and transmit-
ted carrier signals is used to measure the distance betwegroints. The TOA of signal
7, and phase, are related by = ¢/w., wherew, is the carrier frequency in radians.
However, unlike the situation for outdoor applicationstsas GPS, the severe multipath
condition of the indoor geolocation environment causestsutial errors in phase mea-
surements. Hence, phase-based distance measuremend msimgwband carrier signal
can’t provide an accurate estimate of distance in a heavipath environment.

Since the narrowband ranging technique is not suitablenidoor positioning appli-
cations, naturally, we would seek solutions using widebsigdals. The simplest TOA

estimation algorithm is directly using the Inverse Foulliemnsform (IFT) after window-
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ing the frequency domain measurement data. For this apipiica Hanning window is
used to avoid leakage and false peaks by reducing the diés-laf the time domain re-
sponse at the cost in reduced resolution. When the time aorasponse over part of the
time period is desired, the chirp-z transform (CZT) is pnefd, providing flexibility in
the choice of time domain parameters at a cost in longer ctatipnal times as compared

with the IFT. The peak detection algorithm then selects #akphat is closest to the real

TOA.

Hanning
window

Figure 4.1: Block diagram of an IFT TOA estimation algorithm

Another wideband signal that has been widely used in rangystem is the direct-
sequence spread-spectrum (DSSS) signal. In such a syssgmah coded by a known
pseudo-noise (PN) sequence is transmitted. Then a receos&s-correlates the received
signal with a locally generated PN sequence using a slidongetator or a matched filter
[23, 2]. In order to simulate DSSS signal-based cross-taiimoa technique, the frequency
response of a raised-cosine pulse with roll-off factor 0s2first applied to the frequency
domain response. Then, the resultant frequency responeavsrted to the time domain
using the IFT for TOA estimation. Figure 4.2 shows the predagplementing a DSSS
estimation algorithm. As mentioned earlier, a peak detaaigorithm is used to estimate
the TOA of the DLOS path.

One of the hurdles for accurate TOA estimation is the limideddwidth and its high
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Detection
TOA
Estimation

Cosine
filter

Figure 4.2: Block diagram of DSSS TOA estimation algorithm

price. Meanwhile, it is always desirable to achieve higlarging accuracy using the
same bandwidth. These requirements entail the use of sepelution techniques for
time-domain analysis such as described in [14].

The multipath indoor radio propagation channel is usuallydeled as a low-pass

equivalent impulse response given by:

ht) = Y owd(t — ) (4.2)

where L, is the total number of multipath components, = |ay|e’%* and 7, are the
complex attenuation and propagation delay of £tie path, respectively. The multipath
components are indexed such that the propagation dejays< £ < L, — 1, are in
ascending order. Therefore; is the TOA of DLOS path and important for accurate
ranging. The Fourier transform of (4.2) is the frequency donchannel response:

Ly—1

H(f)= Y a2/ (4.3)
k=0
This model is well known in the spectral estimation field [24Jonsequently, any

spectral estimation techniques that are suitable for a dwicrsignal model can be ap-

plied to the frequency response of multipath indoor radenctel to perform time-domain
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analysis. In the reminder of the thesis, the MUSIC algorifB5] is used to demonstrate
the performance of super-resolution TOA estimation atpari
The discrete measurement data are obtained by samplingelfeequency response
H(f) at L equally spaced frequencies. Considering additive whitsenio the measure-
ment process, the sampled discrete frequency-domain ehaggponse is given by
Ly—1 '
2(l) = H(f) +w(l) = Y ape P2UoHANTE (k) (4.4)
k=0
wherel = 0,1, ... — 1 andw(!) denotes additive white measurement noise with zero

mean and variance?. We can then write this signal model in vector form as

Xx=H+w=Va+w (4.5)
where
x=[z(0) (1) .. z(L-1]F
H=[H(fo) H(fr) .. H(fr)]"
w=[w(0) w(1) w(L-1)f"
V=[v(ro))  v(m) e V()"
a=[ag o .. o 4]"
and

V(Tk)z[l e*j?ﬂ'Aka €7j27r(L71)Aka]T

a;g :O[ke*]Qﬂ-fOTk ,

The MUSIC super-resolution algorithm is based on eigereagaosition of the auto-

correlation matrix of the preceding signal model in (4.5).

Rxx = E{xxT} = VAV# + 52|, (4.6)
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whereA = E{aa®} and superscript H denotes the Hermitian, conjugate traespms a
matrix. Since the propagation delaysin (4.2) can be reasonably assumed all different,
the matrixV” has full column rank, which means that the column vectois afe linearly
independent. If the magnitudeg is assumed a constant and phase a uniform random
variable in[0, 27|, the L, x L, covariance matrix is non-singular. Therefore, from the
theory of linear algebra, by assumiig> L,, the rank of the matri¥’ AV is L,, or
from another point of view, thé& — L, smallest eigenvalues dtxx are all equal tor?2.
The eigenvectors correspondingfto- L, smallest eigenvalues dixx are called noise
eigenvectors while the eigenvectors corresponding td.jHargest eigenvalues are called
signal eigenvectors. Hence, the L-dimensional subspatetimtains the signal vector

is split into two orthogonal subspaces, known as signalgadesand noise subspace, by
the signal eigenvectors and noise eigenvectors, respbc{i4]. Then the projection

matrix of the noise subspace is given by:

P, = Q,(QYQ,) 'Qf =Q,Q (4.7)

whereQ., = [qrp 9rp+1 - qr—1] andg, L, < k < L — 1, are noise eigenvectors.

Since the vectov(7,), 0 < k < L, — 1, must lie in the signal subspace, we have:
PwV(Tk) - 07 (4.8)

From this, the multipath delays, 0 < & < L, — 1, can be determined by finding the

delay values at which the time-domain MUSIC pseudospectaathes peak value.

g ( ) B 1 B 1
MUSIET =P V(T) P VA () PEP(T)
1 1

VAP [ QE(r) |2
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1
L—1
> la'v(r) )?

k=L

Up to this point, the theoretical correlation matRxx was used. In practice, the cor-
relation matrix must be estimated from the measured dataleamFigure 4.3 illustrates

the function block diagram of super-resolution TOA estim@aglgorithm.

Eigenvalues and
gigenvectors

Input vector x

Estimation of
correlation
matrix

Figure 4.3: Block diagram of Super resolution TOA estimatdgorithm

The input data vectot,e., the estimate of channel frequency response given in (4.5)
is first used to estimate the correlation matixx. Then the eigen-decomposition is per-
formed to determine thé, signal eigenvalues and their corresponding eigenvectats a
L— L, noise eigenvalues and their corresponding eigenvectaorse e pseudospectrum
is obtained, a peak detection algorithm selects the first peeastimate the TOA of the
signal.

If we haveP snapshots of the measurement data, the estimate of théatiomenatrix

is obtained from

Rxx = % > X(k)x (k)" (4.9)
k=1

If only one snapshot of the measurement data of lerdgtis available, the data se-
guence is divided intd/ consecutive segments of lengtland then the correlation matrix

is estimated as
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. 1 M
Ryx = — E)x (k)" 4.10
XX M};X( (k) (4.10)
whereM = N — L+ 1 andxz(k) = [z(k) ... x(k+L-1)]"

For the super-resolution TOA estimation algorithm, the saeament data vectaris
obtained by sampling the channel frequency response umlifasver a given frequency
band. In order to avoid aliasing in the time domain, simitatite time-domain Nyquist
sampling theorem, the frequency-domain sampling intefvAlis determined so as to
satisfy the conditioi /A f > 27,4, Wherer,,,, = max(77,—1) is the maximum delay
of the measured multipath radio propagation channel [14].

One issue that is not fulfilled in practice is the stationaayadassumption. Without
this assumption, the correlation matRgx is not Hermitian,i.e., conjugate symmetric,
and Toeplitz,i.e., having equal elements along all diatgpon@he estimate of the corre-
lation matrix can be improved using the following forwardelkward correlation matrix
(FBCM).

~(FB) 1

Rux = 5(Rxx + /Ry ) (4.11)

where the superscriptdenotes conjugate, superscript FB stands for forwardvieaick
estimation, and/ is the L x L exchange matrix whose components are zero except for
ones on the anti-diagonal. This technique is widely usegetsal estimation with the
name modified covariance method and in linear least-squgmnalsestimation with the
name forward-backward linear prediction (FBLP) [24].

One implicit assumption in the MUSIC method is that the naggenvalues are all
equal,i.e.\, = o2 for L, <k < L —1, which means the noise is white. However, when
the correlation matrix is estimated from a limited humbedafa samples in practice,

the noise eigenvalues are not equal. A slightly improvediveron the MUSIC algo-
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rithm, known as the Eigenvector (EV) method, can be useddowatt for the potentially

different noise eigenvalues [14]. The pseudospectrumeoEt algorithm is defined as:

. 1
REV(T): -1 1 (412)

> o latun) P

where);, L, < k < L — 1, are the noise eigenvalues. The pseudospectrum of each
eigenvector is normalized by its corresponding eigenvalle EV method equals MU-
SIC method if the noise eigenvalues are equal. The perfaenahEV method is less
sensitive to inaccurate estimate of the paramggewhich is highly desirable in practical
implementation [24]. In the following of this thesis, the Evethod with FBCM is used

to estimate the TOA of the DLOS path.

4.2 Sensitivity of the TOA Estimation Techniques

Usually, we use the FDP of the channel profile, received alloweletection threshold,
to estimate the TOA of the DLOS path, and therefore, detegrttie distance between a
transmitter and a receiver. As explained in [2], the wirglgignal power in free space de-
creases as the square of distance and for FDP, the poweraliggeadient is even higher.
Hence, the performance of different TOA estimation aldon$ is very sensitive to dis-
tance variation. When the receiver is moved beyond a caiaige to the transmitter, the
FDP can not be correctly picked by TOA estimation algorithms

Another source of TOA estimation error is the limited bandiWwi In a single path
environment, the expected result is perfect. However,ipath environment, which al-
ways exists, seriously degrades the system performanchkittyng the real peak to one
that comes from the combination of peaks around DLOS patultieg in significant

TOA estimation error. As the transmission bandwidth of ty&em increases, the pulses
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arriving from different paths become narrower and easieligtnguish. As a result, the
estimate of TOA by FDP becomes closer to the expected TOAedDOS path, resulting
in a smaller distance measurement error.

