

CNC Alarm Resolution and Work Cell Monitoring with a Robotic Arm
A Major Qualifying Project Report submitted to the faculty of

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the degree of Bachelor of Science

Submitted By:

Brian Francis

Robotics Engineering

Mayank Govilla

Robotics Engineering and Computer Science

Nikolas Neathery

Robotics Engineering

May 3, 2023

Prof. Siavash Farzan, Advisor

Prof. Greg Lewin, Advisor

Prof. Jing Xiao, Advisor

Robotics Engineering Department

This report represents work of one or more WPI undergraduate students submitted to the faculty as evidence of a

degree requirement. WPI routinely publishes these reports on its web site without editorial or peer review.

 2

Abstract
Computer Numeric Control (CNC) revolutionized the manufacturing industry by enabling

the creation of highly accurate and complex parts at high speeds. However, CNC systems have
been heavily reliant on human operators to oversee and control the manufacturing process
since their creation. Despite recent advancements in automating CNC milling, existing
approaches have overlooked the need for a methodology to handle errors and failures in the
system.

To address this gap, we developed a set of Robot Operating System (ROS) nodes that
monitor and autonomously manage a CNC while reacting to alarms in real-time with the hope
of reducing downtime during lights our manufacturing. At any point during normal operation a
CNC could be stopped by an alarm halting production. Our system is designed to reduce this
downtime by resolving the present alarms. Our approach additionally tracks a variety of
performance metrics, allowing for later evaluation and continuous improvement of the system
via the Flexxbotics environment. The methodology we created is scalable and adaptable to a
wide range of CNC systems and can be customized and configured to fit the specific needs of
different manufacturers. Because the framework is adaptable to other CNC systems, our
methodology is a valuable tool for manufacturers looking to improve their efficiency and
productivity.

Acknowledgements
We would like to thank our sponsors, Flexxbotics, for providing us with the technology

to be able to actualize this work. We would also like to thank our sponsor contacts Zac Chupka
and Megan Hiatt for their technical assistance and wisdom throughout the course of this
project, as well as our faculty advisors Professors Siavash Farzan, Greg Lewin, and Jing Xiao.

Authorship
Brian Francis created the motion application as well as the alarm detection and

resolution systems. Mayank Govilla integrated the recording information into the web
interface. Nikolas Neathery set up the monitoring system and runtime analysis. All authors
drafted, read, and approved the report.

 3

Table of Contents
Abstract .. 2

Acknowledgements .. 2

Authorship .. 2

Table of Contents ... 3

List of Figures .. 4

List of Tables ... 4

Executive Summary .. 5

Chapter 1: Introduction .. 7

Chapter 2: Background ... 11

Chapter 3: Design and Development .. 14

3.1 System Overview .. 14

3.1.1 FlexxEdge .. 15

3.1.2 Universal Robotics UR5e Arm .. 15

3.2 Conceptual Designs and Feasibility Studies .. 16

3.3 Core Functionality ... 18

3.3.1 Alarm Detection ... 18

3.3.2 Alarm Resolution .. 20

3.3.3 Runtime Recording ... 21

3.4 System Integration .. 25

Chapter 4: System Testing and Validation .. 26

4.1 Testing Environments ... 26

4.2.1 Machine Tending Tests .. 28

4.2.2 Machine Tending Results ... 28

4.3.1 Runtime Recording Tests ... 31

4.3.2 Runtime Recording Results .. 31

Chapter 5: Analysis and Discussion .. 32

5.1 Flexibility ... 32

5.2 Relative Performance ... 33

5.3 Consistency ... 34

5.4 Lessons Learned .. 34

 4

Chapter 6: Conclusions and Recommendations ... 36

6.1 ROS as a monitoring tool .. 36

6.2 Machine tending ... 36

6.3 Performance ... 36

6.4 Recommendations .. 36

6.5 Future Expansions ... 37

Glossary .. 38

References .. 39

Appendix 1 .. 42

List of Figures
Figure Page Number
Example work cell with a robot tending to a CNC 8
ROS Topic communication from an example package 12
Layer Architecture of ROS Industrial 13
Architecture diagram of the work cell 14
ROS architecture for the UR Driver 17
Workflow Diagram of the Work Cell 18
Haas CNC control panel 18
Screenshot from alarm history text file 19
Run Record Example 21
Docker Image within the FlexxEdge 21
Nodes created to calculate and aggregate information for run records 22
Visualizing the run record data in the web application 24
RViz Simulation Environment 25
CNC Workcell Configuration for Testing 26
Replanning errors vs Attempts 26
Arm interfacing with CNC power button 28
Cycle Times for Machine Tending Tasks 29
Run Record in FlexxConnect UI 30

List of Tables
Table Page Number
Alarm buckets 20
Outcomes from alarm resolution testing 30

 5

Executive Summary
The use of Computer Numeric Control (CNC) in manufacturing processes is heavily

reliant on human operators, making it highly vulnerable to issues that stem from human
fallibility. Consequently, the occurrence of issues on a production line significantly reduces
efficiency and increases the likelihood of production injuries, resulting in adverse impacts on
both people and the economy. Given the high cost of production loss and injury, enhancing CNC
workflows is a critical priority for organizations. Two effective strategies for minimizing
workplace accidents and increasing output involve analyzing performance metrics to identify
recurrent failures that impede production and automating previously inefficient procedures.
We sought to find a way to implement this at the level of a work cell.

Our aim was to devise a system to monitor the workflow of a work cell, which
encompasses machines, equipment, and workers involved in a specific production step, (in our
case a CNC machine and robotic arm), and simultaneously automate the tasks that were
previously assigned to human operators. We designed the system to be integrated across as
many brands and manufacturers as possible to meet the needs of the most possible users. To
make the system more general, we implemented our solution using the Robot Operating
System (ROS), an open-source platform for robotic design and testing that can be used by
nearly every major robotic arm manufacturer.

To develop, test, and demonstrate our system, we used a Universal Robotics (UR) 5e
arm and a HAAS Super Mini Mill as our production devices. We controlled the arm with ROS
commands via an external controller and operated the CNC mill in its standard configuration
without significant alterations. Our experiment entailed the robot arm inserting and removing a
blank metal piece into and from the CNC machine in a loop, simulating a typical CNC job. During
this task, we demonstrated the system's capability to monitor the process in real-time, report
the data to the Flexxbotics environment, and resolve a subset of errors from the CNC machine.

To record and monitor performance analytics in a system, we used the FlexxEdge, which
is a peripheral device created by FlexxBotics. The FlexxEdge networked together with the CNC,
the robot arm, and the overall job controller. Over this network we passed any relevant
performance metrics or runtime information that could be used to make the system more
reactive including cycle times, how many parts have been created, the current tasks of the
system, and digital signals into and out of each piece of hardware. This information was
collected and centralized into the FlexxConnect application that serves as a hub for data
aggregation. By successfully integrating our test workflow into the FlexxBotics environment, we
demonstrated a workflow that is largely brand agnostic and can be used to monitor previously
untracked brands’ and manufacturers’ performance.

The FlexxEdge also enabled the error handling service we created to react to a selection
of errors from the CNC machine. To trigger error handling, the FlexxEdge sent CNC status info to
the robot controller, including the emergency light output, which indicated an alarmed state.

 6

Then the UR5e would resolve errors, if possible, based on preset categories like improper door
position, tool head, program load failure, or a basic system reset.

Through our testing we found that we were able to develop a functional machine
tending application that can resolve 14 alarm codes autonomously. In addition, the
development of a system agnostic runtime monitoring system allows for ROS based devices to
be integrated into the FlexxBotics environment.

 7

Chapter 1: Introduction
Every year sees a growing demand for more and more goods, and manufacturing plants

are being required to produce at an ever-increasing rate. Since every wasted second means
wasted cost, companies are constantly developing and refining their processes to be optimally
productive. Their goal is to have a system that can complete cycles as quickly and consistently
as possible, while maintaining their standard of quality assurance and precision.

One of the primary tools the industry can use to improve a manufacturing process is
automation. Robots can move faster and more precisely than humans, and introducing
automation sees cost reduction in the majority of cases (Save-to-Transform as a Catalyst for
Embracing Digital Disruption | Deloitte China | Strategy & Operations, n.d.). A robot is also able
to do things a human cannot do such as working in dangerous environments or lifting heavy
payloads. Therefore, manufacturers place a high value on being able to automate as many steps
of a process as possible. The ability to automate more tasks in a process enables manufacturers
to complete a larger number of cycles without downtime from waiting on human intervention.
However, one of the major challenges of automating any task is matching the perceptiveness
and awareness of a human operator. Robots struggle to perceive and recognize objects in
varying lighting conditions, especially when the objects are reflective or transparent. Another
limitation is the ability to interpret human actions and intentions, making it challenging for
robots to work safely and effectively alongside humans in collaborative environments.
(Michael, 2020) The way roboticists and manufacturers have been attempting to resolve this
problem is by making factories “smarter” by adding greater computing and communication
power to production lines.

