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Abstract  

 

Direct Methanol Fuel Cells (DMFC) typically operate using Nafion-based Membrane 

Electrode Assemblies (MEAs) up to 100ºC. Above this temperature, Nafion begins to degrade, 

hindering performance. Because temperature improves fuel cell performance PBI-based MEAs 

were investigated for an intermediate range temperature DMFCs. Nafion MEA performance 

curves confirmed the relationship between temperature and performance. However, polarization 

plots for PBI MEAs could not be generated. Despite this, PBI exhibited a sustained current 

density of 900 mA/cm2 at 0.10 V using hydrogen.  
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Chapter	1:	Introduction	
 

Fuel cell technology was first used commercially in the 1960’s when the United States 

space program chose to implement the technology rather than rely on other technologies like 

nuclear power, much more dangerous or solar power, which are much more expensive (Fuel Cell 

& Hydrogen Energy Association). However, fuel cell technology has been in existence for much 

longer. In 1839, Sir William Grove built the first fuel cell and titled it a “gas battery” (FCTec 

Home Page). With numerous improvements over the past 170 years, fuel cells have the potential 

to be one of the most efficient and environmentally friendly power generation devices (Cheddie 

et al., 2006). 

Today, there are many types of fuel cells, including: Phosphoric Acid fuel cell (PAFC), 

Proton Exchange Membrane fuel cell (PEM), High Temperature Proton Exchange Membrane 

fuel cell (HT-PEM), Molten Carbonate fuel cell (MCFC), Solid Oxide fuel cell (SOFC), Alkaline 

fuel cell (AFC), Direct Methanol fuel cell (DMFC), Regenerative fuel cell, Zinc Air fuel cell 

(ZAFC), Protonic Ceramic fuel cell (PCFC), and Microbial fuel cell (MFC) (FC2K, 2000).  For 

the purposes of this paper, the focus will mainly be on Direct Methanol Fuel Cell (DMFC) 

technology.  

Fuel cell technology currently has various applications in industry. For example, DMFCs 

can be found in portable electronics, such as cellphones and laptops (Toshiba's methanol fuel 

cell, 2004). One of the main advantages to having a DMFC run one’s cell phone or laptop is that 

the fuel cell will allow the unit to run for longer than a standard battery (FC2K, 2000). Other 

types of fuel cells can be found in much larger applications, such as running hospitals, office 

buildings, or stores. In most applications, especially large scale, hydrogen is the fuel source; 
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Direct	Methanol	Fuel	Cells	
 

The direct methanol fuel cell (DMFC) uses methanol and O2 as fuel sources and a 

polymer electrolyte membrane (PEM) to force an external electrical circuit. A DMFC typically 

runs at temperatures between 50 to 120°C and has efficiencies of around 40%. (USFCC) This 

varies from the generic hydrogen PEM fuel cell, which typically runs at 80°C and has an 

efficiency of 40% to 50%. 

Mechanism 
 

DMFC’s generate electrical power via an oxidation and reduction reaction, as shown in 

Figure 3. In the oxidation reaction, methanol is oxidized in the presence of water and a catalyst 

as shown below. Hydrogen ions are formed at the anode electrode. The reduction reaction at the 

cathode utilizes supplied oxygen and the protons from the methanol dissociation to form water. 

Anode 

Oxidation 

 

→  

Cathode 

Reduction 

 

→  

Overall Reaction 
→  

Figure 3: Reaction Mechanisms 

Diluted liquid methanol flows through a flow chamber to the anode, passes through the 

anode gas diffusion layer and comes in contact with the platinum/ruthenium catalyst. Unreacted 

methanol and water exits the anode through a waste stream. Similarly, oxygen or air flows to the 

cathode gas diffusion layer and then comes in contact with a platinum catalyst.  
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the PEM acting as a barrier to methanol or hydrogen. Researchers have varied the thickness of 

the membrane in an effort to reduce dC/dz and have found that thickness will alleviate crossover 

but at reduced proton conductivity (Jin Hu, 2008).    

