Internationa

o i S
s el

Automation of a Remote Telescope
Imaging System

Project Report

A Major Qualifying Project
submitted to the faculty of
WORCESTER POLYTECHNIC INSTITUTE
and performed at SRI INTERNATIONAL
in partial fulfilment of the requirements for the

Degree of Bachelor of Science

Date: March 7, 2008

WPI Advisors: Submitted by:

Professor John A. Orr Jorge A. Alejandro

Professor David Finkel Muzhtaba T. Islam
Thomas P. Niemczycki

SRI Mentors:

Andrew Young

Elizabeth Kendall

ACKNOWIBAGEMENTS. ..o ettt ettt e e e e e eer e e e e e e e e e sesatraaeeeeeeeesnstsaaeeeeseeenntssseeeaeeaans Vi
F o1 - Lot PR vii
EXECUTIVE SUMIMIAIY ...ttt ettt ettt ettt et et et et e ee e e e e e s eeeeeteeeeaaaaeaaaaaaaaeaaaaneaeaens viii
O 1o 4 o Yo [Tt d T o SRR 1
B 2 F- T <= oYU o o PSSP 2
2.1. High Frequency Active Aural Research Programcccccccevvevcureeeeeeeeeeniiirreeeeeeeeeseineeeeeeeeenns 2
D (o g Yo T o] L=l g ol 2 (=T Y- [o o F PP SPRRRN 3

N =Tl oL a1 Tor=1 I = 7= Yol o 10 Vo SRR 4
3.1. Telescope System and OPEratioNceuvciieeiiiiiieie ittt e e e e s sbae e e e saeaeeeenas 4
I O] o) 1 ok OO 6
N T 011 0[] - LI PP PP P PP P PP UUPPPPPPPPIRS 6
R N 1V o TU | o) PP P TP PRSP PPPPPRN 8
T O] o] ot] =1 L (] TR PUPT 9
O o T T=Tot f CTo Y= 1 U RRRRPP PP 11
5. Evaluation Of DESIZN OPtioNS.....cccuvveiieeeieiiiirieeee e e eeeirreee e e e e e eetrrereeeeeeeesabraeeeeeesessnsssaaseeeeens 13
6. ReMOtE TelESCOPE CONTIOL.......uiriiieiieeieiiiiiieee e e eecccrrree e e e eesetrreeeeeeeesebbreeeeeeeeeesanrsaseeeeessennnes 14
6.0, DESIZN OVEIVIEW ... sb s as s s ssssssstsseseteseseensnnnnenes 14
6.2. Web Driven USer INTEIrfACEuueviii ittt e e e e 15
6.2.1. Web Page Design with HTML and Javascript......cccccceeeeececciiieeee e, 16
6.2.2. XML Data Storage and Javascript ProCessingccccceeeeevecciiirieeeeeceeciireeee e 18
6.2.3. MoUNt CONLrol INtEITACEuiieeee e ran e e e 20
6.2.4. Observation Control INtErfacecccuvvieeee e 22
6.2.5. WeEb POWEE SWItCN cccciieeee e et e e e e e rer e e e 26

G T B U= o I S] =T Tl TR PSR 27
6.3.1. Apache Server Configurationcccuiiiiiee i 27
TG T A eV d o VoY T O G 1Y o o ' | SR 29

I F- 1ol =T [o I T o 1Y T o U 33
6.4.1. TCP/IP SErVEr IMOAUIE .. .eeeeeeiiiieee ettt ettt e e e sttt et e e e s s s es b e et e e e e s ssssabaaeeeeesas 33
6.4.2. XML IMOQUIEeeeee ettt et e et e e e et e e e e e aba e e e e abaeeeeensaeeeeenneeaann 35
6.4.3. Observation MOAUIEuuiiiiiee e e e e e st e e e e e e nrrreeeeeeeas 36

6.5 Hardware Interface MOAUIES.......oooe it rrre e e e 37
T8 00 O o ok PPNt 38
5.5.2 CAMBIAS ceiiiiuiiieiiiieiiiti e e e ettt e re e e e et e eetabb s s e s eeeteeataaaassseeeeeeneesssnansseseeesseesesnnnnnnns 40
B.5.3 IMIOUNT <ttt e e et e e e e e e e e e eab b as s e e e e e eeaaaabaa s eeeeeeaaeerrraannes 41

7. Image Encoding and File Transfer......u e e e e e 45

Table of Contents

2 R 2o 10 0 F= A O00] 0 V=1] 1o o N 45

7.1.1 WinView Format for Data ANalySiS.....cccccuveeeiieiieiciirreeeee e eeeenrree e e e e e e e eanres 45
7.1.2 PNG FOrmat for the Webcouioiiieeeeeee e 47

7.2 File Transfer AULOMAtioNcooeiiiiiiiereeeieeeeee e 50
2 AT L= o o1 T = PP 50

8. Potential Solutions for Dome AUtOMAtioNc.ceiiieiiiiiiienieeeeeee e 52
8.1. Current State Of the SYStEM.....coi i 52
8.2. Comparison of Potential SOIULIONScuviiiiiiiiiiiiiiiee e 58

S T V1] AV, =2 d o o PSSR 61

0o 4 Lol [V o o PP P PO P P OPPPTRPRROPN 64
10. REFEIENCES ..ot ettt e e st et esan e e n e s beesr e e s reesnneeneens 66
APPENIX Az USEI'S GUIE ..uvvvvieiieeiiiiiiieeeee ettt e e e e eesetberee e e e e eesebbsaeeeeeeesesesssreeseeessesnsssrreneeesenns 67
Appendix B: MainteNanCe GUIEuuveeieeiiiiiirrieee ettt e e eeeerree e e e e e e s sarraeeeeeeeesnnnraaeeeeeens 73
Appendix C: Directory Paths of System Filescooiiiiiiiiiiiiiee e 74
Appendix D: HTML and JAvascript FIleSeiviiiiiiiiiiiee ittt s sivae e 76
FE 37 T L oS 76
INAEX.NEMI L e s 76
MOUNTNEM .ot e s e e sneesare e 76
NAVNEM ettt ne e e rees 78
0bSErVAtioN. NEMI. .o s 78
ODSTEIEPIC.NEMI. .. e e 82
ODSWIEPIC.HEMI ...t 82
(LT =42 T =8 1P PP 82
NMOUNTELJS 1uvtiviiitititieitieiererererererererrererrrrrerrrrrrereterereteeeeeeeteeeeeeeeeeaeeeeaeeeeeeeeeeeeeeeseeeseeeeesesesssesssnsnssenes 83

o] o Y=Y Y= [o] o TS 1P 87
ApPeNndix E: WEDSITE XIMIL FIlES....ciiiiiiieeeiee ettt eeseirrree e e e e e seabrree e e e s e e eeaaaraeeeeeeees 97
MNEUSEIPIEfS.XIMI ..ot e s sneesnne e 97
ODSUSEIPIEfS.XMI ...t 97
MOUNTSTATUS. XM ...t e e s neesrne e 97
WACAMSTATUS. XM .t ettt e st e e s ebe e e s e e e sabeesnaree s 97
1e1ECAMSTATUS. XIMI...eiiiiii et e e e e 98
Appendix F: Apache Server Configuration.........cuuveeieiiii et 99
oY [o olo T o) USSR 99

oY oYo XY W oTo] o} iRUU PR OO PRIt 106

Appendix G: CGI SCript PYthOn COUEuvuiiiiiiieiiirieeee ettt e rree e e e e e e annaes 110
[olo] 0] 1 o] o 1Y PP 110
Appendix H: Back-end Driver SOUrce COUE........uiiiiiiiiiiiiiieiiiiiee e ssiiee e sriee e ssree e sivaee e ssaaee e 116
BaCKENADIIVEI. Nt st 116
2 To G Lo [g1V =T g o o o SRR 116
CaMUCEILI e st e 124
(072010 i o] o o TR PP 126
IMOUNECEIL Nttt e n e ae e s enneesanes 130
Y Lo YUY oY (@ d o B ol] o F PR UPUPPRRt 131
OBSEIVAtION. N e e 137
(0] s 1Y=T V-1 u o] JXol o] « PRI 142
(0] oY o 1 1 o 18 o TP PPUTRRRPPRP 169
(@] o34 TorY @1 o 1ol o o SRR 171
Lol o o Y =T Y71 o [USSR 178
Bl o1 o YT VZ=] g of o o U N 180
XIMINOGE.N ettt e s e e bt e s e e saneesneesnneeneens 183
b 411\ ToTe [T ol oo FOU U UTR PP 186
Appendix |: Mount CoONtrol VBSCIIPLS ...uuvveeiieiieieciiiieeeeeeeeecitiree e e e eeeesrrreeeeeeeeesnrraeeeeeeeeesnnnneens 191
] oo T o AN o TP P PP PPPOPPPPTRPPPTOPIN 191
CONNECE.VDS o s s e e s e e sanees 191
oY o Yo T 14 oY TRV o 1R 191
ROME.VDS ..ttt s n e sn e e e 192
ISCONNECEEA.VDS ...ttt e n e s e n e s neesaneene 193
[T [SOV o LU 193
SIEWEO.VDS .. e e 194
Appendix J: WinView Header FOrMat......ciii ittt e s e e s sire e e s saanee s 196
Appendix K: MATLAB Code to Generate Generic WinView Header......ccccccvvviviiieeinniveeeennneennn 203
Appendix L: LodePNG Library Header Filecceeeeiiieeeeieeccteeee et e e e 204
Appendix M: Dome Automation Email CorresSpondenceccceeeeeecviiiieeeeeecccireeee e 231
Correspondence With ASNAOMEuvvveiiiiiiii e e e e abraees 231
Correspondence regarding MaxDome Il installation with an Ashdomeccccceveeeeeennnneee. 232
Correspondence regarding Meridian CoNtrolScoiecciiiieeeeeeeieciiireeeee e e 234

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14.
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:

Table of Figures

Physical components of the telescope imaging systemcccovvvveeeieiieicciveeee e, 5
Telescope and Wide-angle CamMErasccoveeveeiiiicciiiieeee et e e eeeerrree e e e e e e e srraaeeee s 7
ST-133 controllers for the CAMEIAsuuuiiiiieiicieieeee et e e e e e e e eeans 7
V7N 1Y 7= o - [of TP 8
(0] [o[=T gF=To o I D 1o] o s TR PPRTRN 10
Remote Telescope SYyStemM OVEIVIEW........eeeeieeiieiiiirreeeeeeeeeiecirreeeeeeeesescnrereeeeeeeeesennneens 11
Overview of major system components in the remote telescope system.........cc......... 14
MoUNt CONErOl INTEITACE .. .cii i eeeeaes 20
Observation control iINterface.........uiicciiii i 23

Web Power Switch Installed On-Sitecoocuiiiiecciiee e 26
16-bit WinView images With “5-95” appliedccovvviiiireeiiiiiiccieeeeee e 46
8-bit PNG images after ProCESSING.. .uuuiiiiiiiiiirieieeeeeecicirrree et e e e e esarrrrereeeeeenans 49
Dome rotation controller and MOtOr..........eviiiiiiie e e 53
Shutter control panel rides with the dome as it rotates.....cccccceeveciiieeeee e, 53
Lower shutter control motor and limit SWitchccoeeveiiiiiiii e, 54
Upper ShUttEr MOLOr e e e e e e e e e e e neeaees 54
Slip rings move with the dome to power mobile outlet.......ccccooveciiiveeeiiiicceeee, 55
Slip rings move against stationary power sUpplycooocciiiieeee e, 56
DOME CONLIOl traNSCEIVELS......uiiiiiiee ittt e e e e e e e e e rare e e e e e e e e snereeees 56
Block diagram of automated dome SyStEM.......coociiiiiiiei i 58
Boltwood Cloud Sensor Il from Diffraction Limited.......cccccoevecuiiieeeeiiiieciieeee e, 62
Boltwood Cloud Sensor [l User interfaceccoocueeeiriiiiiiiiiiee e 63
The project team on-site with the optical imaging systemcccoevveeiiniiieiiniiieennns 65

Table of Tables

Table 1: Summary of files that make up the web-driven user interface.......cccccceeviecciiveneeeennnns 17
Table 2: Summary of available mount controls depending on state of mount.............cccceee.e. 21
Table 3: Fields submitted to server when slewing the mountcccccooeeciiiiiiei e, 21
Table 4: Hidden mntOp values sent from each mount form........ccccccoo i, 22
Table 5: Summary of div fields in observation Page.......ccccoevecuiiiiieei e 23
Table 6: Summary of hidden fields and div tags corresponding to each connect button............ 24
Table 7: Observation page status fields and corresponding XML tags......ccccccceeeeevveicciiiveeeeeeeennes 25
Table 8 Back-end Driver COMMANGS.......ccuuiiiiriiieee it esiiee et e e stre e srae e s ssbaeeessbeaeesssseeessnns 37

Acknowledgements

We would like to express our sincere gratitude to the many people who made it possible for us
to complete this project. We are thankful to professors John Orr and David Finkel of WPl who
shared their knowledge and expertise to help us along. Thanks to their guidance, we were able
to overcome the many technical challenges presented by this project. We would also like to
express thanks to Andrew Young of SRl for being an excellent mentor and challenging us to
develop a better project than we thought we could. We are also grateful to Elizabeth Kendall of
SRI, who put forth extraordinary effort to arrange a visit to the HAARP facility in Alaska. Finally,
we would like to thank the wonderful staff at SRI and HAARP who were extremely supportive
throughout our project experience.

Vi

Abstract

SRI International is working with the High Frequency Active Auroral Research Project to develop
instrumentation for researching the properties of the ionosphere. The project team developed
a web-based interface that allows remote control of an optical imaging system located in
Alaska. The interface provides control of the on-site cameras, optics, and mount for researchers
at SRI. Data that is collected by the system is returned to SRl autonomously. The project
concluded with on-site testing of the system.

Vii

Executive Summary

SRI International is working in conjunction with the High Frequency Active Auroral Research
Program (HAARP) to develop instrumentation for studying properties of the ionosphere. As part
of this research, a new optical telescope for observing ionospheric phenomena known as
“airglow” was installed at HAARP’s research facility outside of Gakona, Alaska. The telescope is
used to make observations when sections of the ionosphere are excited by a high-frequency
radio transmitter. In the former configuration, a researcher from SRI had to travel to Alaska and
operate the telescope on-site in order to make observations. The team’s project was to develop
an automated remote control system that allows researchers control of the observatory
equipment from California.

The telescope system is composed of two cameras, a set of optics for each camera, and a
robotic mount that supports and orients the system. The camera and optics systems are
identical, with the exception that one has a wide-angle lens and the other has a telescope lens.
The cameras are attached to the same mount and always point in the same direction. The
cameras, optics, and mount are controlled by two computers that are located on-site. The
imaging system is housed inside an observatory dome that includes a slit for the telescope to be
able to observe a portion of the sky. The motorized dome can be rotated so as to orient the slit
in any direction.

The project team developed a web-based interface for the imaging system to allow remote
control of both cameras, sets of optics, and the mount. The user interface is a website with
fields that allow the user to enter settings such as desired mount orientation or camera
exposure time. A user can also specify a time at which the observation session should start and
stop. The web interface utilizes Javascript and XML files to update displays of the hardware
status without refreshing the entire page. While an observation is taking place, new images
appear on the page automatically as they are acquired by the cameras.

The web interface is hosted by an Apache HTTP server that is running on one of the on-site
computers. The Apache server provides user authentication and SSL encryption to secure the
system. When the user submits settings for the equipment, a script is called to process the
submission. This script, which was written in the Python programming language, translates the
settings into commands that are sent to the “back-end driver” over a TCP/IP connection. A
back-end driver operates on each of the two computers that are connected to the hardware.

The back-end driver controls operation of the hardware on each of the two computers. This
Windows console application is composed of several software classes that operate under the
control of the “observation” class. When the observation class receives commands from the
TCP/IP connection, it parses them and passes them along to the appropriate device class. The

viii

device classes provide high-level function calls that cause the hardware to perform certain
actions, such as acquire an image. These device classes interact with software interfaces that
were provided by the manufacturers for each device. Each device class also reports back to the
observation class, which uses the latest data from each device to generate an XML file. This
XML file provides an updated hardware status for the website interface.

Images that are acquired by this system are stored in two formats. The WinView format
appends a header to the raw pixels generated by the camera so that researchers may perform
analysis on the data. Each image is also encoded in the Portable Network Graphics (PNG)
format, which is compact and web-friendly. In order to see the airglow in the images, however,
the values of pixel intensities are redistributed across the full range of grayscale colors available
in the image. Once the image is encoded as a PNG it can be displayed on the user interface and
made available for public viewing.

There are some additional features to make the system more robust. The WinView data files
are automatically sent back to California as they are acquired by a program called DeltaCopy,
which was installed on-site. A web-controlled power switch, which includes a built-in HTTP
server, was installed on-site to allow users in California to switch devices on and off remotely.
In order to provide remote maintenance, the on-site computers were configured to allow
Virtual Network Computing (VNC) access, which allows remote users to control the desktop of
each computer. Additionally, the back-end driver includes telnet access through its TCP/IP
module, which allows a user to debug individual commands.

One component that was not implemented is automation of the dome that houses the imaging
equipment, which was an original goal of the project. Upon arriving at SRI, the team learned
that there is no existing interface between the dome and a PC. Additionally, accounts of past
failures of dome components raised concerns over operating the dome remotely. However,
most of the components required for automated dome operation are already in place. The
missing components are two position sensors and a PC interface. The product team developed
a proposal of the equipment that would be necessary to complete dome automation, which
would provide remote control of the entire observatory. By following the team’s
recommendations, the dome can be operated safely from a remote location.

The project has been tested extensively on the equipment to be as reliable as possible. Near
the end of the project, the team travelled to the HAARP facility in Alaska to deploy and debug
the system. By the end of the trip, a researcher was able to control the imaging system from SRl
in California. The project has provided a feasible way to control the equipment remotely and
collect image data.

1. Introduction

SRI International is working in conjunction with the High Frequency Active Auroral Research
Program (HAARP) to develop instrumentation for studying properties of the ionosphere. As part
of this research, a new optical telescope for observing ionospheric phenomena was installed at
HAARP’s research facility outside of Gakona, Alaska. This telescope is used to make
observations when sections of the ionosphere are excited by a high-frequency radio
transmitter. In the former configuration, a researcher from SRI had to travel to Alaska and
operate the telescope on-site in order to make observations. With the completion of this
project, SRI has an automated system that can remotely control the telescope’s operation from
the company’s facility in Menlo Park, California.

The team’s project was the development of a system to automate operation of the optical
telescope. The solution allows for autonomous remote operation of the cameras, optics, and
mount that make up the telescope system. The remote system allows the observatory to
remain fully functional while eliminating the need to operate the imaging equipment on-site.

2. Background

SRI International is a nonprofit research institute that conducts client-sponsored research and
development. The organization’s mission statement stresses its commitment to discovery and
the application of science and technology for development of knowledge, commerce,
prosperity, and peace. Its list of clients includes government agencies, commercial businesses,
foundations, industry consortia, and venture firms. SRl employs about 1,400 staff members and
its 63-acre main campus is located in Menlo Park, California.

Originally founded in 1946 by the trustees of Stanford University as the Stanford Research
Institute, the company became independent and changed its name to SRI International in the
1970s. Over the course of its history, SRI has developed a legacy of innovation in a wide array of
fields including communications and networks, economic development, health sciences, the
environment, and materials and structures. The company also brings its innovations to the
marketplace by licensing its intellectual property, and creating over a dozen new spin-off
ventures in the process. SRI’s for-profit subsidiary, Sarnoff Corporation, led the development of
the High Definition Television standard and has won 10 Emmy awards for outstanding
achievement in technological advancement. Other notable innovations from SRl include the
computer mouse, the first computer network known as the ARPANET, optical read-write data
storage, the liquid crystal display, the next-generation heart valve, and breakthroughs in
surgical robotics.

With more than sixty years of experience in developing technology, SRl is looking forward to
tackling some of the world’s most pressing problems. Over the past year, SRl has made
numerous advancements in medicine by continuing to refine its robotic surgeons, improving
diagnostic tools for cancer, and developing technologies for rapid manufacturing of vaccines
and drugs. SRl is also conducting geospace research, which includes ongoing studies of the
polar atmosphere taking place in Greenland and Alaska.

2.1. High Frequency Active Aural Research Program

The High Frequency Active Auroral Research Program (HAARP) is a project aimed at gaining a
better understanding the ionosphere for the purpose of developing more advanced
communication and surveillance systems. Started in 1993 and proposed to last for twenty
years, the project is funded by the United States Air Force, the United States Navy, and the
University of Alaska. The project site is located near Gakona, Alaska, and consists of two main
components. One main component is an lonosphere Research Instrument (IRI) - a high power,
high frequency transmitter that is used to excite the ionosphere . The second main component
is an array of scientific instruments that are used to study the responses to ionosphereic
disturbances. The latest IRI at the site has a 3,600kW transmitter and 15x12 antenna

arrangement. The continually expanding facility is constructing new equipment to advance its
research.

Recent developments at HAARP include the UHF ionospheric radar, which is a 446MHz phased
array of 512 antenna elements. This radar, which is used to study the physical processes of the
ionosphere during operation of the IRI, is only part of a larger design known as AMISR
(Advanced Modular Incoherent Scatter Radar). AMISR is being developed by the National
Science Foundation (NSF) and SRI International. During the final implementation stage, a new
computer-controlled optical telescope has been installed inside a 14 foot diameter dome. With
the addition of these and other new instruments, HAARP continues to pioneer study of the
ionosphere.

2.2. Ionospheric Research

The ionosphere is a layer in the Earth’s atmosphere that is located above the troposphere and
the stratosphere. Due to the thin air that exists in this region of the atmosphere, solar radiation
strikes the gas with enough intensity to separate electrons from neutral molecules. These
collisions produce free electrons and positively charged ions, both of which exist for a short
amount of time. A high-power signal may be transmitted directly to the ionosphere, further
exciting the molecules to produce a phenomenon known as “airglow.” The airglow may then
be studied from earth using antenna arrays and optical imaging devices. The data gathered
from these studies provides insight into the composition and behavior of the ionosphere.

lonospheric research has profound implications in communications and navigation systems. For
example, broadcasters utilize the properties of the ionosphere to reflect radio signals around
the curve of the Earth so that their programs can be transmitted across the globe. The Voice of
America (VOA) and the British Broadcasting Corporation (BBC) are two such international
broadcasters. The ionosphere also provides for communications between ships and the shore,
for trans-oceanic aircraft communication, and for military surveillance systems. These useful
applications provide reasons for more advanced research into auroral activity and the
properties and composition of the ionosphere.

3. Technical Backround

The telescope system is used to conduct observations of airglow that results from operation of
the HAARP transmitter. The telescope system is composed of several pieces of equipment that
are used together when conducting an observation. These devices are a telescope mount, two
cameras, a set of optics for each camera, and two personal computers (PCs). The system
components can be configured for various applications, but the way in which their features are
used at HAARP influenced the design of this project. This technical background section
describes each of the components and explains how they are used in practice.

3.1. Telescope System and Operation

The telescope system is arranged as shown in Figure 1 on the next page. Both cameras, one
with a telescope lens and the other with a wide-angle lens, sit on top of the telescope mount.
The mount moves about two axes; it can rotate to point the cameras in any direction, and it can
move from a horizontal to a vertical position to orient the cameras toward the sky at a given
angle. Both cameras always point in the same direction. The two cameras are identical with the
exception that one is attached to a telescope, which provides a close-up image with a narrow
field of view, and the other one is attached to a wide-angle lens, which offers a distant image
with a wider field of view. Attached to each camera is a set of optics. Each set of optics includes
a filter wheel that is used to select a filter for the image, and an external shutter. This shutter
sits at the camera lens and can be opened or closed to allow light to enter or to keep light and
debris out. Two PCs are used to control the telescope system. The telescope camera and
telescope optics are attached to one PC. The wide-angle camera, its optics, and the mount are
attached to the other PC. In practice, both cameras are used simultaneously to take close-up
and context images of HAARP airglow.

The imaging system is used to conduct observations while a HAARP experiment is in progress.
The experiments are scheduled to start and stop at predefined times given in Universal
Coordinated Time (UTC). During each experiment, the HAARP transmitters operate in on and
off intervals of a given length. While running, they transmit signals into the ionosphere in an
attempt to create airglow, which is in turn detected by the optical imagers. The transmitters are
typically aimed so as to produce airglow along the magnetic field lines of the earth or directly
above the facility. The cameras are aimed accordingly by positioning the mount.

While an experiment is occurring, a researcher specifies an exposure time, filter, and a data
readout rate. These settings are explained in detail in section 3.3. Once the cameras are set up,
they are started simultaneously and take images continuously. When the experiment is
complete, the raw image data is saved to a hard drive or CD for later analysis.

Wide-angle

Lenses
Telescope
Lenses
Wide-angle
Shutter
Wide-angle
Filter Wheel
Wide-angle
Smartmotor
N
Robotic
Mount
Telescope
Filter Wheel
Telescope
Shutter
Wide-angle = Telescope
Camera Smartmotor

Telescope
Camera

Figure 1: Physical components of the telescope imaging system

3.2. Optics

Two sets of optics with almost identical interfaces are in use at the HAARP site. Although each
set has several components, we are only concerned with the active components: the external
shutter, the filter wheel, and the SMARTMOTOR system controlling them.

The external shutter sits just outside the camera. Its main purpose is to protect the sensitive
internal circuitry of the camera from exposure to bright light. The shutter has two positions,
opened and closed, and it is controlled directly by the SMARTMOTOR system. The
SMARTMOTOR system has three inputs for controlling the shutter: a manual switch located on
the optics circuitry, an external trigger input located near the shutter, and an RS-232 interface
used to communicate with the SMARTMOTOR from a PC. The project uses only the RS-232
interface to control the shutter.

The filter wheel is a disc that contains six circular openings along its edge. Each opening houses
a distinct filter. The filter wheel is mounted such that as it rotates about its center point, each
of the filters covers the camera opening individually at one point in time. The SMARTMOTOR
controls this rotation and also ensures that the filter wheel is never “stuck” between filters.
Filter wheel control can only be carried out using the RS-232 link. The commands used to
control both the filter wheel and optics are listed in section 6.5.1.

3.3. Cameras

There are two identical charge-coupled device (CCD) cameras in use at the HAARP site. A CCD
camera functions by collecting light and converting it into charge and then emitting the signal
that results in a digital image. The model of the on-site cameras is Princeton Instruments
VersArray 512B, and they are manufactured by a company called Roper Scientific. This specific
model has been phased out and is no longer in production.

The cameras are connected to controllers, which in turn interface with the PCs via PCI cards.
Each camera has its own controller (model ST-133), which sets the hardware temperature to
-40°F on power up. Such a low temperature is necessary in order to minimize the effects of
thermal noise on the image quality. A higher temperature generally results in a grainy image
due to the higher background noise levels. The cameras come with their own software package,
WinView, which has some built in image processing capabilities. Winview supports its own
image format; WinView files have the extension .SPE. Figure 3 shows the two cameras installed
on site, and Figure 3 shows the two controllers.

Fig;re 3: ST-133 controllers for the ;:.émer;;\\
The cameras from Princeton Instruments are supported by PVCAM (Programmable Virtual
Camera Access Method Library). PVCAM is an ANSI C library of camera control and data
acquisition functions for cameras from Roper Scientific. The library is independent of different
platforms and operating systems. It provides a high-level interface to the camera device driver
so that developers may choose to specify the camera’s setup, exposure, and data storage
attributes. In our design approach, we made a strategic decision to implement the camera

functionality via the PVCAM library, as opposed to using other imaging software. This decision
is discussed in section 5.

Figure 4 is a pictorial view of the different layers that interact through PVCAM.

Host Computer

Camera

Data
Link

Figure 4: PVCAM Interface
(source: PVCAM Manual)

The PVCAM library allows direct access to the low-level device drivers for the camera module.
The WinView software is an application program that interfaces with PVCAM to control the
camera hardware. One important image processing feature included in WinView is the “5-95”
algorithm. This algorithm allows the user to rescale the image pixels to make faint features
more visible. This operation allows the airglow to show up in the images once the re-scaling
process is applied.

3.4. Mount

The mount that is located at the HAARP site is a Paramount ME Robotic Mount manufactured
by Software Bisque. The mount physically supports both sets of cameras, camera lenses, and
optics. The Paramount ME moves about the vertical and horizontal axes, and its operation is
controlled by a computer. The mount connects via USB to the same PC that also controls the
wide-angle camera and optics.

On the PC, mount operation is controlled through a program called TheSky6. TheSky6 is a
robust software package that gives the user a lot of functionality in addition to controlling the
mount, such as tracking specific celestial objects across the sky. In practice at HAARP, however,
the software is only used to perform basic functions, such as orienting the mount. Since the
control protocol for the Paramount ME is proprietary and has not been released by the
manufacturer, using TheSky6 is currently the only way to control the mount with a PC.

After TheSky6 is started on the PC, the program can connect to the mount to control it. The

user can then orient the mount by slewing it to a given position. In order to slew the mount, the
user specifies a desired position in terms of azimuth and altitude. Azimuth specifies the position
around the horizon; an azimuth of 0° indicates north, 90° is east, 180° is south, and 270° is west.

8

Altitude specifies the height above the horizon; the horizon has an altitude of 0°, and straight
up is indicated by an altitude of 90°. Both azimuth and altitude are specified in terms of
degrees, minutes, and seconds, where sixty seconds is one minute and sixty minutes is one
degree.

The mount can be initialized to an absolute position through a procedure called homing.
Homing the mount moves it to a home position, which is a fixed mechanical orientation that is
defined by the orientation of the gears relative to internal homing sensors. When the mount
reaches the home position, its position registers are reset to zero. All subsequent movement
can be performed accurately relative to that accurate position. The mount must be homed
whenever it is turned on, and it cannot operate until it has been homed. Additionally, homing
allows the mount to recover to an accurate position in the event of a power outage or other
interruption.

Another operation that the user can perform is called parking, which places the mount in a
certain position when it will not be used. The mount is parked to a predefined position, which is
set by the user. In practice, this position is one that puts the telescope equipment in a
convenient position for people to move about the limited space in the telescope enclosure.

At HAARP, the mount is typically operated in only a limited portion of its complete range of
motion. The orientation for viewing airglow directly overhead is the same as the park position.
The orientation for observing at the earth’s magnetic zenith, currently 202°0°0” azimuth 76°0°0”
altitude, is very close to the home position. In moving between all these positions, the mount
only rotates slightly about both axes. There is no risk in moving between these positions
without observing the mount. All cables connected to the instruments were tied off so as to
minimize the risk of becoming tangled around the mount during a slew. A user can slew the
mount outside of the normal range of operations safely, but it may be beneficial to have
personnel on site to ensure that the cables do not become tangled as the mount moves to that
position.

3.5. Optics Shelter

The telescope system resides in an enclosure known as the optics shelter, which is located
about a quarter mile from the HAARP transmitter. The shelter is a small booth with two rooms,
one to house the telescope and the other for computer equipment. The telescope enclosure is
outfitted with a fourteen-foot diameter dome manufactured by Ashdome. The dome is a steel
hemisphere formed by a number of interlocking segments with a shutter system that opens a
slit on one side of the hemisphere. The slit allows the telescope to view any portion of the sky
while protecting it from an unnecessary exposure to wind and other weather conditions. The
optics shelter is shown in Figure 5.

Figure 5: Optics Shelter and Dome

As the telescope cannot focus through glass, it must be exposed through the dome slit in order
to make observations. During observation periods, the cover swings back to open the slit,
allowing the telescope to gaze at the sky. The lower portion of the slit is opened by lowering a
drop-out door. Once the slit is opened, the entire dome structure can be rotated, allowing the
slit to be aligned with the telescope so that it may peer at any portion of the sky. The slit cover
can be closed to protect the telescope from damage due to rain or snow.

Currently, the dome can be only controlled manually on-site, and there is no PC interface to its
controls. Possible methods for enabling autonomous and remote operation of the dome are
discussed in Section 8 of this report.

10

4. Project Goals

The goal of this project was to develop a system for automated and remote control of a
telescope that is operated in conjunction with the high frequency radar instrumentation at the
HAARP facility in Alaska. The remote system must provide users at the SRI facility in California
the capability to control all of the components that make up the telescope system.

The internet is an obvious two-way communication medium for remote control of the
telescope system as a high-speed connection is available right inside the optics shelter.
Additionally, the cameras, optics, and mount are controlled by PCs that are already connected
to the internet. Therefore, the overarching technical challenge presented by this project was to
extend system control from the on-site computer terminal to a remote end of the internet
connection. Figure 6 shows a conceptual overview of the system.

HAARP
Gakona, AK

PCl Card | Telescope Camera
VersArray 5128

Telescope Optics
Keo Scientific Custom

Serial

SRI

Menlo Park, CA Internet

Connection

e
@ USB Mount
5 Paramount ME

Wide-Angle Camera
VersArray 512B

- Wide-Angle Optics
Keo Scientific Custom

 PCI Card

Figure 6: Remote Telescope System Overview

Software for controlling the individual components of the imaging system exists, but each
device is controlled by a separate software package. Prior to this project, these software
packages have never been put together to work in a synchronized manner. The solution
required an integrated interface that allowed remote control of all the functions that are
executed by these software packages.

11

The project team consulted with Elizabeth Kendall of SRI, the primary user of the telescope
system, regarding any preferences for the user interface. Elizabeth specified that she uses the
telescope and wide-angle imagers simultaneously, and that she would like to control both at
the same time. She also specified that she needed to be able to set the exposure time, analog-
to-digital (ADC) conversion rate, and filter status for each observation, and that she needed
remote control of the external shutter on both imagers. Other camera settings, such as camera
temperature, could be preset as they would not need to be adjusted by the user. Data
produced by each imager must be stored in a raw format, as well as a web-friendly format for
posting to a website. Finally, Elizabeth needed to be able to move the mount to a given azimuth
and altitude. The ability to open and close the dome slit and keep it aligned with the telescope
and the ability to detect hazardous weather conditions were desired as well.

Aside from the explicit requirements provided by Elizabeth, the nature of the project also
presented some implicit requirements. As this system operates at a remote site, it needed to be
reliable and offer remote maintenance capability. Additionally, the solution needed to be
flexible enough so as to allow the user to continue being able to utilize existing software should
the need arise. That is, the automation system should not reduce functionality, but expand on
the capabilities already in place.

12

5. Evaluation of Design Options

Early research into possible solutions presented several paths for the project and a number of
ways to potentially implement the desired functionality. The project team evaluated the
advantages and disadvantages of each solution.

The simplest solution was to provide access to the remote computers through a Virtual
Network Computing (VNC) connection. A VNC server was installed on each of the on-site
computers. By using the VNC client, a user at SRI can see the desktop of each on-site computer
and control it with the local mouse and keyboard. This method allowed for the use of the
existing software to control the hardware remotely. This solution, while simple, did not
automate the operation of the imagers. However, the team left the VNC capability in place
because it allows previously installed software to be used remotely, and it provides an easy way
to troubleshoot problems with the system and automation software.

An original design for the system relied on the existing remote control functionalities of
astronomy software from Software Bisque, the same company that manufactured the
telescope mount. While the company produces imaging software with remote access features,
called CCDsoft, the product does not include built-in support for the cameras and optics that
are installed at HAARP. Attempts to develop a custom driver to operate the cameras and optics
with CCDsoft showed that it would be impossible to incorporate some settings that are specific
to these cameras into the remote interface of this software package. Since this path would not
allow us to meet the user’s requirements, we decided to abandon it and proceed with another
approach.

An alternate solution was to develop custom software to control the hardware. The remote
interface was to be a client-side application, which would connect to a server-side application
that ran on the on-site computers. Ultimately, we moved away from the client-side application
in favor of a website interface, which was suggested by Andrew Young of SRI. A client side
interface would require extensive programming. A website, however, is simple to set up and
allows text and images to be arranged on the screen easily. Additionally, a website allows easy
portability from one remote computer to another. The next section discusses the
implementation of this design and provides information about each of the software
components.

13

6. Remote Telescope Control

The remote telescope system enables a user at SRI in California to control the cameras, optics,
and mount located at the HAARP facility in Alaska. The following sections detail each of the
software components of the system. A user’s guide to the system is provided in Appendix A.
The maintenance manual for the system is available in Appendix B.

6.1. Design Overview

The remote telescope control system provides the user with a web-driven interface, which
interacts with a software component that runs on the on-site computers. Between the user and
the hardware lie several layers of software, each with a specific role in the system. Figure 7
provides an overview of these major software components.

Overview of System Components

SRI HAARP
Menlo Park, CA | Gakona, AK
I
Internet Browser | Apache Web Server Back-end Driver and Hardware Modules Hardware
| oo ———————o T s .
oo p |
Lo ! |
| Hardware _ l | :
1 T - T
o L : I Hardware ! Piece of
! : I } Module 1 Bl Eguipment 1
(- :\ I o
Y L. Ll .
2 ' R
2 ¢Pip Back-end D H | 2 Piece of
Web-driven = . . ack-end Driver arware . £ iece o
User Interface o : | O EE] | g IT"* Main Program Module 2 REEE Equipment 2
£ i 1 g
I ' e
Lo
A | ! 1 ! £
I I . .
i I Y : I :
I I
i : User : } Harware < ' > Piece of
! | Preferences : | Maodule n | Equipment n
| XML | :
.o |
I [|
Lo 3 !
I
i

Installed on one —{ '7 Installed on each computer 4{
computer

Figure 7: Overview of major system components in the remote telescope system

On the left side of the figure is the user interface, which can be opened in any web browser at
SRI. The web browser connects over the internet to the Apache web server, which is running
on-site. For increased security, the HAARP firewall only allows the user interface to be accessed
from an IP address within the block of SRl addresses. The web server receives incoming
connections from web browsers and sends back web pages, XML data files, and images over the
Hyper Text Transfer Protocol (HTTP). The web server can also receive user inputs, which it then
passes along to a back-end driver using Transmission Control Protocol/Internet Protocol
(TCP/IP) over the on-site local area network.

14

There is a back-end driver installed and running on each of the two on-site computers that are
connected to hardware. This program is the heart of the system as it listens for commands,
autonomously controls the hardware, and reports the status of each piece of equipment.
Finally, the hardware modules are the interface between the back-end driver and the hardware
itself. These modules are libraries of functions that are built into the back-end driver. They are
specific to the hardware, and the back-end driver uses these modules to operate each piece of
equipment.

The remote telescope control system runs under the Microsoft Windows XP operating system.
Roper Scientific PVCAM version 2.7 must be installed in order to start the program, and
Software Bisque TheSky6 must be installed in order to use any of the mount functions. In order
to provide a web-driven interface, Apache Server version 2.2.8 or later should be installed and
configured according to section 6.3.1. Additionally, the Python programming language, version
2.5 needs to be installed in order to run the included CGI script, which is discussed in section
6.3.2.

Information is sent to the back-end driver from the web server over TCP/IP port 5000.
Therefore, computers that operate as part of the remote telescope system must be able to
communicate over a local network using that port.

The computers must also be able to share a network folder. The back-end driver generates files
locally, in the directory that it is placed. In order for these files to be accessible to a web
interface, a back-end driver that is running on a computer other than the web server should be
placed in a network drive that maps to the server. In our installation of the system, the
computer connected to the wide-angle camera hosts the Apache web server. Both backend
driver executable files actually reside on this computer, but one of them is placed in a shared
folder that is mapped from the other computer over the local network. Running the back-end
driver on the telescope computer from this shared network folder allows it to generate files
that are visible to the other computer as well. Therefore, both computers must be connected to
the network to use the telescope camera and optics through the remote telescope system. A
list of all the files and their directory locations is provided in Appendix C.

The following sections discuss each of the major components of the remote telescope system.

6.2. Web Driven User Interface
A user controls the remote telescope system through a website interface. The web interface

was developed for Microsoft Internet Explorer 7 and Mozilla Firefox (version 2.0), and the user
should experience the same functionality using either browser. Note, however, that the project
team observed occasional and irregular delays in updating the data displayed on the page when
using Firefox.

15

The user interface is accessed through a web browser by entering the IP address of the on-site
host computer. The IP address must be preceded by https:// and followed by colon and the
port number, as the server operates over secure hyper-text transfer protocol on a non-standard
port for additional security. Upon entering the server address, the user is immediately
prompted for a username and password, which have been supplied to SRI personnel. Once
logged in, the user is able to access all functions of the remote telescope system. In order for all
the features of the user interface to work properly, the user must set browser settings to allow
ActiveX controls and disable any pop-up blockers.

A navigation bar, which appears across the top of all pages, allows the user to quickly jump
between all the pages of the website. The links in the navigation bar are “Mount Control,”
“Observation Control,” and “Web Power Switch.” A link to the HAARP Operations page, which is
convenient for researchers when performing experiments, is provided as well and opens in a
new browser tab.

6.2.1. Web Page Design with HTML and Javascript
Each of the web pages that make up the user interface is composed of HTML (Hyper-Text

Markup Language) code, which dictates the layout of elements on the page, as well as
Javascript, which allows content to change dynamically. A page corresponds to a single HTML
file, which may then reference any number of Javascript or image files.

When the user first logs into the web server, the page index.html is automatically loaded. This
page does not display any actual content, instead it sets the website title, “SRI Telescope
Automation Project,” and instructs the browser to display content in two frames. One frame is
located across the top of the browser window and displays the navigation bar, which is actually
an HTML page itself. The second frame fills the remainder of the browser window, and it
displays the user interface. Clicking on “Observation Settings” or “Mount Settings” in the top
frame will result in the respective page appearing in the main frame. Clicking the link labeled
“Web Power Switch” will cause the interface of the web-power switch, which originates from
the device’s built-in server, to appear in a new window.

The Observation and Mount Control pages serve two primary purposes: to display the current
status of the hardware and to provide a user-friendly interface for sending commands to the
equipment. The latter is achieved through the use of web forms. Each page can contain one or
more forms, and each form can contain any combination of text input fields, radio buttons,
checkboxes, hidden fields, and buttons. A form is submitted by pressing a button on it, which
triggers the browser to send the values of all the fields contained in the form to the server for
processing. In addition to fields that allow the user to select a preference or enter information,
a form can contain hidden fields that contain static values. These fields are submitted along

16

with the form, but the user never sees them on the webpage. In the mount and observation
pages, hidden fields are used to identify which piece of equipment the user is trying to control.
Submitting a form requires the entire page to be refreshed. Every form in the user interface is
configured to return the user to the same page from which the form was submitted.

The key to dynamically updating the webpage to display the current status of the hardware is
HTML div tags. Each tag is labeled with a unique ID, and it can be placed anywhere on the page.
When the page is loaded in the user’s browser, a Javascript replaces these div tags with
additional HTML. Since the Javascript continuously runs inside the browser whenever the page
is open, the content of each div tag can be updated and changed. Div tags can contain a simple
value, or they can cause text and input fields to appear and disappear.

The entire user interface is composed of many files, each of which has a specific role. Table 1
summarizes all the files that are involved and provides a brief description of each.

Filename Description

layout.css Sets a consistent look for forms and text across all HTML pages

index.html First HTML page to be loaded when browser accesses the server. It sets
up the dimensions of the frames.

mount.html Defines the mount control page

nav.html Loaded into the top frame to display navigation links

observation.html Defines observation control page

obsTelePic.html Displays last telescope image full-size

obsWidePic.html Displays last wide-angle image full-size

teleCamLastimg.png | The last telescope image in PNG format

wideCamLastimg.png | The last wide-angle image in PNG format

imgBig.js Contains Javascript functions that download new status XML files and
refresh the image if a new image was been taken. Includes functions for
both telescope and wide-angle images.

mount.js Contains Javascript functions to display Mount status dynamically.

observation.js Contains Javascript functions to control Observation page.

mntUserPrefs.xml Stores the coordinates the user entered when slewing telescope

mntStatus.xml Written by the back-end driver. Stores the current position and status
of the mount.

obsUserPrefs.xml Stores the user’s settings from when an observation was started.

telecamStatus.xml Written by the back-end driver to store the status of the telescope
camera and optics.

wacamStatus.xml Written by the back-end driver to store the status of the wide-angle

camera and optics.

Table 1: Summary of files that make up the web-driven user interface

17

The details of how these files work together are explained in the following sections. The code
for each of the HTML and Javascript files that make up the user interface can be found in
Appendix D. The next section describes how Javascript loads and processes data from the XML
files.

6.2.2. XML Data Storage and Javascript Processing

XML is a standard for storing information in a text file. The use of XML files as a means of
storing information about the current state of the hardware and user preferences provides a
simple way to write and access the information asynchronously. When the user loads a page,
the information has already been written and stored in the XML file. After the page is loaded,
the browser can poll the server periodically to check whether new information was written to
the file. At the same time, the back-end driver can write the data to the XML file at any time,
and the file will contain the newest information the next time it is polled by the browser.

An XML file stores data inside of tags, within which may be found a value or additional tags. The
names of the tags are arbitrary and can be defined by the user, but matching open and close
tags must be present for each piece of data. Examples of each of the XML files used in the web
interface can be found in Appendix E. The following example shows how data can be arranged
in an XML file:

<dataset>
<groupA>
<parameterl>valuel</parameterl>
<parameter2>value2</parameter2>
</groupA>
<groupB>
<parameterl>value3</parameterl>
<parameter2>value4</parameter2>
</groupB>
</dataset>

The reading and processing of information stored in an XML file is handled by Javascript. In this

example, Javascript can extract the value of parameter1 with the following syntax (note that in
actual code, a Javascript command must appear on a single line):

Var parmlval =

xmlDoc .getElementsByTagName(““‘groupA”)[0] -getElementsByTagName(“parameterl’)
[0] -childNodes[0] -nodeValue

In this example, xm/Doc represents a file handle for the XML document that was set when the
XML file was loaded. If groupA included additional sub-tags, they could be accessed by adding
getElementsByTagName as shown above until the value was reached. Similar code appears in
all the Javascript files used in the web interface.

18

The mount page and observation page each have a corresponding Javascript file that stores
functions for processing XML information for the respective page. The observation and mount
pages both poll XML files once every 3.5 seconds. Once the HTML content of each page is
completely loaded, a Javascript function called loadXML is called automatically. This behavior is
achieved by specifying the Javascript for each page in the “head” section of the HTML file, and
then indicating “onload=loadXML"” in the tag denoting the start of the “body” of the page.

In each page, the loadXML function downloads the appropriate XML file and assigns it a file
handle for calling data from that file. The function then calls another function to process the
file. The second function reads the fields of the XML file. Through the use of if-else statements,
the Javascript can display one piece of HTML code in a given div tag on the page if the
corresponding XML field contains true, or another piece of code if the field is false. XML fields
can also store string and numeric information such as the time the file was updated or which
filter is selected.

After processing the hardware status information in an XML file, the Javascript calls another
function, called controlField in both the observation and mount Javascript files, to update the
user control fields. Through the div tags, the Javascript can allow input fields to show on the
page, allowing the user to enter commands, or hide them so that that the user cannot enter
new commands before a previous operation has finished. If the fields are to be blocked, the
Javascript displays what settings the user entered prior to starting the operation. This
information is stored in a separate XML file, which is downloaded only if a piece of equipment
has started an operation. It would be impractical to update the control fields more frequently
because all the fields would reset every few seconds as the XML file is polled. Therefore, the
control fields are updated only when it is necessary to allow or disallow the user form entering
settings.

After all information and control fields have been updated, the last command to be executed by
the Javascript on each page is the settimeout function. This function takes in the name of a
function to load and the amount of time in milliseconds to wait before calling it. In the case of
the user interfaces, the settimeout function tells the Javascript to wait 3500 milliseconds and
then start from the beginning by executing the loadXML function. In this way, the Javascript
continues to run inside the user’s browser to download updated XML files, process the
information they contain, and display data on the web page.

The subsequent sections explain how the mount and observation pages utilize XML fields and
div tags, as explained above, to provide a dynamic user interface.

19

6.2.3. Mount Control Interface

The Mount Control page allows control over the mount operation. The page provides
information about the status of the mount and allows the user to control its functions.

The top portion of the page displays information about the current status of the mount. This
information comes from the back-end driver, which polls the hardware and monitors the
status. The website refreshes the status display at regular intervals. The possible states of the
mount that can be displayed are: Connected, Disconnected, Slewing, and Homing. Whenever
the mount is connected and idle, the status will indicate Connected. The status changes
whenever the mount begins to slew or home, and then reverts to Connected once the
operation is complete. The page provides the user with the current position of the mount
below the status. If the mount is disconnected, this portion will display “n/a” in each field.
Otherwise, the current azimuth and altitude will display in degrees, minutes, and seconds. A
screenshot of the mount interface is provided in Figure 8.

7 G| T ekt AU DTk e - Windi e esnel Expliees 2101 |
—

ﬂ * & | hitpec 137200, 36 So0000) j bl oK eaEs

Fis IS ‘A Feoordes Tode Help

{ R Teksiae A gontion Bk = L e

Mavigation: Cheenvation Sefings Moo Commol Web Power Swinch HAARP Cperations Current UTC time: 1204 3:00

Current Status

The: msouat b Coamected
The provietion ix

Degrees Mindes Second
Ao a o
Ahimds 6] a

Mount Control Pancl

Degrees Mt Leponds
A [[|
Able | | |
Siew To | Home |

Fark & Disconnect

Dot dtatus bait wpdeted (UTC)
Afon a1 023247 2000

Figure 8: Mount Control Interface

Beneath the Current Status section of the mount control page appears the Mount Control Panel
section. This section provides fields for the user to enter the desired azimuth and altitude and
buttons to perform mount functions. The fields and buttons can be enabled or disabled,

depending the current state of the mount. Table 2 summarizes what the control panel will
display for each state.

20

Mount Azimuth & Slew To Home Connect | Abort Park & Connect
Status Altitude Text Button Button Button Button Button
Connected | User input box | Enabled Enabled | Disabled | Disabled Enabled
Disconnected “nfa” Disabled Disabled | Enabled | Disabled Disabled
Slewing User’s input Disabled Disabled | Disabled | Enabled Disabled
Homing “n/a” Disabled | Disabled | Disabled | Enabled Disabled

Table 2: Summary of available mount controls depending on state of mount

Enabling and disabling specific functions depending on the state of the hardware prevents the
user from entering new commands before previously entered commands have finished
executing. This behavior is achieved with the use of div tags, as described earlier.

Each button in the control panel serves a specific function. The Connect button instructs the
back-end driver to connect to the mount, which allows the mount to process other commands.
The Home button instructs the mount to move to the home position. Note that this process
may take as long as a minute to complete. The Abort button can be pressed any time that the
mount is moving and will cause the mount to stop immediately. The Park & Disconnect Button
instructs the mount to move to the preset park position and the back-end driver to disconnect
from the mount. The Slew To button instructs the mount to move to the azimuth and altitude
specified in the input boxes located above the buttons. While the mount is in its connected
state, the user can input values of 0-359 degrees for azimuth and 0-90 degrees for altitude.
Both sets of minutes and seconds boxes take values of 0-59. The page will notify the user with a
message box if invalid values or characters are entered into the user input boxes. Table 3
summarizes the fields that are sent to the server when the user submits the form, and which
div tag displays each field.

Form Field Name Field Type Value Div id
Equipment hidden mount none
mntOp hidden slew none
mntAziDeg text 0-359 setAziDegDisp
mntAziMin text 0-59 setAziMinDisp
mntAziSec text 0-59 setAziSecDisp
mntAltDeg text 0-89 setAltDegDisp
mntAIltMin text 0-59 setAltMinDisp
mntAltSec text 0-59 setAltSecDisp
submit submit Slew To none

Table 3: Fields submitted to server when slewing the mount

21

Each of the buttons at the bottom of the mount control page belongs to an individual form.
Every form on this page includes the field named “equipment,” which specifies that these are
mount commands, as well as a field called “mntOp” that specifies which mount operation is to
be performed when the user presses the button on the form. These pseudo commands are
intercepted by the Python CGl script and re-sent to the backend driver as the actual commands.
The functions of the forms containing the buttons other than “Slew To” are listed in Table 4.

Button “mntOp” Value Backend Driver Command
Slew To slew mntSlewTo=TRUE
Home home mntHome=TRUE
Connect connect mntConnect=TRUE
Abort abort mntAbort=TRUE
Park & Disconnect park mntPARK=TRUE

Table 4: Hidden mntOp values sent from each mount form and corresponding Back-end driver commands

At the bottom of the page appears the date and time at which the mount status information
was last updated. The purpose of this information is to allow the user to detect a problem. If
the mount information has not been updated recently, then the user may suspect there is a
problem with the back-end driver. This timestamp should be updated every time a command is
sent from the web interface.

The mount Javascript also includes the function validate_form that is called when the Slew To
form is submitted. This form simply checks the values of the position to ensure that the user did
not enter non-numeric characters and that the values are within valid limits. A pop up window
is displayed if the fields are not entered properly.

6.2.4. Observation Control Interface

The observation page allows the user control over each set of camera and optics. An
observation is a specific period of time during which the cameras and optics will operate
autonomously according to the user’s preferences.

The layout of the page resembles that of the mount page; the top section displays information
about the current hardware status, and the bottom section provides settings that allow the
user to control the hardware.

The whole page is organized such that all information and settings pertaining to the telescope
camera and optics are in the left-most column; information and settings pertaining to the wide-
angle camera are in the next column to the right. The right-most column of the page provides a
preview of the last image acquired by each camera.

A screenshot of the observation control interface is provided in Figure 9.

22

7 881 Nehaone Atsnrion Peapel Wirkses Invermed Bgplarer =10
@ i = [B wmepmiczs o BRI a-
Fis B Wew Faewies Tk Hel
TESTEI adeara b, Pt | | Fa - B - o - b hen - (R e |
Navigation: Observation Semings Mownt Cosrol Wb Power Swich ILAARE Cperation: Cument UTC tine: 22:2%: 58
4
Camera & opfics status: Last acquired images:

Telescope
Camers Comperied

CLD popaaps 4
Cipt s Commecied

Shudlcr alzle DPEN

Filker inwse T

DscomeciCane |

Wide-angle
Carers Cnunected

U venperatere: - 1

] Telescape camera

Optics Conpecoed
Ehuiley sisde QFEN
Fier e |

Uscomectiamess |

Disorwvacl Dplics Ciseorvacl Dplics
U1 0% 35 1% Y SLOA 1% gk
Observation settings: Widc-amile camira
Soet MDD ot Fucat =] Set ADC rate| Fast =
Hel expoiee e e Sl capoamc Eme L
SebectFlbmir T 1020 35 Select Fler(a} T LT 210 3
Fr4rsra r4rsrs
Set e F Ope Lt St B Open
" Closed. 1 Clased
Chaervion stard b LT | |
Chsaation sap tuee (UTCE . .
WINFFOV_ 100N~
satUbservmar | | 02_N5_15_H_MI_SLOW 15 me
A I 5]
| - g Indurat L =

Figure 9: Observation control interface

The top portion of the left columns provides the status of each set of camera and optics. A

piece of equipment can have a status of “Connected” or “Disconnected.” The status is displayed
in bold text to stand out to the user as a disconnected piece of equipment would impede
functionality. Below the status of each camera appears the CCD temperature, which is updated
in near real time. Further down on the page appears information about each set of optics. The
status display indicates whether each Smartmotor is connected, and below it appears whether
each external shutter is open or closed and which filter is currently selected. If a piece of
equipment is not connected, the status fields for that piece of equipment will indicate “n/a.”

Table 5 summarizes the div fields in the top portion of the observation page, as well as the XML
parameters that they rely on.

Div ID XML Tag Div Content if Connected
teleCamStatus / waCamStatus connectedState “Connected” or “Disconnected”
camera
teleCamCCDtemp / waCamCCDtemp | ccdTempState Decimal value CCD temperature
teleOptShutter / waOptShutter shutterState “open” or “closed”
teleOptFilter / waOptFilter filterState integer value between 1-6

Table 5: Summary of div fields in observation page

23

Below the information displays are buttons that allow the user to connect or disconnect a piece
of equipment; they change accordingly depending on the state of the equipment. If there is an
observation in progress, and a piece of equipment is connected, then the connect and
disconnect buttons for that equipment will not appear so that a user does not disconnect
equipment during an observation. Each button is a separate form in the HTML file, and each
button is placed in an appropriate div tag along with hidden fields that actually specify the
command to the server. Table 6 specifies the values of hidden fields and the names of the div
tag that display each button.

Button Hidden field Hidden field Div tag
Telescope camera equipment=teleCam | camConnect=TRUE | FALSE teleCamConn
connect
Telescope optics equipment=teleOpt | optConnect=TRUE | FALSE teleOptConn
connect
Wide-angle camera equipment=waCam | camConnect=TRUE | FALSE waCamConn
connect
Wide-angle optics equipment=waOpt optConnect=TRUE | FALSE waOptConn
connect

Table 6: Summary of hidden fields and div tags corresponding to each connect button

The next section of the page provides settings that allow a user to set up and control an
observation. If the camera and optics are both connected for the telescope or wide-angle
imager, then the user will see input fields for setting the ADC rate, exposure time, filter
selection, and shutter state for each set of camera and optics. If either the camera or optics of
an imager is not connected, then the input fields will be replaced by “n/a” for that imager only.
It is possible to run an observation with only one set of camera and optics connected.

As the Javascript observation.js is running, it checks whether the status of a piece of equipment
and the status of any ongoing observation has changed since the last time the XML file was
updated. If so, then the function controlField is called to update the control panel. Otherwise,
the control field is not updated every time the status XML is downloaded.

Beneath the imager-specific observation settings are fields for entering the start and stop time
of the observation. This information is entered in the format hh:mm:ss in 24-hour coordinated
universal time (UTC). If two cameras are used in an observation, then the start and stop times
apply to both cameras. If a user does not specify a start time, then the observation starts
immediately. If a stop time is not specified, then the observation continues until the “Stop
Observation” button is pressed. This button is enabled whenever an observation is in progress.

24

As with the mount page, a function is called from the Javascript whenever the “Start
Observation” button is pressed. This form only checks to make sure that a valid camera
exposure was entered for each connected camera, as this value is necessary to operate the
camera. Observation start and stop times are optional, so those input fields are not checked.

The user interface switches to the observation display whenever either of the imagers reports
that it is conducting an observation. In this case, the user input fields show the settings that the
user specified before starting the observation. These parameters were saved to the
obsUserPrefs.xml file when the “Start Observation” button was pressed. If the imager is not
connected, then the input fields for that imager will continue to display “n/a” while the other
imager has an observation in progress. In this way, the content of the XML files dictates data
and options that the user has available in various states of the system.

Table 7 summarizes the div fields that display the user input fields and XML fields that store
user preferences for each field.