The desire to have more connected devices led to the creation of the Internet of Things
(IoT). The IoT is the name given to how devices like production lines, computers, sensors, and
other hardware have become interconnected via advances in embedded processing and
software. Sensors and data processing pipelines provide visibility into a facility’s operations for
improved fault detection, safety, and overall efficiency (Syafrudin et al., 2018). This
interconnectivity allows for the systems of an operation to be monitored remotely from a
central location. By having the control center for multiple machines in one place, a supervisor
can oversee many processes at the same time and in greater detail. Each of these processes are
broken down into work cells. A work cell is defined as the arrangement of resources and
machines, most often a combination of people, equipment, and materials, designed to improve
the quality and speed of a particular output (admin, 2016). Generally, a work cell is one part of
a larger process and refers to all the necessary elements to complete one or more steps in a
production process. A work cell could be a car body and the painters who spray it, or it could be
a conveyor and hydraulic press that stamps sheet metal.

The work cell that this project will focus on is a Computer Numerical Control (CNC)
machine tending work cell. Industrial CNC production is characterized by its ability to produce
highly accurate and complex parts, making it a popular choice for mass production when
precision is required. Compared to other forms of manufacturing, CNC production also offers
greater consistency, as well as increased efficiency and reduced waste. However, the process
produces parts in a much lower volume than a less complex form of production like stamping or

 8

casting. A typical CNC tending work cell will include a CNC machining mill with an operator who
has access to the control panel as well as the raw materials that will become the part. The
operator will place material inside of the mill where the CNC will cut the desired final product
out of the initial material. Then the completed part will be removed again by the human
operator and taken to the next step of production.

Unlike other manufacturing processes, CNC machine tending does not have many
commercial options for automation. Typically, there is a team of operators monitoring and
managing the CNC machines in addition to the administrative and management teams. The
presence of these operators in work cells comes at a large labor cost as well as creating the risk
for injury from production accidents. We believe that a more intelligent CNC work cell would
create opportunities for automation to reduce the required operational manpower for greater
overall optimization.

Work cell management is the sector of the manufacturing industry that seeks to use the
IoT to analyze and further optimize workflows. As mentioned earlier, companies will use a
centralized information hub to operate production remotely and monitor the status of every
machine. Because of this recording hub, manufacturers can organize their factories without
needing someone to directly watch every single work cell. The most common existing
management offerings are primarily a high-level procedure monitoring service. Companies like
Flexxbotics, Tulip, and SCYTEC provide cloud services that can track a variety of runtime
information about a work cell and its cycles without providing any ability to control or
intervene. This style of monitoring is typically coupled with some form of additional analysis
software that can help a company to identify recurrent system failures or particularly troubling
patterns of downtime. While straightforward, the value provided by these services comes from
their convenience. Instead of requiring someone to directly notice when errors and downtime
occur, all the information is sent directly to the cloud in a centralized hub automatically where
management can decide how to react. This means less maintenance and monitoring staff are
required, but it still requires staff on duty to resolve any errors that arise.

The same technology that has enabled work cell management is also responsible for
many of the advancements in industrial automation. For example, the Amazon warehouses use
package carrying robots and smart shelving to manage their large and diverse inventories. They
have a system that knows where each package is and what is in it because they have a network
of interconnected devices in each warehouse. That level of automation has allowed for the
process of packaging and delivery to be reduced to days instead of weeks. As it pertains to our
focus of CNC machine tending, there are existing automated work cells, but they are typically
limited to material loading or cycle control. These autonomous cells also still require significant
assistance from a human operator due to the variety and complexity of tasks required to
interface with a CNC machine. Therefore, it is more of an augmentation rather than a
replacement of the operator. The closest available option for autonomous CNC tending is a
solution from Robotiq, who has presented a work cell management system that can move
material, start and stop cycles, and control the workholding by using a variety of actuators
attached to the existing control surfaces and a robotic arm. (Machine Tending Solution, n.d.)
This allows for a cell to be run almost completely without human intervention in good

 9

conditions. However, this is still limited in terms of error resolution in the case that an alarm
occurs.

The Robotiq solution has been successful enough to see commercial use, but
researchers have been looking into ways to integrate the functions of the individual component
actuators into the robotic arm that is more flexible than basic buttons or switches. Having an
arm integrated so intimately with a complex system like a CNC has its own issues though.
Currently, the leading state of the art solution is to point a camera at the human–machine
interface (HMI) display to detect the state of the machine. Since the state information displayed
on these tablets is complex researchers have used deep learning to develop neural networks
for recognizing the text on the screen (Jia et al., 2022, Jia et al., 2021). These algorithms
achieved high levels of state recognition but must be retrained for different HMIs and are
difficult to update or edit for an end user. At the current state these solutions are not
generalizable for the wide variety of machine brands that are used in production. Additionally,
the trained models are not user friendly to update in the event of a software update or other
visual system change. In order to use a deep learning algorithm companies would need to teach
employees how to retrain and update the software’s neural networks, which would likely be
both time consuming and costly due to the complexity. While the CNC has over 1000 unique
alarm codes (HelmanCNC, 2013) many of them are unresolvable by a robotic operator. For this
project many of the most difficult alarm codes were excluded from the scope in order to
prioritize the wider range of more feasible tasks. This excluded alarms that might require
screwdriving or jogging the machine which is technically possible using a robotic arm but would
require a high degree of precision and tuning.

Figure 1.1: Example work cell with a robot tending to a CNC

Our goal is to create a seamless work cell operation that capitalizes on the
advancements in collaborative robotics and the growing interconnectivity of the industrial
workspace, without adding the complication of numerous peripherals or deep visual

 10

processing. With only a robotic arm and an intelligent, flexible control platform we will be able
to create a highly efficient cell, like that seen Fig 1.1, that avoids the drawbacks of having a
human operator. To meet our design goals, we are developing for the Flexxbotics platform that
can aggregate data from both the CNC and robotic arm in a work cell. Rather than just taking
parts in and out of a machine, we will provide the ability for the robot to respond to messages
and alarm codes thrown by the CNC, while also reporting run record statistics about the current
job to the cloud. The system that is developed will be able to resolve alarms presented by the
CNC autonomously, handle the basic operational tasks of running a CNC, and provide important
system information to a system wide cloud service. Not only will this be able to improve
production efficiency by decreasing downtime, but it will also provide important insight into the
overall system that can be used to improve total efficiency.

 11

Chapter 2: Background
According to the International Labor Organization (ILO) there are more than 2 million

work related fatalities a year (Caribbean, 2004) in addition to the 270 million annual
occupational injuries (Hämäläinen et al., 2006). This is not only a massive and unnecessary
endangerment of human life, but also comes as a major fiscal cost with close to $5 billion being
lost every year (Mitchell & University, 1996) from accidents and injuries. Even one case of
illness takes on a cost of $17,000 to individuals, employers, and society (Statistics - Costs to
Britain of Workplace Injuries and New Cases of Work-Related Ill Health, n.d.) This makes health
and safety an absolute priority when considering ways to improve system efficiency. If you can
reduce the number of injuries that can occur, then you will not only be saving money but
improving overall health and quality of life for your employees.

Autonomy offers an effective technological solution for companies to improve
workplace safety and improve productivity. Since machines can perform highly repetitive tasks
with a greater precision than humans and record their performance for future studies, an
autonomous system can reduce waste, improve consistency, and provide access to important
data and performance metrics (deSpautz, 1994). Because of this autonomy is a staple of nearly
every industry with 76% of manufacturers using autonomy as a central element of their
production floor. (Duong et al., 2020), (Katana, 2019) Autonomy itself takes many forms, with
the focus of this work being material handling. In the context of manufacturing, material
handling refers to the physical motion of parts and materials throughout a system. This could
be as simple as a conveyor belt that carries parts between machines or as advanced as a robotic
arm that manipulates a work fixture while it is painted (Annem et al., 2019). Autonomous
material handling is critical to ensure high speed throughput of parts and eliminating the
otherwise impossible or dangerous tasks that can so commonly lead to injury. Additionally,
since material handling is also a non-productive step, any time spent on moving parts between
production elements is a detriment to overall system speed and cost.