 A DMFC relies on water as a reactant at the anode and is a product of the cathode. Both 

instances will be referred to under water management, which is another issue affecting DMFC 

performance. Liquid water readily adheres to pores in the GDL which creates mass transfer 

limitations for gas flow (Han-Kyu Lee, 2003). Vapor based DMFCs are an attractive option 

because of the higher kinetics compared to the sluggish kinetics of liquid based.  
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Chapter	2:	Literature	Review	

Nafion	Based	MEAs	
 

DMFCs have a variety of parameters which affects its overall performance. The types of 

parameters include: methanol concentration, the operating temperature of the fuel cell, the flow 

rate methanol, and membrane thickness. By optimizing these parameters, high DMFC 

performance can be obtained while keeping methanol crossover, along with the crossover flux, 

low. 

 One of the parameters that can be changed to help improve DMFC performance is the 

concentration of methanol. Jung et al. found that using a higher concentration of methanol 

improved voltage and power density at higher current densities (Jung et al). As shown in Figure 

9, a run at 50oC indicates that 3M methanol performed the best. Additionally, the voltage and 

power density increased with increasing concentration at high current densities. This happens 

because there is more methanol to react and thus more power per unit volume to react. However, 

the OCV was lower as the concentration of the methanol increased because at lower current 

densities there is less methanol that is needed to react, therefore there is not as much crossover. 
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oxidized at the cathode. (Qi & Kaufman, 2002) This oxidation can lower the cathode potential 

and consume some of the cathode reactant. Crossover can degrade the cathode from too much 

poisoning, which will result in lower performance and decreased efficiency. 

As discussed, there are several operating parameters that are influential on DMFC 

performance. Combinations of various parameters can work well together, depending on the 

conditions in which they are operated. One of the biggest problems of concern is methanol 

crossover. However, reducing methanol crossover can be made possible by optimizing these 

various parameters. The fact of the matter is that getting the right combination of various 

operating parameters requires extensive experimental testing and analysis. 

PBI	Based	MEAs	
 

Polybenzimidazole (PBI) is of major interest in fuel cell technology because it can 

withstand operation at much higher temperatures than Nafion membranes. Increasing the 

temperature of a fuel cell is desirable for maximizing the power output; PBI membranes operate 

at temperatures in excess of 100oC with a vaporized feed (Wainright et al, 1995).  

Advantages of PBI over Nafion membranes include thermal stability, reduced water 

management and lower permeability to methanol. The two membranes conduct protons 

differently which is a result of their chemistry. Nafion requires liquid water to be present for 

proton transport by vehicle transport and Grotthus mechanism whereas PBI exhibits proton 

transport via the Grotthus mechanism (Chen et al, 2005). 
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An increase in the amount of H3PO4 effectively improves the conductivity of the PBI 

membrane (Cheddie et al, 2006). Figure 21 shows polarization curves for three different MEA 

systems identical in thickness and catalyst loading but with different amounts of H3PO4. It is 

apparent that more H3PO4 gives a higher limiting current density. Chemically, a PBI molecule 

should be able to hold onto two molecules of H3PO4. In this graph the acid dopings are 4.5, 6.2 

and 8.0 molecules of H3PO4 per PBI. He et. al describes a ‘swelling’ of the membrane for acid 

dopings greater than 2 which lead researchers to believe H3PO4 can exist between PBI polymer 

chains. (He et al, 2001). H3PO4 located in these ‘pockets’ improves the proton conductivity but 

reduces the secondary bonding of PBI molecules. With respect to the acid bath used to 

impregnate PBI, Lobato et. al observed mechanical failure at concentrations of 15M H3PO4 and 

above (Lobato et al, 2010).  

The Grotthus mechanism is often described along with reduced water management but 

research shows that PBI requires water in addition to H3PO4 for reasonable proton conductivity 

(Lobato et al, 2007). Lobato et. al tested the proton conductivity of PBI under the following 

conditions to prove the importance of water: “at 190oC, for a PBI membrane with a doping level 

of 6.2, proton conductivity is 0.015 S/cm when equilibrated in room air and 0.039 S/cm when 

equilibrated in saturated air at 60oC” (Lobato et al, 2006). As a result of this finding studies 

typically humidify the cathode feed to prevent PBI’s self-dehydration and maintain the 

membrane’s proton conductivity (Pu et al, 2004).  