Div ID XML Tag
tele| waObsADCrateDisp camADCrate
tele|waObsExpTimeDisp camExpTime

tele| waObsFilterDisp optFilter
tele| waObsShutterDisp optShutter

Table 7: Observation page status fields and corresponding XML tags

The right side of the observation page displays a PNG version of the last image that was
acquired by each imager. These preview images are only 230x230 pixels in size, thus they are
smaller than the full-size images. The process of encoding images in PNG is discussed in section
7.1.2. The filename of each image appears below it and specifies the date, time, filter, exposure
time, and ADC rate when the image was taken, along with which camera took the image.
Refreshing the images is handled by the observation page Javascript. While parsing the content
of the status XML file, the Javascript compares the filename of the latest image with that of the
previous one. If they do not match, it calls the function updatelmage that instructs the browser
to refresh the image with a given ID and download the image with the given filename. In the
HTML file, the telescope image has the ID “teleCamlLastimage,” and the wide-angle image has
the ID “waCamLastimg”

Each of the preview images on the observation page is a link that the user can click. Clicking an
image opens a new window that displays the latest acquired image for that imager in its full size
of 512x512 pixels. These windows automatically refresh the image whenever filename of the
last image changes in the corresponding status XML file. In this way, the user can view the
images full-size as they are acquired by each camera.

25

The link to each full-size image is defined on the observation HTML page, and it is set up so as
to instruct the browser to open a new window that is 530x575 pixels in size and does not
include toolbars, which would unnecessarily crowd the user’s desktop. Each image links to
either obsTelePic.html or obsWidePic.html. These HTML files both import the Javascript called
imgBig.js and begin by calling the function imgProc, which takes either “tele” or “wide” as an
argument. The Javascript downloads the status XML file for that camera and checks whether
the image filename has changed since the last time the XML file was downloaded. If so, the
function tells the browser to download the image again, just like with the small preview images.
At the end of the script, the setTimeout function calls the script again after five seconds. Both
full-size image windows may be open at the same time even though they refer to the same
Javascript, because the code will run concurrently for each window.

The user can, therefore, view data as it is acquired over the course of an observation and view
the status of the hardware. The control interfaces provide the user with the ability to set
preferences for running the hardware. The next section provides details about how the web
interface operates and the configuration of the HTTP server.

6.2.5. Web Power Switch

As part of the telescope system automation, the cameras, optics, and mount were plugged into
a web-controlled power switch. The Web Power Switch from Digital Loggers, Inc. is a power
strip that includes a built-in HTTP server. A user can log into the device through a web browser
and switch any of the eight switchable outlets on or off. The switch was configured to use a
static IP address over nonstandard port 8001 that was opened to allow remote access from SRI.
The web power switch can be used independently of the remote telescope system. Figure 10
shows the power switch after on-site installation.

The web power switch includes a reset button that, when pressed, will reset the password and
IP configurations to the default values. A crossover Ethernet cable may be used to connect the

26

web power switch directly to a computer in order to configure network settings. Once
configured, the device can be connected directly to the network switch in the optics shelter
with a straight Ethernet cable.

6.3. The HTTP Interface

The internet was the best choice of communication between SRI and HAARP as high speed
connections are readily available at both facilities. Two-way communication between the
hardware and user interface is achieved through HTTP. This format is recognized by all web
browsers and allows text, images, and user input fields to be sent over the internet.

When a user points a web browser to a website, the browser is actually connecting to another
computer at a specific IP address to ask for data to download over the HTTP protocol. Any
computer that is connected to the internet can act as an HTTP server provided that the right
software is running on it and listening for user requests. Once a user’s browser asks for content,
an HTML page, along with any Javascript or image files that it references, is sent from the server
to the browser to be displayed for the user.

In the case of this project, we installed the Apache Server software on a computer inside the
telescope dome. This way, a user at SRI can point a web browser to IP address of the computer,
and the server will display the user interface in the browser. This section describes the
configuration of the Apache server and details the script that it runs to process user input data.

6.3.1. Apache Server Configuration
The Remote Telescope System uses Apache Server version 2.2.6 to host the web-driven user

interface. Apache is a popular open-source server program that is easy to set up and provides
flexibility and security.

The Apache server was installed in the “Telescope Automation” directory on the wide-angle
computer. All the files pertaining to the web-driven user interface were placed in the directory
named htdocs located in the Apache directory. This directory is the root directory of the server,
and any files placed in this directory can be accessed over the web. The Python CGl script,
which is described in the next section, was placed in the cgi-bin directory under Apache.

The Apache server was installed as a service in the Windows XP computer, meaning that it will
start automatically every time the computer is restarted. The server can be controlled through
the Start menu, where an administrator will find buttons to Start, Stop, and Restart the server.
The server must be restarted in order for any configuration changes to take effect.

Following the initial installation of the Apache server, we made several modifications to the
configuration. All the modifications are made in the file named httpd.conf, which is located

27

inside the Apache subdirectory named conf. A copy of the actual Apache configuration file is
provided in Appendix F. All modifications from this project have been commented with “te08.”

The first modification was to change the socket port on which the server listens for incoming
connections. The default HTTP port is 80, but we set Apache to listen on 7999 by altering the
following line in the configuration file: Listen 7999. Using a non-standard port helps protect
against unauthorized users gaining access to the system. In our case, port 7999 is actually
blocked by HAARP’s firewall, so no connections can be made to Apache; all incoming
connections are handled by the secure virtual host, which is described below.

Another significant modification is the addition of password protection for the telescope
control site. Adding user authentication requires the creation of an encrypted file that stores
usernames and passwords, as well as a modification to the Apache configuration file. In order
to generate a password file, open a Windows Command Prompt and navigate to the Apache bin
subdirectory. There, enter the following command: htpasswd —c <filename> <user name>,
where <filename> corresponds to the name of the password file, and <user name> corresponds
to the username that must be entered to access the site. After entering the command,
htpasswd prompts for the password that is to be created. Once it is entered, the password file
appears in the bin directory. This file may be moved to another location, but for security it
should not be placed in a web-accessible directory such as htdocs. Once the password file is in
place, several lines must be added to the configuration file:

AuthType Basic

AuthName "SRl Access"
AuthUserFile “<path to password file>"
Require user <user name>

These lines should be placed in the directive called Directory, which provides the path to the
htdocs root folder. Please see the Apache configuration file in the Appendix F for details.

The final major modification to our Apache setup is the addition of Secure Socket Layer, which
enables communication over the HTTPS, or Secure HTTP, format that encrypts all
communication between the browser and the server. Implementing this functionality required
generating encryption keys, modifying the Apache configuration file, and modifying the Apache
SSL configuration file.

In order to provide encryption, the server uses a public certificate and a private key. The
certificate and key are generated together using a program called OpenSSL, which is open-
source and available on the internet. To create the encryption keys, download and install

28

OpenSSL, and then navigate to the program’s bin subdirectory in the Windows Command
Prompt. Enter the following commands:

openssl req -new > example.csr -config openssl.cnf

openssl rsa -in privkey.pem -out example.key

openssl x509 -in example.csr -out example.cert -req -signkey example.key -
days 9999

Note that the certificate will be valid for the number of days specified in the —days argument in
the last command. Once these commands have been executed, the key and certificate files will
appear in the bin subdirectory. These files can be moved to any other directory, but should not
be placed in a web-accessible directory for security. The .rnd file that is created with these
encryption keys should be deleted for security.

The final custom modification to the Apache configuration is modifying the Apache
configuration file and the SSL configuration file. The following two lines should be
uncommented in the Apache configuration httpd.conf:

LoadModule ssl_module modules/mod_ssl.so
Include conf/extra/httpd-ssl.conf

Additionally, modifications must be made to the SSL configuration file, which is located in the
extras directory in the conf subdirectory. This file is called httpd-ssl.conf, and the contents are
included in Appendix F. The first modification is to change the port by setting the following
directive: Listen 8000. Since port 8000 is open to computers with SRI IP addresses, all traffic will
be immediately handled by the SSL virtual host, which means that it will be encrypted. The
other two modifications are to specify the paths to the certificate and key files that were
generated earlier.

These modifications will take place after the server has been restarted. At that point,
configuration of the Apache server is complete, and the user can access the HTML files in the
htdocs subdirectory and CGl scripts in the cgi-bin subdirectory. The next section explains the
operation of the CGI scripts.

6.3.2. Python CGI Script
When a user submits any data by pressing a button on any submit form, the server extracts the

values of the input fields and processes them as necessary. The processing of user input data is
handled by a Common Gateway Interface (CGl) script. The name of the CGl script is control.py,
and it is found in the cgi-bin subdirectory of Apache. The script was written in the Python
language, and therefore, it is necessary that Python is installed on the server computer in order

29

for the script to function. We chose Python as the programming language for this script
because it is a robust language with many included functions, such as extensive ability to parse
strings and modules for TCP/IP communication. Additionally, a Python script does not need to
be compiled before runtime, which makes it easier to modify and debug than some other
languages. The entire code of control.py may be found in Appendix G.

Each form on an HTML page is declared with a form tag and contains the relative path to the
CGI script as an attribute. The syntax is as follows:

<form action="/cgi-bin/control _py”’>

When the form is submitted, the server starts the script and passes the form data to it for
processing. From there, the Python script performs several operations. The script retrieves the
fields and input values from the form that the user submitted, translates field values into
commands in the proper syntax for the back-end driver, transmits the commands over TCP/IP
to the back-end driver, writes user preferences to an XML file, and finally instructs the user’s
browser to return to the referring page so that an updated control interface will display once
more.

The very start of the script sets the path to the Python executable on the system and imports
the necessary libraries. The very next section provides paths to the XML files that store user
preferences. These files are rewritten if the user starts an observation or commands the mount
to slew. The IP address of each component and the address of the web-page are also specified
in this section. The paths and IP addresses should be updated if the configuration of the system
changes. No additional settings need to be changed after this point for the CGI script.

The first functional line of the script prints “'Content-type: text/html\n".” This line tells the
user’s browser that the server will be sending HTML data. Printing this line early on in the script
allows subsequent messages that are printed by the script to be displayed by the browser.

When parsing the data submitted in the form field, the CGI script first looks for the
“equipment” field. Since the names of the fields for each form are constant, as defined above,
the script tries to acquire the value of each field that pertains to that piece of equipment. The
hidden fields in the HTML files are actually in place to tell the CGI script which user input fields
it needs to obtain for the given piece of equipment.

The field values that are read for each type of operation are accumulated into a single string of
commands. As the value is read for a given field, a corresponding back-end driver command
and the value are placed in the string. The commands are placed in the format
“commandl=valuel\r\ncommand2=value2\r\n\xFF” where “\r” is the carriage return character

30

and “\n” is the new line character. The end-of-file character, “\xFF,” is appended to denote the
end of the string, which is important when the string is transmitted to the back-end driver. In
the case of observation start and stop times and mount positions, field values from three
separate input fields get appended in the format “command=valuel:value2:value3\r\n.” Filter
selection boxes come into the script in the format [‘1’, ‘2, ‘3’], but the tick marks and spaces
are removed before sending the values to the back-end driver.

In the case where the “equipment” field value is “observation,” the script generates two
separate scripts, one for the telescope equipment and one for the wide-angle equipment, as
the two sets of equipment may have different user settings. Field names begin with “tele” or
“wa” to specify which piece of equipment should receive the command. The field names that
pertain to an observation begin with “obs,” and these commands are appended to both strings
as observations occur concurrently with both cameras. The script looks to the hidden fields
teleSendTo and waSendTo, which are “TRUE” or “FALSE” depending on whether the camera and
optics are both connected, to determine whether to parse fields for that piece of equipment. If
one of those fields is “FALSE,” then the user was not allowed to enter settings for it, and the
script does not attempt to read the field values. The command obsStart is the last to be
appended to the string as the back-end driver needs to have received all the other parameters
before starting the observation. The commands are sent to the back-end driver in the order
that they are entered into the command string.

The string can contain one or many commands, as long as they are in the right format.
Connecting or disconnecting a piece of equipment sets up a string that contains only a single
command, while starting an observation puts many commands in one string.

Once a string of commands has been generated, it can be sent to the back-end driver over the
TCP/IP protocol. The script can tell which IP address to send to from the “equipment” and
“sendTo” fields. The script sends to the appropriate back-end driver by calling the sendString
function, which is defined at the top of the script. In the case of starting an observation with
both cameras, the function is called once for one back-end driver and then for the other.

The sendString function uses Python’s built in TCP/IP socket handling procedures. The function
takes the destination IP address and the string of commands as arguments. The function
creates a network socket and attempts to use it to connect to the destination IP over port 5000.
If a connection is acquired, then the function attempts to send the string. After sending the
string, the function enters a loop in which it waits until it receives a null character across the
connection. This loop ensures that the back-end driver receives all the commands before
terminating the connection, which could some commands to be lost in the transmission. Finally,
the function closes the socket and terminates.

31

After sending the strings over TCP/IP, the script continues by writing user preferences to an
appropriate XML file. Settings are written to obsUserSettings.xml for observations and
mntUserPrefs.xml for the mount. User settings are written only if the “equipment” field value
was “observation” and the “obsStart” field was “TRUE,” or if the “equipment” value was
“mount” and the “mntOp” value was “slew.” In the case of observations, the values for
telescope and wide-angle fields are written only if the “sendTo” value for each piece of
equipment is true; otherwise, a value of “none” is entered in that field. In the case of mount
commands, the position values that the user entered are recorded.

The last section of the CGl script prints the following HTML code to the browser:

<HEAD>
<meta http-equiv="REFRESH" content="0;url=" + pageAddress + returnPage + "''>
</HEAD>

These lines, which make up the header of the HTML file that is being sent to the browser,
instruct it to refresh to the given URL immediately. The script inserts the address of the web
server and which control page the user should be returned to. Then, by the time the browser
downloads the new page, the latest data has already been written to the XML files and the user
sees that the interface responded to the last set of commands. In the interim between
executing the script and before the new page is downloaded, the user will see the word
“Processing...” The purpose of this message is merely to provide some brief content until the
page reloads, and this message may be changed by modifying the Python code.

The control.py CGl script also takes advantage of Python’s built-in error handling. At several
points in the script where an operation might fail, the commands try and except specify which
commands Python should attempt and what to do in case they fail. Specifically, this error
handling occurs when the script attempts to connect and send a string to the back-end driver
over TCP/IP and when the script attempts to write user settings to the XML file. In the event
that the file cannot be written, or a back-end driver cannot be reached, the user will see a
helpful error message rather than the default “Internal Server Error” message that is given by
Apache.

Whenever code inside the try command fails, Python immediately jumps to the except
command and executes the code it contains to handle the error. In the case of this CGl script,
each except command generates a message about which part of the script failed and then calls
the errorPrint function that is defined near the beginning of the file. This function takes the
error message, which was stored in a string called error, and prints it to the screen before
closing the script. The CGl script terminates after printing the error message.

32

In this way, the data a user specifies through the form-based web interface gets received by the
Apache server, parsed from the form fields, transmitted to the back-end driver, and written to
the XML file before the user’s browser returns to the interface page. The next section discusses
how the back-end driver uses this data to control the hardware.

6.4. Back-end Driver

As mentioned previously, the back-end driver is the heart of the system. It accepts user
commands relayed from the website by the Apache server or sent directly via a telnet,
processes them, and then passes them on to their corresponding sub-modules. The commands
range from changing various hardware settings to signaling the beginning of an autonomous
observation. The back-end driver, as well as all other software modules used in conjunction
with the back-end driver, was written in C++ using Microsoft Visual Studio 2005 on a computer
running Windows XP Professional.

The back-end driver is a multi-threaded program consisting of one thread for accepting TCP/IP
requests, one for running observations, and one for controlling the mount. The observation
thread communicates with the hardware to select the appropriate filter, acquire an image, and
then write the image to both supported formats. It continues to repeat the process until either
the specified end time is reached or a stop is requested by the user. The mount operation
thread starts an obersvation by calling external Visual Basic scripts. Threading is required here
because these scripts do not return control back to thebackend driver until they complete
moving the mount. In all cases, threads are created as needed and then closed.

The back-end driver was divided into much smaller, task-specific modules to ease
implementation. These modules are explained in the following subsections.

6.4.1. TCP/IP Server Module
The TCP/IP Server module provides a simplified interface to the Windows TCP/IP API. After

instantiating the module, the user makes a function call to initServerAndListen(), shown below:

int initServerAndListen();
/**
* Creates a socket, binds it to the port specified when instantiating
* this class, and begins listening for a client connection request.
*
INPUT:
none
RETURNS
0 in success, error code on failure.

X ok X

*/

The function takes all the necessary steps in setting up Windows socket for TCP/IP server
communication. This includes initializing the WinSock library, creating the socket, binding it to

33

the port specified when instantiating the module, and instructing the socket to listen on the
given port for client connection requests. After a successful initialization, the user accepts
client requests using acceptClient(), shown below:

int acceptClient();
/**
* Checks for client awaiting connections. |If client request is found,

* that client is accepted and a socket is created for communication with

* client. This function continues to wait (blocks) if no request is found.
*

* INPUT:

* none

* OUTPUT:

* 0 on success, error code on failure

*/

After accepting a client, the user calls the recvFromClient() and sendToClient() functions to
receive and send data from and to the client, respectively:

int recvFromClient(char *buf, int bufLen, char* delim);

/**

* Receilves data sent from accepted client. This function polls the
* TCP/IP buffer until either one of the specified delimeters is reached
* or the buffer being written into is full.

*

* INPUT:

* buf - pointer to buffer which received data is written to

* bufLen - length of buffer being written to

* delim - cstring containing all delimiters ex: ";\r\n"

* RETURNS:

*

number of bytes read (>= 0), or error code (< 0)

*

/

int sendToClient(char *buf, int bufLen);

/**

* Sends data to accepted client. Specified number of bytes in
specified buffer are transmitted.

*
*
* INPUT:

* buf - pointer to buffer containing data being transmitter
* bufLen - number of bytes to transmit

* RETURNS:

* 0 on success, error code on failure

*/

The recvFromClient() will read characters from the TCP/IP input buffer until it receives bufLen

bytes, an error is encountered (such as a closed connection or “end of file” character - EOF), or

until it reads in the specified delimiter. The sendToClient() will send bufLen characters of the
string buf. Once the user is done with the communication link, they use the closeClientConn()
function to terminate the link:

34

int closeClientConn();

/**

* Closes connection with accepted client. Because only one client

* is supported by this class (one at a time), this function should be
called

* right before attempting to listen for another client request.

INPUT:
none

OUTPUT:
always 0

X ok X ok

*

/

6.4.2. XML Module
The XML module handles all XML file writing and is implemented in a tree format for

expandability. A data structure containing the current value of each XML tag value is created,
as well as a node for each tag in the XML file. Each node has a tag name and either a tag value
or a list of sub-nodes (children). The tag name is assigned to the node at creation. However,
because the tag value may change frequently, each node is assigned a reference to an entry in
the data structure containing all the settings. The creation of the tree is illustrated in the
example shown below:

<namel>
<name2>value2</name2>
<name3>value3</value3>
</namel>

The above XML snippet contains three tags: namel, name2 and name3. The tags name2 and
name3 are children of the namel tag. Because namel is a parent node, it has no value and
instead has children. Similarly, because name2 and name3 are not parent nodes, they have
values and no children. To create a tree with the properties shown, we use first create the
nodes, then use the addChild():

int addChild(XmINode* newChildNode);

/**

* Consumes a pointer to an XmINode and makes that node a child of the
current node.

*
*
* INPUT:

* newChildNode - new node to be added as a child
* RETURNS:

* 0 on success, 1 on failure

*/

Once the tree has been implemented, to write the XML tree to a file the user would simply call
the printTree() function:

35

int printTree(const char* filename);

/**

* lIterates through XML tree with head node this and prints the tree
to a file with the name filename.

INPUT:

filename - name of the file to be written
OUTPUT :

0 on success, 1 on failure

OoX b X % ¥

*/

This function iterates through the tree and prints the XML tag names and values in the correct

order with the proper indentation.

6.4.3. Observation Module

The observation module is the interface between the back-end driver and the hardware
interface modules. As commands are received by the back-end driver, they are passed to the
observation module. The entry point to the module is the processCommand() function:

char* processCommand(char* cmd);

*
*

Consumes a command and redirects it to the correct function. If the
command is valid, a return message is relayed from the called sub-function
to the caller of this function. |If the command is not valid, an "invalid
command® string is returned. The commands received are not case-sensitive.

INPUT
cmd - The command to be processed. Must be a cstring in the following
format: “param=value\r..._\0". Everything between the first "\r-
and the first "\O" is ignored.
RETURNS
Cstring containing information about the status of the processed command,
or an invalid command string if unable to process given command.

O R ok X ok X ok X F N\

*
N

This function first converts the entre command to upper-case to remove any case-sensitivity.
Next, the command is checked for the correct format: parameter=value’\r’. If the command
passes both tests, the parameter is located in a lookup table containing a corresponding
function which carries out the command. If the parameter is found in the lookup table, then
the function associated with that parameter is called and passed the value. Valid commands,
values, and their significance are listed in Table 8.

36

Parameter Value Action performed
OPTCONNECT “TRUE” Connect to optics
“FALSE” Disconnect from optics
“OPEN” Open the shutter
OPTSHUTTER “CLOSE” Close the shutter
“N” Set filter to N (digit)
OPTFILTER
“la,b,c]” Set filter sequence to a, b, then c
“TRUE” Connects the camera
CAMCONNECT
0 “FALSE” Disconnects the camera
CAMEXPTIME Itl Sets exp tlme_to N seconds
“SLOwW” Sets cam ADC rate to slow
CAMADCRATE “FAST” Sets cam ADC rate to fast

OBSSTARTTIME

“HH:MM:SS”

Sets obs start time to HH:MM:SS

OBSSTOPTIME HH:MM:SS Sets obs stop time to HH:MM:SS
“TRUE” Starts an observation
BSSTART
OBSS “FALSE” Stops an observation
“TRUE” Connects the mount
MNTCONNECT “FALSE” Disconnects the mount
MNTHOME TRUE Homes the mount
MNTAZI “DEG:MIN:SEC” Sets azimuth to DEG:MIN:SEC
MNTALT “DEG:MIN:SEC” Sets altitude to DEG:MIN:SEC
MNTSLEWTO “TRUE” Slews the mount
MNTABORT TRUE Aborts the current slew

Table 8 Back-end Driver Commands

The value is verified in each sub-module to ensure that an invalid entry was not made. The
verification is explained in the comments of the actual code (Appendix H).

6.5 Hardware Interface Modules

The back-end driver’s Observation Class can interact with hardware components of the system
through high-level function libraries called Hardware Interface Modules. Each of these modules
contains a library of lower-level code that interacts with the manufacturer’s software interface
for each device. . All the details of communicating with the hardware using the various

37

interfaces are hidden to the back-end driver by wrapping them up in hardware interface
modules, explained in the following sections.

6.5.1 Optics
The optics control module provides the user with a simplified interface to the RS232

communication used to change and query the status of the hardware. First the user must open

a serial communication link with the optics using open():

/* open(Q)
*
* Opens and configures a connection with specified com port. If an
* incorrect com port is specified (not an integer > 0), COM1 is used
* by default. ** CURRENTLY HARDCODED TO ONLY ACCEPT COM 1-4 ** IF
* anything above COM4 is requested, COM1 is used by default.
*
* Input:
* portNum - integer specifying which com port to use (COM X)
* Returns:
*

O on success, 1 on error
*/
int open(int portNum);
After opening the connection, the user may begin sending commands to the SMARTMOTOR
system controlling the optics. This is done through two get/set pairs of functions; one for the
shutter getShutter()/setShutter() and one for the filter wheel getPosition()/setPosition():

/* getPosition()
*
* Sends command to ask the SMARTMOTOR system for its current filter
* wheel position and then waits for a reply. Information is extracted
* from reply and current position is returned to calling function.
*
* Input:
* none
* Returns:
* integer representing current filter position (1 -> n)
*/

int getPosition();

/* setPosition()

*

* Sends commands to move Filter wheel to specified position. Invalid
* position values are not checked here as they are handled by the

* SMARTMOTOR system itself. Waits for the SMARTMOTOR system to send

* its confimation. To confirm positioning getPosition() should be used.
*

* Input:

* pos - integer specifying which position to move to.

* Returns:

* new position of Filter wheel

*/

int setPosition(int pos);

/* setShutter()

38

Sends commands to change the shutter to specified state. |If the
specified state is anything but open (including invalid values), a closed
state is assumed (for safety).

Input:
open - integer specifying which position to place shutter in. 1 for opened,
anything else for closed.
Returns:
integer representing current shutter status (1 = open, 0 = closed)

o o % % ok X ok X %

*/
int setShutter(int open);
/* getShutter()
*
* S ends commands to ask the SMARTMOTOR system for its current shutter
* position and then waits for a reply. Information is extracted from
* reply and current shutter position is returned to calling function.
*
* Input:
* none
* Returns:
*

integer representing current shutter status (1 = open, 0 = closed)
*/
int getShutter();

The optics control module provides the user with a simplified interface to the RS232
communication used to change and query the status of the hardware. First the user must open
a serial communication link with the optics using open():

/* open(Q)
*
* Opens and configures a connection with specified com port. |If an
* incorrect com port is specified (not an integer > 0), COM1 is used
* by default. ** CURRENTLY HARDCODED TO ONLY ACCEPT COM 1-4 ** IT
* anything above COM4 is requested, COM1 is used by default.
*
* Input:
* portNum - integer specifying which com port to use (COM X)
* Returns:
*

O on success, 1 on error
*/
int open(int portNum);
After opening the connection, the user may begin sending commands to the SMARTMOTOR
system controlling the optics. This is done through two get/set pairs of functions; one for the
shutter getShutter()/setShutter() and one for the filter wheel getPosition()/setPosition():

/* getPosition()
*
* Sends command to ask the SMARTMOTOR system for its current filter
* wheel position and then waits for a reply. Information is extracted
* from reply and current position is returned to calling function.
*
* Input:
* none

39

* Returns:

* integer representing current filter position (1 -> n)
*/

int getPosition();

/* setPosition()

*

* Sends commands to move Ffilter wheel to specified position. Invalid
* position values are not checked here as they are handled by the

* SMARTMOTOR system itself. Waits for the SMARTMOTOR system to send

* its confimation. To confirm positioning getPosition() should be used.
*

* Input:

* pos - integer specifying which position to move to.

* Returns:

* new position of filter wheel

*/

int setPosition(int pos);

/* setShutter()

*

* Sends commands to change the shutter to specified state. |If the

* specified state is anything but open (including invalid values), a closed
* state is assumed (for safety).

*

* Input:

* open - integer specifying which position to place shutter in. 1 for opened,
* anything else for closed.

* Returns:

* integer representing current shutter status (1 = open, 0 = closed)

*/

int setShutter(int open);
/* getShutter()
*

* S ends commands to ask the SMARTMOTOR system for its current shutter
* position and then waits for a reply. Information is extracted from

* reply and current shutter position is returned to calling function.

*

* Input:

* none

* Returns:

* iInteger representing current shutter status (1 = open, 0 = closed)
*/

int getShutter(Q);

6.5.2 Cameras
The list summarizes the camera functionalities that were implemented to form the camera
module. The source code for all these functions is available in Appendix H.

connectCam(): This function initializes the PVCAM library and connects to the first camera in
the list.

disconnectCam(): This function un-initializes the PVCAM library and disconnects the connected

camera.

40

readTemp(): This function returns the current temperature (16 bit value) of the camera
controller.

setTemp(int): This function sets the camera controller temperature to the user specified value.

setExposureTime(int): This function sets the exposure time for the camera to the user specified
value. The exposure time should be specified in seconds.

setADC(int): This function sets the ADC rate of the camera to the user specified value. There are
only two possible values, fast or slow. A fast rate corresponds to 10 MHz while a slow rate
corresponds to 100 kHz.

readShutter(): This function reads in the camera’s shutter state. There are three possible states:
Normal, Disabled Open and Disabled Closed. A Normal state corresponds to the shutter
opening before an exposure and closing right after. A Disabled Open mode corresponds to an
open shutter state at all times whereas a Disabled Closed mode corresponds to a closed shutter
at all times.

setShutter(int): This function sets the shutter state to one of the three possible modes
mentioned above.

takelmage(): This function allows the user to take pictures with the camera. After having
configured all the settings, this function will capture an image, put the raw data in a file and
then append the WinView header so that the pictures may be viewed using the WinView
software.

6.5.3 Mount
The back-end driver controls the mount by sending commands to TheSky®6, the software that

normally is used to control the mount. Since the control format for the mount is proprietary,
we were not able to create a custom interface module. However, TheSky6 can operate in a
scripted mode where its functions are controlled by a Visual Basic script (VBscript). A VBscript is
based on the Visual Basic programming language, but the source code does not compile before
runtime. No special software is needed to run a VBscript, as the execution of the script is
handled by the Windows Scripting Host (WSH).

TheSky6 includes a number of object classes that allow other programs to communicate directly
with the software through the use of VBscripts. Among these objects is the RASCOMtele object,
which is used extensively in the mount interface module. This object allows scripted operation
of any mount that is compatible with TheSky6. The mount module uses a subset of the mount

41

commands that are available through this object. When one of these scripts is called, TheSky6
automatically starts running on the host PC.

Each of the VBscripts that makes up the mount module begins by instantiating the RASCOMtele
object with the following line:

Set objTele = WScript.CreateObject("'TheSky6.RASCOMTele'™)

Once the object has been instantiated, any commands available in the object may be called in
the format: objTele.command(). At the end of the script, memory that was allocated to the
object is cleared with the command: objTele = Nothing

When calling one of the VBScripts to perform a mount function, it should be noted that the
Windows Scripting Host defaults to running VBscript files in the Windows GUI. Any messages
that return from the script are thus displayed in pop-up windows; this behavior is inconvenient
for a remote interface. In order to run the script from the console and have standard output
messages return to the console window, each script must be called with the following
convention: cscript //nologo command.vbs. In fact, the mount module executes each script by
including this format in the system() command.

Several of the scripts may be called while another operation is in progress. These scripts are
abort.vbs, getposition.vbs, and isconnected.vbs. Since some operations take several seconds,
like slewing or homing, it is beneficial to update the status of the device while it is performing
the operation. In this case, the second command may be called from a second console window
before the first returns. Or, in the case of a C++ program, the second command may be called
from a second thread running in parallel with one that called the first command.

The source code for each of the mount VBscripts may be found in Appendix I. The following is a
listing of all the VBscripts that make up the mount class:

abort.vbs — When this script is called, the mount halts any ongoing operation immediately. This
command can be called while the mount is slewing, homing, or parking.
Calls: objTele.abort()
Returns: “0” if the script executed properly
“Mount Error!” if there was a problem executing the script

connect.vbs - Script starts TheSky6, which proceeds to establish communication with the
mount. Once these commands have been issued, the script checks whether a connection was in
fact established or whether an error was encountered. If the connection was successful, then
the script tells the mount to operate in asynchronous mode, which allows it to respond to
inquiries, such as obtaining current position, even if a slew is in progress.

42

Calls: objTele.Connect()
objTele.SetTracking(0, 1, O, 0)
objTele.Asynchronous = 1
Returns: “0” if the script executed properly
“Mount Error!” if there was a problem executing the script

getposition.vbs - Script returns the current position of the mount in terms of azimuth and
altitude. Azimuth and altitude return as degrees, minutes, and seconds with each value
rounded to the nearest integer. Note that the RASCOMtele commands return degrees with a
decimal, which this script converts to minutes and seconds. This script can be called any time
that the mount is connected, even if another operation is ongoing.

Calls: objTele.getAzAlt()

Returns: “aziDeg=359;59;59;aziAlt=90;0;0;(null)(cr)” if executed properly

“Mount Error!” if there was a problem executing the script

home.vbs — Script moves mount to the home position.
Calls: objTele.FindHome()
Returns: “0” if the script executed properly
“Mount Error!” if there was a problem executing the script

isconnected.vbs — Script checks whether TheSky6 is communicating with the mount and returns

the result.
Calls: objTele.IsConnected
Returns: “1” if the mount is connected

“0” if the mount is not connected
“Mount Error!” if there was a problem executing the script

park.vbs — Script moves the mount to the preset park position and disconnects it from TheSky6.
Calls: objTele.Park()
Returns: “0” if the script executed properly
“Mount Error!” if there was a problem executing the script

slewto.vbs — Script slews the mount to a given azimuth and altitude. This script must be
executed with six arguments that define the azimuth and altitude in degrees, minutes, and
seconds. Note that the RASCOMtele command called by this function takes in Azimuth and
Altitude in decimal degrees, so this script converts the user input from degrees, minutes, and
seconds into the proper format. The arguments must be separated by a space and provided in
the following order:

Calls: objTele.SlewToAzAlt(Azimuth, Altitude, " ")

Arguments: aziDeg aziMin aziSec altDeg altMin altSec

43

Returns:

“0” if executed properly
“Syntax Error!” if the arguments are out of range
“Mount Error!” if there was a problem slewing the mount

44

7. Image Encoding and File Transfer
The back-end driver processes the raw data acquired from the camera to produce two separate

files. WinView format files, with a .SPE extension, include all the raw data bytes and a header
that allows the file to be opened by the WinView image analysis software. Data stored in this
format is sent back to SRI for analysis. The back-end driver also creates a preview of each image
that is encoded in a web-friendly image format. These images are displayed in the user
interface and made available to the HAARP website server for public display.

This section explains the processing of image data from the time it is read off the camera’s CCD,
until it arrives at the final destination for each image format.

7.1 Format Conversion
The back-end driver receives data from the camera as a vector of unsigned 16-bit integer

values, each of which corresponds to the intensity of a single pixel. Each 16-bit value can
represent decimal numbers from 0 to 65535, which corresponds to black and white,
respectively; each value in between represents a unique shade of gray. As the size of each
camera’s CCD is 512x512 pixels, there is a total of 262,144 pixel values or 524,288 bytes of data
per image. The next two subsections explain how this raw data is converted to usable WinView
and PNG image formats.

7.1.1 WinView Format for Data Analysis
The raw data containing the pixel values coming from the camera is first written to a binary file

by the takelmage function in the CamCtrl module. In order for this data show up as a proper
image in WinView, the .SPE format has to be supported. This is achieved by appending an
appropriate WinView header in front of the pixel data. The WinView header format is available
in Appendix J. The .SPE format is arranged such that the first 4100 bytes of data denote the
header for the image. Any following data are the raw pixel values collected directly from the
camera.

Having looked at the 4100 bytes of data in the header closely, we determined that there were
only a handful of parameters that needed to be changed in order to adapt the header to our
data. In order to display the raw data in the .SPE format, we came up with a “generic” WinView
header for all our data, which is generated by the back-end driver for each image. We were
able to do this by taking a regular WinView image (having the .SPE extension) and stripping its
header from the file. Once we had its header bytes written to a binary file, we were able to
manipulate the necessary parameters of the header data to conform to the raw data taken by
our cameras. The Matlab code that generated the generic header file is attached in Appendix K.
The parameters that were adjusted for this project are listed as follows:

45

X dimension: This is the actual number of pixels on the x-axis. This parameter is located at byte
offset 42. The data type for this is a word which means that it is two bytes long. Thus, we had to
set bytes 42 and 43 of the header manually. For our purposes, we set the x dimension to 512
since the cameras are a (512 x 512) 16-bit value.

Y dimension: This is the actual number of pixels on the y-axis. This parameter is located at byte
offset 656. The data type for this is a word which means that it is two bytes long. Thus, we had
to set bytes 656 and 657 of the header manually. For our purposes, we set the y dimension to
512, just as for the x dimension.

Experiment format: This parameter specifies the data type for the pixel values. This is
essentially the number of bytes per pixel for the camera. The parameter is located at byte
offset 108 and is of type short, which is two bytes long. Thus, we had to manually set bytes 108
and 109 of the header. As per the header information, a value of 0 denotes a float value with 4
bytes per pixel, a value of 1 denotes a long value with 4 bytes per pixel, a value of 2 denotes a
short value with 2 bytes per pixel and a value of 3 denotes a unsigned short with 2 bytes per
pixel. Since the cameras used in this project use unsigned shorts, the parameter value is 3.

Number of frames: This parameter holds the number of frames contained in an image taken by
the camera. It is located at byte offset 1446 and is of type long (4 bytes). Thus, bytes 1446,
1447, 1448 and 1449 had to be manually set to configure this parameter. For our purposes, this
value is always one since the back-end driver writes each image to its own WinView file.
However, the software may be reconfigured to the place multiple images in a single file.

Figure 11 shows screen captures of WinView display of the images in WinView format:

46

7.1.2 PNG Format for the Web
As image data is read by the computer off the camera’s CCD, it is stored as a vector of bytes.

Every two bytes correspond to a pixel intensity, which is displayed as a shade of gray on the
computer screen. However, this format cannot be interpreted by most web browsers. In order
for the images to be visible through a user-friendly interface such as the internet, they must be
encoded in a web-friendly format. In the telescope automation system, each image is
translated into the Portable Network Graphics (PNG) format. PNG is an open-source image
format that offers lossless compression and is compatible with most internet browsers.

Converting the HAARP images to the PNG format presented two separate challenges. The first
problem was encoding the data in the complex format, which the project team resolved
through the use of a free library called LodePNG. The second challenge was processing the
image so that the extremely faint airglow would be visible.

While the back-end driver obtains 16-bit data from the camera, these values are scaled down to
8-bits before conversion to PNG. In 8-bit format, each pixel can have an intensity from 0 to 255,
which corresponds to a gray color between black and white. The team discovered
experimentally that this conversion helps reduce graininess of the images. The project lead at
SRI agreed that since the PNG images are provided only as a web-friendly preview of the data,
as opposed to the WinView images that are used for analysis, the reduction in intensity
resolution is acceptable in these images.

The LodePNG library includes functions that encode and decode data to and from the PNG
format and converts image files between the various color types supported by PNG. The
program was written by Lode Vandevenne and is available online; we incorporated this code
into our project to handle PNG conversion. The library download includes three C++ source files
called lodepng.cpp, lodepng.h, and lodepng_examples.cpp. Complete documentation of the
program can be found in the header file, which can be found in Appendix L.

In the back-end driver, the LodePNG library is employed by the function writelmageToPNG,
which is part of the Observation class of the back-end driver. The function sets the LodePNG
encoder to generate a compressed 8-bit grayscale image using the following lines:

LodePNG: :Encoder encoder; // create encoder

// set raw data color to grayscale
// set raw data bit-depth to 8-bit
// set output color to grayscale
; // set output bit-depth to 8-bit

encoder . infoRaw.color.colorType
encoder . infoRaw.color.bitDepth
encoder . infoPng.color.colorType
encoder . infoPng.color.bitDepth

I
wOoOmwo

encoder .getSettings().zlibsettings.uselLZ77 = true; // enable compression
encoder .getSettings().zlibsettings.windowSize = 32768; // default
encoder .getSettings().zlibsettings.btype = 0; // compression settings

a7

The writelmageToPNG function reads the low-byte of each value of the vector of 16-bit values
one-by-one into a second vector, which contains the values for processing. The raw data values
are in little-endian encoding, meaning that the least significant byte has the lower address.
Through trial and error, we discovered that the re-encoded images look best when the 8-bit
pixel value is immediately set to 255 if the high-byte of that pixel has a value greater than x02
(hexadecimal). Otherwise, the value of the low byte for the pixel is copied directly into the 8-bit
vector. This operation represents the conversion from 16-bit representation to 8-bit
representation. The rest of the function performs image processing to enhance the visibility of
airglow.

Airglow is very faint; even in images acquired with a long exposure, the airglow appears at
intensities slightly higher than the noise from the CCD. Additionally, only a small portion of the
range of intensities that an 8-bit value can encode is used to show the airglow. Aside from the
black sky and faint airglow, the rest of the image is composed of bright stars and CCD noise. If
an unprocessed image is viewed, only black and a few stars that appear as small white specs are
visible. To make the airglow visible, the range of intensities that represent it must be expanded
to include more of the shades of gray that are available in an 8-bit image. WinView has a built-
in function called “5/95” that accomplishes this processing, so it is not necessary for the
WinView data files; the PNG images require that a similar operation be performed to make
airglow appear.

The writelmageToPNG function performs an algorithm on each image to adjust pixel intensities
so as to make airglow most visible. The algorithm determines how many pixels there are at
each intensity, changes values of the dimmest 5% of pixels to 0 (black) and the brightest 5% of
pixels to 255 (white), and scales the intensities of the remaining pixels linearly across the full
range of values.

The first step to redistributing pixel intensities is to create a histogram of the 8-bit image data,
which tells how many pixels there are for each intensity. The function has an array of 256
integers called histogram that is populated by using the value of each pixel as the index of the
array, and incrementing the array index by 1 for each pixel, as follows:

for(i = 0; i < PNG_W * PNG_H; i++)
histogram[clmage[i]]++;

Once a histogram has been calculated, it is possible to calculate the 5% dimmest and brightest
pixel values in the image, which are referred to as lowP and highP in the program, respectively.
The pixels with 5% of the lowest nonzero values in the image are likely to contain just noise,
and not actual airglow. The pixels with 5% of the highest intensities are likely to be bright stars,
so it is beneficial to change their values to the maximum and use that extra bit of dynamic

48

range to have more intensities available for displaying airglow. The value of lowP is calculated
by performing a cumulative sum on each position of the histogram array, starting with 1 so as
to not include pixels of value zero in the calculation. The index of the histogram array at the
point where the cumulative sum is just above 5% of the total number of pixels becomes the
lowP. A similar operation is used to calculate highP, except that the algorithm starts at the
highest intensity and counts down until 5% of the total number of pixels has been reached.

Once the cutoff values have been calculated, the algorithm then proceeds by changing the
value of each pixel, one by one. Pixels with values above and below the cutoffs are adjusted to
0 or 255, and the other ones are scaled according to Equation 1:

_ (x—=lowP) x255
~ (highP — lowP)

Equation 1: Linear redistribution of pixel values within 5%-95% range

The equation produces a pixel intensity 0 <y < 255, which has a value that is proportional to the
value of the input intensity JowP < x < highP. In this way, pixel values are adjusted across the full
range of 8-bit values to show airglow as clearly as possible.

Finally, the writelmageToPNG function sends the vector of processed 8-bit values to the
LodePNG encoder to generate a PNG image file. Figure 12 shows the WinView images from
above re-encoded into PNG with pixel value scaling applied. One image has airglow, and the
other does not; but before processing, both images were completely black.

gt

L)

ght).

L

fter processin. With airglow (left), and without airglow (ri

%

Figure 12: 8-bit PG images

49

The writelmageToPNG function processes the raw data from the camera and generates images
that appear very similar to the raw WinView format images. These PNG images display airglow
clearly and can be incorporated into a webpage for display.

7.2 File Transfer Automation
One of the project requirements was to transfer the images captured by the cameras at HAARP

onto a local computer at SRI. Andrew Young of SRI suggested the use of the free DeltaCopy
program which he was already using for a different project.

The DeltaCopy program allows for a relatively fast method of backing up data over Windows
NT platforms. It is fast because it backs up data incrementally, which means that it compares
the source and destination files (inside a directory) and only copies over any discrepancies
(bytes that may have been modified or added since the last backup session). Thus, it saves
some time since it does not copy the entire file after only a few modifications. The program is
based on the rsync program for Unix/Linux/BSD systems.

Even though DeltaCopy essentially follows a Client/Server model on a Windows platform, we
had to make some modifications on the server side since the images were being uploaded onto
a Linux machine in California. This modification involved tweaking the rsyncd.conf file on the
Linux machine for the cross-platform upload to run smoothly. The following directives were
changed in this configuration file:

path = /tmp/test
read only = false

The DeltaCopy Client program was installed on the computer at HAARP to upload the images
onto a Linux server. The DeltaCopy Client program on the HAARP computer has been scheduled
to upload any new images every 5 minutes from 2am (UTC) to 9am (UTC) everyday. The folders
that are transferred to the SRl server are the WinView image folders for both back-end drivers.

7.3 Web Posting

One of the desired outcomes of the project was the ability to post images from the telescope
system to the internet for public display. Since the observation page has to display images from
the telescope in a web browser, the images are already encoded in a format that can be
available for display on any other website. The PNG versions of each image are stored in a
network shared folder that has been made available to the HAARP servers. The names of the
network folder for each camera are as follows:

\\WideFOV\telescope_web_images\
\\WideFOV\wideangle_web_images\

50

These network folders can be accessed internally from the SRI network. The project team spoke
with Mike McCarrick, a manager at HAARP, about configuring the public web server to include
these images. The public display of images is still pending at the conclusion of the project, but
once HAARP is ready to do so, the images will already be in a web-friendly format.

51

8. Potential Solutions for Dome Automation
One part of the desired functionality of an automated telescope system was the ability to

control remotely the dome that houses the telescope system components. While researchers at
SRI now are able to control the mount, cameras, and optics remotely, they still are not able to
gather any real data unless someone on-site opens and positions the dome slit. Additionally,
someone on-site must ensure that the dome is closed at the end of the observation, or in the
event of precipitation, in order to protect the imaging system.

Incorporating the ability to control the dome remotely to the remote telescope control system
offers several benefits. The operators of the telescope system pay close attention to the
conditions as they perform an observation. These operators would notice threatening weather
conditions from the images, even if operating the system remotely. An automated dome would
provide these users with the ability to shut the slit immediately. Otherwise, the telescope
would be exposed until someone is reached on-site to close the dome manually. Additionally,
the researchers that use the dome can shut it immediately when their work is complete,
thereby reducing the likelihood that someone on-site will forget to shut it overnight. Operation
of the dome can be tied to the automated imaging provided by the back-end driver, in which
case the conclusion of an automated observation can prompt the dome to close.

It was not possible to achieve automation of the dome as part of this project because of the
lack of a PC interface and concerns over possible equipment failure during remote operation.
The following sections outline the requirements of dome automation, provide an overview of
possible hardware solutions, and list possible methods of minimizing risk of equipment damage.

8.1. Current State of the System
The telescope system is housed in a fourteen-foot, six inch diameter dome, model REB

manufactured by Ashdome. The dome sits on top of the optics shelter, forming the roof of a
part of the building. The dome is able to rotate continuously in either direction. Dome rotation
is powered by an electric motor. A user rotates the dome by pressing buttons on a control box
that sits just below the rotating dome. The motor and rotation control panel are both mounted
to the building and completely stationary. The dome control panel is shown in Figure 13.

The rotating dome has a slit composed of two shutters. The upper shutter swings back over the
dome to open, and the lower shutter swings out to open. Both shutters are motorized, and a
user controls both from a second control panel. The shutter control panel includes buttons for
opening and closing each shutter. This control panel is mounted to the side of the dome and
actually rides with the dome as it rotates. There are manual overrides for the motors as well.
Figure 14 shows the shutter control panel.

52

Figure 14: Shutter control panel rides with the dome as it rotates

53

Figure 16: Upper shutter motor

54

Both shutters have limit switches installed that tell the controllers when to stop the motor.
These limit switches are activated when the shutter reaches a particular position, such as
completely open or completely closed. Activating the limit switches stops the motor, which
could burn out if it were to continue trying to move a shutter past its physical limits. In addition
to the limit switches, there are a few other safety features built into the controllers. The
buttons that move the shutters are on a delay, so a user needs to hold them for several seconds
before the shutters move to ensure that the user meant to move the shutters. A stop button
allows the user to stop the shutter from opening or closing instantaneously. The limit switches
are also used to ensure that the lower shutter is completely closed before the upper shutter
begins to close. This feature ensures that they shutters close properly.

The shutter controller and two motors that actually move the shutters are mounted to the
dome, which moves relative to the stationary building. The two shutter control motors are
shown in Figure 15 and Figure 16. In order to power the shutter motors and controller, a set of
slip rings transfers electric power to an electrical outlet that is mounted to the movable dome,
shown in Figure 17. The slip rings receive power from a metal contact for each of the three plug
pins (hot, neutral, and ground). As the dome rotates, the slip rings maintain contact with the
stationary power supply, shown in Figure 18. This way, power is available to any component
that travels with the rotating dome.

[

T e e e
-

I B g o

A
I Ak
L Sk e
[N

PO g Seaw CLORF
Fm i

RO LGe Ehwie (BN
fomp—

Figure 17: Slip rings move with the dome to power mobile outlet

55

Figure 18: Slip rings move against stationary power supply

On top of each controller is a transceiver. While the project team did not have the opportunity
to test them, these devices can be used to provide a data link between the controller boxes.
According to the dome manual, which is required to remain inside the optics shelter, a remote
control can be attached to the stationary control panel to allow control over dome rotation and
the shutters from a single controller. In such a case, the transceivers would be used to transmit
signals to open or close shutters. A wireless data link is necessary since the shutter control
panel moves with the dome, and a cable would get tangled around the equipment as the dome
rotates. The transceivers are shown in Figure 19.

Figure 19: Dome control transceivers

56

The dome already has in place most of the components that are necessary to automate its
operation and allow remote control. The actuators to move the components, control panels,
slip rings, and a remote control interface are provided with the dome system that is already in
place. This equipment provides everything that is necessary to move dome components, and
the only thing that must be added for an automated system is a method to obtain the current
position and a PC interface.

In order to be able to move to the dome to a specific orientation, two sensors would be
required. One must be a home position sensor. This sensor would be installed at one point
along the dome’s track and determine an absolute starting position. All dome movements
would be relative to the home position. Keeping track of where the dome is relative to the
home sensor requires counting the revolutions of the motor that drives it. To provide an
automated system, these two sensors would need to be connected to a PC that can track the
dome’s operation.

The PC interface should provide two way communications: it must receive input from the home
sensor and position counter, and it must output commands for how to move the dome to the
remote control input of the control panels. The software that operates the dome should be
able to position the slit to a given azimuth, and provide controls for opening and closing the
shutters. Figure 20 provides a block diagram to summarize which components must be added
for the dome to become automated.

57

Overview of Dome Automation System

Remote
Control -+ -
Dome Dome Mator -
. Home Paosition
D Rotation »| Rotation Revolution Sensor
e Control Panel Motor Counter
|
PC Hardware |
Interface : 120 VAC [15A
| Power Outlet
|
g fse |
| 3 rings
- B
. o
| & Lower
7 Shutter
PC with Dome I Control
Software : Motor
|
. Lower
I Shutter Limit
Switches
Key: -

Shutter Panel

I Upper
‘|_> Shutter

Control
Maotor

| Already In Place |
| Mustbe Added |

Upper
Shutter Limit
Switches

Y

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| L. slit Control
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Moves as Dome Rotates

Figure 20: Block diagram of automated dome system

Once the hardware is in place, the best way to incorporate dome control software into the
existing project would be through a software package called Automadome. This software
package is from Software Bisque, which is the same company that manufactured the mount
and its controlling software, TheSky6. Automadome would integrate well because like TheSky®6,
the program can be controlled with VBscripts that can be called by the back-end driver.
Additionally, Automadome is designed to be completely compatible with TheSky6 so as to
automatically orient the dome slit in the same direction as the telescope mount. Automadome
costs $249, and more information is available on the Software Bisque website.

8.2. Comparison of Potential Solutions
The project team has researched and identified several potential solutions to complete
automation of the dome. If the resources are available, then the best and least expensive

58

solution may be to design and implement a PC interface as described in the previous section.
Most of the hardware necessary to implement dome automation is in place, and the remaining
components are not excessively complex.

If it is not feasible to develop an interface at SRI or HAARP, then there are other options. Two of
these solutions are consultants who upgrade and automate domes across the country. The
third option is a kit that provides controller circuits to interface the dome components with a
PC. This section provides a description of the solutions and discusses advantages and
disadvantages of each. Referenced email correspondence can be found in Appendix M.

Astronomical Consulting:
This company was strongly recommended by Ashdome, the manufacturer of the dome. Richard

Olsen of Ash Mfg. Co. stated that Astronomical Consulting has automated many Ashdomes
across the country and that there should be no problem with automation of the specific dome
that was installed at HAARP.

Astronomical Consulting stated that the company can only perform the installation during the
summer months. The company did not provide an estimated price for the installation.

Contact information:

Dr. Peter Mack, President & C.E.O.

Telephone: 520-219-8722

Fax: 520-219-7989

Postal address: PO Box 91946, Tucson, AZ 85752-1946

Electronic mail: General Information: info@astronomical.com

Customer Support: support@astronomical.com

Meridian Controls:
This company specializes in computerized dome automation. The provided automation package

is compatible with Automadome software, and the dome hardware interfaces with the PC over
RS-232.

When the project team contacted Bryce Bennett, Ph.D. of the Royal Military College of Canada,
the feedback was that his Meridian Controls installation was unreliable and he was not satisfied
with it. Dr. Bennett added that he removed the Meridian Controls system and would replace
with one from Astronomical Consulting.

In a telephone conversation, Meridian Controls provided an estimated cost of automating the
dome. As actual specifications of the dome were not available at the time, the company quoted

59

automation of a non-motorized dome without installed slip rings. The quoted cost was $9000
for the system plus $1600 for travel and expenses.

Contact information:

Postal address: PO Box 839, 1085 2nd Street, Berthoud, CO 80513
Telephone: 877-295-9797

Fax: 530-325-7700

MaxDome II:
MaxDome Il is a dome automation kit from a company called Diffraction Limited. The kit

provides two controller cards: one card connects to a PC, the dome rotation motor, and dome
rotation sensors, and the other card rides on the dome and connects to the shutter motors and
limit switches. The two cards communicate via an RF signal. The system is compatible with
Automadome software. Each controller card is designed to drive 12VDC motors up to 5A
directly. However, since the motors used in the dome operate on AC power, relays would need
to be installed to implement this system. The price of the MaxDome Il with shutter and rotation
control is $1395.

The project team contacted David Sonnek, who uses the MaxDome Il system with an Ashdome
in his personal observatory. David stated that the system is simple, but has been reliable.
However, he noted that he only uses the system in a limited capacity — he does not operate it
remotely and he does not use it to open and close the shutters. His opinion seems to be that
MaxDome Il is “is an easy way to glue together a control PC, sensors and the Ashdome motor”
if the intention is merely to synchronize the dome orientation with that of the telescope. He
implies that a more robust solution is necessary if the intention is to provide automated and
remote control of the dome.

The project team’s opinion is similar to that of Mr. Sonnek. While this system is simple and
includes an Automadome compatible PC interface, it is restrictive and would limit the
functionality of the installed hardware. Since this controller board must drive the motors
directly, it would bypass the installed control panels. The team recommends a solution that
adds remote capabilities to the existing on-site control, in which case MaxDome Il is not the
best solution.

Contact Information:

Diffraction Limited

Postal Addres: 100 Craig Henry Drive, Unit 202, Ottawa, Ontario K2G 5W3, Canada
Telephone: 613-225-2732

Website: http://www.cyanogen.com/products/dome_main.htm

60

8.3. Risk Mitigation

The remote and automated operation of a dome system presents some inherent risks to the
dome and the equipment it shelters. However, with proper planning these risks can be
minimized by ensuring that personnel intervene in case of a problem. The greatest risk is posed
by precipitation, especially snow, which can cause costly damage to the telescope equipment.
Other risks include jammed or frozen dome components, broken limit switches, and burned out
motors. These events can cause damage to the dome and subsequently leave the telescope
system exposed and vulnerable to weather damage.

In the last several years, a limit switch at the HAARP dome froze and caused the upper shutter
motor to run until it burned out, which immobilized the shutters in an open position.
Consequently, there is an appropriate level of concern over enabling remote control of the
dome; however, proper precautions can help ensure that the equipment is protected.

The best way to mitigate the risk of operating the dome remotely is to install a webcam in the
optics shelter. Cameras that connect to a computer via a USB cable are inexpensive and readily
available. Such a camera should take an image of the inside of the dome every few seconds and
make the image available over the internet. The Apache server that was installed as part of this
project can allow a telescope operator at a remote site to see the conditions inside the dome.
Specifically, the operator would be able to see whether there is precipitation entering the dome
and whether the dome opens and closes properly, which would help prevent burned out
motors. If the dome does not move on command, then the remote operator can contact on-site
personnel for additional assistance.

Since the dome is opened in low-light conditions and nighttime, a night-vision webcam would
be the best option. These devices detect infrared wavelengths that do not interfere with optical
experiments at HAARP. Here are two products that may be implemented:

USB Qcam with NightVision:
The infrared USB webcam offers 1.3 megapixels of resolution and costs $35. More information
is available at http://www.usbgeek.com/prod_detail.php?prod_id=0493

8-LED Infrared Night-Vision USB Webcam:
This infrared USB webcam has 640x480 video resolution and a metal body. It costs $18. More
information is available at http://insidecomputer.stores.yahoo.net/6inniusb35we.html

In addition to verifying operation of the dome through a webcam, a remote user should be able
to know the weather conditions on-site to determine whether it is safe to open the dome. The
project team researched various weather stations that measure precipitation to find a solution.
Most use a “tipping bucket” design that requires some precipitation to build up before any is

61

detected. While these devices can track precipitation accumulation accurately over time, they
are not suited to detect precipitation and immediately notify a remote dome operator.

The best solution that the project team found for this problem is the Boltwood Cloud Sensor Il
from Diffraction Limited. This product is specifically designed for use by observatories to detect
weather conditions that may pose a threat to equipment if the dome is open. This weather
sensor can detect cloud cover, precipitation, and wind speed. This cloud sensor costs $1500.
The product is shown in Figure 21.

Figure 21: Boltwood Cloud Sensor Il from Diffraction Limited
(source: http://www.cyanogen.com/products/cloud_main.htm)

According to the manufacturer’s website, this product measures cloud cover by comparing
ambient ground temperature with the predicted temperature of the sky, which is determined
by measuring infrared radiation. Cloud cover is a good indicator of when to open or close the
dome as incoming clouds can foretell precipitation. Additionally, an observatory would not be
able to see anything through clouds, so there is no reason to have the dome open and the
equipment exposed if clouds are present.

The Boltwood Cloud Sensor Il includes a heated moisture sensor that detects rain or snow. The
project team contacted the manufacturer to ask whether the product would be able to work in
the harsh Alaskan climate, and the company was reassuring that this product has worked well
in such conditions. The product also includes an anemometer with no moving parts.

The cloud sensor interfaces with a PC through a USB port. All information gathered by the
instrument is displayed on the screen, and the user can set thresholds for alerts. The included
software has ActiveX controls built in, which allows the program to be incorporated into other
software. The user interface is shown in Figure 22.

62

¥ Clarityll v2.028

Clear S
Calm 0
Dry o

Dark (5

On Top

Shep-fimb. Ambient Senzar Rain
Temp. Temp. Temp. Heater

[-atec [q20c [aoc [1a%
“wind Hurnidity Drew Pt Daplight
[T17wn [s2% [qeec [0

Alert For.
[Clear [~ Calm " Dy [Dak

¥ Cloudy W windy W wiet [Light
¥ W.Cloudy V¥ Wiwindy I Rain ¥ W Light

Alert Types:
I visual I Beeper [~ Sound Setup I

Figure 22: Boltwood Cloud Sensor Il user interface
(source: http://www.cyanogen.com/products/cloud_main.htm)

Additionally, the cloud sensor has an output that can be interfaced with a dome controller in
addition to the PC. In this case, any weather conditions that trigger an alert in the user interface
would also instruct the dome controller to close the shutters immediately. This method of
protecting the equipment from the weather may be even more reliable than waiting until
someone on site becomes aware of the weather and goes to the optics shelter to shut the
dome manually.