CNC machines are largely self-contained and often can be the only step a part goes
through. The only movement required to operate a CNC is the loading and unloading of parts to
the mill which is referred to as machine tending. The most common way this is done is by
having a human operator who supervises the CNC cycle and handles the workpiece. They are
responsible for placing fresh blanks and then subsequently removing completed parts in the
machine. Autonomous machine tending can improve cycle times, save space on the production
floor, and allow for auxiliary processes such as quality assurance to be handled inside your work
cell. (The Advantages of Automated Machine Tending - Fanuc, n.d.) Autonomous machine
tending is a well-developed field that recently has seen a growth of interest. (Annem et al.,
2019) The most advanced academic approaches include mobile robots that can tend multiple
cells at the same time (Al-Hussaini et al., 2020), and systems that learn and improve their own
performance. (Jia et al., 2020)

While there is a range of applications that handle the primary function of machine
tending, a major limitation of the existing methods is the lack of ability react to downtime in
production. Either for safety reasons or technological limitations, machine tending applications
rarely handle their own errors. The ability to manage faults is typically delegated to a human

 12

supervisor or operator. (The Cognitive Costs and Benefits of Automation, n.d.) Even if the
supervisor is immediately aware of any downtime there is still a period where the CNC is unable
to produce while it waits for help to resume operation. However, if a machine tending
application were able to resolve its own faults, the cumulative downtime would decrease, and
costly losses of productivity would be much less likely. As such, there has been recent work in
developing automated systems that can react to their own errors instead of requiring regular
human assistance. One possible way to do this is to add a camera into the system that watches
the Human Machine Interface (HMI) and then discerns status information. (Jia et al., 2021), (Jia
et al., 2022) The visual data from the camera is passed into a deep learning-based text
recognition method that identifies the working status of the CNC. Depending on the state of the
CNC the robot can complete its own intervention without ever needing to get a human
operator involved.

Instead of having to develop complex networks to turn visual information into system
information, we propose using a peripheral device that connects the CNC and robot controllers.
These kinds of devices have been created to track production analytics by several companies
including our sponsor. (CNC Machine Monitoring & OEE Software, n.d.), (FlexxCNC - UR to CNC
Communication Interface, n.d.) A work cell monitor can provide much of the same information
but instead of pulling data from a control terminal or screen like a human, it gets access to it
from the system itself. Due to the level of integration required to make this function these
applications are typically developed on a system-by-system basis, and they are very difficult to
generalize. However, the ROS Industrial interface provides an opportunity to create a system
agnostic application for work cell management and alarm intervention.

The purpose of using ROS for this project is to create a generic data aggregation
platform that could work on many different robots without the need for custom integrations.
The Robot Operating System (ROS) is a set of open-source packages that are meant to unify
robot development, especially on multiple devices. It has become very popular with robot
developers with the goal of having a more standardized way to create robotic applications. The
ROS architecture is based on Nodes that are registered to a ROS master that communicate
using a publisher/subscriber model on channels called topics. A Node can subscribe or publish
to any number of topics that have a specific data type called a message as seen in the example
in Fig 2.1. (ROS: Home, n.d.)

Figure 2.1: ROS Topic communication from an example package

 13

ROS Industrial is a coalition of several robotics companies and manufacturers that aimed
to create a generic interface to develop manufacturing applications. These vendors include
Universal Robots (UR), ABB, FANUC, and many others. Not only is ROS widely used, but due to
ROS Industrial there is a series of standards and conventions that make integration between
different brands mostly seamless. (ROS-Industrial, 2023) Fig 2.2 describes the connections and
functionality of the interface including file types, communication styles, and shared packages.

Figure 2.2: Layer Architecture of ROS Industrial

At the bottom of this diagram are the ROS-I Controller, Message, and Interface layers. These
layers are how the industrial robot packages can retain a common interface for receiving data
about robots and sending control commands. For example, the UR_Robot_Driver (the UR
implementation of the ROS Industrial Interface and the interface this project uses) implements
these three layers and exposes the generic robot state to ROS as a topic. Then, a set of nodes
can be built on top of the drivers to parse the information and aggregate the necessary data.

By building our monitoring and error resolution platform on top of the ROS Industrial
Interface, all the robot manufacturers that implement the interface could slot into the system
with minimal effort, serving the goal of creating a generic package.

 14

Chapter 3: Design and Development
To be an effective autonomous solution for CNC machine tending, our developed

robotic system needs to be able to perform the following tasks:

1. The arm should be able to perform material loading, part unloading, and error
handling during the CNC job.

2. The cell should be able to report and record runtime information using the ROS
messaging system so a single, centralized cloud application can monitor the status of
the work cell.

3. Demonstrate the working system with the Universal Robotics UR5e arm and the
HAAS Super Mini Mill.

This design was built upon the FlexxEdge, a device Flexxbotics developed to publish machine
states to the cloud. To measure the success of our solution we evaluated performance on
flexibility, relative performance to humans, safety, and consistency.

3.1 System Overview
Fig 3.1 illustrates the high-level flow of information throughout the work cell. Both the

CNC and the arm connected via the Flexxedge, so that we can interpret and react to signals
from either device. The CNC is connected to the network via Wi-Fi, and the UR5e is wired
directly to the FlexxEdge via ethernet. The CNC and robot are unable to send messages to each
other directly, but with the FlexxEdge serving as a communication bus in the middle it becomes
possible for both side of the system to share information to a job controller. Access to the
overarching work cell management service called FlexxControl, is also facilitated through the
FlexxEdge via the onboard webapp FlexxConnect. The basic flow of information is that a job will
be loaded onto the work cell through the FlexxEdge that describes the normal tending
operations like the loading/unloading positions. Whenever the Haas CNC throws an alarm, the
alarm handler service will format state information from the CNC into instructional information
for the UR5e, and then the UR5e will receive the instructions and complete the error
resolution. During this process, the FlexxEdge will also be recording the downtime and system
diagnostics and reporting to the FlexxControl via the FlexConnect application.

Figure 3.1: Architecture diagram of the work cell

 15

3.1.1 FlexxEdge
The primary purpose of the FlexxEdge is to record and report runtime information about

a work cell. It does this by acting as the communication bridge between the production devices
and the cloud. It parses and formats the data stream from its connections and then publishes in
real time to the FlexxConnect. The information it reports is stored in the form of a run record
which is a packet of relevant cycle information such as status, failure count, part count, and
cycle time. The FlexxEdge currently only supports a URScript to access information about
specific Universal Robot arms. Our goal is to enable the FlexxEdge to create and publish
information through ROS so that the device would be able to integrate with a wider range of
existing system architectures more seamlessly. As discussed in Chapter 2, several industrial
robot manufacturers have already adopted the ROS platform, so being able to interface with it
will extend the FlexxEdge to any robot that implements the ROS Industrial Interface.

The FlexxEdge had three elements of development for this project. First, we created a
set of data aggregation and reporting nodes in ROS to run on the Edge. Their purpose is to
parse and package information from ROS Industrial for reporting purposes. Second, we had to
configure the hardware abstraction layer (HAL) to be able to receive information from ROS.
Once the HAL was able to interpret information coming from ROS, then we were able to pass
packets to the FlexxControl environment for analysis by integrating into their web application.

3.1.2 Universal Robotics UR5e Arm
The next major component of the work cell is the tending robot. We chose to use the

UR5e arm for a few major reasons. First, the UR5e is a cobot which means it is a robotic arm
meant to work alongside humans. It has built-in safety stops, low load capacity, and one of the
most mature ROS libraries. The UR5e is also large enough to reach both the inside of the Haas
Mini Mill’s workspace and control panel. In addition, our end of arm tooling had to be capable
of interfacing with buttons, doors, material, and tools.

The next major reason why UR5e worked well for this project was for its mature ROS
support with the UR_ROS_Driver and MoveIt libraries. MoveIt is an open-source motion
planning framework for ROS that is commonly used with ROS Industrial robots because it is
highly configurable and provides the ability to perform motion planning with collision
avoidance. The entire work cell can be configured in MoveIt in a simulated manner, and since
the environment is quite congested, it was important to be able to navigate safely to prevent
damage. So, the development pipeline was based around using the MoveIt library to plan
waypoints that move the arm through the environment, which were then recorded and
published to the arm whenever that resolution was the appropriate reaction.

 16

Figure 3.2: ROS architecture for the UR Driver

The UR robot driver is simply a translation between UR’s proprietary Real Time Data
Exchange (RTDE) protocol and the ROS Industrial Interface (see Fig 3.2, 1). We can then run ROS
nodes on our work cell monitor that consume the data denoted by the Interface to construct an
archive of system status information. (Fig 3.2, 2). Finally, this information will be fed from the
physical device to a cloud application that can handle the data analysis or to a controller for
alarm intervention (Fig 3.2, 3).

