
Chapter 1
L∞−extremal mappings in AMLE and
Teichmüller theory

Luca Capogna

Abstract These lecture focus on two vector-valued extremal problems which have
a common feature in that the corresponding energy functionals involve L∞ norm
of an energy density rather than the more familiar Lp norms. Specifically, we will
address (a) the problem of extremal quasiconformal mappings and (b) the problem
of absolutely minimizing Lipschitz extensions.

1.1 Introduction

These notes originate from a C. I. M. E. mini course held by the author in July 2012
in Cetraro, Italy. They are meant to provide a quick introduction to two model L∞

variational problems involving mappings, i.e. where the set of competitors is not
scalar but vector-valued.

The first concerns a classical problem in geometric function theory that first arose
in 1928 in the work of Grotzsch [32]

Problem 1. Among all orientation preserving quasiconformal homeomorphisms w :
Ω →Ω ′ whose traces agree with a given mapping u0 : ∂Ω → ∂Ω ′, find one which
minimizes the functional

u→

∥∥∥∥∥ |du|
(detdu)

1
n

∥∥∥∥∥
∞

.

Variants of this problem occur when, instead of using boundary data, the class of
competitors is defined in terms of a fixed homotopy class or by requesting that the
traces map quasi-symmetrically boundary into boundary.
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The second problem has also a classical flavor. It goes back to the work of Whit-
ney [68] and the work of MacShane [48] in 1934, and leads to the recent theory of
absolutely minimal Lipschitz extensions (AMLE) [5].

Problem 2. Let Ω ⊂ Rn, F ⊂ Ω̄ be a compact set and let g ∈ Lip(F,Rm). Among
all Lipschitz extensions of F to Ω is there a canonical unique extension that in some
sense has the smallest possible Lipschitz norm?

Some natural questions arise in connection to these problems

• Do minimizers exist?
• Are minimizers unique?
• What is the structure of the minimizers? In which norm there is continuity with

respect to the data?

The last few decades have seen intense activity from different communities of
mathematicians in the study of both problems. However at this time there does not
seem to be much synergy and communication between these communities, both
in terms of shared techniques used in the study of these problems and in terms of
common point of views. One of the goals of these notes is to foster such synergies
by outlining some of the common features in these problems. The notes (as well as
the lectures) are mainly addressed to graduate students and because of this we have
included some very basic material and maintained throughout an informal style of
exposition. Since there are no original results in this survey, all proofs are merely
sketched, and references to the detailed arguments are provided.

There are several other sources that discuss more extensively either extremal qua-
siconformal mappings or vector valued AMLE, but we are not aware of a reference
striving for a unified point of view. The (possibly too optimistic) goal of this set
of notes is to provide such perspective. Regarding other pertinent references: For
classical extremal quasiconformal mappings we recommend the surveys of Strebel
[64] and [63]. Two very clear and extremely well-written accounts of the classical
Teichmüller theory can be found in [1] and [14]. The paper of Grotzsch [32] is at
the origin of the subject and Hamilton’s dissertation [33] provided an interesting
development. The reader will also benefit from reading the classic monograph [3]
as well as the more recent [7]. For the higher dimensional theory of quasiconformal
mappings and the corresponding extremal problems I recommend the following fun-
damental contributions by Gehring and Vaisala [29], [30], [66], as well as the more
recent comprehensive book by Iwaniec and Martin [42]. Various aspects of the ex-
tremal problem can be found in [9], [8], [6], [61], [60], [59] and [23]. There is
considerably less literature on the vector valued extremal Lipschitz extension prob-
lem: A good introduction is in the papers of Barron, Jensen and Wang [12] and [11].
More recent developments can be found in the work of Naor and Sheffield [51],
Sheffield and Smart [62], Katzourakis [47], Ou, Troutman, and Wilhelm [52]. We
also want to point out two relevant references that, in our opinion, have great po-
tential for applications to the problems discussed here: Dacorogna and Gangbo [20]
and Evans, Gangbo and Savin [21].



1 L∞−extremal mappings in AMLE and Teichmüller theory 3

Although these notes do not involve specific applications, the topic of L∞ varia-
tional problems arises naturally in mathematical models of several real-world phe-
nomena. To this regard, we conclude this introduction with a quote from Robert
Jensen’s seminal paper [44]

The importance of variational problems in L∞ is due to their frequent appearance in appli-
cations. The following examples give just a small sample of these. In the engineering of
a load-bearing column it is preferable to minimize the maximal stress (i.e., the L∞ norm
of the stress) in the column rather than some average of the stress. When constructing a
rocket, the maximal acceleration applied to the payload is an important factor in the design.
Optimal operation of a heating-cooling system for an office building requires control of the
maximal and minimal temperature within the building rather than the average temperature.
Windows on airplanes are made without corners to prevent high pointwise stress concentra-
tions. These considerations motivate the study of the issues of existence, uniqueness, and
regularity etc. etc.

Acknowledgements We wish to thank C. Gutierrez and E. Lanconelli for the scientific organi-
zation of the C. I. M.E. course and for inviting the author to present these lectures. We are also
grateful to P. Zecca and to all the staff of C. I.M.E. for their logistic support and hospitality. The
author is partially supported by the US National Science Foundation through grants DMS-1101478
and DMS-0800522

1.2 Notation and preliminaries

In this section we set the notation for the rest of the notes and include some basic,
elementary definitions and results that will be needed later on.

1.2.1 Notation: Topology

• An homeomorphism between two topological spaces is a continuous bijection
whose inverse is also continuous.

• A topological manifold of dimension n∈N is a topological space for which every
point has a neighborhood homeomorphic to Rn.

• A smooth manifold of dimension n is an n−dimensional topological space along
with a collection of charts (Uα , fα)α∈A with Uα ⊂ M open and such that they
cover M, fα : Uα → fα(Uα) ⊂ Rn homeomorphism and such that fα ◦ f−1

β
is

smooth on its domain.
• An homotopy between two continuous functions f ,g between two topological

spaces X and Y is a continuous function H : X × [0,1]→ Y such that H(x,0) =
f (x) and H(x,1) = g(x) for all x ∈ X .

• The fundamental group π1(M, p) of a topological manifold M with p ∈M is the
quotient of the space of loops at p through the equivalence relation γ ≈ η if and
only if γ ◦η−1 is homotopic to the identity. If π1(M, p) = 0 then M is simply
connected.
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• A triangle T in a surface S is a closed set obtained as the homeomorphic image of
a planar triangle. The image of vertices and edges of the planar triangle are also
called vertices and edges. A triangulation of a compact surface S is a finite set of
triangles T1, ...,Tm such that ∪m

i=1Ti = S and every pair Ti,Tj is either disjoint or
intersects at a single point (vertex) or a shared edge.

• The Euler characteristic of a triangulated compact surface S is given by χ =
v− e + f where v is the number of vertices of the triangulation, e is the number
of edges and f the number of triangles. This number does not depend on the
specific triangulation of S. The genus of S is the number g obtained from the
identity χ = 2−2g.

Example 1. The sphere has genus zero, as does the unit disc. The torus has genus
1. Roughly, for general orientable surfaces, the genus is the number of handles
in the surface.