The project team recommends the installation of the cloud sensor to alert remote users of
potentially threatening weather conditions. Additionally, the implementation of a webcam
inside the dome would minimize the risk of damage as a result of the failure of a dome
component. With these safety factors in place, the dome at the HAARP site can be automated
safely to give remote users full control of the observatory.

63

9. Conclusion
The goal of this project was to develop a system to allow remote control of the optical imaging

system at HAARP. The remote control system was designed with the intention of allowing
researchers at SRI the ability to gather data without traveling to Alaska merely to run the
equipment. The system needed to provide users with the ability to open the dome that houses
the system, orient the mount, specify settings for each observation session, and capture images
autonomously.

The project team was able to develop a web-based interface that allows control of the mount,
and both sets of imaging equipment. The system is operational and has been set up to run on
the computers that control the hardware. The data that is gathered during each observation
session is stored on the computers at HAARP, and an installation of DeltaCopy sends these files
to a computer in California autonomously. A permanent Linux server for these image files must
be installed at SRI to make the images easily accessible to researchers. Then, the DeltaCopy
installation on-site can be reconfigured to upload to the new server. The web-friendly PNG
images that are created during each observation are stored on the on-site computer as well.
The directories that hold them are accessible to the internal HAARP network and the HAARP
public web server. A web interface should be created to allow access to these images from the
public HAARP website. A remaining issue with the PNG images only is that the image processing
algorithm distorts some images from the wide-angle camera if they are acquired before
twilight. An adjustment to the “5-95” algorithm would resolve the problem. Otherwise, the
remote control system has been shown to the stable and reliable for controlling the equipment
and gathering data.

The project team was not able to automate the dome due to safety concerns. However, this
report presents several solutions for enabling remote control of the dome in a safe manner.
The addition of a weather detector and webcams allows the remote user to remain aware of
weather conditions on-site and provides verification that the dome operates properly. Most of
the components that are needed to automate dome operation are in place, and all that is
needed is a PC interface and position sensors. The project team recommends the addition of
these components to complete the automation of the observatory.

The project team had the opportunity to travel to Alaska and finalize development of the
system on-site. At the conclusion of the trip, the team stood by as the system was actually
tested by a researcher at SRI. The system was able to gather real data and operate reliably. The
few minor bugs that were noticed were corrected upon return to SRI. The remote control
system can now be used to control the equipment and collect data.

64

!

Figure 23: The project team on-site with the optical imaging system

65

10. References
Apache HTTP Server Version 2.2 Documentation. The Apache Software Foundation. 2008. 5

Mar. 2008. <http://httpd.apache.org/docs/2.2/>

Beazley, David M. Python Essential Reference. Indianapolis: Developer’s Library, July 2007.

“The Boltwood Cloud Sensor II.” Diffraction Limited. 2005. 5 Mar. 2008.
<http://www.cyanogen.com/products/cloud_main.htm>

The High Frequency Active Auroral Research Program. 2007. HAARP. 5 Mar. 2008.
<http://www.haarp.alaska.edu/haarp/index.html>

“MaxDome Il Observatory Dome Control System.” Diffraction Limited. 2004. 5 Mar. 2008.
<http://www.cyanogen.com/products/dome_main.htm>

Microsoft Developer Network. 2008. Microsoft Corporation. 5 Mar. 2008.
<http://msdn2.microsoft.com/en-us/default.aspx>

Princeton Instruments. Princeton Instruments VersArray System. Trenton, NJ: Roper Scientific,
Inc., 2004.

Princeton Instruments. PVCAM 2.7. Trenton, NJ: Roper Scientific, Inc., 2004.

Thompson, Chris. “Windows + Apache 2.0 + SSL.” Thompsonbd. Version 1.2. 5 Mar. 2008.
<http://www.thompsonbd.com/tutorials/apachessl.php>

Trondsen, Trond S. Narrow-Field Auroral Imager for Northwest Research Associates, Inc. Keo
Scientific, Ltd., January 2006.

Software Bisque. 2007. Software Bisque. 5 Mar. 2008. <http://www.bisque.com/>

Synametrics Technologies. “DeltaCopy User’s Guide.” About my X.
<http://www.aboutmyip.com/files/DeltaCopyManual.pdf>

SRI International. 2008. SRI International. 5 Mar. 2008. <http://www.sri.com>

Vandevenne, Lode. “LodePNG for C (ISO C90) and for C++.” LodePNG. 2008. 5 Mar. 2008.
<http://members.gamedev.net/lode/projects/LodePNG/>

W3 Schools. 2008. Refsnes Data. 5 Mar. 2008. <http://www.w3schools.com/>

66

Appendix A: User’s Guide
Step 1:

Open up a web browser and enter https://*** *** ** **.8000/ in the URL. Be sure to use https
and not http.

Step 2:

In Internet Explorer, the following page will show up:

—_ - —

Fle Edt View Fawvorites Tools Help

N = »
'i:? ke j_éCertiFicate Error: Navigation Blocked | | ﬁ - B - oo l_—}’ Page - (0 Todls -

[

|@ There is a problem with this website's security certificate.

The security certificate presented by this website was not issued by a trusted certificate
authority.

Security certificate problems may indicate an attempt to fool you or intercept any data you
send to the server.

We recommend that you close this webpage and do not continue to this website.
& Click here to close this webpage.

& Continue to this website (not recommended).

@ More information

E
[[T [| | & imtemet [®100% - 4
tijstartl 8] Document1 - Microsoft ., | & nutomatedTestingFinalk. . | fii widefor | (@ Certificate Error: Navi... &« i 325

Click on the second option “Continue to this website (not recommended)”. The browser
throws this error because the security certificate generated for the website was not issued by
an issuing authority. The certificates were generated at SRI and are valid, so it is safe to
proceed.

67

Step 3:
The next page will prompt for a user name and a password as shown below. Enter
the provided username and password. Click on OK.

Step 4:
The following page shows up next:

File Edt View Favorites Tools Help

. »
e e B SRI Telescope Automation Project | | - [l - f=h ~ :FPage + (O Tools *
Security Information 1'
r-“l This page containg both secure and nonsecure
?. items.

Do pou want to display the nonsecure items?

e I No Mare Info

[waiting For https:/{137.229,36.93:8000]narv. it . [[T T T [meemet [®r -~
i{startl Iﬂ_] Documentl - Microsaft ... I @ AukomatedTestingFinalr., . | widefoy I @ SRI Telescope Autom... é <« E 329 PM

Click on Yes. This error shows up because the UTC clock that displays at the top of the page is
provided by a third-party website. If it is felt that this feature poses a security risk, then it may
be removed by editing the nav.html file.

68

Step 5:

On successfully entering the user name and password, the following page shows up (the actual
images may be different):

Fla rildé "mo Faqtritmn Ionla Hen

W % O Tukewope bt Prupal | | oo B - o v g e i ook +
Narizatiem: Ohesotion 3eitine Momt Corerd Wek Power bndich . HAARF Orention:s Cumam TITC Hime: 25 361E
Camera & optics statns: Last acquired images:

Telesvope Wide-angle

Lelescaps camera

Cinaza. Comweclcd Carzene. Canncelinl
CCLF teespeyioos 40 CD irpperimes 40
Optics Cumsectua Cptizs Canmeeissd
22 1L T TR o S sRoiersiann OFel
Filizin we. 2 Fikz e |
DCeazamremeed Dpiacn | Chacrwraes Cplez |

TTELE AH-Adan
03_0%_3%_15_fik2_SLOW_ | fapns

Wide-angle camers

Ohbscrvation settings:

Yot AT e [Pt =) fet AN mate: [aa =]
Sl erpownru e | P Sad expoaLry fre [g
Eedect Fillessx 0 | O] & Sdset Fllemsl 0 | O3 D
CiCE O Ci0d O

Sl Slullan. & Opan el Ehulba & Opap

 Classd C Cowd

Uibgersatand st tens U LTy

e l_
Oteerceon ston iime TS, |
= WILEETA BHA N
St zesnomen Fraliormumen | 01_0%_3%_34_fk F_S.ml.'_l Tapr

Telsnie sl s baed et (T T ™

P .- x|
| [T #[@ memr BT
.I!E'Ehrtl I®]] Socunenkd - Miasch: | & AuonsbedTestingFnaR, .. | T8 et] 8 ==l Talrwrope Aatom, A= umea

This is the home page that loads up when a user first logs in. The page defaults to the
Observation Settings page on the top panel. Some of the other pages available for navigation
on the top panel are Mount Control, Web Power Switch and HAARP Operations.

The Observation Settings page allows a user to see as well as specify settings for both the wide-
angle and the telescope cameras and optics. The top half of the page lets the user know of the
status of the hardware, which is updated periodically. The bottom half of the page allows the
user to specify settings such as the ADC rate, the exposure time, the filter(s) to use and the
state of the external shutter. In addition to this, a start and a stop time may also be included if

the user wants to carry out an observation at a later time. All the time fields have to be entered
in UTC time.

The following shows the Mount Control page when a user loads it up initially:

69

File Edt View Favorites Tools Help

) _ Y >
{3 ke (€ 3RI Telescope Automation Project | | ﬁ?? - & - o= - l-_\:"F‘age - {0 Tools =

Navigation: Observation Settings Mount Control Web Power Switch HAARP Operations Current UTC tine: 17:06:55

Current Status

The mount is: Disconnected

The position is:

Degrees Mimutes Seconds
Azimuth: n'a n'a na
Altitude: n'a nla n'a

Mount Control Panel

Degrees Minutes Seconds
Agimuth- n'a n'a n'a
Altitude: n'a na n'a
Slew To | Home |
Connect | Abort |
Park & Discannect

Mount status last updated (UTC):
Mon Mar 3 02:12:57 2008

|Done ’7 ’7 ’7 ’@ ’7 ’T |@ Inkernst ‘ 0% - 2
W Startl @ amail - Inbox - muzhtaba, ., | @ Google Calendar - Mozilla, .. | é SRI Telescope Autom... "l_‘-"_] User's Manual.doc - Micr... | é &« 3 906 &M

This page allows the user to see and specify the mount settings. The top half of the page
displays the current status of the mount hardware. It tells the user if a mount is connected and
the current coordinates of its position. The bottom half of the page allows the user to connect
to the mount, specify coordinates to slew to, park and disconnect the mount or abort an
operation in progress. The coordinates for the mount position have to be specified in degrees,
minutes and seconds for both azimuth and altitude.

Important: The Degrees, Minutes and Seconds fields cannot take on empty values!

On clicking the Web Power Switch link, the following page loads up in a new window,
prompting the user for a user name and a password:

70

File Edt Miew Favorites Tools Help

e b @Puwer Controller

& - B - = - l-__‘:“Page - 0 Todls - >

User Name |
Password

Enter the provided username and password.

On successfully entering the user name and password, the following page shows up:

File Edt View Favorites Tools Help

TQ? & @ Outlet Control - HAARP Optical Imaging System | |

fa - B - d= - |hPage - (fTooks » 7

Ethernet
Power
DIGITAL
DL1 | LOGGERS, INC. Controller

Outlet Control
Setup
AutoPing
System Log
Logout

Help

Link 1
Link 2
Link 3
Link 4

Version 1.2 4 (Dec 02 2007 / 23:44:12)
1855A5A1-CB978355
S/N-0000131868

Controller: HAARP Optical Imaging System

Uptime: 137:07:10

Individual Control

Name
Wide Optics
Wide Camera
Telescope Optics
Telescope Camera
Mount
Outlet 6
Outlet 7
Outlet 8

0 ~N o e w N

Master Control
All outlets OFF
All outlets ON

Cycle all outlets

State
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF

Sequence delay: 1 sec.

|D0r|e

This page allows the user to power up or power down the set of cameras and optics as well as
the mount. The user can choose to power up any of these hardware devices by clicking on the
corresponding SWITCH ON button or power down any of these hardware devices by clicking on
the corresponding SWITCH OFF button. The current state of the hardware is displayed under
the STATE field. The All outlets OFF button under Master Control allows the user to power

=l

Action

Switch ON
Switch ON
Switch ON
Switch ON
Switch ON
Switch ON
Switch ON
Switch ON

-]

I O) =
I 2} Startl @ amail - Inbox - muzhtaba. .. I @ Google Calendar - Mozilla. .. | & =PI Telescope Automatio. .. I & Outlet Control - HAAR... IEJ User's Manual. doc - Micr. ..

ST

2w B n0gam

|

down all the hardware equipment and the All outlets ON button under Master Control allows
the user to power up all the hardware equipment. Once the user has finished powering the
equipment on or off, the user may safely exit the page using the Logout link on the left plane.

The HAARP Operations page shown below may be used to check the schedules of currently
planned observations by the scientists at HAARP.

f,“ HAARP Operations - Windows Internet Explorer

(=]
+.
SAS) - IE. http:}/bagpipes. haarp.alaska.edu: 8080jpybinexplogfOperations j + | A ILwaSearch P~
File Edt View Favorites Tools Help
= »
* ke @HAF\RP Opetations | | E} v [] - = v i-Page = (O Tools *
|
[“Home | General Info | Technical Detais ISRl Photos | Contents | Glossayy | Search |

HAARP Operations Log

The table below is a summary listing of HAARP Operations for the selected date. Where applicable. dual frequency. polarization or modulation experiments are
shown. All parameters shown represent the start condition of the experiment For more detailed descriptions of the experiments. click the Experiment name in the
listing. An Operations Summary is available showing all operating days. Note: If the Experiment name is marked with an asterisk (*}. check the experiment
description for details about unscheduled interlocks that occurred during the experiment

< Prev Next>
Mo Operations on Tue Mar 04, 2008

Date: I (MM/DD/YYYY) [Include Operator Entries

Get Experiment Log |

Home General Information Technical Details Data
Photos Contents Glossarvy Search

Questions of a technical nature may be submitted using the comment page, or via e-mail to: infohaarp@haarp.alaska.edu

HAARP Home Page -= http://www.haarp.alaska.edu/

=
|Done ’_ ’_ ’_ ’_ ’_ m |9 Inkernet ‘ 0% v

I 2} Startl @ amail - Inbox - muzhtaba. .. I @ Google Calendar - Mozilla. .. | & =PI Telescope Automatio. .. I {& HAARP Dperations - ... @ User's Manual.doc - Micr.., é « 3 907 &M

72

Appendix B: Maintenance Guide

The software that has been written for the project resides on one of the computers at HAARP in
Alaska. The software was written keeping scalability and future expansion in mind. Since most
of the software is based in Alaska, remote maintenance of the code is of paramount
importance, and some features were incorporated into the system accordingly.

First, we have chosen to provide remote access to both the computers at HAARP from the SRI
location. The freeware version of TightVNC may currently be used to remotely log in into one or
both of the computers up there, for troubleshooting purposes. The VNC servers up there have
been configured to allow remote logging in from thus allowing people on the SRI domain and
who have the appropriate user name and password to log in. Remote logging is useful to check
on the status of the background driver or to see if the raw image data is actually being backed
up locally. Short of the server at HAARP actually freezing or crashing, the VNC feature allows
users to access the computers just as if they were on site. If the backend driver program
crashes, the user could VNC into the computer, use the task manager to end the backend driver
process, and manually start the program. If the backend driver program crashes on the wide
angle machine, the user will have to go to the “C:\Program Files\Telescope
Automation\Apache\htdocs\wide” directory and double click the BackendDriver program there
in order to manually restart the program. If the crash happens on the telescope machine, the
user will have to go to the Z:\ share drive under “My Computer” and double click the
BackendDriver program there in order to manually restart the program on the telescope
machine. It will be apparent if the back-end driver is not operating as the website will display
“Unable to reach IP address!” when the user tries to submit commands.

If the on-site computers cannot be reached by VNG, it is likely that the entire system may have
frozen. In this case, someone on-site must manually restart the computer. An alternate solution
is to connect the computers to the web power switch to allow remote restarting. In such a
situation, the user would have to enter the IP address http://*** *** ** **.8001/ in the URL of
the browser. This would take the user directly to the Web Power Switch control page, as the
web power switch operates independently of the computers.

The other maintenance feature that has been incorporated into the back-end driver is the
Telnet functionality. This allows for debugging of individual commands and faster
troubleshooting. If a developer wants to test a single command being sent to the backend
driver over TCP/IP, the developer could open up a Telnel console and connect to the IP address
of the server over port 5000. The developer could then issue single commands and check to see
what the driver responds with. The user must access the Telnet functionality from within the
HAARP network, perhaps by using VNC to access the on-site computers.

73

Appendix C: Directory Paths of System Files
This appendix lists each of the subdirectories that contain project files. Please refer to these
lists if replacing any files that are a part of the remote control system.

C:\Program Files\Telescope Automation\Apache\cgi-bin:
control.py

C:\Program Files\Telescope Automation\Apache\htdocs:
<dir>Tele

<dir> Wide
default_image.png
imBig.js
index.html
layout.css
mntUserPrefs.xml
mount.html
mount.js

nav.html
observation.html
observation.js
obsTelePic.html
obsUserPrefs.xml
obsWidePic.html

C:\Program Files\Telescope Automation\Apache\htdocs\tele:
<dir> png

<dir> winview

BackendDriver.exe

default_image.png

telecamStatus

winview_header

C:\Program Files\Telescope Automation\Apache\htdocs\wide:
<dir> mount

<dir> png

<dir> winview

BackendDriver.exe

default_image.png

mountStatus.xml

wacamStatus.xml

winview_header (binary file)

74

C:\Program Files\Telescope Automation\Apache\htdocs\wide\mount:
abort

abort.vbs
connect
connect.vbs
coupledome.vbs
disconndome.vbs
getposition
getposition.vbs
home

home.vbs
iscomplete.vbs
isconnected.vbs
park

park.vbs

slewto
slewto.vbs

75

Appendix D: HTML and Javascript Files

layout.css

h2 {padding-bottom: 5px; margin-bottom: 0;}

h3 {padding-bottom: 0; margin-bottom: O0;}

div {padding: Opx; margin: Opx; display: inline;}
form {margin: Opx; padding: Opx; display: inline;}
-button {padding: Opx; margin: 2px;}

index.html

<html>
<head>
<title>SRI Telescope Automation Project</title>
</head>
<frameset rows="35,*" border="0">
<frame name="navbar' src="nav.html" scrolling="no">
<frame name="main" src="observation.html'>
</frameset>

</html>

mount.html

<html>
<head>
<link rel="stylesheet" type='"text/css" href="layout.css">
<script src="mount.js" type="text/javascript'> </script>
</head>

<body onload=loadXML()>

<I-- Current state of the system from XML -->
<h2>Current Status</h2>

<div id="errorDisplay"></div>

The mount is: <div id="statusDisplay"> </div>

The <div id="posUpd'> </div> position is:
<table width="300" border="0">
<colgroup>
<col>
<col align="'center">
<col align="center">
<col align="center">

</colgroup>

<tr>
<td> </td>
<td>Degrees</td>
<td>Minutes</td>
<td>Seconds</td>

</tr>

<tr>

<td width="75">Azimuth: </td>

<td width="75"> <div id="aziDegDisplay"> </div> </td>
<td width="75"> <div id="aziMinDisplay"> </div> </td>
<td width="75"> <div id="aziSecDisplay"> </div> </td>

</tr>
<tr>
<td>Altitude: </td>
<td> <div id="altDegDisplay'> </div> </td>
<td> <div id="altMinDisplay'> </div> </td>
<td> <div id="altSecDisplay'> </div> </td>
</tr>

76

</table>

<I-- User controls form -->
<h2>Mount Control Panel</h2>

<form method="POST" action="/cgi-bin/control._py" name="mountSlewForm" onsubmit="return

validate_form()'>

<input type="hidden" name="equipment" value="mount'>
<input type="hidden" name="mntOp" value="slew">

<table width="400" border="0">
<colgroup>
<col>
<col align="center'">
<col align="'center">
<col align="center">

</colgroup>

<tr>
<td> </td>
<td>Degrees</td>
<td>Minutes</td>
<td>Seconds</td>

</tr>

<tr>

<td width="100">Azimuth: </td>

<td width="100"> <div id="setAziDegDisp'> </div> </td>
<td width="100"> <div id="setAziMinDisp"> </div> </td>
<td width="100"> <div id="setAziSecDisp'> </div> </td>

</tr>
<tr>
<td>Altitude: </td>
<td> <div id="setAltDegDisp'> </div> </td>
<td> <div id="setAltMinDisp"> </div> </td>
<td> <div id="setAltSecDisp"> </div> </td>
</tr>
</table>

<input name="submit" type="submit" value=" Slew To " 1d="'slewButton">
</form>

<form method="POST" action="/cgi-bin/control._py'>

<input type="hidden" name="equipment" value="mount'>

<input type="hidden" name="mntOp" value="home">

<input name="submit" type="submit"” value="Home" id="homeButton">
</form>

<form method="POST" action="/cgi-bin/control._py'>

<input type="hidden" name="equipment" value="mount">

<input type="hidden"” name="mntOp" value='"connect'>

<input name="'submit" type="submit" value=" Connect " 1d="connectButton">
</form>

<form method="POST" action="/cgi-bin/control._py">

<input type="hidden" name="equipment” value="mount'>

<input type="hidden" name="mntOp" value="abort'">

<input name="submit" type="submit" value=" Abort " id="abortButton'>

</form>

<form method="POST" action="/cgi-bin/control._py'>
<input type="hidden" name="equipment" value="mount'">
<input type="hidden" name="mntOp" value="park">
<input name="submit" type="submit" value=" Park & Disconnect"

id=""disconnectButton'>

</form>

77

<p><smalI>Mount status last updated (UTC): <div id="mountUpdated'> </div></small></p>

</body>
</html>

nav.html
<html>

<table border="0">

<tr>

<td size="100"> Navigation: </td>

<td size="100"> 0Observation Settings
 </td>

<td size="100"> Mount Control </td>

<td size="100"> Web Power Switch
 </td>

<td size="100"> <a href="http://bagpipes.haarp.alaska.edu:8080/pybin/explog/Operations"
target="_blank">HAARP Operations </td>

<td size="200" align="right'"> Current UTC time: </td>

<td size="100"> <iframe
src=""http://free.timeanddate.com/clock/ix2xq66/fnl15/ahl/avt/ftb/thl" frameborder="0" width="54"
height="19"></iframe></td>

</tr>
</table>

</html>

observation.html

<html>

<head>
<link rel="stylesheet" type='"text/css" href="layout.css">
<meta http-equiv="REFRESH" content="900">
<script src="observation.js'> </script>

</head>

<body onload=loadXML()>

<table width="850" border="0" cellpadding="0">
<colgroup>
<col align="right" valign="top"> </col>
<col align="left" valign="top"> </col>
<col align="right" valign="top"> </col>
<col align="left" valign=""top"> </col>
<col align="center" valign="top"> </col>
</colgroup>

<l-- row of headers for page -->
<tr valign="center'">
<td width="550" colspan="4" align="left"> <h2>Camera & optics status:</h2>
<div id="teleErrorDisplay"></div> <div id="waErrorDisplay"></div></td>
<td width="300" align="left'"> <h2>Last acquired images:</h2> </td>
</tr>

<I-- row of telescope and wide-angle headers, plus the last taken images -->
<tr>
<td width="275" colspan="2" align="center'> <h3>Telescope</h3> </td>
<td width="275" colspan="2" align="center'> <h3>Wide-angle</h3> </td>
<td width=""300" rowspan="10" align="center'> Telescope camera

<a
href="javascript:void(window.open("obsTelePic.html®,"_blank"®, "toolbar=no, location=no,status=no,di
rectories=no,menubar=no,scrollbars=yes,width=530,height=575,resizable=yes®))">
<img width="230" height="230" border="0"
name=""teleCamLastlImg''>

<div id="telelmgInfo"> </div> </td>
</tr>

78

<I-- rows of status info -->
<tr>
<td width="150"> Camera: </td>

<td width="125"> <div id="teleCamStatus'> </div> </td>

status of telescope camera -->

<td width="150"> Camera: </td>

<td width="125"> <div id="waCamStatus"> </div> </td>

status of wide-angle camera -->

</tr>
<tr>
<td> CCD temperature: </td>
<td> <div id="teleCamCCDtemp"> </div> </td>
<I-- telescope camera ccd temperature -->
<td> CCD temperature: </td>
<td> <div id="waCamCCDtemp"> </div> </td>
<!-- wide-angle camera ccd temperature -->
</tr>
<tr>
<td colspan="4"> </td>
<I-- empty row to space out the content -->
</tr>
<tr>

<td> Optics: </td>

<td> <div i1d=""teleOptStatus'> </div> </td>

telescope optics -->

<td> Optics: </td>

<td> <div i1d="waOptStatus''> </div> </td>

wide-angle optics -->
</tr>

<tr>
<td> Shutter state: </td>
<td> <div id="teleOptShutter'> </div> </td>
telescope shutter -->

<td> Shutter state: </td>
<td> <div id="waOptShutter"> </div> </td>
wide-angle shutter -->
</tr>

<tr>
<td> Filter in use: </td>
<td> <div id="teleOptFilter"> </div> </td>
filter that is currently in use -->

<td> Filter in use: </td>
<td> <div id="waOptFilter"> </div> </td>
angle filter that is currently in use -->
</tr>

<tr>
<td colspan="4"> </td>
empty row to space out the content -->
</tr>

<tr>

<td colspan="2" align="center" valign="middle">

<!-- status

of

status of

status of

status of

telescope

wide-

<form name=""teleCamForm™ method="post™ action="/cgi-

bin/control.py"> <!-- /cgi-bin/control.py -->

<input type="hidden" name="equipment"

value=""teleCam'>

<div id="teleCamConn''> </div>
<I-- telecamera

</form>
connect or disconnect button is added by javascript -->

79

<form name=""teleOptForm"™ method="post" action="/cgi-
bin/control .py'>
<input type="hidden" name="equipment"
value=""teleOpt">
<div id="teleOptConn'> </div>
</form> </td> <I-- teleoptics connect or
disconnect button is added by javascript -->

<form name="waCamForm' method="post" action="/cgi-
bin/control.py">
<input type="hidden" name="equipment"
value="wideCam">
<div id="waCamConn"> </div>
</form> <!-- wacamera
connect or disconnect button is added by javascript -->

<form name="waOptForm" method="post" action="/cgi-
bin/control .py'>
<input type="hidden" name="equipment"
value="wideOpt">
<div id="waOptConn"> </div>

</form> </td> <I-- waoptics connect or

disconnect button is added by javascript -->

</tr>

<tr>

<td colspan="4"> </td> <I--

empty row to space out the content -->

</tr>

</table>

<form method="POST" action="/cgi-bin/control._py"” name="obsForm"™ onsubmit="return
validate_form()'>
<table width="850" border="0" cellpadding="0">
<colgroup>
<col align="right" valign="top"> </col>
<col align="left" valign=""top"> </col>
<col align="right" valign="top"> </col>
<col align="left" valign="top"> </col>
<col align="'center" valign="top"> </col>
</colgroup>

<I-- row of observation settings header -->
<tr>
<td width="550" colspan="4" align="left"> <h2>0Observation settings:</h2>
</td>
<td width="300" rowspan="9" align="center">
Wide-angle
camera

<a
href="javascript:void(window.open("obsWidePic.html*®,"_blank®, "toolbar=no, location=no,status=no,di
rectories=no,menubar=no,scrollbars=yes,width=530,height=575,resizable=yes*®))">
<img width="230"
height="230" border="0" name="waCamLastlmg'>

<div id="walmglnfo'">
 </div>

</tr>
<I-- rows of observation setting options -->
<tr>
<td width="150"> Set ADC rate: </td>
<td width="125"> <div id=""teleObsADCrateDisp"> </div> </td>
<td width="150"> Set ADC rate: </td>
<td width="125"> <div id="waObsADCrateDisp"> </div> </td>
</tr>
<tr>

<td> Set exposure time: </td>

80

</tr>

<tr>

</tr>

<tr>

</tr>
<tr>

space out the content -->
</tr>

<tr>
</td>

</tr>

<tr>
</td>

</tr>

<tr>

id="waSendToField"> </div>

id=""obsStartOp"> </div>

<td>

<td>
<td>

<td>
<td>

<td>
<td>

<td>
<td>

<td>
<td>

<td

<td
<td

<td
<td

<input type="hidden" name="equipment" value="observation'>
<td colspan="4" align="'center'> <div id="teleSendToField"> </div>

<div id="teleObsExpTimeDisp'> </div> </td>

Set exposure time: </td>
<div id="waObseExpTimeDisp"> </div> </td>

Select Filter(s): </td>
<div id="teleObsFilterDisp"> </div> </td>

Select Filter(s): </td>
<div id="waObsFilterDisp"> </div> </td>

Set Shutter: </td>
<div id="teleObsShutterDisp'> </div> </td>

Set Shutter: </td>
<div id="waObsShutterDisp"> </div> </td>

colspan="4"> </td> <I-- empty row to

colspan="2" align="'center">0Observation start time (UTC): </td>

colspan="2" align="left"> <div id="obsStartTimeDisp"> </div>

colspan="2" align="center'>0Observation stop time (UTC): </td>
colspan="2" align="left"> <div id="obsStopTimeDisp"> </div>

type="submit"” name="'submit" value="'Start Observation" id="obsStartButton'>

type=""submit" name="submit" value="'Stop Observation" id="obsStopButton'> </td>

</form>

<I-- disable the buttons until the status of the observation loads -->

</tr>

<script type="text/javascript'>

document.getElementByld(*'obsStartButton') .disabled = true;
document.getElementByld(""obsStopButton') .disabled = false;

</script>

</table>

<input

<input

<small> Telescope camera status last updated (UTC): <div id="teleCamUpdated"> </div>

Wide-angle camera status last updated (UTC): <div id="waCamUpdated'>

</div> </small>
</body>

</html>

81

obsTelePic.html

<html>
<head>
<title>Telescope camera image</title>
<link rel="stylesheet" type='"text/css" href="layout.css">
<meta http-equiv="REFRESH" content="900">
<script src="imgBig.js'"> </script>
</head>
<body align="center" onload=imgProc(*'tele')>
<h3 align="center">Telescope Camera</h3>
<img width="512" height="512" name="teleCamLastImg" alt="last telescope camera
image...">

<div id="filename"> </div>
</body>
</html>
obsWidePic.html
<html>
<head>
<title>Wide-angle camera image</title>
<link rel="stylesheet" type='"text/css" href="layout.css">
<meta http-equiv="REFRESH" content="900">
<script src="imgBig.js''> </script>
</head>
<body align="center" onload=imgProc(*'wide'")>
<h3 align="center">Wide-angle Camera</h3>
<img width="512" height="512" name="wideCamLastImg" alt="last wide-angle camera
image...">

<div id="filename"> </div>
</body>
</html>

imgBig.js
// This script checks the status XML file of a camera and refreshes the image
// if the filename has changed.

var xmlStatLocTele = "tele/telecamStatus.xml"; // telescope camera & optics status xml
(from back-end driver)
var xmlStatLocWide = "wide/wacamStatus.xml"; // wide-angle camera & optics status xml

(from back-end driver)

L1117777777777777777777777777/777777/77777/777777//7777/7/777//7777/7///777//77
var xmlFile;
var xmlHWDoc;

var imgFile;
var imgCall;

var imgName;
var lastimgName;

var imgld
var camera

function imgProc(camSelect)

{

camera = camSelect

if (camera == "tele")

{
xmIFile = xmIStatLocTele;
imgld = "teleCamLastimg";

else if (camera == "wide")

82

xmlFile = xmlStatLocWide;
imgld = "wideCamLastimg"';

3
imgLoadXML();

function imgLoadXML()

{
// code for IE

if (window.ActiveXObject)

{
xmIHWDoc = new ActiveXObject(*'Microsoft.XMLDOM™);
xmlHWDoc .async = false;
xmIHWDoc . load(xmIFile);
checklmg(Q);

// code for Mozilla, Firefox, Opera, etc.
else if (document.implementation && document.implementation.createDocument)

xmlHWDoc = document. implementation.createDocument(****, "', null);
xmIHWDoc . load(xmlIFile);
xmlHWDoc.onload = checklImg;

}
else

alert("Your browser cannot handle this script®);
}

setTimeout(*""imgLoadXML()", 4000)

function checklmg()
{

var imgCall;

if (camera == "tele™) { imgFile = "tele/"; }
else if (camera == "wide™) { 1imgFile = "wide/"; }

imgCall = xmlHWDoc.getElementsByTagName(*'camStatus')[0];
imgName = imgCall.getElementsByTagName(*'lastPicName'™)[0].childNodes[0]-nodeValue;
document.getElementByld(*"filename'™).innerHTML = imgName;
if (I(imgName == lastlmgName))
imgFile = imgFile +
imgCall _.getElementsByTagName(*'lastPicPath')[0] .childNodes[0] -nodeValue;
imgFile = imgFile + imgName;
tmp = new Date();

tmp = "?"+tmp.getTime()
document. images[imgld].src = imgFile + tmp;

T
lastIimgName = imgName
3
mount.js
var xmlStatLoc = "wide/mountStatus.xml";
var xmlPrefsLoc = "mntUserPrefs.xml";

var xmlStatDoc;
var xmlPrefsDoc;
var firstTime = true;
var mountStatus;

var lastMountStatus;

function loadXMLQ)

{

// code for IE

if (window.ActiveXObject)

{
xmlStatDoc = new ActiveXObject(*'Microsoft._XMLDOM™);
xmlStatDoc.async = false;
xmlStatDoc. load(xmlStatLoc);
getData();

// code for Mozilla, Firefox, Opera, etc.

else if (document.implementation && document.implementation.createDocument)

{
xmlStatDoc = document.implementation.createDocument(*'"*, ", null);
xmlStatDoc. load(xmlStatLoc);
xmlStatDoc.onload = getData;

}

else

{
alert(“Your browser cannot handle this script®);

}

}

////7/77/777/777777/77/7/777/77/7///////7//7/7/7/7/7/7/7/77777777
// Update current status of the mount
function getData()

mountStatus = xmlStatDoc.getElementsByTagName(*'mountStatus')[0];
var posStatus =
xmlStatDoc.getElementsByTagName(*'mountStatus'™)[0] -getElementsByTagName(*'positionState')[0];

// Display any error messages on the screen: Any text in the <error> field of status XML field
is displayed on top of page
// The text doesn®"t show up if the XML field value is "FALSE"
// (feature is disabled because error field is not being written by backenddriver!)
// var errorVal = xmlStatDoc.getElementsByTagName(*'error')[0].childNodes[0].nodeValue;
// if (errorval = "false)
/77 {
// document.getElementByld("errorDisplay').innerHTML = "<div class="error">Error: " +
errorVal + "</div>
";
// %
// else
/7 {
// document.getElementByld(*'errorDisplay').innerHTML = ****;
/7 %

// Extract the status of the mount hardware:

var connectedStatus =
mountStatus.getElementsByTagName(*'connectedState')[0].childNodes[0].nodeValue;

var slewingStatus =
mountStatus.getElementsByTagName(*'slewingState')[0] .childNodes[0] -nodeValue;

var homingStatus = mountStatus.getElementsByTagName(**homingState')[0].childNodes[0].nodeValue;

// mountStatus tells user whether mount is Connected, Disconnected, Slewing, or Homing

if (connectedStatus == "FALSE'™) {mountStatus = '‘Disconnected";}
else if (homingStatus == "TRUE™) {mountStatus = "Homing";}

else if (slewingStatus == "TRUE") {mountStatus = "Slewing";}

else if (connectedStatus == "TRUE") {mountStatus = "Connected";}
else {mountStatus = "Disconnected";}

// Write the staus of the mount to the web page for the user to see

document.getElementByld(‘'statusDisplay').innerHTML = mountStatus;

document.getElementByld("'mountUpdated™) . innerHTML =
xmlStatDoc.getElementsByTagName (*"'updated’™) [0] -childNodes[0] -nodeValue;

// Extract the current position of the mount:
if (connectedStatus == "TRUE")

84

{
document.getElementByld(*aziDegDisplay').innerHTML =
posStatus.getElementsByTagName(*'aziDegState'™)[0].-childNodes[0] -nodeValue;
document.getElementByld("aziMinDisplay').innerHTML =
posStatus.getElementsByTagName(“'aziMinState™)[0].childNodes[0] -nodeValue;
document.getElementByld(*aziSecDisplay').innerHTML =
posStatus.getElementsByTagName(*'aziSecState'™)[0].childNodes[0] -nodeValue;
document.getElementByld("'altDegDisplay').innerHTML =
posStatus.getElementsByTagName(*'altDegState™)[0].childNodes[0] -nodeValue;
document.getElementByld(*"altMinDisplay').innerHTML =
posStatus.getElementsByTagName("'altMinState™)[0].childNodes[0] -nodeValue;
document.getElementByld("'altSecDisplay').innerHTML =
posStatus.getElementsByTagName('altSecState™)[0].childNodes[0] -nodeValue;

}

else if (connectedStatus == "FALSE")

{
document.getElementByld(""aziDegDisplay™). innerHTML = "'n/a";
document.getElementByld(*aziMinDisplay™). innerHTML = *n/a";
document.getElementByld(**aziSecDisplay™).innerHTML = "'n/a";
document.getElementByld('altDegDisplay').innerHTML = *'n/a";
document.getElementByld("altMinDisplay™).innerHTML = "'n/a";
document.getElementByld(*"altSecDisplay™).innerHTML = *n/a";

// Check whether the mount status has changed, and reload the controls in case it has

ifT ((FirstTime == true) || (mountStatus != lastMountStatus))

{
loadUserPrefs();

firstTime = false;

}

lastMountStatus = mountStatus;
setTimeout(*"loadXML()",1000);

L1177/77//77/77/77/7/77//7//77//7////7//7/7/777/

L111777777777/7/7777///77777
function loadUserPrefs()

ifT (window.ActiveXObject)

{
xmlPrefsDoc = new ActiveXObject(*'Microsoft.XMLDOM™);
xmlPrefsDoc.async = false;
xmlPrefsDoc. load(xmlPrefsLoc);

controlField();
else if (document.implementation && document.implementation.createDocument)
{
xmIPrefsDoc = document.implementation.createDocument(*'', "', null);
xmlPrefsDoc. load(xmlPrefsLoc);
xmlPrefsDoc.onload = controlField;
}

L11777/777/77/777/77//7//77//7////7//7//77//

I1/1/117777/77777//77777//77777
function controlField()

{
var mountPosPrefs = xmlIPrefsDoc.getElementsByTagName(*'mountPrefs'™)[0];
if (mountStatus == "Connected®)
{

// does not allow changes while an observation is in progress

document.getElementByld(‘'setAziDegDisp').innerHTML = "<input type='""text"

name="mntAziDeg" size="5">";

document.getElementByld(*'setAziMinDisp') . innerHTML

name="mntAziMin" size="5">";

document.getElementByld(*"'setAziSecDisp') . innerHTML

name=""mntAziSec" size="5">";

document.getElementByld(*'setAltDegDisp') . innerHTML

name="mntAltDeg" size="5">";

document.getElementByld(*'setAltMinDisp™) . innerHTML

name="mntAltMiIn" size="5">";

document.getElementByld(*'setAltSecDisp') . innerHTML

name="mntAltSec" size="5">";

document.getElementByld("'slewButton'™) .disabled=false;
document.getElementByld(*'abortButton'™) .disabled=true;

"<input type="text"
"<input type=""text"
“<input type="text"
"<input type=""text"

“<input type="text"

document.getElementByld(**connectButton™).disabled=true;

document.getElementByld(**"homeButton'™).disabled=false;

document.getElementByld(*"disconnectButton') .disabled=false;

else if (mountStatus == "Disconnected”)

{

document.getElementByld(*'setAziDegDisp') . innerHTML
document.getElementByld(*'setAziMinDisp') . innerHTML
document.getElementByld(*'setAziSecDisp') . innerHTML
document.getElementByld(*'setAltDegDisp') . innerHTML
document.getElementByld(*'setAltMinDisp™) . innerHTML
document.getElementByld("'setAltSecDisp') . innerHTML

document.getElementByld(*'slewButton'™) .disabled=true;
document.getElementByld(*"homeButton') .disabled=true;
document.getElementByld(""disconnectButton') ._disabled=true;

document.getElementByld(*"abortButton'™) .disabled=true;

n/a"
"n/a"
'n/a"
“n/a”
n/a"
"n/a';

document.getElementByld(*"connectButton') .disabled=false;

else if (mountStatus == “"Homing")

{

else

document.getElementByld(*'setAziDegDisp') . innerHTML
document.getElementByld(*'setAziMinDisp') . innerHTML
document.getElementByld(*'setAziSecDisp') . innerHTML
document.getElementByld(*'setAltDegDisp') . innerHTML
document.getElementByld(*'setAltMinDisp™) . innerHTML
document.getElementByld(*"'setAltSecDisp') . innerHTML

document.getElementByld(*"'slewButton'™) .disabled=true;
document.getElementByld(*"homeButton') .disabled=true;
document.getElementByld(*"disconnectButton'™) .disabled=true;

n/a";
"n/a'";
"n/a'";
n/a";
n/a";
"n/a";

document.getElementByld(*"abortButton') .disabled=false;
document.getElementByld(‘'connectButton') .disabled=true;

// form allows changes when no observation in progress

document.getElementByld(*'setAziDegDisp') . innerHTML

mountPosPrefs.getElementsByTagName("'mntAziDeg')[0] -childNodes[0] -nodeValue;

document.getElementByld(*'setAziMinDisp") . innerHTML

mountPosPrefs.getElementsByTagName("'mntAziMin')[0] -childNodes[0] -nodeValue;

document.getElementByld(*'setAziSecDisp') . innerHTML

mountPosPrefs.getElementsByTagName("'mntAziSec')[0] -childNodes[0] -nodeValue;

document.getElementByld(*"'setAltDegDisp™) . innerHTML

mountPosPrefs.getElementsByTagName("'mntAltDeg')[0] -chi ldNodes[0] -nodeValue;

document.getElementByld("'setAltMinDisp') . innerHTML

mountPosPrefs.getElementsByTagName("'mntAltMin*)[0] -chi ldNodes[0] -nodeValue;

document.getElementByld(*'setAltSecDisp').innerHTML

mountPosPrefs.getElementsByTagName("'mntAltSec')[0] -childNodes[0] -nodeValue;

document.getElementByld(*'slewButton'™) .disabled=true;
document.getElementByld(*"homeButton') .disabled=true;
document._getElementByld(""disconnectButton') ._disabled=true;

86

document.getElementByld(""abortButton') .disabled=false;
document.getElementByld(*'connectButton™).disabled=true;

L1111 1777/77777777777/7/77/77////7/77///77/77//7/777
// This function validates the user input in the position boxes to make sure it is in the right
format

function validate_form()

{
var valid = true;
var checkme;
checkme = parselnt(document.mountSlewForm.mntAziDeg.value,10);
if (isNaN(checkme) || (0 > checkme) || (checkme > 359))
alert ("Invalid value entered for Azimuth degrees™);
valid = false;
3
checkme = parselnt(document.mountSlewForm.mntAziMin.value,10);
iT (isNaN(checkme) || (0 > checkme) || (checkme > 59))
alert ("Invalid value entered for Azimuth minutes");
valid = false;
3
checkme = parselnt(document.mountSlewForm.mntAziSec.value,10);
ifT (isNaN(checkme) || (O > checkme) || (checkme > 59.9))
alert ("Invalid value entered for Azimuth seconds");
valid = false;
¥
checkme = parselnt(document.mountSlewForm.mntAltDeg.value,10);
if (isNaN(checkme) || (0 > checkme) || (checkme > 90))
{
alert ("Invalid value entered for Altitude degrees");
valid = false;
3
checkme = parselnt(document.mountSlewForm.mntAltMin.value,10);
iT (isNaN(checkme) || (0 > checkme) || (checkme > 59))
{
alert ("Invalid value entered for Altitude minutes");
valid = false;
b
checkme = parselnt(document.mountSlewForm.mntAltSec.value,10);
ifT (isNaN(checkme) || (0 > checkme) || (checkme > 59.9))
{
alert ("Invalid value entered for Altitue seconds");
valid = false;
¥
return valid;
3
observation.js
// Locations of XML documents:
var xmlStatLocTele = "tele/telecamStatus.xml"; // telescope camera & optics status xml
(from back-end driver)
var xmlStatLocWide = "wide/wacamStatus.xml'; // wide-angle camera & optics status xml
(from back-end driver)
var xmlPrefsLoc = "obsUserPrefs.xml"; // user preferences XML (from Python script)
//var telelmgLoc = "teleCamLastimg.jpg"; // path and filename of last telescope image

87

// var widelmgLoc = "wideCamLastimg.jpg"; // path and filename of last wide-angle
image

L1111 177/77777/7//777////777////777////777/7/777
[1/111777777777/77///777///777

// NOTE for developers: The back-end driver writes all information (except field names)

// to the XML file in Capital letters. That is, a value of "TRUE"™ will always be in caps, etc.
// Javascript is case sensitive and will respond differently to "true"™ and "TRUE"

// For convenience, we treat all TRUE/FALSE values written by the Javascript in caps as well.
L111777/7777/777777///7777////7/77////7/77////777

// define global variables
var xmlHWDocTele;

var xmlHWDocWide;

var xmlUserDoc;

var lastTelelmgName;
var lastWidelmgName;

var firstTime = 1;

var teleObsProgStatus;
var waObsProgStatus;

var lastTeleObsProgStatus;
var lastWaObsProgStatus;

var teleCamConnStat;
var waCamConnStat;
var teleOptConnStat;
var waOptConnStat;

var lastTeleCamConnStat;
var lastWaCamConnStat;
var lastTeleOptConnStat;
var lastWaOptConnStat;

function loadXML()

{

// code for IE

if (window.ActiveXObject)

{
xmlHWDocTele = new ActiveXObject(**"Microsoft.XMLDOM™);
xmlHWDocTele.async = false;
xmIHWDocTele. load(xmIStatLocTele);
loadXML2();

// code for Mozilla, Firefox, Opera, etc.

else if (document.implementation && document.implementation.createDocument)

{
xmlHWDocTele = document. implementation.createDocument(™™, ", null);
xmIHWDocTele. load(xmlStatLocTele);
xmlHWDocTele.onload = loadXML2;

¥

else

{
alert("Your browser cannot handle this script®);

¥

b

function loadXML2()

// code for IE
if (window.ActiveXObject)

{
xmIHWDocWide = new ActiveXObject(''Microsoft.XMLDOM™);

xmIHWDocWide.async = false;
xmIHWDocWide. load(xmlStatLocWide);

updateStatus();

88

// code for Mozilla, Firefox, Opera, etc.
else if (document.implementation && document.implementation.createDocument)

xmIHWDocWide = document.implementation.createDocument(™™, ", null);
xmIHWDocWide. load(xmlStatLocWide);
xmIHWDocWide.onload = updateStatus;

L1111 177777777777777777777777777777777777777/7777777777777/77777/7/7777///7/77////777///7777/7/777
[1/1/117777777777///77777/
// Function updates an image
// it takes in an image id and filename of the image source
function updatelmg(idname, filename)

{
tmp = new Date();
tmp = "?"+tmp.getTime()
document.images[idname].src = filename + tmp;
}

L111777/7777/7/77/7/7///77/77//7//7/777////7777/7
/1111777777777 //777777/
// Update current status of hardware

function updateStatus()

/// Define paths within the XML file to observation and hardware status ///
var obsTeleStatus =
xmIHWDocTele.getElementsByTagName(*'camStatus')[0] -getElementsByTagName(*'obs™)[0];
var obsWideStatus =
xmIHWDocWide.getElementsByTagName(*'camStatus') [0] -getElementsByTagName(*'obs™)[0];

var hwTeleStatus =

xmIHWDocTele.getElementsByTagName(*'camStatus')[0] -getElementsByTagName(*'hardware')[0];
var hwWideStatus =

xmIHWDocWide .getElementsByTagName (*'camStatus')[0] -getElementsByTagName(*"hardware')[0];

teleCamConnStat =
hwTeleStatus.getElementsByTagName(‘'camera') [0] -getElementsByTagName(*'connectedState')[0] -childNod
es[0] -nodeValue;

waCamConnStat =
hwWideStatus.getElementsByTagName(*'camera') [0] -getElementsByTagName(**connectedState')[0] -chi ldNod
es[0] -nodeValue;

teleOptConnStat =
hwTeleStatus.getElementsByTagName(*'optics'™) [0] -getElementsByTagName(**connectedState')[0] -childNod
es[0] -.nodeValue;

walOptConnStat =
hwWideStatus.getElementsByTagName(*'optics') [0] -getElementsByTagName(*'connectedState')[0] -childNod
es[0] -nodeValue;

teleObsProgStatus =
obsTeleStatus.getElementsByTagName(*'inProgress'™) [0] -.childNodes[0] .nodeValue;
waObsProgStatus = obsWideStatus.getElementsByTagName(**inProgress'™)[0].childNodes[0].nodeValue;

// Display any error messages on the screen:

// The contents of XML field <error> display on the top of the page. If the field value
is "FALSE", then nothing displays

// This feature is disabled because backend driver does not write this XML Ffield.
// var errorVal =
xmIHWDocTele.getElementsByTagName(*'camStatus')[0] -getElementsByTagName(*'error')[0].childNodes[0] .-
nodeValue;

// if (errorval != "FALSE")

// {

// document.getElementByld(*"teleErrorDisplay").innerHTML = “<div
class="error">Telescope error: " + errorVal + "</div>
";

// }

89

// else

// {

// document.getElementByld(*"teleErrorDisplay').innerHTML = "'**;
// }

// var errorVal =

xmIHWDocWide.getElementsByTagName(*'camStatus')[0] .getElementsByTagName(*'error')[0] .childNodes[0].
nodeValue;

// if (errorval = "FALSE"™)

// {

// document.getElementByld(*'waErrorDisplay').innerHTML = "<div class="error'>Wide-
angle error: " + errorvVal + "</div>
";

// }

// else

// {

// document.getElementByld(**'waErrorDisplay').innerHTML = "*;

// }

/// Write the status of the telescope camera: ///
if (teleCamConnStat == "TRUE™)

{
document.getElementByld(*"teleCamStatus'). innerHTML = "Connected";

/// Don"t display the connect/disconnect buttons if an observation is in progress:///

if (teleObsProgStatus == "TRUE")
{
document.getElementByld(*"teleCamConn').innerHTML = ** **;
b
else
{

document.getElementByld(*"teleCamConn').innerHTML = “<input type="hidden"
name=""camConnect” value="FALSE"><input type="'submit" name="submit" value="Disconnect Camera"
class="hbutton">";

}

document.getElementByld(*"teleCamCCDtemp*) . innerHTML =
hwTeleStatus.getElementsByTagName(*'camera')[0] -getElementsByTagName(*'ccdTempState')[0].childNodes
[0] -nodeValue;

else
{
document.getElementByld("teleCamStatus™). innerHTML = "Disconnected";
document.getElementByld(*"teleCamConn').innerHTML = "<input type="hidden"
name=""camConnect” value="TRUE"><input type="'submit" name="submit" value="Connect Camera"
class="button">";
document.getElementByld(‘'teleCamCCDtemp') . innerHTML = ''n/a";

3
/// Write the status of the wide-angle camera: ///
if (waCamConnStat == "TRUE™)
{
document.getElementByld("'waCamStatus™) . innerHTML = “Connected";
if (waObsProgStatus == "TRUE")
{
document.getElementByld(*'waCamConn') . innerHTML = " **;
b
else
{

document.getElementByld(**'waCamConn') . innerHTML = "<input type="hidden"
name=""camConnect” value="FALSE"><input type="'submit" name="submit" value="Disconnect Camera"
class="button">";

}

document.getElementByld("'waCamCCDtemp') . innerHTML =
hwWideStatus.getElementsByTagName(*'camera')[0] -getElementsByTagName(*'ccdTempState')[0].childNodes
[0] -nodeValue;

90

}

else
{
document.getElementByld(""'waCamStatus'™).innerHTML = "Disconnected";
document.getElementByld(**'waCamConn'") . innerHTML = “<input type="hidden" name='camConnect"
value=""TRUE"><input type="'submit’ name="'submit" value="Connect Camera" class="button">";
document.getElementByld(*"'waCamCCDtemp™) . innerHTML = "'n/a";
3

/// Write the status of the telescope optics: ///
if (teleOptConnStat == "TRUE™)

document.getElementByld(*"teleOptStatus™). innerHTML = "Connected";

if (teleObsProgStatus == "TRUE'"™)
{
document.getElementByld(*"teleOptConn'™).innerHTML = ** **;
b
else
{

document.getElementByld(*"teleOptConn').innerHTML = “<input type="hidden"
name=""optConnect” value="FALSE"><input type="'submit" name="submit" value="Disconnect Optics"
class="button">";

}

document.getElementByld(*"teleOptShutter').innerHTML =
hwTeleStatus.getElementsByTagName(*'optics')[0]-getElementsByTagName(‘'shutterState')[0].childNodes
[0] -nodeValue;
document.getElementByld(*"teleOptFilter') . _innerHTML =
hwTeleStatus.getElementsByTagName(*'optics')[0].getElementsByTagName(*'filterState')[0].childNodes[
0] -nodeValue;
3
else
{
document.getElementByld(‘'teleOptStatus').innerHTML = *"'Disconnected";
document.getElementByld(‘'teleOptConn').innerHTML = "<input type="hidden"
name=""optConnect” value="TRUE"><input type="'submit" name="'submit" value="Connect Optics"
class=""button">";
document.getElementByld(*"teleOptShutter'™).innerHTML = "n/a";
document.getElementByld(""teleOptFilter™).innerHTML = "'n/a";

/// Write the status of the wide-angle optics: ///
if (waOptConnStat == "TRUE™)

document.getElementByld(*'waOptStatus').innerHTML = *"‘Connected";

if (waObsProgStatus == "TRUE™")
{
document.getElementBy ld("'waOptConn’) . innerHTML = ** *';
3
else
{

document.getElementByld("'waOptConn').innerHTML = "<input type="hidden"
name=""optConnect” value="FALSE"><input type="'submit" name="submit" value="Disconnect Optics"
class="button">";

}

document.getElementByld("'waOptShutter').innerHTML =
hwWideStatus.getElementsByTagName(*'optics')[0] -getElementsByTagName(‘'shutterState')[0].childNodes
[0] -nodeValue;
document.getElementByld("'waOptFilter'™).innerHTML =
hwWideStatus.getElementsByTagName("'optics')[0]-getElementsByTagName(*"'filterState')[0].childNodes[
0] -nodeValue;
}

else

{
document.getElementByld(*'waOptStatus'™).innerHTML = "Disconnected";

91

document.getElementByld(*'waOptConn') . innerHTML = "<input type="hidden" name="optConnect"
value=""TRUE"><input type="'submit™ name="'submit" value="Connect Optics" class="button">";

document.getElementByld(*"waOptShutter™).innerHTML = "'n/a";

document.getElementByld("waOptFilter')._innerHTML = "n/a";

/// If necessary, update the images ///
var imgFolder;
var imgName;

imgFolder = "tele/" +
obsTeleStatus.getElementsByTagName(*'lastPicPath'™)[0].childNodes[0] -nodeValue;
imgName = imgFolder +
obsTeleStatus.getElementsByTagName(*'lastPicName™)[0].childNodes[0] -nodeValue;
if (1(imgName == lastTelelmgName))

updatelmg(*"teleCamLastimg™, imgName) ;
document.getElementByld(*"telelmginfo').innerHTML =
obsTeleStatus.getElementsByTagName(*'lastPicName'™)[0].childNodes[0] -nodeValue;

lastTelelmgName = imgName;

imgFolder = "wide/" +
obsWideStatus.getElementsByTagName(*'lastPicPath')[0].childNodes[0] -nodeValue;
imgName = imgFolder +
obsWideStatus.getElementsByTagName(*'lastPicName™)[0].childNodes[0] -nodeValue;
if (1(imgName == lastWidelmgName))

updatelmg(*'waCamLastImg", imgName) ;
document.getElementByld(*"walmgInfo™).innerHTML =
obsWideStatus.getElementsByTagName(*'lastPicName'™)[0].childNodes[0] -nodeValue;

lastWidelmgName = imgName;

/// Display the last updated time on the page ///

document.getElementByld(*"teleCamUpdated') . innerHTML =
xmIHWDocTele.getElementsByTagName(*'camStatus™) [0] -getElementsByTagName (*"'updated ™) [0] -chi ldNodes[0
]-nodevalue;

document._getElementByld(*"waCamUpdated') . innerHTML =
xmIHWDocWide.getElementsByTagName(*'camStatus') [0] -getElementsByTagName (*'updated'™) [0] -chi ldNodes[0
]1-nodevalue;

// Enable stop button if observation in progress:
if (teleObsProgStatus == "TRUE"™ || waObsProgStatus == "TRUE™)

{
document.getElementByld(*'obsStartOp'™).innerHTML = "<input type="hidden" name="obsStart"
value=""FALSE"'>";
3

else

{
document.getElementByld('obsStartOp'™).innerHTML = “<input type="hidden" name="obsStart"
value="TRUE">";

}

// if both camera and optics connected, specify sending to them in observation (this allows
the stop button to work even if there is a page error)
if (teleCamConnStat == "TRUE" && teleOptConnStat == "TRUE'™)

{
document.getElementByld(""teleSendToField™).innerHTML = "<input type="hidden"
name=""teleSendTo" value="TRUE">"

}

else

{
document.getElementByld(*"teleSendToField™).innerHTML = “<input type="hidden"
name=""teleSendTo" value="FALSE">"

}
if (waCamConnStat == "TRUE" && waOptConnStat == "TRUE")

92

{
document.getElementByld(*'waSendToField"™).innerHTML = "<input type="hidden"
name="waSendTo" value="TRUE'>"

}

else

{
document.getElementByld(*"waSendToField").innerHTML = "<input type="hidden"
name=""waSendTo" value=""FALSE">"

}

///// Determine if the user control panel must be refreshed /////
// If this is the first time through, the observation status changed, or a piece of
equipment®s conenction status changed, then update the control fields //
it ((FirstTime == 1) || (teleObsProgStatus != lastTeleObsProgStatus) || (waObsProgStatus !=
lastWaObsProgStatus) || (teleCamConnStat !'= lastTeleCamConnStat) || (waCamConnStat !=
lastWaCamConnStat) || (teleOptConnStat != lastTeleOptConnStat) || (waOptConnStat !=
lastWaOptConnStat))
{
loadUserPrefs();
firstTime = O;

// Save the current observation status for the next iteration //
lastTeleObsProgStatus = teleObsProgStatus;

lastWaObsProgStatus = waObsProgStatus;

lastTeleCamConnStat = teleCamConnStat;

lastWaCamConnStat = waCamConnStat;

lastTeleOptConnStat = teleOptConnStat;

lastWaOptConnStat = waOptConnStat;

// Call the function again after 1 second //
setTimeout(*'loadXML()",3500);

L11177/777777/7777/7/777/7/7//77/7////7777////7777/7
I1/1/117777/7777///7777///77777
function controlField()

