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Abstract

The rational design, synthesis, and characterization of several systems that undergo self-
assembly are described. Systems were chosen based on their ability to self-assemble in a
highly ordered and predictable fashion that imparts order on the structure such that it is
able to perform a given device function. Herein we describe self-assembled multilayered
thin films on gold that can behave as molecular wires with tunable length, photocurrent
generating films, and surfaces with photoswitchable wettability, and self-assembling
peptide nanotubes that can potentially function as long range energy and electron transfer

conduits.

A non-covalent, modular approach to multilayered thin film fabrication was used to
generate three thin film systems that function as molecular scale wires, photocurrent
generating devices, and photoswitchable thin films, respectively. These films were based
on 4-[(10-mercaptodecyl)oxy]pyridine-2,6-dicarboxylic acid self-assembled monolayers
on gold. These monolayers are able to chelate metal (II) ions, and thus multilayers were
assembled based on metal-ligand coordination chemistry. The three systems described
were characterized by contact angle measurements, electrochemical methods, and grazing
angle IR spectroscopy. All three systems emphasize the versatility of a modular

approach to thin film construction, and provide proof-of-concept for future studies.

A cyclic octapeptide architecture was employed as a scaffold for the predictable self-

assembly of photoactive groups within a nanotubular structure. The degree of cyclic



peptide aggregation in stacking nanotube systems and non-stacking monomer systems,
was studied via fluorescence emission spectroscopy. Based on the spectral results, it was
determined that peptide nanotubes can be constructed such that photoactive side chains
can be assembled in stacks. Future experiments for the determination of long range

energy and/or charge transfer in these systems are also discussed.
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Arguably, there have been few topics in recent scientific history that have received as
much attention as molecular nanotechnology. More than any other field within the
sciences, nanotechnology has been the focus of the government, the media, the general
public, the academic world, and industry. By its simplest definition, nanotechnology
refers to the development and use of devices that have dimensions on the order of
nanometers (1 x 10° m). Devices of this exceptionally small size begin to be governed
by quantum mechanics, which entirely changes their characteristics and properties.
Because of this, nanodevices will be fundamentally different than their macroscopic
counterparts, and nanotechnology will provide the researcher with an entirely new
“toolbox” with which to solve problems in fields such as computing, medicine, and

electronics.

Nanotechnology was first conceptualized in 1959 by Richard Feynman during his now
famous “There’s Plenty of Room at the Bottom” lecture to the American Physical
Society.! Briefly, the lecture served as an open invitation to the scientific community to
begin thinking about the manipulation of matter at the atomic scale, because it could be
theoretically done:

“I am not inventing anti-gravity, which is possible someday only if the laws

[of physics] are not what we think. I am telling you what could be done if the

laws are what we think; we are not doing it simply because we haven’t yet

gotten around to it.....The principles of physics, as far as I can see, do not
speak against the possibility of maneuvering things atom by atom.”’
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In addition to proposing the idea of moving individual atoms, Feynman also addressed

the notion of developing what he called “small but movable machines”.'

Feynman’s vision of being able to precisely position atoms and molecules has been
partially realized more recently through the development of probe microscopy. A classic
example was provided by IBM Zurich in 1990 when legler and Schweizer successfully
maneuvered xenon atoms on a metal surface using scanning tunneling microscopy

(STM).” (Figure 1)

Figure 1. Xenon atoms deposited on a platinum surface via STM.

In 1996, a separate group at IBM illustrated that larger molecules could be manipulated
using the same technique and constructed a molecular scale abacus.” In this abacus, the

beads are Cgp units, and are moved via an STM tip. (Figure 2)

Less progress has been made towards Feynman’s prediction of “small but movable

machines”. Theorists have generated a considerable body of literature describing the

17



possibility of atomically precise machinery. Both Drexler and Merkle have spent the
majority of their careers providing eloquent explanations as to how the laws of physics

allow the construction of complicated machines at the atomic level.*>*”

Figure 2.> A molecular scale abacus.

fo-nernrey

M anpeecsd

' 4 sepepst #7
"4 evpert 471
£ e g A7ef
y - V8.

‘ er Frsveepr ™
46 #eegreet
A gdfegrett
FREFSITEIE L

However, as with any new technology, there is a disagreement between theorists and

experimental scientists over the potential of nanotechnology and the best routes towards

its realization.

The debate often centers around a 1986 book by Drexler entitled “Engines of Creation™.®
Although not overly scientific in nature, the book describes the advent of so called
“molecular assemblers” that are capable of constructing anything by positional atomic
assembly. The book also details the possible dangers of nanotechnology as these

“assemblers” would be capable of reproducing by assembling themselves. The

18



disagreement between ‘“Drexlerian” nanotechnologists and the rest of the scientific
community focuses upon whether or not molecular assemblers will one day be possible.
Drexlerian nanotechnologists believe that positional assembly is the future of all
technology, where machines can be assembled by simply placing atoms near one another
in the correct spatial coordinates. Although many noted scientists have publicly debated
Drexler, including both Whitesides”'” and Smalley'', the disagreement appears to be far
from resolved. Drexler has published a variety of books since Engines of Creation that
have given reasonable explanations as to how assemblers could work based on physics.
Opponents simply point out that there is absolutely no empirical evidence for the

possibility of molecular assemblers with atomic precision.

Both sides agree that the construction of nanoscale devices is indeed possible, but they
have different views as to how construction should be accomplished. Any device,
regardless of size, has a variety of components that need to be assembled in a particular
order for the device to perform its function. For example, a computer certainly won’t
operate if its components are randomly assembled. The same argument can be made for
nanoscale devices; there needs to be a way to arrange the device components in a highly
ordered fashion; there needs to be molecular precision. This can be accomplished via

either a “top-down” or “bottom-up” approach.

A “top-down” approach involves starting with a macroscopic construct and reducing it to

a nanoscopic device through lithography and etching. This differs significantly from

Drexler’s view of assembling machines one atom at a time. The top-down approach is
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currently used by many research groups and by chip makers with great success. For
example, through micromachining Reed and co-workers were able to prepare an
atomically sharp break junction and thus were able to measure the conduction of a single

molecule spanning the break (Figure 3)."

Figure 3. An atomically sharp break junction'’: a pictorial representation (left)
and an electron microscope image (right).

A “bottom-up” approach, seeks to assemble molecular devices one atom or one molecule
at a time. This can be achieved by the manipulation of atoms or molecules using an
external force (e.g. probe microscopy, lithography) to order the molecules in a specific
way. Alternatively, synthetic chemists take a “bottom-up” approach by synthesizing
molecules. Here, the tool that imparts order on the structure is the covalent bond and the
manipulation is accomplished by the energetics of the bonds formed. Either approach is
time consuming and labor intensive, prohibitively so if large numbers of bottom-up
assembled systems are to be manufactured. Mass production at the atomic and molecular
scale can really only be achieved in a rational way by designing systems that can self-

assemble into the desired arrangements.
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Molecular self-assembly refers to the spontaneous organization of molecules into well
defined aggregates. This organizational event is typically an energetically driven
process. In other words, a well ordered aggregate of molecules forms because it is the
lowest energy structure, and therefore the most stable. Usually some type of non-
covalent interaction (e.g. hydrogen bonding, ionic interactions, size-fit interactions)
triggers the assembly process. The concept of self-assembly is certainly not new, and
numerous examples can be seen throughout nature. Protein folding, DNA coiling, ionic
crystal formation, and inclusion complexes are all examples of systems that self-assemble

into well defined structures.

Figure 4. Some examples of common self-assembling systems: ice (left) and
double helical DNA (center) adopt their structures based on hydrogen bonding
interactions.  Sodium Chloride forms its crystal structure based on ionic
interactions. All these examples represent energy minima.
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Self-assembly can be considered a bottom-up approach towards nanotechnology, as it
provides a new path towards achieving precise structures starting at the molecular level.
We previously noted that all devices require a particular arrangement of their components
in order to function. Through the appropriate modification of molecules that are already

known to assemble, it is possible to incorporate device components into self-assembling
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networks at regular intervals. Upon self-assembly, the components assemble in a
predictable fashion, and the molecular scale device essentially builds itself. The ability to
self-assemble devices therefore can partially eliminate the time-consuming steps of other
bottom-up approaches. For example, instead of covalent synthesis of a linear molecule
containing 400 carbon-carbon bonds to produce a 50 nm construct, self-assembly could
allow for the spontaneous arrangement of ten 5 nm subunits into an overall 50 nm

construct. (Figure 5)

Figure 5. A pictorial representation of how self-assembly (bottom) can be used to
build a structure analogous to a large construct (top).

P >

Self-assembly has been successfully used by a variety of groups to construct molecular

scale devices. These devices have included, amongst others, thin film ‘[ransistors,13

' For example, the Marks group from

quantum dots,"* and molecular wires.
Northwestern has used hydrogen bonding to promote self-assembly of organic light

emitting diodes (OLEDs)." (F igure 6)

Regardless of “top-down” or “bottom-up”, it is clear that nanoscopic devices can be
manufactured that perform specific functions. However, nanotechnology is an emerging

technology, and therefore, most of the devices made to date are very rudimentary and
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mimic macroscopic constructs. Indeed, much of the work in the field to date has sought

to provide “proof-of-concept” as opposed to commercially viable devices.

Figure 6.'® An SPM image of an array of self-assembled organic light emitting
diodes. Each island consists of several thousand OLEDs.

Our group’s work in the field of nanotechnology began with the synthesis and
photophysical characterization of molecules containing donor-acceptor pairs that were
models for molecular wires and switches. Specifically the effects of linking architecture
(rigid linkers such as adamantly, and norbornyl; flexible linkers such as ester, and

methylene) on the efficiency of electron or energy transfer were investigated. (Figure 7)

Figure 7. Sample molecules used for energy transfer studies.
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These initial studies showed that systems with rigidly linked donor-acceptor pairs
generally transfer energy and charge with higher efficiency than those systems that are

linked with flexible bridges. Thus, in order to build a molecular wire that conducts
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charge or energy efficiently, the donor and acceptor must be held rigidly relative to each
other, since conformational freedom causes a decrease in transfer efficiency. However,
the synthesis of rigidly linked molecules was time consuming and had poor yields. This
initial work pointed out the drawbacks of “assembling” molecular wires with well
defined geometries and conformations by organic or covalent synthesis (lengthy
synthesis, low yields) and led to our investigation of self-assembly approaches to device
fabrication.  Self-assembled architectures can be very stable, with well defined
conformations and can be created with larger dimensions more easily than covalently
assembled systems. The work described in the following pages represents our attempts to
make self-assembled nanodevices with specific architectures and functionalities. In
general, two approaches have been taken — self assembly on surfaces and self assembly
into “free standing” structures. In section II-A we describe the use of metal-ligand
interactions to assemble multilayers on gold and other surfaces. The films assembled
showed efficient long range electronic conduction, photocurrent generating capacity, and
photoinduced changes in surface wettability. In section II-B we describe the results of
attempts to assemble cyclic peptide nanotubes from solution. These nanotubes were
created with the view to their use as scaffolds for electro- and photoactive substituents

that have a variety of potential applications, including molecular wires.
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II. SELF ASSEMBLING SYSTEMS
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A. SELF ASSEMBLING MONO- AND
MULTILAYER THIN FILMS ON GOLD

1. Background

A variety of techniques have been developed over the past several decades to assemble
highly ordered thin films that consist of only a few atomic layers. These methods include

18,19 and

chemical vapor deposition (CVD),"” self-assembled monolayers (SAMs),
Langmuir-Blodgett films (LB films).'"®*" The driving force behind this research is the

understanding that thin films with thicknesses on the order of nanometers could have

properties previously unobserved at the macroscopic level.

We have undertaken the development of methods to promote self-assembly of
multilayers on gold for specific device applications. Using a modular, non-covalent
approach, we have been able to construct a supramoleuclar architecture that allows
control of surface morphology and surface chemistry through the careful selection of
component layers. In particular, we have constructed self-assembling thin films that can
act as tunable length molecular wires, photovoltaic devices, and photoswitchable
interfaces. In this section we introduce the concepts of self-assembled monolayers on
gold and their characterization, and will discuss the results obtained for each of the

multilayer thin films that have been assembled.

Thin films consisting of a single molecular layer were first realized in the 1920’s by

Langmuir and Blodgett, who developed a method of forming highly ordered layers of
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. . .. 21.22
organic molecules at a liquid-air interface.””

By compressing the liquid and
transferring the organic layer to a substrate, a single layer, or multiple organic layers

could be produced.

Langmuir-Blodgett films (LB Films) have a variety of commercial applications in the
coatings industry, sensor technology, and display manufacturing. @ However, the
technique is limited because the binding of the LB film to the substrate is typically via a
weak electrostatic interaction. As a result, the films formed are not very robust, and can

often be mechanically removed, making them undesirable from a device standpoint.

In 1983, Nuzzo and Allara reported that monolayers of alkane thiols can be formed on
gold substrates.> Sulfur has a natural affinity for gold, and upon exposure to a clean gold
surface, self-assembly of sulfur containing molecules rapidly takes place. Since the
chemistry of sulfur compounds is well established, it is possible to incorporate almost any
organic compound or functionality into a self-assembled monolayer (SAM). These
SAMs were found to be highly ordered, having a well-defined thickness, and orientation

relative to the surface. (Figure 8)

Figure 8. Picture of a SAM on gold. The S atoms are 5 A apart on the gold
surface.
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SAM formation involving alkane thiols is believed to take place via a two step process
(Figure 9), where the first step involves the formation of gold thiolates that remain
mobile on the surface, leading to formation of growth islands, and eventually a complete
surface of bound thiolates, all lying flat on the surface. ** The second step involves a
slower, rate-determining, surface reorganization in which packing of the alkane chains

25,26

yields a stable “quasi-crystalline” surface. Reorganization also causes the alkyl

chains to cant from the surface at an angle of between 20-30°.>’

The stability and order of SAMs makes them an attractive vehicle for designing thin
films. Monolayers on gold have been shown to be stable to both protic and aprotic
solvents, as well as to light and to sonication although in the presence of intense radiation
and oxygen, it is possible to oxidize the surface bound thiolate.”® However, a variety of
photochemical studies have been performed on assembled monolayers of chromophores
where irradiation in solvents for multiple hours showed no degradation of the

29,30

monolayer. In addition, monolayers are very stable under typical laboratory

conditions, making it unnecessary to shield the sample from ambient light or to keep it in

28
an oxygen free atmosphere.

Characterization of SAMs is possible by a wide variety of techniques that can give
insight as to their physical and chemical properties. Probe microscopy yields information
about the surface morphology of a given monolayer, and when combined with

. .. . . 31.32
microcontact printing can give very accurate measures of monolayer thickness.”"
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Figure 9.%° Illustration of the self-assembly mechanism for alkanethiols on gold.
Steps A-C correspond to the first kinetic step, where 60-80% of the alkanethiol is
adsorbed. Steps D and E represent alkanethiol reorganization producing a dense
monolayer.
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In addition, ellipsometry, secondary ion mass spectrometry, and quartz crystal gravimetry

have been successfully used in giving precise values for monolayer thickness and
coverage. Additional non-destructive characterization can be achieved by a combination
of electrochemical, IR, and contact angle measurements. The most qualitative of these
methods listed is contact angle goniometry. The contact angle of a thin film, measured
using a goniometer, involves placing a small drop of a liquid (10 puL) with known surface
tension on the SAM. The angle formed between the water droplet and the substrate
provides information as to the hydrophilic or hydrophobic character of the surface
(Figure 10). The size of the measured angle indicates the hydrophobic character of the

surface, with increasing angles indicating more hydrophobicity.
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Figure 10. A typical contact angle measurement. The angle measured is shown
in red.

This method is useful in monitoring monolayer formation. A clean bare gold substrate is
very hydrophilic, whereas an assembled alkane thiol monolayer is significantly less so.
Therefore, completeness of a monolayer can be estimated by taking several contact angle
measurements during the course of monolayer formation and determining when the

contact angle ceases to change. This method has been widely used in the literature.”’>**

Functional group identification in monolayers can be achieved by using grazing angle IR
spectroscopy. This technique has proven to be critical for monolayer characterization
particularly because it provides both basic functional group information, as well as the
degree of ordering. For example, upon self-assembly, alkane thiols form quasi-
crystalline packing arrangements that can be evidenced by a shifting in the asymmetric
CH, stretch in the IR to ~ 2925 cm™.*® This shift is attributed to a lack of gauche-gauche

interactions upon monolayer formation.

Cyclic voltammetry (CV) measurements are also valuable in determining the
completeness of monolayer formation. Alkane thiols are known to electrically insulate

gold upon ordered SAM assembly. By setting up a standard electrochemical cell with the
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SAM as the working electrode, the completeness of a monolayer can be studied by

monitoring the disappearance of a CV redox wave.

Finally, impedance spectroscopy quantifies the ionic permeability of a given monolayer
and therefore provides a measure as to how densely it is packed. By its simplest
definition, impedance is a measure of the total opposition to current flow in an alternating
current circuit.8 Impedance measurements therefore model the monolayer after an AC

circuit (Figure 11).27%3¢

Figure 11. The simple Randles circuit used to model the SAM for impedance
measurements.
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The model circuit exists between the working electrode (W.E. — the monolayer), and the
counter electrode (C.E. — platinum wire). Based on the circuit design presented in Figure
11, there are three quantities that oppose current flow in this system; the resistance of the
solution (R(SOL)), the capacitance of the monolayer (C(SAM)), and the resistance of the
monolayer (R(SAM)). Since the solution resistance should be constant for all
monolayers (assuming the electrolyte is constant), the quantities of importance are
R(SAM) and C(SAM). Typically, capacitance values between 3-11 pF/cm’ are

considered to represent well ordered monolayers, implying that there is no diffusion of
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ions into the monolayer.>>*°

Higher values are typically indicative of a disordered
monolayer, although conducting monolayers will also give rise to increased capacitance

values.

As the value of impedance is actually a complex number, impedance plots are typically
viewed as a Nyquist plot (Figure 12). In such a plot, the real component of the
impedance is plotted on the x axis with the imaginary component being represented on
the y axis. The two x-intercepts on this plot give information as to the resistance of the
solution used and the surface studied. The maximum y value gives the maximum
capacitance (Wmax) for the surface being studied. Multiple points are generated, as the
impedance changes for different applied AC frequencies. Figure 12 illustrates an
impedance plot for an actual AC circuit. In practice, impedance data is gathered and then

modeled after such a circuit.

Figure 12. An example of a Nyquist plot from an impedance experiment for a
simple Randles circuit.
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While much work has been reported for monolayers, relatively few papers have been
published on multilayer thin films based on a SAM architecture. However, multilayer
systems are of interest because they may allow controllable assembly of three
dimensional structures, in turn leading to the assembly of molecular electronic devices,

microfluidic channels, optical waveguides, and other devices.

For a multilayer to be incorporated into a commercial device, it must be stable. While it
is possible to make multilayer thin films by a variety of different methods, it has been
suggested that the construction of films based on ionic interactions maintain the optimal
balance between ease of preparation and durability. Several systems have been
developed that illustrate this point. Mallouk has published several papers outlining
methodologies for the assembly of multilayer films based on zirconium
ion/organophosphate interactions.””* Both Ulman® and Bard* have published work on
multilayers assembled on gold based on interactions between copper ions and either

mercaptoalkanoic acids or alkanedithiols (Figure 13).

While these systems are interesting, they lack stability. Multilayers of either system
degrade during electrochemical studies and neither is stable to prolonged exposure to the
atmosphere.* In Bard’s work, this lack of stability is believed to stem from the ability of
copper ions to oxidize adjacent thiol groups into disulfides, and thus be reduced to Cu(l).
Electrochemical studies performed on systems where copper ions were ligated only by
carboxyl groups showed stability over multiple redox cycles, suggesting that multilayer

stability can be achieved by employing non-thiol containing ligands.
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Figure 13. Multilayer systems based on ionic interactions with copper
ions. Bard’s system is shown on the left, Ulman’s on the right.
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Based on the work by Bard and Ulman, we sought to develop a system that would take
advantage of similar self-assembly processes to construct multilayer films, but would
employ ligands that would not cause monolayer degradation during electrochemical

studies.

MacDonald and co-workers have developed a supramolecular scaffold based on
transition metal complexes with 2,6-pyridinedicarboxylic acids, illustrating that crystal
structures could be formed with a variety of transition metal ions (M>"), in which crystal
structure was independent of the metal used.*’ This system provides a new architecture
for multilayer assembly because unlike the thiol ligands employed by Bard, pyridine

dicarboxylic acid groups cannot be easily oxidized. In addition, based on studies in bulk
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systems the metal ions used can be interchanged without causing significant changes in
the overall structure of the system. Using this non-covalent strategy of ligation,

structures similar to those in Figure 14 can be constructed.

Figure 14. The proposed design for the construction of multilayer systems.

The advantages of this system over traditional multilayer architectures on gold are
substantial. Besides the stability of the chelating groups, which should leave the redox
states of the metal centers unaffected, the rigid linking group between layers should
promote ordering. More importantly, the approach is modular; the characteristics of the
multilayer can be easily changed by simply exposing the layer to different solutions. For
example, the thickness of the films can be controlled based on how many metal ion layers

and tetracarboxy dipyridyl linker layers are used. The surface characteristics can also be
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simply altered, as the chemistry of chelidamic acid (4-hydroxy-2,6-pyridinedicarboxylic
acid) is well established, thus making it possible to terminate the SAM with any head
group desired (Figure 15). Additionally, the interlayers (any layer between the gold
surface and the exposed surface) of the system can be changed by building linking groups

with different functionalities as shown in Figure 14.