1.2.2 Notation: Differentials and dilation of mappings

The background for fine properties of mappings, their dilation and much more can
be found in the monograph [42]. Let Ω ⊂ Rn and denote by

u = (u1, ...,un) : Ω → Rn (1.1)

a W 1,n
loc (Ω) orientation-preserving homeomorphism. At points x ∈ Ω of differentia-

bility of u we denote by du(x) : Rn → Rn the differential of u. In coordinates one
has that for v ∈ Rn the action of the differential is1 [du(x)(v)]i = dui jv j, i = 1, ...,n
where we have let (du)i j = ∂x j u

i. Set |du|2 = trace(duT du) = dui jdui j. At points
of differentiability, the pull-back du∗(x)gE of the Euclidean metric gE is given by
d(u∗(x)gE)i j = [duT du]i j = ∂xiu

k∂x j u
k, for i, j = 1, ...,n.

If n = 2 it is convenient to use complex notation: Set u = u1 + iu2, and

∂zu =
1
2
(∂xu− i∂yu) and ∂z̄u =

1
2
(∂xu+ i∂yu).

Note ∂z̄u = ¯∂zū. We also let dz = dx+ idy and note that dz(∂z) = 1 while dz(∂z̄) = 0.
Similarly dz̄ = dx− idy and dz̄(∂z) = 0 and dz̄(∂z̄) = 1.

Next we introduce different ways in which one can quantify how a differentiable
homeomorphism u : Ω → Rn can distort the ambient geometry. We start by con-
sidering linear bijections A : Rn → Rn expressed in coordinates as yi = Ai jx j for
i = 1, ...,n. Denote by |A|O := max|V |=1 |AV | the operator norm of A and consider
the following quantities

• the linear dilation of A is

1 Implicit summation on repeated indices is used throughout the paper
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H(A) =
max|h|=1 |Ah|
min|h|=1 |Ah|

. (1.2)

• the outer dilation of A is

Ho(A) =
|A|nO
|det A|

. (1.3)

• the trace dilation of A is

K(A)n =
|∑i j A2

i j|n/2

|det A|
. (1.4)

If u is as in (1.1) then we set Ku(x) = K(du(x)).

1.2.3 Notation: Complex analysis

Basic references for the complex analysis background are the classical book of
Ahlfors [2] and Jost’s monograph [45].

• A C1 function w = u+ iv : C→ C is holomorphic if

∂z̄w = ux + iuy + ivx− vy = 0

Equivalently w must satisfy the Cauchy-Riemann equations ux = vy and uy =
−vx.

• Conformal invariance of harmonic functions. If w = h(z) is a holomorphic func-
tion and f : C→ C is smooth then

∂ 2

∂ z∂ z̄
f ◦h(z) =

∂

∂ z

[
∂ f
∂w

∂h
∂ z̄

+
∂ f
∂ w̄

∂ h̄
∂ z̄

]

=
∂

∂ z

[
∂ f
∂ w̄
|h(z)

∂ h̄
∂ z̄

]
=
[

∂ 2

∂w∂ w̄
f
]
|h(z)∂zh∂z̄h̄.

• A holomorphic map u : U ⊂C→ C is called conformal if ∂zu 6= 0 at every point
in U .

Example 2. Set

D = {z ∈ C| |z|< 1} and H = {z = x+ iy| y > 0}

These are conformally equivalent under the map H→ D given by z→ z−z0
z−z̄0

.

Theorem 1. Every f : D→ D (or f : H → H) which is biholomorphic (i.e., con-
formal and bijective) is a Möbius transformation, i.e. there are a,b,c,d ∈ C such
that

f (z) =
az+b
cz+d

.



6 Luca Capogna

For any ring R define the group

SL(2,R) = {
(

a b
c d

)
|ad− cb = 1}

while PSL(2,R) denotes its quotient by the sub-group generated by ±Id. Every
element in PSL(2,R) defines a Möbius tranformation H→ H.

Definition 1. A group G acts as a transformation group on a manifold M if there is
a map G×M→M denoted as (g,x)→ gx with (g1g2)(x) = g1(g2x) and ex = x. The
isotropy group of x ∈M is a subgroup of G which fixes x.

Example 3. The group PSL(2,R) acts as a transformation group of H. The isotropy
group of each element is isomorphic to SO(2).

Both D and H can be given a (non-euclidean) metric structure through the hyper-
bolic metric

1
y2 dzdz̄ on H and

1
(1−|z|2)2 dzdz̄ on D.

An isometry between two Riemannian manifolds

u : (M,g)→ (M′,g′)

is a map such that
g′u(x)(dxuV,dxuW ) = gx(V,W )

for any x ∈M and V,W ∈ TxM.

Theorem 2. All isometries between the hyperbolic H and D are Möbius transfor-
mations. The isometry group of H is PSL(2,R).

Definition 2. A group action G on M is properly discontinuous if every x ∈M has
a neighborhood U such that {g ∈ G|gU ∩U 6= 0} is finite and if x,y are not in the
same orbit then they have neighborhoods Ux,Uy such that gUx∩Uy = /0 for all g∈G.

Definition 3. Let Γ ⊂PSL(2,R) be properly discontinuous subgroup and z1,z2 ∈H.
We say that z1 and z2 are equivalent if there exists g∈Γ such that gz1 = z2. Consider
H/Γ the space of quotient classes equipped with the quotient topology.

Proposition 1. Let Γ ⊂ PSL(2,R). If the action of Γ on H properly discontinuous
and does not fix points (gx 6= x for all x ∈ H and all g 6= id) then the quotient H/Γ

can be given a Riemann surface structure.

1.3 Conformal deformations

An a.e. differentiable homeomorphism u : Rn → Rn is conformal if there exists a
scalar function λ such that at every point of differentiability
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duT du = λ Id (1.5)

The pull-back of the Euclidean metric dx2 is a scalar multiple of dx2, i.e. angles are
preserved. Equivalently, a.e. in Ω , one must have

g :=
duT du

(detdu)
2
n

= Id. (1.6)

The function
√

trace(g) = |du|/(det du)1/n is called dilation of u.

Remark 1. At every point of differentiability for u one has Ku = trace(g)≥ n, with
the equality being achieved if and only if g = Id.

Definition 4. Following Ahlfors (see also [42]) we define the distortion tensor of u
at a point of differentiability x ∈ Rn

S(g) :=
g+gT

2
− trace(g)

n
Id = g− trace(g)

n
Id, (1.7)

and denote by

K(u,Ω) = ||Ku||L∞(Ω) = ||
√

trace(g)||L∞(Ω), (1.8)

the maximal dilation of u in Ω .

Proposition 2. With the notation above, one has that a diffeomorphism u is con-
formal if and only if S(g) = 0 and if and only if K(u,Ω)2 = K2

u = trace(g) = n
identically in Ω .

Remark 2. It is not difficult to show that if Ku = K0 >
√

n, then there exists ε =
ε(K0) > 0 so that

ε ≤ |S(g)|2 ≤K4
u

(
1− 1

n

)
.

When n = 2, if we denote by 0 ≤ λ1 ≤ λ2 be the eigenvalues of g, then one can
find an explicit lower bound. In this case, λ1λ2 = 1 and

|S(g)|2 = λ
2
1 +λ

2
2 −

1
2
(λ1 +λ2)2 =

1
2
(λ1 +λ2)2−2λ1λ2 =

1
2
(K4

u−4).

Remark 3. Denote by CO+(n) the space of differentials of orientation preserving
conformal mappings, then its tangent space TCO+(n) at the identity is{

A ∈ Rn×ns.t. S(A) =
A+AT

2
− trace(A)

n
Id = 0

}
.