The influence of threshold selection on the performancegurahms should not be
underestimated either. The threshold can be set baseg soléhe noise level, which
requires noise variance estimation prior to leading edggesen. From our experiment
experience, setting the threshold only based on noiseiewelt satisfactory, since if the
FDP is much weaker than the strongest path, some side-l@bes pehich are above the
noise floor level and earlier than than the DLOS path would Istakenly interpreted
as the DLOS path. Moreover, different algorithms and winggadunction will produce
different sidelobe intensity. There are two important diieas related to the detection of
MPCs at the receiver. The first is the sensitivity 6f the receiver, which determines the
ability of the receiver to detect signals above noise thokslSignals below the sensitivity
of the receiver would not be detected. The second parangetheidynamic range
of the receiver which determines the ability of the receieedetect weak signals in the
presence of stronger signals [26]. Hence, the eligible MRKish can be detected should

fulfill the following requirements:

||ﬁ;f"2|2 <a (4.13)
Gi” > ¢ (4.14)

wherefsp is the path gain of the strongest path @hds the path gain of each MPC.
As we mentioned before, in OLOS conditions, when the DLO® fats below the
detection threshold, we have a UDP condition. Under thegsditons the FDP in the

profile has no relationship to the arrival time of the DLOSpathe system exhibits sub-
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stantially high distance measurement errors that can netitpénated with the increase
in the bandwidth of the system. Two classes of unavoidablf d@nhditions occur in typ-
ical indoor positioning scenario. The first kind of UDP is sad by large metallic object
such as a metallic beam, elevator or a chamber blocks the [iaffSbetween the trans-
mitter and receiver, which is referred as shadowed UDP (SUDRterature [27]. The
second type of UDP condition occurs in areas of low receivaglgn in OLOS environ-
ments when, due to the large distance between the transamtiiereceiver, the power of
the DLOS path falls below the detection threshold level.sTdategory of UDP is called
natural UDP (NUDP) in literature [27].

It is interesting to adjust one of these elements and holdrsthtationary to see to
what extent the different TOA estimation algorithms areueficed by that element and
what is the optimal condition for the performance of differ€ OA estimation algorithms.
In the following part of this section, the TOA estimation @lghms along with our new
dynamic measurement database are used for statisticgsemarhe parameter we used
to compare the performance of TOA estimation algorithmsfier@nt environment is the
distance measurement error (DME):

~

d = (TOAppp — TOApos) - C (4.15)

whereT' O Arpp is the TOA estimation of the FDP afid) Apros is the real TOA of
the DLOS path(' is the speed of light.

4.2.1 Effect of Distance on TOA Estimation

Earlier works in modeling of distance measurement errobased on simulation results
and static empirical data with the constraint of limitedtaice range as well as sparse

bandwidth availability. Besides, the DME was calculatety dny the simplest IFT algo-
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rithm [28]. The author in [28] proposed a DME-distance mddelLOS scenario as:

~

d=d(1+G(0,01)) (4.16)

whered is the DME in meters is the distance between Tx and Rx ards a random
variable with zero mean and standard deviatign The effect of distance on DME in

OLOS scenario is modeled as:

d=d+Wg-G0,0¢) + WexpExp(\) (4.17)

The DME distribution is considered as a mixture of two fuons. The first one, is
the normal distributiords with 0 mean and standard deviation, while the second one is
an exponential distribution with me%n Furthermore, the DME-distance model for UDP
scenario was not stressed in [28].

In this thesis, due to the improvement of the measuremetgrsyéve used a UWB
disc cone antenna (~ 10GHz) instead of traditional patched antenfi& (~ 1.2GHz)
and robot spatial measurement setup), wider coveragelesmadasurement sample inter-
val, and finer time domain resolution of MPCs are available.al¢o examined the effect
of distance on DME using two other advanced algorithms fofopmance comparison
purpose.

The effect of distance on DME for LOS scenario when bandwglii20MHz is shown
in Figures 4.4,4.5 and 4.6.

Notice that for the LOS scenario, the DME behaves diffeyewthen the Tx-Rx dis-
tance is within 25m and beyond 25m. Three different algorgiperforms similarly when
the Tx is close to Rx, but the CZT method shows some advantdgeger distance. The
DLOS path can be correctly detected most of the time whenigtarcce between Tx and

Rx is small. For those measurement points, The DME is maialged by the limitation
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technique:CZT bandwidth 120MHz LOS scenario
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Figure 4.4:

CCDF comparison of the performance of different algorithms
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Figure 4.5: LOS scenario ~ 10m performance comparison of 3 algorithms

of bandwidth and the DME value is quite small as shown in figure
However, there are a few measurement points within 25 mé&rte showing sig-
nificant ranging error, which may cased by bandwidth linndtashifting the real DLOS

peak to the combined peak with other MPCs. One example charofée and estimation
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CCDF comparison of different algorithms
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Figure 4.6: LOS scenaris 20m performance comparison of 3 algorithms

Channel profile and TOA estimation when distance=27m and bandwidth=160MHz
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Figure 4.7: Channel profile and TOA estimation results(1@stadce)

result is shown in Fig 4.8.
As the distance between Tx and Rx increases, the degraddtiDDA estimation is
caused by the dynamic range of the receiver which means valegyoiver of the strongest

MPC in the channel profile drops to a certain level, the systestakenly interprets some
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Channel profile and TOA estimation when distance=9.4m and bandwidth=120MHz
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Figure 4.8: Channel profile and TOA estimation results foilS.$2enario(9.4m distance)

sidelobe peaks as the DLOS path, which are actually implestbbe real MPCs. It
is also interesting to notice that the CZT algorithm, whiefuires minimum calculation
load, outperforms the other two more complex algorithmemgér distance measurement
points in the LOS scenario. One example of such a channelg®iilustrated in Fig 4.9.
From this figure, it is clear that super-resolution algaritis more sensitive to sidelobe
influence at higher distance value.

The effect of distance on DME for OLOS scenario when bandwisitl20MHz is
shown in Fig 4.10 and 4.11.

Notice that there are both positive and negative DME valubfgrent measurement
points. At the beginning, the DME increases with distanasydver, the DME moves
gradually toward large negative value. From this behavioDME with distance, we
suspect there are two factors influencing the DME and themxoned function determines
the DME value finally.

Our speculation is confirmed by the following channel prsfile

Figure 4.12 confirms that when the Tx is close to the Rx, the DMEostly intro-
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Channel profile and TOA estimation when distance=27m and bandwidth=160MHz
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Technique:CZT Bandwidth 120MHz OLOS scenario
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Figure 4.10:

duced by the MPCs’ clutter and lack of bandwidth. The MPCastter is caused by the

reflections and transmissions in OLOS scenario, making tRE#/arriving at the receiver

in clutters. Hence, if the available bandwidth is not widewgh to resolve MPCs inside

each clutter, the FDP would be shifted from the DLOS path tater larrived combined
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CCDF comparison of the performance of different algorithms

1 - — — —

- - -czT
------ DSSS
08f —— EVIFBCM ||
, 06f -
a)
O
O
04f -
02f |
\
0 Il Il Il Il =l
60 -50 -40 -30 -20 -10 0 10 20

Errors (m)

Figure 4.11: OLOS scenario performance comparison of Jiggos

Channel profile and TOA estimation when distance=7.2m and bandwidth=120MHz
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Figure 4.12: Channel profile and TOA estimation results faO3 scenario(7.2m dis-
tance)

path, causing positive ranging error. Super-resolutigor@hms are good at mitigating
this kind of errors and show superiority to other algorithmkich can be observed from
Fig 4.11. When the Tx is moved further away from the Rx, theaeinant of DME shifts

to the dynamic range of the receiver, which is similar to tieasion for the LOS sce-
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Channel profile and TOA estimation when distance=15.4m and bandwidth=120MHz

) —_ _ _
0 IFT )
5 DSSS
o
2 MUSIC
)
- [ ,
= i’ "
] ,l I
£ | I
o I ]
o P l
o ol I ’\}“\ I\
S IR Wt \
= ‘i“u‘l’ NI
§eo] I |
3 . ‘H\"l»]'\,/ I ’m\; L
N AR R 1yl Vi
@®© [ I T RS R R [ ha
= [ O L
= [ I T
o ) |
z L
I N
300 400 500 600

delay (ns)

Figure 4.13: Channel profile and TOA estimation results faOS scenario(15.4m dis-
tance)
nario at greater distances. However, this serious degosdaitranging accuracy happens
at distances greater than 8m for OLOS scenario instead off@5tihhe LOS scenario.

The effect of distance on DME for the UDP scenario when badtwis 120MHz is

shown in Fig 4.14and Fig 4.15.
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Technigue:CZT Bandwidth 120MHz UDP scenario
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Figure 4.15: OLOS scenario performance comparison of Jidtgos

First, we note that the maximum measurement distance betthed x and Rx is only
7.4 m and the DME shows significant positive value on most efrtieasurement points
even when the Rx is close to the Tx, which is caused by the ulabildy of the DLOS
path in the UDP scenario. With the least available infororatabout the DLOS path
among all scenarios, it is intuitive that the DME in the UDRrsario is greatest among all
the multipath conditions. The typical channel profile in USd&nario with large positive
DME is shown in Fig 4.16.