Figure 15. A modular approach towards multilayer films. By choosing what
groups are exposed to the substrate, the surface characteristics can be altered
(left). Additionally, different components can be incorporated into the film below

the surface, in its interlayers (right).
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to chelate transition metals can also be used within these films.
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To date, we have used this approach to assemble thin films that can conduct charge, can
function as photovoltaic devices, and can switch their wetting properties when irradiated.
Although none of these phenomena are completely new, the fact that these systems can

be quickly and easily prepared is novel.
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2. Results and Discussion

(i) Multilayer Thin Films as Molecular Scale Wires

-Materials and Methods and Experimental Data are provided in Section I1-3 and 11-4-

The construction of multi-layered films with predictable electrochemical properties has
been investigated by several groups because of their potential as molecular scale wires
and switches. Bharathi has shown that conduction through thin films is dependent upon
the surface functionalities of the film.*** In particular, alkyl-based films that are capped
with metal complexes can be made to conduct. This was particularly apparent in
multilayer systems constructed containing iron hexacyanoferrate groups, coordinated to a
surface. In similar work, Lin and co-workers have shown that layer by layer growth of
metal-metal bonded thin films leads to predictable electrochemical properties.** Based
on their predictability, these types of systems have been suggested as possible molecular
junctions in nanoelectronics applications. The results reported here demonstrate that

conducting multilayer films can be assembled with our noncovalent approach.

Films I-VI (Figure 16) were constructed by the step-wise deposition of their individual
layers. These films take advantage of ionic interactions to assemble the film, which have
been previously shown to be highly stable.*>***’ Besides offering a tunable thickness,
the conducting properties of the films can also be controlled. Through impedance and
conductivity measurements performed on the films, we have found that conductivity can
be switched on and off simply by terminating the surface with either a metal ion or an

alkyl capping unit.
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Figure 16. A schematic illustrating the sequential buildup of conducting and
non-conducting thin film layers. For this study, Multilayers I-VI were
constructed that alternate between insulating and conducting. Here, the metal
used (M) was copper(II).

The sequential construction of films I-VI was monitored via contact angle, grazing angle
IR, cyclic voltammetry, and impedance measurements. The grazing angle IR data was

initially useful in detecting layer by layer construction. (Figures 17 and 18)

For thin films I-III, IR spectra were obtained after the deposition of each layer. After
deposition of the initial SAM, symmetric and asymmetric vibration bands are observed at
similar frequencies to those observed in the spectrum of dodecanethiol (2852 and 2924
cm’' respectively).”® This suggests that the packing arrangement for film I is similar to
that of dodecanethiol. A broad, structureless band is observed for the carboxylic acid
1

group above 3000 cm™ and the characteristic carbonyl band is observed at 1726 cm™.

With deposition of Cu(Il) ions (Film II), two resolved peaks appear between 3300 — 3500
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cm” and another band at 2088. These bands are related to carboxylic acid/carboxylate

anion units in the complex.

Figure 17. IR spectra of films I (top) and II (bottom).
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Figure 18. The IR Spectrum for Film III.
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The altering of the carboxylic acid absorption bands upon complexation has been well
documented in the literature. Hatzor, et al. have shown that different carbonyl bands
arise in spectra for multilayers of bis-hydroxamate with Zr(IV) and Ce(IV) ions,
depending upon whether or not they are complexed.”° The resolved bands between
3300-3500 cm’ disappear in film III, likely because they are masked by the
uncomplexed carboxylic acids in the tetracarboxy dipyridyl ligand. Grazing angle IR
data for films I'V-VI is increasingly difficult to interpret, as additional layers absorb in
very similar areas to the layers that are already deposited. Because of this limitation,

additional data was required to accurately characterize the films.

Contact angle measurements confirmed substantial changes in the hydrophilicity of the

surface upon the addition of each layer. These results are summarized in Table 1.
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Table 1. The contact angle values obtained for Films I-VL.

Film Contact Angle
(Degrees)
Gold 76 +/- 1.0
FilmI 69 +/- 0.5
Film II 54 +/- 1.5
Film III 67 +/-2.0
Film IV 51+/-1.0
Film V 67 +/- 2.0
Film VI 55+/-1.5

There is a clear difference in contact angle depending on whether the surface is composed
of dicarboxypyridyl groups or complexed Cu(Il) ions. The Cu(Il) ion surface has a much
smaller contact angle, differing from the dicarboxypyridyl capped surface by ~15°. This
is possibly due to the ability of water to complex with Cu(Il), which would make the

surface considerably more hydrophilic, and hence decrease the contact angle.

Impedance measurements were performed on films I-VI and are summarized in Table 2
(some examples of experimental impedance plots are provided on page 78). The initial
SAM (Film I) shows high values of resistance and low values of capacitance for the
monolayer. These values are consistent with the literature on SAMs, and are indicative
of a well ordered monolayer. Film II shows very different behavior, with significantly

lower resistance and much higher capacitance values. These results are expected if the
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multilayer is conducting. Although this result could also be interpreted as a disordered
layer, contact angle, IR, and CV measurements eliminate this as a possibility. Throughout
the measurements, it is clear that films terminated with dicarboxypyridyl surface groups
have higher resistance values and lower capacitance values, indicating that they are

insulating compared to Cu(Il) terminated films.

Table 2. Impedance data for thin films I-VI.

Layer Rsor (ohms) Rsam (ohms) Cpr (uF)

I 147 (21) 12533 (510) 4.55(.97)
II 93 (8.3) 3591 (274) 19.2 (4.5)
11 114 (15) 6133 (628) 11.2 (1.6)
v 198 (18) 4487 (55) 17.1 (2)

A% 87 (18) 5920 (628) 16.4 (3.5)
VI 58 (9) 4012 (673) 26.2 (10.7)

This assumption is confirmed by studying the conductivity behavior of films I-VI.
Conductivity measurements were obtained in an aqueous solution of K3;[Fe(CN)¢] and
exhibited markedly different behavior depending upon their surface group. Figure 19

displays the cyclic voltammograms for film I-VI with respect to bare gold.

The redox wave corresponding to the bare gold electrode shows the expected oxidation
and reduction of ferricyanide measured in the range from 0 V - + 0.6 V. Upon self-

assembly of a monolayer on that electrode (film I), the redox wave is significantly
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attenuated, signifying the formation of a well packed insulating SAM. When the

monolayer is allowed to ligate Cu(II) ions (film IT), the redox wave returns to nearly the

same peak current as seen with bare gold.

Figure 19. The cyclic voltammograms of films I-II (top) and III-VI (bottom)
with respect to a gold electrode.
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When film II is capped with a tetracarboxy dipyridyl ligand (film III), the conduction of
the electrode is again attenuated. Exposure of film III to copper ions again results in a
noticeable increase in current, as shown in Figure 19. This trend continues for up to six
deposited layers, with the conducting ability of the electrode being determined by the
surface group. As the number of deposited layers increases, the position of the redox
peaks begin to shift slightly. This shift could be due to a higher barrier for inelastic
tunneling of electrons through the layers. Alternatively, the surface for these larger
multilayers may have defects. The latter possibility is arguably more likely since Film V
exhibits some slight conducting behavior. Films I-VI alternate between insulating and
conducting depending on their exposed surface group. This relationship is presented

graphically in Figure 20.

Figure 20. A plot of AE vs. film number. AE is a measure of the total amount of current
flow in a given redox cycle. The larger the value of AE, the more conducting a given
film is. All even numbered films have Cu surface groups, whereas all odd films have
dicarboxypyridyl surface groups.
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In conclusion, we have provided evidence that a non-covalent strategy can be used for the
construction of multilayer thin films with tunable thickness and with switchable
conducting properties. We realize that this system is not optimized, in that multilayer
films of greater thickness than presented here suffer from disorder as evidenced by
impedance and conductivity measurements. However, this work illustrates proof of
concept that architectures similar to this can be used to develop tunable thin films. Future
work will focus on developing linker groups that will impart added order in the films in
two dimensions, thus increasing its stability and the likelihood of observing the trends

presented here in films with much greater thicknesses and numbers of layers.

46



(ii). Photocurrent Generation in Multilayer Thin Films

McGimpsey, W.G.; MacDonald, J.C.; Cooper, C.G.F.; Soto, E.R. J. Am. Chem. Soc.
(Comm. Ed.) 2003, 125, 2838.

-Materials and Methods and Experimental Data are provided in Section 11-3 and 11-4-

The construction of photovoltaic devices, systems that convert light energy into
electricity, has been of interest since the 1950’s when the first commercially available
photovoltaic device was introduced. Since their introduction, many light-harvesting
devices have been developed that are based on inorganic semi-conductor technology.
Currently, commercial photovoltaics are inorganic thin films on the order of a few
microns in thickness. Several systems have been constructed that have shown reasonable
light-harvesting ability and have provided insight towards the nature of the light
harvesting reaction and charge separation processes.”' > However, the realization of a
system that can efficiently generate electrons from photons based on organic assemblies

has not been realized.

In attempting to design a photovoltaic with a reasonably high quantum efficiency it is
essential to construct a system in which the light harvesting components are organized in
a highly ordered arrangement that optimizes both the transfer efficiency (the percentage
of electrons that participate in charge transfer) and the conversion efficiency (the
percentage of incident photons that are absorbed to produce the excited state). Several
groups have fabricated self-assembling systems based on gold-thiol chemistry that
produce highly organized networks. Imahori et al created self-assembled monolayers

(SAMs) on gold by depositing a covalently linked, multicomponent molecule containing
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alkanethiol, ferrocene, porphyrin, and Cgy subunits. (Figure 21)**°®  These SAMs
possessed both light-harvesting and charge separation character as evidenced by the
generation of electrical current upon photoexcitation of the SAM in the presence of

methyl viologen (an electron acceptor).

Figure 21. The photocurrent generator published by Imahori. Monolayers were
formed by functionalizing R' with a thiol terminated chain and exposing to a gold
surface in solution.

1a: M=H2; 1b: M=2Zn, R1 =O(CH2)1 1SH

Additionally, Kimura and co-workers have constructed photocurrent generating films
based on monolayers of a-helical peptides terminated with amino acids containing light
absorbing groups. (Figure 22)** While this work has yielded systems able to generate

photocurrent, the synthetic effort involved in producing them was considerable.
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Figure 22. Helical peptide based photocurrent generators. Here, ECz represents
the photo-oxidizable ethyl carbazolyl head group.
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Based on the non-covalent, modular assembly of multilayer thin films described earlier,
we have fabricated two types of photocurrent generating thin films on a gold surface.
(Figure 23) SAM VII, partially synthesized by E. R. Soto of our group, consists of a
pyrene chromophore coupled to a helical peptide that is attached to a gold surface
through a disulfide linkage. This system serves as a model for comparison to films VIII
and IX, and is analogous to the systems previously reported by Kimura, et al. Films VIII
and IX were assembled in an analogous fashion to the thin films previously mentioned.
A SAM of 4-[(10-mercaptodecyl)oxy]pyridine-2,6 dicarboxylic acid was deposited on a
clean gold surface. The monolayer was then exposed to Cu(Il) ions that are chelated by
the monolayer. From this point, the multilayer can either be extended in thickness by
capping with a tetracarboxy dipyridyl linker unit, or terminated by capping with a pyrenyl

substituted chelidamic acid unit.
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Figure 23. Structures of SAM VII, and multilayer thin films VIII and IX.

S

Au
Film VIII consists of the multilayer: SAM + Cu(Il) ions + pyrenyl capping unit. Film IX
extends the thickness of the film by incorporating an additional linker unit between the

monolayer and photosensitive head group.

Conductivity, impedance, contact angle, and IR experiments were carried out for SAM
VII and for films VIII and IX (after the addition of each component). The conductivity
(CV) results obtained for SAM VII in an aqueous solution of potassium ferricyanide
showed that following deposition of VII, the conductivity of gold is significantly reduced

in the range from -0.5 to 0.6 V versus SCE. (For a similar effect, see Figure 19) This
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result as well as high impedance values indicate the formation of an ordered monolayer

with few major defects.***¢

Conductivity and impedance values for VIII change as the individual components are
deposited sequentially onto the gold surface. The CV of the bare gold surface shows the
redox peaks of the ferricyanide,’> whereas deposition of the pyridine-capped decanethiol
again yields conductivity and impedance values (measured in the range from -0.5 to 0.6

V versus SCE) that suggest the formation of an ordered insulating monolayer.

After the monolayer is exposed to a solution of Cu(Il) ions, the intensity of the CV redox
wave returns to that which was observed for gold. Along with this result, there is the
expected corresponding decrease in impedance values. Deposition of the pyrene
containing ligand again results in attenuated conductivity and elevated impedance values.

Film IX exhibited similar electrochemical behavior to Film VIII upon final construction.

Contact angle measurements confirm that substantial changes in the gold surface occurs
following the addition of each layer. A summary of the contact angle results are shown
in Table 3. Upon deposition of systems VII-IX, large changes in contact angle are
observed for each layer. As expected, layers with exposed Cu(Il) ions exhibit lower
contact angles than layers with exposed alkyl groups, suggesting higher hydrophilicity

and binding with water.
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Table 3. Contact angle measurements for gold, dodecantethiol, SAM VII, and
for films VIII and IX. Dodecanethiol is included as a hydrophobic model system
that is known to form ordered SAMs on gold.

Sample Contact Angle (degrees)
Gold 76
Dodecanethiol 75.6 +/- 0.6
SAM VII 48 +/- 2.4
VIII

Component 1 (dicarboxypyridine SAM) 63.5+/-0.5
Component 2 (Cu(II) ions) 51.5+/-1.0
Component 3 (pyrene cap) 75.7+/- 1.1
IX

Component 1 (dicarboxypyridine SAM) 63.5+/-0.5
Component 2 (Cu(II) ions) 52.5+/-1.5
Component 3 (tetracarboxydipyridyl linker) 60.5+/- 1.0
Component 4 (Cu(II) ions) 48 +/- 0.5
Component 5 (pyrene cap) 68 +/- 0.5

Grazing angle IR spectra were also collected for SAM VII and all of the component
layers for films VIII and IX. For system VII, the IR spectrum of the SAM and the
peptide were compared and showed the same major absorption bands. The most intense
bands in the SAM spectrum are for the amide I and amide II absorptions at 1665 and
1545 cm™', respectively. Using the amide I/amide II absorbance ratio, the tilt angle of the
helix from the surface normal was calculated to be 53°.>* This is within an acceptable

range, as peptidic SAMs have been shown in the literature to have cant angles from 32-

66° 52,57

For thin films VIII and IX, IR spectra were obtained after the deposition of each layer.
After formation of the initial SAM, the CH, symmetric and asymmetric vibration bands

have similar frequencies to those observed in the spectrum of dodecanethiol.”® This
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suggests that the packing arrangement for films VIII and IX is similar to that of
dodecanethiol. A broad, structureless band is observed for the carboxylic acid group
above 3000 cm™ and the characteristic carbonyl band is observed at 1726 cm™. With
deposition of Cu(Il) ions, two resolved peaks appear between 3300 — 3500 cm™ and
another band at 2088. As mentioned previously, these bands are related to carboxylic
acid/carboxylate anion units in the complex. Upon capping VIII with pyrene, a
significant increase in intensity for the aromatic C-C stretch at 1600 cm™ is also
observed. Film IX shows similar IR behavior to VIII, although a decrease in the CH;
stretching at 3000 cm™ is observed. In addition, there is an increase in the intensity of the

aromatic stretching bands at 1600 cm™ due to the presence of the aromatic linker group.

Photoexcitation of SAM VII and multilayer films VIII and IX in the presence of methyl
viologen by an unfocused, unfiltered, omnidirectional, 20 W, 350 nm Rayonet lamp
(power incident on sample approx 0.1 mW) causes generation of a cathodic photocurrent
in the range of 5-30 nA/cm’® with VIII and IX consistently exhibiting higher values than
SAM VII (5-10 nA/em® for SAM VII; 10-30 nA/cm® for VIII and IX). Figure 24
shows the change in photocurrent for IX as a result of alternately shuttering and

unshuttering the light source.

A photocurrent of 30 nA/cm’ is comparable to, although somewhat smaller than that
reported by Imahori and co-workers (~ 50-100 nA/cm?) and represents a quantum
efficiency of ~1%. In addition to enhanced current generation, VIII and IX also appear
to possess greater stability than SAM VII. While repeated photoexcitation of SAM VII

eventually results in degradation of the film and loss of photocurrent after approximately
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10 cycles, VIII and IX did not show any decrease in current over several hours of

alternating light/dark cycles.

Figure 24. Photocurrent generated following exposure of IX to ~0.1 mW at 350

nm at constant applied voltage = OV vs. SCE. Photocurrent is expressed as
nA/cm?.
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We note that neither VIII nor IX is an optimized system because there is a mismatch
between the spectral output of the excitation lamp and the absorption spectrum of the
pyrene chromophores. Factors that may influence the overall output of our system may
include the type of metal ions used and the distance that the chromophore is from the
gold surface. In addition, choosing a chromophores with a greater extinction coefficient,
such as a rhodamine or porphyrin will also increase the efficiency of light harvesting.

While neither VIII nor IX is an optimized system, they illustrate that a non-covalent
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approach can be successful in the construction of systems that function as well as their

covalently assembled analogues.
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(iii) Multilayer Thin Films with Photoswitchable Wettability

McGimpsey, W.G.; MacDonald, J.C.; Soto, E.R.; Cooper, C.G.F. J. Am. Chem. Soc.
(Comm. Ed.), 2004, 126, 1030

-Materials and Methods and Experimental Data are provided in Section I1-3 and I1-4-
Control of surface wettability is currently of interest due to its importance in the fields of
micro-and nanofluidics. Whitesides et al. and others have devoted considerable effort to
the creation of multifunctional surfaces with variable wettability using microcontact
printing techniques.”’~*>*® More recently, several groups have shown that wettability

can be controlled by externally applied stimuli such as light or an electric field.®":**%*¢4

In previous sections, we have demonstrated that a modular, non-covalent approach
towards thin film construction can be used to build surfaces that act as molecular scale
wires and as light-harvesting thin films. Both studies, besides offering interesting results
from a materials point of view, have illustrated that the dimensions and function of a
multilayer can be custom-tailored using a modular, non-covalent assembly method.
Building on our previous work, we have employed non-covalent synthesis for the design
of a modularly constructed multilayer system with photoswitchable wettability. Here we
report a study in which the wettability of a multilayer surface capped with 2,2’-
dipyridylethylene ligands can be switched permanently by photoinduced cis-trans
isomerization of the ethylene. Besides its potential utility in the field of interfacial
engineering, this system demonstrates that photoactive chelating molecules can be
effectively incorporated into a multilayer film and drastically change the physical

properties of that film.
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For this work, we have assembled multilayer thin films X and XI. (Figure 25) Each film
consists of a 2,2’-dipyridyl ethylene light absorbing group coupled to a gold surface via
metal-ligand interactions. These films were fabricated by self-assembly of 4-[(10-
mercaptodecyl)pyridine-2,6-dicarboxylic acid on a clean gold surface, followed by the
deposition of Cu(Il) ions that complex with the head group of the previous layer, and
finally, deposition of the 2,2’-dipyridylethylene ligand in either the cis (film X) of trans

(film XT) form, which serves to cap the Cu(Il) ions.

Figure 25. Structure of thin films X and XI. X can be converted to XI by
irradiation with 300 nm light.
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Conductivity, impedance, contact angle, and grazing incidence IR experiments were
carried out on films X and XI after the addition of each layer, and confirmed the ordered
deposition of each component. Conductivity (CV) values for both X and XI obtained in
an aqueous solution of potassium ferricyanide change as the individual components are
deposited sequentially onto the gold surface, as has been previously described. The CV

of the bare gold surface shows the Fe*"/Fe*" redox peaks for oxidation and reduction of
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ferricyanide, whereas deposition of the pyridine-capped decanethiol yields conductivity
values (measured in the range -0.5V - +0.6V versus SCE) that indicate the formation of
an insulating monolayer with few defects. After the monolayer is exposed to a solution of
Cu(Il) ions, the CV of the film is nearly identical to that of bare gold with only a small
decrease in peak current. This result indicates that the Cu(Il) ions promote tunneling of
electrons between the gold surface and the solution. Deposition of the dipyridylethylene
ligands again results in attenuated conductivity consistent with formation of an insulating

layer on the surface.

These results, in addition to impedance observations are consistent with our previous
studies of multilayer films. Contact angle measurements shown in Table 4 and IR spectra
(not shown) also confirm that substantial changes in the surface occur following addition
of each layer. In particular the IR measurements show conclusively the presence of each

of the added layers.

Table 4. Contact angle measurements for Films X and XI.