Accordingly we have that the distance of a matrix A from CO+(n) satisfies

d2(A,CO+(n)) = c|S(A− I)|2 +O(|A− I|4).
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This shows that the operator S arises naturally when considering the linearization of
the distance of a deformation from being conformal. For more results from this point
of view, including a remarkable geometric rigidity result in the spirit of Frieseke,
James and Müller [24], see the work of Faraco and Zhong [22].

Three remarkable properties of conformal deformations

• Conformal implies smooth. If an homeomorphism u ∈ W 1,n
loc (Ω ,Rn) satisfies

K(u,Ω) =
√

n then a result of F. Gehring [28] implies that u∈C∞(Ω). The proof
is based on regularity of weak solutions to the n−Laplacian, via the De Giorgi-
Nash-Moser theorem. See the discussion below on Liouville theorem for more
details. Moreover, if f is a weak solution to the n−Laplacian and u is conformal
then f ◦u is also n−harmonic. This is the so-called morphism property.

• For n = 2; Conformal transformation are holomorphic diffeomorphism and
viceversa. In particular the space of conformal planar deformations is infinite
dimensional.

• Riemann Mapping Theorem Any non-empty, simply connected open planar set
can be mapped conformally to the disc (uniquely if one prescribes target for three
points).

Rigidity of conformal deformations Despite the flexibility of the Riemann mapping
theorem and the usefulness in changes of variables arguments, conformal mappings
exhibit aspects of rigidity that make it too restrictive for many applications.

• Liouville Theorem For n≥ 3 conformal deformations are compositions of trans-
lations, rotations, dilations and inversions. The theorem was proved originally by
J. Liouville (J. Math. Pures Appl. 15 (1850), 103) with the hypothesis that the
fourth order derivatives of the maps be continuous. Gehring [28] and Reshtnyak
[56] established remarkable generalizations respectively to quasiconformal and
to quasiregular mappings in W 1,n

lot . For n = 2l a sharp form of the Liouville the-
orem was established by Iwaniec and Martin in [41]. In this paper, among other
things, it is proved that for l > 1, every u ∈W 1,l

loc(Ω ,R2l) with detdu ≥ 0 (or
detdu≤ 0) a.e. and such that H(du) = 1, i.e. ||du||O ≤min|v|=1 |duv| a.e. is either
constant or the restriction of a Möbius transformation to Ω . The Sobolev expo-
nent l is optimal in the sense that there are weak W 1,p

loc solutions of the Cauchy-
Riemann equations with p < l, which are not Möbius.

• Rigidity with respect to boundary data. Even in the plane, despite the Riemann
mapping theorem one cannot prescribe boundary data (more than three points)
when mapping conformally one domain into the other. For instance, in mapping
one rectangular box into another, sending sides to sides, one can achieve this
through a conformal deformation only if the boxes are similar (see the next sec-
tion).

The intrinsic rigidity of conformal mappings provided a motivation for the ex-
tension to a larger family, that of quasiconformal mappings. Quoting F. Gehring
[29],
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... quasiconformal mappings constitute a closed class of mappings interpolating between
homeomorphisms and diffeomorphisms for which many results of geometric topology hold
regardless of dimension.

In the next section we will see how at the genesis of the theory of quasiconformal
mappings lies a L∞ variational problem.

1.4 Grötzsch problem and quasiconformal deformations

Let R and R′ be two rectangles with sides a,b and a′,b′, that are not similar (i.w.
a/b 6= a′/b′). It is then easy to see that there is no conformal deformation mapping R
to R′ sending edges to edges. In connection to this observation, in 1928 H. Grötzsch
[32] posed the following question

Problem 3. Is there a most nearly conformal mapping between R and R′?

Quoting L. Ahlfors [1] in relation to this problem

This calls for a measure of approximate conformality, and in supplying such a measure
Grötzsch took the first step toward the creation of a theory of q.c. mappings.

To address Grötzsch’s question one would need to identify a quantitative way of
determining how non-conformal a mapping can be and then find an extremal point
for this quantity in a suitable class of competitors. For such a general scheme to work
it is of paramount importance to have good compactness properties for the class of
competitors. Such considerations hint at the need of introducing a more general
class of deformations that are less rigid, yet retain some of the useful features of
conformal mappings. One also would like to have an instrument to quantify how far
a given deformation is from being conformal.

Definition 5. Let Ω ⊂Rn be an open set. If u ∈W 1,n
loc (Ω ,Rn) is an homeomorphism

then we say it is quasiconformal if

K(u,Ω) = ||
√

trace(g)||L∞ =
∥∥∥∥ |du|

(detdu)1/n

∥∥∥∥
L∞

< ∞.

We say u is K−quasiconformal if K = ‖HO(du)‖∞ = ‖|du|O/detdu1/n‖∞.

Example 4. In the following we list some simple examples of quasiconformal map-
pings.

• Linear bijections x→ Ax with A ∈ Rn×n.
• Diffeomorphisms with non-vanishing Jacobians are locally quasiconformal.
• For a 6= 0 consider the family of quasiconformal mappings u(x) = |x|a−1x. For

a =−1 this is the conformal inversion.
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• In cylindrical coordinates (r,φ ,z) set Dα = {φ ∈ (0,α)} and define f : Dα →Dβ

as f (r,φ ,z) = (r,βφ/α,z) (folding map).
• In spherical coordinates (R,φ ,θ) define Cα a cone of angle α by 0≤ θ < α . Set

f : Cα →Cβ as f (R,φ ,θ) = (R,φ ,βθ/α). The map is quasiconformal for β < π

and but fails to be quasiconformal for β = π .

Definition 5 seems to require a-priori information on a.e. differentiability of the
mapping which are counterintuitive in relation to the need for compactness of the
class of competitors we referred to. There are in fact previous equivalent definitions
for quasiconformality which do not require any a priori differentiability.

Definition 6. Geometric definition Let r > 0 and x ∈Ω . Set

L(x,r) = sup
y∈Ω | |x−y|≤r

|u(x)−u(y)|

and
l(x,r) = inf

y∈Ω | |x−y|≥r
|u(x)−u(y)|

The homeomorphism u is quasiconformal if there exists H ≥ 1 such that for every
x ∈Ω the linear dilation satisfies

H(x,u) := limsup
r→0

L(x,r)
l(x,r)

≤ H < ∞. (1.9)

Remark 4. If A : Rn→ Rn is a bijection then H(x,A) = H(A) with H(A) defined as
in (1.2). If u : Rn→ Rn is differentiable at the point x with non-vanishing Jacobian
determinant then H(x,u) = H(du(x)).

Remark 5. The differential du(x) transforms circles centered at the origin into sim-
ilar ellipses. The quantity H(du) is the ratio of the axis of such ellipse. Thus quasi-
conformal deformations map infinitesimal circles into ellipses with a bounded ratio
of the axis.

Homemorphism for which (1.9) holds with limsup substituted by sup are called
quasisymmetric. It was F. Gehring [27] who first proved that quasiconformal implies
quasisymmetric if n ≥ 2. See also [34] for quantitative estimates and extensions to
more general metric spaces.

Theorem 3. Consider an homeomorphism u : Ω→Ω ′, then the quantity ||H(x,u)||L∞

is finite if and only if u ∈W 1,n
lot (Ω ,Rn) and K(u,Ω) is finite.