3.2 Conceptual Designs and Feasibility Studies
When initially installing ROS natively on the Flexxedge we found that the compatible

version was not the most supported by the current UR_Robot_Driver. Therefore, we decided to
use a virtual platform to run ROS called Docker. Docker is a platform to run virtualized software
in packages called containers. Our resolution to this was to create a Docker container that hosts
Ubuntu 18.04 and the associated ROS version, melodic. Melodic offers the most stable version
of the UR_Robot_Driver at the time of development making it our best choice. The other
advantage of using Docker is that it provides the ability to hot swap containers depending on
the systems being used. Our testing was designed to run on a Universal Robot, but since we
hoped to develop a widely usable platform, we needed to be able to make our software easily
adaptable. Using Docker would allow for packages to easily be swapped and installed on the
Flexxedge. An early example of our architecture without the use of Docker is shown in red Fig
3.3.

 17

Figure 3.3 Workcell monitoring architecture

An adaptation of our proposed solution using ROS would be to implement ROS 2
instead. ROS 2, as the name implies, is a newer rework of the ROS architecture and has better
performance and safety features. However, our initial tests revealed that the packages we
wanted to use were not as well documented or built out as their ROS counterparts. When
installing the software, alongside MoveIt and the other ROS industrial packages, we noticed a
lot of features that hadn't been adapted or created that were relatively simple to implement
and use with ROS. We assume that in the future ROS 2 will catch up with the original ROS, but
for the purposes of our project we found the current state of ROS to be the best option.

Another large chunk of this project pertains to the actual CNC alarm detection. Our first
attempt was to use DPRNT, a function of HAAS machines that allows the user to export data
from the CNC machine as a job is running. The main issue with this option is that a job must be
running for any data to be transmitted between the CNC and the monitoring device. This means
that if an alarm is present prior to a job being started the monitoring device won't be able to
see it, and the CNC would not allow a job to be started if an alarm is present. This prevents the
ability to resolve alarm or do any form of alarm monitoring when the CNC machine is not
running a job.

For production purposes there are software packages that offer a high level of CNC
interfacing such as MT Connect, but for these were too expensive to be used in this work. There
is however a status light that reports the state of the machine. When an alarm is present this
changes the status light from green to red. This can be monitored via IO pins. When the red
status pin is on, we know an alarm is present and this triggers the robot to generate an alarm
report.

 18

3.3 Core Functionality
The goal of this project was 3-fold: to detect errors that occur in our robot CNC work

cell, to solve a select number of these errors, and to continuously record the status of work cell.
Fig 3.4 demonstrates the typical workflow associated with our solution:

1. Normal operation: The arm tends the CNC by loading and unloading parts according to
the job specifications loaded. Throughout operation, runtime information like part
count and cycle time is sent to FlexxControl

2. Downtime detection: The work cell detects an alarm has been thrown by the CNC via IO
and interrupts the normal operation

3. Alarm Report Generation: The tending robot presses the sequence of buttons to
generate an alarm report to parse the details of the alarm

4. Alarm Resolution: The arm looks up the error in a resolution table and performs a series
of actions to resolve this alarm

5. Cycle Resumption: The program is restarted and normal operation resumes

The technical details of each of these steps can be found in the following sections

Figure 3.4: Workflow Diagram of the Work Cell

3.3.1 Alarm Detection
To be able to react to and resolve alarm codes, the work cell first had to be able detect

when the CNC is down. The machine that we used does not have any way to directly record
when downtime occurs, so an alternative method of detection had to be employed. When CNC
machine is stopped or an alarm has occurred, the status light of the control console turns red.
By connecting the I/O signal from the CNC that controls the light into the UR controller, the
signal can be visible inside of our control environment as a ROS topic. Once the system detects
that an alarm has occurred the arm would be sent to press the shift+f3 buttons on the CNC
control panel which is the hotkey combination to quickly generate an alarm report.

 19

Figure 3.5: Haas CNC control panel

 This report includes a text file history of all alarms and status changes the CNC has gone
through, and it is saved directly to the CNC machine. In order to get the report from the CNC
machine into the error handler service, the NetShare functionality of the HAAS CNC was used.
NetShare allows for the internal storage of the CNC to be shared with a second computer that is
networked together with the mill.

Next, the error handler service parses the received text file to determine which alarm
was thrown to interrupt normal operation. Fig 3.4 below demonstrates a view of the file which
includes the alarm code, the description, and the timestamp for when the alarm occurred.
Since multiple alarms can occur consecutively it was important to log not just the most recent
alarm, but all the alarms that have happened recently. As such, the file parsing script creates a
list of every alarm code that has been sent in the last two minutes to account for the time it
takes to generate the report. The alarm file itself is just a text file. Data about the present
alarms is extracted using a python script that can pull data based on the current date. If it sees
an alarm that occurred within a certain time span, it then knows that this is the alarm that is
currently stopping operation. There are occurrences where multiple alarms could be present
and if this is the case the robot will perform both operations to resolve any present alarm.

Figure 3.6: Screenshot from alarm history text file

After the list of alarms that need to be resolved had been created, it is time for the arm
to perform the steps required to reset the CNC and resume normal operation. From the list of
possible alarms, we ranked each alarm in terms of difficulty from one to three with three being
the easiest. We grouped these codes together into alarm resolution “buckets”. This refers to
codes that happen for different reasons but share the same resolution. For example, a
significant number of resolvable alarms simply require the operator to press the reset button
and then resume operation which constitutes the left-most column of alarm codes. By grouping

 20

common alarms together, the path planning became much simpler to implement. Instead of
each alarm having its own set of motion instructions we could limit the number of paths to only
the number of groupings. Table 3.1 shows the set of buckets that we wanted to be able to
resign with our alarm handler service.

Reset
Machine

Reset
ATC

Change
Tool

Reload
Part

Reload
Program

Close
Door

102 694 256 808 961 268
103 695 984 810
104 696 994
105 697
292 698
343
176
177
971

Table 3.1: Alarm buckets

3.3.2 Alarm Resolution
Once the work cell reliably detects errors in the CNC, the arm can then work to resolve

these errors. These resolutions require motion between waypoints in the CNC workspace and
on the controller, so we decided to implement the most common motion planning framework
for ROS: MoveIt. MoveIt is flexible enough to be implemented with most other industrial arms
and with different kinds of motion planning algorithms. Our main goal with any motion
planning framework was to be able to send the robot to waypoints and avoid collisions at the
same time. The package also provides the MoveIt commander class which allowed us to create
way points in the form of ROS geometry messages and pass them into a go-to-pose function.
This allowed us the flexibility to control the robot without having to perform kinematic
calculations to get joint angles or avoid collisions. MoveIt also provides a visualization of the
paths via RViz allowing us to test paths prior to running them on the physical robot.

 To control the arm, MoveIt takes poses from either the joint or task space and passes
them to a motion planner. To get these poses we used the lead through functionality of the
arm to place it at desired poses and then recorded the joint and positional information at that
location. After creating a list of necessary poses, we were able to create methods for each
specific function, including pushing buttons and opening or closing the door. The motion
planner then takes this goal pose and calculates how to move each joint to get the robot to the
desired pose. Due to the nature of kinematics and 6 axis robotic arms there is not an all-
purpose motion planner. Most are designed for a specific task or operation. While most
motions could be planned in the joint space as the arm transitions between poses, we needed
to be able to plan in cartesian space in order to close the door smoothly and push buttons
accurately without incidentally contacting other parts of the CNC controller. Therefore, we used
the PILZ motion planning pipeline that allows us to use linear, circular, and point to point
motions to manipulate the arm.

 21

MoveIt supports a variety of motion planners including the native planner OMPL and third-
party planners such PILZ, CHOMP, and STOMP. (Planners | MoveIt, n.d.) We did some initial
testing with OMPL and found it too unstable so we switched to PILZ. PILZ supported multi-
motion smoothing and offered point-to-point and linear trajectory generation all of which were
critical features to us. Additionally, it is a lightweight calculator that minimizes the computation
time of path planning, and it generates complete paths before moving making it a safer option
in a cramped workspace.

To make sure the arm reacts quickly to an error the job path is set inside of a while loop
that immediately stops working when the alarm IO is detected. It then calls the error parsing
file. This script returns any alarm that has occurred in the last 120 seconds. If the alarms
present have resolutions that the arm can handle it will then perform the resolution. At the
same time the Flexx system recognizes that a part has failed due to an alarm and counts it as a
failed part that is then reported to the central system.

3.3.3 Runtime Recording
The final part of our project is to continuously record data about the work cell into the

Flexxbotics environment. Flexx provides a solution that allows manufacturers to monitor
multiple work cells on one system. A work cell can contain any number of machines, but the
ones that use the Flexx solution normally contain a CNC machine and a robotic arm.
Throughout operation of the CNC the work cell is monitored and all data it reported to a central
system allowing for more efficient work floor management. The data type they use to record
runtime information is called the run record. A run record includes the following information:

• Job name: identifier for the job currently running
• Part count: number of parts that have been created since the job started
• Robot status: the current status of the robot (RUNNING, STOPPED)
• Start time: the start time of the job
• End time: the time the last cycle ended
• Cycle time: duration of the last cycle

An example of this data can be seen in Fig 3.6.