Film Contact Angle
(degrees)
Gold 76 +/- 1.0
Film X
Component 1 (pyridyl-capped decanthiol) 76.0+/- 1.5
Component 2 (Cu(II) ions) 58.0 +/-2.0
Component 3 (cis-2,2’-dipyridylethylene) 76.5+/-2.5
Film XI
Component 3 (trans-2,2’-dipyridylethylene) | 63.5 +/- 0.5
Film X irradiated 57.0 +/- 2.0
Film XI irradiated 64.0 +/- 2.0
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Deposition of cis and trans-dipyridylethylene leads to differences in the surface
wettability with the cis-isomer providing a more hydrophobic surface as determined from
contact angle measurements. The difference in contact angle of ~13° between X and XI is
greater than that reported for a variety of photo-isomerizable thin films that typically
exhibit changes of ca. 9°.°" In addition, the CV results indicate that the cis-capped surface
is less conductive than the trans-capped surface. Recalling that impedance measurements
indicate well ordered films in each case and that IR studies confirm the presence of the
dipyridylethylene in each film, the difference in surface hydrophobicity can be attributed
to differences in the electrostatics of the two surfaces that arise from different
orientations of the two isomers. Molecular modeling by our group and previous studies
by others® of nickel-dipyridylethylene complexes indicate that the cis-isomer likely
forms a symmetrical bidentate Cu(Il) complex (Figure 25) that efficiently ‘caps’ the
metal ion, producing a hydrophobic packing arrangement on the surface. The trans-
isomer, however, is not able to form a stable bidentate complex due to its elongated
structure. Although we have not yet determined the mode of binding, the trans isomer is
likely monodentate, as shown in Figure 25. The structure shown in Figure 25 helps
explain the enhanced wettability provided by this isomer, because the Cu(Il) ion in this
case is not completely coordinated and, therefore, is free to complex with water. The
uncoordinated pyridine ring also is free to bind with water via hydrogen bonding at the
ring nitrogen. Impedance measurements on XI in fact show elevated capacitance values
for the trans-capped system, which indicates that diffusion occurs between the solution

and the layer of metal ions.
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The contact angle, CV, impedance and IR data also help to characterize the changes that
occur following photoexcitation of the films. Exposure of film X to 300 nm irradiation in
chloroform in the presence or the absence of oxygen results in a substantial decrease in
the contact angle, from 76.5° to 57° a change that is consistent with cis-trans
isomerization. We note that the contact angle obtained is somewhat smaller than that of
unirradiated film XI. The smaller angle is likely a result of different packing
arrangements in the films. Also, the conductivity of film X increases following irradiation
so as to be nearly identical to that of unirradiated film XI, while impedance
measurements indicate that the irradiated film remains a well ordered system. The
clearest confirmation of isomerization of film X is provided by IR measurements. Figure
26 shows the IR spectra of unirradiated films X and XI and film X following irradiation.
While the IR absorption bands that are normally used to distinguish between cis- and
trans-dipyridylethylenes lie at frequencies lower than 1000 cm™, the sensitivity of our
grazing incidence IR instrument is low in this region. There are several aromatic
stretching frequencies that absorb above 1000 cm™, however, that are found in the
spectrum of unirradiated film X but are absent in the spectrum of film XI. In particular,
film X absorbs strongly at 1511 cm™ and less intensely at 1313, 1303, 1253, and 1186
cm'l, while film XI does not. Following irradiation of film X, these bands are attenuated

and the spectrum of the irradiated film resembles closely that of film XI.
Previous studies on the solution photochemistry of 2,2°-dipyridylethylenes report

quantum yields for cis-trans and trans-cis photoisomerization equal to 0.84° and 0.12°,

respectively. Irradiation of film XI, however, does not yield any cis product as indicated
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by the lack of change in the CV, IR and contact angle data. Failure of the trans-
dipyridylethylene units to undergo photoisomerization back to the cis isomers likely is
caused by ordered packing of the trams-dipyridylethylene units in films of XI that
sterically inhibits the structural reorganization necessary for tramns-cis isomerization to
occur. The CV and impedance measurements of film XI indicate that the

dipyridylethylene head groups in fact are well ordered in films of XI.

Figure 26. Grazing Angle IR Spectra of Films X, XI, and irradiated X.
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The system described here demonstrates that non-covalent multilayer assembly provides
a convenient means to fabricate highly ordered thin films with wettability that can be

switched. Although the wettability of surfaces functionalized with dipyridylethylene units
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is not reversible, this work provides proof-of-concept that chromophores with photo-
switchable molecular structures can be attached non-covalently to surfaces, that non-
covalent multilayer films terminated with such chromophores have well-ordered surface
structures, that the wettability of such surfaces can be controlled photolytically
(applicable for microfluidic research), and that such multilayer thin films are stable
before and after photoinduced changes in structure at the surface. We currently are using
this methodology to incorporate photochromic molecules into similar non-covalent
multilayer films to provide complete switchability while maintaining the substantial
change in wettability that we have achieved in this system. This non-covalent approach
also potentially provides a platform for the fabrication of other devices. Ongoing work is
aimed at identifying methods for the selective replacement of ligands in order to provide

spatially resolved regions of variable and switchable wettability.
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3. Materials and Methods

Spectra for all compounds and synthetic schemes are provided in Appendix 1.

Materials. All materials were used as received from their respective vendors. Unless
otherwise noted, reagents and solvents were purchased from Sigma-Aldrich. Amino
acids, peptide resins, and coupling reagents were purchased from Nova Biochem. All
solid-phase coupling reactions were carried out in technical grade DMF purchased from

Pharmco.

General Methods.

Synthetic Procedures. NMR spectra were obtained in an Avance Bruker NMR
spectrometer at 400 MHz for proton and 85 MHz for ?C. Mass Spectra were measured
by the SynPep Corporation in Dublin, CA. Samples were ionized by electrospray
ionization, using acetonitrile as a carrier solvent with ultra-high purity nitrogen as a
curtain gas. IR spectra were obtained using a Nexus FT-IR spectrometer equipped with
either a transmission or ATR accessory, depending on the sample. Melting points were

obtained on a Mel-Temp melting point apparatus and appear uncorrected.
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A. Multilayer Films as Molecular Wires (Section II-A-2-i).

1. Preparation of 4-[(10-mercaptodecyl)oxy]pyridine-2,6-dicarboxylic acid.
(Starting Material for SAM I — Figure 16-1. The full reaction scheme is given in Scheme
5 in Appendix 1.)

(i) Diethyl 4-hydroxypyridine-2,6-dicarboxylate.

(6] (0}

N " o O\
7
OH

This compound was synthesized as described in refs.®*®. Thionyl chloride (6.2 mL, 85
mmol) was slowly added to 25 mL of absolute ethanol at 0° C. To this solution, 2.5 g
(13.7 mmol) of chelidamic acid was added. The solution was stirred at room temperature
for 18 h, and refluxed for 2 h to ensure completeness. Solvent was removed under
reduced pressure, and 20 mL of distilled water was added to the crude product at 0° C.
The mixture was neutralized with 5 mL of 10% aqueous sodium carbonate, and the
product precipitated by addition of 5 mL 50% aqueous ethanol. The white precipitate
was filtered and dried under vacuum to afford 3.26 g of product. Yield: 99%, R¢= 0.65
(normal phase, MeOH), m.p.: 115-116° "TH-NMR (CDCls) 6 1.45 (t, 6H, CH3); 4.46 (q,
4H, CH,); 7.31 (m, 2H, aromatic); 9.96 (bs, 1H, OH); >C-NMR (CDCl;) & 14.5 (CHs);
63.5 (CHy); 119.4 (Ar-C, broad due to tautomerism); 162.8-163.0 (C=0, broad due to

tautomerism) ESI-MS (m/z) [M+Na]'=262.3 (MW qicq 262.2).
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(ii) Diethyl 4-[(10-Bromodecyl)oxy]|pyridine-2,6-dicarboxylate.
(6] o
N AN o O\

‘ F

O\(CHZ)IO—Br

This new compound was made based on the synthesis described in ref*’. Diethyl 4-
hydroxypyridine-2,6-dicarboxylate (2 g, 8.4 mmol) and 7.6 g (25.2 mmol) of 1, 10
dibromodecane were dissolved in 100 mL of dry acetone. To this solution, 2.32 g (16.8
mmol) of potassium carbonate was added, and the solution was heated to reflux for 40 h.
The solvent was removed under reduced pressure, and the residue dissolved in a minimal
amount of dichloromethane. The solution was filtered, and the filtrate was concentrated
via evaporation. The resultant residue was purified on silica gel (Rf = 0.6) with 1:1
dichlormethane: hexane as the eluent to yield 2.89 g of product. Yield 75%; 'H-NMR
(CDCl3) 01.24-1.28 (m, 20 H, 14 from decyl CH;, 6 from CHj;); 1.86 (m, 2H,
CH>CH,Br); 3.41 (t, 2H, CH,Br); 4.13 (t, 2H, OCH:(CH,)9Br); 4.48 (q, 4H, O-CH,CH3);
7.74 (s, 2H, aromatic); "C-NMR (CDCls) 814.6 (CHs); 26.2, 28.5, 29.1, 29.6, 29.7, 29.8,

33.2, 34.5 (CHa); 60.8, 69.4 (OCHy); 114.7, 150.5, 165.2 (aromatic C); 167.4 (C=0).
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(iii) Diethyl 4-[(10-Thioacetyldecyl)oxy]pyridine-2,6-dicarboxylate.

N o O\

<CH2)10—s
This new compound was made based on the synthesis of a similar compound described in
ref.”*. Diethyl 4-[(10-bromodecyl)oxy]-pyridine-2,6-dicarboxylate (1.20 g, 2.6 mmol)
and 0.35 g (3.36 mmol) of potassium thioacetate were dissolved in 100 mL of ethanol
and the solution brought to reflux for 24 h. The mixture was cooled, and the resulting
white precipitate was filtered and dried under vacuum. The product was used in
subsequent steps without further purification or characterization due to its low solubility

in most organic solvents.

(iv) 4-[(10-mercaptodecyl)oxy|pyridine-2,6-dicarboxylic acid.

N0 )kgj/”\ o N
(CHz)lo
This compound was prepared by a similar method to the one described in ref*’. A 1.13 g
sample of the product obtained in the previous step was suspended in 75 mL of 2 N KOH
solution (in 70% aqueous ethanol). The solution was refluxed for 3 h, cooled, and the
reaction quenched by acidifying with glacial acetic acid. The solvent was removed under

reduced pressure, and the crude residue dissolved in dichloromethane. The organic

fraction was washed with 1 N NaOH, and the organic phase discarded. The aqueous
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phase was acidified with 3 N HCI, and extracted three times with 25 mL portions of
dichloromethane. The organic fractions were combined, and the solvent removed under
reduced pressure to yield 0.92 g of pure white powder. Yield: 94% 'H-NMR (CDCls)
01.24-1.44 (m, 16H, decyl CH»); 1.85 (bs, 1H, SH); 2.51 (m, 2H, CH,SH); 4.23 (m, 2H,
O-CH,); 6.49 (bs, 2H, COOH); 7.88 (s, 2H, aromatic); ESI-MS (m/z) [M+H]=356.2

(MW q1c4356.4).

2. Preparation of 2,2°,6,6’-Tetracarboxy-4,4’bipyridine.

(Linker ligand, SAM III-VI — Figure 16. The full reaction scheme is given in Scheme 6
in Appendix 1.)

(i) 2,2°-6,6’-Tetramethyl-4,4’-bipyridine.

This compound was prepared based on the procedure described in ref.”’. 1In a three-neck
round bottom flask under nitrogen, 3.30 g (47.3 mmol) of a 33% Na dispersion in
paraffin was suspended in 20 mL of dry toluene. The suspension was stirred with mild
heating until all of the paraffin had dissolved. The solvent was then removed with a
syringe and 4.50 g (43 mmol) of 2,6-lutidine in 40 mL dry THF was added. The reaction
mixture was stirred until a precipitate formed and was left to react overnight. After 18 h,
sulfur dioxide was passed over the sodium salt at such a rate as to prevent the solvent

from rigorously boiling. After the reaction was finished, the flask was cooled with a
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mixture of ice/NaCl and the reaction mixture quenched by the slow addition of 50 mL of
ethanol. The reaction mixture was neutralized to pH 7-8 with 10 N NaOH, and diluted
with 50 mL of H,O. The mixture was then extracted three times with 60 mL portions of
methyl t-butyl ether. The organic fractions were dried over anhydrous sodium sulfate, and
the solvent removed under reduced pressure to yield 1.78 g of white product. Yield:
40%. "H-NMR (DMSO-dg): & 2.45 (s, br, 12H, CH3); 7.43 (s, 4 H, pyridine); “C-NMR

(DMSO-de): & 24.4 (CHs); 117.9, 145.7, 158.4 (pyridine).

(ii) 2,2°,6,6’-Tetracarboxy-4,4’bipyridine.

HOOC COOH

N\ /7 \ /

HOOC COOH

This compound was prepared based on the procedure described in ref.’’. A 1 g (4.7
mmol) sample of 2,2°-6,6’-tetramethyl-4,4’-bipyridine was dissolved in 50 mL of
concentrated sulfuric acid. The solution was cooled to 0°C and chromium trioxide (5.6 g,
0.055 mol) was added in small portions over a period of 2 hours. The reaction mixture
was heated to 75°C for 2 hours, cooled to room temperature, and then transferred to a
mixture of 150 mL of ice/water. The colorless product precipitated and was isolated via
centrifugation to yield 1.1 g of product. Yield: 70%. "H-NMR (DMSO-de): & 8.44 (s, 4 H,

pyridine); 13.5 (s, br, 4 H, COOH); ESI-MS (m/z) [M+Na]'=355.4 (MWeyieq 355.2).

68



B. Photocurrent Generation in Multilayer Thin Films (Section II-A-2-ii).

(Compounds used in the construction of SAM VII and films VIII-IX. (Figure 23)
Synthetic Schemes and Spectra are documented in Appendix 1. (Schemes 7 and 8))

1. Synthesis of the compound used for the construction of SAM VII.’>7!7%737

The peptide backbone of SAM VII, (Aib-Ala)s, was synthesized by an FMoc solid phase
strategy on a Wang Resin using aminoisobutyric acid and L-alanine. The synthesis of L-
pyrenyl alanine and general methods for solid phase peptide synthesis are described in

detail in section 1I-B-3.

(i) N-t-butoxycarbonyl-L-1-pyrenyl alanine (preparation of tBoc protected pyrenyl

alanine).
O
WA
OH
LT

L-l-pyrenyl-alanine (1 g, 3.44 mmol) was suspended in 100 mL of a 1:1 water/dioxane
mixture. A solution of 1 g (4.60 mmol) of di-tert-butoxycarbonyl (Boc,0O) and 0.5 g (0.66
mL, 5.00 mmol) of triethylamine in 20 mL of 1:1 dioxane:water was added to the L-1-
pyrenylalanine suspension at 0°C. The solution was stirred at 0°C for 3 hours and then at
room temperature for 24 hours. The solution was filtered to recover unreacted L-1-
pyrenylalanine and the filtrate was concentrated under reduced pressure. A small amount
of water (~ 5 mL) was added to the resulting brown residue, and the solution was

acidified to pH 4 with 5% citric acid. The acidified solution was extracted 3 times with
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25 mL portions of ethyl acetate. The organic fractions were washed with water and dried
over anhydrous sodium sulfate. The solvent was removed and ether was added to the
remaining oil until precipitation of the product occurred. The product was filtered, dried
under vacuum, and recrystallized from chloroform/ether to afford 0.27 g of white
powder. Yield: 20%. Ry=0.45 (normal phase, CHCl3/MeOH/AcOH 90:10:3); '"H-NMR
(DMSO-de): 8 1.49 (s, 9H, CH3); 3.29, 3.60 (d of m, 2H, CH,); 4.41 (d, 1H, CH); 7.47
(d, 1H, NH); 7.73-8.53 (m, 9H, CH pyrene); "C-NMR (DMSO-dy): & 22.2 (CH; from -
Boc); 34.5 (CHy); 53.5 (CH); 122.9-132.0 (pyrene); 169.1, 173.1 (C=0); ESI-MS (m/z)

[M]'=389.2 (MW_1eq 389.4).

(ii) 1,2-dithia-3-(1-amino-n-pentyl)cyclopentane (lipoamine or LA).

(Y\/\/\ NH,
S

S—

This compound was synthesized based on the procedure described in ref.”>. D,L-a-
lipoamide (1 g, 5.23 mmol) was dissolved in 100 mL THF and added to a dispersion of
0.826 g (21.76 mmol) of LiAlH4 in 50 mL THF. The mixture was refluxed for 15 hours
and was then cooled to 0°C. Distilled water (10 mL) was slowly added and the solution
was stirred for 30 minutes. The solvent was evaporated, and 15 mL of methanol was
added to the residue. The solution was filtered to remove insoluble material, and the
methanol evaporated under reduced pressure. The resulting crude oil was diluted with
100 mL of water and the solution adjusted to pH 6.5 with 1 N HCI. The aqueous mixture
was extracted 3 times with 20 mL portions of n-butanol, and the organic fractions washed

twice with 10 mL portions of 1 N NaOH and 1 N HCL. The solvent was removed to
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afford 0.233 g of pure yellow powder Yield: 25%. Ry = 0.2 (normal phase,
CHCly/MeOHI/AcOH ~ 90:10:3); 'H-NMR (CDCl;) & 148 (m4HH,N-
CH,CH,CH,CH-CH;), 1.71 (m, 4H, H,N-CH,CH,CH,CH,CH>), 1.89, 2.28 (m, 2H,
CHCH,CH,SS); 2.40 (m. 2H, H,NCH,); 3.15 (2H, m, CHCH,CH.SS); 3.59 (m, 1H,
CHCH,CH,SS); "C-NMR (CDCls) & 26.4, 27.4, 28.7, 34.6, 38.5, 40.3, 42.8 (7 -CH,);

56.8 (CH).

(iii) Coupling of Lipoamine (LA) to the Peptide C-terminus: (Aib-Ala)s-LA.

(Ala-Aib)
<Y\/\/\NH P 6
S

S

This coupling reaction was carried out with the procedure described in ref.’>. The peptide
(1 eq) was dissolved in DMF and was added dropwise to a solution of 5 equivalents each
of lipoamine, HATU (coupling reagent) and DIPEA (diisopropyl ethyl amine) at 0°C
over a period of 1 h. The solution was stirred at 0°C for an additional 30 minutes and
then at room temperature for 24 hours. The solvent was removed under reduced
pressure and the crude residue dissolved in chloroform. The organic layer was washed 3
times with 4% aqueous sodium bicarbonate. The organic fraction was dried over sodium
sulfate, and the chloroform removed via rotary evaporation. The product was purified
over silica gel using methanol as the eluent (R¢ = 0.5). The crude product was further
recrystallized from chloroform/hexane to yield a white powder. Yield: 25%. 'H-NMR
(CDCl3) & 1.26-1.71 (m, 63 H, CHj; from Aib and Ala + 9 H from lipoamine fragment),
2.5-3.7 (m, 6 H from lipoamine + 6 CH from Ala); 7.5-8.5 (12 NH); ESI-MS (m/z)

[M+Na]"=1151.6 (MWeaeal 151.3)
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(iv) Coupling of t-Boc Pya to (Aib-Ala)s-LA: t-Boc Pya-(Aib-Ala)s-LA (SAM VII).

w (Ala-Aib)(,\N NH
H
S
s—

This coupling reaction was carried out under similar conditions to those described in
ref.”2. A 1 eq sample of (Aib-Ala)s-LA was dissolved in DMF (2 mL DMF/mg peptide).
The solution was cooled to 0°C and a solution containing 2.5 eq of Boc-pyrenyl-alanine,
2.5 eq of HATU and 5 eq of DIPEA in DMF was added. The solution was stirred at 0°C
for 30 minutes and then at room temperature for 24 hours. The solvent was removed
under reduced pressure and the crude residue was dissolved in chloroform. Insoluble
materials were removed by filtration. The filtrate was washed twice with 4% sodium
bicarbonate solution and the organic phase concentrated under reduced pressure. The
crude product was recrystallized from chloroform/ether to yield a white powder. Yield:
80%. R = 0.40 (normal phase, 13:5:1 CHCl;:MeOH:NH4OH); '"H-NMR (CDCl5) &
1.35-2.0 (broad band, 73 H, 54 H from CHj3 from Ala and Aib units, 9 from CHj3 t-Boc, 2
H from lipoamine ring CH,CH,CHSS and 8 CH; from lipoamine chain); 3.15-3.20 (m,
6H, 2 from CH; lipoamine ring, CH,NH lipoamine chain and CH; Pya); 3.53 (m, 1H, CH
lipoamine ring); 3.95-4.24 (m, 6H, CH Ala); 4.41 (CH Pya); 7.30-8.12 (21 H, 9 aromatic
H from Pyrene + 12 NH); *C-NMR (CDCl;) & 14.2, 22.7, 23.3 (CH; from t-Boc, Aib

and Ala respectively); 26.5, 29.4, 30.1, 32.0, 35.1, 38.8, 38.9, 40.2 (CH; from lipoamine
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and from Pya at 32.0 and 35.1); 56.4 (CH from lipoamine ring); 53.5 (CH from Pya);

50.6 (CH from Ala); 123.1-131.3 (Aromatic C); 169.7-171.2 (carbonyl carbons).
Synthesis of the Components in Films VIII and IX.

4-[(10-mercaptodecyl)oxy|pyridine-2,6-dicarboxylic acid and 2,2°,6,6’-tetracarboxy-

4,4°bipyridine were prepared as previously described in this section.

1. 4-[(Methylpyrenyl)oxy|pyridine-2,6-dicarboxylic acid (Pyrenyl substituted
chelidamic acid cap).

(i) Diethyl 4-[(methylpyrenyl)oxy]pyridine-2,6-dicarboxylate.
8 {
O |
—d N
(6]
O>

This compound was prepared based on the synthesis described in ref.”*. A 0.98 g sample
(3.75 mmol) of 1-bromomethylpyrene and diethyl 4-hydroxypyridine-2,6-dicarboxylate
(1 g, 3.40 mmol) were separately dissolved in acetone. The clear solutions were mixed,
0.37 g (3.5 mmol) of sodium carbonate was added, and the mixture refluxed for 24h. The
solution was filtered hot and the solvent was removed to afford a crude yellow product.
The crude product was recrystallized from dichloromethane to yield 1.17 g of a light

yellow powder. Yield: 77%. Ry = 0.40 (normal phase, 1:1 DCM:MeOH); m.p.: 154-156
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°C. '"H-NMR (CDCl;) & 1.46 (t,6H,CHs); 4.47 (q,4H, CH,); 5.90 (s, 2H, CH,); 8.01-8.26
(m, 11H, aromatic H); >C-NMR (CDCl;) & 15.2 (CH3); 30.2 (CH,); 63.5 (CHa); 115.7-

131.6 (aromatic CH); 165.7 (C=0). ESI-MS (m/z) [M+Na] =476.8 (MW aicd 476.5)

(ii) 4-[(Methylpyrenyl)oxy|pyridine-2,6-dicarboxylic acid.