Notice that the DME with the CZT method is around0Ons x 107%s/ns x 3 x
108m/s = 15m , which is almost three times the distance between Tx and RX. i
figure, as seen in 4.16. The dynamic range problem also praysf@ortant role for TOA
estimation in a UDP scenario at greater distance value,hwikiceflected in Fig 4.14 as
some measurement points with significant negative DME vdlue such typical channel

profile in UDP scenario is shown in Fig 4.17.
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Figure 4.16:

Channel profile and TOA estimation when distance=5.6m and bandwidth=120MHz
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Figure 4.17: Channel profile and TOA estimation results fDR&scenario(5.6m distance)

4.2.2 Effect of Bandwidth on TOA estimation

From our analysis of the influence of distance on DME, we haieay the intuition

that the TOA estimation accuracy varies significantly iffied#nt multipath environment

due to the differences among scenarios in DLOS path avhijes#ind the power-distance
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gradient. With the loss of DLOS path, the UDP scenario prssarmajor obstacle to
achieving accurate TOA estimation. Therefore, the meanSarid of the DME are ex-

pected to be higher when compared with other scenarios suc®3 or OLOS.
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Figure 4.18: Mean and STD of DME for LOOP, LOS, OLOS and UDPacdes. The
vertical lines denote the STD around each mean value

Fig 4.18 confirms that the performance of the basic IFT TOArestion technique
degrades as the environment gets harsher. Among the fowumne@aent scenarios, UDP
introduces the highest value of DME and can't be remedieddayai wider bandwidth.
Even with 3GHz bandwidth, there is more than 3m DME in the Ubénhario when the
distance range between the Tx and Rx is only 7m. Notice traDMRE in OLOS is
most sensitive to bandwidth availability. When bandwidils¢arce, The DME in OLOS
is much higher than that in the LOS scenario. However, whersyistem operates in an

environment with ample bandwidth, say, more than 1GHz badttiwthe TOA estimation

56



technique can perform in the OLOS scenario as well as in th® &€2nario.
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Figure 4.19: CCDF of ranging errors for LOS, OLOS, LOOP and®UBbultipath condi-
tions at 20MHz bandwidth

Figure 4.19 shows the CCDF of ranging errors in differenttipath environments at
low bandwidth (20MHz). The differences in ranging error amgthe four scenarios could
be explained in terms of the multipath and the strength oXh@®S path. For the LOS
and OLOS scenarios, the FDP is always the SP and the power®f(EB) is relatively
strong. Therefore, the only source of DME is the combinatbmultipath components
due to the limitation of bandwidth. The paths arrive in ctustand the higher bandwidth
splits those clusters into distinguishable paths. Fordbp nd UDP scenarios, the major
difficulty for accurate ranging is correctly selecting tHeR= The power of both the FDP
and most of the multipath components is reduced signifigzantiking the FDP either

below the sensitivity threshold of the Rx or weaker than sside-lobe peaks of the SP.
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Nevertheless, the performance of TOA estimation techisigueall scenarios improves
with increasing system bandwidth. Meanwhile, the DME inyaroent for the loop and

UDP environments is limited. Figure 4.20 shows the CCDF afjnag errors at higher
bandwidth.
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Figure 4.20: CCDF of ranging errors for LOS, OLOS, LOOP and”UBbultipath condi-
tions at 3GHz bandwidth

Comparing the two CCDFs at different bandwidths illustsatiee improvement of
TOA estimation accuracy in all scenarios. However, thegrerbnce of the TOA esti-
mation technique in the Loop and UDP scenario is restrictedtber factors other than
just bandwidth. As will be discussed later, different TOAimstion techniques, though

having the ability to reduce average distance error by soeens) all failed to perform

satisfactorily in UDP scenarios.
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4.2.3 Effects of TOA Estimation Algorithms

Up to this point, we have studied the effect of distance, goerating environment on
ranging accuracy. Another important issue is comparingpeérgormance of different
TOA estimation algorithms with the same constraints, suglsame environment and
same bandwidth availability. This topic is crucial for theagtical implementation of
a positioning system since normally the system bandwidththa multipath condition
are fixed for a single localization system. Meanwhile, aliio intuitively, advanced
TOA estimation algorithms such as the DSSS technique anergwolution algorithm
outperform simple IFT method. This advantage in perforneasayained at the cost of
much heavier computation load. Therefore, we need thewollp comparison results to
decide if it is worthwhile to implement an advanced TOA esitiion algorithm for a given
positioning system.

In the following paragraphs, we will compare the performeatthe TOA estimation
algorithms, namely IFT, DSSS, and EV/FBCM, which were diégd in Section 5.1
. Their performance in different bandwidths and multipadthditions will be analyzed.
The goal of this analysis is to provide a reference for thétjposng system designer when
deciding which algorithm is optimal for a certain bandwidtid operating environment.
Following the process of previous section, the comparisonade between LOS, OLOS,
LOOP, and UDP scenarios, with bandwidth availability rawggirom 20MHz-3GHz.

Fig 4.21 illustrates the performance of IFT, DSSS and EV/WBfIgorithm for LOS
scenario in terms of mean and standard deviation of DME #réifit bandwidths.

At lower bandwidth, EV/IFBCM performs slightly better thametDSSS algorithm
and IFT method. However, due to the availability of DLOS paththe LOS scenario
and fewer reflectors in the environment, all the algorithragigrm satisfactorily when
the available bandwidth is wider than 200MHz. Even with sedsandwidth as low as

20MHz, the mean of DME is less than 3m.
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Figure 4.21: Mean and STD of ranging errors in LOS using iffié TOA estimation
algorithms

At 20MHz bandwidth, Fig 4.22 compares the CCDF of the threé\ E3timation
algorithms showing the slight edge for EV/FBCM. This is notgising since the main
barrier for accurate ranging in LOS scenatrio is bandwidthitition, and EV/FBCM has
the ability to resolve the FDP more accurately. Figure 4/28\s the CCDF at 1GHz.

With the increase in bandwidth, the DME for all algorithmgegaches zero and the
standard deviation of DME is also reduced. Therefore, we mavdoubt that using ad-
vanced algorithms such EV/FBCM in LOS scenario is not wohtievsince they require
much more computation resources and increase the posjisgstem’s reaction time.

For the OLOS scenario, as shown in Fig 4.24, the EV/FBCM dlgorand the DSSS
algorithm apparently perform better than the simple IFThodt especially at bandwidths

lower than 500MHz. The explanation for this is that the powfehe FDP is reduced seri-
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Figure 4.22: CCDF of ranging errors for LOS using differe@Aestimation algorithms
at 20MHz bandwidth
ously by some kind of blockage (not metallic). Most of thedim an OLOS scenario, the
FDP is not the SP anymore. Hence, sometimes the peak detadgiarithm will mistak-
enly interpret the SP or some sidelobe peaks of the SP as tleSQlath. Furthermore,
the multipath condition in the OLOS scenario is more severegared with that of LOS
scenario, creating a further barrier to accurate ranging20QAMHz, the mean of rang-
ing error for IFT is 6.3m while it is 5m and 5.1m for DSSS and EBCM respectively.
When the bandwidth exceeds 500MHz, the advantage of DSSERBCM algorithm
almost vanishes.

The EV/FBCM algorithm and DSSS algorithm significantly iropes the TOA es-
timation performance at bandwidths less than 500MHz. Hewethe more complex

EV/FBCM algorithm doesn’t show any advantage over the DS§&ighm. As a result,
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Figure 4.23: CCDF of ranging errors for LOS using differe@Aestimation algorithms
at 1GHz bandwidth

it is reasonable to implement the DSSS algorithm for TOAnestion in an OLOS sce-
nario at lower bandwidth, since it has the best performanuéewonsuming less com-
putational resource than the EV/FBCM algorithm. Howeverew bandwidth is wider
than 500MHz, IFT algorithm is more attractive since it caode similar accuracy with
lowest cost.

In UDP scenarios, EV/FBCM provides a significant advantager othe other two
algorithms. Although the amount of the advantage decreaghshe increasing band-
width. Figure 4.27 shows the mean and STD of ranging errddfP conditions. Notice
that the EV/FBCM outperforms the other algorithms even ghér bandwidths.

Although the DLOS path is not available in UDP scenario dueéballic shadowing

or the joint effect of power loss and shadowing, the EV/FBGM\able to select a path
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Figure 4.24: Mean and STD of ranging errors in OLOS usingedifit TOA estimation
algorithms
closer to the DLOS path compared with the other 2 algoritidre such channel profile
and estimation result are illustrated in Fig 4.28. Anotlssue we should emphasize is
the unavoidable larger DME in the UDP scenario compared tlihin other scenarios.
This is confirmed by the CCDF curves in Fig 4.29 and 4.30. Exdheabandwidth of
1GHz, none of the three algorithms can provide satisfagb@ryormance. Therefore,
more recent research focuses on how to construct a cooelatialization network to
avoid as many UDP situations as possible.

Finally, we will look into the performance of different alginms in the Loop sce-
nario, which comprises of LOS, OLOS and UDP conditions arsgmebles a realistic
office environment. Figure 4.31 presents the mean and sthddaiation of DMEs at dif-

ferent bandwidths. Notice that the DSSS and EV/FBCM alporg outperform the IFT
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Figure 4.25: CCDF of ranging errors for OLOS using differ@QA estimation algo-
rithms at 20MHz bandwidth

algorithm at bandwidths lower than 500MHz, and the threergigms provide similar

accuracy at higher bandwidths. At bandwidth around20MHz, the DSSS and EV/F-
BCM algorithms are able to provide 1m lower DME than the IFGoaithm. In addition,

the CCDF of the estimation algorithms for the Loop environtr&hows how the DSSS
and EV/FBCM algorithms perform better than the IFT algaritim lower bandwidth and
how this advantage diminishes at wider bandwidth.

Although DSSS and EV/FBCM outperform the IFT algorithm atés bandwidths,
the EV/FBCM algorithm doesn’t show any advantage over thgpkr DSSS algorithm,
which is similar to the situation in the OLOS scenario. There, the optimal choice of
TOA estimation techniques in Loop scenarios is the DSSSi#thgo when the bandwidth
is narrow (less than 500MHz) and the IFT algorithm when thedadth is wide.
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Figure 4.26: CCDF of ranging errors for OLOS using differ@QA estimation algo-
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Figure 4.30: CCDF of ranging errors for UDP using differe@ATestimation algorithms
at 1GHz bandwidth
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Figure 4.32: CCDF of ranging errors for Loop using differ@@A estimation algorithms
at 20MHz bandwidth
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Figure 4.33: CCDF of ranging errors for Loop using differ@@A estimation algorithms
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Chapter 5

Sensitivity Analysis for Multipath

Diversity

As we mentioned before, In TOA based indoor geolocatioresyst the large positioning
errors are often caused by the UDP conditions where the DPlzadetected due to ob-
structions. However, other multipath conditions such astrolsted line of sight (OLOS)
can not guarantee satisfactory accuracy either when thialaleabandwidth is low or the
received DLOS path power is weak (possibly caused by lorngmiie between the trans-
mitter and receiver, or the threshold for picking paths isammsen properly, causing the
sidelobes of the windowing function to interpreted as fakals). The bandwidth of the
system plays an important role in determining the accurddyQA estimation. In gen-
eral, as the bandwidth increases the distance measuremandecreases. However, for
harsh environments such as UDP scenarios, using the TOA @@ is not sufficient
to provide promising positioning.

In recent years,many extensive researches have beerdoautién order to mitigate
the ranging errors from UDP links. Utilizing multipath drggty when the DP is not re-

liable comes naturally since there are always other pathsgaie in UDP conditions.
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However,this technique requires a deeper knowledge ofggaion characteristics. Pre-
vious research on channel modeling didn’t consider the alyobaehavior of the multipath
channel, such as the appearance and disappearance of patiessdovement of the MT.
This is mainly due to the lack of dynamic measurement canmgatg support realistic
modeling of a dynamic channel. The motion of the MT introdubeth small and large
scale variations in the received signal. For the sake ofrd#ssarch, we focused mainly
on the large scale variations induced by the motion of the $4€h as fluctuations of the
number of active multipath components (MPCs), transitiwhere paths appear and dis-
appear, variations in the propagation delays and powedsthenchanges in the direction
of arrivals as the MT moves along its trajectory.