Figure 3.7: Run Record Example

While the ROS Industrial Interface greatly reduces the differences between
implementing various vendor robots, it is not perfect. There are many topics that are vendor
specific that require some specific implementation. Because of this specific implementation for
some vendors, we decided to package the driver along with a set of translation nodes into a

 22

single software image that could be easily shared and swapped out. For this project, Docker
was chosen as the container service because it is extremely easy to get started with and was
already implemented on the FlexxEdge. The components of the Docker image are shown in Fig
3.7 which include the ROS UR Robot Drivers and a set of specific ROS nodes that generate the
run record information for the Hardware Abstraction Layer.

Figure 3.8: Docker Image within the FlexxEdge

The Flexx ROS Nodes referenced in the diagram are a set of nodes that calculate part
count, cycle time, and failure count and then aggregates them to publish to the XMLRPC server.
A more detailed visual of the nodes is shown in Fig 3.8. It primarily consists of 3 nodes:

1. The ur_robot_driver is the interface between the Universal Robot and ROS which
publishes the hardware states and joint states of the robot.

2. The Runtime Generator node subscribes to the robot information to calculate the run
record information like cycle time and part count.

3. The Runtime Aggregator publishes a complete run record at a set interval based on the
components published by the Generator.

A full list of nodes and topics used in this project can be found in Appendix 1. While this is not
completely generic as it still requires some extent of vendor-specific implementations, it is a
great improvement over fully custom integration.

 23

Figure 3.9: Nodes created to calculate and aggregate information for run records

In order to calculate part count, the user would define a pick position and a place
position during the setup of the work cell. These positions correlated with where the robot
grabs a new blank to put into the CNC machine and the position where it places the part into
the machine. The Runtime Generator increments the part count every time the robot makes
one complete cycle between these two positions.

The other piece of data that could not be accessed directly from the UR drivers is cycle
time and overall job time. Cycle time refers to how long one part takes to be created whereas
job time refers to the total time spent making a set of parts. For this the python time stamp
package was used in the same node that calculates part count. When a job is started a time
stamp is taken and saved; then when a job is ended another time stamp is taken. The difference
between the time stamps is calculated and the result is the cycle duration. From here we could
directly publish this to a job time topic. The same strategy was used for cycle time, but instead
of taking the time stamps at the start and end of a job the stamp is taken whenever the part
count is incremented.

Finally, to integrate our runtime recording with the Flexx environment, we had to add
an abstraction to the Hardware Abstraction Layer that converts messages from the ROS device
we created to a format their system can handle.

 24

Figure 3.10: Class diagram of the Flexx ROS nodes that were developed

Figure 3.10 demonstrates the URRecordAggregator class that combines the robot state
data into a single piece of run record information and exposes an XMLRPC server for the
hardware abstraction layer to consume. The aggregator node subscribes to topics published
from the URRecordGenerator which performs the calculations mentioned above. This
implements an abstract RunRecordAggregator class so new generators can be created with
different robot manufacturers without requiring full reimplementation. Finally, the HAL can get
the robot state from the XMLRPC server and receive the current run record to push to the cloud
and the web application for visualization as seen in Fig 3.10. shows the FlexxConnect web
application is displaying the run record information that the HAL is printing out.

Figure 3.11: Visualizing the run record data in the web application

 25

3.4 System Integration

Overall, integrating the system together worked well given the maturity of ROS and the
flexibility of Docker. However, we had to deviate from our initial plans when connecting to the
CNC machine. As described in 3.3.1, there are no native ways to access alarm information from
the Haas Super MiniMill programmatically. This is why we had to work around this by having
the arm physically push the buttons to generate an alarm report and analyze the text document
to find the error code to resolve. This takes some time longer than being able to share the code
directly with the robot. Additionally, the CNC networking functionality was never enabled so we
had to prepare alarm reports before the trials for testing. Thanks toby

Secondarily, the motion planner had several issues when brought into the real world.
The first is the number of dropped packets and how the planner reacts to them. Part of the
reason PILZ was used is that it would not attempt to move through an unsafe path, and it had
to generate a complete path at its initialization. However, this means if the planner tried to
generate a motion while it had incorrect or partial information, such as from a dropped packet,
it would fail to generate a path and end the program. To maintain the robustness of the motion
planner while still being able to complete a whole cycle we had to implement a replanning
protocol for the system. Since we knew the motions that we were sending the arm through
were all viable from simulated testing our approach was to give the arm the same instructions
at a delay if it failed when trying to plan a path. If the state of the robot prevented it from being
able to identify a possible path initially, we only needed to wait until it had updated its
kinematics and try again. To that end we allowed the arm to replan up to 3 times with a 0.1
second delay between attempts. This does not guarantee that the arm will never break, but for
our purposes prevented the arm from having planning issues during our testing or
demonstrations.

 26

Chapter 4: System Testing and Validation
To confirm the efficacy of our approach we performed a series of tests. All the tests

performed were performed on a simulated environment first in Rviz and then in the CNC
workspace subsequently unless noted otherwise. The configuration of these environments will
be listed in the subsequent section followed by the testing performed. The results of these tests
will be used to analyze performance and determine whether the newly developed system was
successful.

4.1 Testing Environments
Before any testing was done on physical hardware, we tested the system in simulation.

The goal being to verify that positions were reachable and did not cause collisions. It also
allowed us to test functionality for data aggregation when the physical robot was not present.
The simulation used was Rviz the native ROS physical simulator. We recorded points that
approximated the locations of the buttons, workpieces, and door. The arm was then sent
through the positions in the order that would be necessary to complete tasks on the CNC
without any feedback or signals from the mill.

Figure 4.1: Rviz Simulation Environment

The transition from a simulated environment into using a real robot brought about
several implementation issues that required slight changes to the testing. The most significant
change was the addition of intermediate joint poses during motions to help assist the motion
planner. To mitigate planning issues and avoid unsafe paths in the confined workspace several
intermediate waypoints were added to the task that altered the job performance superficially.

 27

Figure 4.2: CNC Workcell Configuration for Testing

An additional replanning functionality was necessary as discussed in section 3.4. Figure 4.3
shows the number of errors that occurred over the course of a single cycle. When we allowed
the arm to replan three times it was anecdotally able to run without errors over the course of
our testing. These changes brought the consistency of the physical system closer to the
expected outcome from simulation although it added up to 0.3 seconds per motion of delay.

Figure 4.3: Replanning errors vs Attempts

 28

4.2.1 Machine Tending Tests
The first step to testing the machine tending system was letting it perform unperturbed

cycles in normal operation. First the motions were tested in simulation, then the lab without
the CNC machine, and finally we moved to testing the ability of the arm to complete the tasks
required to tend a CNC machine through the motions we had planned. To complete one job
cycle the robot had to open the door, place the workpiece in the machine, close the door, start
the cycle, wait for the job to complete, remove the completed workpiece, and then repeat the
cycle again. Testing for the baseline machine tending task was simply to allow the arm to
complete cycles and record the performance.

The testing for the alarm handler service was to allow the arm to allow the arm to
perform a cycle and during the job to have a human disturb the system and create an alarm.
For testing the ability of the arm to autonomously complete alarm resolutions we were limited
in some respects. Haas provides a comprehensive list of alarm codes and a plain English
description of the likely resolutions, but there is no way for the CNC to generate an alarm
without the alarm being present in the system. Due to this we were only able to live test the
alarms we could generate without damaging the machine, and the rest we had to artificially
generate using a modified alarm history file. The other downside to artificially generating
alarms is that the CNC is not in the alarmed state so we have no way to truly confirm whether
or not our resolution would truly fix the issue associated with the given code. The final
limitation on our test was that not every alarm sets off the safety light as we initially believed,
so for specifically the open-door alarm code we would prompt the robot when there was an
issue although it still had to parse the issue from the alarm history and react independently.

For live testing we were able to open the door during a cycle or turn the CNC machine
off, and then see if the arm was able to return the machine to an operating state. For artificially
generated alarms we developed individual tests that were close approximates or dry runs for
what we believed the arm should do. Both ATC functionalities could be performed without an
alarm present in the system so we would attempt to send the arm through the steps to dry run
resetting the ATC and changing the tool. For the alarms in the “Reset Machine” column we
used the emergency stop of the CNC machine which requires the machine to be reset before a
cycle can be resumed. To test if the robot could hit reset during a cycle we would press and
unpress the emergency stop button and prompt the robot with a modified alarm history file
that listed one of the alarms that required a machine reset. For a corrupted program
instruction, we would load a different program onto the CNC and then prompt the arm to
reload the program.