HO

This compound was prepared based on the procedure described in ref.’’. Diethyl 4-
[(methylpyrenyl)oxy]pyridine-2,6-dicarboxylate (1.15 g, 2.5 mmol) was dissolved in 60
mL of ethanol. Potassium hydroxide (.504 g, 9.0 mmol) was added and the solution was
heated to reflux for 6 hours. The solution was diluted with 50 mL of water and acidified
to pH 2.5 with 6 N HCI. A white product precipitated and was isolated via filtration. The
precipitate was washed with small portions of water, methanol and dichloromethane and
dried under vacuum to yield 0.98 g of a white powder. Yield: 97%. Ry = 0.46 (normal
phase, 1:1 DCM/MeOH); m.p.: decomposes above 225 °C. '"H-NMR (DMSO-dg) & 6.10

(s, 2 H, CHy); 7.92-8.41 (m, 11 H, Ar-H); ESI-MS (m/z) [M+K]'=436.2 (MW 436.5)
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C. Multilaver Thin-films as Photoswitchable Surfaces.

The preparation of 4-[(10-mercaptodecyl)oxy]pyridine-2,6-dicarboxylic acid has been
described previously in this section. The compound described here is used as the cap to a

copper terminated multilayer (Figure 25).

(i) Cis-(2,2'-dipyridyl)ethylene.

This compound was prepared based on the procedure provided in ref.®. A 2g sample
(10.9 mmol) of trans-(2,2’-dipyridyl)ethylene was dissolved in 75 mL of spectroscopic
grade chloroform, and placed in a pyrex tube. The tube was placed in a rotary
photoreactor, and irradiated at 300 nm for a period of 1 h for isomerization. The
chloroform was removed under reduced pressure, and the crude product purified over
silica get using 15:1 Chloroform:Methanol as the mobile phase to yield 0.3 g of the
yellow cis product. Yield: 15%, R¢ 0.4 (15:1 CHCl;:MeOH), GCMS r.t. = 10.63 min at
200°C, (m/z) [M]=155; '"H-NMR (CDCls) & 6.81 (s, 2H, ethylene CHy); 7.05 (m, 1H,
NCHCHCH); 7.20 (d, 1H, NCCHCH in ring); 7.42 (m, 1H, NCHCHCH in ring); 8.56 (d,
1H, NCHCH in ring); “C-NMR &(ppm) 122.4 (ethylene CH); 124.2, 133.3, 136.4, 149.8,

155.9 (aromatic CH groups).
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SAM and Multilayer Preparation.

Gold slides were purchased from Evaporated Metal Films (EMF). The slide dimensions
were 25 mm x 75 mm x 1 mm of float glass with cut edges. Each slide was coated with
50 A of Cr followed by 1000 A of Au. The substrates were cut in different sizes
according to experimental needs. Prior to use, the substrates were immersed in piranha
solution (70% sulfuric acid, 30% hydrogen peroxide (30% aqueous)) at 90° C for 20
minutes to clean the surface. The slides were then washed with deionized water, dried
with nitrogen, and used immediately. Monolayers were prepared by immersion of the
clean gold slides in a 1-2 mM solution of the desired compound in ethanol. For 4-[(10-
mercaptodecyl)oxy]pyridine-2,6-dicarboxylic acid solutions, full coverage of the surfaces
was reached after 6 h, as evidenced by no further changes in the contact angle
measurements. SAMs of dodecanethiol, and the peptidic SAM investigated were found
to form complete monolayers between 4-6 h of exposure time. Copper (II) bromide was
used as the source of Cu(Il) ions (I mM). Full Cu(Il) complexation was reached after 3h
of submersion. Capping of the copper ions was largely dependent on how many
multilayers were assembled, and the type of capping unit being used. For the molecular
wire work, Cu(Il) was fully capped with the tetracarboxy dipyridyl linker (5 mM
solution) unit after 4 h. However, capping of the Cu(Il) ions by the pyrenyl substituted
chelidamic acid unit (5 mM) took anywhere between 16-24 h. Capping of the copper
ions with the cis and trans dipyridyl ethylenes was done with 5 mM solutions dissolved in
either ethanol or acetone. Coverage was completed after 8 h of exposure. After every

deposition, the films were rinsed with ethanol, and dried under nitrogen.
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Thin Film Characterization: General Procedures.

Cyclic Voltammetry. All electrochemical experiments were carried out with an EG&G
Princeton Applied Research Potentiostat/Galvanostat Model 273. A three-electrode setup
was used with the SAM as the working electrode, a SCE as a the reference electrode, and
platinum wire as the counter electrode. The monolayer was contacted with an alligator
clamp with a working area of 1 cm”. All solutions were freshly prepared and degassed
with nitrogen before the experiments. The aqueous solution used for the experiments was
2mM potassium ferricyanide with 50 mM potassium chloride as a supporting electrolyte.
To limit noise, the electrochemical cell was placed inside a Faraday cage. The cyclic
voltammetry curves were obtained in the range of 0.0 to 0.7 V, with a scan rate of 50

mV/s and a scan increment of 1 V.

Contact Angle Measurements. Contact angle measurements were obtained with a
Rame-Hart Model 100-00 Goniometer. 10 pL droplets of water were added to each

surface using a calibrated Ependorff pipette.

Infrared spectroscopy. IR spectra were obtained on a Nexus FT-IR spectrometer
equipped with a ThermoNicolet grazing angle accessory and a liquid-nitrogen cooled
MCTA detector. The IR beam was incident at 75° on the gold substrates. The optical
path was purged with nitrogen gas before and during data acquisition. Backgrounds were
collected before every sample run. For each sample, 64 scans were collected with a

4 cm resolution. The scan range was form 4000 to 600 cm™, although the detector

cutoff occurs at just under 1000 cm™.
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Impedance Spectroscopy. A 1255-HF frequency response analyzer was used in
combination with a EG&G Princeton Applied Research Potentiostat/Galvanostat Model
273 for all impedance studies. Impedance experiments were performed using a three-
electrode setup with the film as the working electrode, a SCE as the reference electrode,
and platinum wire as the counter electrode. The electrolyte used was a 0.1 M solution of
Na,SO4 in deionized water. The experimental conditions collected 20 points per
decade, at a fixed potential of -0.5 V, with an amplitude of 20 mV, over a frequency
range of 100000 to 0.01 Hz. The working electrode area was kept at 1 cm® for all

experiments.

Photocurrent Measurements. Photocurrent experiments were performed using the
three electrode setup described for cyclic voltammetry experiments. A 20 mM methyl
viologen solution containing 50 mM sodium sulfate as a support was used. The samples
were irradiated with a 350 nm Rayonet lamp through a slit in the Faraday cage. The cage
itself was covered in order to prevent exposure of the cell to ambient light. The UV lamp
was kept on continuously and a mechanical shutter was used to block exposure of the
sample to the light. The sample was typically irradiated at intervals of 20-40 seconds.

Individual experiments were performed at a fixed applied potential.

Photo-induced Isomerization of Films. The isomerization of dipyridyl ethylene capped
films was attempted by submersing the substrate in chloroform in a pyrex flask, and
irradiating with a 300 nm Rayonet lamp for periods between 30 min and 1 h. Samples
irradiated less than 30 min showed incomplete conversion. Attempts to perform

isomerizations in different solvents were unsuccessful, as were attempts performed in the
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absence of any solvent. Samples placed in chloroform and left exposed to ambient light

did not show any signs of isomerization.
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4. Experimental Data

A. Multilayer Films as Molecular Wires.

All CV curves have been displayed within the main text of this chapter, along with IR

spectra, impedance measurements, and contact angle measurements.

B. Photocurrent Generation From Multilayver Films.

Contact Angle Measurements.

Table 5. Contact angle measurements for gold, dodecanethiol, SAM VII and for films
VIII and IX after deposition of each component. Dodecanthiol is included as a
hydrophobic model system that is known to form ordered monolayers on gold.

Sample Contact Angle
(degrees)
Gold 76 +/- 1.0
Dodecanethiol 75.6 +/- 0.6
SAM VII 48 +/- 2.4
Film VIII
Component 1 (pyridyl-capped decanethiol) | 63.5 +/- 0.5
Component 2 (Cu(II) ions) 51.5+/-1.0
Component 3 (pyrenyl-capped pyridine) 75.7+/- 1.1
Film IX
Component 1 (pyridyl-capped decanethiol) | 63.5 +/- 0.5
Component 2 (Cu(II) ions) 52.5+/-1.5
Component 3 (bipyridyl) 60.5 +/- 1.0
Component 4 (Cu(II) ions) 48 +/- 1.5
Component 5 (pyrenyl -capped pyridine) 68 +/- 0.5
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CV Measurements.

Figure 27. Cyclic voltammograms obtained for bare gold and for VIII after the
deposition of each component
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Grazing Angle IR Measurements.

Dodecanethiol: Assignment of the main absorption bands for a dodecanethiol SAM were

based on the assignments observed in the literature.*">7°
Table 6. IR assignments for dodecanethiol

Assignment Peak frequency (cm™)
Va, ip (CHz3) 2964.62
V,, FR (CH») ~~ very small shoulder
v, (CHp) 2923.36
vs FR (CH3) 2876.79
vs (CHy) 2852.33
v(CH,) scissors deformation 1466.35
v(CH3;) symmetric deformation | 1380.16
CH, twisting and wagging ~1150-1350

a = asymmetric, s = symmetric, ip = in plane, FR = Fermi resonance

According to references 58 and 75, the positions of the CH, stretching modes are
indicative of a crystalline-like packing of the sample. The weak CH, scissors deformation

band is the result of a tilted orientation of the alkanethiol on the surface.
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Table 7. IR assignments for VIII. (The individual layers are: (i) pyridine-
decanethiol; (ii) Cu®'; (iii) Pyrene-pyridine. The columns represent the peaks
observed for the entire film following deposition of each component.)

Assignment Peak frequency (cm™)

Pyridine (Py)-decanethiol (dt) Cu/Py-dt Pyrene(Pyr)-Py/
Cu/Py-dt

COOH 3461.11 br 3512.43 ok
(3232.06 sh) 3415.16

v(CH arom) ok ok 3050.85
(3050 1) (3050)

va (CHy) 2924.56 (m) 2925.31 2924.13
(2921.14 m)

vs (CHy) 2852.88 (m) 2852.97 2853.04
(2851.46 m)

COOH 2088.32 2099.97

v(C=0) 1725.91 (s, br) 1739.17 1728.09
(1750.15, 1725.52) (1719.96)
1683.6 1658.57 1688.07

v(C-C aromatic) 1603.35 1616.24 1601.01
(1603.23) (1599.62)

Ar ring 1423.41 1415.22 1426.38
(1417.77)
1388.55 1378.51 1380.58
(1380?)
1120.44 1119.77 1112.22
(1019.61)

*#%: not observed because of low intensity
Numbers in parenthesis are from IR spectra of the individual components, i.c., the

pyridine-decanethiol and pyrene-pyridine units.

83




Table 8. IR assignments for IX. (The individual layers are: (i) pyridine-
decanethiol; (ii) Cu®"; (iii) Pyrene-pyridine. The columns represent the peaks

observed for the entire film following deposition of each component.)

Assignment Peak frequency (cm™)
Py-dt Cu/Py-dt | Bipyridyl (By)/ Cu/pyr-dt | Cu/By/Cu/py-dt | Pyr/Cu/By
/Cu/Py-dt
COOH 3461.11 br | 3512.43 3273.92 br 3413.02 br 3483.94 br
3415.16
v(CH arom) ok ok ke ok ok ke 3010
v, (CH)) 2924.56 2925.31 2924.90 roHk roHk
Vs (CHp) 2852.88 2852.97 2853.24 oAk oAk
COOH 2088.32 2103.94 2106.09 2105.13
v(C=0) 172591 1739.17 1739.23 otk 1728.33
1683.6 1658.57 1669.68 1660.63 1684.61
v(C-C arom) | 1603.35 1616.24 1589.30 otk 1601.10
1423.41 1415.22 1416.71
1388.55 1378.51 1377.05 1376.08 1370.73
1120.44 1119.77 1159.90 1112.09

**%: not observed because of low intensity
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Grazing Angle IR Spectra.
Figure 28. The grazing angle IR spectrum of Dodecanethiol.
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Figure 29. The grazing angle IR spectrum of peptidic SAM VII (top) with an
expanded view of its amide I and II region (bottom).
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Figure 30. The grazing angle IR spectrum of a SAM of dicarboxypyridyl capped
decane thiol.
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Figure 31. The grazing angle IR spectrum of the dicarboxy pyridyl SAM
complexed with Cu(Il) ions.
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Figure 32. The grazing angle IR spectrum of SAM + Cu(Il) ions + pyrene
substituted cap.
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Figure 33. The grazing angle IR spectrum of SAM + Cu(Il) ions + bipyridyl
linker group.
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Figure 34. The grazing angle IR spectrum of SAM + Cu(Il) ions + bipyridyl
linker + Cu(Il) ions.
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Figure 35. The grazing angle IR spectrum of SAM + Cu(Il) ions + bipyridyl
linker + Cu(II) ions + pyrene substituted cap.
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Impedance Measurements.

Figure 36. The impedance plot of a monolayer of pyridine decanethiol. The blue
line represents a model circuit. The red dotted line represents experimental data.
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Figure 37. The impedance plot of a monolayer of pyridine decanethiol capped
with Cu(Il) ions. The blue line represents a model circuit. The red dotted line
represents experimental data.
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Figure 38. The impedance plot of a monolayer of pyridine decanethiol capped
with Cu(Il) ions and then with a pyrene substituted chelidamic acid moiety. The
blue line represents a model circuit. The red dotted line represents experimental
data.
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Table 9. Impedance measurements for the systems studied. The model circuit is
displayed in Figure 11 .

Sample Rso1 (0ohms) Rsam (ohms) | Cy (uF)
Gold 37.4 * 37.4
Dodecanethiol 37.7 9040 2.29
SAM VII 37.7 11714 3.02
VIII
Pyr-dt 34.1 7865 4.84
Cu-Pyr-dt 33.7 2138 16.1
Py-Cu-Pyrdt 39.2 6962 6.46
IX
Pyr-dt 34.1 7865 4.84
Cu-Pyr-dt 33.7 2138 16.1
By-Cu-Pyrdt 37.7 6293 9.07
Cu-By-Cu-Pyr-dt 38.1 5884 9.37
Py-Cu-By-Cu-Pyr- dt | 30.7 5468 9.79

Capacitance values in the range of 2 -10 WF are consistent with ordered monolayers with
relatively few defects.”>*°
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C. Multilaver Thin Films as Photoswitchable Surfaces.

Contact angle results were presented in the main text.
Cyclic Voltammetry.

Figure 39. Cyclic votammograms obtained for bare gold, pyridine decane thiol
on gold, and Cu/pyridine decanthiol on gold.
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Figure 40. Cyclic Voltammagrams of Cu/pyridine decanethiol on gold, film X,
film XI, and film X irradiated.
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Note that upon irradiation, the CV curve of film X resembles that of film XI.
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IR Measurements

The IR spectra, and absorbance assignments for the constituents in films X and XI have
been described previously. Therefore, we will focus on the spectra of films X, XI, and
irradiated X exclusively. The bands of interest for comparing these systems occur at

1511, 1313, 1303, 1253, and 1186 cm™.

Figure 41. IR spectra of film X vs. film XI.
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Figure 42. IR spectra of film X vs. film XI from 1650-1000 cm™.
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Figure 43. IR spectra of films X, XI, and X irradiated.
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Figure 44. IR spectra of films X, XI, and X irradiated from 1600-1000 cm™.
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Figure 45. IR spectra of film II with and without irradiation in chloroform.
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Figure 46. IR spectra of film II with and without irradiation in chloroform from
1650 — 1000 cm’.
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Figure 47. IR spectra of film I irradiated in a variety of solvents from 1650 — 1000
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Impedance Measurements.

Table 10. Impedance values for the systems studied.

Sample Rso1 (0hms) Rgsam (ohms) | Cy (uF)
Pyridine decanethiol 146.8 12995.0 8.44
Pyridine decanthiol/Cu | 79.7 6551.3 16.96
Film X 154.1 11076.0 10.13
Film XI 155.4 8742.7 13.70
Film X (irradiated) 135.9 7825.3 14.48

1000
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B. PYRENE CONTAINING CYCLIC PEPTIDE
NANOTUBES

1. Background

As discussed previously, molecules that are able to self-assemble into predictable
architectures are of considerable interest to the scientific community. The interest behind
self-assembly is driven by the desire to create molecules that can spontaneously assemble
into devices thereby eliminating the need for microfabrication, photolithography, and
other top-down approaches.”” Particular attention has been paid to systems that can
predictably form nano-tubular or porous architectures. Such systems have potential

applicability in areas including inclusion chemistry,”® catalysis,”® transmembrane channel

80,81 82,83,84

transport, and optical and electronic device fabrication.
A variety of nano-constructs (e.g. carbon® and boron nitride nanotubes®) that facilitate
energy or charge transfer have been reported and have been suggested as molecular scale

electronic or photonic wires (Figure 48).

Figure 48. Computer representation of a single walled carbon nanotube.
Boron Nitride nanotubes are structurally similar.
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While these structures exhibit interesting properties, they require harsh synthetic
conditions that often produce a low yield of the desired material, especially after the

purification steps required.

Due to the problematic preparation of these tubular structures, past efforts have been
focused in part on using biologically-inspired structures. Nature has already designed
systems that are capable of transferring charge over long distances, similar to that
observed in carbon and boron nitride nanotubes. DNA has been shown to perform this

function, with charge conduction through the core of its double helix.*”***° (Figure 49)

Figure 49. A view of the stacked heterocyclic base pairs present at DNA’s core.

The observed electron transfer behavior of DNA has led to the suggestion that stacked
aryl groups can provide a conduit for long range charge or energy transfer. Based on this
suggestion, we became interested in constructing a self-assembling systems that
promoted arene stacking. Further, we believe that the cyclic peptide architecture, through
synthetic manipulation, can provide a scaffold for the assembly of stacked aromatic

groups, similar to that which is observed in DNA’s core.(Figure 50)
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To this end, we have designed a series of cyclic peptides that are substituted with pyrene
chromophores and that self-assemble into nanotubular structures. In the following
sections we provide background on the known literature for cyclic peptide nanotubes, the
phenomenon of long range charge conduction in ordered, stacked m-systems, and the
photophysical behavior of pyrene. This information is provided as it serves as the basis
for the work undertaken. We will then discuss our attempts at constructing pyrene

substituted cyclic peptide nanotubes as conduits for long range electronic conduction.
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(i) Peptide Nanotube Design Principles

Tubular structures based on peptide and protein constituents are well known, and are
observed in a variety of natural systems. Both natural and synthetic polypeptides
consisting of alternating D- and L-amino acids have been shown to adopt tubular
structures when placed in membranes. Based on this known work, De Santis ef al. first
suggested that cylindrical tubular structures based on cyclic peptides could be formed.’’
However, early attempts to demonstrate this behavior proved to be unsuccessful

because they did not take into account a variety of factors, besides a cyclic geometry, that
need to be satisfied in order to undergo tube formation, including ring size and amino

acid selection.

Ghadiri reported the first synthetic cyclic peptide capable of adopting a tubular secondary
structure in 1993.°* His work provided a descriptive set of design requirements that
promote nanotube formation. It was observed that cyclic peptide structures comprised of
an even number of alternating D- and L-amino acid residues minimized non-bonded
intramolecular side chain interactions. This allowed the cyclic peptide monomer to adopt
a flat plate-shaped conformation wherein all amide functionalities lie normal to the
surface of the ring. Moreover, this allowed for all side chains to lie in the plane of the
monomer ring, pointing outwards from the center. In this conformation, and only in this
conformation, hydrogen bonding sites are arranged both above and below the plane of the

monomer allowing cyclic peptides to spontaneously assemble (Figure 50).
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Figure 50. The cyclic peptide architecture and assembly process. The R groups
present “stack” during the assembly process.
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Ring size was also found to be a determining factor in cyclic peptide self-assembly, as it
determines the stability of the monomer its flat conformation.”” The plate-like
conformation of cyclic peptides containing 6 or less amino acids possesses high ring
strain. As a result, this conformation is less likely to occur, making spontaneous self-
assembly difficult. Ghadiri has shown that the cyclic peptide cyclo[-D-"*NAla-L-Phe-],
readily assembles into peptide dimers, while the corresponding six membered analogue,
cyclo[-D-*NAla-L-Phe-]; does not.”> Sun, ef al., have shown that tubular ensembles can
be formed from cyclo[-D-Leu-L-"**NAla-]s, yet have also shown that cyclo[-L-Val-D-
Leu-] and cyclo [-L-Phe-D-Phe-]; do not.”* Based on this information, it appears that

aggregation of cyclic hexapeptides cannot be regarded as a general trend, but rather as
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something that occurs for very specific peptide sequences in the presence of the

appropriate solvent and crystallization conditions.

Cyclic peptides containing more than eight amino acid residues have also been studied.
While not hindered by ring strain, these systems possess a high degree of conformational
freedom and numerous low-energy structures other than the plate structure necessary for
assembly of nanotubes. Ghadiri and co-workers have successfully assembled nanotubes
from cyclic peptides containing ten’ and twelve’® amino acid residues. However,
formation of tubes from these larger cyclic peptides is highly residue-dependent, and
occurs under very specific conditions. Based on the arguments of ring-strain and
conformational freedom, cyclic octapeptides appear to be the most suitable for peptide
nanotube formation and this has been demonstrated by experimental and computational

. 9
studies.”’

Self-assembly of cyclic peptides can lead to either parallel or anti-parallel stacking

arrangements of the cyclic peptide rings (Figure 51).”