For indoor geolocation, the time difference of arrival (TRf a certain path as the
MT moves along its pathway is important. Assuming we have BlLgath ranging on
points uniformly spaced along the pathway, we can keep watke difference between
the TOAs of this particular path and the DLOS path at thesdegdneed points. If the
DLOS path is blocked at some locations during the MT’s mobanhthat particular path
is still available, we can use the difference informationl #ime path length of the par-
ticular path to calculate the length of DLOS path, which s tlesired distance between
the transmitter and MT. This concept was first proposed in [[fie concept of using
multipath components other than the DLOS path is illusttateig 5.1

As the receiver moves, certain MPCs might exhibit 'smootéhéwvior in the UDP
region. The differential changes of these MPCs’ TOA and A@&ralated to the concept
of path persistency. Therefore, the persistency of MPQs iisiportant issue in mitigating

the UDP error. To explain path persistency, we will constterfollowing channel model

[1]

N-1
h(t, ‘9) = Z Ctkp(t — Tk, 6 — Qk)ej‘p’“ (51)

k=0

where N is the number of MPCsg(t) is the pulse (with a certain bandwidtl) transmit-
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Figure 5.1: lllustration of using indirect paths

ted, andvy, 7, 0k, i are the amplitude, propagation delay (TOA), angle of alih@A)
and phase of the kth MPC, respectively, which can be corsidas traceable features
of the paths. Persistency is basically the lifetime of aipaldr path during which its
traceable features exhibit differential changes in acocd with the receiver’s differen-
tial motion. If we can track the paths that exhibit persistaghavior even when the DP
is not present, then we can use this additional informabgoroperly adjust the ranging
measurements for true distance [7]. Due to the challeng®©af leasurement, from now
on, we only consider the TOA as traceable features to lockinige path persistency. The
basic concept of path persistency is shown in Fig 5.2.

Because we want to use other multipath components to netidpet distance mea-
surement error in UDP conditions, we are interested in thebar of available MPCs.
The number of resolvable multipath components is impoffanévaluating the perfor-
mance of various types of diversity, modulation and eqaébn techniques (e.g., RAKE
receiver) [29]. A multipath component measured in a pakdicprofile is defined to arrive

at the receiver at a particular excess delay7hiif the integrated power within a discrete
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excess delay interval? (fig 5.3) is greater than the minimum detectable signal thres

old of the receiver. No multipath component existgjfdoes not exceed the minimum
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Figure 5.3: Illustration of counting multipath components

Several researchers have analyzed the number of availaliigath components in
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the sense of static channel modeling [30, 29]. They lookexthe behavior of the number
of MPCs at certain locations with different transmittergiwer separated distances. Then
they studied the distribution of the number of MPCs for telamunication applications.
However, due to measurement system limitation and tardferelince, they haven't look
at the the dynamic behavior of number of MPCs and the effebaatiwidth, threshold
for picking paths, and UDP occurrence on the number of MP@sg;iwis also important
for indoor geolocation. The analysis of the dynamic behawgfathe number of MPCs
in different multipath conditions would provide an insighto the resources that can be
used to aid the localization in harsh environments.

Another issue crucial to using the other multipath comptserhen the DP is not
detectable is the appearance and disappearance of pattssrdogement of the receiver
or MT, which is also referred as path persistency in indo@l@gation applications [7].
Figure 5.4 illustrate the relationship between the TOA & threct path and the path
reflected from a wall for a simplified scenario. As the mobdeaiver moves along the
horizontal direction, during part of its route, the direetipis blocked, but the reflected
path is still available. The change in distance in the resraidrection of motion is related
to the length of the of the DP bylzcosa = dlg,. As the geometry of Fig 5.4 shows, for
the reflected path length, we havecos3 = dl,,. Therefore, we can calculate the change
in the length of the direct path from the change in the reftépeth using

CoSx

dldp - dlrp@ (52)

In other words, knowing the angle, between the arriving path and the direction
of movement, and the angte between the direction of movement and the DP, we can
estimate the changes of the length of the DP from the charigles length of the reflected
path. This basic principle can be extended to paths refléaiedmany objects and to the

three-dimensional case as well [27].
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In this chapter, the comprehensive measurement databasedsfor dynamic anal-
ysis. The main focus here is the dependency between thendéstalated number of
MPCs and the effect of bandwidth, threshold for picking paind UDP occurrence on
the number of MPCs and path persistency. In section 5.1, igtante dependency or
number of MPCs is modeled for different scenarios, and tfeeedf bandwidth, thresh-
old for picking paths and UDP occurrence on number of MPC#¢sis studied. Section
5.2 first introduces the concept of average path lifetimel(pdhd average path displace-
ment (APD), then discribes the effect of bandwidth, thrésiar picking paths and UDP

occurrence on path persistency .

5.1 Behavior of the Number of MPCs

The number of MPCs has been studied in [30, 31] for teleconeation applications.
The author mainly looked into the distribution of the numbEvPCs at some selected lo-

cations. However, more research is needed for modelingfibet ef distance, bandwidth
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and OLOS UDP occurrence on the number of MPCs for indoor gagilan applications.
Since the number of MPCs is sensitive to the threshold vaded tn post-processing, we

also specify the threshold used for picking MPCs from thispo

5.1.1 Distance Dependency of Number of Paths

As mentioned earlier, Fig 3.10 substantiates the follovahgervations: When the Tx is
close to the Rx, the number of MPCs is small due to the stron§ t@mponent and the
threshold for picking paths (which means we only considesé&ypaths withiia dB of the
strongest paths as eligible paths). Most MPCs are belowhtiestiold at the beginning.
As the Rx moves away from the Tx, more paths will be resolvesltduthe reduction of
the strength of the strongest path. After a certain breaktptiie number or MPCs will
start to decrease due to distance reducing the strengtherefpaths and bringing them
below the noise floor threshold. Our inference is validatgdiHe measurement result
which is shown in Fig 5.5.

However, for OLOS condition (Fig 5.6), due to at least onel whkeparation, even
when the Tx and Rx are at the closest distance, the strongésbptween them is much
weaker compared with that in the LOS condition. Hence, &lr#solvable paths above
the noise floor will be counted as eligible paths. The cuttdfat of threshold for picking
paths is weaker. As the receiver moves away, the number ofSM#ICkeep decreasing
due to more paths becoming weaker than the noise floor. Inrtieresolvable paths
disappear when the receiver moves beyond the coverage dixthdn our case, this
limitation for OLOS is around 16m.

For UDP condition depicted in Fig(5.7), the number of MPCsrdases with distance
between the Tx and Rx similarly as the behavior in the OLO®a&gte. However, since
the anechoic chamber made of metallic material always £kistween the Tx and RXx,

the The power of all the MPCs is further reduced compared tahin OLOS condition.
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Figure 5.5: LOS scenario number of paths dynamic behavior
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Figure 5.6: OLOS scenario number of paths dynamic behavior
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Therefore, for the same distance between the Tx and Rx, éheffewer MPCs above the
noise floor. Meanwhile, the coverage of resolvable pathddfdondition is only around
am.

Number of Paths BW 5GHz UDP
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Figure 5.7: OLOS scenario number of paths dynamic behavior

5.1.2 Other Parameters Affecting the Number of Paths

By analyzing measurement data from a LOS scenario, we obsderRayleigh-like de-
pendency between the number of MPCs and distance. Hencersivafito model the

relationship between number of MPCs and distance as a Rayli&e function as :

N =A——-—+ Xr0s, (5.3)
o

whered is the distance between the Tx and Rxnn and A, o andy;os are the param-

eters need to be estimategd;os is a random variable that can be conveniently modeled
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with a normal distributiony.0s ~ N(0,0,,.,). Naturally, one expects an increase in
the number of MPCs with an increase in bandwidth, an increageeshold for picking
paths, and a decrease in noise floor. For our specific envenhand measurement sys-
tem, we fixed the threshold for picking paths at 30dB and nitese at -90dB. However,
the results showed that the Rayleigh-like function cantifé measured data well when

the distance between the Tx and Rx is larger than 20m, as irefiy8 .
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Figure 5.8: Rayleigh model

Hence, we propose to model the dependence of number of MRCHstance in LOS
condition as a two-piece exponential function. A distaneak point exists and for our
LOS scenario, the break point is around 6.5m. The model basadn-linear least square

regression is as:

N=(2- 60.1032(d7dbp)) - Nonazpos + X£os, A< dyy
(5.4)

N — ¢—0.0956(d—dyy) . Niaz,os + XLOS) d> dpy

where N, is the number of MPCs at the break point distance, which etedl

maxrros
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to the bandwidth (in MHz)f as:N,, = f9%47 v is a random variable with normal

azLos
distribution x .05 ~ N(0,0y,,s), ando,, . is related to bandwidtlf as: o,,,, =

f%212, Figures 5.11 and 5.12 show the relation betwagp., .. and bandwidth and the
CDF of measured and simulated number of MPCs using our tecepmodel for LOS
scenario respectively. Figure 5.13 compares the perfacenaheach model in RMSE
value at different bandwidth, which demonstrates the sapsr of the two-piece model

over Rayleigh-like function model at higher bandwidth.

Number of paths versus distance

120

100+ I{l"

- - -Two-piece model
——Measurement data| |

number of paths

N
=]
T

-20

| | | | |
0 5 10 15 20 25 30

Distance between Tx and Rx(m)

Figure 5.9: Two piece model

For the NLOS scenario, the relationship between the numbeRLs, distance and

bandwidth can be modeled as

N = 6_0.1309(1 : NmaxNLos + XNLOS; (55)

whereN, is the number of MPCs when the Rx is at the closest distandeto t

marNrLos

Tx, which is related to the bandwidthasV,, = 05273 "andyyros is a random

ATNLOS

variable with normal distributiog n .05 ~ N(0, 0y, 0s), Whereo, ., . is related to the
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Figure 5.10: Two piece model performance for different baidths withouty variable
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Figure 5.11: Nmax versus bandwidth

bandwidthf as: o, ,,,, = f*?**. Figure 5.15 and 5.16 show the relationship between

N, and bandwidth, and the CDF of measured and simulated nunibfP©s us-

marNLos

ing our model for NLOS scenario. Comparing Figs 5.12 and Sridilel fits the number
of MPCs for LOS conditions slightly better than that for NLO&dition. This is reason-
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CDF plot of number of MPCs and the modeled value
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Figure 5.13: RMSE of calculated number of paths using two etedt different band-
width

able because NLOS condition is much more complex than LO8iton caused by the

blockage of walls and micro-metalic objects.