{

///// do not allow changes while an observation is in progress /////
// start reading xml data: //
var xmlUserPrefs = xmlUserDoc.getElementsByTagName(*'userPrefs')[0];
// Write the fields that contain the user®s preferences: //
if (teleObsProgStatus == "TRUE"]| waObsProgStatus == "TRUE'™)
// First, check whether equipment is connected; if not, then don"t give user the

option of entering prefs for that equipment
if (teleCamConnStat == "TRUE" && teleOptConnStat == "TRUE" && teleObsProgStatus ==

{
document.getElementByld(*"teleObsADCrateDisp').innerHTML =
xmlUserPrefs.getElementsByTagName(''tele')[0].getElementsByTagName(*'‘camADCrate')[0].childNodes[0] -
nodeValue;

"TRUE™)

document.getElementByld(""teleObsExpTimeDisp').innerHTML =
xmlUserPrefs.getElementsByTagName(*"tele'™) [0] -getElementsByTagName(**camExpTime')[0] -.childNodes[0] -
nodeValue + " sec”;

document.getElementByld(''teleObsFilterDisp').innerHTML =
xmlUserPrefs.getElementsByTagName(*'tele')[0] .getElementsByTagName(*'optFilter')[0].-childNodes[0]-n
odeValue;

document.getElementByld(*"teleObsShutterDisp').innerHTML =
xmlUserPrefs.getElementsByTagName(''tele')[0].getElementsByTagName(*'optShutter')[0].childNodes[0] -
nodeValue;

93

else

{
document._getElementByld(""teleObsADCrateDisp™).innerHTML = "'n/a";
document.getElementByld(*"teleObsExpTimeDisp™).innerHTML = *n/a";
document.getElementByld(*"teleObsFilterDisp™).innerHTML = *n/a";
document.getElementByld(*"teleObsShutterDisp™).innerHTML = "'n/a";

3

if (waCamConnStat == "TRUE" && waOptConnStat == "TRUE" && waObsProgStatus ==

“"TRUE™)
{

document.getElementByld(**'waObsADCrateDisp') . innerHTML =

xmlUserPrefs.getElementsByTagName("'wide') [0] -getElementsByTagName(*'camADCrate')[0] -childNodes[0] .

nodeValue;
document.getElementByld(*"'waObsExpTimeDisp™) . innerHTML =

xmlUserPrefs.getElementsByTagName(*'wide') [0] -getElementsByTagName(**camExpTime')[0] .childNodes[0] -

nodeValue + " sec”;
document.getElementByld(*'waObsFilterDisp'™).innerHTML =

xmlUserPrefs.getElementsByTagName(“'wide') [0] -getElementsByTagName(*'optFilter')[0] -childNodes[0] -n

odeValue;
document.getElementByld(**'waObsShutterDisp'™).innerHTML =

xmlUserPrefs.getElementsByTagName("'wide'") [0] -getElementsByTagName("'optShutter')[0].childNodes[0].-

nodeValue;

¥

else

{
document.getElementByld(*'waObsADCrateDisp'™).innerHTML = *‘n/a";
document.getElementByld(**'waObsExpTimeDisp'™).innerHTML = *‘n/a";
document.getElementByld(**'waObsFilterDisp'™).innerHTML = "n/a";
document.getElementByld(*'waObsShutterDisp').innerHTML = *"n/a";

T

document.getElementByld(*"obsStartTimeDisp™).innerHTML =

xmlUserPrefs.getElementsByTagName(*'obs') [0] -getElementsByTagName(*'obsStartTime ') [0].childNodes[0]

.nodeValue;
document.getElementByld(*'obsStopTimeDisp'™).innerHTML =

xmlUserPrefs.getElementsByTagName(*'obs') [0] -getElementsByTagName(*'obsStopTime')[0] -.childNodes[0] -

nodeValue;

// Allow user to press Stop Observation Button, but not Start Observation
document.getElementByld(*'obsStartButton') .disabled = true;
document.getElementByld(*'obsStopButton') .disabled = false;

3

else ///// form allows changes when no observation in progress /////

{
// Write observation fields for Telescope camera and optics
if (teleCamConnStat == "TRUE" && teleOptConnStat == "TRUE'™)
{

document.getElementByld(*"teleObsADCrateDisp™).innerHTML = “<select
name=""teleCamADCrate'> <option value="fast''>Fast</option> <option value="slow">Slow</option>
</select>";

document.getElementByld(*"teleObsExpTimeDisp™).innerHTML = “<input
type=""text" name=""teleCamExpTime" size="6"> sec”;

document.getElementByld(*"teleObsFilterDisp").innerHTML = * <input
type="'checkbox' name='"teleOptFilter" value="1"> 1 <input type='checkbox' name='teleOptFilter"
value="2"> 2 <input type=""checkbox" name="teleOptFilter"” value="3"> 3
 <input
type=""checkbox" name=""teleOptFilter" value="4"> 4 <input type="checkbox" name="teleOptFilter"
value="5"> 5 <input type="checkbox" name="teleOptFilter"” value="6"> 67;

document.getElementByld(*"teleObsShutterDisp™).innerHTML = "<input
type=""radio" name='"teleOptShutter' value="open'" checked> Open
 <input type='"radio"
name=""teleOptShutter" value="close'> Closed";

}

else

{
document.getElementByld(*"teleObsADCrateDisp™).innerHTML = "'n/a";
document.getElementByld(*"teleObsExpTimeDisp™).innerHTML = *n/a";
document.getElementByld(*"teleObsFilterDisp™).innerHTML = *n/a";
document.getElementByld(''teleObsShutterDisp').innerHTML = *'n/a";

}

94

if (waCamConnStat == "TRUE" && waOptConnStat == "TRUE")

{
document.getElementByld(**'waObsADCrateDisp’).innerHTML = “<select
name="waCamADCrate"> <option value="fast''>Fast</option> <option value="slow">Slow</option>
</select>";
document.getElementByld(*"'waObsExpTimeDisp'™).innerHTML = "<input

document.getElementByld(*'waObsFilterDisp™).innerHTML = <input
type=""checkbox" name="waOptFilter" value="1"> 1 <input type="checkbox" name="waOptFilter"
value="2"> 2 <input type="checkbox" name="waOptFilter" value="3"> 3
 <input type="checkbox
name="waOptFilter" value="4"> 4 <input type="checkbox'" name="waOptFilter"™ value="5"> 5 <input
type=""checkbox" name="waOptFilter"” value="6"> 6";

document.getElementByld(*"'waObsShutterDisp™).innerHTML = "<input
type="radio"” name="waOptShutter" value="open" checked> Open
 <input type="radio"
name="waOptShutter" value="close"> Closed";

T

else

{
document.getElementByld(*'waObsADCrateDisp'™).innerHTML = *"n/a";
document.getElementByld(**'waObsExpTimeDisp'™).innerHTML = *n/a";
document.getElementByld(**waObsFilterDisp'™).innerHTML = "n/a";
document.getElementByld(*'waObsShutterDisp'™).innerHTML = *"n/a";

T

document.getElementByld(*"obsStartTimeDisp'™).innerHTML = "<input type="text"
name=""obsStartTimeHH" size="4"> : <input type="text" name="obsStartTimeMM" size="4"> : <input
type=""text" name="obsStartTimeSS" size="4">";

document.getElementByld(*'obsStopTimeDisp®™).innerHTML = "<input type="text"
name=""obsStopTimeHH" size="4"> : <input type="text" name="obsStopTimeMM" size="4"> : <input
type=""text" name="obsStopTimeSS" size="4">";

// Allow user to press Start Observation Button, but not Stop Observation
document.getElementByld(*'obsStartButton') .disabled = false;
document.getElementByld(*"'obsStopButton™).disabled = true;

L1111 177/77777777777/7//7777///77/77////7777////777

I///117777/77777//77777//777
function loadUserPrefs()

{
if (window.ActiveXObject)
{
xmlUserDoc = new ActiveXObject(*'Microsoft.XMLDOM™);
xmlUserDoc.async = false;
xmlUserDoc. load(xmIPrefsLoc);
controlField();
else if (document.implementation && document.implementation.createDocument)
{
xmlUserDoc = document.implementation.createDocument(***", "', null);
xmlUserDoc. load(xmIPrefsLoc);
xmlUserDoc.onload = controlField;
3
¥

LI1777/777777777/777/77//77//7/77///7//77//7777
// Function checks form user input before sending it to the server

function validate_form()

{

var valid = true;
var checkme;

// check telescope settings if telescope equipment connected
if (teleCamConnStat == "TRUE" && teleOptConnStat == "TRUE'™)

{

95

}

checkme = parseFloat(document.obsForm.teleCamExpTime.value);
iT (isNaN(checkme) || (O > checkme))
{

alert ("Invalid value entered for telescope exposure time');
valid = false;

3
¥
// check wide-angle settings if wide-angle equipment connected
if (waCamConnStat == "TRUE" && waOptConnStat == "TRUE")
{
checkme = parseFloat(document.obsForm.waCamExpTime.value,10);
iT (isNaN(checkme) || (O > checkme))
{
alert ("Invalid value entered for wide-angle exposure time');
valid = false;
3
¥

return valid;

96

Appendix E: Website XML Files

mntUserPrefs.xml

<mountPrefs>
<mntAziDeg>202</mntAziDeg>
<mntAziMin>0</mntAziMin>
<mntAziSec>0</mntAziSec>
<mntAltDeg>76</mntAltDeg>
<mntAItMiIn>0</mntAltMin>
<mntAltSec>0</mntAltSec>

</mountPrefs>

obsUserPrefs.xml

<userPrefs>
<tele>
<camADCrate>slow</camADCrate>
<cameExpTime>15000.0</camExpTime>
<optFilter>2</optFilter>
<optShutter>open</optShutter>
</tele>
<wide>
<camADCrate>slow</camADCrate>
<camExpTime>15000.0</camExpTime>
<optFilter>2</optFilter>
<optShutter>open</optShutter>
</wide>
<obs>
<obsStartTime>5:2:0</obsStartTime>
<obsStopTime>6:0:0</0bsStopTime>
</obs>
</userPrefs>

mountStatus.xml

<mountStatus>
<updated>INV</updated>
<connectedState>INV</connectedState>
<slewingState>INV</slewingState>
<homingState>INV</homingState>
<positionState>
<aziDegState>INV</aziDegState>
<aziMinState>INV</aziMinState>
<aziSecState>INV</aziSecState>
<altDegState>INV</altDegState>
<altMinState>INV</altMinState>
<altSecState>INV</altSecState>
</positionState>
</mountStatus>

wacamStatus.xml

<camStatus>
<updated>?</updated>
<obs>
<inProgress>FALSE</inProgress>

<lastPicName>default_image.png</lastPicName>
<lastPicPath>./</lastPicPath>
</obs>
<hardware>
<optics>
<connectedState>FALSE</connectedState>
<shutterState>0PEN</shutterState>
<filterState>1</filterState>
</optics>
<camera>
<connectedState>FALSE</connectedState>
<ccdTempState>?</ccdTempState>
</camera>
</hardware>
</camStatus>

telecamStatus.xml

<camStatus>
<updated>?</updated>
<obs>
<inProgress>FALSE</inProgress>
<lastPicName>TELE_ 2008-Mar-
02_05 35 25 Filt2 _SLOW_15s.png</lastPicName>
<lastPicPath>png/2008-Mar-02_05 01 24/</lastPicPath>
</obs>
<hardware>
<optics>
<connectedState>TRUE</connectedState>
<shutterState>0PEN</shutterState>
<filterState>2</filterState>
</optics>
<camera>
<connectedState>TRUE</connectedState>
<ccdTempState>-40</ccdTempState>
</camera>
</hardware>
</camStatus>

98

Appendix F: Apache Server Configuration
httdp.conf

This is the main Apache HTTP server configuration file. It contains the
configuration directives that give the server its instructions.

See <URL:http://httpd.apache.org/docs/2.2> for detailed information.

In particular, see
<URL:http://httpd.apache.org/docs/2.2/mod/directives._html>

for a discussion of each configuration directive.

Do NOT simply read the instructions in here without understanding
what they do. They"re here only as hints or reminders. |If you are unsure
consult the online docs. You have been warned.

Configuration and logfile names: If the filenames you specify for many

of the server®s control files begin with "/" (or “drive:/" for Win32), the

server will use that explicit path. |If the filenames do *not* begin

with /", the value of ServerRoot is prepended -- so *logs/foo.log"

with ServerRoot set to '""C:/Program Files/Telescope Automation/Apache™ will be interpreted by

server as "C:/Program Files/Telescope Automation/Apache/logs/foo.log".

NOTE: Where filenames are specified, you must use forward slashes
instead of backslashes (e.g., 'c:/apache" instead of 'c:\apache).

IT a drive letter is omitted, the drive on which Apache.exe is located
will be used by default. It is recommended that you always supply

an explicit drive letter in absolute paths to avoid confusion.

ServerRoot: The top of the directory tree under which the server-s
configuration, error, and log files are kept.

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
the
#
#
#
#
#
#
#
#
#
#
#
Do not add a slash at the end of the directory path. If you point

ServerRoot at a non-local disk, be sure to point the LockFile directive
at a local disk. If you wish to share the same ServerRoot for multiple
httpd daemons, you will need to change at least LockFile and PidFile.
#
S

erverRoot "C:/Program Files/Telescope Automation/Apache"

Listen: Allows you to bind Apache to specific IP addresses and/or
ports, instead of the default. See also the <VirtualHost>
directive.

Change this to Listen on specific IP addresses as shown below to
prevent Apache from glomming onto all bound IP addresses.

HHHHHHHHR

#Listen 12.34.56.78:80
Listen 7999

#

Dynamic Shared Object (DSO) Support

#

To be able to use the functionality of a module which was built as a DSO you
have to place corresponding ~LoadModule® lines at this location so the

directives contained in it are actually available _before_ they are used.
Statically compiled modules (those listed by “httpd -1%) do not need

to be loaded here.

#

Example:

LoadModule foo_module modules/mod_foo.so

#

LoadModule actions_module modules/mod_actions.so
LoadModulle alias_module modules/mod_alias.so

LoadModule asis_module modules/mod_asis.so

LoadModule auth_basic_module modules/mod_auth_basic.so
#LoadModule auth_digest _module modules/mod_auth_digest.so
#LoadModule authn_alias_module modules/mod_authn_alias.so

99

#LoadModule authn_anon_modulle modules/mod_authn_anon.so
#LoadModule authn_dbd_module modules/mod_authn_dbd.so
#LoadModule authn_dbm_module modules/mod_authn_dbm.so
LoadModule authn_default_module modules/mod_authn_default.so
LoadModulle authn_file_module modules/mod_authn_file.so
#LoadModule authnz_ldap_module modules/mod_authnz_ldap.so
#LoadModule authz_dbm_module modules/mod_authz_dbm.so
LoadModule authz_default_module modules/mod_authz_default.so
LoadModule authz_groupfile_module modules/mod_authz_groupfile.so
LoadModule authz_host_module modules/mod_authz_host.so
#LoadModule authz_owner_module modules/mod_authz_owner.so
LoadModule authz_user_module modules/mod_authz_user.so
LoadModule autoindex_module modules/mod_autoindex.so
#LoadModule cache_module modules/mod_cache.so

#LoadModule cern_meta_module modules/mod_cern_meta.so
LoadModule cgi_module modules/mod_cgi -so

#LoadModule charset_lite_module modules/mod_charset_lite.so
#LoadModule dav_module modules/mod_dav.so

#LoadModule dav_fs_module modules/mod_dav_fs.so

#LoadModule dav_lock_module modules/mod_dav_lock.so
#LoadModule dbd_module modules/mod_dbd.so

#LoadModule deflate_module modules/mod_deflate.so
LoadModule dir_module modules/mod_dir.so

#LoadModule disk_cache_module modules/mod_disk_cache.so
#LoadModule dumpio_module modules/mod_dumpio.so

LoadModulle env_module modules/mod_env.so

#LoadModule expires_module modules/mod_expires.so
#LoadModule ext_filter_module modules/mod_ext_filter.so
#LoadModule file_cache_module modules/mod_file_cache.so
#LoadModule Ffilter_module modules/mod_filter.so

#LoadModule headers_module modules/mod_headers.so
#LoadModule ident_module modules/mod_ident.so

#LoadModule imagemap_module modules/mod_imagemap.so
LoadModulle include_module modules/mod_include.so
#LoadModule info_module modules/mod_info.so

LoadModule isapi_module modules/mod_isapi.so

#LoadModule Idap_module modules/mod_ldap.so

#LoadModule logio_module modules/mod_logio.so

LoadModule log_config_module modules/mod_log_config.so
#LoadModule log_forensic_module modules/mod_log_forensic.so
#LoadModule mem_cache_module modules/mod_mem_cache.so
LoadModule mime_module modules/mod_mime.so

#LoadModule mime_magic_module modules/mod_mime_magic.so
LoadModule negotiation_module modules/mod_negotiation.so
#LoadModule proxy_module modules/mod_proxy.so

#LoadModule
#LoadModule
#LoadModule
#LoadModule
#LoadModule
#LoadModule

proxy_ajp_module modules/mod_proxy_ajp-so
proxy_balancer_module modules/mod_proxy_balancer.so
proxy_connect_module modules/mod_proxy_connect.so
proxy_ftp_module modules/mod_proxy_ ftp.so
proxy_http_module modules/mod_proxy_http.so
rewrite_module modules/mod_rewrite.so

LoadModule setenvif_module modules/mod_setenvif.so

#LoadModule

speling_module modules/mod_speling.so

LoadModule ssl_module modules/mod_ssl.so

#LoadModule
#LoadModule
#LoadModule
#LoadModule
#LoadModule
#LoadModule
#LoadModule

status_module modules/mod_status.so
substitute_module modules/mod_substitute.so
unique_id_module modules/mod_unique_id.so
userdir_module modules/mod_userdir.so
usertrack_module modules/mod_usertrack.so
version_module modules/mod_version.so
vhost_alias_module modules/mod_vhost_alias.so

<IfModule Impm_netware_module>
<IfModule Impm_winnt_module>

HHHHHHH

IT you wish httpd to run as a different user or group, you must run
httpd as root initially and it will switch.

User/Group: The name (or #number) of the user/group to run httpd as.
It is usually good practice to create a dedicated user and group for
running httpd, as with most system services.

100

#
User daemon
Group daemon

</1fModule>
</1fModule>

"Main® server configuration

The directives in this section set up the values used by the "main-®
server, which responds to any requests that aren®"t handled by a
<VirtualHost> definition. These values also provide defaults for
any <VirtualHost> containers you may define later in the file.

All of these directives may appear inside <VirtualHost> containers,
in which case these default settings will be overridden for the
virtual host being defined.

ServerAdmin: Your address, where problems with the server should be
e-mailed. This address appears on some server-generated pages, such
as error documents. e.g. admin@your-domain.com

OHFHHH HHrHHHHFHHFHHHR

erverAdmin teO8@wpi .edu

ServerName gives the name and port that the server uses to identify itself.
This can often be determined automatically, but we recommend you specify
it explicitly to prevent problems during startup.

If your host doesn"t have a registered DNS name, enter its IP address here.
ServerName WideFOV:7999
DocumentRoot: The directory out of which you will serve your

documents. By default, all requests are taken from this directory, but
symbolic links and aliases may be used to point to other locations.

O HHHH HHFEHFHHHH

ocumentRoot ''C:/Program Files/Telescope Automation/Apache/htdocs"

Each directory to which Apache has access can be configured with respect
to which services and features are allowed and/or disabled in that
directory (and its subdirectories).

First, we configure the "default"™ to be a very restrictive set of
features.

HHHHHFHHHR

<Directory />
Options FollowSymLinks
AllowOverride None
Order deny,allow
Deny from all
</Directory>

Note that from this point forward you must specifically allow
particular features to be enabled - so if something®"s not working as
you might expect, make sure that you have specifically enabled it
below.

HHHHHH

This should be changed to whatever you set DocumentRoot to.

H H

<Directory "C:/Program Files/Telescope Automation/Apache/htdocs">
#
Possible values for the Options directive are "None', "All",
or any combination of:

101

Indexes Includes FollowSymLinks SymLinksifOwnerMatch ExecCGl MultiViews
#

Note that "MultiViews" must be named *explicitly* --- "Options All"

doesn"t give it to you.

#

The Options directive is both complicated and important. Please see

http://httpd.apache.org/docs/2.2/mod/core.html#options

for more information.

#

Options Indexes FollowSymLinks

#

AllowOverride controls what directives may be placed in _htaccess files.
1t can be "All", "None"™, or any combination of the keywords:

Options Filelnfo AuthConfig Limit

#

AllowOverride None

#

Controls who can get stuff from this server.

#

Order allow,deny
Allow from all

AuthType Basic
AuthName *"SRI Access™
AuthUserFile "C:/Program Files/Telescope Automation/Apache/conf/passwords"
Require user sri
</Directory>

#

Directorylndex: sets the file that Apache will serve if a directory
1S requested.

#

<IfModule dir_module>

Directorylndex index.html
</1fModule>

#
The following lines prevent .htaccess and .htpasswd files from being
viewed by Web clients.
#
<FilesMatch "~\.ht">
Order allow,deny
Deny from all
Satisfy All
</FilesMatch>

ErrorLog: The location of the error log file.

IT you do not specify an ErrorLog directive within a <VirtualHost>
container, error messages relating to that virtual host will be
logged here. If you *do* define an error logfile for a <VirtualHost>
container, that host"s errors will be logged there and not here.

M3 #F HF H#H*

rrorLog "logs/error.log"

#

LogLevel: Control the number of messages logged to the error_log.
Possible values include: debug, info, notice, warn, error, crit,
alert, emerg.

#

LogLevel warn

<1fModule log_config_module>
#
The following directives define some format nicknames for use with
a CustomLog directive (see below).
#
LogFormat "%h %1 %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined
LogFormat "%h %I %u %t \"%r\" %>s %b" common

102

<IfModule logio_module>
You need to enable mod_logio.c to use %l and %0

LogFormat "%h %I %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\" %l %O" combinedio

</1fModule>

#

The location and format of the access logfile (Common Logfile Format).
1T you do not define any access logfiles within a <VirtualHost>

container, they will be logged here. Contrariwise, if you *do*

define per-<VirtualHost> access logfiles, transactions will be

logged therein and *not* in this file.

#
c

ustomLog ""logs/access.log' common

#
1f you prefer a logfile with access, agent, and referer information
(Combined Logfile Format) you can use the following directive.
#
#CustomLog '""logs/access.log" combined
</1fModule>

<IfModule alias_module>

H*

Redirect: Allows you to tell clients about documents that used to
exist In your server"s namespace, but do not anymore. The client
will make a new request for the document at its new location.
Example:

Redirect permanent /foo http://WideFOV/bar

Alias: Maps web paths into filesystem paths and is used to
access content that does not live under the DocumentRoot.
Example:

Alias /webpath /full/filesystem/path

require it to be present in the URL. You will also likely
need to provide a <Directory> section to allow access to
the filesystem path.

#
#
#
#
#
#
#
#
#
#
#
1f you include a trailing /7 on /webpath then the server will
#
#
#
#
ScriptAlias: This controls which directories contain server scripts.
ScriptAliases are essentially the same as Aliases, except that

documents in the target directory are treated as applications and

run by the server when requested rather than as documents sent to the
client. The same rules about trailing "/ apply to ScriptAlias

directives as to Alias.

#

S

criptAlias /cgi-bin/ "C:/Program Files/Telescope Automation/Apache/cgi-bin/"
</1fModule>

<IfModule cgid_module>
#
ScriptSock: On threaded servers, designate the path to the UNIX
socket used to communicate with the CGI daemon of mod_cgid.
#
#Scriptsock logs/cgisock
</1fModule>

#
"C:/Program Files/Telescope Automation/Apache/cgi-bin" should be changed to whatever your
ScriptAliased
CGI directory exists, if you have that configured.
#
<Directory "C:/Program Files/Telescope Automation/Apache/cgi-bin">
AllowOverride None
Options None
Order allow,deny
Allow from all

103

</Directory>

#
#
#
#
#
#
#
#
#
D

DefaultType: the default MIME type the server will use for a document
if It cannot otherwise determine one, such as from filename extensions.
IT your server contains mostly text or HTML documents, "text/plain” is
a good value. If most of your content is binary, such as applications
or images, you may want to use "application/octet-stream'” instead to
keep browsers from trying to display binary files as though they are
text.

efaul tType text/plain

<IfModule mime_module>

#

TypesConfig points to the file containing the list of mappings from
filename extension to MIME-type.

#

TypesConfig conf/mime.types

#

AddType allows you to add to or override the MIME configuration
file specified in TypesConfig for specific file types.

#

#AddType application/x-gzip -tgz

#

AddEncoding allows you to have certain browsers uncompress

information on the fly. Note: Not all browsers support this.

#

#AddEncoding Xx-compress .Z

#AddEncoding x-gzip .gz .tgz

#

1f the AddEncoding directives above are commented-out, then you
probably should define those extensions to indicate media types:
#

AddType application/x-compress .Z

AddType application/x-gzip .gz .tgz

#

AddHandler allows you to map certain file extensions to "handlers™:
actions unrelated to filetype. These can be either built into the server
or added with the Action directive (see below)

#
#
#
#
To use CGI scripts outside of ScriptAliased directories:

(You will also need to add "ExecCGI'" to the "Options" directive.)

#
#AddHandler cgi-script .cgi

For type maps (negotiated resources):
#AddHandler type-map var

#

Filters allow you to process content before it is sent to the client.
#

To parse .shtml Ffiles for server-side includes (SSI):

(You will also need to add "Includes”™ to the "Options" directive.)

#

#AddType text/html _shtml

#AddOutputFilter INCLUDES .shtml

</1fModule>

#
#
#
#
#

The mod_mime_magic module allows the server to use various hints from the
contents of the file itself to determine its type. The MIMEMagicFile
directive tells the module where the hint definitions are located.

#MIMEMagicFile conf/magic

#
#
#

Customizable error responses come in three flavors:
1) plain text 2) local redirects 3) external redirects

104

#

Some examples:

#ErrorDocument 500 "The server made a boo boo."
#ErrorDocument 404 /missing.html

#ErrorDocument 404 "/cgi-bin/missing_handler.pl*
#ErrorDocument 402 http://WideFOV/subscription_info.html
#

EnableMMAP and EnableSendfile: On systems that support it,
memory-mapping or the sendfile syscall is used to deliver
files. This usually improves server performance, but must
be turned off when serving from networked-mounted
filesystems or if support for these functions is otherwise
broken on your system.

HHHFHRHFHHHR

#EnableMMAP off
#EnableSendfile off

Supplemental configuration

#

The configuration files in the conf/extra/ directory can be

included to add extra features or to modify the default configuration of
the server, or you may simply copy their contents here and change as

necessary.

Server-pool management (MPM specific)

#Include conf/extra/httpd-mpm.conf

Multi-language error messages
#Include conf/extra/httpd-multilang-errordoc.conf

Fancy directory listings
#Include conf/extra/httpd-autoindex.conf

Language settings
#Include conf/extra/httpd-languages.conf

User home directories
#Include conf/extra/httpd-userdir.conf

Real-time info on requests and configuration
#Include conf/extra/httpd-info.conf

Virtual hosts
#Include conf/extra/httpd-vhosts.conf

Local access to the Apache HTTP Server Manual
#Include conf/extra/httpd-manual.conf

Distributed authoring and versioning (WebDAVY)
#Include conf/extra/httpd-dav.conf

Various default settings
#Include conf/extra/httpd-default.conf

Secure (SSL/TLS) connections
Include conf/extra/httpd-ssl.conf

#

Note: The following must must be present to support

starting without SSL on platforms with no /dev/random equivalent
but a statically compiled-in mod_ssl.

#

<IfModule ssl_module>
SSLRandomSeed startup builtin
SSLRandomSeed connect builtin
</I1fModule>

Win32DisableAcceptEx

105

httpd-ssl.conf

This is the Apache server configuration file providing SSL support.

It contains the configuration directives to instruct the server how to
serve pages over an https connection. For detailing information about these
directives see <URL:http://httpd.apache.org/docs/2.2/mod/mod_ssl.html>

Do NOT simply read the instructions in here without understanding
what they do. They"re here only as hints or reminders. |If you are unsure
consult the online docs. You have been warned.

Pseudo Random Number Generator (PRNG):

Configure one or more sources to seed the PRNG of the SSL library.
The seed data should be of good random quality.

WARNING! On some platforms /dev/random blocks if not enough entropy
is available. This means you then cannot use the /dev/random device
because it would lead to very long connection times (as long as

it requires to make more entropy available). But usually those
platforms additionally provide a /dev/urandom device which doesn"t
block. So, if available, use this one instead. Read the mod_ssl User
Manual for more details.

HHEHEHEHEHH S HHBFHHHHEHERR

#SSLRandomSeed startup file:/dev/random 512
#SSLRandomSeed startup file:/dev/urandom 512
#SSLRandomSeed connect file:/dev/random 512
#SSLRandomSeed connect file:/dev/urandom 512

#
When we also provide SSL we have to listen to the
standard HTTP port (see above) and to the HTTPS port

#

Note: Configurations that use IPv6 but not IPv4-mapped addresses need two
Listen directives: "Listen [::]:8000" and *Listen 0.0.0.0:8000"

#

Listen 8000

#t

SSL Global Context

#t

All SSL configuration in this context applies both to
the main server and all SSL-enabled virtual hosts.

#t

#

Some MIME-types for downloading Certificates and CRLs
#

AddType application/x-x509-ca-cert .crt

AddType application/x-pkcs7-crl .crl

Pass Phrase Dialog:

Configure the pass phrase gathering process.

The filtering dialog program (Cbuiltin® is a internal

terminal dialog) has to provide the pass phrase on stdout.
SSLPassPhraseDialog builtin

Inter-Process Session Cache:

Configure the SSL Session Cache: First the mechanism

to use and second the expiring timeout (in seconds).

#SSLSessionCache "dbm:C:/Program Files/Telescope Automation/Apache/logs/ssl_scache"
SSLSessionCache "'shmcb:C:/Program Files/Telescope
Automation/Apache/logs/ssl_scache(512000)""

SSLSessionCacheTimeout 300

Semaphore:

Configure the path to the mutual exclusion semaphore the

SSL engine uses internally for inter-process synchronization.
SSLMutex default

106

Hit
SSL Virtual Host Context
Hit

<VirtualHost _default_:8000>

General setup for the virtual host

DocumentRoot *"C:/Program Files/Telescope Automation/Apache/htdocs"
ServerName WideFOV:443

ServerAdmin teO8@wpi .edu

ErrorLog ""C:/Program Files/Telescope Automation/Apache/logs/error.log”
TransferLog '"C:/Program Files/Telescope Automation/Apache/logs/access.log"”

SSL Engine Switch:
Enable/Disable SSL for this virtual host.
SSLEngine on

SSL Cipher Suite:

List the ciphers that the client is permitted to negotiate.

See the mod_ssl documentation for a complete list.

SSLCipherSuite ALL:'ADH:!EXPORT56:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP:+eNULL

Server Certificate:

Point SSLCertificateFile at a PEM encoded certificate. |If

the certificate is encrypted, then you will be prompted for a

pass phrase. Note that a kill -HUP will prompt again. Keep

in mind that if you have both an RSA and a DSA certificate you

can configure both in parallel (to also allow the use of DSA

ciphers, etc.)

SSLCertificateFile "C:/Program Files/Telescope Automation/Apache/conf/haarp.cert”
#SSLCertificateFile "C:/Program Files/Telescope Automation/Apache/conf/server-dsa.crt”

HHHHHHH

Server Private Key:

IT the key is not combined with the certificate, use this

directive to point at the key file. Keep in mind that if

you"ve both a RSA and a DSA private key you can configure

both in parallel (to also allow the use of DSA ciphers, etc.)

SSLCertificateKeyFile "C:/Program Files/Telescope Automation/Apache/conf/haarp.key"
#SSLCertificateKeyFile ""C:/Program Files/Telescope Automation/Apache/conf/server-dsa.key"

Server Certificate Chain:
Point SSLCertificateChainFile at a file containing the
concatenation of PEM encoded CA certificates which form the
certificate chain for the server certificate. Alternatively
the referenced file can be the same as SSLCertificateFile
when the CA certificates are directly appended to the server
certificate for convinience.
SSLCertificateChainFile "C:/Program Files/Telescope Automation/Apache/conf/server-ca.crt”

Certificate Authority (CA):
Set the CA certificate verification path where to find CA
certificates for client authentication or alternatively one
huge file containing all of them (file must be PEM encoded)
Note: Inside SSLCACertificatePath you need hash symlinks
to point to the certificate files. Use the provided
Makefile to update the hash symlinks after changes.
SSLCACertificatePath '"C:/Program Files/Telescope Automation/Apache/conf/ssl._crt”
SSLCACertificateFile "C:/Program Files/Telescope Automation/Apache/conf/ssl.crt/ca-bundle.crt”

HHHFHHEHEHFHHF HHFHHHHHR

Certificate Revocation Lists (CRL):
Set the CA revocation path where to find CA CRLs for client
authentication or alternatively one huge file containing all
of them (Ffile must be PEM encoded)
Note: Inside SSLCARevocationPath you need hash symlinks
to point to the certificate files. Use the provided
Makefile to update the hash symlinks after changes.
#SSLCARevocationPath "C:/Program Files/Telescope Automation/Apache/conf/ssl.crl*
#SSLCARevocationFile "C:/Program Files/Telescope Automation/Apache/conf/ssl.crl/ca-bundle.crli*

HHHHHHH

Client Authentication (Type):

107

Client certificate verification type and depth. Types are
none, optional, require and optional_no_ca. Depth is a
number which specifies how deeply to verify the certificate
issuer chain before deciding the certificate is not valid.
#SSLVerifyClient require

#SSLVerifyDepth 10

HHHH

Access Control:

With SSLRequire you can do per-directory access control based
on arbitrary complex boolean expressions containing server
variable checks and other lookup directives. The syntax is a
mixture between C and Perl. See the mod_ssl documentation
for more details.

#<Location />

#SSLRequire (%{SSL_CIPHER} !~ m/~(EXP|NULL)/ \

HHHHHH

and %{SSL_CLIENT_S_DN_O} eq “'Snake Oil, Ltd." \

and %{SSL_CLIENT_S DN_OU} in {"Staff", "CA", "Dev"} \
and %{TIME_WDAY} >= 1 and %{TIME_WDAY} <= 5 \

and %{TIME_HOUR} >= 8 and %{TIME_HOUR} <= 20)\
or %{REMOTE_ADDR} =~ m/~192\.76\.162\.[0-9]+$/
#</Location>

SSL Engine Options:

Set various options for the SSL engine.

o FakeBasicAuth:
Translate the client X_.509 into a Basic Authorisation. This means that
the standard Auth/DBMAuth methods can be used for access control. The
user name is the “one line® version of the client®"s X.509 certificate.
Note that no password is obtained from the user. Every entry in the user
file needs this password: ~xxj31ZMTZzkVA*.

0 ExportCertData:
This exports two additional environment variables: SSL_CLIENT_CERT and
SSL_SERVER_CERT. These contain the PEM-encoded certificates of the
server (always existing) and the client (only existing when client
authentication is used). This can be used to import the certificates
into CGl scripts.

o StdEnvVars:
This exports the standard SSL/TLS related “SSL_*" environment variables.
Per default this exportation is switched off for performance reasons,
because the extraction step iIs an expensive operation and is usually
useless for serving static content. So one usually enables the
exportation for CGl and SSI requests only.

o StrictRequire:
This denies access when "SSLRequireSSL" or "SSLRequire™ applied even
under a "Satisfy any" situation, i.e. when it applies access is denied
and no other module can change it.

o0 OptRenegotiate:
This enables optimized SSL connection renegotiation handling when SSL
directives are used in per-directory context.

#SSLOptions +FakeBasicAuth +ExportCertData +StrictRequire

<FilesMatch ""\.(cgi|shtml|phtml|php)$">

SSLOptions +StdEnvVars
</FilesMatch>
<Directory "C:/Program Files/Telescope Automation/Apache/cgi-bin">
SSLOptions +StdEnvVars
</Directory>

HHEHHFHHFHR S H TR

SSL Protocol Adjustments:
The safe and default but still SSL/TLS standard compliant shutdown
approach is that mod_ssl sends the close notify alert but doesn®t wait for
the close notify alert from client. When you need a different shutdown
approach you can use one of the following variables:
o ssl-unclean-shutdown:
This forces an unclean shutdown when the connection is closed, i.e. no
SSL close notify alert is send or allowed to received. This violates
the SSL/TLS standard but is needed for some brain-dead browsers. Use
this when you receive 1/0 errors because of the standard approach where
mod_ssl sends the close notify alert.
o ssl-accurate-shutdown:
This forces an accurate shutdown when the connection is closed, i.e. a
SSL close notify alert is send and mod_ssl waits for the close notify

HHFEHEHEHEHEHRFHH R

108

alert of the client. This is 100% SSL/TLS standard compliant, but in
practice often causes hanging connections with brain-dead browsers. Use
this only for browsers where you know that their SSL implementation
works correctly.
Notice: Most problems of broken clients are also related to the HTTP
keep-alive facility, so you usually additionally want to disable
keep-alive for those clients, too. Use variable "nokeepalive" for this.
Similarly, one has to force some clients to use HTTP/1.0 to workaround
their broken HTTP/1.1 implementation. Use variables *"downgrade-1.0" and
'"force-response-1.0" for this.
BrowserMatch "_.*MSIE.*" \

nokeepalive ssl-unclean-shutdown \

downgrade-1.0 force-response-1.0

Per-Server Logging:

The home of a custom SSL log file. Use this when you want a

compact non-error SSL logfile on a virtual host basis.

CustomLog "C:/Program Files/Telescope Automation/Apache/logs/ssl_request.log™ \
"%t %h %{SSL_PROTOCOL}x %{SSL_CIPHER}x \"%r\" %b"

</VirtualHost>

109

Appendix G: CGI Script Python Code

control.py
#1C:/Python/python._exe
this MUST point to the Python executablell!

import libraries:
import cgi, re, sys
from socket import *
import logging

***** These settings should be set by the user for the current setup *******

Location of XML Ffiles that store user preferences:

obsUserXML = "C:\Program Files\Telescope Automation\Apache\htdocs\obsUserPrefs.xml" # XML
for observation user prefs
mountUserXML = "C:\Program Files\Telescope Automation\Apache\htdocs\mntUserPrefs.xml" # XML
for mount user prefs
#1P addresses of computers connected to cameras and mount
telecamlp = '***_***_**_**'
Widecamlp = '***-***-**_**'
mountlp = '***_***_**_**'
web address of the observation control home page (include trailing /)
pageAddress = "https://*** _***_** **x:8000/"
#teleCamlP = "127.0.0.1"°
#wideCamlP = "128.18.144.218"
#mountlP = "127.0.0.1"
End of user settings
B ettt ittt tatatatatatatatatataiaiaiaatd
This function sends a string over TCP/IP to the given IP address over Port 5000
def sendString(lPaddress, input) :
HOST = IPaddress
PORT = 5000 #data is sent to back-end driver over port
5000
data = ** #stores the confirmation code that back-end
driver sends back during communication
s = socket(AF_INET, SOCK_STREAM)
try:
s.connect((HOST, PORT))
s.settimeout(b5)
except timeout:
error = "Connect timeout error!
 Unable to reach address: " + HOST
errorPrint(error)
except:
error = "Connect error!
 Unable to reach address: * + HOST
errorPrint(error)
try:
s.send(input) # send the string
s.settimeout(b5)
while (s.recv(l) I="") : # wait until a null character is received
before continuing
pass # otherwise the connection will close and

back-end driver won"t receive all commands

s.close() #close the connection

110

except timeout:

error = "Send timeout error!
 Unable to reach address: * + HOST
errorPrint(error)

except:
error = "Send error!
 Unable to reach address: * + HOST
errorPrint(error)

B ettt ittt tatatatatatatatatatatatataiaiaiaid
This handles errors. The "try" statements throughout the program attempt to

perform risky actions. If one doesn"t work, the browser will simply print

what the error, rather than returning "Internal server Error."

def errorPrint(errorCode):
print "The following error occurred: " + errorCode + "
 </HTML>"
sys.exit()

FHE A L L A L A G G G I A A A
#iHHHH: The Main Program Starts Here ##HHHHE

This portion pulls the data from the webform and places it
into a string in this format: parml=valuel;parm2=value2;...\0

string = ** # stores commands when not changing observatin
settings

stringTele = ** # stores string of commands that are passed
to telescope camera if setting up observation

stringWide = ** # stores string of commands that are passed
to wide-angle camera if setting up observation

xmlString = ** # stores parameters that get written as XML fields
equipment = ** # stores the piece of equipment that user is
controlling (wide, tele, mount, or observation)

error = "0* # stores an error if there is a problem

Start printing output to webpage here
print “Content-type: text/htmI\n\n-
print "<HTML>\n"

logging.basicConfig(level = logging.DEBUG)
log = logging.getLogger("control™)
#log.debug("start")

form = cgi.FieldStorage() # get parameters from webform

#for field in form.keys(Q) :
print “%s=%s
" % (field,form.getvalue(field))

Check to make sure that form specified which equipment settings pertain to:
try:

equipment = form.getvalue("equipment™) # 1f the form field tells which equipment
the instructins are for, grab that information
except:

error = "Equipment not specified in web form!*

errorPrint(error)

process fields for each form depending on which equipment specified:
get Fields from webform for each paramter
concatenate fields into a string
send string to back-end driver

if (equipment == "mount®): # 1f the field is a position setting, these must get stored for now

operation = form.getvalue("mntOp*®) # mntOp tells it which operation it is - it must be
in all mount forms

111

this format:

if (operation == “connect®):
Azimuth and Altitude,

string = "mntConnect=TRUE\r\n\xFF*
mntAzi=Deg:Min:Sec\r\n mntAlt=Deg:Min:Sec\r\n

After Deg, Min, and Sec are acquired for

elif (operation == "park®):

string = "mntConnect=FALSE\r\n\xFF-*
elif (operation == "abort"):

string = "mntAbort=TRUE\r\n\xFF*
elif (operation == "home"):

string = "mntHome=TRUE\r\n\xFF*
elif (operation == "slew"):

get user”s requested position values to put into string and later write to

mountPrefs.xml

mntAziDeg
mntAziMin
mntAziSec
mntAltDeg
mntAltMin
mntAltSec

string
string
string
string
string
string
string

elif (equipment == “"teleCam”) :
string = "camConnect=%s\r\n\xFF* % (form.getvalue("camConnect®))
elif (equipment == "teleOpt") :
string = "optConnect=%s\r\n\xFF* % (form.getvalue("optConnect®))

"mntAzi=%s:" % (mntAziDegq)
"%shs:® % (string,mntAziMin)
"%shs\r\n® % (string,mntAziSec)
“Y%smntAlt=%s:" % (string,mntAltDeg) # Put Altitude in deg:mm:ss
"%shs:® % (string,mntAltMin)
“%shs\r\n® % (string,mntAltSec)
string + "mntSlewTo=TRUE\r\n\xFF*

"%s® % (form.getvalue("mntAziDeg~”))
"%s® % (form.getvalue("mntAziMin®))
"%s® % (form.getvalue("mntAziSec"))
“"%s® % (form.getvalue("mntAltDeg"))
"%s® % (form.getvalue("mntAltMinT))
"%s® % (form.getvalue("mntAltSec"))

elif (equipment == “wideCam") :
string = "camConnect=%s\r\n\xFF* % (form.getvalue("camConnect®))
elif (equipment == “"wideOpt") :

elif (equipmen

times

string = "optConnect=%s\r\n\xFF* % (form.getvalue("optConnect®))

== "observation®) :

teleSendTo = form.getvalue("teleSendTo")

wideSendTo

form.getvalue("waSendTo")

get the observation parameters; put time into proper format: hh:mm:ss
obsStartVal = "%s* % form.getvalue("obsStart")

1f starting an observation, we should pass start and stop times
if (obsStartval == "TRUE") :

obsSet

1f valid fields were not entered then send None:None:None for start or stop

these values originate from the browser if nothing was entered in the field
(back-end driver starts immediately or waits until stop is pushed)

try:

except:

try:

obsStartTimeH
obsStartTimeM
obsStartTimeS

obsStartTime
obsStartTime
obsStartTime

obsStartTime

obsStopTimeHH
obsStopTimeMM
obsStopTimeSS

H
M
S

"%s® % (Form.getvalue("obsStartTimeHH"))
"%s® % (form.getvalue("obsStartTimeMM®))
"%s® % (Form.getvalue("obsStartTimeSS"))

%s:® % (obsStartTimeHH)
%shs: " % (obsStartTime,obsStartTimeMM)
%s%s® % (obsStartTime,obsStartTimeSS)

none”

"%s® % (form.getvalue("obsStopTimeHH"))
"%s® % (Fform.getvalue("obsStopTimeMM®))
"%s® % (Form.getvalue("obsStopTimeSS*))

they will be sent to back-end driver in

Put Azimuth in deg:mm:ss

112

obsStopTime "%s:® % (obsStopTimeHH)

obsStopTime = "%s%s:" % (obsStopTime,obsStopTimeMM)

obsStopTime = "%s%s" % (obsStopTime,obsStopTimeSS)
except:

obsStopTime = "none*

append the start and stop tiems and obsStart command to the end of the string
obsSet = "obsStartTime=%s\r\nobsStopTime=%s\r\nobsStart=TRUE\r\n"%
(obsStartTime,obsStopTime)

otherwise just send the stop command
else :
obsSet = "obsStart=FALSE\r\n*

if (teleSendTo == "TRUE") :
get the telescope specific settings

teleCamADCrate = "%s" % (form.getvalue("teleCamADCrate®))
stringTele = “"camADCrate=%s\r\n" % (teleCamADCrate)

teleCamExpTimeVal = "%s® % (form.getvalue("teleCamExpTime®)) # get
the value and multiply by 1000 to get milliseconds
try:

teleCamExpTime = "%s" % (Float(teleCamExpTimeVal) * 1000)
except:

teleCamExpTime = “"None*
stringTele = "%scamExpTime=%s\r\n®" % (stringTele,teleCamExpTime)

filter values don"t necessearily have to be specified, and if none selected then
field won"t show up
try:
teleOptFilter "%s® % (form.getvalue("teleOptFilter™))
teleOptFilter re.sub(r*[\"\s]","",teleOptFilter) #
remove tick marks that arise from Filter select
stringTele = "%soptFilter=%s\r\n* % (stringTele,teleOptFilter)
except:
teleOptFilter = "none selected”
stringTele = stringTele

teleOptShutter = "%s" % (form.getvalue("teleOptShutter®))
stringTele = "%soptShutter=%s\r\n® % (stringTele,teleOptShutter)

append the observation settings
stringTele = "%s%s\r\n\xFF" % (stringTele,obsSet)

if (wideSendTo == "TRUE") :
waCamADCrate = "%s® % (Fform.getvalue(“waCamADCrate®))
stringWide = “camADCrate=%s\r\n" % (waCamADCrate)

waCamExpTimeVal = "%s® % (form.getvalue(“waCamExpTime®)) # get the
value and multiply by 1000 to get milliseconds
try:

waCamexpTime = “%s® % (Float(waCamExpTimeVal) * 1000)
except:

waCamExpTime = “"None*
stringWide = "%scamExpTime=%s\r\n® % (stringWide,waCamExpTime)

try:
waOptFilter = "%s" % (form.getvalue("waOptFilter*))
waOptFilter = re.sub(r"[\"\s]","",waOptFilter) #
remove tick marks that arise from filter select
stringWide = “%soptFilter=%s\r\n* % (stringWide,waOptFilter)
except:
wideOptFilter = "none selected”
stringWide = stringWide

113

waOptShutter = "%s" % (form.getvalue("waOptShutter*®))
stringWide = "%soptShutter=%s\r\n* % (stringWide,waOptShutter)

append the observation settings
stringWide = "%s%s\r\n\xFF* % (stringWide,obsSet)

H#Hit Ht#
This portion determines the XML file that settings get written to

1t also determines which page to return the user to after processing is done
filename = **

file to use for the operation

stores the filename of the User Preferences XML

returnPage = # stores the page that the user will be re-

directed to after transmission is complete
settings = **
user settings XML file (i.e. it takes whichever string is being used)

if ((equipment == “"teleCam®) or (equipment == “wideCam®) or (equipment == “"teleOpt") or
(equipment == “wideOpt")) :
filename = obsUserXxML
returnPage = “observation.html*
elif (equipment == “observation®) :
filename = obsUserXxmL
returnPage = "observation.html*
elif (equipment == "mount®) :
filename = mountUserXML
returnPage = "mount.html*

HiH# HH#
#TCP/IP client program sends ASCII string to back-end driver

#determine the IP address(es) to send to
if ((equipment == “"teleCam®) or (equipment == “"teleOpt")) :

sendString(teleCamlP,string) # send commands to telescope computer
elif ((equipment == "wideCam®) or (equipment == "wideOpt")) :
sendString(wideCamlP,string) # send commands to wide-angle computer
elif (equipment == "mount®) :
sendString(mountlP,string) # send commands to mount computer
elif (equipment == "observation®) :
if (teleSendTo == "TRUE") :
sendString(teleCamlP,stringTele) # send commands to telescope computer
if (wideSendTo == "TRUE") :
sendString(wideCamlP,stringWide) # send commands to wide-angle computer
H#HiH H#H
#write user preferences to xml so that they can be displayed if an operation is In progress
try:
#write mount preferences if we are slewing the mount
if ((equipment == "mount®) and (operation == "slew")) :
xmlfile=open(Filename, "w") #open the XML file for writing

xmlfile.write("<mountPrefs>\n")
xmlfile.write("\t<mntAziDeg>" + mntAziDeg + "</mntAziDeg>\n")
xmifile.write("\t<mntAziMin>" + mntAziMin + "</mntAziMin>\n")
xmifile.write("\t<mntAziSec>" + mntAziSec + "</mntAziSec>\n")
xmifile.write("\t<mntAltDeg>" + mntAltDeg + “</mntAltDeg>\n")
xmifile.write("\t<mntAItMin>" + mntAltMin + "</mntAltMin>\n")
xmifile.write("\t<mntAltSec>" + mntAltSec + "</mntAltSec>\n")
xmifile.write("</mountPrefs>")

xmlfile.close() #close the XML file

#write observation preferences if we are starting an observation
elif ((equipment == "observation®) and (obsStartVal == "TRUE")) :

stores any information that has to get written to

114

xmlfile=open(Ffilename, "w") #open the XML file for writing
xmlfile.write("<userPrefs>\n")
xmlifile.write("\t<tele>\n")

if (teleSendTo == "TRUE") :
xmlfile.write("\t\t<camADCrate>" + teleCamADCrate + "</camADCrate>\n")

teleCamExpTime = "%s® % (Float(teleCamExpTimeVval)) # write to XML in
seconds (not msec)

xmifile.write("\t\t<camExpTime>" + teleCamExpTime + “</camExpTime>\n")

xmifile.write("\t\t<optFilter>" + teleOptFilter + "</optFilter>\n")

xmifile.write("\t\t<optShutter>" + teleOptShutter + "</optShutter>\n")

else :

xmifile.write("\t\t<camADCrate>" + "none" + *"</camADCrate>\n")

xmifile.write("\t\t<camExpTime>" + "none" + “"</camExpTime>\n")

xmifile.write("\t\t<optFilter>" + "none" + "</optFilter>\n")

xmlfile.write("\t\t<optShutter>" + "none" + "</optShutter>\n")

xmlfile.write("\t</tele>\n")
xmlfile.write("\t<wide>\n")

if (wideSendTo == "TRUE®) :
xmlfile.write("\t\t<camADCrate>" + waCamADCrate + "</camADCrate>\n")

waCamexpTime = "%s" % (Float(waCamExpTimeVval))
xmifile.write("\t\t<camExpTime>" + waCamExpTime + *</camExpTime>\n<)
xmifile.write("\t\t<optFilter>" + waOptFilter + "</optFilter>\n-")
xmlfile.write("\t\t<optShutter>" + waOptShutter + "</optShutter>\n")
else:
xmifile.write("\t\t<camADCrate>" + "none" + *"</camADCrate>\n")
xmlfile.write("\t\t<camExpTime>" + "none" + "</camExpTime>\n")
xmifile.write("\t\t<optFilter>" + "none" + "</optFilter>\n")
xmlfile.write("\t\t<optShutter>" + "none" + "</optShutter>\n")

xmlfile.write("\t</wide>\n")

xmlfile.write("\t<obs>\n")

xmlfile.write("\t\t<obsStartTime>" + obsStartTime + "</obsStartTime>\n")
xmlfile.write("\t\t<obsStopTime>" + obsStopTime + "</obsStopTime>\n")
xmifile.write("\t</obs>\n")

xmlfile.write("</userPrefs>\n")

xmlfile.close() #close the XML file
except:
error = "Error writing to XML file:" + filename + "\n*
errorPrint(error)
i HHE

#This portion tells Apache server to redirect the user back to the referring page
#print “equipment: * + equipment + “
*
#print "stringTele: " + stringTele + "
"
#print "stringWide: " + stringWide + "
"
#print "string: " + string

print “<HEAD>\n"
print "<meta http-equiv="REFRESH" content="0;url=" + pageAddress + returnPage + "'>\n </HEAD>"
print "<BODY>Processing...</BODY>\n"

print *</HTML>"

#log.debug("exit")
sys.exit()

115

Appendix H: Back-end Driver Source Code

BackendDriver.h
#ifndef BACKENDDRIVER_
#define BACKENDDRIVER_

/* includes */

#include <iostream>
#include "Observation.h"
#include "TcplpServer._h"
#include “"XmINode.h"
#include <windows.h>
#include <tchar.h>
#include <strsafe.h>
#include "time.h"

using namespace std;

/* defines */
#define PORT 5000

#define RX_BUF_LEN 1024
#define TX_BUF_LEN 1024
#define TEMP_BUF_LEN 1024

#define DELIMITER "“\n\0"
#define PROMPT "Backend Driver>\0"
#define NEWLINE *"\r\n\0"

#define MSG_ACK ""Connected - \r\n\r\n\0"
#define MSG_INVALID_CMD "Invalid command.\r\n\r\n\0"
#define MSG_CLOSING_CONN "Closing Connection.-\r\n\r\n\0"

#define SLEEP_INTERVAL 5 // seconds

#define IMAGE_BUF_SIZE 512 * 512 * sizeof(unsl6) * 2 // double size just in case

/**/
/**/

#define WINVIEW_BASE_DIR "winview\0"
#define PNG_BASE_DIR “png\0"

DWORD WINAPI runObservation(LPVOID IpParam);

DWORD WINAPI waitForClientRequest(LPVOID IpParam);

DWORD WINAPI mountOperation(LPVOID IpParam);

int findTimeDifference(ObsTime& a, ObsTime& b);

int checkObservationThreadStatus(Observation* obs, HANDLE* hObservation);
int checkMountOpThreadStatus(Observation* obs, HANDLE *hMountOperation);

#endif

BackendDriver.cpp

#include ""BackendDriver.h"

using namespace std;

int main()

116

/* declarations */
TcplpServer* tcplpServ; // TCP/IP server object
Observation* obs; // Observation control object

HANDLE hAcceptClient = NULL;

HANDLE hObservation = NULL;

HANDLE hMountOperation = NULL;

DWORD dAcceptClient;

char* rxBuf; // data receive buffer

char* txBuf; // data transmit buffer

char* tempBuf; // temporary buffer

bool quit; // quit command flag from user

/* initialization */

teplpServ = new TcplpServer(PORT); // instantiate objects
obs = new Observation(); /7"

rxBuf = (char *)malloc(RX_BUF_LEN); // allocate buffers
t>xBuf = (char *)malloc(TX_BUF_LEN); /7"

tempBuf = (char *)malloc(TEMP_BUF_LEN); /7"

memset(txBuf, “\0", TX_BUF_LEN); // clear buffers
memset(rxBuf, “\0", RX_BUF_LEN); /7"

memset(tempBuf, “"\0°", TEMP_BUF_LEN); /7"

obs->initializeObs();

/* attempt to initialize the server socket and begin listening for clients */
iT(teplpServ->initServerAndListen())

/* unsuccessful */
cerr << "Couldn"t initialize TCP/IP server.” << endl;
return 1;

}

/* begin listening for a request in background */
hAcceptClient = CreateThread(
NULL, // default security attributes
0, // use default stack size
waitForClientRequest, // thread function
(LPVOID)tcplpServ, // argument to thread function

o, // use default creation flags
&dAcceptClient); // returns the thread identifier

/* main program loop */

while(1)

{
/* limits polling, this loop should be event-driven instead... */

Sleep(50);

/* check for client connection request... */
if("WaitForSingleObject(hAcceptClient, 0))
{

/* request received, acknowledge client */

strcpy_s(t~xBuf, TX_BUF_LEN, MSG_ACK);
tceplpServ->sendToClient(txBuf, (int)strlien(txBuf));
/* newline */

strcpy_s(t~xBuf, TX_BUF_LEN, NEWLINE);
teplpServ->sendToClient(txBuf, (int)strlen(txBuf));

/* while the user has not requested to quit... */
quit = false;
while(Iquit)

/* send prompt arrow */
strcpy_s(txBuf, TX_BUF_LEN, PROMPT);
teplpServ->sendToClient(txBuf, (int)strlen(txBuf));

/* clear rx buffer */
memset(rxBuf, “"\0°, RX_BUF_LEN);

117

/* receive data, if received data is not valid... */
iT(teplpServ->recvFromClient(rxBuf, RX_BUF_LEN, DELIMITER) < 0)
{

/* notify user */

strcpy_s(txBuf, TX_BUF_LEN, MSG_INVALID_CMD);
teplpServ->sendToClient(txBuf, (int)strlen(txBuf));
/* newline */

strcpy_s(t~Buf, TX _BUF_LEN, NEWLINE);
teplpServ->sendToClient(txBuf, (int)strlen(txBuf));

/* quit */
quit = true;

/* acknowledge quit message and the close connection */
strcpy_s(txBuf, TX_BUF_LEN, MSG_CLOSING_CONN);
teplpServ->sendToClient(txBuf, (int)strlen(txBuf));
/* newline */

strcpy_s(txBuf, TX_BUF_LEN, NEWLINE);
teplpServ->sendToClient(txBuf, (int)strlen(txBuf));
teplpServ->closeClientConn();

CloseHandle(hAcceptClient);

/* begin listening for a request in background */
hAcceptClient = CreateThread(

NULL, // default security attributes
0, // use default stack size
waitForClientRequest, // thread function
teplpServ, // argument to thread function

, // use default creation flags
&dAcceptClient); // returns the thread identifier

/* if it is valid, process the command */
else

{

/* check for EOF */

iT(*rxBuf == EOF)

{
/* EOF received, user has requested to quit */
quit = true;

/* acknowledge quit message and the close connection */
strepy_s(txBuf, TX_BUF_LEN, MSG_CLOSING_CONN);
teplpServ->sendToClient(txBuf, (int)strlen(txBuf));
/* newline */

strcpy_s(txBuf, TX_BUF_LEN, NEWLINE);
teplpServ->sendToClient(txBuf, (int)strlen(txBuf));
teplpServ->closeClientConn();

CloseHandle(hAcceptClient);