Properties of PBI 
 

PBI membranes are hygroscopic which can cause electrolyte leaching when exposed to 

liquid water (Chen et al, 2005). Figure 22 demonstrates the significance of H3PO4 leaching.  
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In order to run a PBI MEA in the setup being used, modifications were made to the fuel 

cell setup. While a Nafion MEA can run on a liquid feed, a PBI MEA requires a vapor feed due 

to its hygroscopicity. Therefore, the liquid methanol from the pump needed to be vaporized 

before entering the fuel stack.  Further, the heat would cause the plastic tubing used for the inlet 

feed to melt. This plastic piping was replaced with metal piping. The metal piping was long 

enough to ensure the methanol would vaporize before reaching the fuel cell stack. To prevent 

heat loss, heating tape was wrapped around the metal piping and then was covered with a cloth 

wrap for insulation. The heating tape temperature was set by a control box and monitored by a 

temperature gauge. The PBI MEA that was used was purchased from BASF and was 

commercially made. There was no further prep work that needed to be done to the MEA as it 

was already good to be used in testing. Lastly, the gaskets being used in the fuel cell stack 

needed to be able to withstand temperatures ranging well over 100 ºC. These gaskets also need to 

be of the proper thickness as to ensure the electrode of the MEA was in proper contact with the 

feed in the flow channel of the bipolar plates. 
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Chapter	4:	Results	

Nafion	Based	MEAs	
 

Nafion membranes, typically used in a DMFC were tested extensively under various 

parameters. The purpose of these experiments was to better understand how a fuel cell operates. 

The parameters tested where: the fuel cell temperature, the concentration of the methanol liquid 

feed and the flow rate. These runs used commercially produced MEAs to ensure high accuracy 

results.  

 The first parameter that was tested was temperature. Since a Nafion membrane is 

unstable at temperatures ranging above 100ºC the temperatures tested here were 25ºC, 50ºC, 

70ºC and 90 ºC. Temperatures exceeding 100ºC decrease the performance of the fuel cell 

because the Nafion MEA will degrade. Figure 29 shows four runs done at four different 

temperatures with a constant flow rate of 1 ml/min and a 1M liquid methanol feed. These results 

show that overall performance increases as fuel cell temperature increases because as the 

temperature increases the rate of reaction increases causing there to be a higher current output. 

Figure 30 consists of three runs at various temperatures but with a change in its feed 

concentration (3M). However, the figure still shows the increased performance as the 

temperature is increased. Between the polarization plots shown in Figure 29and Figure 30, there 

is a clear difference in performance; the 3M runs have a much higher current density than the 1M 

runs, which indicates increased performance with increased concentration. At higher 

temperatures the amount of crossover at higher current densities is minimal as the temperature 

helps to increase proton conductivity and there increases the overall performance of the fuel cell. 
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Figure 29: Temperature Variation (1M) 

 

Figure 30: Temperature Variation (3M) 
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voltage increases with concentration at higher current densities because the methanol 

concentration is greater and therefore creates more proton conductivity. Another important 

observation is the OCV; the OCV using 1M MeOH is higher than 3M MeOH. This lower OCV 

is due to increased methanol crossover. Methanol crossover increases with concentration, 

however, at higher current densities the more methanol is needed to react. This explains why the 

performance is better at higher concentrations because there is more methanol to continue to 

react with the electrode. Although the results are not consistent with each other and there was 

different performance for the same concentrations and performance is increased with methanol 

concentration to a certain degree. Too high a concentration at these lower temperatures (<100ºC) 

will results in significant crossover and an extremely low OCV that will result in poor 

performance. A lower concentration of methanol (<1M) will result in a higher OCV but the 

overall performance will decrease because there will not be as much methanol to react as current 

density is increased. 

 

Figure 31: Concentration Variation (1M & 3M) 
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 Because of the inconsistent results from Figure 32, the MEA’s consistency was tested. 

An MEA was run several times under the following conditions: 70ºC, 3M MeOH and 2 mL/min. 

Figure 32 shows the results of 5 different runs over 15 hours. The results show reproducible 

results, which indicate that the MEA and fuel cell are performing consistently. The performance 

of an MEA over an extended period of time is subject to the conditions that it is run at. If a 

Nafion MEA is run for an extended period of time at high temperatures and high concentrations 

i.e. 90ºC and 3M then the lifetime of that MEA will be shortened and the performance will 

decrease with time. 