Figure 51. Anti-parallel (left) and parallel (right) stacking arrangements of cyclic
peptide nanotubes.
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Here, parallel and anti-parallel are terms used to describe how the cyclic peptide
backbones align with one another. In the anti-parallel arrangement, the cyclic peptide is
aligned such that eight linear hydrogen bonds are formed from either face of the cyclic
peptide. However, in a parallel alignment, the hydrogen bonds are no longer linear, and
are therefore slightly elongated and, as a result, weaker (Figure 51). This causes the anti-
parallel configuration to be exclusively favored over the parallel configuration, with a
difference in free energy of 0.8 kCal/mole per bonded pair of cyclic peptide monomer
units.”® NMR and X-Ray Crystallography data have confirmed that it is hydrogen
bonding, and not side chain interactions, that accounts for the difference in stability

between anti-parallel and parallel arrangements.”

Cyclic peptide assembly can also be controlled by the choice of amino acids. As has
been previously demonstrated, cyclic peptide formation is triggered by the formation of
hydrogen bonds above and below the plane of the monomer ring. By selecting amino
acids that block hydrogen bonding from occurring at either face, dimers, or monomers
can be selectively formed. For example, in order to accurately measure the interactions
between layers of cyclic peptides, Ghadiri constructed cyclo[-L-Phe-D-Y*NAla-],.”” By
incorporating four N-methyl alanine groups, hydrogen bonding was selectively prevented
from one side of the ring, limiting the assembly strictly to dimers. By exclusively using
N-methylated amino acids, monomers can also be constructed. An alternative for
monomer construction is to alternate D- or L- amino acids with achiral disubstituted o-
amino acids. The disubstitution, such as in a-aminoisobutyric acid, causes sufficient

steric hindrance to prevent hydrogen bonding.
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Once formed, peptide nanotubes exhibit remarkable mechanical and chemical stability,
remaining intact under centrifugation, vortex mixing, and sonication. In addition, they
can survive boiling water, as well as highly acidic (pH 1), and highly basic (pH 11)
conditions.'” Dissolution of cyclic peptides into monomeric subunits rarely occurs even
in highly polar solvents such as DMSO and DMF." Typically, the nanotubes can only be
disassembled by exposure to extreme acids (i.e. neat TFA), which results in complete

protonation of the cyclic peptide backbone.

Based on the design principles set forth in this section, it is reasonable to assume that we
can construct cyclic peptides that will predictably assemble into peptide nanotubes. We
can also make reasonable predictions as to how the peptide side chains will align based
on the favored anti-parallel stacking arrangement. Finally, the properties of cyclic
peptide nanotubes can be compared to those of cyclic peptide monomers by synthetically

controlling whether or not the systems made will assemble.
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(ii) Long Range Charge and Energy Transfer in Double Helical
DNA

For the past 10 years, numerous research groups have demonstrated that DNA is capable

- - 87.,101,102
of acting as a conduit for long range charge transfer” "

The charge is believed to
flow through the inner core of the DNA, which is comprised of a stacked array of

aromatic, heterocyclic base pairs.

Many experiments have been conducted to probe charge transfer within DNA, the earliest
of which involved a simple measure of charge flow through DNA fibers. These early
results offered mixed opinions as to the ability of DNA to transport charge. Recently,
however, Barton et al. showed that DNA systems of varying lengths with a
photooxidizable group, [Rh(phi),bpy']*" (phi = phenanthrene quinine diimine; bpy' = 4'-
methylbipyridine-4-butyricacid), tethered to the terminus of the strand, undergo long

range charge transfer (Figure 52)."

Figure 52.*” The DNA system used to test for long range charge-transfer. A
chromophore (red) is excited at one end, causing oxidative damage of the guanine
pairs (yellow).
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In this experiment, DNA strands were constructed with guanine doublets at specific sites
along the DNA helix. Upon photooxidation of the rhodium complex, the guanine base
pairs act as electron donors, and become oxidatively damaged. The distance between the
damaged guanine units and the photooxidant gives an indication of the charge-transfer
distance. This type of experiment has effectively shown that DNA base pairs can

undergo charge transfer interactions over distances ranging from 17 to 197 A.*’

While the occurrence of long range charge transfer within DNA has been proven, there
are still arguments as to how the transfer takes place. Currently, there are two accepted
theories of the mechanism of DNA charge transfer; tunneling and charge hopping theory

(Figure 53).'%

In the tunneling theory, sometimes referred to as a “super exchange” mechanism, the
DNA orbitals are energetically higher than the donor and acceptor orbitals, and charge
passes through them without ever directly occupying them. If this mechanism were
predominant, the efficiency of charge transfer would be exponentially dependent upon
the distance between charge donor and acceptor. In the charge hopping mechanism, the
orbitals of the DNA bridge are thought to be energetically similar to those of the acceptor
and donor. This mechanism, as opposed to the tunneling mechanism, would be less
distance dependant as the hopping steps are very small increments. While the
predominant transfer mechanism has not been experimentally determined, both theories
assume that the long range transfer occurs through the core of DNA, via its aggregated -
stack Without having this stack of heterocyclic aromatics, no empty m orbitals are

available, and both theories fail.
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Figure 53.'"” Pictorial representations of long range transfer: (a) tunneling (super
exchange) mechanism, and (b) “hopping” mechanism.
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It is our belief that substituting a cyclic peptide at regular intervals with side chains
containing aromatic groups will form an aggregated m stack similar to the one observed in
DNA. Based on the work presented, it is reasonable to assume that such a system will be

capable of long range charge transfer through the assembled n-stack.
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(iii) The Photophysical Behavior of Pyrene

Pyrene, a flat disc shaped molecule, is composed of four fused benzene rings, and is
known to aggregate with face to face m stacking interactions in its crystalline form.'®
The amount of pyrene aggregation can be conveniently measured in its fluorescence
spectrum, as aggregated pyrene forms an emissive excimer. Excimer formation is of
particular interest to our studies, as it has previously been shown to act as a probe for

105,106,107
secondary structure.

Pyrene can serve then, as a conformational probe for cyclic
peptide nanotube formation, as aggregated cyclic peptide monomers can allow for the
stacking of pyrene. The amount to which this occurs can be measured by comparing

monomer to excimer fluorescence. In addition, if stacking occurs, it is likely that the

cyclic peptide system will conduct charge similar to that which is observed for DNA.

Complex formation between excited and ground state aromatic hydrocarbons in solution

was first reported in 1955.'%

These complexes were called “excimers”, a shortened
notation for excited state dimers. Pyrene has long been known as a compound that
readily undergoes excimer formation. In solution, excimer formation is a concentration
dependent process, with observable formation beginning at a threshold concentration of
roughly 10” M. The exact concentration at which excimer formation is initially observed
is solvent dependent, with polar solvent leading to excimer formation at slightly lower
concentrations. Excimer formation is evidenced in the fluorescence spectrum by a

quenching of the monomer pyrene fluorescence, and a concomitant growth of a red-

shifted, featureless emission band (Figure 54).
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Figure 54.'" Excimer formation with respect to pyrene concentration.
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Excimer formation does not appear to lead to any permanent chemical change as the
absorption and fluorescence spectra of oxygen-free pyrene solutions remain unchanged

0

under prolonged irradiation.'"’ The mechanism of pyrene excimer formation can be

qualitatively explained by viewing the potential energy diagram in Figure 55.

Here, the energy of a pair of pyrene molecules depends directly upon their internuclear
separation. In the ground state, the energy of the pair is constant until an abrupt increase
at about 4 A corresponding to repulsion between the m clouds of the two molecules.
Excitation of one of the pyrene molecules leads to an electron deficiency of its m bonding
orbitals, which can be stabilized by forming a face to face complex with the ground state

pyrene at a separation of ~3.5 A, shown in the diagram as a valley in the potential energy
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surface. Emission from this state results in a structureless band, as the ground state

complex is dissociative.

111

Figure 55." " Energy diagram of excimer formation.
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As excimer formation is dependent upon both diffusion and internuclear distance, we
believe that incorporation of pyrene side-chains into cyclic peptide nanotubes, will
promote concentration independent excimer fluorescence.  Observation of such
fluorescence will be indicative of assembly, and will lead to the formation of a

delocalized n-stack, which can undergo long range transfer

Short range charge and energy transfer has been shown to occur in systems with pyrene
molecules.'*'"*!"* To date, there are few reports of long range charge transfer through

pyrene systems, however, long range energy transfer in pyrene systems has been
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reported. ''>!'® Crystalline pyrene can undergo exciton formation and exciton hoping
within the crystal, based on an analogous mechanism to the charge-hopping mechanism
described for DNA. As cyclic peptides substituted with pyrene will present a quasi-
crystalline environment, we believe these systems will be able to undergo long range
energy transfer. Additionally, as the system is very similar to DNA’s core, charge

transfer should also be possible.
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2. Results and Discussion

Two cyclic peptides, CP1 and CP2 (Figure 56) were constructed by solid phase peptide

synthesis using an FMoc strategy.

Figure 56. The structures of CP1 and CP2.
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CP1, cyclo[-D-Ala-L-Pya-D-Ala-L-Phe-],, is based on analogous literature structures

that are known to readily assemble into peptide nanotubes. In addition, molecular
modeling calculations suggested that aggregation would occur in similar systems (Figure
57). Molecular modeling was performed using the MOE platform, with the peptide
nanotube solvated by acetonitrile. An anti-parallel stacking arrangement was assumed
when constructing peptide nanotubes, and energy minimization was performed using the
AMBER forcefield. Dynamics calculations were also performed to study the tube

stability. Dissociation of the tube did not occur over 1000 heating cycles from 298-500
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K, using 1 second heating and cooling cycles. From this modeling, an interchromophore

separation for pyrene molecules on adjacent cyclic peptides was calculated to be 4.68 A.

Figure 57. Computational models of cyclo[-D-Ala-L-Glu-D-Ala-L-Pya-],.
Modeling was performed using the MOE platform with an AMBER force field.
The picture on the left shows the formed tube from the side, while the picture on
the right looks down the core axis of the tube.

CP2, cyclo[-Aib-L-Pya-Aib-L-Phe-],, is not expected to form nanotubes, as
incorporation of aminoisobutyric acid residues (Aib) has been shown to prevent
aggregation due to the steric disruption of hydrogen bonding. Since the difference
between these two systems is that CP1 is expected to self-assemble into nanotubes while
CP2 is not, it was our expectation that CP1 would exhibit excimer fluorescence but that
the CP2 fluorescence spectra would show only monomer fluorescence. If this is the case,
it is likely that this architecture can be used to construct systems that undergo long range

energy and charge transfer, similar to that which has been observed in DNA.
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Fluorescence spectra were collected in a 1 cm’® spectrasil quartz cuvette. Sample
degassing with nitrogen showed no impact on the spectra obtained, and the spectra
presented are for oxygen containing solutions. We have used as model systems the open
chain (non-cyclized) linear peptides LP1 and LP2. (Here LP1 is the open chain analog
analogue of CPI and LP2 is the linear analogue of CP2.) The emission spectra of these

peptides at varying concentrations in DMF are shown in Figures 58 and 59.

Figure 58. Normalized fluorescence spectra of LP1 (open chain analogue of
CP1). Solution concentrations (M) are given in the legend on the right
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Figure 59. Normalized fluorescence spectra of LP2 (open chain analogue of
CP2). Solution concentrations (M) are given in the legend on the right.
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It is clear from these two sets of spectra that significant amounts of excimer are only

formed for the linear peptides at millimolar concentrations.

Figures 61 and 61 display the emission spectra for solutions of CP1 and CP2 in DMF at

various concentrations.
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Figure 60. Normalized CP1 fluorescence in DMF. Solution concentrations (M)
are given in the legend on the right.
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Figure 61. Excimer formation of CP2 with respect to concentration. Concentrations
(M) are given in the legend on the right.
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or CP2, there is a small amount of excimer emission at high concentration, although not

as intense as for LP1 or LP2 at comparable concentrations. This behavior may be due to
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the lower solubility of the linear peptide salt. For CP1 however, excimer formation is
completely independent of concentration and occurs at concentrations as low as 107 M,
lending support to the suggestion that CP1 assembles into tubes with pyrene stacking. In
comparison to its linear analogue, more excimer was observed at a 10”7 M concentrations

of CP1 than at 10> M concentrations of LP1

The solvent DMF was chosen for these initial fluorescence studies, since all linear and
cyclic peptides are soluble in it. Fluorescence studies were also performed in acetonitrile,
although due to solubility problems, LP1 and LP2 were not measured (both the linear
and cyclic pyrene-containing peptides were found to be insoluble in alcohols,
halogenated solvents, and water). Figures 62 and 63 show the fluorescence spectra of

CP1 and CP2 in acetonitrile.

Figure 62. Normalized fluorescence spectra of CP1 in acetonitrile. Solution
concentrations (M) are shown in the legend on the right.
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Figure 63. Fluorescence spectra of CP2 in acetonitrile. Solution concentrations
(M) are given in the legend on the right.
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The results of changing solvent systems from DMF to acetonitrile serve to further
accentuate the different behaviors of CP1 and CP2. CP2 again exhibits typical
concentration dependence indicative of a diffusional interaction as the mechanism
responsible for excimer formation. The more enhanced excimer formation observed in
acetonitrile is likely due to the more polar nature of acetonitrile, which promotes excimer
formation. However, CP1 again shows no concentration dependence; the excimer was

observable at concentrations as low as 2 x 10”7 M.

These spectra again support the conclusion that in CP1 nanotube formation occurs and
facilitates pyrene stacking. However, due to the structure of CP2 it is not expected to
form tubes, and there is no pyrene stacking other than that which is expected from a

typical diffusional interaction.
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It is important to note that despite the concentration independent excimer formation,
indicating pre-association of cyclic peptide into nanotubes in CP1, a considerable amount
of monomer emission is still observed. This is a different situation than for pyrene

crystals in which only excimer emission is observed (Figure 64).

Figure 64. Fluorescence spectrum of crystalline pyrene.
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There are several potential explanations for this behavior. First, in nanotubes assembled
from CP1, pyrene groups in adjacent peptide monomers can potentially take up eclipsed

or staggered positions as shown in Figure 65.

Eclipsed positions will potentially lead to excimer formation. However, if the selection

between eclipsed and staggered is random, then a mixture of monomer and excimer
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emission would be expected. It is unclear at this time whether the pi-pi interaction of the
pyrene groups in an eclipsed arrangement would be sufficient to bias nanotube formation
into a predominantly eclipsed assembly. However, given the relative magnitudes of the
interactions (H-bonding vs. m-m stacking) it is likely that a random assembly will be
favored. Ghadiri has studied dimeric cyclic peptides systems where side chains can
assemble in either an eclipsed or staggered arrangement and showed that side chain-side
chain interactions are not sufficiently strong to favor one arrangement or the other. In
fact, through 2D-NMR experiments, it was shown that regardless of the side chains
employed, there is a statistical ratio of 1:1 of the staggered vs. eclipsed conformations
formed. ** (One caveat is that in none of Ghadiri's work were there large n-m interactions

considered.)

Figure 65. The two possible antiparallel stacking arrangements for this system:
pyrene groups eclipsed (left), staggered (right). For simplicity, all functionalities
besides the side chains of interest have been omitted.

Alternatively, from modeling/dynamics studies (see above) the interchromophore pyrene
distance in nanotubes formed from CPI is ~ 4.7 A. This is somewhat larger than the
optimum inter pyrene distance for excimer formation (3.8 A). Therefore, we envision a

situation in which stacked pyrene units in a nanotube of CP1 associate more closely with
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one neighboring pyrene group in the stack than with its other neighbor in the stack,
facilitated by vibrational motion of the pyrene groups. Such a situation would lead to a
decrease in the efficiency of excimer formation, particularly when coupled with staggered

conformations.

In conclusion, based on fluorescence results, there is some degree of preassociation of
pyrene side chains in stacking cyclic peptides. We have offered a variety of possible
reasons as to why excimer emission isn’t exclusively observed. It’s important note that
these systems were designed such that even if assembly took place in a fashion where
staggered conformations were formed, the pyrene units would still stack with phenyl
rings, which would still lead to a delocalized n-cloud, and thus a system capable of long
range charge transfer. Future work will focus on obtaining more detailed structural
information on these peptides, including small angle neutron or x-ray data. In addition,
we are still attempting to engineer an experiment that will allow us to accurately test

charge flow through these cyclic peptide systems.
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3. Materials and Methods

Spectra for all compounds as well as synthetic schemes are provided in Appendix A.

Materials. All materials were used as received from their respective companies. Unless
otherwise noted, reagents and solvents were purchased from Sigma-Aldrich. Amino
acids, peptide resins, and coupling reagents were purchased from Nova Biochem. All
solid-phase coupling reactions were carried out in tech grade DMF purchased from

Pharmco.

General Methods.

Photophysical Measurements. All fluorescence measurements were performed using a
Perkin-Elmer LS-50B spectrophotometer, with the excitation and emission slit widths set
to 5 nm. Absorption spectra were collected on a Shimadzu UV2100 spectrometer. All
absorption and most fluorescence spectra were collected in 1 cm’® spectrasil quartz
fluorescence cuvettes. For highly concentrated samples of pyrene, fluorescence spectra
were collected in a 2 mm narrow path length cell set at 45 degrees to the incident light, in

order to avoid self-absorption by the sample.

Synthetic Procedures. NMR spectra were obtained in an Avance Bruker NMR
spectrometer at 400 MHz for proton and 85 MHz for 13C. Mass Spectra were measured
by the SynPep Corporation in Dublin, CA. Samples were ionized by electrospray

ionization, using acetonitrile as a carrier solvent with ultra-high purity nitrogen as a
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curtain gas. IR spectra were obtained using a Nexus FT-IR spectrometer equipped with
either a transmission or ATR accessory, depending on the sample. Melting points were

obtained on a Mel-Temp melting point apparatus and appear uncorrected.

A. Svynthesis of N-fluorenylmethoxyvcarbonyl-L-1-pyrenyl alanine (Fmoc-

) 117,118,119
Pya’.

(i) 1-(bromomethyl)pyrene.

l‘l‘ Br

1-Pyrenemethanol (10 g, 43.1 mmol) was dissolved in 300 mL of benzene at 40° C. To
this solution, 2.0 mL of phosphorous tribromide was added dropwise and the solution
refluxed for 4 h. The mixture was allowed to return to room temperature, and was
partitioned between 3:2 ethyl ether:water. The organic layer was rinsed 3 times with 50
mL portions of water, and then dried over anhydrous sodium sulfate. The solvent was
removed under reduced pressure to yield 12.15 g of a yellow powder. Yield: 96%; Ry =
0.83 (CH,Cl,, normal phase), 0.95 (1:1 hexane:ethyl acetate, normal phase); mp 270 °C
(dec); '"H-NMR (CDCLy): & 5.26 ( s, 2H, CH,), 7.98-8.85 (m, 9H, aromatic CH); C-

NMR: 6 32.65 (CHy); 123.2-132.3 (aromatic C, pyrene).
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(ii) Diethyl 2-(1-pyrenylmethyl)-2-acetamidomalonate.

g
T
SO%

Diethyl acetamidomalonate (8.7 g, 40 mmol) and sodium hydride (1.2 g, 50 mmol) were
placed in a two necked round bottom flask under nitrogen. The flask was placed in an ice
bath, and 75 mL of anhydrous THF was introduced dropwise via syringe. The solution
was allowed to stir for 5 min, and 2.5 mL of absolute ethanol was added to the flask to
generate ethoxide. To this mixture, 11.8 g (40 mmol) of (i) dissolved in 200 mL of
anhydrous THF was added, and the solution heated to reflux for 18 h. After reflux, the
solvent was removed under reduced pressure, and the crude product partitioned between
200 mL of 1:1 dicloromethane:water in a separatory funnel. The organic fraction was
washed 3 times with water, and dried over anhydrous sodium sulfate. The solvent was
removed under reduced pressure to yield 14.32 g of pale yellow oil. Yield: 83%; Rf = 0.4
(4:1 EtOH:H,0, reverse phase); "H-NMR (CDClI): o 1.42 (t, 6H, CHs), 1.95 (s, 3H,
COCHs); 3.75 (s, 2H, Py-CH,); 4.35 (m, 4H, OCH,); 6.42 (s, 1H, NH); 7.7-8.2 (m, 9H,
pyrene); C-NMR: 12.1 (CHs); 23.7 (COCHs); 32.7 (Py-CHa); 51.6 (OCH,); 121-129

(aromatic C, pyrene); 165.8, 167.8 (C=0).
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(iii) N-Acetyl-DL-1-pyrenylalanine.

Diethyl 2-(1-pyrenylmethyl)-2-acetamidomalonate (12.5 g, 28.9 mmol) was dissolved in
350 mL of 80% aqueous ethanol. To this mixture, 4.87 g (86.7 mmol) of potassium
hydroxide was added, and the solution heated to reflux for 18 h. The solution was
allowed to return to room temperature, and the pH adjusted to 2 with 6M HCI and stirred
for 20 min. The pH was then adjusted to 10 and the solution poured into a separatory
funnel and washed 3 times with 75 mL portions of dichloromethane to remove organic
impurities. The aqueous phase was again acidified to pH 2, and extracted three times
with 100 mL portions of dichloromethane. The organic fractions were combined, dried
over anhydrous sodium sulfate, and concentrated under reduced pressure to yield 9.41 g
of white powder. Yield: 98%; Ry = 0.45 (8:1:0.5 CH,Cl,:MeOH:AcOH, normal phase).

mp 215-218 °C; ESI-MS (m/z) 332.2 [M+H]” (MWeaeq = 332.1).
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(iv) L-1-pyrenylalanine.

N-Acetyl-DL-1-pyrenylalanine (4 g, 13.8 mmol) was suspended in water and the pH
adjusted to 7.8 with 2 M NaOH. Aspergillus Acylase (52 mg per mmol amino acid) was
dissolved in a minimal amount of water, along with a catalytic amount of cobalt chloride
hexahydrate (approx. 2 mg) as cofactor for the enzyme. The enzyme solution was added
to the dissolved amino acid, and agitated on an orbital shaker for 72 h at 38 °C. L-
pyrenylalanine precipitated as a fine white powder, and was isolated from the solution by
centrifugation. The precipitate was washed with water to remove excess salts, and dried
via lyophilization to yield 1.67 g of off-white powder. Yield: 48%; R¢ = 0.73 (8:1:0.5
CH,C1,:MeOH:AcOH, normal phase); mp 205-210 °C (dec); ESI-MS (m/z) [M+H]"

389.2 (MWeqeq 389.4).