/* begin listening for a request in background */
hAcceptClient = CreateThread(
NULL, // default security attributes
0, // use default stack size
waitForClientRequest, // thread function
teplpServ, // argument to thread function
, // use default creation flags
&dAcceptClient); // returns the thread identifier
3

/* command was not EOF, process it normally */
else

{

/* process the command */
tempBuf = obs->processCommand(rxBuf);

/* check for quit command */
if (tempBuf == 0)

118

/* quit */
quit = true;

/* acknowledge quit message and the close connection */
strcpy_s(t>~Buf, TX BUF_LEN, MSG_CLOSING_CONN);
teplpServ->sendToClient(txBuf, (int)strlen(txBuf));
/* newline */

strcpy_s(t~xBuf, TX_BUF_LEN, NEWLINE);
teplpServ->sendToClient(txBuf, (int)strlien(txBuf));
teplpServ->closeClientConn();

CloseHandle(hAcceptClient);

/* begin listening for a request in background */
hAcceptClient = CreateThread(

NULL, // default security attributes
0, // use default stack size
waitForClientRequest, // thread function
tcplpServ, // argument to thread function
o, // use default creation flags
&dAcceptClient); // returns the thread identifier

3

/* non quit command */

else

{

/* output return status to the client */

memset(txBuf, "\O", TX_BUF_LEN);

strcpy_s(t~xBuf, TX_BUF_LEN, tempBuf);
teplpServ->sendToClient(txBuf, (int)strlen(txBuf));
/* newline */

strcpy_s(txBuf, TX_BUF_LEN, NEWLINE);
teplpServ->sendToClient(txBuf, (int)strlen(txBuf));

/* cleanup */
free(tempBuf);

} 7/ non quit command
} 7/ command not eof ELSE
} 7/ command valid ELSE
checkObservationThreadStatus(obs, &hObservation);
#ifdef _WACAM
checkMountOpThreadStatus(obs, &hMountOperation);
#endift
} 77/ while ('quit)
} 77 if("WaitForSingleObject(hAcceptClient, 0))
checkObservationThreadStatus(obs, &hObservation);
#ifdef _WACAM
checkMountOpThreadStatus(obs, &hMountOperation);
#endif
} 77 while(C 1)

return O;

int findTimeDifference(ObsTime& a, ObsTime& b)
{

int total;
int asec, bsec;
total = 0;

119

asec
bsec

3600 * a.hours + 60 * a.minutes + a.seconds;
3600 * b.hours + 60 * b.minutes + b.seconds;

if(bsec > asec)
return bsec - asec;

else if (bsec == asec)
return 3600 * 24; // number of seconds in a day
else

return asec - bsec;

}

DWORD WINAPI waitForClientRequest(LPVOID IpParam)
{

TcplpServer* tcplpServ;

teplpServ = (TeplpServer*) lIpParam;

/* waits for a client request */
if(tcplpServ->acceptClient())
return 1;
else
return O;
b

DWORD WINAPI runObservation(LPVOID lIpParam)
{

/* cast the argument to Observation type */
Observation* obs;

obs = (Observation*) IpParam;

bool doneFlag = false;

int cameraTemp;

int currentFilter;

unsl6* image;

int imageByteSize;

time_t tempTime;

time_t timera, timerb, duration;

/* file path/names */
char* pngFilepath;
char* pngFilename;
char* winviewFilepath;
char* winviewFilename;
char* dateAndTime;
char* command;

/* allocate memory */
pngFilepath (char *)malloc(FILENAME_LEN

=):
pngFilename = (char *)malloc(FILENAME_LEN);
winviewFilepath = (char *)malloc(FILENAME_LEN);
winviewFilename = (char *)malloc(FILENAME_LEN);
dateAndTime = (char *)malloc(FILENAME_LEN);
command = (char *)malloc(FILENAME_LEN);
image = (uns16 *)malloc(IMAGE_BUF_SIZE);

/* reset the filter sequence */
obs->0Observation_resetFilterSequence();

/* get the current time */
time(&tempTime);

/* use that time to create the directories */
obs->0Observation_generateFilepath(&tempTime, pngFilepath, IMAGE_PNG_BASE_PATH);
obs->0bservation_generateFilepath(&tempTime, winviewFilepath, IMAGE_WINVIEW_BASE_PATH);

/* create the directories */

sprintf_s(command, FILENAME_LEN, "mkdir \"%s\'"\0", pngFilepath);
system(command);

sprintf_s(command, FILENAME_LEN, "mkdir \"%s\'"\O0", winviewFilepath);
system(command);

120

/* get the curent time */

time(&tempTime);

ObsTime currentTime;

currentTime.seconds = (int)tempTime % 60;
currentTime.minutes = (int)tempTime % (60 * 60) / 60;
currentTime.hours = (int)tempTime % (60 * 60 * 24) / 3600;
int timeDifSleep;

unsigned int currentTimeDifference = O;

unsigned int lastTimeDifference = INT_MAX;

/* should we not start right away? */
if(obs->getStartTime().hours 1= -1)

/* if not, sleep until we do start */

timeDifSleep = findTimeDifference(currentTime, obs->getStartTime());
cout << "Sleeping for " << timeDifSleep << seconds.” << endl;
timeDifSleep /= SLEEP_INTERVAL;

while(timeDifSleep > 0 && !doneFlag)

Sleep(SLEEP_INTERVAL * 1000);

timeDifSleep--;

iT(obs->isObsStopRequested())
doneFlag = true;

cout << "Done sleeping.” << endl;

/* if we were stopped */
if(doneFlag)
return O;

/* observe until time is up or stop requested */
doneFlag = false;
while(!'doneFlag)

time (&timera);
/* set the next filter */
currentFilter = obs->0Observation_setNextFilter();

/* update the camera temperature */
#ifdef _NOHARDWARE

cameraTemp = -40;
#else

cameraTemp = obs->0Observation_getCameraTemperature();
#endi f

/* perdiodic XML update */
obs->0Observation_periodicXmlUpdate(currentFilter, cameraTemp);
time (&timerb);

duration = timerb - timera;
cout << "hardware + xml update duration:

<< duration << endl;

/* get the time right before the exposure */
time(&tempTime);

/* data acquisition */
#ifdef _NOHARDWARE
/* simulate picture... */
Sleep(5000);
#else

time(&timera);

/* take the picture */

imageByteSize = obs->0Observation_acquirelmage(&image);
time(&timerb);

duration = timerb - timera;

cout << ""take iImage time: << duration << endl;

121

time(&timera);

/* generate the filenames using the time of the exposure */

obs->0Observation_generateFilename(&tempTime, winviewFilename, currentFilter,
IMAGE_WINVIEW_EXTENSION);

obs->0Observation_generateFilename(&tempTime, pngFilename, currentFilter,
IMAGE_PNG_EXTENSION);

/* prepare the winview file for writing */
obs->0bservation_openWinviewFile(winviewFilepath, winviewFilename);
/* save the image to a WinView-openable format */
obs->0Observation_appendImageToWinviewFile(image, imageByteSize);

/* close the file */

obs->0Observation_closeWinviewFile();

/* write the PNG */
obs->0Observation_writelmageToPng(image, imageByteSize, pngFilepath, pngFilename);

obs->0bservation_xmlUpdateFilePath(pngFilepath, pngFilename);

/* delete the image */
if(image)
free(image);

time(&timerb);
duration = timerb - timera;
cout << "write file time: " << duration << endl;

#endif

/* do we have a stop time? */
iT(obs->getStopTime()-hours 1= -1)
{
/* if so, have we reached it? */
time(&tempTime);
currentTime.seconds = (int)tempTime % 60;
currentTime.minutes = (int)tempTime % (60 * 60) / 60;
currentTime.hours = (int)tempTime % (60 * 60 * 24) / 3600;
currentTimeDifference = findTimeDifference(currentTime, obs->getStopTime());
iT(currentTimeDifference > lastTimeDifference)
doneFlag = true;
else
lastTimeDifference = currentTimeDifference;
¥

/* has a stop been requested by the user? */
if(obs->isObsStopRequested())
doneFlag = true;

}

/* cleanup */

free(pngFilepath);
free(pngFilename);
free(winviewFilepath);
free(winviewFilename);
free(dateAndTime);
free(command);

return O;

int checkObservationThreadStatus(Observation* obs, HANDLE *hObservation)

{
DWORD dTest;

/* if an observation thread is running... */
if(obs->isObsInProgress())

122

/* check if done */

if ("WaitForSingleObject(*hObservation, 0))

{
cerr << "Observation closed." << endl;
/* close its handle */
CloseHandle(*hObservation);
*hObservation = NULL;
/* clear flags */
obs->clearObsStopRequest();
obs->clearObsInProgress();

3

3

else
iT(obs->positionTimer())
obs->updatexmlTemperature();
}
/* check for observation start request */

if (obs->isObsStartRequested())

/* observation requested, launch observation thread */
*hObservation = CreateThread(

NULL, // default security attributes
o, // use default stack size
runObservation, // thread function
obs, // argument to thread function
0, // use default creation flags
&dTest); // returns the thread identifier
3
return O;

DWORD WINAPI mountOperation(LPVOID IpParam)
{
/* cast the argument to Observation type */
Observation* obs;
obs = (Observation*) IpParam;
MntPosition alt;
MntPosition azi;

switch(obs->getMountOpType())

{
case MOUNT_CONNECT_TYPE:
if(obs->getMount()->connectMount())
obs->getMount()->setFailureStatus();
else
obs->updatexXxmlPosition(obs->getMount()->getPosition());
break;

case MOUNT_HOME_TYPE:
iT(obs->getMount()->homeMount())
obs->getMount()->setFailureStatus();
else
obs->updatexmlPosition(obs->getMount()->getPosition());
break;

case MOUNT_PARK_TYPE:
if(obs->getMount()->parkAndDisconnectMount())
obs->getMount()->setFailureStatus();
break;

case MOUNT_SLEW_TYPE:
azi = obs->getAzimuth();
alt = obs->getAltitude();
iT(obs->getMount()->slewTo(azi.degrees, azi.minutes, (float)azi.minutes,
alt_degrees, alt._minutes, (float)alt.seconds))
obs->getMount()->setFailureStatus();

123

else
obs->updatexXxmlPosition(obs->getMount()->getPosition());
break;

default:
break;

}

return O;

}

int checkMountOpThreadStatus(Observation* obs, HANDLE *hMountOperation)

{
DWORD dTest;

/* if an operations thread is running... */
iT(obs->isMountOplInProgress())

/* check if done */
if ('WaitForSingleObject(*hMountOperation, 0))
{
/* close its handle */
CloseHandle(*hMountOperation);
*hMountOperation = NULL;
/* clear flags */
obs->clearMountOpInProgress();
3
3

/* check for observation start request */
if (obs->isMountOpStartRequested())

/* observation requested, launch observation thread */
*hMountOperation = CreateThread(

NULL, // default security attributes
o, // use default stack size
mountOperation, // thread function
obs, // argument to thread function
0, // use default creation flags
&dTest); // returns the thread identifier
3
return O;
b
CamCtrlLh

#ifndef CAMCTRL_H
#define CAMCTRL_H

#include <windows.h>
#include <iostream>
#include "master.h"
#include "pvcam.h"

using namespace std;

#define IMAGE_FRAME_SIZE 512 * 512 * sizeof(unsl6)
#define ADC_FAST 1

#define ADC_SLOW O

#define DEFAULT_GAIN 2

#define CAMERA_TEMPERATURE -40

#define CAM_INVALID_TEMP -1000

#define MAX_IMAGE_SIZE 512 * 512 * sizeof(intl6)

class CamCtrl {
public:

124

CamCtrl(Q);

bool connectCam();

/**

* Initializes the PVCAM library and then connects to the camera. Once
successfully connected, the temperature of the controller is set to
-40 degrees (F) and the shutter is set to open pre-sequence.

*

*

*

* INPUT:
* none

* QUTPUT:

* true on success, false on failure

*/
bool disconnectCam();

bool takelmage();

uns16* getLastlmage();

unsigned int getlLastlmageByteSize();

bool setAdcRate(intl6 rate);

bool setFullRegion();

bool setExposureTime(intl6 newExposureTime);

/* testing */

bool initlmageSequence();

/**

* Performs the necessary operations required to initialize an
image sequence.

INPUT:
none

OUTPUT:
none

*
*
*
*
*
*

*/

bool uninitlmageSequence();

/**

* Performs the necessary operations required to uninitialize an
image sequence.

*
*
* INPUT:
* none
* OUTPUT:
* none

*/
bool takeNextlmage(unsl6* imagePtr);
bool acquirelmage(unsl6* imageBuffer);

/**
* Acquires a single image and stores it in the block of memory

* supplied by the caller.

*

* INPUT:

* imageBuffer - pointer to block of memory where image will be stored
* must be at least 512 * 512 * 2 bytes large

* OUTPUT:

* true on success, false on failure

*/

/* accessors */
char* getCamName();
intlé readTemp();

private:
intl6 hCam;
bool camReady;
char* camName;
unsl6* lastimage;
uns32 lastlmageSize;

rgn_type* region;

125

intl6 exposureTime;

¥
#endif

CamCtrl.cpp

#include "CamCtrl.h"

CamCtrl::CamCtril()
{
hCam = NULL;
camReady = false;
exposureTime = 0;

/* allocate memory */

region = (rgn_type*)malloc(sizeof(rgn_type));

camName = (char *)malloc(CAM_NAME_LEN + 1);

memset(camName, O, CAM_NAME_LEN + 1);

lastimage = (unsl16 *)malloc(sizeof(512 * 512 * 2 * 2));
lastlmageSize = 512 * 512 * 2;

}
bool CamCtrl::connectCam()
{
/* if already connected... */

if(camReady)
/* don"t bother trying to connect */
return true;

if ('pl_pvcam_init())
{

cerr << "Unable to initialize PVCAM Library." << endl;
return false;

}
if('pl_cam_get_name(O, camName))

cerr << "Unable to get camera name." << endl;
return false;

}
if(!pl_cam_open(camName, &hCam, OPEN_EXCLUSIVE))
{

cerr << "Unable to open camera connection." << endl;
return false;

}

/* set the temperature */
intl6 newTemperature;
newTemperature = CAMERA_TEMPERATURE * 100;
if (!pl_set_param(hCam, PARAM_TEMP_SETPOINT, (void *) &newTemperature))
{
cerr << "Unable to set CCD temperature."” << endl;
return false;

}

/* set the shutter state: DISABLED OPEN */
uns32 disabledOpen;
disabledOpen = OPEN_NO_CHANGE;
if (Ipl_set_param(hCam, PARAM_SHTR_OPEN_MODE, &disabledOpen))

cerr << "Unable to set shutter to DISABLED OPEN." << endl;
return false;

}

/* disable external shutter */

uns32 notScan;

notScan = OUTPUT_NOT_SCAN;

it (Ipl_set_param(hCam, PARAM_LOGIC_OUTPUT, ¬Scan))
{

126

cerr << "Unable to disable external shutter." << endl;
return false;

}

camReady = true;

return true;

}

char* CamCtrl::getCamName()
{

return camName;

}

bool CamCtrl::disconnectCam()
{
/* if not connected... */
if('camReady)
{
cerr << "Camera not connected.”™ << endl;
/* don"t attempt to disconnect */
return false;

}

///* set the shutter state: NORMAL */

//uns32 normal;

//normal = OPEN_PRE_EXPOSURE;

//7if ('pl_set_param(hCam, PARAM_SHTR_OPEN_MODE, &normal))
//{

// cerr << "Unable to set shutter to NORMAL."™ << endl;

// return false;

/7%

if(!pl_cam_close(hCam))

cerr << "Unable to close connection with camera." << endl;
return false;

}

/* no longer connected */
camReady = false;

if('pl_pvcam_uninit())

cerr << "Unable to unintialize PVCAM Library." << endl;

return false;

}

return true;

bool CamCtrl::setAdcRate(intl6 adcRate)

{
if(YcamReady)
{

cerr << "Camera not connected.”™ << endl;
/* camera not connected */
return false;

}

/* set the speed */
if('pl_set_param(hCam, PARAM_SPDTAB_INDEX, &adcRate))

cout << "Unable to set ADC speed index." << endl;
return false;

}

return true;

127

}

bool CamCtrl::setFullRegion()

{

}

iT(YcamReady)

{
cerr << "Camera not connected.”™ << endl;
/* not connected */
return false;

3

unsl6é param; // temporary parameter

/* start at first pixel */
region->sl 0;
region->pl = 0;

/* end at last pixel */
pl_get_param(hCam, PARAM_SER_SIZE, ATTR_DEFAULT, (void *)¶m);
region->s2 = param - 1;
pl_get_param(hCam, PARAM_PAR_SIZE, ATTR_DEFAULT, (void *)¶m);
region->p2 = param - 1;

/* binning factors */
region->sbin 1;
region->pbin 1;

return true;

bool CamCtrl::setExposureTime(intl6 newExposureTime)

{

}

exposureTime = newExposureTime;
return true;

bool CamCtrl::takelmage()

{

if('camReady)
{

cerr << "Camera not connected.”™ << endl;
/* not connected */
return false;

3

/* setup the region */
setFullRegion();

/* initialzie the sequence */
if('pl_exp_init_seq())

{

}

/* set up the sequence */

cout << "Unable to initialize experiment sequence." << endl;

if('pl_exp_setup_seq(hCam, 1, 1, region, TIMED_MODE, exposureTime, &lastlmageSize))
{

cout << "Unable to setup sequence." << endl;

}

/* allocate space for the image */
lastimage = (unsl16 *)malloc(lastlmageSize);

/* start the sequence */
pl_exp_start_seq(hCam, lastlmage);

Sleep(exposureTime);

/* wait for sequence to finish */

128

uns32 not_needed;

intlé status;

while(pl_exp_check_status(hCam, &status, ¬_needed)
&& (status !'= READOUT_COMPLETE && status !'= READOUT_FAILED))
Sleep(50);

if(status == READOUT_FAILED)
cout << "Readout failed.”™ << endl;

/* cleanup */
pl_exp_finish_seq(hCam, lastlmage, 0);
pl_exp_uninit_seq(Q);

return true;

}

unsl1l6* CamCtrl::getLastimage()

return lastlmage;

}

unsigned int CamCtrl::getLastlimageByteSize()
{

}

return (unsigned int)lastlmageSize;

intle CamCtrl::readTemp()

{
if(YcamReady)
{
cerr << "Camera not connected.”™ << endl;
/* not connected */
return CAM_INVALID_TEMP;

}
intlé temperature;

if (Ipl_get_param(hCam, PARAM_TEMP, ATTR_CURRENT, (void *) &temperature))
{

cerr << "Unable to read current CCD temperature.” << endl;

b
return (temperature / 100);
3
bool CamCtrl::initlmageSequence()
{
if(YcamReady)
{
cerr << "Camera not connected.” << endl;
/* not connected */
return false;
3

/* setup the region (full) */
setFullRegion();

/* initialzie the sequence */
if('pl_exp_init_seq())
{

cout << "Unable to initialize experiment sequence." << endl;

}

/* set up the sequence */
if('pl_exp_setup_seq(hCam, 1, 1, region, TIMED MODE, exposureTime, &lastlmageSize))
{

cout << "Unable to setup sequence." << endl;

}

return false;

129

}

bool CamCtrl::uninitlmageSequence()

/* cleanup */

pl_exp_finish_seq(hCam,

pl_exp_uninit_seq();

return false;

}

lastlimage, 0);

bool CamCtrl::takeNextImage(unsl6* imagePtr)

/* start the sequence */

pl_exp_start_seq(hCam,

/* wait for sequence to finish */

uns32
intl6

not_needed;
status;

imagePtr);

while(pl_exp_check_status(hCam, &status, ¬_needed)

&& (status != READOUT_COMPLETE && status != READOUT_FAILED));

if(status == READOUT FAILED)

cout << "Readout failed.”™ << endl;

return true;

}

MountCtrlLh

#ifndef MOUNTCTRL_H

#define

MOUNTCTRL_H

#include <fstream>
#include <iostream>

using namespace std;

#define
#define

#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define

#define

enum{

MOUNT _
MOUNT _

MAX_COMMAND_LEN
FILE_INPUT_LEN

MOUNT_CONNECT_SUCCESS
MOUNT_HOME_SUCCESS
MOUNT_PARKDISCONNECT_SUCCESS
MOUNT_SLEWTO_SUCCESS
MOUNT_ABORT_SUCCESS
MOUNT_GETPOSITION_FAILURE

MOUNT_CONNECT_FILE
MOUNT_HOME_FILE
MOUNT_PARKDISCONNECT FILE
MOUNT_SLEWTO_FILE
MOUNT_ABORT_FILE
MOUNT_GETPOSITION_FILE
MOUNT_ISCOMPLETE_FILE
MOUNT_ISCONNECTED_FILE

MOUNT_CONNECT_SCRIPT
MOUNT_HOME_SCRIPT
MOUNT_PARKDISCONNECT_SCRIPT
MOUNT_SLEWTO_SCRIPT
MOUNT_ABORT_SCRIPT
MOUNT_GETPOSITION_SCRIPT
MOUNT_ISCOMPLETE_SCRIPT
MOUNT_ISCONNECTED_SCRIPT

GETPOSITION_DELIM *;*

CONNECT_TYPE,
SLEW_TYPE,

*O\O™
"O\O"
"0\O"
*O\O™
*O\O™
"Mount Failed!\0"

""mount/connect.txt\0"
“*mount/home . txt\0"
“mount/park.txt\0"
"mount/slewto. txt\0"
"mount/abort.txt\0"
“"mount/getposition.txt\0"
"mount/iscomplete.txt\0"
"mount/isconnected.txt\0"

""mount/connect.vbs\0"
"'mount/home.vbs\0"
"mount/park.vbs\0"
"mount/slewto.vbs\0"
""'mount/abort.vbs\0"
"mount/getposition.vbs\0"
"mount/iscomplete.vbs\0"
"mount/isconnected.vbs\0"

130

MOUNT_HOME_TYPE,
MOUNT_PARK_TYPE,
MOUNT_INVALID_TYPE };

struct posUpdate {
int azid;
int azim;
float azis;
int altd;
int altm;
float alts;
};
typedef struct posUpdate PosUpdate;

class MountCtrl
{
public:
MountCtri();
int connectMount();
int homeMount();
int parkAndDisconnectMount();
int slewTo(int azDeg, int azMin, float azSec,
int altDeg, int altMin, float altSec);
int abortOperation();
PosUpdate* getPosition();

int setFailureStatus();
bool testAndClearFailedStatus();

private:
bool mountReady;
bool operationFailed;
long lastPositionUpdate;
PosUpdate currentPosition;

¥
#endif

MountCtrl.cpp

#include "MountCtrl.h"

MountCtrl: :MountCtr1 ()
{

mountReady = false;
operationFailed = false;

currentPosition.altd = -1;
currentPosition.altm = -1;
currentPosition.alts = -1;
currentPosition.azid = -1;
currentPosition.azim = -1;
currentPosition.azis = -1;

3

int MountCtrl::connectMount()

{

/* don"t try to connect if already connected */
if(mountReady)
return O;

/* error status */

int errStatus;

errStatus = 1; // 1 = error

/* allocate memory for our command string */
char* command;

command = (char *)malloc(MAX_COMMAND_LEN);

/* allocate memory for reading the status file */

131

char* filelnput;
filelnput = (char *)malloc(FILE_INPUT_LEN);
memset(Filelnput, O, FILE_INPUT_LEN);

/* generate the system command */
sprintf_s(command,
MAX_COMMAND_LEN,
"cscript //nologo %s > %s\0",
MOUNT_CONNECT_SCRIPT,
MOUNT_CONNECT_FILE);

/* call the VBscript to connect to the mount */
/* the script will write the status of the call to a file */
system(command);

/* open the file */

ifstream statusFile(MOUNT_CONNECT_FILE);

if(statusFile.is_open())

{
/* for this command, we only need to read the first line of the file */
statusFile.getline(filelnput, FILE_INPUT_LEN);

/* test for the "success" indicator */
if(!strcmp(filelnput, MOUNT_CONNECT_SUCCESS))
{

errStatus = 0; // successful!
mountReady = 1;

}

/* done with file, closeit */
statusFile.close();

}

else

/* couldn®t open the file, assume command was unsuccessful */
cerr << "Couldn®"t open mount connection status file." << endl;

}

/* cleanup */
free(command);
free(filelnput);

return errStatus;

int MountCtrl::homeMount()
{
/* don"t try to home if not connected */
if('mountReady)
return 1;

/* error status */
int errStatus;
errStatus = 1; // 1 = error

/* allocate memory for our command string */
char* command;
command = (char *)malloc(MAX_COMMAND_LEN);

/* allocate memory for reading the status file */
char* filelnput;

filelnput = (char *)malloc(FILE_INPUT_LEN);
memset(filelnput, O, FILE_INPUT_LEN);

/* generate the system command */
sprintf_s(command,
MAX_COMMAND_LEN,
“cscript //nologo %s > %s\0",
MOUNT_HOME_SCRIPT,
MOUNT_HOME_FILE);

132

/* call the VBscript to connect to the mount */
/* the script will write the status of the call to a file */
system(command);

/* open the file */

ifstream statusFile(MOUNT_HOME_FILE);

if(statusFile.is_open())

{
/* for this command, we only need to read the first line of the file */
statusFile.getline(filelnput, FILE_INPUT_LEN);

/* test for the "success" indicator */
if(Istremp(Filelnput, MOUNT_HOME_SUCCESS))
errStatus = 0; // successful!

/* done with file, closeit */
statusFile.close();

}

else

/* couldn®t open the file, assume command was unsuccessful */
cerr << "Couldn®"t home mount." << endl;

}

/* cleanup */
free(command);
free(filelnput);

return errStatus;

int MountCtrl: :parkAndDisconnectMount()
{
/* don"t try to park if not connected */
if('mountReady)
return 1;

/* error status */
int errStatus;
errStatus = 1; // 1 = error

/* allocate memory for our command string */
char* command;
command = (char *)malloc(MAX_COMMAND_LEN);

/* allocate memory for reading the status file */
char* filelnput;

filelnput = (char *)malloc(FILE_INPUT_LEN);
memset(Ffilelnput, O, FILE_INPUT_LEN);

/* generate the system command */
sprintf_s(command,
MAX_COMMAND_LEN,
“cscript //nologo %s > %s\0",
MOUNT_PARKDISCONNECT_SCRIPT,
MOUNT_PARKDISCONNECT_FILE);

/* call the VBscript to connect to the mount */

/* the script will write the status of the call to a file */
system(command);

/* open the file */

ifstream statusFile(MOUNT_PARKDISCONNECT FILE);

if(statusFile.is_open())

/* for this command, we only need to read the first line of the file */
statusFile.getline(filelnput, FILE_INPUT_LEN);

/* test for the "success" indicator */

133

ifT(Istremp(filelnput, MOUNT_PARKDISCONNECT_SUCCESS))
{

errStatus = 0; // successful!
mountReady = false;

}

/* done with file, closeit */
statusFile.close();

}

else

/* couldn®"t open the file, assume command was unsuccessful */
cerr << "Couldn®"t park and disconnect mount." << endl;

}

/* cleanup */
free(command);
free(filelnput);

return errStatus;

}

int MountCtrl::slewTo(int azDeg, int azMin, float azSec,
int altDeg, int altMin, float altSec)
{

/* don"t try to slew if not connected */
if('mountReady)
return 1;

/* error status */
int errStatus;
errStatus = 1; // 1 = error

/* allocate memory for our command string */
char* command;
command = (char *)malloc(MAX_COMMAND_LEN);

/* allocate memory for reading the status file */
char* filelnput;

filelnput = (char *)malloc(FILE_INPUT_LEN);
memset(filelnput, O, FILE_INPUT_LEN);

/* generate the system command */
sprintf_s(command,
MAX_COMMAND_LEN,
"cscript //nologo %s %I %1 %2.1F %I %i %2.1F > %s\0",
MOUNT_SLEWTO_SCRIPT,
azDeg,
azMin,
azSec,
altDeg,
altMin,
altSec,
MOUNT_SLEWTO_FILE);

/* call the VBscript to connect to the mount */
/* the script will write the status of the call to a file */
system(command);

/* open the file */

ifstream statusFile(MOUNT_SLEWTO_FILE);

if(statusFile.is_open())

{
/* for this command, we only need to read the first line of the file */
statusFile.getline(filelnput, FILE_INPUT_LEN);

/* test for the "success" indicator */
if(Istremp(filelnput, MOUNT_SLEWTO_SUCCESS))
errStatus = 0; // successful!

/* done with file, closeit */

134

statusFile.close();

}

else

/* couldn®t open the file, assume command was unsuccessful */
cerr << "Couldn®"t slew mount." << endl;

}

/* cleanup */
free(command);
free(filelnput);

return errStatus;

int MountCtrl::abortOperation()
{
/* don"t try to park if not connected */
if('mountReady)
return 1;

/* error status */
int errStatus;
errStatus = 1; // 1 = error

/* allocate memory for our command string */
char* command;
command = (char *)malloc(MAX_COMMAND_LEN);

/* allocate memory for reading the status file */
char* filelnput;

filelnput = (char *)malloc(FILE_INPUT_LEN);
memset(filelnput, O, FILE_INPUT_LEN);

/* generate the system command */
sprintf_s(command,
MAX_COMMAND_LEN,
“cscript //nologo %s > %s\0",
MOUNT_ABORT_SCRIPT,
MOUNT_ABORT_FILE);

/* call the VBscript to connect to the mount */
/* the script will write the status of the call to a file */
system(command);

/* open the file */

ifstream statusFile(MOUNT_ABORT_FILE);

if(statusFile.is_open())

{
/* for this command, we only need to read the first line of the file */
statusFile.getline(filelnput, FILE_INPUT_LEN);

/* test for the "success" indicator */
iT(Istremp(filelnput, MOUNT_ABORT_SUCCESS))
{

errStatus = 0; // successful!
mountReady = false;

}

/* done with file, closeit */
statusFile.close();

}

else

/* couldn"t open the file, assume command was unsuccessful */
cerr << "Couldn®t abort operation."” << endl;

}

/* cleanup */
free(command);

135

free(filelnput);

return errStatus;

}

PosUpdate* MountCtrl::getPosition()
{
/* don"t try to park if not connected */
if('mountReady)
return O;

/* error status */
int errStatus;
errStatus = 1; // 1 = error

/* allocate memory for our command string */
char* command;
command = (char *)malloc(MAX_COMMAND_LEN);

/* allocate memory for reading the status file */
char* filelnput;

filelnput = (char *)malloc(FILE_INPUT_LEN);
memset(filelnput, 0, FILE_INPUT_LEN);

/* generate the system command */
sprintf_s(command,
MAX_COMMAND_LEN,
"cscript //nologo %s > %s\0",
MOUNT_GETPOSITION_SCRIPT,
MOUNT_GETPOSITION_FILE);

/* call the VBscript to connect to the mount */
/* the script will write the status of the call to a file */
system(command);

/* open the file */

ifstream statusFile(MOUNT_GETPOSITION_FILE);

iT(statusFile.is_open())

{
/* for this command, we only need to read the first line of the file */
statusFile_getline(filelnput, FILE_INPUT_LEN);

/* test for the "success'" indicator */
if(strcmp(filelnput, MOUNT_GETPOSITION FAILURE))

errStatus = 0O;

char* temp;

int i;

temp = Filelnput;

i=0;

/* replace the delimeters with NULL for easier extraction of numbers */
while(*(temp + 1) I= "\0")

if(*(temp + i) == ";")
*(temp + i) = "\0";
i++;

}

/* get data */

temp = filelnput;

temp = strchr(temp, "=");
currentPosition.azid = atoi(temp+1);
while(*(temp++) 1= "\0");

temp = strchr(temp, "=");
currentPosition.azim = atoi(temp+1);
while(*(temp++) I= *\0");

temp = strchr(temp, "=");
currentPosition.azis = (float)atoi(temp+1);
while(*(temp++) I= "\0");

136

temp = strchr(temp, "=");

currentPosition.altd = atoi(temp+1);

while(*(temp++) I= *\0");
temp = strchr(temp, "=");

currentPosition.altm = atoi(temp+1);

while(*(temp++) I= "\0");

temp = strchr(temp, "=");

currentPosition.alts = (float)atoi (temp+1);

}

/* done with file, closeit */
statusFile.close();

}

else

/* couldn"t open the file, assume command was unsuccessful */
cerr << "Couldn®t abort operation."” << endl;

}

/* cleanup */
free(command);
free(Filelnput);

if(errStatus)
return 0O;
else
return ¤tPosition;

int MountCtrl::setFailureStatus()
{

operationFailed = true;
return O;

}

bool MountCtrl::testAndClearFailedStatus()

{
if(operationFailed)
{

operationFailed = false;
return true;

}

return false;

}

Observation.h

#ifndef OBSERVATION_
#define OBSERVATION_

/ INCLUDES
#include "OpticsCtrl_h"

#include ""CamCtrl.h"

#include "MountCtrl.h"

#include “"XmINode.h"

#include <fstream>

#include "lodepng.h™

#include <windows.h>

using namespace std;

/ DEFINES

/* buffer lengths */
#define PARAM_BUF_LEN 1024

137

#define RET_MSG_LEN 256
#define FILTER_SEQ LEN 256

#define QUIT_MSG

"QUIT\\n\0"

/* xml configuration */

#define MOUNT_XML_HEAD_TAG
#define CAM_XML_HEAD_TAG

"mountStatus\0"
""camStatus\0"

#define MOUNT_XML_FI[E_NAME "mountStatus.xml"

// headers for XML file
/7
// mount xml filename

optics connected to COM1

/* choose the appropriate camera xml filename */
#ifdef _WACAM

#define CAM_XML_FILE_NAME "wacamStatus.xml"
#else

#define CAM_XML_FILE_NAME " \\telecamStatus.xml"
#endif

#define TIME_DELIM ":* // hh:mm:ss
#define ALT_AZIl _DELIM ":* // d:m:s

#define OPTICS_COM_PORT 1 //

#define PNG_W 512 // PNG image wid
#define PNG_H 512 // PNG image hei
#define PNG_WHITE_CUTOFF 0x02 // PNG high-byte

#ifdef _WACAM
#define
#define
#else

#define
#define
#endif

#define
#define

#define
#define

#define
#define

#define

IMAGE_CAM_BASE_PATH "wide/\0"
FILENAME_PREFIX *'WIDEFOV\O"

IMAGE_CAM_BASE_PATH "'tele/\0"
FILENAME_PREFIX "TELE\O"

IMAGE_PNG_EXTENSION "*png\0""
IMAGE_PNG_BASE_PATH "'png/\0"

FILENAME_LEN 128

/

/* observation

struct obsTime
int hours;
int minutes;
int seconds;

};

typedef struct

/* mount alt/azi

time struct */

{

obsTime ObsTime;

struct */

struct mntPosition {

int degrees;
int minutes;
int seconds;
}:
typedef struct

TYPEDEF

WINVIEW_HEADER_FILENAME “‘winview_header"
WINVIEW_HEADER_SIZE 4100 // number of bytes in winview header file

IMAGE_WINVIEW_EXTENSION *'spe\0"
IMAGE_WINVIEW_BASE_PATH "winview/\0"

th
ght
cutoff for white

mntPosition MntPosition;

/

class Observation

{
public:

Observation();

Viaiad

* A constructor.

*

OBSERVATION CLASS

Initializes class member variables.

138

* INPUT

* none

* RETURNS
* nothing
*/

int initializeObs();
/**

* Write me.

*/

char* processCommand(char* cmd);

/**

* Consumes a command and redirects it to the correct function. If the
command is valid, a return message is relayed from the called sub-function
to the caller of this function. If the command is not valid, an "invalid
command® string is returned. The commands received are not case-sensitive.

*
*
*
*
* INPUT

* cmd - The command to be processed. Must be a cstring in the following

* format: ‘“param=value\r....\0". Everything between the first "\r"

* and the first "\0" is ignored.

* RETURNS

* Cstring containing information about the status of the processed command,
* or an invalid command string if unable to process given command.

*/

int connectopt();
/**

* Not yet.

*/

int connectCam();
/**

* Not yet.

*/

int connectMount();
/**

* Not yet.

*/

char* optSetShutter(char* value);
/**
* Sets the optics shutter to the given state. if an invalid state is

* specified, nothing is done and an invalid command string is returned.

*

* INPUT

* value - string containing the new state of the shutter. Must be one of
* the following:

* "OPEN" to open the shutter

* "CLOSE™ to close the shutter

* anything else is invalid. These are case sensitive.

* RETURNS

*

Cstring describing the current state of the hardware.
*/

char* optSetFilter(char* value);
/**

* Not yet.

*/

139

char* invalidCommand(char* value);
/**

* Not yet.

*/

char* optConnect(char* value);
/**

* Not yet.

*/

char* obsStart(char* value);
/**

* Not yet.

*/

char* obsStartTime(char* value);
/**

* Not yet.

*/

char* obsStopTime(char* value);
/**

* Not yet.

*/

char* getObsInProgressMsg();
/**

*

*/

char* camConnect(char* value);
char* camAdcRate(char* value);
char* camexpTime(char* value);

char* mntConnect(char* value);
char* mntHome(char* value);
char* mntAzi(char* value);
char* mntAlt(char* value);
char* mntSlew(char* value);
char* mntAbort(char* value);

bool isObsStartRequested();
bool isObsStopRequested();
bool isObslInProgress();
ObsTime getStartTime();
ObsTime getStopTime();

void clearObsStopRequest();
void clearObsStartRequest();
void clearObsInProgress();
char* getFilterSequence();

int Observation_setNextFilter();

int Observation_resetFilterSequence();

int Observation_getCameraTemperature();

int Observation_periodicXmlUpdate(int filter, int temp);

unsigned int Observation_acquirelmage(unsl6** image);

int Observation_openWinviewFile(char* filepath, char* filename);

int Observation_appendImageToWinviewFile(unsl6* image, Int size);

int Observation_closeWinviewFile();

int Observation_writelmageToPng(unsl6* image, int size, char* filepath, char* filename);

int Observation_xmlUpdateFilePath(char* filepath, char* filename);

int Observation_generateFilename(time_t* currentTime, char* filename, int currentFilter, const
char* extension);

int Observation_generateFilepath(time_t* currentTime, char* filepath, const char*
filetypeBasePath);

int getMountOpType();

bool isMountOpInProgress();
bool isMountOpStartRequested();
int clearMountOplInProgress();

140

OpticsCtri* getOptics(Q;
CamCtrl* getCamera();
MountCtrl* getMount();

MntPosition getAltitude();
MntPosition getAzimuth();

bool positionTimer();
int updateXmlPosition(PosUpdate* pos);
int updateXmlTemperature();

private:

/* hardware control objects */
OpticsCtrl* optics;

CamCtri™* cam;

MountCtrl* mnt;

/* hardware connected */
bool optReady;

bool camReady;

bool mountReady;

/* observation flags */
bool obslInProgress;
bool obsStartRequest;
bool obsStopRequest;

/* mount operation flags */
bool mountOplInProgress;
bool startMountOp;

int mountOpType;

/* xml file generation */
XmIFields xmlFields;
XmINode* mountStatus;
XmINode* camStatus;

/* winview file generation */
fstream winviewFile;

/* settings for filename */
char* myAdcRate;
int myExposureTime;

/* string containing sequence of filters to use */
char* filterSequence;

int filterSequencelndex;

int currentFilter;

/* observation start and stop times */
ObsTime startTime;
ObsTime stopTime;

/* azi / alit */
MntPosition azimuth;
MntPosition altitude;

/* position timer */
long lastPositionUpdate;

/ TYPEDEFS /
// declared here because the class must be defined first

/* pointer to member function of Observation: fPtr */
typedef char* (Observation::*fPtr)(char¥*);

141

/* lookup struct containing command and function ptr */
struct lookup {
char* id;
fPtr func;
}:
typedef struct lookup Lookup;

#endif

Observation.cpp

#include "Observation.h"
using namespace std;
/* init lookup table */

#define LOOKUPTABLE_LEN 16
Lookup lookupTable[LOOKUPTABLE_LEN] =

{
/* general */
{ "INVALID" , &0Observation::invalidCommand },//x
/* optics */
{ "OPTCONNECT\O" , &Observation: :optConnect }.//x
{ "OPTSHUTTER\O" , &Observation::optSetShutter },//x
{ "OPTFILTER\O" , &Observation::optSetFilter }.//x

/* camera */

{ ""CAMCONNECT\O"
{ "CAMEXPTIME\O"
{ ""CAMADCRATE\O"

, &Observation::camConnect },//x T/F
, &0Observation::camExpTime },//x sec/ms?
, &Observation::camAdcRate },//x FAST/SLOW

/* observation */

{ "OBSSTARTTIMEN\O" , &Observation::obsStartTime },// hh:mm:ss
{ "OBSSTOPTIMEN\O" , &Observation::obsStopTime },// hh:mm:ss
{ "OBSSTART\O" , &Observation::obsStart },// T/F
/* mount */
{ ""MNTCONNECT\O" , &Observation::mntConnect },// T/F
{ "MNTHOME\O" , &Observation::mntHome },// T
{ "MNTAZI\O" , &0Observation::mntAzi },// deg:min:sec
{ "MNTALT\O" , &0Observation::mntAlt },// deg:min:sec
{ "MNTSLEWTO\O™" , &Observation::mntSlew },// T
{ "MNTABORT\O" , &Observation::mntAbort } // T
}:
Observation: :Observation()
{
/* hardware control objects */
cam = new CamCtrl();
optics = new OpticsCtrl();
mnt = new MountCtrl();

/* no observations iIn progress */

obsInProgress = false;
obsStartRequest = false;
obsStopRequest = false;
startTime.seconds = -1;
startTime.minutes = -1;
startTime.hours = -1;
stopTime.seconds = -1;
stopTime.minutes = -1;
stopTime.hours = -1;

/* no mount operations in progress */

mountOpInProgress

= false;

startMountOp = false;
mountOpType = MOUNT_INVALID_TYPE;

altitude.degrees

= _1;

142

altitude.minutes = -1;
altitude.seconds = -1;
azimuth.degrees = -1;
azimuth.minutes = -1;
azimuth.seconds = -1;

filterSequencelndex = 1;

FfilterSequence = (char *)malloc(FILTER_SEQ_LEN);
myAdcRate = (char *)malloc(8);

memset(filterSequence, "\0°, FILTER_SEQ LEN);
memset(myAdcRate, “"\0°, 8);

strcpy_s(myAdcRate, 8, "NONE\O");
myExposureTime = O;

lastPositionUpdate = O;

int Observation::initializeObs()

{

#ifdef _WACAM
/* mount XML file */
xmlFields.mntStatus = NULL;
mountStatus = new XmINode(MOUNT_XML_HEAD TAG, &(xmlFields.mntStatus));
mountStatus->initializeMntTree(xmlFields);
mountStatus->printTree(MOUNT_XML_FILE_NAME);
#endif

/* camera XML File */

xmlFields.camStatus = NULL;

camStatus = new XmINode(CAM_XML_HEAD _TAG, &(xmlFields.camStatus));
camStatus->initializeCamTree(xmlFields);

camStatus->printTree(CAM_XML_FILE_NAME);

return O;

}

bool Observation::isObsStartRequested()

{
if (obsStartRequest)

obsStartRequest = false;
return true;

}

else
return false;

bool Observation::isObslInProgress()

return obsInProgress;

}

bool Observation::isObsStopRequested()
return obsStopRequest;

ObsTime Observation::getStartTime()
{

return startTime;

}

ObsTime Observation::getStopTime()
{

return stopTime;

}

143

void Observation::clearObsStopRequest()

obsStopRequest = false;
}

void Observation::clearObsStartRequest()
obsStartRequest = false;
void Observation::clearObslInProgress()
obsInProgress = false;
/* update XML file */
sprintf_s(xmlFields.camInProgress, XML_VALUE_LEN, "FALSE\O");
camStatus->printTree(CAM_XML_FILE_NAME);

char* Observation: :processCommand(char* cmd)

{
/* declarations */
char* equalslLoc; // location of first "=" in string
char* crlLoc; // location of first *“\r" in string
char* retMsg; // return message to caller;

char* param = (char*)malloc(PARAM_BUF_LEN); // command parameter
char* value = (char*)malloc(PARAM_BUF_LEN); // command value
int i, id;

memset(param, “\0", PARAM_BUF_LEN);
memset(value, "\0", PARAM_BUF_LEN);

/* convert the entire command to uppercase */

i =0;
while(*(cmd+i))

*(cmd + i) = toupper(*(cmd + i));
i++;

}

/* test for quit first */
if (Istrcmp(cmd, QUIT_MSG))
return O;

/* find the "=" in the string */
if ((equalsLoc = strchr(cmd, "=)) == NULL)
{

/* not found */

/* call subfunction, get invlid command message */
retMsg = (*this.*(lookupTable[0]-func))(value);

/* cleanup */
free(param);
free(value);

/* relay message to caller */
return retMsg;

}

/* find the "\r" in the string */
if ((crLoc = strchr(cmd, “\r®)) == NULL)

/* not found */

/* call subfunction, get invlid command message */
retMsg = (*this.*(lookupTable[0]-func))(value);

/* cleanup */
free(param);
free(value);

/* relay message to caller */

144

return retMsg;

}

/* extract the parameter name */
strncpy_s(param, PARAM_BUF_LEN, cmd, equalsLoc - cmd);

/* cmd now points after "=" */
cmd = equalsLoc + 1;

/* extract the value */
strncpy_s(value, PARAM_BUF_LEN, cmd, crLoc - cmd);

/* find the param id */
id = 0;
for(i = 1; i < LOOKUPTABLE_LEN; i++)
if(Istremp(lookupTable[i]-id, param))

id = i;
break;

}

/* call subfunction, get return message */
retMsg = (*this.*(lookupTable[id].-func))(value);

/* cleanup */
free(param);
free(value);

/* relay message to caller */
return retMsg;

}
char* Observation: :getFilterSequence()
{
return filterSequence;
}
char* Observation::invalidCommand(char* value)
{

char* retMsg;
retMsg = (char *)malloc(RET_MSG_LEN);

sprintf_s(retMsg, RET_MSG_LEN, "Invalid command.\r\n\0");

return retMsg;

¥
char* Observation: :getObsInProgressMsg()
{ char* retMsg;
retMsg = (char *)malloc(RET_MSG_LEN);
sprintf_s(retMsg, RET_MSG_LEN, "Observation in progress.\r\n\0");

return retMsg;

3
char* Observation::optConnect(char* value)
{

/* if an observation is in progress... */

if (obsInProgress)
/* ignore the command */
return getObslInProgressMsg(Q);

char* retMsg ; // return message to the caller
int state;
enum {
CONNECTED, // - connect optics
DISCONNECTED, // - disconnect optics
INV // - invalid command

145

¥

retMsg = (char *)malloc(RET_MSG_LEN);
state = INV; // assume invalid state

/* if the request was to connect */
if(Istrcmp(value, "TRUENO"))

/* now connected */
state = CONNECTED;

/* Don"t communicate with hardware if debugging */
#ifndef _NOHARDWARE

/* open connection (COM 1)*/

optics->open(OPTICS_COM_PORT);

/* home filter wheel */

optics->setPosition(1);

/* close shutter */

optics->setShutter(0);

/* optics are now “homed® */
#endi T

/* if the request was to disconnect */
else if(Istrcmp(value, "FALSE\O"))

{
state = DISCONNECTED;

#ifndef _NOHARDWARE
/* close connection */
optics->close();
#endif

}

/* select the appropriate return message */
switch (state)

{

case CONNECTED:
/* Optics connected */
sprintf_s(retMsg, RET_MSG_LEN, "Optics connected and homed.\r\n\0");
/* update XML file */
sprintf_s(xmlFields.camOptConnectedState, XML_VALUE_LEN, "TRUE\O");
sprintf_s(xmlFields.camShutterState, XML_VALUE_LEN, "'CLOSED\O");
sprintf_s(xmlFields.camFilterState, XML_VALUE_LEN, "1\0");
camStatus->printTree(CAM_XML_FILE_NAME);
break;

case DISCONNECTED:
/* optics disconnected */
sprintf_s(retMsg, RET_MSG_LEN, "Optics disconnected.\r\n\0");
/* update XML Ffile */
sprintf_s(xmlFields.camOptConnectedState, XML_VALUE_LEN, "FALSE\O");
camStatus->printTree(CAM_XML_FILE_NAME);
break;

default:
sprintf_s(retMsg, RET_MSG_LEN, *"Invalid command.\r\n\0");
break;

}

cerr << retMsg;
/* return the message */
return retMsg;

char* Observation::optSetShutter(char* value)

{

146

/* if an observation is in progress... */
if (obsInProgress)

/* ignore the command */
return getObslInProgressMsg(Q);

/* declarations */

char* retMsg; // return message to caller
int state;
enum{
OPEN, // -shutter open state
CLOSED, // -shutter closed state
INV // -invalid shutter state specified
}:

/* initialization */

retMsg = (char *)malloc(RET_MSG_LEN); // allocate space for them message
state = INV; // assume invalid state at first

/* if we are debugging the program... */
#ifdef _NOHARDWARE

/* L.

/* test for "OPEN" argument first */
if (Istremp(value, "OPEN\O"))

}

/* select the appropriate shutter state message */

state = OPEN;

/* then test for CLOSE */

el

se if (Istrcmp(value, "CLOSE\O™))

/* select the appropriate shutter state message */

state = CLOSED;

/* neither found */

el

se

/* select the appropriate shutter state message */

state = INV;

b
/* we are not debugging... */
#else
/* ... communicate with hardware */

/* test for "OPEN" argument first */
if (!strcmp(value, "OPEN\O"))

/* if the "open shutter® returns “opened”...

if(optics->setShutter(l) == 1)
/* select the appropriate shutter state
state = OPEN;

/* the shutter was not opened... */

else
/* select the appropriate shutter state
state = CLOSED;

s
/* then test for CLOSE */

el

{

se if (Istrcmp(value, ""CLOSE\O™))

/* if the "close shutter® command returns
if(optics->setShutter(0) == 0)
/* select the appropriate shutter state
state = CLOSED;
/* the shutter was not closed... */
else
/* select the appropriate shutter state
state = OPEN;

/* neither found */

el

se

*/

message */

message */

“closed”...

message */

message */

don"t attempt to communicate with the hardware */

*/

147

/* select the appropriate shutter state message */
state = INV;

T
#endif

switch(state)

{

case OPEN:
sprintf_s(retMsg, RET_MSG_LEN, *"Shutter state: OPEN.\r\n\0");
/* update XML Ffile */
sprintf_s(xmlFields.camShutterState, XML_VALUE_LEN, "OPEN\O");
camStatus->printTree(CAM_XML_FILE_NAME);
break;

case CLOSED:
sprintf_s(retMsg, RET_MSG_LEN, "Shutter state: CLOSED_-\r\n\0");
/* update XML file */
sprintf_s(xmlFields.camShutterState, XML_VALUE_LEN, "CLOSED\O");
camStatus->printTree(CAM_XML_FILE_NAME);
break;

default:
sprintf_s(retMsg, RET_MSG_LEN, "Invalid shutter state.\r\n\0");
break;

}

cerr << retMsg;
/* return the message */
return retMsg;

char* Observation::optSetFilter(char* value)

{

/* The input can either be a single digit, such as "1™ or an

* array of digits such as "[2,5,1,...n]". First we"ll check for
* a single digit, and then for the array.