 

Figure 32: Consistency Run (70 C, 3M, 2 ml/min) 
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temperatures and our data obtained indicates that overall should increase. However, methanol 

vaporizes at higher temperatures and so the concentration of methanol must be adjusted. 

PBI	Based	MEAs	
 

To extend the range of temperatures for DMFCs, PBI-based MEAs were tested Despite 

the high quality of the BASF PBI MEAs, they did not perform as well as expected. Vapor 

methanol achieved an OCV of 0.22V at 140oC at a flow rate of 2.0 ml/min and concentration of 

12M. An OCV of 0.44V was obtained using non-humidified oxygen and hydrogen at 150oC. 

Again at 150oC, an induced voltage of 0.10V output a current of 4.50A; this experiment was 

allowed to run for 60h and the current dropped to 3.90A.  

 Despite the good performance on a single occasion the PBI membranes failed to perform 

on a consistent basis. Systematic troubleshooting was performed to account for all of the reasons 

why high temperature PBI MEA lacked performance. The pressure at the anode was observed to 

reach elevated levels using vapor methanol. Additionally, OCV data suggested a short circuit 

when using hydrogen. Finally, the compressibility of the membranes was unknown until recently 

and the proper gasket material was not used.  

In order to run the PBI membrane, the methanol feed needed to be vaporized to avoid 

loss of the electrolyte. The vaporized feed caused a fluctuation in the anodic pressure which was 

observed on the methanol pump. During standard operation the pump would reach a pressure of 

about 20 atm. Start up for vaporized methanol would show normal behavior but after 

equilibration had occurred and the destination temperature reached, the pressure of the pump 

would spike to values close to 60 atm. This fluctuation in pressure increased the methanol 

crossover occurring which is a very likely reason for the low 0.22V OCV. In order to address 
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this issue, the flow rate on the methanol pump was set to constant pressure; however, the inlet 

flow rate would fluctuate anywhere between 1and 18 ml/min. Too high a flow rate and proper 

vaporization of the feed is not achieved; when liquid reaches the MEA there is a good chance for 

desorption which permanently reduces the membranes effectiveness.  

Fuel cell assembly is crucial in order to get performance. The bipolar plates are bolted 

together to a particular tightness. The tightness used for Nafion membranes is what was 

originally used for the PBI membranes; however after several unsuccessful runs the tightness of 

the bolts was tested. The bolts were loosened from ~65 lbf-in and it was found that if the bolts 

were tightened past 45 lbf-in, the performance of the cell would drop to 0.02 immediately. 

According to BASF engineer the proper torque of 6 N-m or ~62 ibf-in was the right tightness of 

the bolts for the fuel cell stack. Unfortunately, this only helped the performance for a short 

period of time and eventually the OCV dropped down again. 

The MEA must be properly aligned with the flow channels; the slightest error in 

assembling the fuel cell can result in gas leaks or short circuits. One membrane suffered what 

was initially a pinhole in the top left corner. This eventually turned into a large hole shown in 

Figure 33. This tear in the membrane allowed both oxygen and methanol to flow freely through 

the membrane, causing over potential at both cathode and anode electrodes. A tear of this 

magnitude renders the MEA useless because it is unable to serve as a fuel barrier. The fuel cell 

stack was frequently disassembled and inspected in order to assure the MEA was in proper 

functioning condition. 
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PBI-H3PO4 is prone to acid desorption which was observed in the lab. Firstly, the 

experiment done at 0.1V showed an initial current of 4.5A and then 60 hours later a current of 

3.90A. The MEA was fresh in the sense it had not been used prior to that experiment. The drop 

in current is due mostly to acid desorption. Additionally, experiments done with non-humidified 

hydrogen oxygen showed diminishing OCV after repeated experiments. One PBI MEA that had 

gone from 0.44V to 0.02V several runs later was administered an acid treatment; several drops 

were placed around the electrode assembly on each anode and cathode side of the membrane and 

given a day to sorb in.  The MEA was run under the same conditions with hydrogen and showed 

improvement of OCV back up to 0.42V. Interestingly, after only an hour the OCV had already 

dropped back to 0.02V. It is probable that H3PO4 had only been deposited on the surface of the 

membrane where it is most prone to desorption. The remediated OCV showed that the acid 

treatment works but the rapid drop in OCV proves the unreliability of re-treating PBI membranes 

with H3PO4.  
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Chapter	5:	Conclusions	

Nafion	Based	MEAs	

	
After analyzing the data taken under this study it can be concluded that as the 

concentration of the inlet feed of liquid methanol increased, the performance of the Nafion MEA 

would also increase with the range of concentrations tested. It was observed that at low current 

densities, a lower concentration of methanol improved performance; this is due to methanol 

crossover being more prevalent at low current densities.  