4.2.2 Machine Tending Results
The arm was able to interface with the panel completely, and the UR5e’s workspace was

more than sufficient to reach any part of the environment that would be involved in operating

 29

the CNC. With the Robotiq two finger parallel gripper the arm was able to depress all the
buttons on the panel, although the large, protruding buttons required a slight angle.

Figure 4.4: Arm interfacing with CNC power button

 No long-term stress tests were able to be run due to limitations of CNC access, but the
arm was tested up to five cycles consecutively and performed without issues or indications of
potential failure. Over a two-hour testing period we were able to run the machine tending
application without external assistance and saw no failures.

After testing the consistency of the machine tending application, we evaluated the
speed of performance. While running the arm at 30% (limited for safety) of its possible speed
we recorded the duration of the pre and post cycle steps and graphed the relative performance
to a human in figure 4.4

 30

Figure 4.4 Cycle Times for Machine Tending Tasks

The next round of testing considered the ability of the alarm handler service to resolve
alarms. Out of the categories, we were able to successfully demonstrate the system resolving
Close Door and Cycle Power. These demonstrations can be found at the end of this section.
Unfortunately, we were unable to safely throw the errors in the following categories: Reset
Machine, Reload Part, or Reload Program. Therefore, only the solution motions were tested,
but full integration runs were not. Finally, the tests for the Change Tool and Reset ATC category
did not work as we found the Automatic Tool Changer (ATC) functionality of the Super Mini Mill
required a greater depth of integration than our system was capable of. To use the ATC our
system would have to have accurate knowledge of the tools, their positions, and their state
which we were not able to access through the CNC. Because of this, the ability to Change Tool
or Reset ATC was not considered to be viable since it would not be performed with the
guarantee of safety.

Reset ATC Change
Tool

Reset
Machine

Reload
Part

Reload
Program

Close
Door

Cycle
Power

694 256 102 808 961 268 20009
695 984 103 810
696 994 104
697 105
698 292

 343
 176
 177
 971

Table 4.1: Outcomes from alarm resolution testing

 31

4.3.1 Runtime Recording Tests
Once we had developed a baseline of the workflow for what our machine tending task

would look like we then had to test the runtime aggregation framework. The benefit of the RViz
simulator is that the topics coming from ROS are published as though they were coming from a
real robot. However, there are no noise or bandwidth issues to account for. The test for
runtime recording was simply to run a job and make sure the FlexxConnect showed the correct
information and that the run record had the correct information for the information that isn’t
shown on the UI as well. In simulation we did not consider runtime failures as part of the
process, but we did consider QA failures. The rest of the components were considered normally
for both simulation and hardware testing.

4.3.2 Runtime Recording Results
The data aggregation package was robust and consistent across the testing platforms.

Even with the increased latency and noise the nodes ran identically in simulation and on real
hardware. The addition of failure checking also worked without any major hiccups. Figure 3.7
shows the FlexxConnect webpage showing information collected via ROS and the conclusion of
a complete monitoring pipeline. In simulation we were able to test the monitoring pipeline’s
ability over a long form testing period of eight hours. During this we completed 2000 cycles and
despite one genuine job crash caused by an IP address bug the run record nodes continued to
collect accurate information about the state of the job.

Link to Demos: https://www.youtube.com/playlist?list=PLm7rP-S1QAZ9Bif7rpA7Ei2YUmYKntnF_

 32

Chapter 5: Analysis and Discussion
The primary goals of the system were all met, but there were additional criteria for how

the system was developed. Firstly, flexibility was the primary goal for the structure of both the
work cell monitoring and the error handler system. The benefit of using ROS for monitoring and
control is that it can be used to run products from dozens of manufacturers, and we sought to
capitalize on this. Secondly, since our system was designed to take the place of a human
operator it was important to compare whether what we developed performed better than the
human standard. Lastly, while the goal of this project was to develop new techniques primarily,
we also wanted our solution to be as close to production level quality as possible, which means
it would be designed and tested with the idea of it being used in a real work cell and that we
could not compromise the consistency of our solution.

5.1 Flexibility
This project’s primary goal was to develop a methodology that not only completed the

tasks but did so in such a way that it could be implemented on a broad range of equipment
manufacturers and easily expanded to include additional functionality. So, to evaluate the
flexibility of our work we looked at the ease with which this approach could be reimplemented
in other environments, and whether there are any limitations on the abilities of this approach.

First, we can evaluate the flexibility of the machine tending application and alarm
handler. For this size of mill, it is important to avoid having too large of an arm as it will have
difficulties operating quickly in a tight environment without damaging or hitting objects in the
workspace, but if the arm is too small it would not be able to perform the full range of
functionalities that the CNC has available. The UR5e arm range proved to be ideal as its
workspace included every element of the CNC machine that we needed to have access to. With
the arm centered on the door we had access to the full range of buttons on the CNC control
panel and could reach far enough into the CNC to place the workpiece in the fixture and
working area of the mill. It was also the robot both WPI and Flexxbotics had the most access to
and experience with. This made it an easy choice due to availability and access to resources. In
terms of motion planning there were very few poses that the arm was not able to reach,
however getting to poses from every location proved difficult. Since the arm had to pass near
the base joint singularity when moving from interfacing with the door to interfacing with the
control panel depending on when an error occurred the arm could potentially try to move
through an unsafe motion trying to react and find itself in an unsolvable situation. We did
combat this to some degree by having each motion bookended by poses that gave the arm
better access to its full range of motion, but this comes with no guarantee.

The error handler service itself was not designed to be fully general as it was simply a
utility for our machine tending application, but apart from our alarm parsing approach it could
be easily updated to include other manufacturers. The core functionality of the alarm handler
service was to decide which resolution fit with the input given to it, and so long as the possible
accepted inputs was expanded it could feasibly accommodate additional types of input. The

 33

resolutions themselves were modular in nature. Core functions of the CNC were segmented
such that the robot was deciding between processes and not poses. For example, the central
loop of the machine tending was broken into several commands such as turn_on() or
open_door(), and the alarm resolutions were structured similarly. To add new resolutions an
engineer would only need to know what functions of the CNC were necessary and call those
function commands in order.

Lastly the run record aggregation which had the most stringent requirements of
generality. The methodology we used needed to be broadly applicable with minimal changes
otherwise it would not suit the use case of our sponsors who needed a general use monitoring
device. Through the existing open-source ROS packages we were able to develop ways that
were hardware agnostic to get every piece of information except for running mode and
controller IO values. These topics are not part of the ROS Industrial interface and are unable to
be derived from other values. We expected some information of this kind to exist, so we
designed the actual recording package itself to be easily editable and quickly swappable. The
aggregation nodes are part of a docker image that can be downloaded onto the FlexxEdge that
handles each specific manufacturer's differences. Updating the docker image to accommodate
a new manufacturer is extremely lightweight and requires only changing the names of the two
topics that are being provided via the manufacturer specific interface. With this an end user
could have an image for each robot manufacturer and to change between them they would
only need to run the monitoring nodes on the image designed for the device currently
connected.

5.2 Relative Performance
The performance of the system relative to a human operator is mixed. The strong suits

of automation are clearly at play in this system with the arm being able to move faster than
humans at top speed and the arm never makes mistakes. The arm is also able to perform cycles
continuously without breaks. However, the cycle speeds are not necessarily faster than a
human due to the inefficient motions required to navigate the cramped workspace. Our
pathing was not an optimal set of motions necessarily so with more time to hone the individual
steps this methodology could outperform humans in speed, but ours does not. Additionally,
since this is a cobot and not a traditional industrial robot the payload is limited to 5kg which is
much less than the OSHA approved safe lifting load of approximately 23kg. While 5kg is a
reasonable amount of weight for what can be expected for CNC material, if there happened to
be a task that required a particularly heavy blank, the arm does not have the same capacity for
lifting as a human. These limitations aside, the arm is able to perform expected tasks roughly at
the same level as a human. However, the major drawback is that the arm still lacks the
cognitive and observational strengths of a human operator. For example, if the door was
opened because an object fell and it landed in such a way that it continued to be in the path of
the door, the robot would have no way to know this.

 34

5.3 Consistency
One of the primary claims of robotic arm manufacturers is that the behavior of their

arms is highly repeatable. (Workers et al., n.d.) Without this they would not be useful tools for
automation. Being able to perform things the same way is essential to developing an industrial
application. The PILZ motion planner is consistent but not very robust to lost data. We were
able to account for this by adding an additional layer of replanning that cut down the number
of planning errors. This allowed us to perform the motions without failures for our testing
purposes and this consistency during testing indicated a high level of reliability. Since PILZ is
iterative there is a small degree of probability involved in path generation, but we were able to
limit this to a negligible amount. When the functionality of the arm was expanded to include
motions involving poses that were very difficult to plan paths for the likelihood of failures
would increase but could be accounted for with the use of intermediate waypoints.
Additionally, during testing specific points of failure could be identified anecdotally. Our
replanner is parametric and if certain motions were identified as being more likely to fail, we
were able to account for these and PILZ was given more leniency to regenerate viable paths.