(vi) N-Fmoc-L-1-pyrenylalanine.

CIOU

L-1-pyrenylalanine (1.0 g, 3.44 mmol) was suspended in 70 mL of dioxane, along with
1.28 g (3.8 mmol) of 9-Fluorenylmethyloxycarbonyl-N-hydroxysuccinimide (Fmoc-

Osu), and 1.12 mL (0.83 g, 6.9 mmol) of diisopropylethylamine. The mixture was
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agitated for 24 h, and filtered to remove unreacted starting material. The filtrate was
acidified to a pH of 2 with 1N HCI, and the dioxane removed via rotarty evaporation.
The resulting precipitate was filtered, and recrystallized from THF:Heptane to obtain N-
Fmoc-L-1-pyrenylalanine as a tan powder. The product was further purified over normal
phase silica gel with 10:1 CH,Cl,:MeOH as the mobile phase to give 0.85 g of the pure
product. Yield: 48%; Ry=0.23 (17:1 CH,Cl,:MeOH, normal phase); mp 186-190 °C; 'H-
NMR (DMSO-d¢): 6 3.50, 3.87 (d, 2H), 4.03 (m, 3H, overlap of chiral CH and Fmoc
CH,), 4.34 (m, 1H, fluorene bridgehead), 7.05-8.22 (m, 18H, pyrene and fluorene Ar-H);
ESI-MS (m/z) [M + Na]” = 534.0 (MWeaeq 534.168), [M + K]™ = 550.0 (MWesieqa

550.276).

Solid Phase Peptide Synthesis.'*"''

General Procedures. The stepwise growth of peptide chains via solid phase synthesis
has been extensively covered in the literature. Therefore, below we list the general
procedures used for the construction of all peptides involved in this study. All were
constructed using an F-Moc strategy on Wang resins. The completeness of each step was

checked by colorimetric testing (either ninhydrin staining or the Kaiser test).
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Common Solid Phase Peptide Synthesis Reagents.
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The Kaiser Test for Primary Amines. The Kaiser test is a colorimetric test that will
very accurately detect the presence of free amines. It is the test of choice for solid phase
synthesis, because it is necessary to detect very low concentration of free amine on resin
beads. Briefly, a few dried resin beads are placed into a small test tube. To the test tube,

equal amounts (approx 0.1 mL) of 50 M phenol in EtOH, 10 uM potassium cyanide in
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pyridine, and 0.3 M ninhydrin in ethanol are added. The solution should appear pale
yellow. The tube is then placed into an oven at 120 °C for 5 minutes. At the end of 5
minutes, if the beads and solution still appear either clear or pale yellow, the test is
negative, and no free amine is present. However, if the solution and beads appear gray or

blue, then the test is positive, and free amine is present.

Preparation an Activated Amino Acid for Wang Resin Loading. The amino acid of
choice (5 equivalents relative to the resin loading) was dissolved in a minimal amount of
dichloromethane. For some amino acids, small amounts of DMF had to be added to
completely dissolve the sample. To this solution, 5 equivalents of 1,3-
diisopropylcarbodiimide (DIC) were added, along with 10 equivalents of N,N-
diisopropylethylamine (DIPEA). The solution was allowed to stir for 30 min, the solvent
was removed, and the activated amino acid dried under vacuum. This product was used

without further purification or characterization.

Loading of the Wang Resin. The Wang Resin (1 equivalent) was placed in a sintered
glass solid phase peptide synthesizer, and swelled in DMF for 1 h using nitrogen as the
agitating gas. After swelling, the DMF was drained from the resin, and the resin washed
with DMF (or dichloromethane) 3 times. The activated amino acid for Wang resin
loading was dissolved in DMF (approx 10 mL per mmol amino acid) and added to the
peptide synthesizer along with 0.1 equivalent of dimethylaminopyridine (DMAP). The

mixture was allowed to mix for 1.5 h, and the solution was drained from the resin. The
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resin was washed 3 times with DMF, twice with methanol, once with ethanol, and was
dried. A 20 mg sample of the dried resin was taken, and placed into 50 mL of 20%
piperidine in DMF. The solution was stirred for 20 minutes, and 2 mL of the solution
was taken so that an absorption spectrum could be obtained. The relative amount of
amino acid loading was calculated using Beer’s law by measuring the intensity of the
fluorenyl absorption at 285 nm. If the loading was sufficiently high, the resin was
swelled again in DMF, and the peptide synthesis begun. If not, the resin was loaded

subsequent times, until a 90 % or greater loading was obtained.

Deprotection of the N-terminus of peptides. The N-termini of all peptides addressed in
this study were protected by fluorenylmethoxycarbonyl groups (F-Moc). These groups
are base labile and are removed as follows. The resin was washed 3 times with DMF,
twice with ethanol, once with methanol, and again 3 times with DMF. The DMF was
drained, and 50 mL of 20% piperidine in DMF were added and allowed to mix for 20
min. The piperidine solution was drained from the reaction vessel, and the resin again
washed with DMF, methanol, and ethanol. After washing with ethanol, a few resin beads
were taken and tested for the presence of primary amines. Once primary amines were
observed, the resin was washed again with DMF, and was ready for addition of the next

amino acid.

Coupling of Amino Acids to the Resin Bound Chain. The N-protected amino acid of

choice (5.0 eq relative to the resin loading) was dissolved in DMF, along with 5 eq of
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(benzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate (PyBOP), 5 eq of
1-hydroxybenzotriazole hydrate (HOBT) and 10 eq of N,N-diisopropylethylamine. This
solution was added to the washed, deprotected resin, and allowed to mix for 2 h. At this
point, the reaction mixture was drained from the resin, the resin washed as previously
described, and the Kaiser test performed. A positive Kaiser test (blue solution) was
indicative of coupling being incomplete. In such cases, the coupling procedure described
above was repeated. A negative Kaiser test (clear/yellow solution) was indicative of
completed coupling. In this case, the resin was again washed with DMF, and the N-

terminus of the newly coupled amino acid deprotected as previously described.

Cleavage of the Linear Peptide from the Resin. After addition of the final desired
amino acid, the N-terminus was deprotected, the resin washed with DMF, ethanol, and
was dried under vacuum for 3 h. To the dry solution, a mixture of trifluoroacetic acid
(TFA), triisopropyl silane (TIS) and water was added (9.5:0.25:0.25 respectively, 10 mL
per mmol amino acid). The resin was stirred in the concentrated acid solution for 2.5 h,
and was then filtered and concentrated in vacuo. The crude peptide was then precipitated

by the addition absolute ether to the acidic medium.

Cyclization of the Linear Peptide. Linear peptide (1 eq) was dissolved in DMF (2 mL
per mg linear peptide) at 0 °C. To this solution, 2.5 eq O-(7-Azabenzotriazol-1-yl)-
N,N,N’,N’-tetramethyluronium hexafluorophosphate (HATU), 2.5 eq of 1-Hydroxy-7-

azabenzotriazole (HOAT), and 10 eq of DIPEA were added. The solution was stirred at
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0 °C for 3 h, and then at r.t. for 8 h. The solvent was removed via rotary evaporation, and
the crude residue dissolved in ethyl acetate. The residue was washed 3 times with
saturate sodium bicarbonate, and twice with 2 M citric acid. The organic fraction was

dried over sodium sulfate, and the solvent removed under reduced pressure.

Cyveclic Peptide Synthesis.

Linear peptide lin[-aib-pya-aib-phe-],. Lin[-aib-pya-aib-phe-], was synthesized via the
described methods in a 65% overall yield relative to the resin loading. Crude linear
peptide was purified by flash column chromatography on silica gel with 17:1
CH,Cl,:MeOH as the mobile phase. Peptide purity was assessed using reverse phase
HPLC with 6:4 CH3CN:0.1% TFA as the mobile phase. Mp = 158-162 ‘C  ESI-MS

(m/z) [M+H]'=1195.4 (MW_4icq 1195.566).

Cyclic peptide cyclo[-aib-pya-aib-phe-],. Lin[-aib-pya-aib-phe-], was cyclized via the
described procedure, and was purified over silica gel with a 17:1 CH,Cl, mobile phase.
Peptide purity was assessed using reverse phase HPLC using the same conditions as for
its linear analogue. Mp= 165-168 °C ESI-MS (m/z) [M+H]" = 1177.6 (MW_,aeq

1177.556), [M+Na] = 1199.8 (MW_aeq 1199.538).

Linear peptide lin[-ala-pya-ala-phe-],. Lin[-ala-pya-ala-phe-], was synthesized by the

methods described with an overall yield of 55% relative to the resin loading. The crude
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linear peptide was purified over silica gel with a 17:1 CH,Cl, mobile phase. Mp= 170-
175 °C MS (ESI) (m/z) [M+H]" = 1139.6 (MW_aiea 1139.504) IR (ATR): Amide I band:

1629 cm™', Amide II band: 1529.27.

Cyclic Peptide cyclo[-ala-pya-ala-phe-],. Cyclo[-ala-pya-ala-phe-], was produced by
solution phase cyclization of its linear analogue by the method described earlier.
Purification was performed using preparative TLC with 17:1 CH,Cl, as the mobile phase.
Before the TLC plate could be run, the sample had to be spotted onto the plate with
DMF, due to solubility concerns. Mp= 178-180 °C MS (ESI) (m/z) [M+K]" = 1159.6
(MW_aieq 1159.583) IR (ATR): Amide I band 1626.25 cm'l, Amide II band: 1512.39,

1504.36

Linear Peptide lin[-ala-pya-]4. Lin[-ala-pya-]4 was synthesized by the described
methods in a 40% overall yield relative to the resin loading. The linear peptide exhibited
exceptionally poor solubility, making purification very difficult. ESI-MS (m/z)

[M+H]=1389.0 (MW_yjcq 1388.6)
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C. CONSIDERATIONS FOR FUTURE WORK

1. Cyclic Peptide Nanotubes

The cyclic studies presented are very preliminary since pyrene stacking is not yet
optimized, and a definitive experiment for the measurement of charge and energy transfer
in these systems has not yet been devised. In this section, suggestions will be presented
as to how to maximize pyrene aggregation in these systems, and how to incorporate

peptide nanotubes into systems that can be tested for charge and energy transfer.

Optimizing pyrene aggregation can be accomplished synthetically. It was suggested that
the monomer fluorescence observed in the current systems is due to staggered
conformations in the nanotubes. This situation could be eliminated by incorporating four

pyrenyl side chains into the cyclic peptide. (Figure 66)

Figure 66. The structure and possible stacking arrangements of cyclo[-D-Ala-L-
Pya-]4.
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Unlike the possible stacking arrangements for the cyclic peptides already studied (Figure
65), this particular cyclic peptide can only adopt structures in which the pyrene side
chains stack. Therefore, every pyrene group in the stack is capable of forming excimer.
We would expect that fluorescence spectra of this system may contain proportionally
more excimer emission than the systems already studied and discussed, thereby
confirming that the less intense excimer emission observed for the latter were indeed due

to the two different possible stacking arrangements shown in Figure 65.

To this end, the linear analogue of this peptide has already been synthesized and
characterized. The cyclic form has not yet been completed due to characterization and
purification problems encountered. Specifically, the tetrapyrenyl peptide is very
insoluble in most organic solvents due to the very large non-polar character of its bulky
side chains. Furthermore, the cyclization is a more sterically hindered process as either

the C or N terminus of the linear peptide must contain a bulky pyrene group.

For a determination of the utility of these peptide nanotubes as conduits for energy or

charge conduction characterization of their average length and state of intertube

aggregation is desirable. To this end we suggest incorporating these assembled
122,123

monolayer on gold as previously discussed by Ghadiri and testing for photonic

conduction as shown in Figure 67.
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Figure 67. A pictorial representation of two small cyclic peptides on gold. The
blue peptide tubes will each be substituted with a series of donor chromophores.

In Figure 67, the bare gold surface will be exposed to a solution containing cyclic peptide
monomer units within a supporting matrix (typically an alkanethiol). Each of these
monomer units would be substituted with chromophores that could be selectively excited
to an excited state with a higher energy that that of pyrene. The amount of cyclic peptide
deposited will be dependent initially upon the chain length of the supporting matrix, and
therefore is controllable. The thickness of the deposited layer can be measured via
ellipsometry. Once this layer is assembled, a second solution containing the tetrapyrenyl
peptide (Figure 66) will be exposed to the surface allowing assembly on top of the donor

layer. (Figure 68)

Figure 68. The donor layer (light blue) capped with the tetrapyrenyl cyclic

peptide (light green).
—— pmm——
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The deposited layer of tetrapyrenyl cyclic peptides should have a thickness dependent on
the length of exposure to the solution. The thickness of this layer can again be measured
via ellipsometry. A final capping unit will then be deposited. This cap will be a cyclic
peptide that contains an energy accepting chromophore and four alternating N-methyl
alanine units. (The N-methylated cyclic peptide can only bind from one face of the cyclic
peptide ring, and therefore will form a cap that is exactly one molecule thick.) (Figure

69)

Figure 69. The fully assembled system for long range transfer studies including a
capping layer (red).
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The identity of the acceptor chromophores has several restrictions. It cannot absorb at
the same wavelength as the pyrene or donor groups, it must have a lower excited state
energy than that of pyrene, and it must be emissive in either the singlet or triplet state. If
all of these requirements are met, then the tetrapyrenyl cyclic peptide can potentially
undergo long range energy transfer by exciting the donor layer, and monitoring acceptor

emission. A control experiment would involve replacement of the pyrene layer with a
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non-chromophore-containing cyclic peptide. Such an experiment should show no
emission from the acceptor when the donor layer is excited.

It may be preferable to build a system similar to that described above, in which the initial
donor layer is not assembled within the alkane thiol matrix. Using a matrix, raises
potential difficulties if the cyclic peptides contain bulky or branched side chains. Also, a
mixed monolayer can be difficult to characterize by contact angle and ellipsometry.
These problems can likely be avoided by depositing the initial donor layer based on
carboxylic acid dimer interactions with an appropriately functionalized gold surface.

(Figure 70)

Figure 70. Peptide nanotube monolayers based on carboxylic acid dimers. Recall
from above that the red layer is an acceptor layer, the green is the pyrenyl peptide
layer, and the blue is a donor layer.
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This system offers an additional advantage over the matrix-based systems in that the
tubes will be deposited onto a SAM and therefore will possibly possess more order than

in a matrix. The non-covalent interaction in this case, carboxylic acid dimers, is an
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example only, and can be replaced by a variety of binding motifs including the metal-
ligand systems described in previous sections.

A similar system can be envisioned for the testing of photocurrent generation. As
demonstrated previously, photocurrent generation can occur through an alkyl thiolate
monolayer so long as there is an appropriate photoactive cap. Therefore, it seems
reasonable that a pyrenyl peptide nanotube tethered to the gold surface may undergo

photocurrent generation upon irradiation in the presence of a suitable electron acceptor.

Finally, it is desirable to test the ability of cyclic peptides to conduct charge. We have
suggested that charge will conduct through these systems if there exists a stacked array of
aromatic molecules. There are multiple ways to test this. The first would involve the

construction of the two cyclic peptides shown in Figure 71.

Figure 71. The two cyclic peptides proposed for the testing of charge transfer.
The Glutamic Acid residues in each allow the peptides to be tethered to the
surface via the interaction shown in Figure 70.
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These peptides are chosen as targets because they differ only in the amount of pi-pi
interactions they will experience upon assembly. Furthermore, these peptides are less
demanding synthetically because large amounts of pyrenyl alanine are not required.
(Since no optical absorption is needed, phenyl groups will be used. However, these
should still provide m-m interactions). To test these systems for charge transfer,
multilayers of each peptide will be constructed based on the assembly presented in Figure
70. At this point, there are several possible options for testing charge transfer
capabilities. The simplest experiment will be to perform cyclic voltammetry and
impedance measurements on them to determine if charge flows through either system.

Ideally, conducting will be most efficient in the heptabenzyl cyclic peptide.

A second option for testing charge transfer ability will be to cap each multilayer with a
single photoactive head group. Both systems will then be irradiated and the photocurrent
produced measured with the expectation that the heptabenzyl system will produce more
photocurrent than the alkyl cyclic peptide, due to the conduction facilitated by the aryl

stacks.

An alternative approach for determining conducting ability would be an investigation of
multilayer surfaces via STM. Initially, studying films of the cyclic peptide systems
illustrated in Figure 71 could give an indication as to whether delocalized n systems will
indeed enhance conduction in peptide nanotubes. A more interesting study would

involve STM measurements of a surface consisting of tetrapyrenyl or octabenzyl
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substituted cyclic peptides deposited within an alkane thiol supporting matrix. Probing
these surfaces via STM should allow for a determination of whether the tubes are of

higher conductivity than the surrounding insulating alkane thiol matrix
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2. Pyrenyl Functionalized Diketopiperazines

The diketopiperazine architecture offers a second option for arranging pyrene in an
aggregated fashion based on self-assembly. The diketopiperazine assembly motif is
based on a two-dimensional hydrogen bonded network between amide functionalities

(Figure 72)."**

Figure 72. Self-Assembly of Diketopiperazines.
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Based on this structural motif, an ordered array of pyrene molecules can be assembled by
substituting the R group in Figure 72 with pyrene. This system may share similar

characteristics to that which is expected for pyrene containing cyclic peptide nanotubes.

To this end, a cyclic diketopiperazine containing pyrene has been synthesized (see
Appendix A). Unfortunately, crystallization of the diketopiperazine yielded small
amounts of minute crystals which were unsuitable for obtaining structural information,

and therefore additional testing was not carried out. Future work will focus on the
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production of the aforementioned diketopiperazine on a larger scale, and the subsequent

crystallization.
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3. Multilayer Thin Films on Gold

(i) Creating Films with Increased Order

The construction of multilayer thin films on gold that function as molecular wires and
photocurrent generators has been previously discussed. In both systems, it was observed
that the behavior of the films begins to become unpredictable after the deposition of
between six and ten layers. These variations likely arise from increasing disorder within
the layers upon multiple depositions. It may be possible to prevent or lessen disorder by
changing the linker molecule to one that imparts order within the linking layer, either

through covalent or non-covalent interactions. A simple linker is shown in Figure 73.

Figure 73. Proposed linker molecule.
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It is well documented that self-assembled monolayers on gold are extremely ordered for
alkyl chains of six or more carbons due to van der Waals interactions between chains.
The linker in Figure 73 seeks to take advantage of this ordering capability; i.e, increasing
the alkyl chain length should maximize van der Waals interactions between linkers, thus
giving each layer a greater amount of order. For both photocurrent and wire experiments,
charge is believed to flow through these systems via a tunneling mechanism. Therefore
the increased distance between layers may decrease tunneling efficiency (although we
note that the initial tunneling event takes place through a distance of roughly 10 A). A

proposed synthesis of this linker is shown in Figure 74.

Figure 74. Proposed synthesis of linker.
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Varying the chain length incorporated into the linker molecule may also provide valuable

information about how the length of the linker effects charge transfer efficiency.
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With this in mind, we have already synthesized an acetylene containing analogue of the
tetracarboxy dipyridine linker molecule, by coupling under Sonogashira conditions

(Figure 75).

Figure 75. Synthesis of 4-[(2,6-dicarboxypyridin-4-yl)ethynyl]pyridine-2,6-
dicarboxylic acid via a Sonogashira Coupling reaction.
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A drawback of this system is its insolubility in most organic solvents. Although it is
sparingly soluble in DMSO, we have yet to form ordered multilayers incorporating this

linker unit.

To impose more order within the linker layer, it may also be possible to construct a linker
that can be crosslinked following assembly, by chemical or photochemical mechanisms.
An example of a linker molecule that can be chemically crosslinked is shown in Figure

76, along with its proposed synthesis.
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Figure 76. Proposed synthesis of 4-[2-(2,6-dicarboxypyridin-4-yl)-1-
mercaptoethyl]pyridine-2,6-dicarboxylic acid.
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This linker unit can be used to assemble multilayers, similar to that which was discussed
in previous sections. However, once the multilayer is assembled, exposure to either O, or
I, will result in an oxidative coupling between thiol groups in adjacent molecules in the

linker layer to yield bridges (Figure 77).

Figure 77. Chemical crosslinking of multilayers.
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We note that while thiol functionalities may bind metal ions during multilayer assembly,
the metal-dicarboxypyridine binding is expected to predominate, based on a higher

binding constant.

Photochemical crosslinking is a second possible route to stabilization. There are
numerous examples of photoreactive crosslinkers used in the polymer industry. One

system that could be used in the application is shown in Figure 78.

Figure 78. Photochemical crosslinking of multilayers.
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We have chosen this system as a possible target largely because the photochemistry of

anthracene within self-assembled monolayers has been established previously.'” The
synthesis of this linker should be analogous to that illustrated in Figure 74. In addition to
imparting order on the multilayers, the amount of crosslinking can be conveniently

measured by either absorption or fluorescence spectroscopy.”’
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Whether additional order is imparted within multilayers non-covalently or covalently, it
is clear that steps need to be taken that will allow for the construction of thin films that
remain ordered at greater thicknesses. Greater thicknesses and ordering will allow for the
construction of longer molecular wires, and will likely make the films considerably more

robust.
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(ii) Optimizing Photocurrent Generation From Thin Films

The photocurrent generation work carried out to date has served as a proof-of concept.
The quantum efficiency of this system was roughly 1%, which is considerably less than
the efficiencies seen in inorganic solar cells. Therefore, the system needs to be optimized

in order to provide increased efficiency.