For a UDP scenario the relationship between the number ofdyvigi€tance and band-
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Number of Paths versus distance (NLOS scenario)
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Figure 5.14: exponential function model for number of pah®LOS scenario

Nmax versus Bandwidth
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Figure 5.15: Nmax versus bandwidth for OLOS environment

width can be modeled as
N = 670.4714d . NmaxUDp + XubDP, (56)

whereN, ..., IS still a parameter related to the bandwigittwhich can be modeled
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CDF plot of the number of MPCs and the modeled value
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Figure 5.17: exponential function model for number of pahdDP scenario

ash\,

maxypp

= f0-%8%4 “andyypp is a random variable with normal distribution; pp ~
N(0,0,,,,),Whereo,spp is related to the bandwidthaso, ,,,, = f%'*%. Figure 5.18
and 5.19and 5.20 show the relationship betwagn.,, ., and bandwidth, the results of

model fitting for different bandwidth, and the CDF of measl@ad simulated number of
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MPCs using our model for the UDP scenario. The CDF results/sho model for the

number of MPCs matches well with the measured data in UDPasicen

Nmax versus bandwidth UDP

180

1601

w0l o ® measured data
—fitted function
ot/ ®
..
00 1060 2060 3060 4600 5600

Bandwidth (MHz)

Figure 5.18: Nmax versus bandwidth for UDP environment
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CDF plot of number of MPCs and modeled value (UDP)
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Figure 5.20: CDF of measured and simulated number of MPCEIR Ecenarios

5.2 Behavior of Path Persistency

The concept of path lifetime or path persistency has beepgsed in [7, 31]. It de-
notes the lifetime of a particular path in which its traceafdatures exhibit differential
changes in accordance with the receiver’s differentiaiomotDue to the limitation of our

measurement system, we only look into the TOA of persistatitp

5.2.1 What is Path Persistency?

To illustrate how we defined path persistency in terms of TAs necessary to intro-
duce two different resolution terms used in time domain +&@sponse resolution and the
range resolution. Time domain response resolution is diseahe ability to resolve two
closely-spaced responses, or a measure of how close twonesgpcan be to each other
and still be distinguished from each other. It is inversetygortional to the measurement
frequency span, and is also affected by the window functgadun the transform.

For example, using a normal window in the bandpass mode, wecalgulate the
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Figure 5.21: Response resolution is equal to the 50% pofriteampulse width

response resolution for responses of equal amplitude apdRee resolutica 50% im-
pulse widthxspeed of light as indicated in Fig 5.21.

Time domain range resolution is defined as the ability totleasingle response in
time. If only one response is present, range resolution isa@sure of how closely we can
pinpoint the peak of that response. The range resolutiogualeo the digital resolution
of the display, which is the time domain span divided by thenber of points on the
display. Range Resolutief;,,, /(Points-1)

Figure 5.22shows the TOA of the earliest 10 paths’ lengthnduthe movement of
the Rx around the loop environment. We get the intuition thafpaths’ TOA exhibit dif-
ferential changes in accordance with the motion of the vecén the direct detected path
(DDP) conditions, which occur at the beginning and endingspaf the route. The solid
line is the actual distance and the dotted lines are theestdD paths’ length calculated
by TOA multiplied by the speed of light.

Our measurement step size is 0.1m, which means a maximuenatitfe in TOA of

5, = 0.1/C = 0.33ns, (C = 3 x 10%m/s) for a persistent path from one measurement
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the earliest 10 paths(freq range[3~8]GHz)
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Figure 5.22: Path length of the earliest 10 paths during tekasurement loop

location to the next. If the TOA difference of a particulatipbetween several consecutive
measurement points is within, then the distance range of these measurement points is
defined as the path lifetime of this path, which is illustdatefigure 5.23. Here we should
point out that), refers to spatial resolution. It does not refer to the respaesolution,
which is determined by signal bandwidth.

In this thesis, we investigated the effect of bandwidthhlgtection thresholdyand
NLOS, UDP occurrence on path persistency of the strongéist(8&) and first detected
path (FDP), which are important for geolocation applicati@sed on measurement re-
sults. The parameter we focused on is the average pathhée(APL), and average path
displacement (APD).

APL and APD were first proposed in [7]. Buildings with simpigdrnal structures
and with less clutter will provide better tracking under Ubénhditions than buildings
with a large number of walls and metallic objects. Hence timaloer of persistent regions
(NPR) on an RX’s pathway is a metric useful in the characéion of buildings. APL

is the mean length of all different persistent regions onRXes motion path and is an
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Figure 5.23: Concept of path persistency

indicator of the average lifetime of a certain path. It shdarshow long a path will be
persistent in units of distance. It can be written as
s

APL = PR (5.7)

wherel; is the lifetime of each persistent path in meters. Notice & number of
persistent regions indicates higher APL meaning paths are persistent.

The other metric is the APD which shows how much TOA diffeeetitere is between
different persistent regions on the average. It can be septed as

NTD de

APD = ’;\7#, (5.8)

wheredp; is the amount of displacement in meters when a switch ocecars bne

persistent path to another and NTD is the number of totalatgments.
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5.2.2 Parameters Affecting Path Persistency

For the loop scenario, which contains mixed channel profil€sS OLOS and UDP), the

path persistency results are summarized in Table 5.1 antl. Fg

Table 5.1: APL (m)and APD (m)for FDP and SP For Different Barmihs and
«=10,20,30dB for the Loop scenario

Bandwidth
128MHz| 320MHz| 800MHz| 2GHz 5GHz
o APL APDAPL APDAPL APDIAPL APDIAPL APD
FDP 10dB [0.021.740.07 0.720.150.360.150.530.20 0.33
20dB [0.02 1.450.090.470.240.160.52 0.091.28 0.03
30dB [0.02 1.500.090.460.27 0.141.61 0.027.71 0.00{
SP|10~30dB 0.08 8.090.14 7.540.18 6.410.31 2.700.38 2.70

APD versus Bandwidth

Mean APL versus Bandwidth 12 u u
14 b -~ APD for FDP
© APL of FDP 100, -8 -APD for SP_|{
12r o APL of SP &
—~ 4| |== -Linear fit PR gl
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T 08f e’ 1 5 s LR
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o.»” 27‘ |
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Figure 5.24: APL and APD versus Bandwidth and the lineanfit=(20d B)

Based on these results, we observed that
1.For the same, the APL of both FDP and SP increases with bandwidth. The rela

tionship between the mean APL of FDP and bandwidth wihen20dB can be modeled

as:

APL = 0.0218 BW + 0.0256 (5.9)
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where BV is the bandwidth in units of 100MHz. The RMSE for this modedi®46m.
Choosing 20dB has been found to be suitable for detectirfgsp&fthile the relationship

between the mean APL of SP and bandwidth can be modeled as :

APL = 0.0041BW + 0.0264 (5.10)

The RMSE for this model is 0.028m.

2.The APL of FDP is always larger than that of the SP since thne=p of paths suffers
easily in UDP conditions causing the SP to switch to anothén more often.

3.The APL and APD of the strongest path are not sensitivedimce no matter which
a we choose, the power of SP is always within thdB range of itself.

4.The APD of both the FDP and SP decreases as the bandwiddasas, but the
APD of FDP and SP stays at around 1.8m for FDP and 3.5m for Skafudwidth greater
than 0.5GHz for FDP and 1.5GHz for SP respectively.

For the LOS scenario, the path persistency results are stmadan Table 5.2 and
Fig 5.25.

Table 5.2: APL (m)and APD (m)for FDP and SP For Different Baiths and
«=10,20,30dB for the LOS scenario

Bandwidth
100MHz| 500MHz| 1GHz 2GHz 5GHz
o APL APDAPL APDAPL APDIAPL APDIAPL APD
FDP 10dB [0.221.560.741.141.611.152.391.2513.90 1.2!
20dB [0.221.490.730.791.87 0.803.000.789.230.79
30dB |0.231.480.700.751.86 0.76§3.000.751.65 0.74
SP|10~30dB 0.26 2.890.58 3.891.154.201.37 4.11 1.154.17

Based on these results, we observed that:

1. Most of the time, the APL of both FDP and SP increases witidbadth. For

the same bandwidth, the mean APL of FDP increases as thétihdesluea decreases.
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Figure 5.25: APL and APD versus Bandwidth and the lineardfit={ 20dB) for LOS
scenario

The relationship between the mean APL of FDP and bandwid#mwh= 204 B can be
modeled as:

APL = 0.182BW — 0.01 (5.11)

where BW is the bandwidth in units of 100MHz. The RMSE for this modedi872m.
Choosing 20dB is reasonable since a 10dB threshold formmcgaths would eliminate
most of the multipath components, making the number of alslélMPCs insignificant,
while if a 30dB threshold is used, the first path would be nersistent, which is not the
fact for the LOS scenario. The relationship between the mddnof SP and bandwidth
can be modeled as

APL = 0.0194BW + 0.6141 (5.12)

The RMSE for this model is 0.274m.

2.The APL of FDP is always larger than that of the SP which iaagoordance with
the results for the loop scenario.

3.The APL and APD of the strongest path are not sensitive éathihesholdx for
picking paths .

4. The APD of FDP in the LOS scenario decreases as the bardinaieases. How-

91



ever, the APD for SP increases with bandwidth. The APD of FD& &P stay at about
0.75m and 4m for the bandwidth greater than 1GHz.

For NLOS or OLOS scenario, the path persistency resultsiemergrized in table 5.3

and figure 5.26.

Table 5.3: APL (m)and APD (m)for FDP and SP For Different Barmihs and
«=10,20,30dB for the NLOS scenario

Bandwidth
100MHz| 500MHz| 1GHz 2GHz 5GHz
a APL APD|APL APD/APL APDAPL APDIAPL APD
FDP 10dB |0.113.010.251.650.37 1.620.48 1.630.69 1.83
20dB [0.113.060.251.690.401.680.571.730.69 1.9C
30dB |0.113.070.251.690.401.680.57 1.730.69 1.90Q
SP(10~30dB0.12 11.350.20 7.580.25 8.320.47 8.020.55 7.93
e e k/\ By
03 = ZiL._'__-__‘__-___'_._._._l_
e s ;

0 20 3‘0 4 50
Bandwidth (100MHz~5GHz)

(b) APD versus BW

30 40
bandwidth

(a) APL versus BW

Mean APL versus

Figure 5.26: APL and APD versus Bandwidth and the linearnfit{ 20d B) for NLOS
scenario

Based on these results, we observe that: 1. the APL of bothdfdFSP increases
with bandwidth. However, comparing with the results for @S scenario, the APL of
FDP decreases due to walls and metallic objects blockagesbatthe Tx and Rx. For
the same bandwidth, the mean APL of the FDP is not very seagiithe threshold..
The relationship between the mean APL of FDP and bandwid#gmwh= 20dB can be

modeled as

APL = 0.012BW — 0.215 (5.13)
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where BTV is the bandwidth in units of 100MHz. The RMSE for this modedi8@851m.