Run record generation was extremely consistent and offered identical performance in
simulation and on real hardware. Regardless of the goal positions or motions or length of cycle
the aggregation nodes were able to accurately identify any calculated information and record
any static information. Recording was tested both natively on the edge and hosted on an
external laptop which also performed identically. Our run record reporting system was able to
run live demonstrations for an entire workday without issue even if the job itself went down.

5.4 Lessons Learned
The first issue found with initial setup was inconsistent robot position from job to job.

This led to inconsistent interactions between the robot and CNC or robot and part blanks. The
best solution for this is something that already exists and is made by flexx as well. It’s a
reference in the workspace that has an unknown position in relation to the robot at the start of
the job but all the necessary points for the robot to use are referenced to it. When a job is
being set up the arm is physically moved to the reference point and told that its current
position is the position of the reference therefore giving it the position of all the buttons and
pick up points on the CNC. This is something that could have been done custom or done with
the flexx device itself but due to time constraints it was easier to just adjust the position of the
robot in the work cell by small amounts when testing.

Initial testing was done with the default motion planner for MoveIt. In simulation this
planner worked great and had very little issues using all the move types. However, when the
concept was proven in simulation and moved to the physical setup planning failed most of the
time. After doing some research it was discovered that this is a well-known issue. The default
MoveIt planner works great in simulation but has a hard time dealing with small errors in joint
angles, acceleration, and velocity that generally occur in the physical setup. These errors could

 35

be reduced by limiting movement speeds and forces, but this makes the overall system really
slow. The better solution is to use a motion planner that is better suited for the physical robot.

The Pilz motion planner is a generic planner that is designed to work with a multi axis
industrial robot arm. It supports point to point (PTP), Linear (Lin) and Circular (Cir) movements
making it a suitable option for the tending and alarm resolution needs. However, there were
still instances where the motion planner would fail. This mostly happened when the start and
end point had very different orientations. The most practiced solution here is to create
intermediate points that get the robot to some midpoint between the two crucial points. This
made the number of planning failures a lot less, but they still happened from time to time.
When a move failed it was discovered that if the move was retried from the point, it failed it
worked without failure. Thes led to the idea of simply retrying the move in the event of a
failure. Fortunately, when a move fails the planner throws an exception that when caught the
plan is simply retried. If it fails, more than the predefined limit the planner with stop attempting
to move the robot.

 36

Chapter 6: Conclusions and Recommendations
6.1 ROS as a monitoring tool

This project showed that ROS can serve as an effective data aggregation tool even if the
device is not using ROS natively. In the case of this project this was shown by the ability to pull
alarm data from the CNC via an alarm list text file. One major key to the use of ROS for this
application was the use of Docker. Docker makes the use of ROS much more convenient for use
on different computer architectures. It allowed the solution to be much more generic and
modular with the idea being that other robot drivers could be used in the future.

Another major advantage of using ROS as a monitoring tool is that many of the packages
that expose the data pertaining to a CNC or robot operations already exist. The companies
involved with ROS industrial have flushed out drivers that with slight alterations could be used
to obtain even more data pertaining to the work cell.

6.2 Machine tending
Another fact that was displayed by this project is that the ability to do any form of

machining with a robot/cobot is extremely valuable. When looking at the job itself it makes
sense that a robot can succeed in the area. The job itself is repetitive, dull, and dirty making a
robot the perfect solution for it, especially due to the fact that the environment that the robot
is interacting with does not change during operation. This also made it very evident that the
robot should stick to the material replacement side of the job, button pushing, door opening,
and fixturing should stay in the hands of external packages that already exist. This, however,
goes back to the point of ROS being a great bridge between different devices. Door openers and
devices that can push buttons on a CNC in a simpler manner already exist, and ROS could serve
as a better connection between all of them within a work cell and gain access to more data and
metrics to report on the performance side of things. These devices were designed purely for
the task they are completing, making them much faster than the robot, but limited in flexibility.

6.3 Performance
The optimal solution is the seamless integration of these two ideas into one CNC

tending solution. Lights out manufacturing becomes much more feasible if the robot can run on
its own without intervention from a human. This solution also serves as a great remote
monitoring system by allowing companies to track multiple work cell outputs from anywhere in
the world. This allows users to optimize work cell output by viewing machine metrics over time
and seeing the areas that need to be improved. The other benefit of this is that again this is
automatic. There is no manual data entry, the robot handles all aspects of the work cell
operation. Using a docker image in the system as well makes the system's use with multiple
robots manufactures in the same workspace much more viable.

6.4 Recommendations
In a perfect world a work cell would never throw an alarm and have a need for a

resolution. Unfortunately, this is not the case and there is not a solution like resetting the

 37

machine that can resolve any present alarms. Sometimes human intervention is necessary. The
next best thing to autonomous resolution is the ability to control the robot remotely. Solutions
like this already exist using camera feeds and controllers to allow the user to manually reset a
machine from anywhere in the world. This idea could be applied to alarm resolution for alarms
that require dynamic solutions. This would still allow for lights out manufacturing that is for the
most part completely autonomous. Even if a teleoperated solution is needed the human is still
not present at the machine.

Along with teleoperation comes the need to visualize the robot's current configuration
remotely. This could come in the form of camera feeds or using the joint state ROS topic to get
joint data and visualize it in a simulated environment. Either way this would provide valuable
information to work cell managers that maybe isn't as apparent when just looking at metrics.

As shown earlier the benefits of using robots to handle these kinds of tasks cannot be
understated, but the field would need to develop further to make it truly viable. The continued
expansion of the stream of information allows for even more optimization in the
workspace/work cells. Moving forward, to incorporate even more devices, all that would be
required would be the development of packages that expose the required data for the
monitoring device to access.

6.5 Future Expansions
As of right now the system was designed and tested on a CNC 3 axis machine, however it is
generic enough that it could work with any other machine tending operation such as welding,
turning and finishing. As mentioned, previously the system was also designed to be hot
swapped for other robot manufactures. This design could be seen in a work cell that sands
rocking chairs using a Fanuc arm, but still meets all the goals mentioned above. This of course
was never tested for the duration of this project but was something that was baked in the
overall design.

In the future a more robust solution to interface with the CNC machine could be used to speed
up operation. Instead of reading the signal from the status light, software like MTConnect could
be used to automatically report present alarms and statuses. An even better solution would be
to design CNCs with the idea of using cobot in mind. Rather than using a bunch of what are
essentially band aids to make the robot usable with a CNC, create a CNC that has built in
communication protocols and IO’s to interface with the robot. Allow for the HMI (Human
Machine Interface) to be controlled via IO rather than needing to physically press the buttons.
These are all things that would make the interfacing between the robot and CNC machine much
more seamless.

 38

Glossary
Internet of Things (IoT) – How physical objects with sensors, processing ability, software, and
other technologies that connect and exchange data with other devices and systems over the
Internet or other communications networks

Work Cell - The arrangement of resources and processes, most often a combination of people,
equipment, and materials, designed to improve the quality and speed of a particular output

FlexxEdge - Peripheral device that is networked into devices for recording performance
analytics

FlexxConnect - Centralized hub application that packages performance data into visualization
from an entire plant

Hardware Abstraction Layer (HAL) - A service on the FlexxEdge that exposes physical socket
connections as publish/subscribe and request/response systems.

Run Record – Data type including status, failure count, part count, and cycle time from system
devices that is used by the FlexxControl service

Robot Operating System (ROS): An open source software development kit for robotics
applications. ROS offers a standard software platform to developers across industries (ROS:
Why ROS?, n.d.)

 39

References
admin. (2016, August 16). Lean Manufacturing and Workcells: What You Need to Know.
https://online.kettering.edu/news/2016/08/15/lean-manufacturing-and-workcells-what-you-
need-know

Al-Hussaini, S., Thakar, S., Kim, H., Rajendran, P., Shah, B. C., Marvel, J. A., & Gupta, S. K. (2020).
Human-Supervised Semi-Autonomous Mobile Manipulators for Safely and Efficiently Executing
Machine Tending Tasks (arXiv:2010.04899). arXiv. https://doi.org/10.48550/arXiv.2010.04899

Alli, B. O. (2008). Fundamental principles of occupational health and safety (2nd ed).
International Labour Office.