Polarization curves focused on the effect of changing temperature and keeping the feed 

concentration and flow rates constant. Over the temperature range of  25oC to 90oC Nafion 

membranes performed better with higher temperatures. Also, the limiting current density 

increased as temperature was increased. 

PBI	Based	MEAs	

	
  Polarization curves could not be obtained for PBI based MEAs due to time limitations. 

The PBI-H3PO4 MEA was used with both vaporized methanol and hydrogen in the DMFC with 

little success; an OCV of 0.44V was obtained for non-humidified hydrogen at 150oC and an 

OCV of 0.22V for vapor methanol at 140oC. A current of 4.50A was obtained at a voltage of 

0.1V at a temperature of 150oC using a fresh PBI MEA. This membrane was permitted an 

uninterrupted 60 hour operation after which the current was 3.90A.  

 The pressure of the anode feed was observed to be extremely high for DMFC PBI 

operation at 140oC and above resulting in excessive methanol crossover and no performance. 
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The compression of the BASF PBI membrane was higher than expected, 50%, and many of the 

failed runs were attempted at too high a torque between the bipolar plates Additionally, the 

gasket material used was not ideal for PBI operation because it ran the risk of melting and was 

not of perfect thickness. Lastly, H3PO4 desorption was observed as the OCV dropped from 

0.44V to 0.02V. An acid treatment was administered and the resultant OCV was remediated but 

only for a short time.  

Overall, the effect of temperature on performance was observed through use of Nafion 

membranes and literature review. Concentration of methanol in the feed was also varied and 

comparison of polarization curves showed signs of methanol crossover. PBI membranes did not 

give consistent data but did show promise for large current density at intermediate temperatures. 
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Chapter	6:	Recommendations	
   

  Although we were unsuccessful in producing polarization curves for PBI-H3PO4 there are 

several points that should be considered that might enable consistent performance. Firstly and 

most importantly, a gasket material specific to the electrode thickness should be used that can 

withstand operation up to 2000C. BASF sells specific gaskets depending on thickness and 

compressibility of the membrane. Secondly and related to the first point is the amount of torque 

applied to the bipolar plates. The tightness of the bolts was shown to directly affect whether or 

not current could be obtained from the system; too high a torque and short circuiting occurred 

and too loose leakage will occur. We recommend using a torque of 40, 45 lbf-in to get the best 

results. 

 Consideration should be placed on how the MEA is ‘broken in.’ Lobato et. al showed 

performance as a function of the 24h break in temperature; at high temperatures new MEAs 

loose water and acid content much quicker at more moderate temperatures (J. Lobato, 2006). 

Desorption of H3PO4 can be reduced by breaking the MEA in at 100-120oC before turning up the 

temperature to a desirable operating value. 

 After running a MEA for several days’ worth of experiments diminished performance 

should be expected; use of a 10M H3PO4 bath was shown to temporarily produce remediated 

OCV levels. It is likely that the longer the MEA is allowed to soak in the acid bath, the greater 

the retention rate of H3PO4. There are two ways to go about testing the MEA for H3PO4 

retention; observe how long it takes for the OCV to decrease by a certain value or weigh the 

MEA after an amount of time and compare to the starting weight (Lobato, Canizares, Rodrigo, & 

Linares, 2007).  