The relationship between the mean APL of SP and bandwidtliheanodeled as :

APL = 0.009BW + 0.169 (5.14)

The RMSE for this model is 0.057m.

2.The APL of the FDP is always larger than that of the SP, wibgain accordance
with the results for Loop and LOS scenario.

3.The APL and APD of the strongest path are not sensitive éathihesholdx for
picking paths.

4. The APD of both FDP and SP decreases as the bandwidth seste@he APD of
FDP and SP stay at about 2m and 8m after the bandwidth reaGté=. 1

For the UDP scenario, the path persistency results are stizadan Table 5.4 and
Fig 5.27.

Table 5.4: APL (m)and APD (m)for FDP and SP For Different Barths and
«=10,20,30dB for the UDP scenario

Bandwidth
100MHz| 500MHz| 1GHz 2GHz 5GHz
o APL APDAPL APDIAPL APDAPL APD|APL APD
FDP 10dB |0.12 3.100.14 1.570.321.760.21 1.520.27 1.56
20dB [0.12 2.970.16 1.590.12 1.250.190.930.31 0.89
30dB |0.123.120.201.650.151.380.18 1.070.33 1.02
SP|10~30dB 0.105.290.16 5.270.18 6.000.154.730.20 4.73

Based on these results, we observe that:

1. the APL of both FDP and SP increases with bandwidth. How@veontrast with
the results for of LOS and OLOS scenario, the APL of the FDRaesed significantly
due to the wall and micro-metal blockage between the Tx andcRusing the FDP to

jump among several different MPCs. For the same bandwidéntean APL of FDP is
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Figure 5.27: APL and APD versus Bandwidth and the lineardfit{ 20dB) for UDP
scenario

not very sensitive to the threshold valae The relationship between the mean APL of

FDP and bandwidth whem = 20dB can be modeled as

APL = 0.005BW + 0.126 (5.15)

where BW is the bandwidth in units of 100MHz. The RMSE for this modedi®57m.

The relationship between the mean APL of SP and bandwidtieanodeled as :

APL = 0.001BW + 0.128 (5.16)

The RMSE for this model is 0.019m.
2.The APL of FDP is always larger than that of the SP but thiedihce between
them is not as significant as that for LOS and NLOS scenarios.

3.The APL and APD of the strongest path is not sensitive tthiresholdy for picking
paths .

4. The APD of both FDP and SP decreases as the bandwidth sesre@he APD of

FDP and SP stay at about 1m and 4m for the bandwidth above 1GHz.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we have analyzed the effect of distance,Wwahid, environment and thresh-
old for picking paths on Multipath parameters such as ditaneasurement error, num-
ber of MPCs, and path persistency. The measurement datala@seonstructed with
the collaboration of Ferit Akgul during the summer of 2008eTneasurement campaign
was conducted in four different scenarios. The measurecaempaign was different from
previous measurement campaigns in that we used a robotealssigasurement system
to achieve spatially continuous measurements.

We begin our research with a review of existing indoor lagation techniques was
presented. Due to the harshness of indoor propagationoaménts, there is the need
to study the dynamic channel behavior in depth in order tack@oremedy the ranging
errors induced by UDP occurrence and multipath combina\mmong different solutions
devised by researchers in the literature, one innovativetwa&ombat TOA estimation
inaccuracy caused by UDP occurrence is to use the TOA infitmmaf indirect paths

together with geometric methods to calculate the lengthiseoDLOS path . Recognizing
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the value of this technique, we were motivated to analyzeb#teavior of number of
available paths and path persistency, which are impontathie use of this technique.

First, we studied the effect of distance, bandwidth and ipath environment on TOA
estimation techniques. When the environment’s influenc€@A estimation is consid-
ered, the LOS scenario provides the lowest ranging erraausecthe presence of strong
DLOS path. The performance of TOA estimation algorithms @ersensitive to band-
width in OLOS scenario. All the TOA estimation algorithmsfeem poorly in the UDP
scenario although the use of higher bandwidth helps to eetheranging error to some
extent. Based on our processed results, the optimal chai¢bd localization system de-
signer is to implement the simple IFT algorithm in the LOSrso@, DSSS algorithm in
the OLOS scenario with limited bandwidth, and the IFT altion with large bandwidth,
and superresolution algorithm in the UDP scenario withtiaibandwidth while using
the IFT algorithm with large bandwidth. .

Then, the models for number of MPCs were built based on data three different
indoor environments, and a statistical method was usedddHlmbest-fit model. Accord-
ing to the models we developed, the number of MPCs is veryitsento the threshold for
picking paths, and to the noise floor threshold, which shbeldarefully selected by the
localization system designer. The number of MPCs genedaltyeases as the distance in-
creases while larger bandwidths always provide betternesthivability and more MPCs.
Harsher environments such as the UDP scenario will causeuitmer of MPCs to drop
more quickly as the distance increases, so that the covefape UDP scenario is the
smallest compared with other scenarios.

For path persistency, we first illustrated the definition afippersistency and its im-
portance for tracking when the DLOS path is not availableerTive gave the definition of
two parameters, APL and APD which were used for comparingd#tie persistency under

different constraints. From our processed results, idardhat the multipath components
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generally behave more persistently in LOS and OLOS scetfzaiothey do in the UDP
scenario, and larger bandwidth and higher threshold fdampicpaths also contributes to

finding a more persistent path.

6.2 Future Work

Accurate indoor geolocation remains a challenging prohtleat still needs further re-
search. The work of this thesis will provide other researshéth increased knowledge
of the behavior of multipath parameters pertinent to indpmiocation. Better algorithms
are needed for utilizing indirect paths to calculate thgtbrof the direct path in practical
implementation. Another potentially useful approach fatigating the influence of UDP
occurrence and multipath environment is to implement a emaipve localization system
to avoid as many UDP links as possible or to use other soufdesalization informa-
tion such as inertial measurement to aid the RF localizadistem. For the selection
of differernt TOA estimation algorithms, one possible lfigit research direction is to de-
sign new algorithms that can switch among different techesgdynamically based on
the known parameters such as system bandwidth and opeestitgnment. Gathering
moeore measurement data in different environments is @&swatble. A more extensive
database will be valuable in refining our models to achiewserl correspondence to real-

world propagation environments.
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Appendix A

More CCDF Graphs
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Figure A.1: CCDF of ranging errors for LOS using differentA@stimation algorithms
at 80MHz bandwidth
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Figure A.2: CCDF of ranging errors for LOS using differentA@stimation algorithms
at 120MHz bandwidth
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Figure A.3: CCDF of ranging errors for LOS using differentA@stimation algorithms
at 500MHz bandwidth
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Figure A.4: CCDF of ranging errors for LOS using differentA@stimation algorithms
at 2GHz bandwidth

1

- —--czT
0.9} .. DsSSS
EV/IFBCM
o8} .

0.7 i

0.6 b

0.5 b

CCDF

0.4 R

0.3 b

0.2 b

0.1f i

o . . . . . . .
-40 -30 -20 -10 0 10 20 30 40
Ranging Errors (m)

Figure A.5: CCDF of ranging errors for LOS using differentA@stimation algorithms
at 3GHz bandwidth
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Figure A.6: CCDF of ranging errors for OLOS using differe@A estimation algorithms
at 80MHz bandwidth
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Figure A.7: CCDF of ranging errors for OLOS using differe@A estimation algorithms
at 120MHz bandwidth
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Figure A.10: CCDF of ranging errors for OLOS using differdi@A estimation algo-
rithms at 3GHz bandwidth
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Figure A.11: CCDF of ranging errors for Loop scenario usiiftecent TOA estimation
algorithms at 80MHz bandwidth
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Figure A.12: CCDF of ranging errors for Loop scenario usiiftecent TOA estimation
algorithms at 120MHz bandwidth
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Figure A.13: CCDF of ranging errors for Loop scenario usiiftetent TOA estimation
algorithms at 500MHz bandwidth
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Figure A.16: CCDF of ranging errors for UDP scenario usirfiedent TOA estimation
algorithms at 80MHz bandwidth
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Figure A.17: CCDF of ranging errors for UDP scenario usintedent TOA estimation
algorithms at 120MHz bandwidth
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Figure A.18: CCDF of ranging errors for UDP scenario usintedent TOA estimation
algorithms at 500MHz bandwidth
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Figure A.19: UDP scenario using different TOA estimatiogasithms at 2GHz band-
width
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Figure A.20: UDP scenario using different TOA estimatiogasithms at 3GHz band-
width
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Appendix B

MATLAB Codes for Parsing Data

1 %% convert network analyzer data to time domain

2 close all

s clear all

4 clc

5 %%%% %% %% %% %% %% % % %% %% %% %% %% % %% %% %% %%
6 %% For calculating Tx-RX distance

7 %%%%%%%% %% % %% % %% % %% % %% % %% % %% %% % %% %%

s % Nfile=291; %Number of measurement points
9 % txloc = [9 6.95]; %fixed transmitter point
10 % rxlocl = [(13:-0.05:0)' 10.5 *ones(segm(1),1) 1;

1 % rxloc2 [zeros(segm(2),1) (10.45:-0.05:0)' ];

[(0.05:0.05:13)" zeros(segm(3),1) |;

12 % rxloc3
13 % rxloc4 = [13 =*ones(segm(4),1) (0.05:0.05:10)" ;

14 % rxloc = [rxlocl; rxloc2; rxloc3; rxloc4]; %Receiver point
15 %calculate distance between Tx and RXx

16 % for k=1:size(rxloc,1)

17 % dist(k) = norm(rxloc(k,:) - txloc);