Theorem 4. (Gehring, 1962) For every K ≥ 1 and n ∈ N,n ≥ 2 there exits θn,K :
(0,1)→ R increasing, with limr→0 θn,K(r) = 0 and limr→1 θn,K(r) = ∞ such that
for every f : Ω →Ω ′ K−quasiconformal one has

d( f (x), f (y))
d( f (x),∂Ω ′)

≤ θn,K

(
d(x,y)

d(x,∂Ω)

)
,



1 L∞−extremal mappings in AMLE and Teichmüller theory 11

for all distinct x,y ∈Ω sufficiently close. Moreover for r sufficiently small, one can
choose θn,K(r) = cnrα with α = K1/(1−n).

In complex notation one denotes the map as

z = x+ iy ∈Ω ⊂ C→ ζ (z) = ξ + iη ,

and set p = ∂zζ and q = ∂z̄ζ , so that dζ = pdz+qdz̄. The mapping dζ is affine and
satisfies ∣∣∣∣|p|− |q|∣∣∣∣|dz| ≤ |dζ | ≤

∣∣∣∣|p|− |q|∣∣∣∣|dz|

From the latter we see that the ratio of the axes of the ellipse obtained as image of a
circle under dζ is given by the maximal dilation

K = sup
Ω

|p|+ |q|
|p|− |q|

.

We also define the maximal excentricity κ = K−1
K+1 = sup |q||p| . Note that ζ is conformal

iff K = 1, κ = 0. The Jacobian determinant of the map ζ is J = |p|2−|q|2.

Remark 6. Since the derivatives of the inverse map ζ → z(ζ ) are given by

p′ = J−1 p̄ and q′ =−J−1q

then the mapping ζ = ζ (z) and z = z(ζ ) have the same dilation at corresponding
points, hence the same maximal dilation. Moreover, the dilation is invariant by con-
formal deformation in both the z and the ζ planes.

1.4.1 Grötzsch problem

Let us return to Grötzsch original question. Consider two rectangles R,R′ with sides
parallel to the axis and with one vertex at the origin, as illustrated in figure 1.1.

R

a

b

R′

b′

a′

Fig. 1.1 Grötzsch problem
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Remark 7. The affine transformation mapping R→ R′ that maps edges to edges is
the anisotropic dilation ξ = a′

a x and η = b′
b y i.e.,

ζ =
1
2

(
[
a′

a
+

b′

b
]z+[

a′

a
− b′

b
]z̄
)

. (1.10)

The dilation of the affine map is a constant

K =

{
a′b
b′a if a′

b′ >
a
b

ab′
ba′ if a′

b′ <
a
b

(1.11)

Proposition 3. Every diffeomorphism from R to R′, mapping edges to edges, has di-
lation larger or equal than the dilation of the affine transformation (1.10). Moreover,
if its dilation is the same as that in (1.11) then the diffeomorphism must coincide with
(1.10).

Proof. Let ζ : R→ R′ be diffeomorphism from R to R′, mapping edges to edges.
Recall that for ξ (0,y) = 0 while ξ (a,y) = a′. A simple computation shows that
the integral of the differential form ξ (x,y)dy along the boundary of R yields a′b =∫

∂R ξ (x,y)dy. On the other hand Stokes theorem yields

a′b =
∫

∂R
ξ (x,y)dy =

∫
R

∂xξ (x,y)dxdy =
∫

R
Re(p+q)dxdy

(since (|p|+ |q|)2 ≤ K(|p|2−|q|2))

≤
∫

R
|p|+ |q|dxdy≤

√
|R|
(∫

R
(|p|+ |q|)2dxdy

)1/2

≤
√

K|R||R|′.

In conclusion a′b
ab′ ≤ K. Reverting the role of z and ζ and recalling that the two maps

have the same dilation one has ab′
a′b ≤ K. In both cases the affine map has minimal

dilation.

To prove the second part of the proposition we notice that the only way one may
have equality in the previous computation is if

Re(p+q) = |p|+ |q| and (|p|+ |q|)/(|p|− |q|)

is constant. The former yields Im(p) = Im(q) = 0 and consequently ∂yξ = ∂xη = 0.
The latter yields that ∂xξ (x) = K∂yη(y) which has as immediate consequence that
∂xξ (x) = const and ∂yη(y) = const. Hence any extremal map must have the form
ζ (z) = αx + iβy and α,β must match the values for the affine map for ζ to map R
into R′, vertex by vertex.
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1.4.2 Grötzsch problem revisited

Consider two Jordan regions Q,Q′⊂C with distinguished boundary points p1, ..., p4 ∈
∂Q and p′1, ..., p′4 ∈ ∂Q′.

Problem 4. Among all diffeomorphism ζ : Q→Q′ mapping ζ (pi) = p′i, i = 1, ...,4,
find the one with minimal maximal dilation.

As illustrated in figure 1.2, the Riemann mapping theorem yields two rectangles
R,R′ and conformal transformations φ : Q→ R and ψ : Q′ → R′ of the domains
Q,Q′ to R,R′ with the points pi, p′i mapped to the vertices of the rectangles. Since
the dilation is conformally invariant any map ζ : R→ R′ has the same dilation of its
lift φ ◦ ζ ◦ψ−1 : Q→ Q′. The previous argument yields the following conclusion:
The extremal map for the revisited Grötzsch problem is a composition of an affine
anisotropic dilation with conformal transformations φ ◦ affine ◦ψ−1. Such map is
unique modulo conjugation with conformal transformations.

Such transformations are examples of Teichmüller mappings.

1.5 Teichmüller theorem and extremal quasiconformal mappings

Let u : Ω → Rn be a quasiconformal mapping. Since K(u,Ω) =
√

n if and only
if the mapping u is conformal, we will interpret Grötzsch’s closest to conformal
requirement as minimizing K(u,Ω) = ||

√
trace(g)||L∞ among all competitors. The

n = 2 setting has been studied in depth by many mathematicians. Here we recall the
work of Reich [53], Reich and Strebel [54], [55], Strebel [64] and Gardiner [26].

ψφ

Q′Q

R R′
ζ

Fig. 1.2 Grötzsch problem revisited: General Jordan regions
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In the following we will briefly highlight the set of ideas, techniques and results
loosely known as Teichmüller theory. This important theory has as a starting point a
similar L∞ variational problem in the context of holomorphisms between Riemann
surfaces of same genus (g > 3) and where the constraint defining the class of com-
petitors is given by membership in the same homotopy class. In this setting one has
existence, uniqueness and some amount of regularity for the minimizers.

For n > 2 less is known. The fundamental reference by Gehring and Vaisala
[30] establishes the problem in a more general setting and provides some exis-
tence results. The higher dimensional analogue of Grörtzsch problem was solved
by Fehlmann [23]. A great amount of recent literature focuses on the Lp variational
problems, which we will briefly describe through the work of Astala, Iwaniec, On-
ninen, Martin [9]. We also recall related work of Balogh-Fässler-Platis [10] and
Astala, Iwaniec and Martin [8].

In a (rough) comparison with similar problems in elasticity, conformal deforma-
tions correspond to isometries. Accordingly, the variational problems stated above
corresponds to finding deformations closest to isometries in given classes of com-
petitors.

Some of the main obstacles in studying this L∞ problem are

• Lack of convexity.
• L∞ functionals are not sensitive to deformations of functions away from their

maximum. Unlike Lp averages they are not ”local”. This makes uniqueness un-
likely.

• The problem is vector-valued, and as such not approachable through the estab-
lished techniques from game theory or viscosity solutions.

• There is a topological constraint.