*/

/* if an observation is in progress... */
if (obsInProgress)

/* ignore the command */

return getObslInProgressMsg(Q);

/* declartions */

int FfilterPos; // current FTilter position
int maxFilters; // max number of filters allowed per observation
char* retMsg; // return message to caller
int state; // state used to select return message
enum {
ONE_FILT, // -one filter specified state
FILT_SEQ, // -filter sequence state
INV // -invalid input state
}:
/* init */
maxFilters = 6; // six Tilters allowed per observation
filterPos = 0; // start out with an invalid filter position
state = INV; // assume invalid state

retMsg = (char *)malloc(RET_MSG_LEN); // allocate space for them message

/* check for a digit first */

if (*value >= "0" && *value <= "9")

{
/* digit found, one filter change is assumed */
state = ONE_FILT;

/* read the new filter position from the argument */
filterPos = *value - 0x30;

148

/* no sequence detected, clear the sequence */
memset(filterSequence, "\O", FILTER_SEQ_LEN);

/* copy the single filter into the sequence */
*filterSequence = *value;

/* if we are not debugging... */

#ifndef _NOHARDWARE
/* ...attempt to set the filter wheel position */
filterPos = optics->setPosition(filterPos);

#endi f

}

/* no digit found, check for "[* */

else if(*value == "[")

{
/* possible sequence found, cycle through the array and check each value */
int i; // iteration variable
char* temp; // ptr to current position in input array,
temp = value + 1; // skip "[" and start at first digit

for(1 = 0; 1 < maxFilters; i++)

/* if we find a digit... */
if (*temp >= "0" && *temp <= "9%)

temp++;
/* followed by a *," ... */
if (*temp == *,")
temp++;
/* then we have a valid entry, proceed to the next */
}
/* or followed by a "]° ... */
else if(*temp == "]°)
{

/* we have a valid sequence of filter numbers */
state = FILT_SEQ;

/* null terminate the string */
*(temp+l) = "\0";

/* set the sequence */
strcpy_s(filterSequence, FILTER_SEQ LEN, value);

/* extract first filter setting */
filterPos = *(value + 1) - 0x30;

/* if we are not debugging... */
#ifndef _NOHARDWARE
/* _._.attempt to set the filter wheel position (first in seq) */
filterPos = optics->setPosition(FilterPos);
#endift
/* stop searching */
i = maxFilters + 1;

/* invalid entry */
else
/* stop searching */
i = maxFilters + 1;

/* invalid entry */
else
/* stop searching */
i = maxFilters + 1;

149

/* choose the correct return message using the state */
switch (state)

{
case ONE_FILT:
/* one fTilter, no sequence */
sprintf_s(retMsg,
RET_MSG_LEN,
"Filter set to: %i.\r\nNo filter sequence specified_-\r\n\0",
filterPos
);
cerr << retMsg;
/* update XML File */
sprintf_s(xmlFields.camFilterState, XML_VALUE_LEN, "%i\0", filterPos);
camStatus->printTree(CAM_XML_FILE_NAME);
break;

case FILT_SEQ:
/* sequence */
sprintf_s(retMsg,
RET_MSG_LEN,
"Filter set to: %i.\r\nFilter sequence specified: %s.\r\n\0",
filterPos,
filterSequence
):
cerr << retMsg;
/* update XML file */
sprintf_s(xmlFields.camFilterState, XML_VALUE _LEN, "%i\0", filterPos);
camStatus->printTree(CAM_XML_FILE_NAME);
break;

defaul t:
/* bad command */
sprintf_s(retMsg,
RET_MSG_LEN,
“Invalid filter/sequence specified.\r\n\0o"
)
cerr << retMsg;

}

cerr << retMsg;
/* return the message */
return retMsg;

¥
char* Observation::obsStart(char* value)
{
char* retMsg ; // return message to the caller
int state;
enum {
START, // - start observation
STOP, // - stop observation
ALREADY_IN_PROG, // - observation already in progress
NOT_IN_PROG, // - observation not in progress
INV // - invalid command
}:
retMsg = (char *)malloc(RET_MSG_LEN);
state = INV; // assume invalid state

/* if the request was to start an observation */
if(Istremp(value, "TRUENO™))
{

/* if an observation is not in progress... */
if('obsInProgress)
{

/* signal the start of an observation */
state = START;

obsStartRequest = true;

obsInProgress = true;

/* if one is already in progress, notify the user */

150

else
{

state = ALREADY_IN_PROG;
b

/* if the request was to stop the observation*/
else if(Istremp(value, "FALSE\NO"))
{
/* if an observation is in progress */
if(obsInProgress)
{
/* set the state */
state = STOP;
/* request to stop it */
obsStopRequest = true;

3
/* if one is not currently in progress, notify the user */
else
{
state = NOT_IN_PROG;
}

}

/* select the appropriate return message */
switch (state)

{

case START:
/* Observation start requested */
sprintf_s(retMsg, RET_MSG_LEN, "Observation started.\r\n\0");
/* update XML file */
sprintf_s(xmlFields.camInProgress, XML_VALUE LEN, "TRUE\O");
camStatus->printTree(CAM_XML_FILE_NAME);
break;

case ALREADY_IN_PROG:
/* Observation start requested, but one is already in progress */
sprintf_s(retMsg, RET_MSG_LEN, "Observation already in progress.\r\n\0")
break;

case STOP:
/* Observation stop requested */
sprintf_s(retMsg, RET_MSG_LEN, "Halting observation.\r\n\0");
break;

case NOT_IN_PROG:
/* Observation stop requested, but no observation is running */
sprintf_s(retMsg, RET_MSG_LEN, *"No observation in progress.\r\n\0");
break;

default:
sprintf_s(retMsg, RET_MSG_LEN, *"Invalid command_-\r\n\0");
break;

}

cerr << retMsg;
/* return the message */
return retMsg;

char* Observation::camAdcRate(char* value)
{
/* if an observation is in progress... */
if (obsInProgress)
/* ignore the command */
return getObslInProgressMsg(Q);

char* retMsg ; // return message to the caller
int state; // i1 forget
enum {

FAST, // - fTast rate

151

SLOW, // - slow rate

INV // - invalid command
¥
retMsg = (char *)malloc(RET_MSG_LEN);
state = INV; // assume invalid state
/* fast */

if(Istremp(value, "FAST\O™))

/* now connected */
state = FAST;
strcpy_s(myAdcRate, 8, value);

#ifndef _NOHARDWARE
cam->setAdcRate(ADC_FAST);
#endif

/> slow */
else if(!strcmp(value, "SLOW\O"™))
{

/* now connected */

state = SLOW;

strcpy_s(myAdcRate, 8, value);

#ifndef _NOHARDWARE
cam->setAdcRate(ADC_SLOW);
#endif
3

/* select the appropriate return message */
switch (state)

{

case FAST:
/* fast */
sprintf_s(retMsg, RET_MSG_LEN, "Camera ADC rate set to FAST.\r\n\0");
break;

case SLOW:
/* slow */
sprintf_s(retMsg, RET_MSG_LEN, "Camera ADC rate set to SLOW.\r\n\0");
break;

defaul t:
sprintf_s(retMsg, RET_MSG_LEN, "Invalid command.\r\n\0");
break;

}

cerr << retMsg;
/* return the message */
return retMsg;

b
char* Observation::camConnect(char* value)
{

/* if an observation is in progress... */

if (obsInProgress)
/* ignore the command */
return getObsInProgressMsg(Q);

char* retMsg ; // return message to the caller
int state;
enum {

CONNECTED,

DISCONNECTED,

INV

¥

retMsg = (char *)malloc(RET_MSG_LEN);
state = INV; // assume invalid state

152

/* connect */
if(Istremp(value, "TRUENO™))

/* now connected */
state = CONNECTED;

#ifndef _NOHARDWARE

cam->connectCam();

#endif

/* disconnect */
else if(Istrcmp(value, "FALSE\O"))

/* not connected */
state = DISCONNECTED;

#ifndef _NOHARDWARE

cam->disconnectCam();

#endif

}

/* select the appropriate return message */
switch (state)

{
case CONNECTED:
sprintf_s(retMsg, RET_MSG_LEN, *‘Camera connected.\r\n\0");
/* update XML Ffile */
sprintf_s(xmlFields.camConnectedState, XML_VALUE_LEN, "TRUE\O");
camStatus->printTree(CAM_XML_FILE_NAME);
break;

case DISCONNECTED:
sprintf_s(retMsg, RET_MSG_LEN, "Camera disconnected.\r\n\0");
/* update XML file */
sprintf_s(xmlFields.camConnectedState, XML_VALUE_LEN, "FALSE\O");
camStatus->printTree(CAM_XML_FILE_NAME);
break;

default:
sprintf_s(retMsg, RET_MSG_LEN, "Invalid command.\r\n\0");
break;

}

cerr << retMsg;
/* return the message */
return retMsg;

char* Observation::camExpTime(char* value)

/* if an observation is in progress... */
if (obsInProgress)

/* ignore the command */

return getObslInProgressMsg(Q);

char* retMsg ; // return message to the caller
int state;
int temp;
enum {
VALID, // valid input
INV // invalid
}:
retMsg = (char *)malloc(RET_MSG_LEN);
state = INV; // assume invalid state

/* convert the number */
temp = atoi(value);
/* is i1t a valid number? */

153

if(temp > 0)
{

state = VALID;

myExposureTime = temp / 1000; // ms to sec
#ifndef _NOHARDWARE

cam->setExposureTime(temp);
#endif

}

/* select the appropriate return message */
switch (state)

{
case VALID:

sprintf_s(retMsg, RET_MSG_LEN, "Exposure time set to: %i.\r\n\0", temp);

break;

default:

sprintf_s(retMsg, RET_MSG_LEN, *“Invalid command_\r\n\0");

break;

}

cerr << retMsg;
/* return the message */
return retMsg;

char* Observation::mntConnect(char* value)

{
#ifndef _WACAM

return invalidCommand(value);
#endif

/* if an observation is in progress... */
if (obsInProgress)

/* ignore the command */

return getObslInProgressMsg(Q);

char* retMsg ; // return message to the caller

int state;

enum {
CONNECTED,
DISCONNECTED,
INV

¥

retMsg = (char *)malloc(RET_MSG_LEN);
state = INV; // assume invalid state

/> c */
if(Istremp(value, "TRUE\O™))
{

/* now connected */
state = CONNECTED;

#ifndef _NOHARDWARE
mountOpInProgress = true;
startMountOp = true;
mountOpType = MOUNT_CONNECT_TYPE;

#endif

}
/* d/c */
else if(Istrcmp(value, "FALSE\O"))

/* not connected */
state = DISCONNECTED;

#ifndef _NOHARDWARE
mountOplInProgress = true;
startMountOp = true;
mountOpType = MOUNT_PARK_TYPE;

154

#endif
3

/* select the appropriate return message */
switch (state)

{
case CONNECTED:
sprintf_s(retMsg, RET_MSG_LEN, "Mount connected_\r\n\0");
/* update XML file */
sprintf_s(xmlFields.mntSlewingState, XML_VALUE_LEN, "TRUE\O");
mountStatus->printTree(MOUNT_XML_FILE_NAME);
break;

case DISCONNECTED:
sprintf_s(retMsg, RET_MSG_LEN, "Parking and disconnecting mount.\r\n\0");
/* update XML Ffile */
sprintf_s(xmlFields.mntSlewingState, XML_VALUE_LEN, "TRUE\O");
mountStatus->printTree(MOUNT_XML_FILE_NAME);
break;

default:
sprintf_s(retMsg, RET_MSG_LEN, *“Invalid command_-\r\n\0");
break;

}

cerr << retMsg;
/* return the message */
return retMsg;

3
char* Observation::obsStartTime(char* value)
{
/* if an observation is in progress... */
if (obsInProgress)
/* ignore the command */
return getObslInProgressMsg(Q);
char* retMsg ; // return message to the caller
char* currentNumber; // string containing the current number
int state; // 1 forget
enum {
VALID, // - valid time specified
INV // - invalid command
}:

retMsg = (char *)malloc(RET_MSG_LEN);
currentNumber = (char *)malloc(RET_MSG_LEN);
state = INV; // assume invalid state

/* delimeter positions */
char *delimPosl, *delimPos2;
/* hours, minutes, seconds */
int h, m, s;

/* make sure the string consists of only digits and delimeters */
char* temp = value;
bool isvalid = true;
while(*temp = *\0")
if(lisdigit(*temp) && (*temp '= TIME_DELIM))
isvalid = false;
temp++;

}

if((delimPosl = strchr(value, TIME_DELIM)))
if((delimPos2 = strchr(delimPosl+1, TIME_DELIM)))

/* TODO: test for all numeric chars 1:a:1 will result in 1:0:1 */

/* attempt to extract the hours */

155

memset(currentNumber, O, RET_MSG_LEN);
strncpy_s(currentNumber, RET_MSG_LEN, value, (delimPosl - value));
h = atoi(currentNumber);

/* attempt to extract the minutes */

memset(currentNumber, O, RET_MSG_LEN);

strncpy_s(currentNumber, RET_MSG_LEN, delimPosl + 1, (delimPos2 - delimPosl));
m = atoi(currentNumber);

/* attempt to extract the seconds */

memset(currentNumber, 0, RET_MSG_LEN);

strncpy_s(currentNumber, RET_MSG_LEN, delimPos2 + 1, RET_MSG_LEN);
s = atoi(currentNumber);

/* validate values */
if(h >= 0 & h <= 23 && isvalid)
if(m>= 0 && m <= 59)
if(s >0 &% s <=59)
state = VALID;

if(state != VALID)
{

h=-1; m=-1; s = -1;
s

}

/* select the appropriate return message */
switch (state)

{
case VALID:
/* fast */
sprintf_s(retMsg, RET_MSG_LEN, "Observation start time set to %i:%i:%i.\r\n\0", h, m, s);
startTime.hours = h; startTime.minutes = m; startTime.seconds = s;
break;

default:
sprintf_s(retMsg, RET_MSG_LEN, "Invalid command_\r\n\0");
break;

}

cerr << retMsg;
/* return the message */
return retMsg;

3
char* Observation::obsStopTime(char* value)
{

/* if an observation is in progress... */

if (obsInProgress)
/* ignore the command */
return getObslInProgressMsg(Q);

char* retMsg ; // return message to the caller
char* currentNumber; // string containing the current number
int state; // 1 forget
enum {
VALID, // - valid time specified
INV // - invalid command
}:

retMsg = (char *)malloc(RET_MSG_LEN);
currentNumber = (char *)malloc(RET_MSG_LEN);
state = INV; // assume invalid state

/* delimeter positions */
char *delimPosl, *delimPos2;
/* hours, minutes, seconds */
int h, m, s;

156

/* make sure the string consists of only digits and delimeters */
char* temp = value;

bool isvalid = true;

while(*temp = *\0")

{
if(lisdigit(*temp) && (*temp != TIME_DELIM))
isvalid = false;
temp++;
3

if((delimPosl = strchr(value, TIME_DELIM)))
if((delimPos2 = strchr(delimPosl+1, TIME_DELIM)))

/* attempt to extract the hours */

memset(currentNumber, O, RET_MSG_LEN);

strncpy_s(currentNumber, RET_MSG_LEN, value, (delimPosl - value));
h = atoi(currentNumber);

/* attempt to extract the minutes */

memset(currentNumber, O, RET_MSG_LEN);

strncpy_s(currentNumber, RET_MSG_LEN, delimPosl + 1, (delimPos2 - delimPosl));
m = atoi(currentNumber);

/* attempt to extract the seconds */

memset(currentNumber, 0, RET_MSG_LEN);

strncpy_s(currentNumber, RET_MSG_LEN, delimPos2 + 1, RET_MSG_LEN);
s = atoi(currentNumber);

/* validate values */
ifC h >= 0 & h <= 23 && isValid)
if(m>= 0 && m <= 59)
if(s >0 &% s <=59)
state = VALID;

if(state != VALID)
{

}
}

/* select the appropriate return message */
switch (state)

h=-1; m=-1; s = -1;

{
case VALID:
/* valid */
sprintf_s(retMsg, RET_MSG_LEN, '"Observation stop time set to %i:%i:%i.\r\n\0", h, m, s);
stopTime.hours = h; stopTime.minutes = m; stopTime.seconds = s;
break;

defaul t:
sprintf_s(retMsg, RET_MSG_LEN, "Invalid command_\r\n\0");
break;

}

cerr << retMsg;
/* return the message */
return retMsg;

OpticsCtrl* Observation::getOptics()
{

return optics;

}

CamCtrl* Observation::getCamera()

{

return cam;

157

}

int Observation::Observation_setNextFilter()

{

int currentFilter;

/* are we using more than one filter? */
if(lisdigit(*filterSequence))
{

/* if so, extract the current filter */
currentFilter = *(filterSequence + filterSequencelndex) - 0x30;

/* are there any more left in the sequence? */
if(*(filterSequence + FilterSequencelndex + 1) == *,%)
/* yes, point to the next one */
filterSequencelndex += 2;
else
/* no, start over */
filterSequencelndex = 1;
3
else
/* just one fTilter is being used */
currentFilter = *filterSequence - 0x30;

#ifndef _NOHARDWARE

/* now change the filter */

currentFilter = optics->setPosition(currentFilter);
#endif

return currentFilter;

int Observation::Observation_resetFilterSequence()

filterSequencelndex = 1;
return O;
}

int Observation: :Observation_periodicXmlUpdate(int filter, int temp)

{

sprintf_s(xmlFields.camFilterState, XML_VALUE_LEN, "%i\0", filter);
sprintf_s(xmlFields.camCcdTempState, XML_VALUE_LEN, "%i\O", temp);

camStatus->printTree(CAM_XML_FILE_NAME);

return O;

}

int Observation::Observation_xmlUpdateFilePath(char* filepath, char* filename)

{

sprintf_s(xmlFields.camLastPicName, XML_VALUE_LEN, "%s\O0", filename);
sprintf_s(xmlFields.camLastPicPath, XML_VALUE_LEN, "%s\0", filepath);

camStatus->printTree(CAM_XML_FILE_NAME);

return O;

int Observation::Observation_getCameraTemperature()

return (int)cam->readTemp();

b

unsigned int Observation::Observation_acquirelmage(unsl6** image)
cam->takelmage();
*image = cam->getlLastlmage();
return cam->getlLastlmageByteSize();

3

int Observation: :Observation_openWinviewFile(char* filepath, char*

/* complete filename */

filename)

158

char* completePath;
completePath = (char *)malloc(FILENAME_LEN);

/* combine the path and name into one */
strcpy_s(completePath, FILENAME_LEN, filepath);
strcat_s(completePath, FILENAME_LEN, filename);

/* open the file in binary mode */
winviewFile.open(completePath, ios::binary | ios::out);

/* APPEND THE HEADER */
FILE* pFile;
char* header;

fopen_s(&pFile, WINVIEW_HEADER_FILENAME, "rb™);
header = (char *)malloc(WINVIEW_HEADER_SIZE);
fread(header, 1, WINVIEW_HEADER_SIZE, pFile);

header[42]
header[43]
header[656]
header[657]
header[108]
header[109]
header[1446]
header[1447]
header[1448]
header[1449]

OQOOFRPROWNONO

winviewFile.write(header, WINVIEW_HEADER_SIZE);

fclose(pFile);
free(header);
free(completePath);

return O;
3
int Observation::Observation_appendImageToWinviewFile(unsl6* image, int size)
{
winviewFile.write((char *) image, size);
return O;
3
int Observation::Observation_closeWinviewFile()
{
winviewFile.close();
return O;
3

int Observation::Observation_writelmageToPng(unsl6* image, int size, char* filepath, char*
filename)
{

/* complete filename */

char* completePath;

completePath = (char *)malloc(FILENAME_LEN);

/* combine the path and name into one */
strcpy_s(completePath, FILENAME_LEN, filepath);
strcat_s(completePath, FILENAME_LEN, filename);

int i, j, temp;

unsigned int* histogram;
int count;

unsigned short lowP, highP;

unsigned char* cPtr;

unsigned char* clmage;

clmage = (unsigned char*)malloc(PNG_W * PNG_H);
histogram = (unsigned int*)malloc(sizeof(int) * 256);
memset(histogram, 0, sizeof(int) * 256);

159

LodePNG: :Encoder encoder;

encoder . infoRaw.color.colorType
encoder . infoRaw.color.bitDepth
encoder . infoPng.color.colorType
encoder. infoPng.color.bitDepth

encoder .getSettings().-zlibsettings
encoder .getSettings().-zlibsettings
encoder.getSettings().zlibsettings

cPtr = (unsigned char*)image;
j=0;
for(1 = 0; 1 < size; i+=2)
/* if the high byte of the short
if(cPtr[i+1] > PNG_WHITE_CUTOFF
/* set the pixel to white */
clmage[j++] = 255;
else
/* if not just extract the low
clmage[j++] = cPtr[i];

/* populate the histogram */
for(i = 0; i < PNG_W * PNG_H; i++
histogram[clmage[i]]++;

/* calculate 5%, 95% */

i =1;
count = 0O;

I n
O o

.useLZ77 = true;
.windowSize = 32768;
.btype = 0;

is above our white cutoff level...

)

byte */

)

while(count < (PNG_W * PNG_H * 0.05))

{
IowP = i;
count += histogram[i++];
ifCi > 255)
{

lowP = 0;
break;
b
¥
i = 255;

count = 0;

while(count < (PNG_W * PNG_H * 0.05))

{
highP = 1;
count += histogram[i--];
if(i > 255)

highP = 255;
break;
3
3

/* apply the contrast change */
for(1 = 0; 1 < PNG_W * PNG_H; i++
{
if(clmage[i] > highP)
clmage[i] = 255;
else if(clmage[i] < lowP)
clmage[i] = O;
else
{
temp = (clmage[i] - lowP) *
if(highP = lowP) // don"t d
temp /= (highP - lowP);
clmage[i] = (unsigned char)tem
}
3

/* ecode and save the data */

)

255;
ivide by zero

Ps

*/

160

}

int Observation::Observation_generateFilename(time_t* currentTime, char* filename,

std: :vector<unsigned char> buffer;
encoder.encode(buffer, (unsigned char*)clmage, PNG_W, PNG_H);
LodePNG: :saveFile(buffer, completePath);

/* free memory */
free(completePath);
free(clmage);

free(histogram);

return O;

currentFilter, const char* extension)

{

char* dateAndTime; // string containing the date and time
dateAndTime = (char *)malloc(128);

/* elements in date/time string */
char* year;

char* month;

char* day_str;

char* day_num;

char* hour;

char* min;

char* sec;

/* get the date/time string */
ctime_s(dateAndTime, 128, currentTime);

/* the string is in the following format */

/* DDD MMM DD HH:MM:SS YYYY\n\O */

/* Wed Jan 02 02:03:55 1980\n\0 */

/* the fTield widths remain constant so we can assume we know where they are */

/* set the chars after our values to null for easy cstring access */

*(dateAndTime + 3) = 0;
*(dateAndTime + 7) = 0;
*(dateAndTime + 10) = O;
*(dateAndTime + 13) = 0;
*(dateAndTime + 16) = O;
*(dateAndTime + 19) = 0;
*(dateAndTime + 24) = 0;

/* copy the values to the sub strings */
year = dateAndTime + 20;

month = dateAndTime + 4;

day_str = dateAndTime + O;

day_num = dateAndTime + 8;

hour = dateAndTime + 11;

min = dateAndTime + 14;

sec = dateAndTime + 17;

/* compile the string */
/* PREFIX_YYYY-MM-DD_HH_MM_SS_FILTERNUM_ADCRATE_EXPOSURE(sec) .EXT\O */
sprintf_s(filename,
FILENAME_LEN,
"%s_%sS-%s-%s_%s_%s_%s_Filthi_%s_%is.%s\0",
FILENAME_PREFIX,
year,
month,
day_num,
hour,
min,
sec,
currentFilter,
myAdcRate,
myExposureTime,
extension);

/* deallocate memory */

int

161

if(dateAndTime) free (dateAndTime);

return O;

}

int Observation::Observation_generateFilepath(time_t* currentTime, char* filepath, const char*
filetypeBasePath)

char* dateAndTime; // string containing the date and time
dateAndTime = (char *)malloc(128);

/* elements in date/time string */
char* year;

char* month;

char* day_str;

char* day_num;

char* hour;

char* min;

char* sec;

/* get the date/time string */
ctime_s(dateAndTime, 128, currentTime);

/* the string is in the following format */

/* DDD MMM DD HH:MM:SS YYYY\n\O */

/* Wed Jan 02 02:03:55 1980\n\0 */

/* the field widths remain constant so we can assume we know where they are */

/* set the chars after our values to null for easy cstring access */

*(dateAndTime + 3) = 0;
*(dateAndTime + 7) = 0;
*(dateAndTime + 10) = O;
*(dateAndTime + 13) = 0;
*(dateAndTime + 16) = O;
*(dateAndTime + 19) = 0;
*(dateAndTime + 24) = 0;

/* copy the values to the sub strings */
year = dateAndTime + 20;

month = dateAndTime + 4;

day_str = dateAndTime + O;

day_num = dateAndTime + 8;

hour = dateAndTime + 11;

min = dateAndTime + 14;

sec = dateAndTime + 17;

/* compile the string */
/* CAMPATH/FILETYPEPATH/YYYY-MM-DD_HH_MM_SS/\0 */
sprintf_s(filepath,

FILENAME_LEN,

"%sUs-%s-%s_%s_%s_%s/\0",

filetypeBasePath,

year,

month,

day_num,

hour,

min,

sec);

/* deallocate memory */
free (dateAndTime);

return O;

}
char* Observation::mntSlew(char* value)

{
#ifndef _WACAM
return invalidCommand(value);

162

#endif

char* retMsg ; // return message to the caller
int state;
enum {
SLEWING, // slewing
OP_IN_PROG, // operation in progress
INV
}:
retMsg = (char *)malloc(RET_MSG_LEN);
state = INV; // assume invalid state
/* c */

if('stremp(value, "TRUENO™))
{

/* if a mount operation is not currently in progress... */
if('mountOplInProgress)
{

/* slew */
state = SLEWING;

#ifndef _NOHARDWARE
mountOplInProgress = true;
startMountOp = true;
mountOpType = MOUNT_SLEW_TYPE;

#endif

by
/* operation in progress */
else

state = OP_IN_PROG;

}

/* select the appropriate return message */
switch (state)

{
case SLEWING:
sprintf_s(retMsg, RET_MSG_LEN, *"Slewing mount.\r\n\0");
/* update XML Ffile */
sprintf_s(xmlFields.mntSlewingState, XML_VALUE_LEN, "TRUE\O");
mountStatus->printTree(MOUNT_XML_FILE_NAME);
break;

case OP_IN_PROG:
sprintf_s(retMsg, RET_MSG_LEN, *"Mount operation already in progress..\r\n\0");
break;

defaul t:
sprintf_s(retMsg, RET_MSG_LEN, *"Invalid command_-\r\n\0");
break;

}

cerr << retMsg;
/* return the message */
return retMsg;

char* Observation::mntHome(char* value)

{
#ifndef _WACAM

return invalidCommand(value);
#endif

/* if an observation is in progress... */
if (obsInProgress)

/* ignore the command */

return getObslInProgressMsg(Q);

163

char* retMsg ; // return message to the caller

int state;
enum {
HOMING, // homing
OP_IN_PROG, // operation in progress
INV
¥
retMsg = (char *)malloc(RET_MSG_LEN);
state = INV; // assume invalid state
/* c */

if(Istremp(value, "TRUENO™))
{

/* if a mount operation is not currently in progress... */
if('mountOplInProgress)

/* slew */
state = HOMING;

#ifndef _NOHARDWARE
mountOpInProgress = true;
startMountOp = true;
mountOpType = MOUNT_HOME_TYPE;

#endi f

3
/* operation in progress */
else
state = OP_IN_PROG;
3

/* select the appropriate return message */
switch (state)

{

case HOMING:
sprintf_s(retMsg, RET_MSG_LEN, "Homing mount.\r\n\0");
/* update XML Ffile */
sprintf_s(xmlFields.mntHomingState, XML_VALUE_LEN, "TRUE\O");
mountStatus->printTree(MOUNT_XML_FILE_NAME);
break;

case OP_IN_PROG:
sprintf_s(retMsg, RET_MSG_LEN, *"Mount operation already in progress..\r\n\0");
break;

defaul t:
sprintf_s(retMsg, RET_MSG_LEN, *"Invalid command_-\r\n\0");
break;

}

cerr << retMsg;
/* return the message */
return retMsg;

char* Observation: :mntAbort(char* value)

{
#ifndef _WACAM

return invalidCommand(value);
#endif

/* if an observation is in progress... */
if (obsInProgress)

/* ignore the command */

return getObslInProgressMsg(Q);

char* retMsg ; // return message to the caller
int state;
enum {

ABORT,

164

INV

};

retMsg = (char *)malloc(RET_MSG_LEN);

state = INV; // assume invalid state
/* c */

if(Istremp(value, "TRUENO™))
{

/* abort */
state = ABORT;

#ifndef _NOHARDWARE
/* this prevents the park+disconnect from "disconnecting" when aborted */
mountOpType = MOUNT_INVALID_TYPE;
mnt->abortOperation();

#endi T

}

/* select the appropriate return message */
switch (state)

{

case ABORT:
sprintf_s(retMsg, RET_MSG_LEN, *"Mount operation aborted.\r\n\0");
break;

default:
sprintf_s(retMsg, RET_MSG_LEN, *"Invalid command_\r\n\0");
break;

}

cerr << retMsg;
/* return the message */
return retMsg;

3
MountCtrl* Observation: :getMount()
{
return mnt;
3
int Observation::getMountOpType()
{
return mountOpType;
¥
bool Observation::isMountOpInProgress()
{
return mountOplInProgress;
b
bool Observation::isMountOpStartRequested()
{
if (startMountOp)
startMountOp = false;
return true;
b
else
return false;
3

int Observation: :clearMountOplInProgress()
{
mountOpInProgress = false;
/* clear XML slewing states */
sprintf_s(xmlFields.mntSlewingState, XML_VALUE_LEN, "FALSE\O");

sprintf_s(xmlFields.mntHomingState, XML_VALUE_LEN, "FALSE\O");

165

/* if we also disconnected... */
iT(mountOpType == MOUNT_PARK_TYPE)

if(Imnt->testAndClearFailedStatus())
sprintf_s(xmlFields.mntConnectedState, XML_VALUE_LEN,

}
else if(mountOpType == MOUNT_CONNECT_TYPE)

iT(Imnt->testAndClearFailedStatus())
sprintf_s(xmlFields.mntConnectedState, XML_VALUE_LEN,

}
mountStatus->printTree(MOUNT_XML_FILE_NAME);
return O;

"FALSEN\O");

"TRUE\O");

¥
char* Observation::mntAzi(char* value)
{
char* retMsg ; // return message to the caller
char* currentNumber; // string containing the current number
int state;
enum {
VALID, // - valid azi specified
INV // - invalid command
}:
retMsg = (char *)malloc(RET_MSG_LEN);
currentNumber = (char *)malloc(RET_MSG_LEN);
state = INV; // assume invalid state

/* delimeter positions */

char *delimPosl, *delimPos2;

/* degrees, minutes, seconds */
int d, m, s;

/* make sure the string consists of only digits and delimeters */

char* temp = value;
bool isvalid =
while(*temp = °"\0")

if(lisdigit(*temp) && (*temp !'= TIME_DELIM))
isvValid = false;
temp++;
¥
if((delimPosl = strchr(value, ALT_AZI_DELIM)))
if((delimPos2 = strchr(delimPosl+1, ALT_AZI_DELIM))

/* attempt to extract the degrees */
memset(currentNumber, O, RET_MSG_LEN);

)

strncpy_s(currentNumber, RET_MSG_LEN, value, (delimPosl - value));

d = atoi(currentNumber);

/* attempt to extract the minutes */

memset(currentNumber, O, RET_MSG_LEN);

strncpy_s(currentNumber, RET_MSG_LEN, delimPosl + 1,
m = atoi(currentNumber);

/* attempt to extract the seconds */

memset(currentNumber, 0, RET_MSG_LEN);

strncpy_s(currentNumber, RET_MSG_LEN, delimPos2 + 1,
s = atoi(currentNumber);

/* validate values */
if(d>=0 && d <= 359 && isvalid)
if(m>=0 && m <= 59)
if(s >0 && s <=59)
state = VALID;

if(state != VALID)
{

(delimPos2 - delimPosl));

RET_MSG_LEN);

166

/* select the appropriate return message */
switch (state)

{
case VALID:
/* fast */

sprintf_s(retMsg, RET_MSG_LEN, "Azimuth set to %i:%i:%i.\r\n\0", d, m, s)
azimuth.degrees = d; azimuth.minutes = m; azimuth.seconds = s;

break;

default:

sprintf_s(retMsg, RET_MSG_LEN, *"Invalid command.\r\n\0");

break;

}

cerr << retMsg;
/* return the message */
return retMsg;

¥
char* Observation: :mntAlt(char* value)
{
char* retMsg ; // return message to the caller

char* currentNumber; // string containing the current number
int state;

enum {
VALID, // - valid alt specified
INV // - invalid command
}:
retMsg = (char *)malloc(RET_MSG_LEN);
currentNumber = (char *)malloc(RET_MSG_LEN);
state = INV; // assume invalid state

/* delimeter positions */

char *delimPosl, *delimPos2;

/* degrees, minutes, seconds */
int d, m, s;

/* make sure the string consists of only digits and delimeters */

char* temp = value;
bool isvalid = true;
while(*temp = *\0")

if(lisdigit(*temp) && (*temp != TIME_DELIM))
isvValid = false;
temp++;
3
if((delimPosl = strchr(value, ALT_AZI_DELIM)))
if((delimPos2 = strchr(delimPosl+1, ALT_AZI_DELIM)))

/* attempt to extract the degrees */
memset(currentNumber, O, RET_MSG_LEN);

strncpy_s(currentNumber, RET_MSG_LEN, value, (delimPosl - value));

d = atoi(currentNumber);

/* attempt to extract the minutes */
memset(currentNumber, O, RET_MSG_LEN);

strncpy_s(currentNumber, RET_MSG_LEN, delimPosl + 1, (delimPos2 - delimPosl)

m = atoi(currentNumber);

/* attempt to extract the seconds */
memset(currentNumber, O, RET_MSG_LEN);

strncpy_s(currentNumber, RET_MSG_LEN, delimPos2 + 1, RET_MSG_LEN);

s = atoi(currentNumber);

167

/* validate values */
if(d>= 0 & d <= 359 && isValid)
if(m>=0 && m <= 59)
if(s >0 &% s <=59)
state = VALID;

if(state = VALID)

/* select the appropriate return message */
switch (state)

{
case VALID:
/* fast */

sprintf_s(retMsg, RET_MSG_LEN, "Altitude set to %i:%i:%i.\r\n\0", d, m, s);
altitude.degrees = d; altitude.minutes = m; altitude.seconds = s;

break;

default:

sprintf_s(retMsg, RET_MSG_LEN, "Invalid command_\r\n\0");

break;

}

cerr << retMsg;
/* return the message */
return retMsg;

MntPosition Observation::getAzimuth()

{
}

return azimuth;

MntPosition Observation::getAltitude()

{
}

return altitude;

bool Observation::positionTimer()

{

}

time_t theTime;
time(&theTime);

if ((theTime - lastPositionUpdate) > 4)
{

lastPositionUpdate = (long)theTime;
return true;

¥

else
return false;

int Observation: :updateXmlPosition(PosUpdate* pos)

{

if(pos == 0)

return 1;
sprintf_s(xmlFields.mntAltDegState, XML_VALUE_LEN,
sprintf_s(xmlFields.mntAltMinState, XML_VALUE_LEN,
sprintf_s(xmlFields.mntAltSecState, XML_VALUE_LEN,
sprintf_s(xmlFields.mntAziDegState, XML_VALUE_LEN,
sprintf_s(xmlFields.mntAziMinState, XML_VALUE_LEN,
sprintf_s(xmlFields.mntAziSecState, XML_VALUE_LEN,
mountStatus->printTree(MOUNT_XML_FILE_NAME);
return O;

"%iI\O0", (*pos).altd);
"%iI\0", (*pos).altm);
"%2_.0f\0", (*pos).alts);
"%IN\O", (*pos).azid);
"%iI\0", (*pos).azim);
"%2.0f\0", (*pos).azis);

168

}

int Observation: :updateXmlTemperature()
{
int temp = cam->readTemp();
iT(temp == CAM_INVALID_TEMP)
return 1;
else

sprintf_s(xmlFields.camCcdTempState, XML_VALUE_LEN, "%i\O", temp);
camStatus->printTree(CAM_XML_FILE_NAME);
return O;

}
}

OpticsCtrl.h

#ifndef OPTICSCTRL_
#define OPTICSCTRL_
#endif

#include <windows.h>
#include <iostream>
#include <tchar.h>
#include <string.h>
#include <time.h>
#include <assert.h>

using namespace std;

/* defines */

/

/* general */

#define MAXDATABYTES 50 // maximum num of bytes that may be txed/rxed
#define NUM_RETS 1 // number of "\r" sent by SMARTMOTOR to end tx
#define HOME_POSITION 1 // home fTilter position

/* these are used to interpret the messages returned from the SMARTMOTOR */
#define GET_SHUTTER_RET_MSG "SHTR"™ // shutter return message

#define GET_SHUTTER_RET_MSG_OFFSET 5 // location of value in return msg
#define GET_FILTER_RET_MSG "FILT" // filter return message

#define GET_FILTER_RET_MSG_OFFSET 5 // location of value in return msg
#define TELECAM_SHUTTER_OPEN "Open\O0"

#define TELECAM_SHUTTER_CLOSE "Closed\0"

/

class OpticsCtrl

{

public:

/* OpticsCtri()

*

Class Constructor (initialization).

Input:
none

Returns:
nothing

ok X b ok X

*/
OpticsCtrl(Q);

/* open()
*
* Opens and configures a connection with specified com port. If an
* incorrect com port is specified (not an integer > 0), COM1 is used
* by default. ** CURRENTLY HARDCODED TO ONLY ACCEPT COM 1-4 ** |If
* anything above COM4 is requested, COM1l is used by default.

169

Input:

portNum - integer specifying which com port to use (COM X)
Returns:

0 on success, 1 on error

o % ok

*/

int open(int portNum);
/* getPosition()

*

* Sends command to ask the SMARTMOTOR system for its current filter
* wheel position and then waits for a reply. Information is extracted
* from reply and current position is returned to calling function.

*

* Input:

* none

* Returns:

* integer representing current filter position (1 -> n)

*/

int getPosition();

/* setPosition()

*

* Sends commands to move filter wheel to specified position. Invalid
* position values are not checked here as they are handled by the

* SMARTMOTOR system itself. Waits for the SMARTMOTOR system to send

* its confimation. To confirm positioning getPosition() should be used.
*

* Input:

* pos - integer specifying which position to move to.

* Returns:

* new position of filter wheel

*/

int setPosition(int pos);

/* setShutter()

*

* Sends commands to change the shutter to specified state. If the
* specified state is anything but open (including invalid values), a closed
* state is assumed (for safety).

*

* Input:

* open - integer specifying which position to place shutter in. 1 for opened,
* anything else for closed.

* Returns:

* integer representing current shutter status (1 = open, 0 = closed)
*/

int setShutter(int open);
/* getShutter()

*

* S ends commands to ask the SMARTMOTOR system for its current shutter
* position and then waits for a reply. Information is extracted from

* reply and current shutter position is returned to calling function.

*

* Input:

* none

* Returns:

* integer representing current shutter status (1 = open, 0 = closed)
*/

int getShutter();
/* writePort()

*

* Sends given command to SMARTMOTOR system via com connection using

* using hCom handle.

*

* Input:

* msg - char ptr to null-terminated message to be sent

*

*

Return:

170

* 0 on success, 1 on failure
*/
int writePort(char *msg);

/* readPort()

*

Reads data sent from SMARTMOTOR by checking the com input buffer.

*
*
* Input: i i i

* msg - char ptr to null-terminated string where message is stored.
*

*

*

Return:

0 on success, 1 on failure
*/
int readPort(char *msg);

/* close()

* Closes the com connection used for communication between the PC
* and the SMARTMOTOR system.
*
* Input:
* none
* Return:
* 0 always
*/
int close();
private:
bool portRdy; // signifies that port is ready (connected)
HANDLE hCom; // handle to com port
DCB dcb; // comm port settings
DWORD bytesWritten; // number of bytes transmitted to SMARTMOTOR
DWORD bytesRead; // number of bytes read from SMARTMOTOR
}:

OpticsCtrl.cpp

#include "OpticsCtrl_h"

OpticsCtrl::OpticsCtri()

portRdy = false;

int OpticsCtrl::open(int portNum)
{

/* if we are already connected */

if(portRdy)
/* dont bother trying to connect again */
return O;

/* select COM port based on portNum */
TCHAR* pcCommPort = NULL;
switch(portNum)

case 2:
pcCommPort = TEXT(""COM2™);
break;

case 3:
pcCommPort = TEXT("COM3™);
break;

case 4:
pcCommPort = TEXT("COM4™);
break;

171

default:
/* choose COM1 if an invalid selection is made */
pcCommPort = TEXT("COM1"™);

}

/* attempt to establish connection */
hCom = CreateFile(

pcCommPort, // port name

GENERIC_READ | GENERIC_WRITE, // read and write

0, // exclusive-access (can®t share COM port)
0, // default security attributes
OPEN_EXISTING, // must use OPEN_EXISTING

o, // don"t use overlapping 1/0

NULL // no template file for COM port

):

/* test connection */
if (hCom == INVALID_HANDLE_VALUE)

/* invalid connection */
cerr << "Failed to establish connection.\n";
return 1;

}

/* set up dcb for loading current comm configuration */
SecureZeroMemory(&dcb, sizeof(DCB));
dcb.DCBlength = sizeof(DCB);

/* attempt to get current comm state */
iT(!GetCommState(hCom, &dcb))

// error
cerr << "Failed GetCommState.\n";
return 1;
3
/* current settings loaded, now change settings for 8nl @ 9600 baud */
dcb.BaudRate = CBR_9600; // 9600 baud rate
dcb.ByteSize = 8; // xmit/recv data size
dcb.Parity = NOPARITY; // no parity

dcb.StopBits ONESTOPBIT; // one stop bit
/* attempt to load new settings */
if(1SetCommState(hCom, &dcb))

// error!
cerr << "Failed SetCommState.\n";
return 1;

}

/* This is not required, address of motor is set to #1 by default startup */
///* set the smartmotors address by sending it via comm link */

///* 129 = motor #1 (see smartmotor reference) */

//sprintf_s(msg, sizeof(msg), ' "\129");

//

///* attempt to write to port */
//7if(WriteFile(

// hCom, // handle to comm port

// msg, // buffer containing message

// sizeof(msg), // number of bytes to write

// &bytesWritten, // number of bytes written (set by WriteFile)
// NULL // not used

/7)

//

/7{

// cerr << "Couldn"t send address to motor.\n";
// return 1;

/* set up the timeout settings for the connection */

172

COMMTIMEOUTS timeouts;
timeouts.ReadlntervalTimeout
timeouts._ReadTotalTimeoutMultiplier
timeouts.ReadTotalTimeoutConstant
timeouts._WriteTotalTimeoutMultiplier
timeouts.WriteTotalTimeoutConstant

MAXDWORD; // max timeout

I T T |
[eNoleoNe)

if (1SetCommTimeouts(hCom, &timeouts))
{
cerr << "Error setting timeouts.\n";
return 1;

}

/* everything was successful, set port status accordingly */
portRdy = true;

/* home the filter and close the shutter */
setPosition(HOME_POSITION);
setShutter(0);

return O;
3
int OpticsCtrl::setPosition(int pos)
{

/* if we aren"t connected... */

if('portRdy)
/* don"t try to move the filter wheel */
return -1;

/* buffer for sending commands */

char msg[MAXDATABYTES];

/* buffer for receiving confirmation */
char buf[MAXDATABYTES];

/* information to be returned */

int retval = -1;

/* send appropiate commands */

/* g=n\r ... GOSUB4\r */

sprintf_s(msg, sizeof(msg), g=%i\r", pos);
writePort(msg);

sprintf_s(msg, sizeof(msg), 'GOSUBA\r");
writePort(msg);

/* prepare to read output from SMARTMOTOR */

int i = 0; // index of local buffer

int j = 0; // number of "\r" recvd

int k = 0; // index of recvd buf

int n_rets = NUM_RETS; /7 number of *"\r" to wait for

/* while we still haven®t recvd the max num of “\r"... */
while ((J < n_rets))

{

/* read any characters recvd from SMARTMOTOR */
readPort(msg);

/* for each byte read... */
while (bytesRead > 0)

/* copy char into buffer, if char is "\r"... */
if ((buf[i++] = msg[k++]) == "\r")
{

/* increment num of "\r" recvd */
J++;

/* decrement num of bytes (chars) remaining */
bytesRead--;

3
/* reset recvd char string index */
k=0;

3

173

}

/* terminate the recvd character script */
buf[i-1] = O;

/* if the correct message was recvd... */
if (strstr(buf, GET_FILTER_RET_MSG))
{

/* Both cam optics return SHTR:X where X is 0O (close) or 1 (open) */
/* extract the return information (convert from ascii to int) */

retVal = buf[GET_FILTER_RET_MSG_OFFSET] - 0x30;
return retval;

T
/* if not... */
else

/* error message */
cerr << "Invalid return value.\n";

}

return retval;

int OpticsCtrl::getPosition()

{

/* if we aren"t connected... */

iT(!portRdy)
/* don"t try to get the filter wheel position */
return -1;

/* buffer for sending commands */

char msg[MAXDATABYTES];

/* buffer for receiving confirmation */
char buf[MAXDATABYTES];

/* get position value */

int pos = -1;

/* send appropriate commands to SMARTMOTOR */
/* g=-1\r ... GOSUB4\r */

sprintf_s(msg, sizeof(msg), g=%i\r", pos);
writePort(msg);

sprintf_s(msg, sizeof(msg)," 'GOSUB4A\r", 1);
writePort(msg);

/* read the buffer */

int i = 0; // index of local buffer
int j = 0; // numer of "\r" recvd
int k = 0; // index of recvd buf

int n_reté = NUM_RETS; // number of *\r" to wait for

/* while we still haven®t recvd the max num of “\r"... */
while ((J < n_rets))

/* read any characters recvd from SMARTMOTOR */
readPort(msg);

/* for each byte read... */
while (bytesRead > 0)

{
/* copy char into buffer, if char is "\r"... */
it ((buf[i++] = msg[k++]) == *“\r")
/* increment num of "\r" recvd */
J++;
/* decrement num of bytes (chars) remaining */
bytesRead--;
3
/* reset recvd char string index */
k=0;
by

/* terminate the recvd character script */

174

buf[i-1] = 0;

/* information to be returned */
int retval = 0;

/* if the correct message was recvd... */
if (strstr(buf, GET_FILTER_RET _MSG))

/* extract the return information (convert from ascii to int) */
retVal = buf[GET_FILTER_RET_MSG_OFFSET] - 0x30;
3

/* if not... */
else

/* error message */
cerr << "Invalid return value.\n";

3

return retval;
b
int OpticsCtrl::setShutter(int open)
{

/* 1T we aren"t connected... */

iT(!portRdy)
/* don"t try to set the shutter */
return -1;

/* buffer for sending commands */
char msg[MAXDATABYTES];

/* position of filter */

int pos;

/* Load the correct position into the shutter variable */

if(open)
pos = 1;
else
pos = O;

/* send appropiate commands */

sprintf_s(msg, sizeof(msg),"d=%i\r", pos);
writePort(msg);

sprintf_s(msg, sizeof(msg), GOSUBI\r", 1);
writePort(msg);

#ifdef _WACAM
/* buffer for receiving commands */
char buf[MAXDATABYTES];

/* prepare to read output from SMARTMOTOR */
int i = 0; // index of local buffer

1 =03
int j = 0; // numer of "\r" recvd
int kK = 0; // index of recvd buf
int n_rets = NUM_RETS; // number of "\r" to wait for
/* while we still haven"t recvd the max num of "\r"... */

while ((J < n_rets))

/* read any characters recvd from SMARTMOTOR */
readPort(msg);

/* for each byte read... */
while (bytesRead > 0)
{

/* copy char into buffer, if char is “\r"... */
if ((buf[i++] = msg[k++]) == “\r")
{

/* increment num of “\r" recvd */
J++;

}

175

/* decrement num of bytes (chars) remaining */

bytesRead--;

/* reset recvd char string index */
k=0;
}

/* terminate the recvd character script */
buf[i-1] = O;

/* information to be returned */
int retval = 0;

/* if the correct message was recvd... */
if (strstr(buf, GET_SHUTTER RET_MSG))

/* The wide cam optics return SHTR:X where X is
/* extract the return information (convert from
retVal = buf[GET_FILTER_RET_MSG_OFFSET] - 0x30;
return retval;

3
/* if not... */
else

/* error message */
cerr << "Invalid return value.\n";

}

return retval;

#else

return pos;

#endif

int OpticsCtrl::getShutter()

/* if we aren"t connected... */

iT(!portRdy)
/* don"t try to get the shutter position */
return -1;

/* buffer for sending commands */

char msg[MAXDATABYTES];

/* buffer for receiving confirmation */
char buf[MAXDATABYTES];

/* get shutter value */

int pos = -1;

/* send appropriate commands to SMARTMOTOR */
sprintf_s(msg, sizeof(msg),"d=%i\r", pos);
writePort(msg);

sprintf_s(msg, sizeof(msg), ' GOSUBI\r", 1);
writePort(msg);

0 (close) or 1 (open) */

ascii to int) */

/* read the buffer */

int i =0; // index of local buffer

int j = 0; // numer of "\r" recvd

int k = 0; // index of recvd buf

int n_rets = NUM_RETS; // number of "\r" to wait for

/* while we still haven®"t recvd the max num of *\r"... */

while ((j < n_rets))
{

/* read any characters recvd from SMARTMOTOR */

readPort(msg);

/* for each byte read... */

176

while (bytesRead > 0)
{

/* copy char into buffer, if char is "\r"...

if ((buf[i++] = msg[k++]) == “\r")
{

/* increment num of “\r" recvd */
J++;

/* decrement num of bytes (chars) remaining */

bytesRead--;

}
/* reset recvd char string index */
k=0;

3

/* terminate the recvd character script */
buf[i-1] = O;

/* information to be returned */
int retval = 0;

/* if the correct message was recvd... */
if (strstr(buf, GET_SHUTTER_RET_MSG))
{

#ifdef _WACAM

/* extract the return information (convert from ascii to int) */
retVal = buf[GET_FILTER_RET_MSG_OFFSET] - 0x30;

return retval;

#else

/* The narrow cam optics return SHTR Open or SHTR Close */

/* test for close */

if(strstr(buf, TELECAM_SHUTTER_CLOSE))
return O;

else if(strstr(buf, TELECAM_SHUTTER_OPEN))
return 1;

else
return -1;

#endif

T
/* if not... */
else

{

/* error message */
cerr << "Invalid return value.\n";

}

return retval;

}

int OpticsCtrl::writePort(char *msg)

/* If the port is ready for communication... */
iT(portRdy)
{

{
cerr << "Write failed.\n";
return O;

}

/* Port not ready, return fail status */
else

{
cerr << "Write failed, port not ready.\n";
return O;

}

/* Write sucessful, return success status */

if("WriteFile(hCom, msg, (DWORD)strlen(msg), &bytesWritten, 0))

177

return 1;

} 7/ done
int OpticsCtrl::readPort(char *msg)
{
/* If the port is ready for communication... */

if(portRdy)

if('ReadFile(hCom, msg, 20, &bytesRead, 0))

{
cout << "Read failed: " << GetLastError() <<'"\n";
return O;
3
/* Port not ready, return fail status */
else
{]
cerr << "Read failed, port not ready.\n";
return O;
return 1;

int OpticsCtrl::close()
{
/* 1T we aren"t connected... */
iT(!portRdy)
/* don"t bother trying to disconnect */
return 1;
else
/* disconnect */
if(hCom = INVALID_HANDLE_VALUE)

CloseHandle(hCom);
hCom = INVALID_HANDLE_VALUE;
portRdy = false;

}

return O;
}
TcplpServer.h

#ifndef TCPIPSERVER_H
#define TCPIPSERVER_H

#include <windows.h>
#include <iostream>
using namespace std;

/* This will link to wsock32.lib */
#pragma comment(lib, "WSock32.Lib"™)

/* defines */
#define MAX_NUM_CLIENTS 1 // max num of clients serviced simultaneously

/* error message indicies */

#define E_NO_ERROR

#define E_COULDNT_OBTAIN_HOST_INFO

#define E_COULDNT_INIT_WINSOCK

#define E_COULDNT_CREATE_SERVER_SOCKET
#define E_COULDNT_BIND_SERV_SOCKET_TO_PORT
#define E_UNABLE_TO_LISTEN

#define E_CANT_RECV_NOT_CONNECTED

#define E_CANT_SEND_NOT_CONNECTED

~NoOooh~hWNEO

class TcplpServer
public:
TcplpServer(int port);

178

/**

* A constructor. Initialies class member variables.

*

* INPUT:

* port - integer representing which port server will listen on
* RETURNS

* nothing

*/

int initServerAndListen();
/**

*

Initializes server socket and begins listening for client connection
requests.

*

*

* INPUT:

* none

* RETURNS

* 0 in success, error code on failure.
*/

int acceptClient();

/**

* Checks for client awaiting connections. |If client request is found,
that client is accepted and a socket is created for communication with
client.

*

*

*

* INPUT:
* none

* QUTPUT:

* 0 on success, error code on failure

*/

int recvFromClient(char *buf, int bufLen, char* delim);
/**

*

Receives data sent from accepted client. This function polls the

* TCP/IP buffer until either one of the specified delimeters is reached
* or the buffer being written into is full.

*

* INPUT:

* buf - pointer to buffer which received data is written to

* bufLen - length of buffer being written to

* delim - cstring containing all delimiters ex: ";\r\n"

* RETURNS:

* number of bytes read (>= 0), or error code (< 0)

*/

int sendToClient(char *buf, int bufLen);

/**

* Sends data to accepted client. Specified number of bytes in
specified buffer are transmitted.

*
*
* INPUT:

* buf - pointer to buffer containing data being transmitter
* bufLen - number of bytes to transmit

* RETURNS:

* 0 on success, error code on failure

*/

int closeClientConn();

/**

* Closes connection with accepted client. Because only one client
is supported by this class (one at a time), this function should be called
right before attempting to listen for another client request.

none
OUTPUT:

*
*
*
* INPUT:
*
*
* always O

*/

const char* getLastError();

179

*
*

Returns cstring pointer to last error message.

INPUT:
none
OUTPUT:
pointer to cstring containing last error message.

ook X F kXN

*/
private:
bool mlsConnected; /* true when connected to client, false when not */
int mPort; /* port on server side used for communcation */
SOCKET mSSock; /* server socket, used for listening for clients */
SOCKET mCSock; /* client socket, used to rx/tx data to client */
int mErrorCode; /* error code of pointing to index of last error msg */
static const char* meErrorMsg[]; /* char array of error messages */
}:
#endif

TcplpServer.cpp

#include "TcplpServer.h"

const char* TcplpServer::mErrorMsg[] =

{
"No error message.-\0",
"Couldn®t obtain host address information.\0",
"Couldn™t initialize WinSock.\0",
"Couldn™t create the server socket.\0",
"Couldn®"t bind server socket to port.\0",
“Unable to listen.\0",
"Can"t receive data, not connected.\0",
"Can"t send data, not connected.\0"

}:

TcplpServer: :TcplpServer(int port)

mSSock = INVALID_SOCKET; /* sockets not yet initialized */
mCSock = INVALID_SOCKET;
mlsConnected = false; /* not ready to tx/rx */
mPort = port;
}

int TcplpServer::initServerAndListen()

/* declare variables */

char myName[256]; // our host name

struct sockaddr_in servAddr; // our address

struct hostent *hostinfo; // host information structure

WSADATA info; // windows socket information data structure

There are 5 steps used here to initialize the server socket and
begin listening for client connectin requests, listed below:

Initialize WINSOCK (v1.1 in our case)
Obtain our host information

Create the server socket

Bind the socket to given port

Begin listening for client requests

ok X R ok X X N

O WNE

180

/* 1. Attempt to initialize winsock vi1.1 ... */

it (WSAStartup(MAKEWORD(1,1), &info) =0)
{

/* unsuccessful */
mErrorCode = E_COULDNT_INIT_WINSOCK;
return 1;

}

/* 2. Obtain our host information */

/* initialize memory for host info struct */

memset(&servAddr, 0, sizeof(struct sockaddr_in));
/* get our host name */

gethostname(myName, sizeof(myName));

/* attempt get our address info */
if ((hostinfo = gethostbyname(myName)) == NULL)
{

/* unsuccessful */
mErrorCode = E_COULDNT_OBTAIN_HOST_INFO;
return 1;

}

/* extract host ip from host info struct */
servAddr.sin_family = hostinfo->h_addrtype;
/* set port number */

servAddr.sin_port = htons(mPort);

/* 3. Attempt to create the socket */
if((mSSock = socket(AF_INET, SOCK_STREAM, O)) == INVALID_SOCKET)

/* unsuccessful */
mErrorCode = E_COULDNT_CREATE_SERVER_SOCKET;
return 1;

}

/* 4. Attempt to bind the socket to the internet address... */

if (bind(mSSock, (struct sockaddr *)&servAddr, sizeof(struct sockaddr_in))
== SOCKET_ERROR)

{

/* unsuccessful */

closesocket(mSSock) ;

mErrorCode = E_COULDNT_BIND_SERV_SOCKET_TO_PORT;
return 1;

/* 5. Attempt to listen for clients */
if (listen(mSSock, 3) =0)
mErrorCode = E_UNABLE_TO_LISTEN;

return 1;

}

return O;

int TcplpServer::acceptClient()

181

/* attempt to accept client connection */
if ((mCSock = accept(mSSock, NULL, NULL)) == INVALID_SOCKET)

/* unsuccessful */
/* we are not connected */
mlsConnected = false;
return 1;

T

else

{
/* successful */
/* we are connected */
mlsConnected = true;
return O;

}

return O;

int TcplpServer::recvFromClient(char *buf, int bufLen, char* delim)

{
/* abort if we are not connected */
iT(!mlsConnected)

mErrorCode = E_CANT_RECV_NOT_CONNECTED;
return 1;

}

/* declare variables */

int bcount; /* total bytes read */

int br; /* bytes read this pass */
bcount = 0; br = 0;

/* while the buffer isn"t full... */
while (bcount < (bufLen - 1))

{
/* read a byte from the buffer */

if ((br = recv(mCsock, buf, 1, 0)) >0)
{

/* increment byte counter */
bcount += br;

/* test for EOF */
if (*buf == EOF)

/* EOF found, return */
return EOF;

/* then test for delimeter */

else if (*buf == *delim)

{
/* delimeter found, append \O and return # bytes read */
*(buf+l) = "\0";
return bcount;

}

/* neither EOF nor delimeter, get next byte */

/* move buffer ptr for next read */

buf += br;
by
/* signal an error to the caller */
else
{
return -1;
3
¥
return bcount;

}

182

int TcplpServer::sendToClient(char *buf, int bufLen)

/* abort if we are not connected */
if('mlsConnected)

{
mErrorCode = E_CANT_SEND_NOT_CONNECTED;
return 1;

}

/* declare variables */

int bcount;

int br; /* bytes sent this pass */
bcount = 0; br = 0;

while (bcount < bufLen)

{ 7* loop until full buffer */
if ((br = send(mCSock, buf, bufLen - bcount, 0)) >0)
{

bcount += br; /* increment byte counter */

buf += br; /* move buffer ptr for next transmission */

}
else if (br < 0) /* signal an error to the caller */

return 1;

}

return bcount;

}

int TcplpServer::closeClientConn()
{
/* disconnect from client */
mlsConnected = false;
closesocket(mCSock) ;

return O;
3
const char* TcplpServer::getLastError()
{
return mErrorMsg[mErrorCode];
3

XmlINode.h

#ifndef XMLNODE_H
#define XMLNODE_H

#include <windows.h>
#include <fstream>
#include <time.h>

using namespace std;

#define STREAM_BUF_LEN 256
#define INDENT_BUF_LEN 16
#define XML_VALUE_LEN 128

struct xmlFields {

/* mountStatus.xml */

char* mntStatus;

/**/char* mntUpdated;
/**/char* mntConnectedState;
/**/char* mntSlewingState;
/**/char* mntHomingState;

183

/**/char* mntPositionState;

/F*FFFR*Rfchar* mntAziDegState;
/*F*x*%/char* mntAziMinState;
/FF*F*F*fchar* mntAziSecState;
/*F*F**Rxfchar* mntAltDegState;
/FFFFRxfchar* mntAltMinState;
/******/char* mntAltSecState;

/* telecamStatus.xml */

char* camStatus;

/**/char* camUpdate;

/**/char* camObs;

/***FRRxfchar* camlnProgress;
/****F**fchar* camLastPicName;
/******/char* camLastPicPath;
/**/char* camHardware;
[*FF***fchar* camOptics;

[FFFxRRIEER fchar® camOptConnectedState;
[FFFFRREERAR fchar® camShutterState;
[FFEFRIxRRRR fchar® camFilterState;
/****** fchar* camCamera;

[FFFFRRERRR fchar® camConnectedState;
[FFFFIREEAR fchar* camCcdTempState;

/* wacamStatus.xml */
char* wacamStatus;
/**/char* wacamUpdate;
/**/char* wacamObs;
[/**F*F**%/char* wacamInProgress;
[/F***** fchar* wacamLastPicName;
/******/char* wacamLastPicTime;
/**/char* wacamHardware;
/*F*FEEX fchar* wacamOptics;
[FFFxxRREER fchar* wacamOptConnectedState;
[FFFFIRRERR fchar® wacamShutterState;
[FFFRFRRRER fchar®* wacamFilterState;
/*F*F*F**fchar* wacamCamera;
[FFFRFIRRERR fchar® wacamCamConnectedState;
[FFFFRRRRER fchar® wacamCcdTempState;

};

typedef struct xmlFields XmlFields;

class XmlINode

{
public:

XmINode(char* tag, char** value);

/**

* A constructor. Consumes a tag name and pointer to a value and creates
* an XML tag node with given properties.

*

* INPUT:

* tag - cstring containing tag name

* value - pointer to cstring containing value

*/

int addChild(XmINode* newChildNode);
/**
* Consumes a pointer to an XmINode and makes that node a child of the

* current node.

*

* INPUT:

* newChildNode - new node to be added as a child
* RETURNS:

* 0 on success, 1 on failure

*/

char* getXmlTag(Q);
/**
* Accessor. Returns cstring ptr to xml tag name.

184

INPUT :
none
OUTPUT:
Ptr to xml tag name (cstring).

ok % b ¥

*/

char* getXmlData();

/**

* Accessor. Returns cstring ptr to xml tag value.
*

* INPUT:

* none

* OUTPUT:

* Ptr to xml tag value (cstring).
*/

int getNumChildren();
/**
* Accessor. Returns number of children of current node.

*

* INPUT:

* none

* OUTPUT:

* int representing the number of children
*

/

bool hasChildren();

/**

* Accessor. Checks if the current node has children.
*

* INPUT:

* none

* QUTPUT:

* true if it does have children, false if not.
*/

XmINode** getChildren();

/**

* Accessor. Returns ptr to array of children.
*

* INPUT:

* none

* QUTPUT:

* Ptr to array of children.
*/

int initializeMntTree(XmlFields& fieldStruct);
int initializeCamTree(XmlFields& fieldStruct);
int initializeWecamTree(XmlFields& fieldStruct);

char* getUpdateTimePtr();

int printTree(const char* filename);

/**

* Iterates through XML tree with head node this and prints the tree
to a file with the name filename.