The obvious first step in this process is to substitute the chromophore used. While pyrene
absorbs fairly strongly in the UV, chromophores with larger extinction coefficients and
broader spectral coverage, particularly in the visible range will potentially yield higher
efficiency. To this end, efforts have focused on incorporation of a porphyrin unit into the

multi-layers.

In addition to changing the chromophores used, it may also be useful to determine if the
alkyl chain length used in the formation of the initial monolayer has any effect on the
overall efficiency of the system. Assuming that charge transfer takes place via tunneling,
then the efficiency will be dependent on the distance between the gold surface and the
acceptor. At shorter chain lengths (six carbon chain), a greater overall efficiency than

that observed for a longer chain (10 or 12 carbon chain) may be observed.
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(iii) Photoswitchable Surfaces

Our initial work in designing a photoswitchable surface has provided the foundation for a
great deal of future work. In the immediate future, we will focus on identifying a ligand
that is capable of reversible switchability on the surface, and which, as a result will have
potential utility in microfluidics applications. With a transient or switchable ligand,
irradiating a pattern on thin films will create microchannels. Theoretically, our initial
work is capable of this to some degree. However, a reversible system will allow creation

and erasure of microchannels at will.

There are several issues that need to be addressed in order for such a system to be
realized. First, the ligand chosen must be able to bind metal(Il) ions. For example, we
have seen that cis-dipyridyl ethylene binds tightly to a multilayer capped with copper
ions whereas cis-stilbene does not. The ligand chosen must also be photo-isomerizable
with two thermally stable states that are non or weakly absorbing in the visible range, (so
that a formed channel cannot be reversibly erased under normal laboratory conditions).
The ligand must also undergo reversible photoisomerization. Finally, the ligand chosen
must be of an appropriate size so that ordered packing can take place within the

multilayer.

Keeping these design characteristics in mind, we have investigated spiropyrans as

possible ligands (Figure 79).
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Figure 79. The structure and conformations of spiropyran. The open ring form is
called the “merrocyanine form”, and is deeply colored unlike the colorless
spiropyran conformation.

Spiropyrans are known to chelate metal ions and also have well established photophysical
characteristics.'*® It is our belief that switching from the spiro to merrocyanine form
could lead to a drastic change in wetting behavior because the latter is a zwitterion.
However, to date, we have had little success in depositing multilayers containing these
molecules, possibly due to their size, and/or their lack of ability to bind metal ions at the

spiro bridge.

A potential alternative to spiropyrans can be found in the fulgide family of compounds.
These compounds also have well established photochemistry due to their use as
photochromics.'”” Also, fulgides possess a succinimidyl functionality that resembles the
binding site in dicarboxypyridines (Figure 80). Besides possibly being able to bind
metals and undergo photoisomerization, the fulgide geometry appears to be relatively
small, thus making it plausible that it can be incorporated into ordered layers.
Additionally, its ring-opened form should be more stable than the merrocyanine form of

spiropyrans, as charge recombination isn’t a driving force towards the closed form.
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Figure 80. A typical fulgide: the succinimidyl group could take place in
octahedral binding with a metal ion.
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We are also very interested in identifying a photolabile ligand that can be selectively
removed from the surface upon irradiation (Figure 81). This aspect of the work is
particularly exciting, since the multilayer would essentially act as a photomask for
templated growth of thin films. Thus, a multilayer could be constructed that is terminated
with the photolabile surface group. A pattern can then be written into the surface by
irradiating with a UV laser. By rinsing, the irradiated section can be removed leaving
copper ions exposed to the surface. This by itself would be very useful for creating micro
channels, however it could serve an additional purpose. Assuming the ability to
selectively remove areas of the surface to expose copper, further deposition on the copper
with different ligands will add different functionalities onto different areas of the surface.
A potential application would be the incorporation of many different devices onto
different areas of a single surface. In this sense, it may serve as a template for interfacing
different devices with one another, as they can be deposited within close proximity to one

another.
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Figure 81. A non-covalent approach towards lithography. A photolabile ligand
(green) is irradiated and washed off exposing a fresh surface of copper ions.

Those copper ions can then be selectively capped with anything that binds metal
(light blue).
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An excellent family of compounds that could possibly serve as photolabile ligands are
azo compounds (Figure 82). Azo compounds are well known to undergo photocleavage
upon n—> w* excitation. Once the cleavage takes place, molecular nitrogen is quickly

evolved along with radical species.

Figure 82. Some commercially available azo compounds that could function as

photolabile ligands.
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These compounds are especially desirable, as it is reasonable to assume that they will
complex with metal ions through their azo functionalities based on the results from
systems containing dipyridyl ethylene. Azobisformamide (Figure 82, left) is an
especially attractive candidate, as it is highly likely that it will bind metal ions either
through the azo or amide nitrogens. Industrially, it is used as a blowing agent and is well

known for its complete decomposition both thermally (200° C) and photochemically.128
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(iv) Gold Nanoparticles

In addition to the work we have presented on macroscopic surfaces, gold nanoparticles
are also important surfaces to consider. We have previously noted that dipyridyl
ethylene-capped thin films are photoswitchable. In addition, when the dipyridyl ethylene
system is photochemically switched to the trans state, the underlaying copper ions
become exposed to the solution as evidenced by impedance and cyclic voltammetry
measurements. This behavior suggests the use of such surfaces as catalysts since
numerous chemical reactions involve copper (II) as catalysts. Assuming it is possible to
selectively expose copper (II) to a solution via irradiation, then Cu(II) catalyzed reactions

could potentially be switched on and off by exposure to light.

Work with gold nanoparticles is well established now, and as a general rule, assembly on
nanoparticle surfaces is a facile as on macroscopic gold surfaces. Besides catalysis,
nanoparticles may be useful in constructing photocurrent generating thin films. The
photocurrent generation we observe is dependent upon diffusion, as the electron acceptor
used (paraquat) is in solution. Nanoparticles provide a unique construct, as the
photocurrent generator itself is actually suspended in solution as well, and more likely to
be in contact with the electron acceptor. As with catalysis, the surface area of the
nanoparticles will allow for a much greater amount of photocurrent to be generated per

unit area.
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4. Self Assembled Monolayers on Quartz

Our group has recently synthesized fluoroionophores for incorporation into bulk

129,130,131
membranes for blood analyte measurements.'**!?

It is our intention to incorporate fluoroionophores into quartz SAMs, as the surface can
then function as an optical sensor. To start, we have constructed a disubstituted diazal 8-
crown-6 (Figure 83) that undergoes PET fluorescence quenching, but is a relatively non-
specific ion binder. This work seeks to provide proof of concept that self-assembled
monolayers on quartz can function as sensors. However, bulk membranes impede
diffusion of the analyte from the solution to the fluoroionophore. For this reason it is
desirable to create a surface bound array of fluoroionophores.  While surface
modification of gold is facile, both absorption and reflectivity of the gold substrate can
interfere with optical measurements. For this reason we have started in investigate quartz
surfaces as substrates for fluoroionophores. We have constructed anthryl diaza 18-
crown-6 (Figure 83) that acts as an off-on fluorescence switch upon exposure to alkali
metal ions (K', Na") although it is a relatively non-specific ion binder. This work seeks
to provide proof of concept that self-assembled monolayers on quartz can function as

SENSOrS.
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Figure 83. The disubstituted diaza crown used to form monolayers on quartz.
The molecule can be tethered to a quartz surface via the trichloro silyl

functionality.
O SiCl,

The diazacrown was first tested in solution for response to potassium ions. The resulting
spectra are shown in Figure 84, and indicate a direct correlation between ion
concentration and fluorescence intensity. Although diazacrowns are known to bind
potassium ions, this study confirms that substituting the crown ether with a long alkyl

chain does not alter the conformation or prohibit binding.

Monolayers of the disubstituted diaza crown were formed by exposing a clean quartz
surface to a 10 mM solution of the crown in hexadecane for 20 h. Monolayer formation
was monitored via changes in the contact angle. When no further change was evident in
the contact angle, the slides were removed from the crown solution, and then sonicated in

water and ethanol to clean any non-bound crown from the surface.
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Figure 84. Fluorescence intensity of the disubstituted diaza crown in DCM with
respect to K™ concentration. The least intense fluorescence spectrum corresponds
to 0 uM [K], with subsequent spectra increasing in 0.5 M increments. Each
solution contains 0.01 uM Benzyl trimethyl ammonium hydroxide (BTMAH) to
ensure deprotonation of the crown.
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Initially, the monolayers were exposed to a solution of BTMAH to ensure deprotonation.
Unfortunately, this led to the destruction of the monolayer. Therefore, fluorescence
experiments were carried out in the absence of base for all monolayers. Currently, we are

investigating other options for an organic base that will not harm the monolayers.

Fluorescence experiments were carried out via front face reflectance from the quartz
slides. As this experiment sought to illustrate proof-of-concept, exposure to potassium
ions was achieved by immersing the quartz in a concentrated solution of potassium

acetate in carbon tetrachloride. After immersion, a fluorescence spectrum was collected,
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the sample was washed and sonicated with water, and the fluorescence spectrum was
obtained again. For two cycles of this process, the fluorescence output of the monolayers

was well behaved (Figure 85).

Figure 85. Disubstituted Diaza crown monolayer on quartz fluorescence
intensity with respect to K™ exposure.
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Upon exposure to a concentrated solution of potassium acetate, a 10 fold increase in the
fluorescence output of the layer was observed. Upon continuous flushing with deionized
water, the potassium ion could be washed out of the sensor, and the fluorescence returned
to its baseline value. A second exposure to potassium ions again causes a 10 fold

increase in the fluorescence output of the layer.

It is important to note that these experiments were not overly precise, with a great amount

of fluctuation in the fluorescence measurements over the measurement of many samples.
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Nevertheless, this work has demonstrated the ability to measure the optical properties of a
monolayer, which in turn, leads us to believe that photochemical reactions will also be
possible on quartz monolayers. It has also served to illustrate that fluoroionophores can
be self-assembled on quartz substrates, and that they can possibly still perform as sensors.
Future work will focus on increasing the consistency of the results obtained previously,

and to incorporate ion specific fluoroionophores into a thin film.
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5. Materials and Methods

The synthesis of linear peptide [-L-Pya-D-Ala-],; was previously described with the
syntheses of all other cyclic peptides. Spectra for all compounds, as well as synthetic
schemes, are included in Appendix A.

Materials. All materials were used as received from their respective companies.

Unless otherwise noted, reagents and solvents were purchased from Sigma-Aldrich.

General Methods.

Monolayer Preparation on Quartz. Quartz monolayers were formed by first cleaning a
1 cm’ piece of quartz in piranha solution followed by KOH. The surfaces were washed
with distilled deionized water after treatment with each cleaning solution. A 0.1 M
solution of 7N-Anthrylmethyl, 16N-decyl(10-trichlorosilyl), 1,4,10,13-tetraoxa-7,16-
diazacyclooctadecane was prepared in DMSO. Although traditionally hexadecane is
required, our disubstituted crown was not soluble in that medium. Monolayers were
grown by exposing the clean quartz substrate to the 0.1 M DMSO solution, and heating at
40° C for 8 h. Completeness was monitored via contact angle measurements, and via

fluorimetry.

Photophysical Measurements. All fluorescence measurements were performed

using a Perkin-Elmer LS-50B spectrophotometer. Solution studies were performed in a 1
cm’” quartz fluorescence cuvette with the emission and excitation slits set at 5 nm. The
solutions were not degassed. Monolayer fluorescence was monitored via front face

reflectance with excitation and emission slits set to 10 nm.
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Synthetic Procedures. NMR spectra were obtained in an Avance Bruker NMR

spectrometer at 400 MHz for proton and 85 MHz for 13C. Mass Spectra were measured
by the SynPep Corporation in Dublin, CA. Samples were ionized by electrospray
ionization, using acetonitrile as a carrier solvent with ultra-high purity nitrogen as a
curtain gas. IR spectra were obtained using a Nexus FT-IR spectrometer equipped with
either a transmission or ATR accessory, depending on the sample. Melting points were

obtained on a Mel-Temp melting point apparatus and appear uncorrected.

A. Svynthesis of 3.6-di(1-pyrenylmethvl)piperazine-2.5-dione (Diketopiperazine

synthesis).

(i) L, 1-pyrenyl alanine methyl ester.

L, I-pyrenyl alanine (2 g, 3.45 mmol) was dissolved in 250 mL of methanol in a three-
necked flask. Hydrogen chloride gas was then bubbled through the flask for a period of 5
h. The solvent was removed under reduced pressure to yield 1.02 g of the off-white
product. Yield: 97%; 'H-NMR (CDCl3) 8 2.03 (m, 2H, pyrene-CH>); 3.55 (m, chiral

CH), 3.78 (s, CH3), 7.5-8 (m, pyrene H’s).
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(i) Methyl 2-{[2-(Fluorenemethoxycarbonylamino)-3-pyrenylpropyl]amino}3-
pyrenylpropanoate (FMoc-Pya-Pya-OMe Dipeptide).
0
%% B
HN
e

HN
l|7Moc

N-Fmoc 1-pyrenyl alanine (1.7 g, 3.32 mmol) was dissolved in a 100 mL of 9:1
DCM:DMF. To this mixture, 1 g (3.30 mmol) of L, 1-pyrenyl alanine methyl ester was
added, along with 3.44 g PyBop (6.60 mmol), 0.792 g HOBT (6.60 mmol), and 3.20 mL
of DIPEA (19.8 mmol). The solution was stirred at room temperature for 18 h, at which
point the solvent was removed via rotary evaporation. The crude residue was dissolved
in ethyl acetate, and washed 3 times with 25 mL portions of 2.5% Citric Acid, and 3
times with saturated sodium bicarbonate. The organic phase was dried over anhydrous
sodium sulfate, and the solvent removed to yield 1.99 g of a yellowish oil. Yield: 76%.

No spectral data was obtained due to problems with solubility.

(iii) 3,6-di(1-pyrenylmethyl)piperazine-2,5-dione (Dipyrenyl diketopiperazine).

' ! O

A 1.5 g sample (.00188 mmol) of the product obtained in the previous step was dissolved

ZT

Tz
o

in 50 mL of 20% piperidine in DCM and stirred for 20 minutes at r.t. to deprotect the N-

terminus. The solvent was then removed via rotary evaporation, which resulted in a
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majority of the crude free amine product cyclizing due to the elevated temperature. The
crude product was then dissolved in n-butanol, and refluxed for an additional 1.5 h to
drive the cyclization reaction to completion. The crude product precipitated out of
solution as it was formed, and was collected via vacuum filtration to yield 326 mg of

yellow product. Yield: 32.6%; ESI-MS (Negative Mode) (M-1)" = 541.3 (calc.541.6).

B. Synthesis of 7N-Anthrylmethyl, 16N-decyl(10-trichlorosilyl), 1.4,10,13-tetraoxa-
7.16-diazacvclooctadecane (Disubstitued Diaza 18-crown-6)

(i) 10-bromo-1-decene.
/\/\/\/\/\ .

In a dry flask, 5 g (32.1 mmol) of 9-decen-1-ol was dissolved in 150 mL of benzene. To

T

this mixture, 2.06 mL (11.4 mmol) of PBr; was slowly added, and the reaction heated to
reflux for a period of 2 h. The resulting mixture was poured into a separatory funnel
containing 450 mL of 3:2 ethyl ether:water. The organic phase was washed three times
with saturated sodium carbonate, and was dried over anhydrous sodium sulfate. The
product was concentrated via rotary evaporation to yield 6.85 g of a clear oil. Yield: 97
%; '"H-NMR (CDCl3) & 1.357 (m, 8H, alkyl CH,); 1.714 (m, 2H, CH,CH); 1.818 (m, 2H,
CH,CH,CH,Br); 2.032 (m, 2H, CH,CH,Br); 3.39 (t, 2H, CH,Br); 4.944 (d of d, 2H,
CH,=CH); 5.816 (m, 1H, CH,=CH); >C-NMR & 25.836; 28.116; 29.402; 29.449; 30.618;
30.684; 41.518; 52.361; 114.591; 139.523; GCMS retention time 3.5 min at 200° C; (m/z)

[M]"=220.0 MW_qieq 220).
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(ii) 7N-Anthrylmethyl, 1,4,10,13-tetraoxa-7,16-diazacyclooctadecane.

O/_\O

¢ RO

O, dQ
A 2g (7.63 mmol) sample of 1,4,10,13-tetraoxa-7,16-diazacyclooctadecane was dissolved
in 200 mL of acetone along with 2.94 g (15.26 mmol) of cesium iodide, and 0.198 g (.763
mmol) of cesium iodide. The solution was heated to reflux, and 1.72 g (7.63 mmol) of
anthryl chloride dissolved in 50 mL of acetone was added drop wise via an addition
funnel over a period of 3 h. The reaction mixture was refluxed for an additional 4 h, and
the mixture filtered hot to remove cesium carbonate. The acetone was removed via
rotary evaporation, and the crude mixture dissolved in ethyl acetate. The organic phase
was washed three times was 2.5% citric acid, and dried over anhydrous magnesium
sulfate. The crude product was concentrated by rotary evaporation, and recrystallized
from methanol to yield 1.6 g of a fine yellow powder. Yield: 46.3%; 'H-NMR (CDCls) &
2.902 (m, 8H, CH,;N crown); 3.62 (m, 16H, CH,O crown); 4.613 (s, 2H, NCH;-
anthracene); 6.98-8.53 (m, 9H, anthracene); BC-NMR § 49.271; 49.371; 53.678; 70.155;
70.266; 70.413; 70.932; 124.803-131.36 (anthracene); ESI-MS (m/z) [M+Cs]" = 585.1;

[M+1]"=453.2 (MW_acq 585.5 and 453.6 respectively)
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(iii) 7N-Anthrylmethyl, 16N-dec-10-enyl, 1,4,10,13-tetraoxa-7,16-
diazacyclooctadecane.

m

O

& (i
OO

A 1.5 g (330 mmol) sample of 7N-Anthrylmethyl, 1,4,10,13-tetraoxa-7,16-
diazacyclooctadecane was dissolved in acetone along with 1.39 g (6.60 mmol) of cesium
carbonate, .094 g of cesium iodide, and 0.798 g of 10-bromo-1-decene. The reaction
mixture was heated to reflux for a period of 4 h, and the solution filtered hot to remove
excess cesium salts. The filtrate was concentrated by rotary evaporation, and the crude
mixture recrystallized from chloroform and hexane to yield 1.05 g of light yellow
powder. Yield: 54%; 'H-NMR & 1.346 (m, 14H, alkyl chain CH,); 2.047 (t, 2H, CH,-
CH,-CH>-N); 2.902 (m, 8H, CH;N crown); 3.602 (m, 16H, CH,O crown); 4.569 (s, 2H,
N-CH;-anthracene); 4.942 (m, 2H, CH,=CH); 5.818 (m, 1H, CH=CH,); 7.420-8.561 (m,
9H, anthracene); "C-NMR & 21.886; 26.128; 29.775; 29.944; 33.023; 33.188; 49.505;
52.338; 54.228; 70.532; 70.072; 70.831; 76.955; 114.543; 125.215; 143.584; ESI-MS
(m/z) [M+Cs]" =723.2; [M+1]" = 591.3 MWeaea = 723.7 and

590.836 respectively)
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(iv)  7N-Anthrylmethyl, 16N-decyl(10-trichlorosilyl), 1,4,10,13-tetraoxa-7,16-

diazacyclooctadecane.

C)
(‘,13Si\/\/\/\/\/\ 0 O O
A 0.5 g (0.85 mmol) sample of 7N-Anthrylmethyl, 16N-dec-10-enyl, 1,4,10,13-tetraoxa-
7,16-diazacyclooctadecane was dissolved in 50 mL of carbon tetrachloride. To the
solution, 0.313 mL (2.55 mmol) of trichlorosilane was added, and the reaction mixed at
room temperature for a period of 6 h. Excess trichlorosilane and carbon tetrachloride
were removed under reduced pressure to yield 610 mg of crude product, which was then
recrystallized in small amounts from chloroform. The product was not spectroscopically
examined to any degree due to literature reports that the product was highly unstable, and

need not be characterized.
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E. APPENDICES

1. Reaction Schemes and Spectroscopic Data
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Scheme 1. Synthesis of N-FMoc L, Pyrenyl Alanine

O 0O
O‘ PBr; in benzene O‘ o~ H A~ NaH/EtOH/THF*
OH : Br T (0] (0] - o
reflux 30 min

H,N\ﬂ/ refulx 8§ hr.
O
0 1. KOH in aq EtOH
O‘ o reflux
o~ +
O N (¢} 2. H,0*
H
o
L isomer D isomer
Aspergillus Acylase FMoc-OSu/Dioxane/3 eq Et;N
CoCl,6H,0 Stir at room temp, 3 hr.
pH 7.0
37 C w/ mixing for 24 hr.