1.5.1 Riemann surfaces

A Conformal Atlas on a two dimensional smooth manifold is an atlas (Uα ,zα)α∈A
with zα : Uα →C local charts such that the transition maps zβ ◦z−1

α : zα(Uα ∩Uβ )→
zβ (Uα ∩Uβ ) are holomorphic.

An atlas (Uα ,zα) is compatible to another atlas (Vβ ,wβ ) if their union is still a
conformal atlas. A conformal structure is the union of an atlas with all other com-
patible charts.

Definition 7. A Riemann surface is a two dimensional smooth manifold with a con-
formal structure.

Example 5. The Riemann sphere S2 = {x2
1 +x2

2 +x2
3 = 1} ⊂R3. To show that S2 is a

Riemann surface we consider an atlas with open sets U1,U2 obtained from the whole
sphere minus respectively the north pole (0,0,1) and the south pole (0,0,−1). De-
fine the stereographic projections charts
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z1(x) =
x1 + ix2

1− x3
on U1 and z2(x) =

x1− ix2

1+ x3
on U2

Note that z1(U1∩U2) = z2(U1∩U2) = C\{0} and that

z2 ◦ z−1
1 (a+ ib) =

a+ ib
a2 +b2 =

1
a+ ib

Example 6. The Riemann Torus is defined as follows: Set w1,w2 ∈ C two non-zero
vectors and define an equivalence relation in C by saying that a+ ib≈ x+ iy if there
exists two rational numbers m,n such that a+ ib = x+ iy+mw1 +nw2. The discrete
abelian subgroup M = {mw1 +nw2} is called a lattice. If we let π be the projection
to the quotient space then T = π(C) is a Riemann surface. To define an atlas we
consider open sets O ⊂ C containing to equivalent pairs (for instance a subset of a
fundamental domain) and define the chart U = π(O) and z = π|−1

O . Since zα ◦ z−1
β

is
a translation then this is a conformal atlas.

We have already seen that if Γ ⊂ PSL(2,R) and the action of Γ on H is properly
discontinuous and does not fix points then the quotient H/Γ can be given a Riemann
surface structure. Viceversa one has the following

Theorem 5. (Uniformization theorem) Let Σ be a compact Riemann surface of
genus p. There exists a conformal diffeomorphism f : Σ → Σ ′ where Σ ′ is either

(i) of the form H/Γ if p≥ 2;
(ii) A torus C/M if p = 1;
(iii) the Riemann sphere if p = 0.

As corollary, the universal cover of a compact Riemann surface is conformally
equivalent to S2, C or D.

Definition 8. A continuous map u : S→ S′ is holomorphic if it is so when expressed
(locally) through conformal charts. If these local expression have non vanishing ∂zu
derivative then u is conformal.

Let us recall the topological classification of compact Riemann surfaces

Theorem 6. Two differentiable, orientable, compact triangulated surfaces2 are home-
omorphic if and only if they have the same genus.

Every Riemannian metric gi jdxidx j on a oriented surface can be written locally
in complex coordinates as

σ(z)|dz+ µ(z)dz̄|2 = σ(z)(dz+ µdz̄)(z̄+ µ̄dz)

where σ > 0 (real) and |µ|< 1.

Theorem 7. Every oriented Riemannian surface admits a conformal structure and
a conformal Riemann metric λdzdz̄. A local system of holomorphic coordinates is
given by the solutions of the equation ∂z̄u = µ∂zu and λ = ∂σ

∂zu∂z̄ū .

2 Recall that every Riemann surface is orientable and any conformal atlas yields a triangulation.
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1.5.2 Teichmüller Theorem

The focus of Teichmüller theorem is on a classification of all possible conformal
structures of a given Riemann surface S, and on establishing a structure theorem for
such a moduli space. The natural candidate for space of all conformal structures is

Definition 9. Given a compact Riemann surface S with genus p, we define the mod-
uli space Mp of conformal structures on S where (S,g1) and (S,g2) are identified if
there exists a conformal diffeomorphism between them.

However this moduli space does not have a manifold structure and its topology is
very complicated. To somewhat simplify the structure Teichmüller proposed a new
notion of moduli space of conformal structures, known today as Teichmüller space.

Definition 10. Given a compact Riemann surface S with genus p, we define the
moduli space Tp of conformal structures on S where (S,g1) and (S,g2) are identified
if there exists a conformal diffeomorphism between them wich is homotopic to the
identity.

The first step in studying the structure of this space is given by the following
existence theorem

Theorem 8. (Existence Theorem) Given S,S′ closed Riemann surfaces of same
genus and α : S→ S′ an homeomorphism, there exists a quasiconformal mapping
ζ : S→ S′ homotopic to α and minimizing the maximal dilation in the homotopy
class of α .

What is needed next is a uniqueness result for such minimizers as well as an
algebraic characterization that would allow to define a manifold structure on the
moduli space. In the next sections we will will state such uniqueness results and
then proceed to sketch Ahlfors’ proof of this remarkable characterization.

1.5.3 Coverings and group action

If S,S′ are Riemann surfaces of same genus g > 1 realized as D/G,D′/G′. The
quotient map p : D→D/G = S is a covering map and the group G, which acts on D
is called a Fuchsian group. The disc D is the universal cover of S.

Theorem 9. Any homeomorphism map ζ : S→ S′ can be lifted to a family of map-
pings ζ : D → D′ with the property that for every g ∈ G there exists a unique
g′ := α(g) ∈ G′ such that

ζ (g(z)) = g′(ζ (z)).

Viceversa, any homeomorphism ζ : D→ D′ which satisfies the identity above in-
duces an homeomorphism ζ : S→ S′. Lifts of quasiconformal mappings are qua-
siconformal with the same dilation. The maps g→ α(g) are group isomorphisms.
Any two lifts are related by a inner automorphism of G or G′.
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Theorem 10. Any two homeomorphism maps S→ S′ are homotopic if and only if
the determine isomorphisms G→ G′ which differ only by an inner automorphism.
So essentially, modulo renormalization, there exists a one-to-one correspondence
between homotopy classes of homeomorphisms and isomorphisms G→ G′.

This result allows to reframe Teichmüller theorem and the variational prob-
lem only in terms of mappings ζ : D→ D′ which satisfy the functional equation
ζ (g(z)) = g′(ζ (z)).

Theorem 11. (Existence Theorem reformulated) Given ζ0 : D→ D′ a fixed home-
omorphism, let α : G→ G′ denote the induced isomorphism. There exists a quasi-
conformal mapping ζ : D→ D′ minimizing the maximal dilation in the class of all
homeomorphisms satisfying the function equation

ζ (g(z)) = α(g)(ζ (z)).

Consider the set of all quasiconformal mappings satisfying the identity (this is
not empty since the surfaces are diffeomorphic) and with dilation less than a fixed
number K. Gehring’s theorem implies that this is a normal family, and hence any
minimizing sequence will converge to either a quasiconformal mapping satisfying
the same functional identity or a constant. Constant are ruled out by the functional
identity and the fact that no element of D′ is fixed by every g′ ∈G′. Uniqueness of the
representative is provided by a deep connection between extremal quasiconformal
mappings and quadratic differentials.