47 
 

 Lastly, we recommend frequent disassembly and inspection of the MEA and flow 

channels. Small bits of carbon cloth were observed to ‘clog’ up the small flow channels and had 

to be removed. The MEA can form small pinholes that are difficult to detect with the naked eye; 

inspecting the outer perimeter of the electrode assembly for any damage or wear should be a 

habit every time the fuel assembly is reconstructed.  
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Appendices	
Appendix	I: Self‐Made MEAs Andrew and Bob 

Andrew 

Run 1  1 ml/min  70 C  1 Molar  Run 2  1 ml/min  70 C  1 Molar 

Voltage  Cdensity  Voltage  Current  CDensity 

0.2  96 0.2 0.26 52 

0.3  70 0.3 0.11 22 

0.4  16 0.4 0.01 2 

0.5  2 0.5 0 0 

0.53  0 0.49 0 0 
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Bob 

Run 1  1 ml/min  70 C  1 Molar  Run 2 2 ml/min 70 C  1 Molar  Run 3  2 ml/min 70 C  1 Molar 

voltage  current  cDensity voltage  current Cdensity voltage  current cdensity

0.2  0.48  96 0.2 0.51 102 0.19 0.42 84

0.25  0.36  72 0.25 0.4 80 0.24 0.35 70

0.3  0.25  50 0.3 0.28 56 0.29 0.21 42

0.35  0.13  26 0.35 0.15 30 0.35 0.13 26

0.4  0.06  12 0.4 0.08 16 0.39 0 0

0.45  0.01  2 0.45 0.05 10

0.5  0  0 0.57 0 0

0.52  0  0
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Appendix	II: Commercial MEA Experimental Runs and Results 

Run 1  1 ml/min  70 C  1 Molar  Run 2  1 ml/min 50 C  1 Molar  Run 3  1 ml/min 90 C  1 Molar 

11/2/2010  Voltage  Current  Cdensity 11/4/2010 Voltage  Current Cdensity 11/8/2010 Voltage  Current Cdensity

0.19  0.56  112 0.2 0.66 132 0.19 1.19 238

0.29  0.53  106 0.25 0.62 124 0.24 1.14 228

0.4  0.48  96 0.3 0.55 110 0.3 1.06 212

0.5  0.38  76 0.35 0.43 86 0.35 1 200

0.6  0.18  36 0.4 0.31 62 0.4 0.91 182

0.68  0.01  2 0.45 0.2 40 0.45 0.85 170

0.5 0.11 22 0.5 0.78 156

0.55 0.06 12 0.55 0.66 132

0.6 0.02 4 0.6 0.5 100

0.65 0 0 0.65 0.26 52

0.68 0.1 20

0.73 0 0

Run 4  1 ml/min  70 C  1 Molar  Run 5  1 ml/min 25 C  1 Molar  Run 6  1 ml/min 70 C  3 Molar 

11/9/2010  Voltage  Current  Cdensity 11/10/2010 Voltage  Current Cdensity  11/11/2010 Voltage  Current Cdensity

0.19  0.86  172 0.19 0.33 66  0.19 2.27 454

0.25  0.83  166 0.25 0.31 62  0.24 1.97 394

0.29  0.8  160 0.29 0.3 60  0.29 1.66 332

0.35  0.73  146 0.35 0.23 46  0.35 1.24 248

0.4  0.7  140 0.4 0.21 42  0.4 0.93 186

0.45  0.61  122 0.45 0.15 30  0.45 0.61 122

0.5  0.51  102 0.5 0.08 16  0.5 0.36 72

0.55  0.38  76 0.55 0.05 10  0.55 0.21 42

0.6  0.2  40 0.6 0.01 2  0.6 0.06 12

0.65  0.08  16 0.63 0 0  0.63 0.02 4

0.73  0  0
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Run 7  1 ml/min  70 C  3 Molar  Run 8  1 ml/min 70 C  3 Molar  Run 9  1 ml/min 50 C  3 Molar 

11/15/2010  Voltage  Current  Cdensity 11/16/2010 Voltage  Current Cdensity 11/18/2010 Voltage  Current Cdensity

0.2  1.75  350 0.19 3.43 686 0.19 2.03 406

0.25  1.49  298 0.25 3.04 608 0.24 1.73 346

0.3  1.22  244 0.29 2.46 492 0.29 1.53 306

0.35  0.87  174 0.35 2.11 422 0.35 1.13 226

0.4  0.62  124 0.4 1.52 304 0.4 0.91 182

0.45  0.41  82 0.45 1.28 256 0.45 0.61 122

0.5  0.22  44 0.5 0.73 146 0.5 0.43 86

0.55  0.08  16 0.55 0.55 110 0.55 0.18 36

0.6  0.03  6 0.6 0.14 28 0.6 0.1 20

0.63  0  0 0.63 0.08 16 0.63 0.05 10

               
 