L isomer

* - step carried out
under anhydrous
conditions as not to
destroy ethoxide catalyst.
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Scheme 2. Synthesis of cyclo[L-Pya-D-Ala-L-Phe-D-Ala],

o O o o O o HATU/HOAT/DIPEA
"o NHJS/NH NHJS/NH NHJS/NH NHJ%/NHZ DMF, O C, 24 h
o CH, O CH, O CH, O CH,

o
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DSC Data for Cyclic and Linear Peptides
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Cyclic Peptide TGA and DSC Data
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Scheme 3. Synthesis of cyclo[L-Phe-Aib-L-Pya-Aib],

HC CHy

o O HATU/HOAT/DIPEA
He NHJS(N” JS( ””2 DMF, O C, 24 h
o HC CHy & Hed  CHy H ¢’ cHy
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Scheme 4. Synthesis of linear[L-Pya-D-Ala]4

I O I O I O I O
HO NH NH NH NH,
NH NH NH NH
e} CHjy le} CHg o) H;C 0 H3C

Note: The cyclic form of this compound has not yet been successfully isolated.
Additionally, the linear form suffers from extremely poor solubility.
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Scheme 5. Synthesis of 4-[(10-mercaptodecyl)oxy]pyridine-2,6-dicarboxylic acid

0 0 0 )
N N
HO N " sociEton  E© ‘ OBt Br(CH,),,-Br/K,CO,
—_— >
= = Acetone
OH OH
o) 0 0 0 )
N K< )J\ N
EtO X OFt §° CHy ko X OEt KOH/aq. EtOH
- = ‘ - =
P Ethanol =
O(CHgp)1Br O(CH2)1OSYCH3
o}
0 0
N
HO X OH
/
O(CH,)1oSH

199



0 e 14 9 8 0 wdd
TR T TP TN N PE N RN SNl T TETE N E ENE ETET AE TEEE N T T T R ST Tl ST ey ]
| — - I 1] m
3/7H 008L0°0P2 o2 o 2 o T Sk
w3/IH 00BLO OF: WIZH w . o —- e
w3/wdd 00009"0 NIKcd 2 3 =k =, ==
7H £1°00%- 24
wdd 000 F- de4
H Ep OvY 7] ﬂ
wdd 000 FF did ~
¥l 00°02 X3
sJajaweJsed j0[d WWN OF f ..\\\\\\\\\\1||
00} d
0 89
H 000 gl i
0 BSs
ou MOM
ZHW 00000E} "00% 45
B9LEE i
sJajawesed burssaloud - 24
ZHW 03 LP2ET 007 104S
80 00°0 d
Jasn G.'g id
Hi FINN
rzmmzmmas [ TINNVH) ===========
J2s 00000000 2 a
3 0°00E E
J3sn 00°9 0
2asn 00r 09 Ma
11:13 94
38 EvErBC6 € ov
H PIEZRT0 534014
ZH 9ri ‘BL28 HMS
0 50
-4 SN
0SWO IN3AT0S
9€SS9 oL
0gbz 9064 N
NUEI[NY wu G OHBO0Hd
13ads WNHLSNT
9e’0 awty \
i2iiiooe “aleg ( (
SJ3}3WRJed LOTITSINDIY - 24 - N NN NN NN N NN N
- A U CLWWAUDDO N =)
w (o=} - &H AU O MO A U h=]
I ONDOHd s A © WM NWML NS8O LA =
01 ONeX2 = Py EYaRE2BIBS S
praeatweptayl INYN HO

sJajaweted eleg juadun)

\\://<\\ u0joJd prae Jtwept[auyd
HO. s aH
i

200



0 2 v o 8 ov wdd
I= = s
w3/ZH 00BLO" OV2 WIZH I b= 3
wa/wdd 000080 WIWdd |8 = 2
ZH £1°007- 24
wdd 000§~ d24 \
ZH EV¥ FOPF ]
wdd 000 T did
w3 0002 X
SJajaweJded 10[d UWN OF \\‘
\ id
00°F 2
0 89
2 0E'D a
0 855
3 MOM
ZHN T66E6Z} 00 F3
g9z2e Is

sJajsuweJed Butssadodd - 24

ZHA 0FZFEET 00K 1048
8p 00°0 Td
= LU ] Id
H FINN

immmmmamn (4 JINNYHD ============

235 00000000 2 ia
% 0'00E 31
235N 00°9 El|
23sn 00¥ 09 M
8t 9

85 EV2yEsE € ov
ZH PIE9EE 0 534014
ZH 9y} BL28 HMS
0 sg

82t SN
E1002 1N3A0S
9€559 aL

oebz 90Hd INd

AUTITNW Wu g OHE0Hd

j2ads WNBLSNI
vy B} awt) /
90502002 Tajeg | f \
sJajaweJed UOTIISINDIY - 24 |
OUFrrTvTrTur-.l.lr-r-.lrrvbrr_EP.V.PV.P.P.P.VVP.V.VVQEC_.LJL.L.LE G—DGEEEEEEEU
COMMUMULMLLALALAALAMALADMUUDOOUNNADRLLADUIUODONDDNVNNUVNWONULNAENDS WWALUUOWOND D
' ONJOEd WO RUNNSONWUINNDNDNOLNDWINNDO . ~ WO DDOELVDWND WNSDOWOO =~ 3
02 DNgX3 WO 0D WoDUOLAEDRDRCODN2UVW=ELVOCDNS N W -, NNV WSNNODOMD MWADUOOLODDO
DO =0 WOOCOENNDOOUTUNDRIONUIUL~,ORNRNUIOILWeCOWUW®ONW WOOWOSNM-—=
2002-904en E
sJajaweJed eieq 3UaJun)
HO
uojoJd Ja3lsatp proe 2twepl[ayd
=

201



u3/2H BEEEL 901} WIZH
wa/udd Q0000 FF KIWdd
ZH 90°E0G- 24
wdd 000" G- ded
H ¥LIESER 14
wdd 000 °Gi2 did
I 00°02 X3

SsJajaweJed J0[C YAN QF

or' ¥ Jd

0 a9

ZH 00"k a
0 Bs5

W3 MOM

ZHW 062/219°00% 45
B9LZE 15
sJajawesed Butssadod - 24
ZHW GOOSFIET 00F 2045
ap 00°E2 Eld
ap 00°E2 eid
4P 00°0 2d
23sn 00’ L0} 20d2d
HI SINN
gizirem 294d0dd

€} T3NNYH] ==

ZHW BSELE2I° 00 1045

8P 00°0

Jasn 08

33

= ) T3NNYHD

33s 000200000 e
235 000000ED 0 e
985 000000002 a
% 0°00E Ell
33sn 00'9 30
2asn 006 6} MO
2618 9
33s y9i2voE | ov
ZH (BEEBE'O 534014
ZH Be9'Gelse HMS
¥ sa
Broe SN
£1202 IN3AT0S
9659 oL
0ebobz 90HdNd
NUTI[NN WU G OHBOBd
12ads WNBLSNI
v2'ie awtp
90502002 Taleg

SJ333WeJRg UOTIISINBIY - 24

' ONJObd
oi ONdX3
003-2002-8048W INVN
sJajaweJed £3eQ JudJund

SLpvE

(a}E]

R Eg

13472
6Sp°LL
(= i)
OFEE6TE=——

€} PTIE JTWEBPI[AUd 30 J33sa [Aylarlg

1£8°291-
B00 E9I -

wdd

202



10018188 JAUiaIp pioe dlweplRyAeoeds\elep [ech:0

1-ud
00 0001 00S1 000T 000€ 0°000¥
RHET ! 1 1 1 9
H\__ | *
L .Jﬁ TSTELL o1
\, | FEL
;m ) B!
| , 69°€LST \ “_JM o |91
' C 8L
ﬁ, o0z
|
‘ _ e
7 | |
861667 | ,_ i
f R , T9r 1%
i E L
$5°06L sose || b ¥
_( \ / "oc
Pl
_ ,_, o K43
0Z's0L | \ /
/E.AE / / m, vE
\ \_‘ ,_r “oc
b
o fﬁ 8¢
H0'E8S \ |
0L'Ih [ (_, , _,,_ o
|| \ \ ,_ Kg
| 5\\ /J! ,,_ L
__ \ / ] r, i
AJ g \
’ -89

157 AR PR AMUEPTAN)

203



0 g 4 g 8 ol wdd

PRIt 0 (G 0T AT 0 (T T VT U I 0 0 O 00 0 0 ] A0 4 L PR G o W B L Al O 0 S ST I TV ST Y e i ST O S O G S e

e -

S S tdls o g

w3/ZH 00BLO OFE WIZH [=] &, o ] o =

wd/udd 00003 "0 HOWdd O &5 SIES S =
ZH E1°00F- 23
wdd 000" k- ded
ZH EF 10FF [E]
wdd 000 F¥ did

w3 00°0e X2 ﬁ h

suajaweded j0[d HWN OF
00°% Jd
0 a9
Z4 OE'D a
0 8ss
W3 MOM
ZHW GEQOOET "0C¥ 45
89£2¢ 1s
sJajawesed Butssadodd - 24
ZHW 0FZ¥CET 00K 1048
8p 00°0 d
Jasn /'8 d
HI TINN
======== [} TINNVH] =====s======
23s 00000000 2 ia
A 0°00E 3l
33sn 00°9 El]
3Jasn 00r 09 Ma
11:13 94
285 EPEFBSEE ov
ZH rIE9CT 0 S3H0I4
IH 9r}'BLEB HMS
0 50
82l SN
€102 IN3AT0S
felsfetets] al
0ebz 90HdINd
NUEITNK Ww § QHB0Hd

e H e e NS AN

sJajaweded uoljlsinbay - 24

F0BL 0T~

i

o e e e e e e R R R R e e e = O W W o bbb BB NN NN N NN ~N - w o

GUEEEEEVP.V.EE,EBEBBOE.V.VOO[[IV?VEEEEEEQE/_LLLEEEUP[ =]
13 ONJOHd WO ABUOD®D=00NOMNMWAUOUNDUOWL=WOWL=WLLELENDDOWNMLMIAWNDDW:LNWLMLDDODONO W =
o1 ONdX3 MO A VNNOCODNVODLEWACHINUOOLUNDWWOLOA—~YNDODAENDIDWOUNWODLDNW=SN=OO

~ O WDNOOoOAW~OLONDUNLNONWAD— ~WLOAENVMORMDOOORN~DODWANL OO
2002-L0Aen IWVN é
SJajaweded BIeQ UAJIND

18 FHI0

Jayla owoJg-p J3)s3

= [AY3atp prae Jtwepr(ayd j0 uojoud
30 /\_F\om
T

204



wa/ZH BEGEL 901 NOZH
wa/wdd 000D B ¥ NIWdd
ZH 90°E0G ed
wdd 000 G- d2d
ZH pLUIE9TR [E}
wdd 000°G12 did
w3 00°02 X3
sJajawesed 3000 HAN OF

or'l Jd

0 a9

Z4 001 81
0 8ss

W3 MOM

ZHW 062/219°00F 45
B9see s
sJajaweded buTssalndd - 24
ZHW SOO0SIER 00K 2045
ap 00'e2 EFld
8P 00'E2 2k d
ae 000 2
285N 00" £07 20d2d
HE 2NN
grzafem 29dd0dd
ss=s=sss==x 2} TINNVHD == o
ZHN BSBLEET 00T 1045
8P 000 Fd
238N 048 id
JEV FINN
szzzzssz=== |} TINNVH] ss===s======
338 00020000 0 2ip
23S 000000E0" 0 Fip
J3s 00000000 2 1a
3 0°00€ i
Jasn 00’9 ia
Jasn 006 61 Ma
B9/2E 9

J3s pOI2v0E | ov
Z4 [BEEBE 'O 534014
ZH 629 5252 HMS
4 S0

eis SN
ET202 IN3ATI0S
9ESSI aL
oefiobz 90HdINd
NUIITNKH ww 5 OHB0Hd
1oads WNHLSNI
G2z But]
10502002 ~a3eq
SJ313WBJRg UDTITSINDIY - 24
3 ONOOBd

113 ONdX3

2002-L0AeK InVN

007 Gel
o £k oy T Flice ] i e
|
i |
I
|
[ AN | A
o) ¥ i ek
= UL DWW OO NN —_- (&) o o
DR U U~ N B OD W= s ~ IS N oA
oMM =W N~ W = = 0N & O w ~ n w
WhANOOSMOU N LA oo &= op} £ o
1 EHAN0
Jayls owoJg-y Ja}s8
= 1AUI3TP proe JTwept(ayd 40 J-£}
=0, o o3
)

wdd

205



0 2 v g 8 o1 wdd

s b voaas vl ria s lanas s s b a s sasaenaal i esssa s le s iaess

& s |wl |o e z

WI/ZH 008L0°0r2 HIZH - @ n ~ (=1 L

w3/udd 000090 WIWdd S S el |x 4 =
H €1 007~ 24
wdd 000" 5 - de3
ZH EF"I0PR ¥

sJajaweJsed 1010 HAN OF

wdd 000'5F did T ~
wd 00°02 X2 D ‘

00°# Jd

0 89

ZH 00°0 a1
0 8ss

ou MOM

ZHA §£000ES 007 35
B9L2E 15
sJa3aweJed burssadodd - 24
ZHN OFLPEET 00V 1048
ap 00°0 d
Jasn ¢/°g Id
HE 12NN
imsanmmas T4 13NNVHD s==s==asssz==
235 00000000°2 il
M 0°00€ ET}
2880 00°9 30
J3sn 00 09 MO
188 94

23S ErereS6E ov
ZH pIES2E 0 S3u0I4
ZH 9r} BL2B HMS

0 S0

82k SN
ET0Q0 LN3AT0S
9EGSY oL
0ebz 906dINd

NUIIINY ww § OH80Bd

Hon ok A N TS

SJ3jaweJed uOTITISINbIY - 24

CrmhmommLeoeee eV WLWWASOO OGO ~~ i
CENLNLVWWOIUOU DO NN WWOD®DWLESCDRD- == ~0NNWwwWw o °
¥ ONJOHg SO N W WO NODUODDOVUOLVNENDNID VW 2WNOAOEWHD NOR 3
SO~ NSO WN DN NOOEN OV WOWW—N—-~00—-000 5w
003-2002-£uer 3WYN

o]
I

W EMIHg)0

=30 T E(om
i

ajelale 0Tyl j0 u0}oJd

206



0081

10018yie olyNeloadsielep”jad:2

005y

| ¥S'1801

EHY

Ho.

[

- g0 ZH)0

&
. E/\om
o
o

1-wd
000T 000€ 0°000%
; ; K
:.,&2 Ty
(| 1ee691 |9
/ REAA| g
I 8
b [
jo ol
I cl
,_, | #1
Kl
S8011T
: 6 1e6z i
IE'81IpE -
i 0z
rze 1%
| ¥T
| 9T
| 8T
[ 0f
s
B
\ K3
\ KD
,_ "ov
29153 [P1p piow drureprayo jo pdo 3 oy
W ALl
T s

207



ZLV'EVO'Y

00L

i
m:u\_/msﬁ«:ovo

009

7w
005

oLy

[eN+I]

¥Z-51 SUBIS/OIHLIENd

(174

(%) Aiisusju) eanejen

FSL

00k
syead G|

L oN
Wd 8121 - Z/01/G - OIHI3HNd

Wl By'0=8lLA L ¥Z 0 G| SUBIS JO abRiany
NVOSLO 8ioid+

6'700°01-
gyeLs

ASI
199
vriig
29
nw
dd
61

ChQ
3y

a
1]
‘Na
i3
IN
od
do
Ni
ASI

208



A4

: A
005'2eE’S _”._”._-“_.\/._”_
=

130 /zg/\om
|
0

EHO SHEHAO e

6-9 SUBS/0IHI3aNYD

002
= 0

4
b}
:
=

FOS m
2
B
F
2

FSL

Viv
001
sead

81 ON

Nd 1021 - Z0L/S - OHL3ANHD
W €2°0=8wWiL § 0 9 Sueds jo elesany
NVOS LO Bjoid+

6'¥00'01-
0605

Lot
0l

052-
00000'82

0010
6'BLE
000}

oL

2
00000°L2
00L'0

nu4
ASI
190
viiig
20
NN

dd

61

XH
ENG
E3d

0o
]
Ha
13y
W
od
HO
NI
AS!

209



W3/ZH 0OBLO OVE WIZH
w3/wdd 00008 O WORdd
IH EF007- 24
wdd 0oo" §- d24d
ZH EF' 1OPP ¥
wdd poo" did
w3 0002 X3
sJajawesed J0[d HWN OF

00'}h ad

] 89

ZH 0E'0 a1
o 858

LE] MOM

ZHA BLDOOE} " 00F 45
89/2€ 1§
SJ2l8weJed BuISSaa0Jg - 24
ZHW OFLPEET 00V 1045
80 00°0 Pld
935N 648 id
HI FINN

B4 TANNVHD ==

328 00000000 2 10
% 0°00E 3L
98N 00°9 30
2asn Qo 09 Ma
28E L)

33s EvEraSs E oY
H PIES2] 0 §30014
4 gy} 828 HMS
0 sQ

82t SN
£1202 INIATOS
felaette} oL
0EGZ 90td Ind
NUTITIN W § OHE0Hd
32808 WNHLSNI

DE 6% Bwt]
71502002 “aeg
SJajaweJded uaTIrSINbIY - 24
¥ ONJOHd

21 ONdX3

D03-2002-r1AeK INVN
sJgjaueJsed BIBQ JUIJIN]

0 e 4 9 8 0t wdd
A IR (T S WA A WA A AR S I ST AR A IS AU A U O O S APl IS AT W AT U W A W B S A AT WA A il W S e ey
| o (=} o n (=] — =
o o n o - @ o =
5 ~ @ |u o s =] 5
o] (=] & o 5] s =3 @
i = o Jn w o o =]
\

ADOONSNSNNSNNSNSNSNSNN@Oo -~
N ADOOONNWUDDEDDO N =
A= DNOANUWOOMLLMAEDMLOD 3

CLUONMVDODDWLUODWONWLNW

O —WOOoONMWOOOWN=LOOo

pda [oty3 [euly 40 uojoud Jadoo)d

210



wLAep - sadood - LOO'PL

o1y} say ds\eiep”ed\:2
[-uo
cd,m v_ 0001 0081 000T 000€ 0000t
_ ] 961
ot
1T
€E0LET i
[ £T
£6'PELT
I (4
B4
#5091 LY'ET6T
$LTZ01 ,_) 9z
|
,
| LT
i I | 1%
M 8z
\ 6z
/ L
,A_F / (13
o [EE
= \ L
=5 \ 43
\
,_
| €€
punodwios jory 1. paajosdacy \
| ¥€
HE"EH2IO - CE
e
S
2 \ﬁ
HOOD [§ Q00H

211



2BO'ZEN'Y

zn
Q.vw am__ 009 005 0o 00g 0oz
‘/:_ ._‘«. = TR "+ LA AR Y b A L B ___ it 0
B4
]
z'Lop >
Z
113
tos 2
1]
2
g
2
FGL
g'95e
-001
[T+W]
syead ¢
HS™ (*Hal0 8[lL ON
Wel 0%'2 - 2/02/S - "TOIHLI Y4
s Ulw p0’L=ew|] ZE 0] 62 SUBDs Jo abelery

Z€-62 5UB2S/OIHLI3 A zd._om._.c Q_.__Ea+

§essL
GRS
0

62

ot
002t
002
pse-
0000082
S

001°D
69t
0001
ol

g
0000022
oaLo
0zt
oook
0g

08

059
0005
0s

WyH-a
AS)
199
wiig
a9
nw
d

61

£d
X

EW

a1

Wa
134
3]
od
HO
NI
AS|
Ls}

212



Scheme 6. Synthesis of 2, 2°, 5, 5’-tetracarboxy-4, 4’-dipyridine

HaC N CH, H3C CHs
2 ‘ N 1. Na/THF 7N\ —
N N
_ 2. S0, o N\ //
HC CH,
HOOC COOH
7\ T
N N
—/ N\ 7/
HOOC COOH

H,S0,/Cr,0,
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Scheme 7. Synthesis of 4-(Methylpyrenyl)oxypyridine-2,6-dicarboxylic acid
COOEt COOEt
O‘ gy *HO / \N Na,CO,/Acetone - O‘ ‘ Y
’O — ’O o Z ™ cooet
COOEt

COOH

KOH/aq EtOH O‘ Q
’O o Zcoon

The spectra collected for I-bromomethylpyrene and for Diethyl 4-hydroxypyridine-2,6-
dicarboxylate have been previously displayed.
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Scheme 8. Synthesis of Lipoamine-(Ala-Aib)s-t-Boc-Pyrenyl Alanine

o) (0]

\ \ oH  CHs

OH
-
NH
Gy ™ e (6 M
_—
Q Dioxane/H,0 ‘

i ‘
— (Ala- A|b) —(Ala- Alb \\
M ° HATU/DIPEA/DMF O
O

S—S

CH3

The spectra collected for pyrenyl alanine have been previously displayed.
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Scheme 9. Synthesis of cis 2, 2’-Dipyridyl Ethylene
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GC/MS of trans dipridylethylene, retention time = 17.633 minutes
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GC/MS of cis dipyridyl ethylene, retention time = 10.63 minutes
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Scheme 10. Synthesis of  4-[(2,6-dicarboxypyridin-4-yl)ethynyl]pyridine-2,6-
dicarboxylic acid.

COOH COOEt

1. PBr; Acetylene/TPP/Pd(IT)(OAc),
Ho \ N 2. EtOH B N Et,N
/ \_/
COOH COOEt
EtOOC COOEt HOOC COOH

EtOOC COOEt

Note: The spectra collected for chelidamic acid have been previously displayed.
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Scheme 11. Synthesis of 10-bromo-1-decene

PBr,/benzene
1P S NN oy > H,CZ Br
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Abundance

Mass Spectrum of 10-bromo-1-decene, retention time = 3.5 minutes
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Scheme 12. Synthesis of Disubstituted Diaza 18-Crown-6 (7N-Anthrylmethyl, 16N-
decyl(10-trichlorosilyl), 1,4,10,13-tetraoxa-7,16-diazacyclooctadecane)

Lo g UG L 20
NN NN

Csl/Cs,CO,/Acetone i o/—\o
N e P > <\ />
OS
</O O\>
\__/

/CH2

SiCl
HSiCl, (o/—\ov 3
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Synthesis of pyrenyl substituted Diketopiperazine

0, 0 CHs o
OH O/ \ OH
060 NH, HCI (g)/MeOH 060 NH, + 060 NH—FMoc

HiC FMoc

\ AN

o0 O NH
PyBop/HOBT/DIPEA o Piperidine in DCM
—_ -

CH,C, N O

HaC,

\

o o NH,
o

" C
n-butanol/heat o
) - hi
NH

‘ ’

* Product not Isolated O

The spectra for N-Fmoc L, Pyrenyl alanine have been previously displayed. In addition,
solubility problems made it impossible to obtain spectral data for the non-cyclic
dipeptide intermediate.
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