18 % end
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19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

a1

42

43

44

45

46

a7

48

49

%%%0%%% %% % %% % %% % %% % %% % %% %% %% %% %% %% %%
%%%%% %% %% %% %% % %% %% %% %% %% % %% %% %% %% %%
%% SETTINGS

%%9%%% %% %% %% %% % %% %% %% %% %% % %% %% %% %% %%
%%%%%% %% % %% % %% % %% % %% % %% % %% %% % %% %% %%

a =1 % Delta x 5 cm processing

vec = [1: a:(Nfile-1)]; % Count vector
numpa=zeros(length(vec),1); % Number of path
makemovie = 0; % Switch for making movie
dbase =1;

c = 3e§; %Speed of signal

% Noise suppression in dB%

noise_suppr_db =20;

noise_suppr =107(noise_suppr_db/20);

% Time domain span%

tstart = O;

tstop=320e-9;

% Frequency domain span (GHz)

BWstart = 3;

BWend = 8;

BW = BWend - BWstart;

% Average number of MPCs

avgnumpa=zeros(13,1);

drange=0; %select whether to put the dynamic range
numpamat=zeros(length(vec),13); %matrix of number of paths
% Matrix of number of paths for CDF plot
numpamatl=zeros(Nfile,13);

% Receiver sensitivity threshold

noi = 107(-90/20);

% side lobe threshold

side =107(-20/20);
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50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

peak width = 1;

% Used for calculation of APL of FDP

segcnt=1;

lenvec=zeros(1,length(vec));
lenvecmat=zeros(13,length(vec));

% Used for calculation of APL of SP

segcntl=1;

lenvecl=zeros(1,length(vec));
lenveclmat=zeros(13,length(vec));

flag_fig = O;

%%%%%% %% % %% % %% % %% % %% % %% % %% %% %
tracking=0; % Switch for tracking the paths
%%%%%% %% % %% % %% % %% % %% % %% % %% %% %

%% plotting figure switches

plot_figure = 0;

% TOA of the FDP and SP versus moved distance
plot1=0;

% RMS delay versus moved

plot2=0;

% Received signal power versus moved distance
plot3=0;

% Distance between Tx and Rx

plot4=0;

% Number of MPCs versus bandwidth

plot5=0;

% Plot power of FDP and SP versus

% moved distance

plot6=0;

% Plot delay gain matrix

plot7=0;
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81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

109

110

111

% Plot the difference between SP and FP power as

% a function of location

plot14=0;

%%%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %%
%0%0%%%% %% % %% %% %% %% %% % %% %% %% % %% % % %% %%

%% Switch and save for making movie

if makemovie
mov = avifile([num2str(vec(1)) ' num2str(vec( end))
"' num2str(BWstart) '‘G-"  num2str(BWend) 'G_test thr'
num2str(abs(noi)) "' num2str(dbase) tavit )

end

%%

k = vec+l;

=1

%Swiching between different bandwidths

frange=1:12; %%%for 5G

for g=frange;
%0Originate parameters for each bandwidth
k=vec+1;
=1
segcnt=1;
segentl=1;
lenvecl=zeros(1,length(vec));
lenvec=zeros(1,length(vec));
numpa=zeros(length(vec),1);
power=zeros(length(vec),1);
pfir=zeros(length(vec),1);
rms=zeros(length(vec),1);

disp(num2str(q));
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112 for i=vec

113 %Display points which are times of 50

114 if  mod(j,50)==0

115 disp(| 'Numpos: ' numa2str(j)] )

116 end

117 %Load measurement data

118 if avg %Switch for averaging 2 data set

119 fnamel = [ 'scen3_pt' numa2str(i) "1slp
120 fname2 = [ 'scen3_pt' numa2str(i) '281p
121 [Hf1, f1] = load_chmeas_slp_dB( fnamel, flag_fig );
122 [Hf2, f2] = load_chmeas_slp_dB( fname2, flag_fig );
123 %%%% Time avg

124 %[zt_hanl, tl] = CZT_Hanning( f1, Hf1, tstart, tstop, flag)
125 %][zt_han2, t2] = CZT_Hanning( 2, Hf2, tstart, tstop, flag)
126

127 %zt han = (zt_hanl + zt han2) / 2;

128 %t = tl1,;

129 %%%% Freq avg

130 Hf = (HfL + Hf2) / 2;

131 [zt_han, t] = CZT_Hanning( f1, Hf, tstart, tstop, flag);
132 else

133 fname = [ 'scen3 pt' numa2str(i) " 1.s81p' ]

134 flag = 1; % Hanning -- > 1. apply 0: donot apply
135 [Hf, f] = load_chmeas_slp dB( fname, flag_fig );

136 factor = BW / 5;

137 lim = fix(length(f) * factor);

138 end

139 % Vector for Switching among different BW

140 bwvector=[100 200 500 1000 1500

141 2000 2500 3000 3500 4000 4500 5000};

142 % Load frequency domain data with different
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143 % Bandwidth

144 Hf=Hf((5000-bwvector(q))/(2 *5000) *3200+1: ...

145 (5000-bwvector(q))/(2 *5000) * 3200+1+bwvector(q)/5000 * 3200);
146 f=f((5000-bwvector(q))/(2 *5000) *3200...

147 +1:(5000-bwvector(q))/(2 *5000) * 3200+1+bwvector(q)/5000 * 3200);
148 % Use chirp-Z transform to get time domain data

149 [zt_han, t] = CZT_Hanning( f, Hf, tstart, tstop, flag);

150 % Suppress noise before multipath

151 noi_ind = find(t < dist(j)/c);

152 zt_han(noi_ind) = zt_han(noi_ind)/noise_suppr;

153 % Find peaks

154 index = pkd_cir(abs(zt_han), noi, side, peak_ width);

155 if index == 0

156 continue

157 end

158 numpa(j)=length(index);

159 pathindex=index; %0%0%%%%%

160 %%%%%%calculate the path's time of arrival %%%%%%%

161 % First path

162 firstpath(i+1) = min(t(pathindex)) * 3%1078;

163 [vall ind1]=sort(t(pathindex), ‘ascend’ );

164 % Strongest path

165 [val ind]=sort(20 * log10(abs(zt_han(pathindex))), ‘descend’ );
166 strpath(i+1)=t(pathindex(ind(1))) *3%1078;

167 % Calculate the magnitude difference between the FP and SP

168 pfir(j)=20 *|og10(abs(zt_han(pathindex(ind1(1)))));

169 pstr(j)=20  *log10(abs(zt_han(pathindex(ind(1)))));

170 differp(j)=pstr(j)-pfir(j);

171 differl(j)=strpath(j)-firstpathl1(j);

172

173 % Calculation for APL and APD
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174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

200

201

202

204

% This is for FDP
if >0
if —abs(firstpath(i+1)-firstpath(i))<0.25
lenvec(segcnt)=lenvec(segcnt)+1;
else
jump(segcnt)=abs(firstpath(i+1)-firstpath(i));
segcnt = segent + 1,
end
end
% This is for SP
if >0
if abs(strpath(i+1)-strpath(i))<0.25

lenvecl(segcntl)=lenvecl(segcntl)+1;

else
jumpl(segcntl)=abs(strpath(i+1)-strpath(i));

segcntl = segentl + 1,

end
end
%Calculate the RMS delay spread%%%
tao=sum(abs(zt_han(pathindex))
. * t(pathindex)')/sum(abs(zt_han(pathindex)));
taosqure=sum(abs(zt_han(pathindex)). * L
(t(pathindex)."2)")/sum(abs(zt_han(pathindex)));
rms(j)=sqrt(taosqure-tao2);
% Path gain
gain{j,:;} = abs(zt_han(pathindex));
% Path delay
delay{j,:} = t(pathindex);

% Total received power at each point
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206

207

208

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

231

232

233

234

235

power(j)=sum(gain{j,:}. *gain{j,:});
for ii=1l:length(delay)
len(ii) = length(delay{ii,:});
end
if plot_figure
figure(2)
plot(t *1e9,20 *logl0(abs(zt_han)), 'g" , 'LineWidth'
title([ 'Point; ' numz2str(i) 1)
xlabel(  'Time (ns)" )
ylabel( 'Path power (dB)' )
ylim([-130 -30])
grid
hold on
plot(t(index) *1e9,20 *logl0(abs(zt_han(index))),
hold on
plot([dist(i)/c +*1e9 dist(i)/c *1e9], [-130 30],
end
if makemovie
F = getframe(gca);
mov = addframe(mov,F);
end
hold off
=it
end

% Delay matrix
delaymat = zeros(length(delay),max(len));
% Gain delay matrix

gainmat = zeros(length(delay),max(len));
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239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

% Number of MPCs matrix

numpamat(:,q)=numpa;

% Persistent region matrix

% For FDP

lenvecmat(q,:)=lenvec;

% For SP

lenvecmatl1(q,:)=lenvecl;

% FDP's APL for different bandwidth

meanlenvec(q)= mean(lenvec(find(lenvec))) *0.1;
% FDP's APD for different bandwidth
meanjump(g)=mean(jump);

% SP's APL for different bandwidth
meanlenvecl(q)=mean(lenvecl(find(lenvecl))) *0.1;
% SP's APD for different bandwidth
meanjumpl(q)=mean(jumpl);

% Average number of MPCs at different bandwidth
avgnumpa(g)=mean(numpa);

end

%if plot10
%figure(13)
%ii=1:931
%plot(ii = 0.05,firstpath(ii));
%xlabel('the unfolded path length to the starting point);
%ylabel('distance of the first path(m)";
%ititle('bandwidth=100MHZz");
%ylim([0 30]);
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267

268

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

291

292

293

294

295

297

%ii=1:931
%plot(ii  *0.05,strpath(ii));
%xlabel('the unfolded path length to the starting point);
%ylabel('the length of strongest path(m)";
%ititle(‘bandwidth=100MHZz");
%ylim([0 30]);
% end
if plot8
figure(8)
q=0:12
plot((1-2/25 *(]) *50,avgnumpa(q+1));
xlabel( 'bandwidth(L00MHz)' );
ylabel( 'average number of paths during the round trip'
titte(  'number of paths versus bandwidth' );
end
if plotl
figure(1)
i=1:931
plot(i,firstpath(i), ‘9" )
hold on
plot(i,dist(i), o)
ylim([0 20])
%hold on
%legend(‘first path','second path’,
%'third path','forth path',fifth path’,'actual distanc
plot([174 174],[0 20], T, [218 218],
[0 20], ' ,[560 560],[0 20], o N

%figure(14)
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208 [611 611],[0 20, b ,[766 766],[0 20], g’ [793 793],[0 20],

299 xlabel(  'number of points' );

300 ylabel( 'path distance(m)' );

301 title(  'the first path(freq range[3 -8]GHz)" );
302 figure(2)

303 i=1:931

304 plot(i,strpath(i), ‘9. )