Annem, V., Rajendran, P., Thakar, S., & Gupta, S. (2019, June). Towards Remote Teleoperation
of a Semi-Autonomous Mobile Manipulator System in Machine Tending Tasks. ASME 2019 14th
International Manufacturing Science and Engineering.
https://www.researchgate.net/publication/337586346_Towards_Remote_Teleoperation_of_a
_Semi-Autonomous_Mobile_Manipulator_System_in_Machine_Tending_Tasks

Arrais, R., Veiga, G., Ribeiro, T. T., Oliveira, D., Fernandes, R., Conceição, A. G. S., & Farias, P. C.
M. A. (2019). Application of the Open Scalable Production System to Machine Tending of
Additive Manufacturing Operations by a Mobile Manipulator. In P. Moura Oliveira, P. Novais, &
L. P. Reis (Eds.), Progress in Artificial Intelligence (pp. 345–356). Springer International
Publishing. https://doi.org/10.1007/978-3-030-30244-3_29

Borkhataria, C. (2017, July 5). Radical “brain mesh” could make the Matrix a reality. Mail Online.
http://www.dailymail.co.uk/~/article-4668722/index.html

Caribbean, I. O. for L. A. and the. (2004). 2003 Labour Overview [Report].
http://www.ilo.org/americas/publicaciones/WCMS_187481/lang--en/index.htm

CNC Machine Monitoring & OEE Software. (n.d.). Scytec DataXchange. Retrieved February 20,
2023, from https://scytec.com/

deSpautz, J. (1994). Quantifying the benefits of automation. ISA Transactions, 33(2), 107–112.
https://doi.org/10.1016/0019-0578(94)90041-8

Duong, L. N. K., Al-Fadhli, M., Jagtap, S., Bader, F., Martindale, W., Swainson, M., & Paoli, A.
(2020). A review of robotics and autonomous systems in the food industry: From the supply
chains perspective. Trends in Food Science & Technology, 106, 355–364.
https://doi.org/10.1016/j.tifs.2020.10.028

Flexxbotics | Manufacturing & Automation Productivity Solutions. (n.d.). Flexxbotics. Retrieved
February 20, 2023, from https://flexxbotics.com/

FlexxCNCTM - UR to CNC Communication Interface. (n.d.). Flexxbotics. Retrieved February 20,
2023, from https://flexxbotics.com/flexx-cnc/

 40

Hämäläinen, P., Takala, J., & Saarela, K. L. (2006). Global estimates of occupational accidents.
Safety Science, 44(2), 137–156. https://doi.org/10.1016/j.ssci.2005.08.017

HelmanCNC. (2013, July 9). Haas Alarm Codes. Helman CNC.
https://www.helmancnc.com/haas-alarm-codes/

Jia, F., Jebelli, A., Ma, Y., & Ahmad, R. (2022). An Intelligent Manufacturing Approach Based on a
Novel Deep Learning Method for Automatic Machine and Working Status Recognition. Applied
Sciences, 12(11), 5697. https://doi.org/10.3390/app12115697

Jia, F., Ma, Y., & Ahmad, R. (2021). Vision-Based Associative Robotic Recognition of Working
Status in Autonomous Manufacturing Environment. Procedia CIRP, 104, 1535–1540.
https://doi.org/10.1016/j.procir.2021.11.259

Jia, F., Tzintzun, J., & Ahmad, R. (2020). An Improved Robot Path Planning Algorithm for a Novel
Self-adapting Intelligent Machine Tending Robotic System. In E. E. Hernandez, S. Keshtkar, & S.
I. Valdez (Eds.), Industrial and Robotic Systems (pp. 53–64). Springer International Publishing.
https://doi.org/10.1007/978-3-030-45402-9_7

Katana, T. (2019, December 3). The Benefits of Manufacturing Process Automation. Katana.
https://katanamrp.com/blog/manufacturing-process-automation/

Literature Review. (n.d.). Google Docs. Retrieved November 16, 2021, from
https://docs.google.com/document/d/1u_skC48daew3YUoR48Mfb8Ov6Sw9WoBk9tgopqacr_Q
/edit?usp=embed_facebook

Machine Tending Solution. (n.d.). Robotiq. Retrieved February 20, 2023, from
https://robotiq.com/solutions/machine-tending

Martins, L., Varela, M. L. R., Fernandes, N. O., Carmo–Silva, S., & Machado, J. (2020). Literature
review on autonomous production control methods. Enterprise Information Systems.
https://www.tandfonline.com/doi/full/10.1080/17517575.2020.1731611

Michael, N. (2020, October 12). The Challenges of Robotic Perception. Shield AI.
https://shield.ai/challenges-robotic-perception/

Mitchell, J. K., & University, U. N. (1996). The long road to recovery :: community responses to
industrial disaster /: edited by James K. Mitchell. UN University Press,.
https://digitallibrary.un.org/record/231666

Planners | MoveIt. (n.d.). Retrieved April 26, 2023, from
https://moveit.ros.org/documentation/planners/

ROS: Home. (n.d.). Retrieved February 20, 2023, from https://www.ros.org/

ROS: Why ROS? (n.d.). Retrieved April 27, 2023, from https://www.ros.org/blog/why-ros/

ROS-Industrial. (2023, January 3). ROS-Industrial. https://rosindustrial.org

Save-to-transform as a catalyst for embracing digital disruption | Deloitte China | Strategy &
Operations. (n.d.). Deloitte China. Retrieved March 2, 2023, from

 41

https://www2.deloitte.com/cn/en/pages/strategy-operations/articles/2019-global-cost-
survey.html

Statistics - Costs to Britain of workplace injuries and new cases of work-related ill health. (n.d.).
Retrieved February 20, 2023, from https://www.hse.gov.uk/statistics/cost.htm

Syafrudin, M., Alfian, G., Fitriyani, N. L., & Rhee, J. (2018). Performance Analysis of IoT-Based
Sensor, Big Data Processing, and Machine Learning Model for Real-Time Monitoring System in
Automotive Manufacturing. Sensors (Basel, Switzerland), 18(9), 2946.
https://doi.org/10.3390/s18092946

Tarapore, D., Christensen, A. L., & Timmis, J. (2017). Generic, scalable and decentralized fault
detection for robot swarms. PLOS ONE, 12(8), e0182058.
https://doi.org/10.1371/journal.pone.0182058

Tarapore, D., Lima, P. U., Carneiro, J., & Christensen, A. L. (2015). To err is robotic, to tolerate
immunological: fault detection in multirobot systems. Bioinspiration & Biomimetics, 10(1),
016014. https://doi.org/10.1088/1748-3190/10/1/016014

The advantages of automated machine tending - Fanuc. (n.d.). Retrieved February 20, 2023,
from https://www.fanuc.eu/dk/en/industrial-applications/machine-tending

The Cognitive Costs and Benefits of Automation. (n.d.). Retrieved February 20, 2023, from
https://apps.dtic.mil/sti/citations/ADA422303

Workers, E. A. of K. P. T. C. to E. S. for, Production, A., & Productivity, I. (n.d.). Industrial Robotic
Arm Overview. Intel. Retrieved April 27, 2023, from
https://www.intel.com/content/www/us/en/robotics/robotic-arm.html

World Day for Safety and Health at Work 2009 - Facts on safety and health at work issues.
(2009, April 27). [Fact sheet]. http://www.ilo.org/global/topics/safety-and-health-at-
work/resources-library/publications/WCMS_105146/lang--en/index.htm

 42

Appendix 1
This is a comprehensive list of all the ROS nodes used in this project which can be helpful for
someone attempting to implement the system for a new work cell.

Alarm Resolution:

For the alarm resolution we created a ROS package called `ur5_gripper_moveit_config` which
contained the following nodes:

1. CNC_Interfacing: the main job file that was used to run the error handler service which
listened for errors and uses the Pilz Library to move the arm for resolution

a. Subscribed to `/ur_hardware_interface/io_states` to read the errors
b. Service Proxy to `/ur_hardware_interface/set_io` to open/close the gripper

Runtime Monitoring:

All the nodes for the runtime monitoring are hosted inside a Docker Image based on the official
ROS image (ros:melodic-robot) with the Universal Robots ROS Driver already installed. The
following nodes are hosted in the image:

1. URRecordGenerator: the node that listens to the specific UR topics to publish generic
runtime information based on the run record schema

a. Subscribed to `/joint_states`
b. Publishes on `/part_count`
c. Publishes on `/cycle_start_time`
d. Publishes on `/cycle_end_time`

2. URRecordAggregator: the node that aggregates the information from the generator into
a single run record and exposes it via RPC

a. Subscribed to `/part_count`
b. Subscribed to `/cycle_start_time`
c. Subscribed to `/cycle_end_time`
d. Subscribed to `/ur_hardware_interface/robot_mode`
e. Subscribed to `/ur_hardware_interface/io_states`