INPUT:

filename - name of the file to be written
OUTPUT:

0 on success, 1 on failure

ok % X b *

*/

int printTreeHelper(
fstream* xmlFile,
XmINode* currentNode,

int indentationLevel
)
int killChildren();
private:

185

char*
char**
XmINode**
int

char*
char*
char*

¥

#endif

myXmlTag;
myXmlData;
myChildren;
myNumChildren;

writeBuffer;
indentBuffer;
updateTime;

XmliNode.cpp

#include *"Xm

INode.h""

//
//
//
//

//

//

xml tag of this node
xml data

array of children ptrs
number of children

buffer used for writing to file
buffer used for storing indentation
last update time

XmINode: :XmINode(char* tag, char** value)

{
myXmlTag =
myXmlData
myChildren
myNumChi ld

tag;

= value;
= NULL;
ren = 0;

writeBuffer = (char *)malloc(STREAM_BUF_LEN);

updateTime = (char *)malloc(128);
sprintf_s(updateTime, 128, "unknown\0");
3
int XmINode: :addChild(XmINode* newChildNode)
{
/* if we don"t have any children yet... */

it (myChildren == NULL)

/* _._.adopt this as our only child one */
myChildren = (XmINode**)malloc(sizeof(XmINode*));

*myChild
myNumChi

ren = newChildNode;

Idren = 1;

/* 1T we do have children. ..

else

{

*/

/* find a new place to house our children */

XmINode** temp = (XmINode **)malloc(sizeof(XmINode*) * (myNumChildren + 1));

/* move all of our old children to the new place */

memcpy((void*)(temp), (void*)(myChildren), sizeof(XmINode*) * myNumChildren);

/* get rid of our old place */
free(myChildren);
myChildren = temp;

/* bring in the new child */
myChildren[myNumChildren] = newChildNode;

myNumChi
b

return O;

}

Idren++;

char* XmINode: :getXmlTag()

{

return myXmlTag;

}

186

char* XmINode: :getXmlData()
{

return *myXmlData;

}

int XmINode: :getNumChildren()
{

return myNumChildren;

}

bool XmINode::hasChildren()

if(myChildren == NULL)
return false;

else
return true;

3
XmINode** XmINode: :getChildren()
{
return myChildren;
3

int XmINode::printTree(const char* filename)
{
/* get the time of the update */
time_t currentTime;
time(¤tTime);
ctime_s(this->updateTime, 128, ¤tTime);
/* get rid of the newline */
char* temp = updateTime;
while(*temp = "\0")

if(*temp == "\n")
*temp = "\0";
temp++;

}

/* decl */
fstream xmlFile;

xmlFile.open(filename, ios_base::out);

/* gol! */
printTreeHelper(&mlFile, this, 0);

/* stop! */
xmlFile.close();

return O;

int XmINode: :printTreeHelper(
fstream* xmlFile,
XmINode* currentNode,
int indentationLevel

)

int i;

/* pre-indent the string */

for(1 = 0; 1 < indentationLevel; i++)
*(writeBuffer + 1) = "\t";

*(writeBuffer + i) = "\0";

/* copy the tag data to it */
sprintf_s(

187

}

writeBuffer,
STREAM_BUF_LEN,
"0hs<UsS>",

writeBuffer,
currentNode->getXmlTag()
)

/* print the data to file */

(*xmIFile) . write(writeBuffer, (streamsize)strlen(writeBuffer));

/* if the current node has no children...

if(lcurrentNode->hasChildren())

/* print its XML data and closing tag */

sprintf_s(
writeBuffer,
STREAM_BUF_LEN,
"%s</%s>\n"",
currentNode->getXmlData(),
currentNode->getXmlTag()

);

*/

(xmIFile).write(writeBuffer, (streamsize)strlen(writeBuffer));

}

else

{

sprintf_s(writeBuffer, STREAM_BUF_LEN, "\n");
C*xmIFile) . write(writeBuffer, (streamsize)strlen(writeBuffer));

/* visit each child */
int i;

for(1 = 0; 1 < currentNode->getNumChildren(); i++)

printTreeHelper(xmlFile, currentNode->getChildren([i],

/* pre-indented the string */
for(1 = 0; i < indentationLevel;
*(C writeBuffer + 1) = "\t";

writeBuffer[i + 1] = "\0";

/* pre-indent the string */

for(1 = 0; 1 < indentationLevel;
*(writeBuffer + 1) = *\t";

*(writeBuffer + i) = "\0";

i++)

i++)

CxmIFile) . .write(writeBuffer, (streamsize)strlen(writeBuffer));

/* print XML closing tag */
sprintf_s(
writeBuffer,
STREAM_BUF_LEN,
"</%s>\n"",
currentNode->getXmlTag()

(*xmIFile) . write(writeBuffer, (streamsize)strlen(writeBuffer));

return O;

int XmINode::initializeMntTree(XmlFields& fieldStruct)

{

/* allocate memory for the fields */
fieldStruct.mntStatus
/**/fieldStruct.mntUpdated
/**/fieldStruct.mntConnectedState
/**/fieldStruct.mntSlewingState
/**/fieldStruct.mntHomingState
/**/fieldStruct.mntPositionState
/****** /FieldStruct.mntAziDegState
/***FFFx[FieldStruct.mntAziMinState

NULL;

this->updateTime;

(char
(char
(char
NULL;
(char
(char

*Imalloc(XML_VALUE_LEN
*Imalloc(XML_VALUE_LEN
*Imalloc(XML_VALUE_LEN

*Imalloc(XML_VALUE_LEN
*Imalloc(XML_VALUE_LEN

indentationLevel + 1);

188

/FF**x* fFieldStruct.mntAziSecState
/******/FieldStruct.mntAltDegState
/****** /FieldStruct.mntAltMinState
/****** /FieldStruct.mntAltSecState

(char
(char
(char
(char

*)malloc(XML_VALUE_LEN);
*Imalloc(XML_VALUE_LEN);
*Imalloc(XML_VALUE_LEN);
*)malloc(XML_VALUE_LEN);

/* initialize the items */
//strcpy_s(fieldStruct.mntUpdated, XML_VALUE_LEN, *"INV\O");

strcpy_s(fieldStruct.mntConnectedState, XML_VALUE_LEN, "INV\O");

strcpy_s(fieldStruct.mntSlewingState, XML_VALUE_LEN, "INV\O™);

strcpy_s(fieldStruct.mntHomingState, XML_VALUE_LEN, "INV\O");

strcpy_s(fieldStruct.mntAziDegState, XML_VALUE_LEN, "INV\O");

strcpy_s(fieldStruct.mntAziMinState, XML_VALUE_LEN, "INV\O");

strcpy_s(fieldStruct.mntAziSecState, XML_VALUE_LEN, "INV\O");

strcpy_s(fieldStruct.mntAltDegState, XML_VALUE_LEN, "INV\O"™);

strcpy_s(fieldStruct.mntAltMinState, XML_VALUE_LEN, "INV\O");

strcpy_s(fieldStruct.mntAltSecState, XML_VALUE_LEN, "INV\O");

/* create all required sub-nodes */

XmINode* mntUpdated = new XmINode("updated\0", &(FfieldStruct.mntUpdated));

XmINode* mntConnectedState = new XmINode(*‘connectedState\0",
&(FieldStruct.mntConnectedState));

XmINode* mntSlewingState = new XmINode("slewingState\0", &(FieldStruct.mntSlewingState));

XmINode* mntHomingState = new XmINode("homingState\0", &(FfieldStruct.mntHomingState));

XmINode* mntPositionState = new XmINode("positionState\0"”, &(FieldStruct.mntPositionState));

XmINode* mntAziDegState = new XmINode("aziDegState\0", &(FieldStruct.mntAziDegState));

XmINode* mntAziMinState = new XmINode("aziMinState\0", &(FfieldStruct.mntAziMinState));

XmINode* mntAziSecState = new XmINode("aziSecState\0", &(FieldStruct.mntAziSecState));

XmINode* mntAltDegState = new XmINode("altDegState\0", &(FieldStruct.mntAltDegState));

XmINode* mntAltMinState = new XmINode("altMinState\0", &(FieldStruct.mntAltMinState));

XmINode* mntAltSecState = new XmINode("altSecState\0", &(FieldStruct.mntAltSecState));

/* implement hierarchy */

mntPositionState->addChild(mntAziDegState);

mntPositionState->addChild(mntAziMinState);

mntPositionState->addChild(mntAziSecState);

mntPositionState->addChild(mntAltDegState);

mntPositionState->addChild(mntAltMinState);

mntPositionState->addChild(mntAltSecState);

this->addChild(
this->addChild(
this->addChild(
this->addChild(
this->addChild(

mntUpdated);
mntConnectedState);
mntSlewingState);
mntHomingState);
mntPositionState);

return O;

int XmINode::initializeCamTree(XmlFields&

{

/* camStatus.xml */

fieldStruct)

fieldStruct.camStatus NULL;
/**/FieldStruct.camUpdate this->updateTime;
/**/fieldStruct.camObs NULL;

/*****> [FijeldStruct.camInProgress = (char*)malloc(XML_VALUE_LEN);
/***x**/FieldStruct.camLastPicName = (char*)malloc(XML_VALUE_LEN);
/******/FieldStruct.camLastPicPath = (char*)malloc(XML_VALUE_LEN);
/**/FieldStruct.camHardware = NULL;

/****>* /FieldStruct.camOptics = NULL;

/FxrxxxAsxx fFieldStruct. camOptConnectedState = (char*)malloc(XML_VALUE_LEN);
[rFFFFxxxxx [FieldStruct. camShutterState = (char*)malloc(XML_VALUE_LEN);
[FFFFExrrrk fFieldStruct. camFi l terState = (char*)malloc(XML_VALUE_LEN);
/******/fjeldStruct.camCamera = NULL;

[FFFERRRRRx fFjeldStruct. camConnectedState = (char*)malloc(XML_VALUE_LEN);
[FFFxxRRRRx fFieldStruct. camCedTempState = (char*)malloc(XML_VALUE_LEN);

//strcpy_s(fieldStruct.camUpdate,
strcpy_s(fieldStruct.camlnProgress,
strcpy_s(fieldStruct.camLastPicName,

XML_VALUE_LEN, *"?\0");

XML_VALUE_LEN, "FALSE\O");

XML_VALUE_LEN, "default_image.png\0")

strcpy_s(fieldStruct.camLastPicPath, XML_VALUE_LEN, "./\0");
strcpy_s(fieldStruct.camOptConnectedState, XML_VALUE_LEN, "FALSE\O");

strcpy_s(fieldStruct.camShutterState, XML_VALUE_LEN, "OPEN\O");
strcpy_s(fieldStruct.camFilterState, XML_VALUE_LEN, "1\0");
strcpy_s(fieldStruct.camConnectedState, XML_VALUE_LEN, "FALSE\O"™);
strcpy_s(fieldStruct.camCcdTempState, XML_VALUE_LEN, *?\0");

/* create all required sub-nodes */

XmINode* camUpdated new XmINode(*‘updated\0", &(FieldStruct.camUpdate));

XmINode* camObs new XmINode(*obs\0", &(FieldStruct.camObs));

XmINode* camlnProgress new XmINode("inProgress\0", &(FfieldStruct.camlnProgress));

XmINode* camLastPicName new XmINode(*"lastPicName\0", &(fieldStruct.camLastPicName));

XmINode* camLastPicPath new XmINode("lastPicPath\0", &(fieldStruct.camLastPicPath));

XmINode* camHardware new XmINode(*hardware\0", &(FieldStruct.camHardware));

XmINode* camOptics new XmINode(*"optics\0", &(fieldStruct.camOptics));

XmINode* camOptConnectedState new XmINode(*‘connectedState\0",
&(FieldStruct.camOptConnectedState));

XmINode* camShutterState = new XmINode(*‘shutterState\0", &(FieldStruct.camShutterState));
XmINode* camFilterState = new XmINode("filterState\0", &(FfieldStruct.camFilterState));
XmINode* camCamera = new XmINode("camera\0", &(FieldStruct.camCamera));

XmINode* camConnectedState = new XmINode("connectedState\0",
&(FieldStruct.camConnectedState));
XmINode* camCcdTempState = new XmINode("‘ccdTempState\0", &(FieldStruct.camCcdTempState));

/* implement hierarchy */
camCamera->addChild(camConnectedState);
camCamera->addChild(camCcdTempState);

camOptics->addChild(camOptConnectedState);
camOptics->addChild(camShutterState);
camOptics->addChild(camFilterState);

camObs->addChild(camlnProgress);
camObs->addChild(camLastPicName);
camObs->addChild(camLastPicPath);

camHardware->addChild(camOptics);
camHardware->addChild(camCamera);

this->addChild(camUpdated);
this->addChild(camObs);
this->addChild(camHardware);

return O;

190

Appendix I: Mount Control VBscripts
abort.vbs

" SRI Telescope Automation

" Script that aborts telescope slew

* (Telescope must be in asynchronouse operation mode)
Option Explicit

" Set variables

Dim objTele " Stores telescope object
Dim output ® String that will be returned
On Error Resume Next * Enable error handling

" Create telescope object
Set objTele = WScript.CreateObject(''TheSky6.RASCOMTele')

objTele.Abort() ® Home the mount
If Err.number <> 0 Then ® Check whether error was encountered
output = "Mount Error!” " Return error if encountered
Else
output = 0"
End If
Set objTele = Nothing * Discard telescope object to deallocate memory
WScript.Echo(output) ® Write the output to standard out
connect.vbs

" SRI Telescope Automation
" Script that starts TheSky6 and connects to mount

Option Explicit

" Set variables

Dim objTele " Stores telescope object
Dim output ® String that will be returned
On Error Resume Next * Enable error handling

" Create telescope object
Set objTele = WScript.CreateObject(*'TheSky6.RASCOMTele™)

objTele.Connect() " Try to Connect to the mount
IT (Err.number <> 0) Or (objTele.lsConnected = 0) Then * Check whether error was
encountered
output = "Mount Error!™ ® Return error if encountered
Else
Call objTele.SetTracking(0, 1, 0, 0) * disables tracking so mount won®"t move after slew
objTele.Asynchronous = 1 * sets telescope slews to be asynchronous
output = "0" " Return O
End If
Set objTele = Nothing ® Discard telescope object to deallocate memory
WScript.Echo(output) ® Write the output to standard out
getposition.vbs

" SRI Telescope Automation
" Script that returns the current position of the telescope

Option Explicit
" Set variables
Dim objTele " Stores telescope object

Dim output ® String that will be returned

" Create variables that hold desired position

191

Dim aziDeg
Dim aziMin
Dim aziSec
Dim altDeg
Dim altMin
Dim altSec
Dim Azimuth
Dim Altitude

On Error Resume Next ® Enable error handling

® Function to convert decimal position to degrees, minutes, seconds
® Adapted from Microsoft: http://support.microsoft.com/kb/213449
Sub Convert_Degree(inputDec)

Dim Degrees

Dim Minutes

Dim Seconds

“Set degree to Integer of Argument Passed

Degrees = Int(inputDec)

altDeg = Degrees

"Set minutes to 60 times the number to the right

“of the decimal for the variable Decimal_Deg

Minutes = (inputDec - Degrees) * 60

altMin = Int(Minutes)

"Set seconds to 60 times the number to the right of the

“decimal for the variable Minute

Seconds = ((Minutes - Int(Minutes)) * 60)

altSec = Round(Seconds)

IT altSec = 60 Then

altSec = 0
altMin = altMin + 1
End IFf
IT altMin = 60 Then
altMin = 0
altDeg = altDeg + 1
End IFf
I altbDeg = 360 Then
altbDeg = 0
End IFf

End Sub

" Create telescope object
Set objTele = WScript.CreateObject(*'TheSky6.RASCOMTele™)

" Try to get current position
objTele.getAzAIt()

IT Err.number <> 0 Then ® Check whether error was encountered
output = "Mount Error!™ * Return error if encountered

Else
Convert_Degree(objTele.dAz) " Get Azimuth and convert to Deg Min Sec
aziDeg = altDeg " ConvertDegree writes to altitude variables!
aziMin = altMin
aziSec = altSec

Convert_Degree(objTele.dAlt) " Get Altitude and convert to Deg Min Sec

® Send Azimuth and Altitude separated by CarriageReturn NewLine if no error

output = "aziDeg=" & aziDeg & ;" & "aziMin=" & aziMin & ;" & "aziSec=" & aziSec & ;" & _
"altDeg="" & altDeg & ";" & "altMin=" & altMin & ;" & "altSec=" & altSec & ";" &
Chr(0) & Chr(10)
End IT
Set objTele = Nothing ® Discard telescope object to deallocate memory
WScript.Echo(output) " Write the output to standard out
home.vbs

® SRI1 Telescope Automation

192

" Script that moves the telescope to home position
Option Explicit

" Set variables

Dim objTele " Stores telescope object
Dim output ® String that will be returned
On Error Resume Next * Enable error handling

" Create telescope object
Set objTele = WScript.CreateObject("'TheSky6._.RASCOMTele™)

objTele.FindHome() ® Home the mount
IT Err.number <> 0 Then ® Check whether error was encountered
output = "Mount Error!" " Return error if encountered
Else
output = 0"
End If
Set objTele = Nothing * Discard telescope object to deallocate memory
WScript.Echo(output) ® Write the output to standard out
isconnected.vbs

" SRI1 Telescope Automation

" Script that determines if the mount is connected
" Returns 1 if connected; 0 if not connected
Option Explicit

" Set variables

Dim objTele * Stores telescope object
Dim output " String that will be returned
On Error Resume Next " Enable error handling

" Create telescope object
Set objTele = WScript.CreateObject("'TheSky6.RASCOMTele™)
output = objTele.lsConnected " Detect whether it is connected

Set objTele = Nothing ® Discard telescope object to deallocate memory
WScript.Echo(output) ® Write the output to standard out

park.vbs

® SRI Telescope Automation
" Script that moves the mount to Park position and disconnects

Option Explicit

" Set variables

Dim objTele " Stores telescope object
Dim output ® String that will be returned
On Error Resume Next ® Enable error handling

" Create telescope object
Set objTele = WScript.CreateObject("'TheSky6.RASCOMTele™)

objTele.Park(Q) " Park the mount

IT Err.number <> 0 Then * Check whether error was encountered
output = "Mount Error!" ® Return error if encountered

Else
output = 0"

End If

Set objTele = Nothing * Discard telescope object to deallocate memory
WScript.Echo(output) " Write the output to standard out

193

slewto.vbs

* SRI Telescope Automation

® Script that slews the mount to given Azimuth and Altitude

" Usage: cscript //nologo slewto.vbs azDeg azMin azSec altDeg altMin altSec
" Azimuth is 0-359 deg, 0-59min, 0.0-59.9 sec

" Altitude is 0-90 deg, 0-59min, 0.0-59.9 sec

Option Explicit

" Create variables

Dim objTele " Stores telescope object
Dim output ® String that will be returned
Dim objArgs " Stores command-line arguments

® Create variables that hold desired position
Dim aziDeg

Dim aziMin

Dim aziSec

Dim altDeg

Dim altMin

Dim altSec

Dim Azimuth

Dim Altitude

On Error Resume Next " Enable error handling

® Function for converting string in Deg Min Sec into decimal
* Adapted from Microsoft: http://support.microsoft.com/kb/213449
Function Convert_Decimal (inputDeg)

" Declare the variables to be double precision floating-point.

Dim degrees

Dim minutes

Dim seconds

" Set degree to value before "d" of Argument Passed.

degrees = Left(inputDeg, InStr(1, inputDeg, "d") - 1)

® Set minutes to the value between the "d" and the "m"

* of the text string for the variable inputDeg divided by

" 60. The Val function converts the text string to a number.

minutes = Mid(inputDeg, InStr(l1, inputDeg, "d') + 2, _

InStr(1, inputDeg, "m") - InStr(1, inputDeg, _
"d") - 2) / 60
" Set seconds to the number to the right of "m" that is
® converted to a value and then divided by 3600.
seconds = Mid(inputDeg, InStr(1, inputDeg, "m'") + _
2, Len(inputDeg) - InStr(1, inputDeg, "m") - 2) _
/ 3600

Convert_Decimal = degrees + minutes + seconds

End Function

" Create telescope object
Set objTele = WScript.CreateObject(*'TheSky6.RASCOMTele™)
set objArgs = WScript.Arguments ® grab the command-line arguments

aziDeg = objArgs(0)
aziMin = objArgs(1)
aziSec = objArgs(2)
altDeg = objArgs(3)
altMin = objArgs(4)
altSec = objArgs(5)

® Check whether command line arguments are in correct syntax:
IT Not WScript.Arguments.Count = 6 _
Or (aziDeg Or aziMin Or aziSec Or altDeg Or altMin Or altSec) < O _
Or aziDeg > 359 Or altDeg > 90 _
Or (aziMin Or aziSec Or altMin Or altSec) > 59.999 Then * Check for 6 arguments
output = output & "Syntax Error!"
WScript.Echo(output) " Write the output to standard out
Set objTele = Nothing

194

WScript.Quit " Exit the script
End If

" Convert the input from Degrees, Minutes, Seconds, to Decimal Degrees
Azimuth = Convert_Decimal(aziDeg & "d " & aziMin & "m " & aziSec & ''s™)
Altitude = Convert_Decimal(altDeg & d "™ & altMin & "m " & altSec & *'s')

® Move the mount
Call objTele.SlewToAzAlt(Azimuth, Altitude, " ')

If Err.number <> 0 Then ® Check whether error was encountered
output = "Mount Error!” " Return error if encountered

Else
® Send Azimuth and Altitude separated by CarriageReturn NewLine if no error
output = 0"

End If

Set objTele = Nothing * Discard telescope object to deallocate memory
WScript.Echo(output) ® Write the output to standard out

195

Appendix J: WinView Header Format

WINHEAD. TXT

$Date: 2008/02/27 22:44:34 $

Header Structure For WinView/WinSpec (WINX) Files

The current data file used for WINX files consists of a 4100 (1004 Hex)

byte header followed by the data.

Beginning with Version 2.5, many more items were added to the header to

make it a complete as possible record of the data collection.
spectrograph and pulser information.

accomplished
by recycling old information which had not been used in many versions.
All data files created under previous 2.x versions of WinView/WinSpec CAN

still be read correctly.

This includes

Much of these additions were

HOWEVER, files created under the new versions

(2.5 and higher) CANNOT be read by previous versions of WinView/WinSpec

OR by the CSMA software package.

FEEAEEAEXEAAXEAXAXAAXAXAXAXAAXAXAAXAAALAXAALAAALAAAAAAXAAAXAAAXAA AKX dhAdX

short
short
WORD
WORD
short
float
short
short
WORD
char
short
char
short
always be
float
short
WORD
short
float
WORD
Closed
short
WORD
short
Chip
short
float
short
float
short

ControllerVersion
LogicOutput
AmpHiCapLowNoise
xDimDet

mode

exp_sec
VChipXdim
VChipYdim
yDimDet
date[DATEMAX]
VirtualChipFlag
Spare_1[2]
noscan

-1
DetTemperature
DetType

xdim

stdiode
DelayTime
ShutterControl

AbsorbLive
AbsorbMode
CanDoVirtualChipFlag

ThresholdMinLive
ThresholdMinVval
ThresholdMaxLive
ThresholdMaxVval
SpecAutoSpectroMode

Decimal Byte

Offset

Hardware Version

Definition of Output BNC

Amp Switching Mode

Detector x dimension of chip.
timing mode
alternitive exposure,
Virtual Chip X dim
Virtual Chip Y dim

y dimension of CCD or detector.
date

On/0ff

in sec.

Old number of scans - should

Detector Temperature Set
CCD/DiodeArray type

actual # of pixels on x axis
trigger diode

Used with Async Mode

Normal, Disabled Open, Disabled

On/0ff
Reference Strip or File
T/F Cont/Chip able to do Virtual

Oon/0ff

Threshold Minimum Value
Oon/0ff

Threshold Maximum Value
T/F Spectrograph Used

196

float
short
float
float
float
float
short
short
short
short
short
short
short
short

short
WORD
DWORD
float
(usec)
float
(usec)
float
(usec)
float
(usec)
float
(usec)
float
(usec)
short

2=Exponent

short
short
short
short
short
WORD
WORD
short
Present
short
Present
short
char
char
short
WORD
WORD
WORD
WORD
WORD
WORD
char

SpecCenterWINm
SpecGlueFlag
SpecGlueStartWINm
SpecGlueEndWINm
SpecGlueMinOvrIpNm
SpecGlueFinalResNm
PulserType
CustomChipFlag
XPrePixels
XPostPixels
YPrePixels
YPostPixels

asynen

datatype

PulserMode
PulserOnChipAccums
PulserRepeatExp
PulseRepWidth

PulseRepDelay
PulseSeqStartWidth
PulseSeqgEndWidth
PulseSeqStartDelay
PulseSeqEndDelay

PulseSeqglncMode
ial

PImaxUsed

P ImaxMode
PImaxGain
BackGrndApplied
PImax2nsBrdUsed
minblk
numminblk

SpecMirrorLocation[2]

SpecSlitLocation[4]

CustomTimingFlag

ExperimentTimeLocal [TIMEMAX]
ExperimentTimeUTC[TIMEMAX]

ExposUnits
ADCoffset
ADCrate
ADCtype
ADCresolution
ADCbitAdjust
gain

Comments[5] [COMMENTMAX]

72
76
78
82
86
90
94
96
98
100
102
104
106
108

110
112
114
118

122

126

130

134

138

142

144
146
148
150
152
154
156
158

162

170
172
179
186
188
190
192
194
196
198
200

Center Wavelength in Nm

T/F File is Glued

Starting Wavelength in Nm
Starting Wavelength in Nm
Minimum Overlap in Nm

Final Resolution in Nm

O=None, PG200=1, PTG=2, DG535=3
T/F Custom Chip Used

Pre Pixels in X direction

Post Pixels in X direction

Pre Pixels iIn Y direction

Post Pixels in Y direction
asynchron enable flag 0 = off
experiment datatype

0 = float (4 bytes)
1= long (4 bytes)
2 = short (2 bytes)

3 = unsigned short (2 bytes)
Repetitive/Sequential

Num PTG On-Chip Accums

Num Exp Repeats (Pulser SW Accum)
Width Value for Repetitive pulse

Width Value for Repetitive pulse
Start Width for Sequential pulse
End Width for Sequential pulse
Start Delay for Sequential pulse
End Delay for Sequential pulse
Increments: 1=Fixed,

PI-Max type controller flag
P1-Max mode

PI-Max Gain

1 if background subtraction done
T/F PI-Max 2ns Board Used

min. # of strips per skips

of min-blocks before geo skps
Spectro Mirror Location, 0=Not

Spectro Slit Location, O=Not

T/F Custom Timing Used
Experiment Local Time as hhmmss\O
Experiment UTC Time as hhmmss\O
User Units for Exposure

ADC offset

ADC rate

ADC type

ADC resolution

ADC bit adjust

gain

File Comments

197

WORD geometric

char xlabel [LABELMAX]

WORD cleans

WORD NumSkpPerCln

short SpecMirrorPos[2]

float SpecSlitPos[4]

short AutoCleansActive

short UseContCleanslinst

short AbsorbStripNum

short SpecSlitPosUnits

float SpecGrooves

short srccmp

WORD ydim

short scramble

short ContinuousCleansFlag
Option

short ExternalTriggerFlag
Option

long Inoscan

long lavgexp

float ReadoutTime

short TriggeredModeFlag

char Spare_2[10]

char sw_version[FILEVERMAX]

short type

short flatFieldApplied

char Spare_3[16]

short kin_trig_mode

char dlabel [LABELMAX]

char Spare_4[436]

char PulseFi leName [[HDRNAMEMAX]
Slice)

char AbsorbFi leName [HDRNAMEMAX]
Mode)

DWORD NumExpRepeats
repeated

DWORD NumExpAccums
accumulated

short YT _Flag
data

float clkspd us

short HwaccumFlag
Hardware.

short StoreSync

600

602
618
620
622
626
642
644
646
648
650
654
656
658
660

662

664
668
672
676
678
688
704

706
708
724
726
742
1178
1298
1418
1422
1426

1428
1432

1434

geometric ops: rotate 0x01,
reverse 0x02, flip 0x04
intensity display string

cleans

number of skips per clean.

Spectrograph Mirror Positions

Spectrograph Slit Positions

T/F

T/F

Absorbance Strip Number

Spectrograph Slit Position Units

Spectrograph Grating Grooves

number of source comp. diodes

y dimension of raw data.

O=scrambled, 1=unscrambled

T/F Continuous Cleans Timing

T/F External Trigger Timing

Number of scans (Early WinX)
Number of Accumulations
Experiment readout time
T/F Triggered Timing Option

Version of SW creating this file
newl20 (Type 11)

old120 (Type 1)

ST130

ST121

ST138

DC131 (PentaMax)

ST133 (MicroMax/SpectroMax)
ST135 (GPIB)

VICCD

ST116 (GPIB)

OMA3 (GPIB)

OMA4

flat field was applied.

NPFPOOWONOOUITAWNPE
Lo T 1 1 I 1 B | A A 1

P RR e

Kinetics Trigger Mode
Data label.

Name of Pulser File with
Pulse Widths/Delays (for Z-

Name of Absorbance File (if File
Number of Times experiment

Number of Time experiment

Set to 1 if this file contains YT

Vert Clock Speed in micro-sec
set to 1 if accum done by
set to 1 if store sync used

198

short BlemishApplied

1436

1438

1440

1442
1446
1450
1454
1458
1474
1476
1480
1482
1484

1486

1488

1490
1506

1508

1510

set to 1 if blemish removal

set to 1 if cosmic ray removal

if cosmic ray applied, this is

Threshold of cosmic ray removal.
number of frames in file.

max intensity of data (future)
min intensity of data (future)

y axis label.

shutter type.

shutter compensation time.
readout mode, full,kinetics, etc
window size for kinetics only.
clock speed for Kkinetics & frame

computer interface

(isa-taxi, pci, eisa, etc.)
May be more than the 10 allowed
this header (if 0, assume 1)
if multiple controller system

have controller number data came

this is a future item.
Which software package created

number of ROIs used. if O assume

applied
short CosmicApplied
applied
short CosmicType
type
float CosmicThreshold
long NumFrames
float MaxIntensity
float MinIntensity
char ylabel [LABELMAX]
WORD ShutterType
float shutterComp
WORD readoutMode
WORD WindowSize
WORD clkspd
transfer
WORD interface_type
short NumROIsInExperiment
in
char Spare_5[16]
WORD controllerNum
will
from.
WORD SWmade
this file
short NumROl
1.
ROl entries
struct ROlinfo
{
WORD startx
WORD endx
WORD groupx
WORD starty
WORD endy
WORD groupy

} ROIinfoblk[ROIMAX]

left x start value.

right x value.

amount x is binned/grouped in hw.
top y start value.

bottom y value.

amount y iIs binned/grouped in hw.

ROl Starting Offsets:

ROI' 1 = 1512
ROI 2 = 1524
ROI 3 = 1536
ROI 4 = 1548
ROI' 5 = 1560
ROI 6 = 1572
ROI 7 = 1584

199

ROI 8 = 1596
ROI 9 = 1608
ROI 10 = 1620

char
char
char
float
char
long
WinX

FlatField[HDRNAMEMAX]
background[[HDRNAMEMAX]

blemish[HDRNAMEMAX]
file_header_ver
YT_Info[1000]
WinView_id

1632
1752
1872
1992

Flat field file name.
background sub. file name.
blemish file name.

version of this file header

1996-2995 Reserved for YT information

2996

== 0x01234567L if file created by

double
double
char
char
char
char
char
char

char

char
char
double
double
double
double
char
BYTE
char
char

START OF X CALIBRATION STRUCTURE (3000 - 3488)

offset
factor
current_unit
reservedl
string[40]
reserved2[40]
calib_valid
input_unit

polynom_unit

polynom _order
calib_count
pixel_position[10]
calib_value[10]
polynom_coeff[6]
laser_position
reserved3
new_calib_flag
calib_label[81]
expansion[87]

3000
3008
3016
3017
3018
3058
3098
3099

3100

3101
3102
3103
3183
3263
3311
3319
3320
3321
3402

offset for absolute data scaling
factor for absolute data scaling
selected scaling unit

reserved

special string for scaling
reserved

flag if calibration is valid
current input units for
"calib_value”

linear UNIT and used

in the "polynom_coeff"

ORDER of calibration POLYNOM
valid calibration data pairs
pixel pos. of calibration data
calibration VALUE at above pos
polynom COEFFICIENTS

laser wavenumber for relativ WN
reserved

IT set to 200, valid label below
Calibration label (NULL term®d)
Calibration Expansion area

double
double
char
char
char
char
char
char

char

START OF Y CALIBRATION STRUCTURE (3489 - 3977)

offset
factor
current_unit
reservedl
string[40]
reserved2[40]
calib_valid
input_unit

polynom unit

3489
3497
3505
3506
3507
3547
3587
3588

3589

offset for absolute data scaling
factor for absolute data scaling
selected scaling unit

reserved

special string for scaling
reserved

flag if calibration is valid
current input units for
"calib_value"

linear UNIT and used

200

char
char
double
double
double
double
char
BYTE
char
char

in the "polynom_coeff"

ORDER of calibration POLYNOM
valid calibration data pairs
pixel pos. of calibration data
calibration VALUE at above pos
polynom COEFFICIENTS

laser wavenumber for relativ WN
reserved

IT set to 200, valid label below
Calibration label (NULL term®d)
Calibration Expansion area

STRUCTURES

char
char
BYTE
etc.)
BYTE
dependent)
BYTE
DWORD
double
BYTE
BYTE
double
constant
double
constant
double
constant
double
constant
short
short
short
short
header

polynom _order 3590
calib_count 3591
pixel_position[10] 3592
calib_value[10] 3672
polynom_coeff[6] 3752
laser_position 3800
reserved3 3808
new_calib_flag 3809
calib_label[81] 3810
expansion[87] 3891
END OF CALIBRATION
Istring[40] 3978
Spare_6[25] 4018
SpecType 4043
SpecModel 4044
PulseBurstUsed 4045
PulseBurstCount 4046
ulseBurstPeriod 4050
PulseBracketUsed 4058
PulseBracketType 4059
PulseTimeConstFast 4060
in usec)
PulseAmplitudeFast 4068
PulseTimeConstSlow 4076
in usec)
PulseAmplitudeSlow 4084
AnalogGain; 4092
AvGainUsed 4094
AvGain 4096
lastvalue 4098

END OF HEADER

special intensity scaling string

spectrometer type (acton, spex,
spectrometer model (type

burst mode on/off
triggers per burst
burst period (in usec)
bracket pulsing on/off
bracket pulsing type
slow exponential time

pulser
pulser
pulser
pulser
pulser
pulser

pulser fast exponential amplitude

pulser slow exponential time

pulser slow exponential amplitude
analog gain

avalanche gain was used

avalanche gain value

Always the LAST value in the

4100

Start of Data

Definiti

HDRNAMEMAX

ons of array sizes:

120

Max char str length for file name

201

USERINFOMAX = 1000
COMMENTMAX = 80
LABELMAX = 16
FILEVERMAX = 16
DATEMAX = 10
ddmmmyyyy\O
ROIMAX = 10
TIMEMAX =7

Custom Data

Types used in

User information space

User comment string max length (5 comments)
Label string max length

File version string max length

String length of file creation date string as

Max size of roi array of structures
Max time store as hhmmss\O

the structure:

WORD =
DWORD =

unsigned char
unsigned short
unsigned long

READING DATA:

The data follows the header beginning at offset 4100.

Data is stored as sequential points.

The X, Y and Frame dimensions are determined by the header.

The X dimension of the stored data is in "xdim" (Offset 42).
The Y dimension of the stored data is in "ydim" (Offset 656).
The number of frames of data stored is in "NumFrames'" (Offset 1446).

The size of a frame (in bytes) is:

One frame s

ize = xdim x ydim x (datatype Offset 108)

202

Appendix K: MATLAB Code to Generate Generic WinView Header

cd("C:\Documents and Settings\Elizabeth Gerken\Desktop®);

fid = fopen("WIDEO554 630nmFAST_30sec.SPE");
header = fread(fid, 4100);

header = header(:)";

fclose(fid);

fid = fopen(“test.raw");
image = fread(fid);
image = image(:)";
fclose(fid);

composite = [header image];

composite(43)
composite(44)
composite(657)
composite(658)
composite(109)
composite(110)
composite(1447)
composite(1448)
composite(1449)
composite(1450)

% x dimension

% y dimension

% experiment format

OOOFRPROWNONO

% number of frames
fid = fopen("Test.SPE", "w");

count = fwrite(fid, composite);
fclose(fid);

203

Appendix L: LodePNG Library Header File
g

LodePNG version 20080202
Copyright (c) 2005-2008 Lode Vandevenne

This software is provided “as-is”, without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software

in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source
distribution.
*/

#ifndef LODEPNG_H
#define LODEPNG_H

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/> 1117777777777 7/777777/77777/777777/777777/77777/77777//77777//7777/7/7/7/77777 >/
/* Code Sections */
I*= L1171 17777777777777/77777/777777/777777/7777//77777/7/77777//77777/77777/777 =/

/*
The following defines can be commented to turn off certain parts of the code to
have faster compile and smaller executable size if certain parts aren*t needed.
They also divide the code into different sections to more easily see the parts.
*/

#define LODEPNG_COMPILE_ZLIB /*deflate&zlib encoder and deflate&zlib decoder*/
#define LODEPNG_COMPILE_PNG /*png encoder and png decoder*/

#define LODEPNG_COMPILE_DECODER /*deflate&zlib decoder and png decoder*/

#define LODEPNG_COMPILE_ENCODER /*deflate&zlib encoder and png encoder*/

#define LODEPNG_COMPILE_DISK /*the optional built in harddisk file loading and saving
functions*/

#define LODEPNG_COMPILE_ANCILLARY_CHUNKS /*any code or struct datamember related to chunks other

than IHDR, IDAT, PLTE, tRNS, 1END*/
#define LODEPNG_COMPILE_UNKNOWN_CHUNKS /*handling of unknown chunks*/

/*There is also a C++ part in the code that is automatically handled by the standard _ cplusplus

#define, nothing®s needed for that here*/

I* S117777777777777777777777777777777/777777/77777//7777///7777///777////77777 */
/* LodeFlate & LodeZlib Setting structs */
1> S11777/7//7777///777//7//777////7777 */

#ifdef LODEPNG_COMPILE_DECODER
typedef struct LodeZlib_DecompressSettings

unsigned ignoreAdler32;
} LodeZlib_DecompressSettings;

extern const LodeZlib_DecompressSettings LodeZlib_defaultDecompressSettings;
void LodeZlib_DecompressSettings_init(LodeZlib_DecompressSettings* settings);
#endif /*LODEPNG_COMPILE_DECODER*/

204

#ifdef LODEPNG_COMPILE_ENCODER
typedef struct LodeZlib_DeflateSettings /*deflate = compress*/

/*LZ77 related settings*/
unsigned btype; /*the block type for LZ*/
unsigned uselLZ77; /*whether or not to use LZ77*/
unsigned windowSize; /*the maximum is 32768*/

} LodeZlib_DeflateSettings;

extern const LodeZlib_DeflateSettings LodeZlib_defaultDeflateSettings;
void LodeZlib_DeflateSettings_init(LodeZlib_DeflateSettings* settings);
#endif /*LODEPNG_COMPILE_ENCODER*/

#ifdef LODEPNG_COMPILE_ZLIB

/> 1117777777777 7/777777/77777/777777/77777//7777/7/77777//77777/7/777/7/7/77/77777 >/
/* LodeFlate & LodeZlib */
I*= L1171 177777777777777/77777/777777/77777//77777/77777//77777//77777/77777/777 =/

#ifdef LODEPNG_COMPILE_DECODER

/*This function reallocs the out buffer and appends the data.

Either, *out must be NULL and *outsize must be O, or, *out must be a valid buffer and *outsize
its size in bytes.

After using the *out data, *out must be free"d to avoid memory leaks.*/

unsigned LodeZlib_decompress(unsigned char** out, size_t* outsize, const unsigned char* in,
size_t insize, const LodeZlib_DecompressSettings* settings);

#endif /*LODEPNG_COMPILE_DECODER*/

#ifdef LODEPNG_COMPILE_ENCODER

/*This function reallocs the out buffer and appends the data.

Either, *out must be NULL and *outsize must be 0, or, *out must be a valid buffer and *outsize
its size in bytes.

After using the *out data, *out must be free"d to avoid memory leaks.*/

unsigned LodezZlib_compress(unsigned char** out, size_t* outsize, const unsigned char* in, size_t
insize, const LodeZlib_DeflateSettings* settings);

#endif /*LODEPNG_COMPILE_ENCODER*/

#endif /*LODEPNG_COMPILE_ZLIB*/
#ifdef LODEPNG_COMPILE_PNG

1> A1177777777777777777777777777777777777777/777777/7777///7777//7777////77777 */
/* LodePNG */
1> J117777777777777777777777777777777777777/77777//77//7//77/77//7//77//7//77 */

/*LodePNG_chunk functions: all these functions take as input an unsigned char* pointer
to the start of the chunk, with data until the end of the chunk.
Use the chunk functions with care! They do not check for allocated memory boundaries*/

unsigned LodePNG_chunk_length(const unsigned char* chunk); /*get the length of the data of the
chunk. Total chunk length has 12 bytes more.*/

void LodePNG_chunk_type(char type[5], const unsigned char* chunk); /*puts the 4-byte type in null
terminated string*/

unsigned char LodePNG_chunk_type_equals(const unsigned char* chunk, const char* type); /*check if
the type is the given type*/

/*properties of PNG chunks gotten from capitalization of chunk type name, as defined by the
standard*/

unsigned char LodePNG_chunk_critical(const unsigned char* chunk); /*0: ancillary chunk, 1: it"s
one of the critical chunk types*/

unsigned char LodePNG_chunk_private(const unsigned char* chunk); /*0: public, 1: private*/
unsigned char LodePNG_chunk_safetocopy(const unsigned char* chunk); /*0: the chunk is unsafe to
copy, 1: the chunk is safe to copy*/

unsigned char* LodePNG_chunk_data(unsigned char* chunk); /*get pointer to the data of the chunk*/
const unsigned char* LodePNG_chunk_data_const(const unsigned char* chunk); /*get pointer to the
data of the chunk*/

unsigned LodePNG_chunk_check_crc(const unsigned char* chunk); /*returns O if the crc is correct,
1 if it"s incorrect*/

205

void LodePNG_chunk_generate_crc(unsigned char* chunk); /*generates the correct CRC from the data
and puts it in the last 4 bytes of the chunk*/

/*iterate to next chunks. Note: these functions don®"t do bounds checking, use with care.*/
unsigned char* LodePNG_chunk_next(unsigned char* chunk);
const unsigned char* LodePNG_chunk_next_const(const unsigned char* chunk);

/*add chunks to out buffer. It reallocs the buffer to append the data.*/

unsigned char* LodePNG_append_chunk(unsigned char** out, size_t* outlength, const unsigned char*
chunk); /*appends chunk that was already created, to the data. Returns pointer to start of
appended chunk, or NULL if error happened*/

unsigned char* LodePNG_create_chunk(unsigned char** out, size_t* outlength, unsigned length,
const char* type, const unsigned char* data); /*appends new chunk to out. Returns pointer to
start of appended chunk, or NULL if error happened; may change memory address of out buffer*/

typedef struct LodePNG_InfoColor /*info about the color type of an image*/

/*header (IHDR)*/
unsigned colorType; /*color type*/
unsigned bitDepth; /*bits per sample*/

/*palette (PLTE)*/
unsigned char* palette; /*palette in RGBARGBA... order*/
size_t palettesize; /*palette size in number of colors (amount of bytes is 4 * palettesize)*/

/*transparent color key (tRNS)*/
unsigned key defined; /*is a transparent color key given?*/

unsigned key r; /*red component of color key*/
unsigned key g; /*green component of color key*/
unsigned key b; /*blue component of color key*/

} LodePNG_InfoColor;

void LodePNG_InfoColor_init(LodePNG_InfoColor* info);
void LodePNG_InfoColor_cleanup(LodePNG_InfoColor* info);
void LodePNG_InfoColor_copy(LodePNG_InfoColor* dest, const LodePNG_InfoColor* source);

/*it"s advised to use these functions instead of alloc®ing palette manually*/

void LodePNG_InfoColor_clearPalette(LodePNG_InfoColor* info);

void LodePNG_InfoColor_addPalette(LodePNG_InfoColor* info, unsigned char r, unsigned char g,
unsigned char b, unsigned char a); /*add 1 color to the palette*/

/*additional color info*/

unsigned LodePNG_InfoColor_getBpp(const LodePNG_InfoColor* info); /*bits per pixel*/
unsigned LodePNG_InfoColor_getChannels(const LodePNG_InfoColor* info); /*amount of channels*/
unsigned LodePNG_InfoColor_isGreyscaleType(const LodePNG_InfoColor* info); /*is it a greyscale
type? (colorType 0 or 4)*/

unsigned LodePNG_InfoColor_isAlphaType(const LodePNG_InfoColor* info); /*has it an alpha
channel? (colorType 2 or 6)*/

#iftdef LODEPNG_COMPILE_ANCILLARY_CHUNKS

typedef struct LodePNG_Time /*LodePNG"s encoder does not generate the current time. To make it
add a time chunk the correct time has to be provided*/

{
unsigned year; /*2 bytes*/
unsigned char month; /*1-12*/
unsigned char day; /*1-31*/
unsigned char hour; /*0-23*/

unsigned char minute; /*0-59*/
unsigned char second; /*0-60 (to allow for leap seconds)*/
} LodePNG_Time;

typedef struct LodePNG_Text /*non-international text*/
size_t num;
char** keys; /*the keyword of a text chunk (e.g. "Comment')*/
char** strings; /*the actual text*/

} LodePNG_Text;

void LodePNG_Text_init(LodePNG_Text* text);

206

void LodePNG_Text_cleanup(LodePNG_Text* text);
void LodePNG_Text_copy(LodePNG_Text* dest, const LodePNG_Text* source);

/*it"s advised to use these functions instead of alloc®ing the char**s manually*/

void LodePNG_Text_clear(LodePNG_Text* text);

void LodePNG_Text_add(LodePNG_Text* text, const char* key, const char* str); /*push back both
texts at once*/

typedef struct LodePNG_IText /*international text*/

size_t num;

char** keys; /*the English keyword of the text chunk (e.g. "Comment')*/

char** langtags; /*the language tag for this text"s international language, I1SO/I1EC 646 string,
e.g. 1SO 639 language tag*/

char** transkeys; /*keyword translated to the international language - UTF-8 string*/

char** strings; /*the actual international text - UTF-8 string*/
} LodePNG_IText;

void LodePNG_IText_init(LodePNG_IText* text);
void LodePNG_IText_cleanup(LodePNG_IText* text);
void LodePNG_IText_copy(LodePNG_IText* dest, const LodePNG_IText* source);

/*it"s advised to use these functions instead of alloc®ing the char**s manually*/

void LodePNG_IText_clear(LodePNG_IText* text);

void LodePNG_IText_add(LodePNG_IText* text, const char* key, const char* langtag, const char*
transkey, const char* str); /*push back the 4 texts of 1 chunk at once*/

#endif /*LODEPNG_COMPILE_ANCILLARY_CHUNKS*/
#ifdef LODEPNG_COMPILE_UNKNOWN_CHUNKS

typedef struct LodePNG_UnknownChunks /*unknown chunks read from the PNG, or extra chunks the user
wants to have added in the encoded PNG*/
{

/*there are 3 buffers, one for each position in the PNG where unknown chunks can appear

each buffer contains all unknown chunks for that position consecutively

The 3 buffers are the unknown chunks between certain critical chunks:

0: ihdr-plte, 1: plte-idat, 2: idat-iend*/

unsigned char* data[3];

size_t datasize[3]; /*size in bytes of the unknown chunks, given for protection*/

} LodePNG_UnknownChunks;

void LodePNG_UnknownChunks_init(LodePNG_UnknownChunks* chunks);

void LodePNG_UnknownChunks_cleanup(LodePNG_UnknownChunks* chunks);

void LodePNG_UnknownChunks_copy(LodePNG_UnknownChunks* dest, const LodePNG_UnknownChunks* src);
#endif /*LODEPNG_COMPILE_UNKNOWN_CHUNKS*/

typedef struct LodePNG_InfoPng /*information about the PNG image, except pixels and sometimes
except width and height*/

/*header (IHDR), palette (PLTE) and transparency (tRNS)*/

unsigned width; /*width of the image in pixels (ignored by encoder, but filled in
by decoder)*/
unsigned height; /*height of the image in pixels (ignored by encoder, but filled in

by decoder)*/
unsigned compressionMethod; /*compression method of the original file*/

unsigned filterMethod; /*filter method of the original file*/
unsigned interlaceMethod; /*interlace method of the original file*/
LodePNG_InfoColor color; /*color type and bits, palette, transparency*/

/*pixel data (IDAT)*/
/*nothing stored here, the pixels are given in a separate buffer*/

#ifdef LODEPNG_COMPILE_ANCILLARY_CHUNKS
/*suggested background color (bKGD)*/

unsigned background_defined; /*is a suggested background color given?*/
unsigned background_r; /*red component of suggested background color*/

207

unsigned background_g; /*green component of suggested background color*/
unsigned background_b; /*blue component of suggested background color*/

/*non-international text chunks (tEXt and zTXt)*/
LodePNG_Text text;

/*international text chunks (iTXt)*/
LodePNG_I1Text itext;

/*time chunk (tIME)*/
unsigned char time_defined; /*if 0, no tIME chunk was or will be generated in the PNG image*/
LodePNG_Time time;

/*phys chunk (pHYs)*/

unsigned phys_defined; /*is pHYs chunk defined?*/
unsigned phys_x;
unsigned phys_y;

unsigned char phys_unit; /*may be O (unknown unit) or 1 (metre)*/
#endif /*LODEPNG_COMPILE_ANCILLARY_CHUNKS*/

#ifdef LODEPNG_COMPILE_UNKNOWN_CHUNKS
/*unknown chunks*/
LodePNG_UnknownChunks unknown_chunks;

#endif /*LODEPNG_COMPILE_UNKNOWN_CHUNKS*/

} LodePNG_InfoPng;

void LodePNG_InfoPng_init(LodePNG_InfoPng* info);
void LodePNG_InfoPng_cleanup(LodePNG_InfoPng* info);
void LodePNG_InfoPng_copy(LodePNG_InfoPng* dest, const LodePNG_InfoPng* source);

typedef struct LodePNG_InfoRaw /*contains user-chosen information about the raw image data, which
is Independent of the PNG image*/

LodePNG_InfoColor color;
} LodePNG_InfoRaw;

void LodePNG_InfoRaw_init(LodePNG_InfoRaw* info);
void LodePNG_InfoRaw_cleanup(LodePNG_InfoRaw* info);
void LodePNG_InfoRaw_copy(LodePNG_InfoRaw* dest, const LodePNG_InfoRaw* source);

/*

LodePNG_convert:

Converts from any color type to 24-bit or 32-bit (later maybe more supported). return value =
LodePNG error code

The out buffer must have (w * h * bpp + 7) /7 8, where bpp is the bits per pixel of the output
color type (LodePNG_InfoColor_getBpp)

*/

unsigned LodePNG_convert(unsigned char* out, const unsigned char* in, LodePNG_InfoColor* infoOut,
LodePNG_InfoColor* infoln, unsigned w, unsigned h);

#ifdef LODEPNG_COMPILE_DECODER
typedef struct LodePNG_DecodeSettings

LodeZlib_DecompressSettings zlibsettings; /*in here is the setting to ignore Adler32
checksums*/

unsigned ignoreCrc; /*ignore CRC checksums*/
unsigned color_convert; /*whether to convert the PNG to the color type you want. Default: yes*/

#ifdef LODEPNG_COMPILE_ANCILLARY_CHUNKS

unsigned readTextChunks; /*if false but rememberUnknownChunks is true, they"re stored in the
unknown chunks*/
#endif /*LODEPNG_COMPILE_ANCILLARY_CHUNKS*/

#ifdef LODEPNG_COMPILE_UNKNOWN_CHUNKS

unsigned rememberUnknownChunks; /*store all bytes from unknown chunks in the InfoPng (off by
default, useful for a png editor)*/
#endif /*LODEPNG_COMPILE_UNKNOWN_CHUNKS*/

208

} LodePNG_DecodeSettings;

void LodePNG_DecodeSettings_init(LodePNG_DecodeSettings* settings);
typedef struct LodePNG_Decoder

{

LodePNG_DecodeSettings settings;
LodePNG_InfoRaw infoRaw;
LodePNG_InfoPng infoPng; /*info of the PNG image obtained after decoding*/
unsigned error;
} LodePNG_Decoder;

void LodePNG_Decoder_init(LodePNG_Decoder* decoder);
void LodePNG_Decoder_cleanup(LodePNG_Decoder* decoder);
void LodePNG_Decoder_copy(LodePNG_Decoder* dest, const LodePNG_Decoder* source);

/*decoding functions*/

/*This function mallocs the out buffer for you and stores the size in *outsize. After using the
*out data, *out must be free"d to avoid memory leaks.*/

void LodePNG_decode(LodePNG_Decoder* decoder, unsigned char** out, size_t* outsize, const
unsigned char* in, size_t insize);

unsigned LodePNG_decode32(unsigned char** out, unsigned* w, unsigned* h, const unsigned char* in,
size_t insize); /*return value is error*/

#ifdef LODEPNG_COMPILE_DISK

unsigned LodePNG_decode32f(unsigned char** out, unsigned* w, unsigned* h, const char* filename);
#endif /*LODEPNG_COMPILE_DISK*/

void LodePNG_inspect(LodePNG_Decoder* decoder, const unsigned char* in, size_t size); /*read the
png header*/

#endif /*LODEPNG_COMPILE_DECODER*/
#ifdef LODEPNG_COMPILE_ENCODER
typedef struct LodePNG_EncodeSettings
{

LodeZlib_DeflateSettings zlibsettings; /*settings for the zlib encoder, such as window
size, ...*/

unsigned autoLeaveOutAlphaChannel; /*automatically use color type without alpha instead of
given one, if given image is opaque*/

unsigned force_palette; /*force creating a PLTE chunk if colortype is 2 or 6 (= a suggested
palette). If colortype is 3, PLTE is _always_ created.*/
#ifdef LODEPNG_COMPILE_ANCILLARY_CHUNKS

unsigned add_id; /*add LodePNG version as text chunk*/

unsigned text_compression; /*encode text chunks as zTXt chunks instead of tEXt chunks, and use
compression in iTXt chunks*/
#endif /*LODEPNG_COMPILE_ANCILLARY_CHUNKS*/
} LodePNG_EncodeSettings;

void LodePNG_EncodeSettings_init(LodePNG_EncodeSettings* settings);
typedef struct LodePNG_Encoder

LodePNG_EncodeSettings settings;

LodePNG_InfoPng infoPng; /*the info specified by the user may not be changed by the encoder.
The encoder will try to generate a PNG close to the given info.*/

LodePNG_InfoRaw infoRaw; /*put the properties of the input raw image in here*/

unsigned error;
} LodePNG_Encoder;

void LodePNG_Encoder_init(LodePNG_Encoder* encoder);
void LodePNG_Encoder_cleanup(LodePNG_Encoder* encoder);
void LodePNG_Encoder_copy(LodePNG_Encoder* dest, const LodePNG_Encoder* source);

/*This function mallocs the out buffer for you and stores the size in *outsize. After using the
*out data, *out must be free"d to avoid memory leaks.*/

void LodePNG_encode(LodePNG_Encoder* encoder, unsigned char** out, size_t* outsize, const
unsigned char* image, unsigned w, unsigned h);

unsigned LodePNG_encode32(unsigned char** out, size_t* outsize, const unsigned char* image,
unsigned w, unsigned h); /*return value is error*/

#ifdef LODEPNG_COMPILE_DISK

209

unsigned LodePNG_encode32f(const char* filename, const unsigned char* image, unsigned w, unsigned

h);
#endif /*LODEPNG_COMPILE_DISK*/

#endif /*LODEPNG_COMPILE_ENCODER*/
#endif /*LODEPNG_COMPILE_PNG*/

#ifdef LODEPNG_COMPILE_DISK

/*global functions allowing to load and save a file from/to harddisk*/

/*This function mallocs the out buffer for you and stores the size in *outsize. After using the
*out data, *out must be free"d to avoid memory leaks.*/

void LodePNG_loadFile(unsigned char** out, size_t* outsize, const char* filename);

void LodePNG_saveFile(const unsigned char* buffer, size_t buffersize, const char* filename);
#endif /*LODEPNG_COMPILE_DISK*/

#ifdef _ cplusplus

/*

C++ RAIl wrapper:

—-introduces RAIll thanks to ctors and dtors of Decoder and Encoder class
—-introduces std::vector versions of the encode and decode functions

-brings back the interface almost completely identical to the original C++ version of LodePNG,
except for the std::vector version of palette and std::strings of text chunks

*/

#include <vector>

#include <string>

#include <fstream>

#ifdef LODEPNG_COMPILE_ZLIB
namespace LodeZlib

{
#ifdef LODEPNG_COMPILE_DECODER
unsigned decompress(std::vector<unsigned char>& out, const std::vector<unsigned char>& in,
const LodeZlib_DecompressSettings& settings = LodeZlib_defaultDecompressSettings);
#endif /*#ifdef LODEPNG_COMPILE_DECODER*/
#ifdef LODEPNG_COMPILE_ENCODER
unsigned compress(std::vector<unsigned char>& out, const std::vector<unsigned char>& in, const
LodeZlib_DeflateSettings& settings = LodezZlib_defaultDeflateSettings);
#endif /*#ifdef LODEPNG_COMPILE_ENCODER*/

}
#endif /*LODEPNG_COMPILE_ZLIB*/
#ifdef LODEPNG_COMPILE_PNG

namespace LodePNG

{
#ifdef LODEPNG_COMPILE_DECODER

class Decoder : public LodePNG_Decoder

{
public:

Decoder();
~Decoder();
void operator=(const LodePNG_Decoder& other);

/*decoding functions*/
void decode(std: :vector<unsigned char>& out, const unsigned char* in, size_t insize);
void decode(std::vector<unsigned char>& out, const std::vector<unsigned char>& in);

void inspect(const unsigned char* in, size_t size);
void inspect(const std::vector<unsigned char>& in);

/*error checking after decoding*/
bool hasError() const;
unsigned getError() const;

/*convenient access to some InfoPng parameters after decoding*/

210

unsigned getWidth() const;

unsigned getHeight() const;

unsigned getBpp(); /*bits per pixel*/

unsigned getChannels(); /*amount of channels*/

unsigned isCGreyscaleType(); /*is it a greyscale type? (colorType 0 or 4)*/
unsigned isAlphaType(); /*has it an alpha channel? (colorType 2 or 6)*/

const LodePNG_DecodeSettings& getSettings() const;
LodePNG_DecodeSettings& getSettings();
void setSettings(const LodePNG_DecodeSettings& info);

const LodePNG_InfoPng& getlnfoPng() const;

LodePNG_InfoPng& getinfoPng();

void setInfoPng(const LodePNG_InfoPng& info);

void swapInfoPng(LodePNG_InfoPng& info); /*faster than copying with setinfoPng*/

const LodePNG_InfoRaw& getlnfoRaw() const;
LodePNG_InfoRaw& getiInfoRaw();
void setInfoRaw(const LodePNG_InfoRaw& info);

¥

/*simple functions for encoding/decoding the PNG in one call (RAW image always 32-bit)*/
unsigned decode(std::vector<unsigned char>& out, unsigned& w, unsigned& h, const unsigned char*
in, unsigned size, unsigned colorType = 6, unsigned bitDepth = 8);
unsigned decode(std::vector<unsigned char>& out, unsigned& w, unsigned& h, const
std: :vector<unsigned char>& in, unsigned colorType = 6, unsigned bitDepth = 8);
#ifdef LODEPNG_COMPILE_DISK
unsigned decode(std::vector<unsigned char>& out, unsigned& w, unsigned& h, const std::string&
filename, unsigned colorType = 6, unsigned bitDepth = 8);
#endif /*LODEPNG_COMPILE_DISK*/

#endif /*LODEPNG_COMPILE_DECODER*/
#ifdef LODEPNG_COMPILE_ENCODER

class Encoder : public LodePNG_Encoder

{
public:

Encoder();
~Encoder(Q);
void operator=(const LodePNG_Encoder& other);

void encode(std: :vector<unsigned char>& out, const unsigned char* image, unsigned w, unsigned
h):

void encode(std: :vector<unsigned char>& out, const std::vector<unsigned char>& image,
unsigned w, unsigned h);

/*error checking after decoding*/
bool hasError() const;
unsigned getError() const;

/*convenient direct access to some parameters of the InfoPng*/

void clearPalette();

void addPalette(unsigned char r, unsigned char g, unsigned char b, unsigned char a); /*add 1
color to the palette*/
#ifdef LODEPNG_COMPILE_ANCILLARY_CHUNKS

void clearText();

void addText(const std::string& key, const std::string& str); /*push back both texts at
once*/

void clearlText();

void addIText(const std::string& key, const std::string& langtag, const std::string& transkey,
const std::string& str);
#endif /*LODEPNG_COMPILE_ANCILLARY_CHUNKS*/

const LodePNG_EncodeSettings& getSettings() const;
LodePNG_EncodeSettings& getSettings();
void setSettings(const LodePNG_EncodeSettings& info);

const LodePNG_InfoPng& getinfoPng() const;
LodePNG_InfoPng& getinfoPng();

211

void setInfoPng(const LodePNG_InfoPng& info);
void swaplnfoPng(LodePNG_InfoPng& info); /*faster than copying with setlinfoPng*/

const LodePNG_InfoRaw& getlnfoRaw() const;

LodePNG_InfoRaw& getlnfoRaw();

void setInfoRaw(const LodePNG_InfoRaw& info);
}:

unsigned encode(std: :vector<unsigned char>& out, const unsigned char* in, unsigned w, unsigned
h, unsigned colorType = 6, unsigned bitDepth = 8);

unsigned encode(std: :vector<unsigned char>& out, const std::vector<unsigned char>& in, unsigned
w, unsigned h, unsigned colorType = 6, unsigned bitDepth = 8);
#ifdef LODEPNG_COMPILE_DISK

unsigned encode(const std::string& filename, const unsigned char* in, unsigned w, unsigned h,
unsigned colorType = 6, unsigned bitDepth = 8);

unsigned encode(const std::string& filename, const std::vector<unsigned char>& in, unsigned w,
unsigned h, unsigned colorType = 6, unsigned bitDepth = 8);
#endif /*LODEPNG_COMPILE_DISK*/

#endif /*#ifdef LODEPNG_COMPILE_ENCODER*/

#ifdef LODEPNG_COMPILE_DISK

/*global functions allowing to load and save a file from/to harddisk*/

void loadFile(std::vector<unsigned char>& buffer, const std::string& filename);

void saveFile(const std::vector<unsigned char>& buffer, const std::string& filename);
#endif /*LODEPNG_COMPILE_DISK*/

} /*namespace LodePNG*/
#endif /*LODEPNG_COMPILE_PNG*/
#endif /*__cplusplus C++ RAIl wrapper*/

/*

TODO:

[1 test if there are no leaks or exploits if a function returns in the middle due to an error
[1 LZ77 encoder more like the one described in zlib - to make sure it"s patentfree

[1 converting color to 16-bit types

[1 read all public PNG chunk types (but never let the color profile and gamma ones ever touch
RGB values, that is very annoying for textures as well as images in a browser)

[X] add option to decoder to store ignored chunks in LodePNG_InfoPng, and let encoder include
those in the result

[X] encoding PNGs with Adam7 interlace

[1 make sure encoder generates no chunks with size > (2731)-1

[1 partial decoding (stream processing)

[1 let the "isFullyOpaque"™ function check color keys and transparent palettes too

[1 better name for *‘codes', "codesD", *codelengthcodes™, *clcl™ and "11dI"

[X] support zTXt chunks

[X] support iTXt chunks

[1 check compatibility with vareous compilers (done but needs to be redone for every newer
version)

[1 don"t stop decoding on errors like 69, 57, 58 (make warnings that the decoder stores in the
error at the very end? and make some errors just let it stop with this one chunk but still do the
next ones)

[1 make option to choose if the raw image with non multiple of 8 bits per scanline should have
padding bits or not, if people like storing raw images that way

*/

#endif

/*
LodePNG Documentation

1. about
1.1. supported features
1.2. features not supported
2. C and C++ version

212

3. A note about security!
4. simple functions

4.1 C Simple Functions
4.2 C++ Simple Functions
5. decoder
6. encoder
7. color conversions
8. info values
9. error values

10. file 10

11. chunks and PNG editing
12. compiler support

13. examples

13.1. decoder example
13.2. encoder example
14. Lodezlib

15. changes

16. contact information

1. about

PNG is a file format to store raster images losslessly with good compression,
supporting different color types. It can be implemented in a patent-free way.