305 hold on

306 plot(i,dist(i), ™)

307 hold on

308 %legend('strongest path’,'second strongest’,

309 plot([174 174],[0 30], T ,[218 218],[0 30]

310 ,'r[560 560],[0 30], 'b' ,[611 611],[0 30]

311 ,'b" ,[766 766],[0 30], 'g" ,[793 793],[0 30], ‘9 )
312 ylim([0 30]);

313 xlabel(  'number of points' );

314 ylabel( 'path distance(m)' );

315 title(  'the strongest path (freq range[3 -8]GHz)" );
a6 end

317

ais if  plot2

319 figure(3)

320 ii=1:length(rms)

321 plot(ii,rms *1079, " );

322 xlabel( 'the unfolded path length to the starting point'
323 ylabel(  'rmsdelay(ns)’ );

324 hold on

a5 plot([174 174],[0 100], T

326 [218 218],[0 100], 't ,[560 560],[0 100]

327 ,'g" ,[611 611],[0 100], 'g" ,[766 766]

328 ,[0 100], 'b" ,[793 793],[0 100], b );
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329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

end

if

end

if

end

if

title(  ‘'rms delay(5GHz)' )

plot3

figure(4)

ji=1:length(power)

plot(jj,10 *log10(power(jj)), ™)

hold on

plot([174 174],[-75 -40],

T [218 218],[-75 -40],

'™ ,[560 560],[-75 -40], ‘b ,[611 611],[-75 -40],

xlabel( 'the unfolded path length to the starting point'

ylabel( 'power(dBm)" );

plot4

figure(5)

ii=1:931

plot(ii ~ *0.05,dist(ii), b )

xlabel( 'unfolded path length from starting point'
ylabel( 'distance between Tx and Rx(m)' );

title(  'distance variation during the measurement'

plot5
figure(6)
ji=1:length(numpa)
[ax,h(1),h(2)]=plotyy(jj,numpa(jj).jjdist(j}));
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360 legend(h, 'number of paths' , 'distance between the Tx and RX

361 hold on;

362 % plot([174 174],[0 300],'r,[218 218],[0 300],

363 %'r',[495 495],[0 300],'g,[611 611],[0 300],g'

364 %[766 766],[0 300],'0',[793 793],[0 300],'v");

365 xlabel( 'number of the measurement points' );

366 ylabel( 'number of paths for the threshod used for DP detection’
367 title(  'number of paths when bandwith is 5GHz(noi threshold -85dB)
368 plot(dist,numpa’);

369 axis([1 15 0 90));

370 end

371

372

373

ara if  plot6

375 figure(7)

376 j=1:931

317 plot(jj,differp(jj), ‘0" );

378 hold on

379 plot([174 174],[0 40], T [218 218]

380 [0 40], 'r ,[560 560],[0 40], g, ..

381 [611 611],[0 40], g, ..

382 [766 766],[0 40], ‘b ,[793 793],[0 40], b o)

383 xlabel(  'number of points' );

384 ylabel( 'difference of magnitude between the FP and SP(dB)'
385 title( ' difference of gain between SP and FP versus location'
386

387 figure(8)

388 ji=1:931

389 plot(jj, pfir(if));

390 hold on
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391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

end

plot([174 174],[-90 -40], T [218 218]

lbl

);

J[-90 -40], 't ,[560 560],[-90 -40], g, .

[611 611],[-90 -40], ‘g’ ,[766 766],[-90 -40], ‘b ,[793 793],[-90 -40],
xlabel(  'number of points' );

ylabel( 'magitude of the FP(dB)' );

title( ' magnitude of FP versus location' );

figure(9)

ji=1:931

plot(jj,pstr(jj));

hold on

plot([174 174],[-85 -45], T

[218 218],[-85 -45], ' ,[560 560],[-85 -45],

'g" ,[611 611],[-85 -45], ‘g’ ,[766 766],

[-85 -45], 'b' ,[793 793],[-85 -45], b );

xlabel(  'number of points' );

ylabel( 'magitude of the SP(dB)' );

titte( ' magnitude of SP versus location' );

figure(10)

ji=1:931

plot(jj,differl(jj), ‘0" );

ylim([0 18]);

hold on

plot([174 174],[0 18], T

[218 218],[0 18], T ,[560 560],[0 18], ‘g, ..

[611 611],[0 18], ‘g ,[766 766],[0 18], ‘b ,[793 793],[0 18],
xlabel(  'number of points' );

ylabel( 'difference of path length between the FP and SP(m)'
title( ' difference of path length between SP and FP versus location
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422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

if plot7

figure(11)

pp=zeros(max(len),931);

for ii=1:931

pp(:,ii)=ii * ones(max(len),1);

end

mesh(pp,delaymat’,(10 *|log10(gainmat))");
end
if makemovie

mov = close(mov);
end

%grid

124




Bibliography

[1] K. Pahlavan, X.Li, and J.-P.Makela, “Indoor geolocatigcience and technology,’

|[EEE Commun.Mag, vol. Vol. 40, no. No. 2, pp. 112-118, 2002.

[2] K. Pahlavan and A. H. Levesqu®yreless Information Networks. Second Edition.

Boston: Artech Houses, 1996.

[3] E. D. Kaplan,Understanding GPS principles and applications. New York: John
Wiley and Sons Inc, 2005.

[4] M. J. M. etal, “Wireless enhanced 9-1-1 service-makirayreality,”Bell Labs Tech.
J., pp. 188-202, Autumn 1996.

[5] H. Koshima and J.Hoshen, “Personal locator servicesrgejein IEEE Spectrum,

pp. 41-48, Feb. 2000.

[6] P.Jensfelt Approaches to mobile robot localization in indoor environments. PhD

thesis, Royal Institute of technology,Sweden, 2001.

[7] F. O. Akgul and K. Pahlavan, “Path persistency for higagision ranging in differ-
ent building architectures,” IiEEE Personal Indoor Mobile Radio Communications

Conference (PIMRC), February 2007.

[8] S. Gezici et al, “Localization via ultra-wideband radjblEEE Sgnal Processing

Magazine, July 2005.

125



[9] B. Denis, J. Keignart, and N. Daniele, “Impact of nlos pagation upon ranging
precision in uwb systems,” ilEEE conference on Ultra Wideband Systems and

Technologies, 2003.

[10] D. E. Gustafson, J. M. Elwell, and J. A. Soltz, “Innovatiindoor geolocation
using rf multipath diversity,” in EEE Position, Location, And Navigation Sympo-
sium(ION), April 2006.

[11] “Ekahau indoor positioning software website.”

[12] V. Bahl, P. Padmanabhan, “Radar: an in-building rfdzhaser location and track-
ing system,” inNINFOCOM 2000. Nineteenth Annual Joint Conference of the |IEEE
Computer and Communications Societies. Proceedings. IEEE, vol. 2, pp. 775-784,
2000.

[13] M.GHAVAMI, L.B.MICHAEL, and R.KOHNO, ultra wideband signals and sys-

tems in communication engineering. NJ: John Wiley and Sons, Ltd, 2004.

[14] X.Li, Super-Resolution TOA estimation with Diversity Techniques for Indoor Ge-

olocation Appllications. PhD thesis, Worcester Polytechnic Institute, 2003.

[15] M. Heidari, F. O. Akgul, and K. Pahlavan, “Identificati@f the absence of direct
path in indoor localization systems,” IEEE Personal Indoor Mobile Radio Com-

munications Conference (PIMRC), 2007.

[16] Y. Ye, F. O. Akgul, and K. Pahlavan, “Effect of bandwidftath detection threshold
and udp occurrence on multipath parameters pertinent tmomgeolocation,” in

|EEE Wireless and Microwave technology (WAMICON), April 2009.

126



[17] J. Beneat, K. Pahlavan, and P.Krishnamurthy, “Radianciel characterization for
indoor and urban geolocation at different frequencies,Pmoc. IEEE PIMRC,

September 1999.

[18] B. Alavi, K. Pahlavan, X. Li, and N.Alsindi, “Indoor géacation distance error
modeling with uwb technology,” iProceedings of IASTED 2nd International Con-

ference on Communication and computer networks CCN 2004, November 2004.

[19] E.D. Zand, K. Pahlavan, and J. Beneat, “Frequency domaasurement for indoor
geolocation,” inlEEE Personal Indoor Mobile Radio Communications Conference

(PIMRC), 2003.
[20] “Evolution robotics.”

[21] S.S.Ghassemzadeh, R.Jana, C. Rice, W.Turin, andokiafA statistical path loss
model for in-home uwb channels,” lIEEE Ultra Wideband Systems and Technolo-

gies,Digest of Papers, 2002.

[22] J. Schroeder, S. Galler, K. Kyamakya, and K. Jobmanigshetection algorithms
for ultra-wideband localization,” irPositioning, Navigation and Communication

(WPNC) 4th workshop on, 2007.

[23] J.Werb and C.Lanzl, “Designing a positioning systemffoding things and peo-
pleindoors,” inlEEE spectrum, vol. 35, September 1998.

[24] D.Manolakis, V.Ingle, and S.Kogorfiatistical and Adaptive Sgnal Processing.
McGraw-Hill Co.,Inc, 2000.

[25] R.Schmidt,A signal subspace approach to multiple emitter location and spectral
estimation. PhD thesis, Stanford Univ, Stanford, CA, 1981.

127



[26]

[27]

[28]

[29]

[30]

[31]

K. Pahlavan, P. Krishnamurthy, and J.Beneat, “Wideb@udio propagation model-

ing for indoor geolocation applicationd EEE Commun.Mag, April 1998.

K. Pahlavan, F. O. Akgul, M. Heidari, A. Hatami, J. M. Bl and R. D. Tingley,
“Indoor geolocation in the absence of direct patlEEE wireless communications,

Jan 2007.

B.Alavi, Distance Measurement Error Modeling for Time-of-arrival Based Indoor

Geolocation. PhD thesis, Worcester Polytechnic Institute, 2006.

T. Rappaport, S. Seidel, and K. Takamizawa, “Statthannel impulse response
models for factory and openplan building radio communisgstem designEEE

transaction on communications, May 1991.

H.Hashemi, “Impulse response modeling of indoor ragliopagation channels,”

|EEE Journal on Selected Areas in Communications, vol. 11, September 1993.

C.-C. Chong, C.-M. Tan, D. l.Laurenson, S. Mclaughhh,A.Beach, and A. R.Nix,
“a novel wideband dynamic directional indoor channel mdebded on a markov

process,EURAS P Journal on Wireless Communications, vol. 4, no. 4, 2005.

128