 

 

 

 

 

 

 

Run 10  1 ml/min  25 C  3 Molar  Run 11  1 ml/min  90 C  3 Molar 

11/23/2010  Voltage  Current  Cdensity  11/27/2010 Voltage  Current  Cdensity 

0.19  1.03  206 0.19  1.38 276

0.24  0.85  170 0.24  1.23 246

0.29  0.73  146 0.29  1.11 222

0.35  0.51  102 0.35  0.93 186

0.4  0.38  76 0.4  0.75 150

0.45  0.22  44 0.45  0.53 106

0.5  0.15  30 0.5  0.33 66

0.55  0.03  6 0.55  0.13 26

0.6  0.01  2 0.6  0 0

0.63  0  0 0.63  0 0
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Run 1  1 ml/min  70 C  3 Molar  Run 2  1 ml/min  50 C  3 Molar 

12/8/2010  Voltage  Current  Cdensity  12/9/2010 Voltage  Current  Cdensity 

0.19  1.61  322 0.19  0.945 189

0.24  1.405  281 0.24  0.845 169

0.29  1.145  229 0.29  0.74 148

0.35  0.805  161 0.35  0.585 117

0.4  0.565  113 0.4  0.445 89

0.45  0.345  69 0.45  0.295 59

0.5  0.17  34 0.5  0.165 33

0.55  0.065  13 0.55  0.055 11

0.6  0  0 0.59  0 0
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Appendix	III: Consistency Data 

2/5/2011  70 C  3M  2 ml/min 2/5/2011 70 C  3M  2 ml/min  2/6/2011 70 C  3M  2 ml/min

0.2  2.2  440 0.2 2.27 454  0.19 2.17 434

0.25  1.99  398 0.25 2.01 402  0.24 1.97 394

0.3  1.74  348 0.3 1.81 362  0.29 1.72 344

0.35  1.38  276 0.35 1.38 276  0.35 1.35 270

0.4  1.09  218 0.4 1.05 210  0.4 1.02 204

0.45  0.71  142 0.45 0.71 142  0.45 0.65 130

0.5  0.43  86 0.5 0.45 90  0.5 0.34 68

0.55  0.18  36 0.55 0.22 44  0.55 0.14 28

0.6  0.06  12 0.6 0.11 22  0.6 0.03 6

0.65  0.01  2 0.65 0.04 8  0.67 0 0

0.68  0  0 0.68 0 0 

2/6/2011  70 C  3M  2 ml/min  2/7/2011 70 C  3M  2 ml/min 

0.19  2.21  442 0.19  2.22 444

0.24  1.96  392 0.24  2.02 404

0.29  1.71  342 0.29  1.76 352

0.35  1.29  258 0.35  1.4 280

0.4  0.96  192 0.4  1.04 208

0.45  0.77  154 0.45  0.67 134

0.5  0.33  66 0.5  0.35 70

0.55  0.17  34 0.55  0.14 28

0.6  0.09  18 0.6  0.03 6

0.65  0.03  6 0.65  0 0

0.67  0  0
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Appendix		IV: Nafion MEA run with Hydrogen‐Oxygen feed 

4/12/2011  70C  H2‐O2  4/13/2011 70C  H2‐O2 

Voltage  Current  Cdensity  Voltage  Current  Cdensity 

0.19  1.19  238  0.19 1.18 236 

0.24  1.13  226  0.24 1.11 222 

0.29  1.1  220  0.29 1.03 206 

0.35  0.95  190  0.35 0.95 190 

0.4  0.85  170  0.4 0.85 170 

0.45  0.78  156  0.45 0.76 152 

0.5  0.65  130  0.5 0.66 132 

0.55  0.56  112  0.55 0.58 116 

0.58  0.4  80  0.58 0.51 102 

0.68  0.18  36  0.68 0.28 56 

0.78  0.05  10  0.78 0.08 16 

0.9  0  0  0.9 0 0 
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