LodePNG is a PNG codec according to the Portable Network Graphics (PNG)
Specification (Second Edition) - W3C Recommendation 10 November 2003.

The specifications used are:

*) Portable Network Graphics (PNG) Specification (Second Edition):
http://www._w3.0rg/TR/2003/REC-PNG-20031110

*) RFC 1950 ZLIB Compressed Data Format version 3.3:
http://www.gzip.org/zlib/rfc-zlib.html

*) RFC 1951 DEFLATE Compressed Data Format Specification ver 1.3:
http://www.gzip.org/zlib/rfc-deflate._html

The most recent version of LodePNG can currently be found at
http://members.gamedev.net/lode/projects/LodePNG/

LodePNG works both in C (ISO C90) and C++, with a C++ wrapper that adds
extra functionality.

LodePNG exists out of two Ffiles:

-lodepng.h: the header file for both C and C++

-lodepng.c(pp): give it the name lodepng.c or lodepng.cpp depending on your usage
Optionally, LodePNG also has the files lodepng_examples.c and lodepng_examples.cpp

LodePNG is simple but only supports the basic requirements. To achieve
simplicity, the following design choices were made: There are no dependencies
on any external library. To decode PNGs, there"s a Decoder struct or class that
can convert any PNG file data into an RGBA image buffer with a single function
call. To encode PNGs, there®s an Encoder struct or class that can convert image
data into PNG file data with a single function call. To read and write files,
simple functions to convert the files to/from buffers in memory.

This all makes LodePNG suitable for loading textures in games, raytracers,
intros, ..., or for loading images into programs that require them only for
simple usage. It"s less suitable for full fledged image editors, loading PNGs
over network (since this decoder requires all the image data to be available
before the decoding can begin), life-critical systems, ... Even though it
contains a conformant decoder and encoder, it"s still not a conformant editor,
because unknown chunks are discarded.

1.1. supported features

The following features are supported by the decoder:

*) decoding of PNGs with any color type, bit depth and interlace mode

213

*) encoding of PNGs, from any raw image to 24 or 32-bit color, or from specific raw images to any
PNG color type
*) Adam7 interlace and deinterlace for any color type
*) (auto) conversion of color types, from any color type, to 24-bit, 32-bit, ...
*) loading the image from harddisk or decoding it from a buffer from other sources than harddisk
*) support for alpha channels, including translucent palettes and color key
*) zlib decompression (inflate)
*) zlib compression (deflate)
*) CRC32 and ADLER32 checksums
*) handling of unknown chunks, allowing making a PNG editor that stores custom and unknown chunks.
*) the following chunks are supported (generated/interpreted) by both encoder and decoder:
IHDR: header information
PLTE: color palette
IDAT: pixel data
IEND: the final chunk
tRNS: transparency for palettized images
tEXt: textual information
zTXt: compressed textual information
iTXt: international textual information
bKGD: suggested background color
pHYs: physical dimensions
tIME: modification time

1.2. features not supported

The following features are _not_ supported:

*) some features needed to make a conformant PNG-Editor might be still missing.

*) partial loading/stream processing. All data must be available and is processed in one call.

*) The following public chunks are not supported but treated as unknown chunks by LodePNG
cHRM, gAMA, iCCP, sRGB, sBIT, hIST, sPLT

2. C and C++ version

LodePNG is written in C (ISO C90), and has a C++ wrapper around the C version.
The C++ wrapper adds RAIll, the usage of std::vectors, and convenience functions.

The C version uses buffers allocated with alloc instead that you need to free()
yourself. On top of that, you need to use init and cleanup functions for each
struct whenever using a struct from the C version to avoid exploits and memory leaks.

Both the C and the C++ version are contained in this file! The C++ code depends on
the C code, the C code works on its own.

These files work without modification for both C and C++ compilers because all the
additional C++ code is in "#ifdef _ cplusplus” blocks that make C-compilers ignore
it, and all the C code is made so that it compiles both with strict ISO C90 and C++.

To use the C++ version, you need to rename the source file to lodepng.cpp (instead
of lodepng.c), and compile this with a C++ compiler.

To use the C version, you need to rename the source file to lodepng.c (instead
of lodepng.cpp), and compile this with a C compiler. Optionally, you may remove
the C++ code that is in "#ifdef _ cplusplus" blocks, because that code is not
used for the C version.

3. A note about security!

In the C version of LodePNG, and in the C++ version for the "Info" structs:

For all LodePNG, LodeFlate and LodeZlib structs in C:

-if a struct has a corresponding init function, always call the init function when making a new
one, to avoid exploits

-if a struct has a corresponding cleanup function, call it before the struct disappears to avoid
memory leaks

214

-if a struct has a corresponding copy function, use the copy function instead of . The
destination must be inited already!

-to get the effect of a copy constructor, first init, then copy

-structs will init, copy and cleanup possible member structs that they contain

-if a struct has a corresponding swap function, you can swap anything with anything, even
uninited structs. This can be faster than using copy.

The C++ wrapper has classes that handle all this using RAIl. More specifically, the Encoder and
Decoder classes have

a constructor, destructor and operator= that use the init, cleanup and copy functions on all
their members and themselves.

IT you discover a possible exploit, please let me know, because they have to be eliminated at all
cost.

4. "Simple" Functions

For the most simple usage cases of loading and saving a PNG image, there
are some simple functions that do everything in 1 call (instead of you
having to declare a struct or class).

The simple versions always use 32-bit RGBA color for the raw image, but
still support loading arbitrary-colortype PNG images.

The later sections of this manual are devoted to the complex versions, where
you can use other color types and conversions.

4.1 C Simple Functions

The C simple functions have a 32" or "32f" in their name, and don"t take a struct as
parameter, unlike the non-simple ones (see more down in the documentation).

unsigned LodePNG_decode32(unsigned char** out, unsigned* w, unsigned* h, const unsigned char* in,
size_t insize);

Load PNG from given buffer.

As input, give an unsigned char* buffer gotten by loading the .png file and its size.

As output, you get a dynamically allocated buffer of large enough size, and the width and height
of the image.

The buffer®s size is w * h * 4. The image is in RGBA format.

The return value is the error (0 if ok).

You need to do free(out) after usage to clean up the memory.

unsigned LodePNG_decode32f(unsigned char** out, unsigned* w, unsigned* h, const char* filename);

Load PNG from disk, from file with given name.
Same as decode32, except you give a Filename instead of an input buffer.

unsigned LodePNG_encode32(unsigned char** out, size_t* outsize, const unsigned char* image,
unsigned w, unsigned h);

Encode PNG into buffer.

As input, give a image buffer of size w * h * 4, in RGBA format.

As output, you get a dynamically allocated buffer and its size, which is a PNG file that can
directly be saved in this form to the harddisk.

The return value is the error (0 if 0k).

You need to do free(out) after usage to clean up the memory.

unsigned LodePNG_encode32f(const char* filename, const unsigned char* image, unsigned w, unsigned
h):

Encode PNG into file on disk with given name.

IT the file exists, it"s overwritten without warning!

Same parameters as encode2, except the result is stored in a file instead of a dynamic buffer.

4.2 C++ Simple Functions

215

For decoding a PNG there are:

unsigned LodePNG: :decode(std::vector<unsigned char>& out, unsigned& w, unsigned& h, const
unsigned char* in, unsigned size);

unsigned LodePNG: :decode(std::vector<unsigned char>& out, unsigned& w, unsigned& h, const
std: :vector<unsigned char>& in);

unsigned LodePNG: :decode(std::vector<unsigned char>& out, unsigned& w, unsigned& h, const
std::string& filename);

These store the pixel data as 32-bit RGBA color in the out vector, and the width
and height of the image in w and h.

The 3 functions each have a different input type: The first as unsigned char
buffer, the second as std::vector buffer, and the third allows you to give the
filename in case you want to load the PNG from disk instead of from a buffer.
The return value is the error (0 if ok).

For encoding a PNG there are:

unsigned LodePNG::encode(std::vector<unsigned char>& out, const unsigned char* in, unsigned w,
unsigned h);

unsigned LodePNG::encode(std::vector<unsigned char>& out, const std::vector<unsigned char>& in,
unsigned w, unsigned h);

unsigned LodePNG::encode(const std::string& filename, const std::vector<unsigned char>& in,
unsigned w, unsigned h);

unsigned LodePNG::encode(const std::string& filename, const unsigned char* in, unsigned w,
unsigned h);

Specify the width and height of the input image with w and h.

You can choose to get the output in an std::vector or stored in a file, and
the input can come from an std::vector or an unsigned char* buffer. The input
buffer must be in RGBA format and the size must be w * h * 4 bytes.

The first two functions append to the out buffer, they don"t clear it, clear it
first before encoding into a buffer that you expect to only contain this result.

On the other hand, the functions that encode to a file will completely overwrite
the original file without warning if it exists.

The return value is the error (0 if 0k).

5. Decoder

This is about the LodePNG Decoder struct in the C version, and the
LodePNG: :Decoder class in the C++ version. The C++ version inherits
from the C struct and adds functions in the interface.

The Decoder class can be used to convert a PNG image to a raw image.
Usage:

—-in C++:
declare a LodePNG: :Decoder
call its decode member function with the parameters described below

-in C more needs to be done due to the lack of constructors and destructors:
declare a LodePNG_Decoder struct
call LodePNG_Decoder_init with the struct as parameter
call LodePNG_Decode with the parameters described below
after usage, call LodePNG _Decoder_cleanup with the struct as parameter
after usage, free() the out buffer with image data that was created by the decode function

The other parameters of the decode function are:

*) out: this buffer will be filled with the raw image pixels

*) in: pointer to the PNG image data or std::vector with the data

*) size: the size of the PNG image data (not needed for std::vector version)

After decoding you need to read the width and height of the image from the
decoder, see further down in this manual to see how.

There®s also an optional function "inspect”. It has the same parameters as decode except

216

the "out"™ parameter. This function will read only the header chunk of the PNG
image, and store the information from it in the LodePNG_InfoPng (see below).
This allows knowing information about the image without decoding it. Only the
header (IHDR) information is read by this, not text chunks, not the palette, ...

During the decoding it"s possible that an error can happen, for example if the
PNG image was corrupted. To check if an error happened during the last decoding,
check the value error, which is a member of the decoder struct.

In the C++ version, use hastError() and getError() of the Decoder.

The error codes are explained in another section.

Now about colors and settings...

The Decoder contains 3 components:

*) LodePNG_InfoPng: it stores information about the PNG (the input) in an LodePNG_InfoPng struct,

don®"t modify this one yourself
*) Settings: you can specify a few other settings for the decoder to use
*) LodePNG_InfoRaw: here you can say what type of raw image (the output) you want to get

Some of the parameters described below may be inside the sub-struct ""LodePNG_InfoColor color™.

In the C and C++ version, when using Info structs outside of the decoder or encoder, you need to

use their

init and cleanup functions, but normally you use the ones in the decoder that are already handled

in the init and cleanup functions of the decoder itself.
=LodePNG_ InfoPng=

This contains information such as the original color type of the PNG image, text

comments, suggested background color, etc... More details about the LodePNG_InfoPng struct

are iIn another section.

Because the dimensions of the image are important, there are shortcuts to get them in the
C++ version: use decoder.getWidth() and decoder.getHeight().
In the C version, use decoder.infoPng.width and decoder.infoPng.height.

=LodePNG_ InfoRaw=

In the LodePNG_InfoRaw struct of the Decoder, you can specify which color type you want
the resulting raw image to be. If this is different from the colorType of the

PNG, then the decoder will automatically convert the result to your LodePNG_InfoRaw
settings. Currently the following options are supported to convert to:

-colorType 6, bitDepth 8: 32-bit RGBA

-colorType 2, bitDepth 8: 24-bit RGB

-other color types if it"s exactly the same as that in the PNG image

Palette of LodePNG_InfoRaw isn"t used by the Decoder, when converting from palette color
to palette color, the values of the pixels are left untouched so that the colors

will change if the palette is different. Color key of LodePNG_InfoRaw is not used by the
Decoder. If setting color_convert is false then LodePNG_InfoRaw is completely ignored,
but it will be modified to match the color type of the PNG so will be overwritten.

By default, 32-bit color is used for the result.
=Settings=

The Settings can be used to ignore the errors created by invalid CRC and Adler32
chunks, and to disable the decoding of tEXt chunks.

There®s also a setting color_convert, true by default. If false, no conversion
is done, the resulting data will be as it was in the PNG (after decompression)
and you"ll have to puzzle the colors of the pixels together yourself using the
color type information in the LodePNG_InfoPng.

6. Encoder

This is about the LodePNG_Encoder struct in the C version, and the
LodePNG: :Encoder class in the C++ version.

The Encoder class can be used to convert raw image data into a PNG image.

217

The PNG part of the encoder is working good, the zlib compression part is
becoming quite fine but not as good as the official zlib yet, because it"s not
as fast and doesn"t provide an as high compression ratio.

Usage:

—-in C++:
declare a LodePNG::Encoder
call its encode member function with the parameters described below

-in C more needs to be done due to the lack of constructors and destructors:
declare a LodePNG_Encoder struct
call LodePNG_Encoder_init with the struct as parameter
call LodePNG_Encode with the parameters described below
after usage, call LodePNG_Encoder_cleanup with the struct as parameter
after usage, free() the out buffer with PNG data that was created by the encode function

The raw image given to the encoder is an unsigned char* buffer. You also have to
specify the width and height of the raw image. The result is stored in a given
buffer. These buffers can be unsigned char* pointers, std::vectors or dynamically
allocated unsigned char* buffers that you have to free() yourself, depending on
which you use.

The parameters of the encode function are:

*) out: in this buffer the PNG file data will be stored (it will be appended)
*) in: vector of or pointer to a buffer containing the raw image

*) w and h: the width and height of the raw image in pixels

Make sure that the in buffer you provide, is big enough to contain w * h pixels
of the color type specified by the LodePNG_InfoRaw.

In the C version, you need to free() the out buffer after usage to avoid memory leaks.

In the C version, you need to use the LodePNG_Encoder_init function before using the decoder,
and the LodePNG_Encoder_cleanup function after using it.

In the C++ version, you don"t need to do this since RAIl takes care of it.

The encoder generates some errors but not for everything, because, unlike when
decoding a PNG, when encoding one there aren®t so much parameters of the input
that can be corrupted. It"s the responsibility of the user to make sure that all
preconditions are satesfied, such as giving a correct window size, giving an
existing btype, making sure the given buffer is large enough to contain an image
with the given width and height and colortype, ... The encoder can generate

some errors, see the section with the explanations of errors for those.

Like the Decoder, the Encoder has 3 components:

*) LodePNG_InfoRaw: here you say what color type of the raw image (the input) has

*) Settings: you can specify a few settings for the encoder to use

*) LodePNG_InfoPng: the same LodePNG_InfoPng struct as created by the Decoder. For the encoder,
with this you specify how you want the PNG (the output) to be.

Some of the parameters described below may be inside the sub-struct "LodePNG_InfoColor color™.

In the C and C++ version, when using Info structs outside of the decoder or encoder, you need to
use their

init and cleanup functions, but normally you use the ones in the encoder that are already handled
in the init and cleanup functions of the decoder itself.

=LodePNG_ InfoPng=

The Decoder class stores information about the PNG image in an LodePNG_InfoPng object. With
the Encoder you can do the opposite: you give it an LodePNG_InfoPng object, and it"Il try
to match the LodePNG_InfoPng you give as close as possible in the PNG it encodes. For
example in the LodePNG_InfoPng you can specify the color type you want to use, possible
tEXt chunks you want the PNG to contain, etc... For an explanation of all the

values in LodePNG_InfoPng see a further section. Not all PNG color types are supported

by the Encoder.

Note that the encoder will only TRY to match the LodePNG_InfoPng struct you give.
Some things are ignored by the encoder. The width and height of LodePNG_InfoPng are
ignored as well, because instead the width and height of the raw image you give

in the input are used. In fact the encoder currently uses only the following

218

settings from it:

-colorType: the ones it supports

-text chunks, that you can add to the LodePNG_InfoPng with "addText"
-the color key, if applicable for the given color type

-the palette, if you encode to a PNG with colorType 3

-the background color: it"ll add a bKGD chunk to the PNG if one is given
-the interlaceMethod: None (0) or Adam7 (1)

When encoding to a PNG with colorType 3, the encoder will generate a PLTE chunk.
IT the palette contains any colors for which the alpha channel is not 255 (so
there are translucent colors in the palette), it"ll add a tRNS chunk.

=LodePNG_ InfoRaw=

You specify the color type of the raw image that you give to the input here,
including a possible transparent color key and palette you happen to be using in
your raw image data.

By default, 32-bit color is assumed, meaning your input has to be in RGBA
format with 4 bytes (unsigned chars) per pixel.

=Settings=

The following settings are supported (some are in sub-structs):
*) autolLeaveOutAlphaChannel: when this option is enabled, when you specify a PNG
color type with alpha channel (not to be confused with the color type of the raw
image you specify!!), but the encoder detects that all pixels of the given image
are opaque, then it"ll automatically use the corresponding type without alpha
channel, resulting in a smaller PNG image.
*) btype: the block type for LZ77. O = uncompressed, 1 = fixed huffman tree, 2 = dynamic huffman
tree (best compression)
*) uselLZ77: whether or not to use LZ77 for compressed block types
*) windowSize: the window size used by the LZ77 encoder (1 - 32768)
*) force_palette: if colorType is 2 or 6, you can make the encoder write a PLTE
chunk if force_ palette is true. This can used as suggested palette to convert
to by viewers that don"t support more than 256 colors (if those still exist)
*) add_id: add text chunk "Encoder: LodePNG <version>" to the image.
*) text_compression: default 0. If 1, it 1l store texts as zTXt instead of tEXt chunks.
zTXt chunks use zlib compression on the text. This gives a smaller result on
large texts but a larger result on small texts (such as a single program name).
It"s all teEXt or all zTXt though, there"s no separate setting per text yet.

7. color conversions

For trickier usage of LodePNG, you need to understand about PNG color types and
about how and when LodePNG uses the settings in LodePNG_InfoPng, LodePNG_InfoRaw and Settings.

=PNG color types=

A PNG image can have many color types, ranging from 1-bit color to 64-bit color,
as well as palettized color modes. After the zlib decompression and unfiltering
in the PNG image is done, the raw pixel data will have that color type and thus
a certain amount of bits per pixel. IT you want the output raw image after
decoding to have another color type, a conversion is done by LodePNG.

The PNG specification mentions the following color types:

greyscale, bit depths 1, 2, 4, 8, 16

RGB, bit depths 8 and 16

palette, bit depths 1, 2, 4 and 8
greyscale with alpha, bit depths 8 and 16
RGBA, bit depths 8 and 16

D WNO

Bit depth is the amount of bits per color channel.
=Default Behaviour of LodePNG=

By default, the Decoder will convert the data from the PNG to 32-bit RGBA color,
no matter what color type the PNG has, so that the result can be used directly

219

as a texture in OpenGL etc... without worries about what color type the original
image has.

The Encoder assumes by default that the raw input you give it is a 32-bit RGBA
buffer and will store the PNG as either 32 bit or 24 bit depending on whether
or not any translucent pixels were detected in it.

To get the default behaviour, don"t change the values of LodePNG_InfoRaw and LodePNG_InfoPng of
the encoder, and don"t change the values of LodePNG_InfoRaw of the decoder.

=Color Conversions=

As explained in the sections about the Encoder and Decoder, you can specify

color types and bit depths in LodePNG_InfoPng and LodePNG_InfoRaw, to change the default
behaviour

explained above. (for the Decoder you can only specify the LodePNG_InfoRaw, because the
LodePNG_InfoPng contains what the PNG file has).

To avoid some confusion:

-the Decoder converts from PNG to raw image

-the Encoder converts from raw image to PNG

-the color type and bit depth in LodePNG_InfoRaw, are those of the raw image

-the color type and bit depth in LodePNG_InfoPng, are those of the PNG

-if the color type of the LodePNG_InfoRaw and PNG image aren"t the same, a conversion
between the color types is done if the color types are supported

Supported color types:

-1t"s possible to load PNGs from any colortype and to save PNGs of any colorType.

-Both encoder and decoder use the same converter. So both encoder and decoder

suport the same color types at the input and the output. So the decoder supports

any type of PNG image and can convert it to certain types of raw image, while the

encoder supports any type of raw data but only certain color types for the output PNG.

-The converter can convert from _any input color type, to 24-bit RGB or 32-bit RGBA

-The converter can convert from greyscale input color type, to 8-bit greyscale or greyscale with
alpha

-1f both color types are the same, conversion from anything to anything is possible

-Color types that are invalid according to the PNG specification are not allowed

-When converting from a type with alpha channel to one without, the alpha channel information is
discarded

-When converting from a type without alpha channel to one with, the result will be opaque except
pixels that have the same color as the color key of the input if one was given

-When converting from 16-bit bitDepth to 8-bit bitDepth, the 16-bit precision information is lost,
only the most significant byte is kept

-Converting from color to greyscale is not supported on purpose: choosing what kind of color to
greyscale conversion to do is not a decision a PNG codec should make

-Converting from/to a palette type, only keeps the indices, it ignores the colors defined in the
palette

No conversion needed...:

-1f the color type of the PNG image and raw image are the same, then no
conversion is done, and all color types are supported.

-In the encoder, you can make it save a PNG with any color by giving the
LodePNG_InfoRaw and LodePNG_InfoPng the same color type.

-In the decoder, you can make it store the pixel data in the same color type
as the PNG has, by setting the color_convert setting to false. Settings in
infoRaw are then ignored.

The function LodePNG_convert does this, which is available in the interface but
normally isn"t needed since the encoder and decoder already call it.

=More Notes=

In the PNG file format, if a less than 8-bit per pixel color type is used and the scanlines
have a bit amount that isn"t a multiple of 8, then padding bits are used so that each

scanline starts at a fresh byte.

However: The input image you give to the encoder, and the output image you get from the decoder
will NOT have these padding bits in that case, e.g. in the case of a 1-bit image with a width
of 7 pixels, the first pixel of the second scanline will the the 8th bit of the first byte,

not the first bit of a new byte.

8. info values

220

Both the encoder and decoder use a variable of type LodePNG_InfoPng and LodePNG_InfoRaw, which
both also contain a LodePNG_InfoColor. Here"s a list of each of the values stored in them:

*) info from the PNG header (IHDR chunk):

width: width of the image in pixels

height: height of the image in pixels

colorType: color type of the original PNG file

bitDepth: bits per sample

compressionMethod: compression method of the original file. Always O.

filterMethod: filter method of the original file. Always O.

interlaceMethod: interlace method of the original file. 0 is no interlace, 1 is adam7 interlace.

Note: width and height are only used as information of a decoded PNG image. When encoding one,
you don"t have

to specify width and height in an LodePNG_Info struct, but you give them as parameters of the
encode function.

The rest of the LodePNG_Info struct IS used by the encoder though!

*) palette:

This is a dynamically allocated unsigned char array with the colors of the palette. The value
palettesize

indicates the amount of colors in the palette. The allocated size of the buffer is 4 *
palettesize bytes,

because there are 4 values per color: R, G, B and A. Even if less color channels are used, the
palette

is always in RGBA format, in the order RGBARGBARGBA.....

When encoding a PNG, to store your colors in the palette of the LodePNG_InfoRaw, first use
LodePNG_InfoColor_clearPalette, then for each color use LodePNG_InfoColor_addPalette.

In the C++ version the Encoder class also has the above functions available directly in its
interface.

Note that the palette information from the tRNS chunk is also already included in this palette
vector.

IT you encode an image with palette, don"t forget that you have to set the alpha channels (A) of

the palette

too, set them to 255 for an opaque palette. If you leave them at zero, the image will be encoded

as

fully invisible. This both for the palette in the infoRaw and the infoPng if the png is to have a
palette.

*) transparent color key

key_defined: is a transparent color key given?

key r: red/greyscale component of color key
key g: green component of color key
key b: blue component of color key

For greyscale PNGs, r, g and b will all 3 be set to the same.
This color is 8-bit for 8-bit PNGs, 16-bit for 16-bit per channel PNGs.
*) suggested background color

background_defined: is a suggested background color given?

background_r: red component of sugg. background color
background_g: green component of sugg. background color
background_b: blue component of sugg. background color

This color is 8-bit for 8-bit PNGs, 16-bit for 16-bit PNGs

For greyscale PNGs, r, g and b will all 3 be set to the same. When encoding
the encoder writes the red one away.

For palette PNGs: When decoding, the RGB value will be stored, no a palette
index. But when encoding, specify the index of the palette in background_r,
the other two are then ignored.

221

The decoder pretty much ignores this background color, after all if you make a
PNG translucent normally you intend it to be used against any background, on
websites, as translucent textures in games, ... But you can get the color this
way If needed.

*) text and itext
Non-international text:

-text._keys: a char** buffer containing the keywords (see below)

-text.strings: a char** buffer containing the texts (see below)

-text.num: the amount of texts in the above char** buffers (there may be more texts in itext)
-LodePNG_InfoText_clearText: use this to clear the texts again after you filled them in
-LodePNG_InfoText_addText: this function is used to push back a keyword and text

International text: This is stored in separate arrays! The sum text.num and itext.num is the real
amount of texts.

-itext._keys: keyword in English

-itext.langtags: ISO 639 letter code for the language

-itext.transkeys: keyword in this language

-itext.strings: the text in this language, in UTF-8

—-itext.num: the amount of international texts in this PNG

-LodePNG_InfolText_clearText: use this to clear the itexts again after you filled them in
-LodePNG_InfolText_addText: this function is used to push back all 4 parts of an itext

Don"t allocate these text buffers yourself. Use the init/cleanup functions
correctly and use addText and clearText.

In the C++ version the Encoder class also has the above functions available directly in its
interface.

The char** buffers are used like the argv parameter of a main() function, and (i)text.num takes
the role

of argc.

In a text, there must be as much keys as strings because they always form pairs. In an itext,
there must always be as much keys, langtags, transkeys and strings.

They keyword of text chunks gives a short description what the actual text
represents. There are a few standard standard keywords recognised

by many programs: Title, Author, Description, Copyright, Creation Time,
Software, Disclaimer, Warning, Source, Comment. It"s allowed to use other keys.

The keyword is minimum 1 character and maximum 79 characters long. It"s
discouraged to use a single line length longer than 79 characters for texts.

*) additional color info

These functions are available with longer names in the C version, and directly
in the Decoder®s interface in the C++ version.

getBpp(): bits per pixel of the PNG image
getChannels(): amount of color channels of the PNG image
isGreyscaleType(): it"s color type O or 4

isAlphaType(): it"s color type 2 or 6

These values are calculated out of color type and bit depth of InfoColor.

The difference between bits per pixel and bit depth is that bit depth is the
number of bits per color channel, while a pixel can have multiple channels.

*) pHYs chunk (image dimensions)

phys_defined: if 0, there is no pHYs chunk and the values are undefined, if 1 else there is one
phys_x: pixels per unit in x direction

phys_y: pixels per unit in y direction

phys_unit: the unit, O is no unit (x and y only give the ratio), 1 is metre

*) tIME chunk (modification time)

222

time_defined:

if 0, there

is no tIME chunk and the values are undefined, if 1 there
time: this struct contains year as a 2-byte number (0-65535), month, day, hour, minute,

second as 1-byte numbers that must be in the correct range

Note: to make the encoder add a time chunk, set time_defined to 1 and fill in
the correct values in all the time parameters, LodePNG will not fill the current

time

9. error values

in these values itself,

all it does is copy them over into the chunk bytes.

The meanings of the LodePNG error values (encoder and decoder errors mixed
through each other):

*) O:

no error,

everything went ok

*) 1: the Encoder/Decoder has done nothing yet, so error checking makes no sense yet

: while huffman
: while huffman
: problem while
: problem while
: problem while

: while inflating:

decoding: end of input memory reached without endcode
decoding: error in code tree made it jump outside of tree
processing dynamic deflate block

processing dynamic deflate block

processing dynamic deflate block

: unexisting code while processing dynamic deflate block

: while inflating: end of out buffer memory reached

invalid distance code

: while inflating: end of out buffer memory reached

invalid deflate block BTYPE encountered while decoding

: NLEN is not ones complement of LEN in a deflate block
: while inflating: end of out buffer memory reached.

is one

ThIS can happen if the inflated deflate data is longer than the amount of bytes required to
fill up

all the pixels of the image, given the color depth and image dimensions. Something that

doesn"t
happen in a normal, well
while |nf|at|ng end of in buffer memory reached

*) 23:
*) 24:
*) 25:
*) 26:
*) 27:
*) 28:

Maybe it"s not a PNG, or a PNG file that got corrupted so that the header indicates the

invalid FCHECK

encoded, PNG image.

in zlib header

invalid compression method in zlib header
FDICT encountered in

PNG file

zlib header while it"s not used for PNG

is smaller than a PNG header

incorrect PNG signature (the first 8 bytes of the PNG file)

COFFUptIOﬂ

: first chunk
: chunk length too large, chunk broken off at end of file

is not the header chunk

illegal PNG color type or bpp
illegal PNG compression method
illegal PNG filter method
illegal PNG interlace method

; chunk length of a chunk is too large or the chunk too small

illegal PNG filter type encountered
illegal bit depth for this color type given

: tRNS
- tRNS
: tRNS
- bKGD
- bKGD
- bKGD
: value encountered in
palette too small?

: the palette is too big (more than 256 colors)
: more

palette alpha values given in tRNS, than there are colors in the palette
chunk has wrong size for greyscale image

chunk
chunk
chunk
chunk
chunk

has wrong

size for RGB image

appeared while it was not allowed for this color type

has wrong
has wrong
has wrong

*) 47: value encountered in
palette too small?
the input data is empty. Maybe a PNG file you tried to load doesn"t exist or

*) 48:

wrong

*) 49:
*) 50:
*) 51:
*) 52:
*) 53:
*) 55:

path.

size for palette image
size for greyscale iImage
size for RGB image

indexed image is larger than the palette size (bitdepth ==

indexed image is larger than the palette size (bitdepth

Jjumped past memory while generating dynamic huffman tree

Jumped past memory while generating dynamic huffman tree

Jumped past memory while inflating huffman block

Jumped past memory while inflating

size of zIlib data too small

Jumped past tree while generating huffman tree, this could be when the

is

8).
< 8).

m

Is

the

the

Is the

223

tree will have more leaves than symbols after generating it out of the

given lenghts. They call this an oversubscribed dynamic bit lengths tree in zlib.
*) 56: given output image colorType or bitDepth not supported for color conversion
*) 57: invalid CRC encountered (checking CRC can be disabled)
*) 58: invalid ADLER32 encountered (checking ADLER32 can be disabled)
*) 59: conversion to unexisting or unsupported color type or bit depth requested by encoder or
decoder
*) 60: invalid window size given in the settings of the encoder (must be 0-32768)
*) 61: invalid BTYPE given in the settings of the encoder (only 0, 1 and 2 are allowed)
*) 62: conversion from non-greyscale color to greyscale color requested by encoder or decoder.
LodePNG

leaves the choice of RGB to greyscale conversion formula to the user.
*) 63: length of a chunk too long, max allowed for PNG is 2147483647 bytes per chunk (27°31-1)
*) 64: the length of the *"end" symbol 256 in the Huffman tree is 0, resulting in the inability of
a deflated

block to ever contain an end code. It must be at least 1.
*) 66: the length of a text chunk keyword given to the encoder is longer than the maximum 79

*) 67: the length of a text chunk keyword given to the encoder is smaller than the minimum 1 byte.
*) 68: tried to encode a PLTE chunk with a palette that has less than 1 or more than 256 colors

*) 69: unknown chunk type with “critical” flag encountered by the decoder

*) 70: insufficient memory error

*) 71: unexisting interlace mode given to encoder (must be 0 or 1)

*) 72: while decoding, unexisting compression method encountering in zTXt or iTXt chunk (it must

*) 73: invalid tIME chunk size

*) 74: invalid pHYs chunk size

*) 75: no null termination char found while decoding any kind of text chunk, or wrong length
*) 76: 1TXt chunk too short to contain required bytes

10. file 10

For cases where you want to load the PNG image from a file, you can use your own
file loading code, or the file loading and saving functions provided with
LodePNG. These use the same unsigned char format used by the Decoder and Encoder.

The loadFile function fills the given buffer up with the file from harddisk
with the given name.

The saveFile function saves the contents of the given buffer to the file
with given name. Warning: this overwrites the contents that were previously in
the file if it already existed, without warning.

Note that you don"t have to decode a PNG image from a file, you can as well
retrieve the buffer another way In your code, because the decode function takes
a buffer as parameter, not a filename.

Both C and C++ versions of the loadFile and saveFile functions are available.
For the C version of loadFile, you need to free() the buffer after use. The
C++ versions use std::vectors so they clean themselves automatically.

11. chunks and PNG editing

I you want to add extra chunks to a PNG you encode, or use LodePNG for a PNG
editor that should follow the rules about handling of unknown chunks, or if you
program is able to read other types of chunks than the ones handled by LodePNG,
then that"s possible with the chunk functions of LodePNG.

A PNG chunk has the following layout:
4 bytes length

4 bytes type name

length bytes data

4 bytes CRC

11.1 iterating through chunks

IT you have a buffer containing the PNG image data, then the first chunk (the

224

IHDR chunk) starts at byte number 8 of that buffer. The first 8 bytes are the
signature of the PNG and are not part of a chunk. But if you start at byte 8
then you have a chunk, and can check the following things of it.

NOTE: none of these functions check for memory buffer boundaries. To avoid
exploits, always make sure the buffer contains all the data of the chunks.
When using LodePNG_chunk_next, make sure the returned value is within the
allocated memory.

unsigned LodePNG_chunk_length(const unsigned char* chunk):
Get the length of the chunk"s data. The total chunk length is this length + 12.

void LodePNG_chunk_type(char type[5], const unsigned char* chunk):
unsigned char LodePNG_chunk_type equals(const unsigned char* chunk, const char* type):

Get the type of the chunk or compare if it"s a certain type

unsigned char LodePNG_chunk_critical(const unsigned char* chunk):
unsigned char LodePNG_chunk_private(const unsigned char* chunk):
unsigned char LodePNG_chunk_safetocopy(const unsigned char* chunk):

Check if the chunk is critical in the PNG standard (only IHDR, PLTE, IDAT and IEND are).
Check if the chunk is private (public chunks are part of the standard, private ones not).
Check if the chunk is safe to copy. If it"s not, then, when modifying data in a critical
chunk, unsafe to copy chunks of the old image may NOT be saved in the new one if your
program doesn®t handle that type of unknown chunk.

unsigned char* LodePNG_chunk_data(unsigned char* chunk):
const unsigned char* LodePNG_chunk_data_const(const unsigned char* chunk):

Get a pointer to the start of the data of the chunk.

unsigned LodePNG_chunk_check_crc(const unsigned char* chunk):
void LodePNG_chunk_generate_crc(unsigned char* chunk):

Check if the crc is correct or generate a correct one.

unsigned char* LodePNG_chunk_next(unsigned char* chunk):
const unsigned char* LodePNG_chunk_next_const(const unsigned char* chunk):

Iterate to the next chunk. This works If you have a buffer with consecutive chunks. Note that
these

functions do no boundary checking of the allocated data whatsoever, so make sure there is enough
data available in the buffer to be able to go to the next chunk.

unsigned char* LodePNG_append_chunk(unsigned char** out, size_t* outlength, const unsigned char*
chunk):

unsigned char* LodePNG_create_chunk(unsigned char** out, size_t* outlength, unsigned length,
const char* type, const unsigned char* data):

These functions are used to create new chunks that are appended to the data in *out that has
length *outlength. The append function appends an existing chunk to the new data. The create
function creates a new chunk with the given parameters and appends it. Type is the 4-letter
name of the chunk.

11.2 chunks in infoPng

The LodePNG_InfoPng struct contains a struct LodePNG_UnknownChunks in it. This
struct has 3 buffers (each with size) to contain 3 types of unknown chunks:

the ones that come before the PLTE chunk, the ones that come between the PLTE
and the IDAT chunks, and the ones that come after the IDAT chunks.

It"s necessary to make the distionction between these 3 cases because the PNG
standard forces to keep the ordering of unknown chunks compared to the critical
chunks, but does not force any other ordering rules.

infoPng.unknown_chunks.data[0] is the chunks before PLTE

infoPng.unknown_chunks.data[1l] is the chunks after PLTE, before IDAT
infoPng.unknown_chunks.data[2] is the chunks after IDAT

225

The chunks in these 3 buffers can be iterated through and read by using the same
way described in the previous subchapter.

When using the decoder to decode a PNG, you can make it store all unknown chunks
if you set the option settings.rememberUnknownChunks to 1. By default, this option
is off and is O.

The encoder will always encode unknown chunks that are stored in the infoPng. If
you need it to add a particular chunk that isn®"t known by LodePNG, you can use
LodePNG_append_chunk or LodePNG_create_chunk to the chunk data in
infoPng.unknown_chunks.data[x] -

Chunks that are known by LodePNG should not be added in that way. E.g. to make
LodePNG add a bKGD chunk, set background_defined to true and add the correct
parameters there and LodePNG will generate the chunk.

12. compiler support

No libraries other than the current standard C library are needed to compile
LodePNG. For the C++ version, only the standard C++ library is needed on top.
Add the files lodepng.c(pp) and lodepng.-h to your project, include
lodepng.h where needed, and your program can read/write PNG files.

Use optimization! For both the encoder and decoder, compiling with the best
optimizations makes a large difference.

Make sure that LodePNG is compiled with the same compiler of the same version
and with the same settings as the rest of the program, or the interfaces with
std::vectors and std::strings in C++ can be incompatible resulting in bad things.
CHAR_BITS must be 8 or higher, because LodePNG uses unsigned chars for octets.

*) gcc and g++

LodePNG is developed in gcc so this compiler is natively supported. It gives no
warnings with compiler options "-Wall -Wextra -pedantic -ansi', with gcc and g++
version 4.2.2 on Linux.

*) Mingw and Bloodshed DevC++

The Mingw compiler (a port of gcc) used by Bloodshed DevC++ for Windows is fully
supported by LodePNG.

*) Visual Studio 2005 and Visual C++ 2005 Express Edition

Versions 20070604 up to 20080107 have been tested on VS2005 and work. There are no
warnings, except two warnings about "fopen® being deprecated. "fopen® is a function
required by the C standard, so this warning is the fault of VS2005, it"s nice of
them to enforce secure code, however the multiplatform LodePNG can®t follow their
non-standard extensions. LodePNG is fully ISO C90 compliant.

IT you"re using LodePNG in VS2005 and don"t want to see the deprecated warnings,
put this on top of lodepng.h before the inclusions: #define _CRT_SECURE_NO_DEPRECATE

*) Visual Studio 6.0

The C++ version of LodePNG was not supported by Visual Studio 6.0 because Visual
Studio 6.0 doesn*t follow the C++ standard and implements it incorrectly.

The current C version of LodePNG has not been tested in VS6 but may work now.

*) Comeau C/C++

Vesion 20070107 compiles without problems on the Comeau C/C++ Online Test Drive
at http://www.comeaucomputing.com/tryitout in both C90 and C++ mode.

*) Compilers on Macintosh
1°d love to support Macintosh but don"t have one available to test it on.

If it doesn"t work with your compiler, maybe it can be gotten to work with the
gcc compiler for Macintosh. Someone reported that it doesn®"t work well at all

226

for Macintosh. All information on attempts to get it to work on Mac is welcome.
*) Other Compilers

IT you encounter problems on other compilers, 1°m happy to help out make LodePNG
support the compiler if it supports the ISO C90 and C++ standard well enough. If
the required modification to support the compiler requires using non standard or
lesser C/C++ code or headers, | won"t support it.

13. examples

This decoder and encoder example show the most basic usage of LodePNG (using the
classes, not the simple functions, which would be trivial)

More complex examples can be found in:
-lodepng_examples.c: 9 different examples in C, such as showing the image with SDL,
-lodepng_examples.cpp: the exact same examples in C++ using the C++ wrapper of LodePNG

13.1. decoder C++ example

L1111 7777777777777777777/777777/77777//77777/77777/7/77777//7777/7//77/7/7///777/7/777
#include "lodepng.h"
#include <iostream>

int main(int argc, char *argv[])
const char* filename = argc > 1 ? argv[1l] : "test.png";

//load and decode

std: :vector<unsigned char> buffer, image;

LodePNG: : loadFile(buffer, filename); //load the image file with given Ffilename

LodePNG: :Decoder decoder;

decoder.decode(image, buffer.size() ? &buffer[0] : 0, (unsigned)buffer.size()); //decode the
png

//if there®s an error, display it
if(decoder.hasError()) std::cout << "error: " << decoder.getError() << std::endl;

//the pixels are now in the vector "image', use it as texture, draw it,

}

//alternative version using the "simple" function
int main(int argc, char *argv[])

{

const char* filename = argc > 1 ? argv[1l] : "test.png";

//1oad and decode

std: :vector<unsigned char> image;

unsigned w, h;

unsigned error = LodePNG::decode(image, w, h, filename);

//if there®s an error, display it
if(error = 0) std::cout << "error: " << error << std::endl;

//the pixels are now in the vector "image', use it as texture, draw it,

3
L1177/777/777777/77//77/77//7//77//7//777/77

13.2 encoder C++ example

L1117 77777777777777777777777777/77777//77777/77777///7777///777/7//777/7///777/7/777
#include "lodepng.h™
#include <iostream>

int main(int argc, char *argv[])

{

227

//check if user gave a filename
if(argc <= 1)
{

std::cout << "please provide a filename to save to\n";
return O;

}

//generate some image

std: :vector<unsigned char> image;
image.resize(512 * 512 * 4);
for(unsigned y = 0; y < 512; y++)
for(unsigned x = 0; X < 512; x++)

image[4 * 512 *y + 4 * x + 0] = 255 * (X & y);
image[4 * 512 *y + 4 * x + 1] = x N vy;

image[4 * 512 * y + 4 * x + 2] = x | y;

image[4 * 512 * y + 4 * x + 3] = 255;

}

//encode and save

std: :vector<unsigned char> buffer;
LodePNG: :Encoder encoder;
encoder.encode(buffer, image, 512, 512);
LodePNG: :saveFile(buffer, argv[1]);

//the same as the 4 lines of code above, but in 1 call:
//1L.0dePNG: :encode(argv[1], image, 512, 512);

3
L1111 777777777777777777777777777777777777777/777777/7777/7//7777///777////77/777/777

13.3 Decoder C example

This example loads the PNG in 1 function call
#include "lodepng.h"

int main(int argc, char *argv[])
{

unsigned error;

unsigned char* image;

size_t w, h;

if(argc <= 1) return 0;
error = LodePNG_decode3(&image, &w, &h, Filename);

free(image);

¥
14. LodeZlib

Also available in the interface is LodeZlib. Both C and C++ versions of these
functions are available. The interface is similar to that of the *"simple™ PNG
encoding and decoding functions.

LodeZlib can be used to zlib compress and decompress a buffer. It cannot be
used to create gzip files however. Also, it only supports the part of zlib
that is required for PNG, it does not support compression and decompression
with dictionaries.

15. changes

The version number of LodePNG is the date of the change given in the format
yyyymmdd .

Some changes aren®t backwards compatible. Those are indicated with a (1)
symbol .

228

*)
*)

02 feb 2008: support for international text chunks added (iTXt)

23 jan 2008: small cleanups, and #defines to divide code in sections

20 jan 2008: support for unknown chunks allowing using LodePNG for an editor.

18 jan 2008: support for tIME and pHYs chunks added to encoder and decoder.

17 jan 2008: ability to encode and decode compressed zTXt chunks added
Also vareous fixes, such as in the deflate and the padding bits code.

13 jan 2008: Added ability to encode Adam7-interlaced images. Improved
filtering code of encoder.

07 jan 2008: (!) changed LodePNG to use ISO C90 instead of C++. A
C++ wrapper around this provides an interface almost identical to before.
Having LodePNG be pure ISO C90 makes it more portable. The C and C++ code
are together in these files but it works both for C and C++ compilers.

29 dec 2007: (1) changed most integer types to unsigned int + other tweaks

30 aug 2007: bug fixed which makes this Borland C++ compatible

09 aug 2007: some VS2005 warnings removed again

21 jul 2007: deflate code placed in new namespace separate from zlib code

08 jun 2007: fixed bug with 2- and 4-bit color, and small interlaced images

04 jun 2007: improved support for Visual Studio 2005: crash with accessing
invalid std::vector element [0] fixed, and level 3 and 4 warnings removed

02 jun 2007: made the encoder add a tag with version by default

27 may 2007: zlib and png code separated (but still in the same file),
simple encoder/decoder functions added for more simple usage cases

19 may 2007: minor fixes, some code cleaning, new error added (error 69),
moved some examples from here to lodepng_examples.cpp

12 may 2007: palette decoding bug fixed

24 apr 2007: changed the license from BSD to the zlib license

11 mar 2007: very simple addition: ability to encode bKGD chunks.

04 mar 2007: (!) tEXt chunk related fixes, and support for encoding
palettized PNG images. Plus little interface change with palette and texts.

03 mar 2007: Made it encode dynamic Huffman shorter with repeat codes.

Fixed a bug where the end code of a block had length O in the Huffman tree.

26 feb 2007: Huffman compression with dynamic trees (BTYPE 2) now implemented
and supported by the encoder, resulting in smaller PNGs at the output.

27 jan 2007: Made the Adler-32 test faster so that a timewaste is gone.

24 jan 2007: gave encoder an error interface. Added color conversion from any
greyscale type to 8-bit greyscale with or without alpha.

21 jan 2007: (!) Totally changed the interface. It allows more color types
to convert to and is more uniform. See the manual for how it works now.

07 jan 2007: Some cleanup & fixes, and a few changes over the last days:
encode/decode custom tEXt chunks, separate classes for zlib & deflate, and
at last made the decoder give errors for incorrect Adler32 or Crc.

01 jan 2007: Fixed bug with encoding PNGs with less than 8 bits per channel.

29 dec 2006: Added support for encoding images without alpha channel, and
cleaned out code as well as making certain parts faster.

28 dec 2006: Added "Settings' to the encoder.

26 dec 2006: The encoder now does LZ77 encoding and produces much smaller files now.
Removed some code duplication in the decoder. Fixed little bug in an example.

09 dec 2006: (!) Placed output parameters of public functions as first parameter.
Fixed a bug of the decoder with 16-bit per color.

15 okt 2006: Changed documentation structure

09 okt 2006: Encoder class added. It encodes a valid PNG image from the
given image buffer, however for now it"s not compressed.

08 sep 2006: (') Changed to interface with a Decoder class

30 jul 2006: (') LodePNG_InfoPng , width and height are now retrieved in different
way. Renamed decodePNG to decodePNGGeneric.

29 jul 2006: (!) Changed the interface: image info is now returned as a
struct of type LodePNG::LodePNG_Info, instead of a vector, which was a bit clumsy.

28 jul 2006: Cleaned the code and added new error checks.

Corrected terminology "deflate”™ into "inflate".

23 jun 2006: Added SDL example in the documentation in the header, this
example allows easy debugging by displaying the PNG and its transparency.

22 jun 2006: (!) Changed way to obtain error value. Added
loadFile function for convenience. Made decodePNG32 faster.

21 jun 2006: (!) Changed type of info vector to unsigned.

Changed position of palette in info vector. Fixed an important bug that
happened on PNGs with an uncompressed block.

16 jun 2006: Internally changed unsigned into unsigned where
needed, and performed some optimizations.

07 jun 2006: (!) Renamed functions to decodePNG and placed them
in LodePNG namespace. Changed the order of the parameters. Rewrote the
documentation in the header. Renamed files to lodepng.cpp and lodepng.h

229

*) 22 apr 2006: Optimized and improved some code
*) 07 sep 2005: (!) Changed to std::vector interface
*) 12 aug 2005: Initial release

16. contact information

Feel free to contact me with suggestions, problems, comments, ... concerning
LodePNG. If you encounter a PNG image that doesn®t work properly with this
decoder, feel free to send it and I°Il use it to find and fix the problem.

My email address is (puzzle the account and domain together with an @ symbol):

Domain: gmail dot com.
Account: lode dot vandevenne.

Copyright (c) 2005-2008 Lode Vandevenne
*/

230

Appendix M: Dome Automation Email Correspondence

Correspondence with Ashdome

From: Ashdome <ashdome@ameritech.net>

Date: Wed, Jan 16, 2008 at 5:42 AM

Subject: RE: Dome automation follow-up email

To: Jorge Alejandro <jorge@wpi.edu>, Peter Mack <pmack@astronomical.com>

Good morning Jorge & Peter,
I looked back in the files and found the dome you are referring to. It has
had quite a ride getting to the final location.
1) 14'6" diameter Model REB, manually operated drop-out lower door section,
manual shutter override, with a wide aperture, 54". All electrical motors
are standard for Ash, 110 v, 60 cycle, 1 ph.
Contact name at the time, 2005, John Rasmussen 207 372 6390
Rasmusjohn@aol.com
2) Shipped it to Anchorage, AK and it was moved to Gakona, AK.
That's all we were allowed to know.
Jorge, on the upside, Peter should be able to automate this dome in his
sleep, his company has done this many times.
Peter, watch out for the mosquitoes up there.
Richard Olson
Ash Mfg. Co.

----- Original Message-----

From: jorge.a.alejandro@gmail.com [mailto:jorge.a.alejandro@gmail.com] On
Behalf Of Jorge Alejandro

Sent: Tuesday, January 15, 2008 12:51 PM

To: Ashdome

Subject: Re: Dome automation followup email

Hello Peter,

I contacted you last week about automating a telescope dome located in
Alaska (you seemed to remember the installation). I am emailing you
to request some documentation of the dome hardware, specifically
concerning the motors that rotate the dome and open/close the shutter.
I am considering installing a MaxDome II (system which requires

limit switches to be placed on the shutter and optical sensors over
the motor gears. If any of this is already installed as part of the
system it would be great.

The dome is about 14 feet in diameter (14' 6" I think) and has a
dual-door shutter (one slides over the dome and the other opens up
from it's hinge at the bottom.). If you need any more information
please let me know.

Thank You,

- Jorge Alejandro

231

On Jan 10, 2008 5:48 AM, Ashdome <ashdome@ameritech.net> wrote:

> Hello Jorge,

> I know the dome you are talking about. It was installed by the local
people

awhile ago. There is a company that has automated many of our domes very
successfully.

Astronomical Consultants & Equipment, Tucson, AZ www.astronomical.com 520
219 8722

Dr. Peter Mack pmack@astronomical.com

I have know idea of the cost but if they can not help you I am sure they
an

recommend someone.

Thank you for this opportunity to be of service.

Yours truly,

Richard Olson

Ash Mfg. Co.

vV VVVVV VNV VYV YVYV.YV

v

————— Original Message-----

From: jorge.a.alejandro@gmail.com [mailto:jorge.a.alejandro@gmail.com] On
Behalf Of Jorge Alejandro

Sent: Wednesday, January 09, 2008 3:14 PM

To: ashdome@ameritech.net

Subject: Dome automation followup email

Hello Mr. Olsen,

I just spoke with you over the phone about automating my Ashdome. I
currently have a 14-foot dome, located in Alaska, which is controlled
completely from a central control panel containing various buttons and
switches. I would like to interface this control box with a PC (any
standard PC connection) so that I may use software to control the dome
(preferably Software Bisque's Automadome). You mentioned you would
provide me with the contact information of someone who may be able to
help me with this.

-Thanks

VvV VVVVVVVVVVVVVVVVVVYV

Jorge Alejandro

Correspondence regarding MaxDome Il installation with an Ashdome

From: David Sonnek <david.sonnek@telia.com>
Date: Sat, Jan 19, 2008 at 3:44 PM
Subject: Re: Ashdome + MaxDome II
To: Jorge Alejandro <jorge@wpi.edu>

Hi Alejandro!
Sorry for this delayed reply, I've been on a business trip. I doubt that

I have much information that can help you, I have used MaxDome in a
rather limited way:

232

- No remote capabilities - the system is manually powered on for each
observing session

- I have only automated dome rotation (the shutter has to be opened
manually)

- I control it through Automadome/TheSky software, have e.g. not tested
the ASCOM interface.

The MaxDome hardware has been reliable so far, despite the humidity in
my obs. The sensors for "home" and "rotate" are simple but adequate for
the task. I just put a piece of black tape on the motor axis to count
turns. It was also easy to interface the motor with the 12V output of
the MaxDome. Since the motor is controlled by closing one lead for each
direction, I simply put two solid-state relays "nose to nose" over the
12V output leads.

I think it's tricky to make a AshDome fully robotic - no wonder there
are specialists (like Meridian Controls) that charge a lot for doing
it.

One problem to solve is the power cord to the upper shutter part. It's
no big deal for me, at each power-on, I "home" the dome and have set
Automadome limits not to allow more than one dome turn in ordetr not to
overstretch the power cord. In a remotely operated robotic mode, the
system has to remember between sessions where the cord is.

Another problem in remote/robotic operation is the lower part of the
shutter. From the photos, it seems that the HAART dome has "A" type
shutter (the same type as I have). With this shutter, the two sections
have to be physically disconnected when opening only the upper shutter
part. Some kind of mechanical device has to pull the chain in the closed
position and keep it stretched a moment while the upper part start going
up again.

As an added complexity, my scope is mounted on a GEM, so the telescope
is at different heights depending on azimuth. This makes tracking around
altitude 30 deg really messy...

Luckily, most of my work is photometry on hi-alt targets, so the lower
shutter is mostly closed.

The "B" type is easier to control since the lower part folds out
separately - the only action the control system has to do is to open
both shutters when a session begins.

If your aim is only to synchronize dome rotation with the telescope, I
think MaxDome is an easy way to glue together a control PC, sensors and
the AshDome az motor. For remote/robotic operation, I guess one has to
include hardware that Maxdome may not be able to control.

Good luck with the project!
/David

On Tue, 2008-01-15 at 11:00 -0800, Jorge Alejandro wrote:
> Hello Sir,

233

My name is Jorge Alejandro; I am a student at the Worcester
Polytechnic Institute in Worcester, MA and am currently working on a
project at SRI International in Menlo Park, CA. My project involves
the automation of a telescope system that is part of the HAARP
research site in Gakona, Alaska. The Ashdome in use currently has no
PC interface, and my partners and I are considering various approaches
for adding this interface including using a MaxDome II system. After
doing some searching on the internet we stumbled upon the homepage for
your observatory and noticed that you have a similar system. We were
wondering if you could provide us with any feedback on the
installation of the system and the overall quality. Any help at all
would be greatly appreciated.

Thanks!

VvV VV V VV VYV VYV V VYV VVVYV

Jorge Alejandro

Correspondence regarding Meridian Controls

From: Bryce Bennett <bryce.bennett@rmc.ca>
Date: Mon, Jan 14, 2008 at 6:36 AM
Subject: Re: Dome Automation
To: Jorge Alejandro <jorge@wpi.edu>

Hi Jorge,

We have recently removed the Meridian Controls dome control system and
will be replacing it with a wireless system from Astronomical
Consulting. We were never very satisfied with the Meridian System -
never completely reliable - and my personal recommendation would be to
look to Astronomical Consulting or other options for your future
hardware/software for dome control.

Regards,
Bryce.

Jorge Alejandro wrote:
Hello Bryce,

My name is Jorge Alejandro, I am a student at the Worcester
Polytechnic Institute in Worcester, Massachussets currently working on
a project at SRI International in Menlo Park, California. My project
involves the automation of a telescope system located in Alaska which
is part of the HAARP research project. The dome currently in use is a
14-foot Ashdome with no interface to the PC (It has a simple
control-panel with various buttons for the user). I stumbled upon the
CASTOR homepage and saw that you are using a similar dome with
Meridian Controls automation hardware and Automadome software. I was
wondering if you could give me any information on this hardware and
any feedback you have on the system.

vV V V V V V V V V V V V V.YV

234

> Thanks
>
> Jorge

Bryce Bennett, Ph.D.

Royal Military College of Canada /
College militaire royal du Canada

Kingston, Ontario K7K 7B4

tel: 613.541.6000 x 6080
fax: 613.541.6040

235