1.5.4 Quadratic differentials

Consider a 1−form dz = dx + idy in C. If F : C → C is a conformal map and
we denote z(w) = F(w) then for any (a,b) ∈ R2 we can compute the action of
dF : R2→ R2 in complex notation as dF · (a,b) = dF

dw (a + ib). In view of this then
the pull-back F∗dz is given by F ′(w)dw = dz

dw dw, in fact the action of F∗dz on any
complex tangent vector a+ ib can be computed through

F∗dz(a+ ib) = dz(dF(a+ ib)) = dz(F ′(w)(a+ ib)) = F ′(w)dw(a+ ib)

Through a similar computation one sees that the symmetric 2-tensor φ(z)dz2

pulls back to φ(z(w))( dz
dw )2dw2.

These computations motivate the following

Definition 11. Let S be a Riemann surface and {(Uα ,hα)} denote its conformal
structure. A meromorphic (resp. holomorphic) quadratic differential h in S is a set
of meromorphic (res. holomorphic) functions fα in the local coordinates given by
zα = hα(p) with p ∈ S satisfying the transformation law

fα(zα) = fβ (zβ )
(

∂ zβ

∂ zα

)2

,
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for all charts (Uα ,zα) and (Uβ ,zβ ) around a point p ∈ S.

Recalling the formula for the pull back of a complex 2−tensor described earlier
we can write the definition above as

hα(zα)dz2
α = hβ (zβ )dz2

β

Observe that quadratic differentials are holomorphic sections of the bundle of holo-
morphic symmetric tensors.

Let Q(S) denote the space of all quadratic differentials on a given compact Rie-
mann surface S. Since the sum of two quadratic differentials as well as the multipli-
cation by a scalar of a quadratic differential are still elements of Q(S) then the latter
is a complex vector space. The following is a consequence of the Riemann-Roch
Theorem

Theorem 12. The space Q(S) has finite dimension (over R) 6p−6.

Theorem 13. (Structure of minimizers) Given S,S′ closed Riemann surfaces of same
genus p > 1 and α : S→ S′ an homeomorphism. Denote by ζ : S→ S′ a quasiconfor-
mal mapping homotopic to α and minimizing the maximal dilation in the homotopy
class of α . Either ζ is analytic or there exists a quadratic differential f dz2 on S and
a constant κ ∈ (0,1), such that ζ is differentiable away from the zero set of f (with
non-vanishing complex derivatives q, p) and satisfies

q
p

= κ
f̄
| f |

.

The quadratic differential is uniquely represented up to a positive constant factor
and κ represents the (constant) eccentricity of the extremal mapping.

Theorem 14. (Uniqueness) Every map ζ whose complex derivatives satisfy

q
p

= κ
f̄
| f |

has a maximal dilation which is strictly smaller than the dilation of any other map-
ping (not conformally equivalent to ζ ).

These result yield that for every homotopy class one has existence of a unique
minimizer for the maximal dilation and associated to this minimizer there is a unique
pair of quadratic differentials. This correspondence gives a manifold structure to
the Teichmüller space, with the same dimension 6p− 6 as the space of quadratic
differentials.
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1.5.5 Ahlfors’ proof of existence and uniqueness

In [1], Ahlfors considers the following m−mean distortion functional: For every a.
e. differentiable map ζ = ξ + iη : D→ D′ and m≥ 1,

Im(ζ ) =
1
π

∫ ∫
D′

(
|p|2 + |q|2

|p|2−|q|2

)m∣∣∣∣∣
ζ−1(ξ+iη)

dξ dη .

The customary 1−parameter deformations used in the calculus of variations to
derive the Euler-Lagrange equations are of the form ζs = ζ + sψ where s ∈ (−ε,ε)
and φ ∈ C∞

0 (D,D′) serves as a test function. However if ζ is merely quasiconfor-
mal, in particular not a C1 diffeomorphism then the deformation ζs = ζ + sψ may
fail to be an homeomorphism and hence be outside of the set of competitors, mak-
ing it useless for the purpose of deriving a PDE which describes the behavior of
minimizers.

To circumvent this problem one may choose to do a different set of perturbations,
acting on the domain of the map, rather than one the image, thus setting:

z = H(z′,ε) := s′+ εh(z′)+o(ε),

yielding
∂zH = 1+ ε∂zh+o(ε); and ∂z̄H = ε∂z̄h+o(ε).

If G is a Fuchsian group acting on a Riemann surface S then for H to determine
a deformation of the surface one needs H(gz,ε) = gH(z,ε) for every g ∈ G. This
eventually yields h(gz) = ∂zg h(z), which characterizes all infinitesimal deforma-
tions of S.

Remark 8. A brief digression: If one considers the Dirichlet energy∫ ∫
D
|∂zw|2 + |∂z̄w|2dxdy

then the usual exterior deformations lead to the Laplacian ∂z∂z̄w = 0.
If instead one proceeds as in Ahlfors (and Hopf, Morrey, and many others) and

carries out inner variations as described earlier then one obtains the PDE

∂z̄

(
∂z w ∂z̄ w

)
= 0,

which is of a very different nature from Laplace’s equation. To the best of our knowl-
edge, currently the sharpest regularity result known for such PDE is Lipschitz con-
tinuity, see Iwaniec, Kovalev and Onninen [40]. See also earlier work of Bauman,
Owen and Phillips [13].

In Ahlfors’ argument the inner variation produces the equation in weak form
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Re
∫ ∫

D′

(
|p|2 + |q|2

|p|2−|q|2

)m
pq̄

|p|2 + |q|2
∂z̄hdξ dη .

Changing variables z′ = ζ (z) we obtain

Re
∫ ∫

D∩{|p|>|q|}

(
|p|2 + |q|2

|p|2−|q|2

)m−1

pq̄∂z̄hdz∧dz̄.

Set

Um =

{(
|p|2+|q|2
|p|2−|q|2

)m−1

if |p|> |q|

0 otherwise.

and ρ = ∑g′∈G′ |∂zg′| one obtains a reformulation of this PDE in terms of integration
over the original surface ∫ ∫

S
Umρ pq̄∂z̄h = 0.

∫ ∫
S
Umρ pq̄∂z̄h = 0.

in particular this yields

Lemma 1. The function fm = Umρ pq̄ is holomorphic and so describes a holomor-
phic quadratic differential

fm(z)dz2

in D.

We let Cm > 0 be constants defined so that

Umρ pq̄ = cm fm(z)

with
∫

S | fm|dxdy = 1

1.5.6 Normal family of mappings with integrable distortion

Theorem 15. If f ∈W 1,n(Ω ,RN) is a mapping whose distortion is m−integrable
with m > n−1, then f is continuous and the modulus of continuity depends only on
the Lm norm of the distortion.

In this form and in this setting, this result is due to Ahlfors [1]. It is also a conse-
quence of work of Iwaniec and Sverak [43] and of Manfredi and Villamor [67]. See
also the work of Koskela, Iwaniec, and Onninen [38], [39].

Given any diffeomorphism α : D→ D′, then in view of Ascoli-Arzela and The-
orem 15 one has that for every m there exists (a possibly not unique) ζm : D→ D′
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in the same homotopy class as α and which minimizes Im. We denote by pm,qm its
complex differentials and set

min
ζ

Im(ζ ) = Im(ζm) =
∫ ∫

D′

(
|pm|2 + |qm|2

|pm|2−|qm|2

)m

.

Denote the quantity above by πKm
m .

In view of Hölder inequality Km is monotone increasing and bounded (by the
dilation of α) hence Km→ K < ∞. Let 0≤ κ < 1 be defined by

K =
1+κ2

1−κ2 .

Normality and a diagonalization argument yields:

Lemma 2. For a subsequence one has ζm → ζ , as m→ ∞, uniformly on compact
sets, with ζ quasiconformal.

Lemma 3. For a subsequence one has

(Cm)
1
m → K

as m→ ∞.

Lemma 4. For a subsequence one has

∫ ∫
D

∣∣∣∣∣|qm|−κ|pm|

∣∣∣∣∣dz∧dz̄→ 0,

as m→ ∞.

Note that the relation

Cm fm =

(
|p|2 + |q|2

|p|2−|q|2

)m−1

ρ(ζm)pmq̄m

yields
fm

| fm|
=

pmq̄m

|pm||qm|
and consequently∣∣∣∣ fm

| fm|
qm−κ pm

∣∣∣∣= ∣∣∣∣ pm

|pm|
|qm|−κ pm

∣∣∣∣= ||qm|−κ|pm||

Passing to a subsequence then we can assume that fm tend to a limit f and that
ζm → ζ uniformly on compact sets. The limit mapping ζ has complex derivatives
p,q which are limit of pm,qm and thus satisfy



22 Luca Capogna

f
| f |

q = κ p

1.5.7 Teichmüller mappings in local parameters

A homeomorphism
z→ ζ (z) : D→ D

whose complex derivatives satisfy

κ
p
q

=
f
| f |

is called a Teichmüller mapping.
We show that there exists local parameters (i.e. a local set of conformal coor-

dinates) ζ ∗,z∗ such that in this coordinates the map reads as the composition of
two conformal transformations conjugating an affine mapping (just as in Grötzsch’s
problem). Denote by ζ → z the inverse mapping and by p′,q′ its complex deriva-
tives.

Differentiating the formula z = z(ζ (z)) along z and z̄ one can see that p,q, p′,q′

are related by the formula

p′ =
p̄

|p|2−|q|2
and q′ =− q

|p|2−|q|2
.

If ζ (z) is quasiconformal extremal then so is z(ζ ) and its associated quadratic dif-
ferential φ(ζ ) satisfies:

φ

|φ |
= κ

p′

q′
.

Consequently it follows that if z→ ζ is Teichmüller then

q̄
p

= κ
φ

|φ |

Next we introduce two new local charts

z∗ :=
∫ √

f dz and ζ
∗ :=

∫ √
ζ dζ

This can be done in a sufficiently small neighborhood of a point where f ,φ do
not vanish and with fixed branches of the square roots and arbitrary integration
constants.

Keeping in mind the expression ζ ∗(ζ (z(z∗))) then in terms of these new variables
one has
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p∗ =
dζ ∗

dz∗
=

dζ ∗

dζ

dζ

dz
dz
dz∗

=
√

φ√
f

p

text and similarly

q∗ =
√

φ√
f̄

q

Next, observe that

q∗ =
√

φ√
f̄

q = κ p
f̄
| f |

√
φ√
f̄

= κ p∗
f̄
| f |

√
f√
f̄

= κ p∗.

Similarly, if we use
q̄
p

= κ
φ

|φ |
then we obtain

q̄∗ = κ p∗.

Since q∗ = q̄∗ then q∗ is real and so is p∗.
Next, observe that

d
dz̄∗

(ζ ∗−κζ̄
∗) = q∗−κ p∗ = 0

Hence ζ ∗−κζ̄ ∗ is holomorphic and its complex derivative is

d
dz∗

(ζ ∗−κζ̄
∗) = p∗−κq∗ = p∗−κκ p∗ = p∗(1−κ

2).

Since derivatives of a holomorphic functions are also holomorphic then p∗ is both
real and holomorphic, hence it must be constant.

Consequently one has that

ζ
∗(z∗) = p∗z∗+q∗z̄∗ = A(z∗+κ z̄∗)+B

for some constants A,B ∈ C, proving our statement on the local structure of Te-
ichmüller mappings.

1.5.8 Uniqueness (rough idea)

The uniqueness part follows from a Grötzsch-like argument (more complicated in
view of possible singularities). The analogues of the rectangular regions arise in the
following way: We consider a Riemannian metric

ds2 = φ
2dζ d̄ζ
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where φ is the quadratic differential in the target region associated to a Teichmüller
mapping. This metric is complete and non-positively curved, thus yielding unique
geodesics between any pair of points. By the geodesic equation the quantity

√
φdζ

is constant along geodesics.
We call horizontal arcs those geodesics along which the argument of

√
φdζ is

zero. Likewise we call vertical those for which the argument is π .

The local charts z∗,ζ ∗ we have introduced earlier transforms rectangular boxes
in D defined by horizontal and vertical arcs into actual rectangles in the complex
plane, while at the same time the Teichmüller mapping is affine, transforming one
rectangle into the other, when read in those coordinates.

An argument similar to the one we have used for Grötzsch problem yields the
uniqueness and the extremality of the Teichmüller mapping.

1.6 A variation on the theme: Extremal mappings of finite
distortion

The integral version of the extremal mapping problem, as well as the notion of map
with integrable power of the distortion have appeared in the work of Ahlfors in
1954 [1] and later in several papers from the russian school, in particular Semenov
[59], [60], [61] and references therein. As we have seen, in Ahlfors’s approach to
the extremal mapping problems he used a relaxation of the L∞ variational problem,
where the interest is shifted to minimizers of the Lp norm of the dilation, rather than
to the L∞ norm.

Problem 5. Lp variational problem Let u0 : Ω → Ω ′ be a homeomorphism of fi-
nite distortion. Among all homeomorphisms u : Ω → Ω ′ whose extension to ∂Ω

coincide with u0 find one minimizing∫
Ω

ψ

(
|du|

(det(du))1/n

)
dx,

where ψ : [1,∞)→ [1,∞) strictly increasing convex function with ψ(1) = 1.

This problem, along with generalizations to more general boundary data, has
recently been studied in a sequence of papers by Astala, Iwaniecz, Martin, Onninen
and several collaborators, see [9] and [8]. In the following we give a quick survey
of their work.

Remark 9. From a Calculus of Variations point of view, one can see that following
[42, Section 8.8.2] the functional

F (du,Ω) =
∫

Ω

ψ

(
|du|

(det(du))1/n

)
dx,
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although not convex, is indeed quasiconvex, i.e. for every constant differential
A ∈ Rn×n and for any φ ∈C∞

0 (Ω) one has

F(A,Ω)≤ F(A+dφ ,Ω).

This notion was introduced by Morrey in 1952, see [49], [50]. Quasiconvex en-
ergy densities are those for which affine deformations are minimizers with respect
to their own boundary conditions. We recall that quasiconvexity plus some growth
estimates are roughly equivalent to lower semicontinuity, see Giaquinta’s book [31]
for a more detailed statement. Hence quasi-convexity is used often to prove exis-
tence of minimizers (as well as regularity of the extremals).

In the case at hand there are two problems:

• The growth conditions are not satisfied.
• There is a topological constraint: The space of competitors is not a vector space.

In conclusion, the results currently available from Calculus of Variations are not
sufficient to attack the problem and new techniques are needed.

1.6.1 The finite distortion version of Grötzsch problem

Let R = [0,1]× [0,1] and R′ = [0,2]× [0,1]. The same argument holds for any pair
of rectangles. Consider the set F={ all homeomorphisms u : R→ R′ such that u ∈
W 1,1

loc (R,R2) taking vertices into vertices}.

Theorem 16. [9] There is a unique minimizer for the L1 variational problem:

min
u∈F

∫
R

∣∣∣∣∣ |du|2

det(du)

∣∣∣∣∣
Remark 10. The affine map (x,y)→ (2x,y) sends R to R′ by mapping vertices to
vertices and has distortion

|du|2

detdu
=

5
2
.

If we were to measure distortion using the operator norm we would have obtained

|du|O = 2

and hence
|du|2O
detdu

= 2.

Proof. The proof is very similar to the proof of Grötzsch problem we presented
earlier: Setting u = α + iβ and arguing as we did then yields



26 Luca Capogna∫
∂R

αdy = 2 and
∫

∂R
βdx = 1

Using Stokes Theorem yields∫
R

αxdxdy = 2 and
∫

R
βydxdy = 1

and ∫
R
(2αx +βy)dxdy = 5.

5 =
∫

R
(2αx +βy)dxdy≤

∫
R

√
22 +1

∫
R

√
α2

x +β 2
y dxdy

≤
√

5
∫

R
||du||dxdy =

√
5
∫

R
K(u,z)

√
det(du)dxdy

≤
√

5
√∫

R
K2(u,z)dxdy

√∫
R

det(du)dxdy =
√

10
√∫

R
K2(u,z)dxdy.

This shows that the minimum of the functional is 5/2, which is achieved by the
linear map (x,y)→ (2x,y). An examination of the case when the inequalities above
are equalities yields that the minimum can only be achieved by this linear map.

1.6.2 Trace norm vs. operator norm

In [9], Astala, Iwaniecz, Martin and Onninen show that if the above problem one
substitutes the operator norm |A|O = max|v|=1 |Av| to the Hilbert-Schmidt norm, i.e.
one studies minimizers of ∫

R

∣∣∣∣∣ |du|2O
det(du)

∣∣∣∣∣
then the situation changes completely and one can find infinitely many minimizers.

To see this first one uses the argument above to show that

2≤
∫

R

∣∣∣∣∣ |du|2O
det(du)

∣∣∣∣∣.
Next we observe that there is a 1-parameter family of minimizers for a ∈ [0,1),

U(x,y) =

{
x+ iy for x+ iy ∈ [0,a]× [0,1]
2−a
1−a x− a

1−a + iy for x+ iy ∈ [a,1]× [0,1].
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1.6.3 Affine boundary data

Following Astala, Iwaniecz, Martin and Onninen [9] we consider more general
affine boundary data in higher dimension. Let us start with the case of affine orienta-
tion preserving data u0 : Rn→Rn prescribed on a domain Ω with (n−1) rectifiable
boundary.

Theorem 17. Given any homeomorphism of finite distortion u : Ω̄ → Ω̄ ′ such that
u = u0 on ∂Ω then

∫
Ω

ψ

(
|du0|n

det du0

)
dx≤

∫
Ω

ψ

(
|du|n

det du

)
dx

with equality if and only if u = u0 in Ω .

Sketch of the proof. We first recall two basic estimates

1. the sub-gradient inequality

ψ(t)−ψ(t0)≥ ψ
′(t0)(t− t0)

valid for a.e. t, t0 ∈ [1,∞).
2. The function

(x,y)→ xα/yβ

defined for x,y ∈ R and α ≥ β +1≥ 1 is convex. In particular

xα

yβ
− aα

bβ
≥ α

aα−1

bβ
(x−a)−β

aα

bβ+1 (y−β )

Using these estimates one can easily prove that

ψ

(
|du|n

det du

)
−ψ

(
|du0|n

det du0

)
≥ ψ

′

(
|du0|n

det du0

)
|du0|n−2

det du0
〈du0,du−du0〉

+ψ
′

(
|du0|n

det du0

)
|du0|n

(det du0)2 (det du0−det du)

Integrating the latter over Ω yields

∫
Ω

[
ψ

(
|du|n

det du

)
−ψ

(
|du0|n

det du0

)]
dx

≥
∫

Ω

[
ψ
′

(
|du0|n

det du0

)
|du0|n−2

det du0
〈du0,du−du0〉
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+ψ
′

(
|du0|n

det du0

)
|du0|n

(det du0)2 (det du0−det du)

]
dx

Observe that since du0 = const and u = u0 on ∂Ω then the first term on the LHS
vanishes. As for the second term, note that

∫
Ω

det du =
∫

Ω
det du0 = |Ω ′|. Thus the

LHS has non-negative integral proving the first assertion. Uniqueness follow from a
careful analysis of the consequences of having an identity in the above argument.

1.6.4 More general boundary data

The case of more general boundary data is still open. In [9], Astala, Iwaniecz, Martin
and Onninen prove the following remarkable theorem:

Theorem 18. Let Ω ⊂ R2 be a convex domain and set

C = {u ∈W 1,2(Ω ,R2)
homeomorphism of finite distortion for which∫

Ω

|du|2

detdu
is finite}. (1.12)

Let u0 ∈ C .
There exists a unique smooth diffeomorphism solution to the minimization prob-

lem

min
u∈C ,u=u0 in ∂Ω

∫
Ω

|du|2

detdu
dx

The key idea in the proof is to put in relation the extremal problem above with
the classical Dirichlet problem

Problem 6. (n−harmonic mappings) Given h0 ∈W 1,n(Ω ′,Rn), minimize the n−energy∫
Ω ′
|dh|nOdy

over the class h ∈ h0 +W 1,n
0 (Ω ′,Rn).

The link between the two problems rests on the following theorem in [9].

Theorem 19. Let u ∈W 1,n
lot (Ω ,Ω ′) be a homeomorphism of finite distortion with

∫
Ω

|du−1|nO
det du−1 (x)dx < ∞

The inverse map h : Ω ′→Ω belongs to W 1,n(Ω ′,Ω) and moreover satisfies∫
Ω ′
|dh(y)|nOdy =

∫
Ω

|du−1|nO
det du−1 (x)dx.
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See also recent developments by Hencl, Koskela, and Onninen [35], [37], [36]
and by Fusco, Moscariello, and Sbordone [25] and by Csörnyei, Maly [19].

The proof of Theorem 19 is based on the a.e. differentiability result of Vaisala
[65] and on a change of variable formula for homeomorphisms in Sobolev spaces
due to Reshetnyak [57].

The two previous theorems state that the minimization problem for the n−energy∫
Ω ′
|dh|2Ody

of h : Ω ′ → Ω in h0 +W 1,2
0 (Ω ′,Ω) is equivalent to a minimization problem (with

corresponding boundary data) for the inner distortion∫
Ω

|du−1|2O
det du−1 (x)dx.

However, when n = 2 one has that inner and outer distortion agree, so that

|du|2O
det du

=
|du−1|2O
det du−1 ,

hence minimizing the Dirichlet energy∫
Ω ′
|dh|2Ody

is equivalent to minimizing the mean dilation∫
Ω

|du|2O
det du

dx.

To return to the Hilbert-Schmidt norm from the operator norm we observe that
in n = 2

|A|2

det A
=
(
|A|2O
det A

+
detA
|A|2O

)
and that the mapping

K→ K +
1
K

is monotone. Consequently∥∥∥∥ |du|2

det du

∥∥∥∥
∞

=
(∥∥∥∥ |du|2O

det du

∥∥∥∥
∞

+
1∥∥∥∥ |du|2O

det du

∥∥∥∥
∞

)

then the minimization problem for the operator norm has the same solution as the
one for the Hilbert-Schmidt norm. Other generalization of Grötzsch problem in
higher dimension have appeared in the work of Fehlmann [23].
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1.7 Minimal Lipschitz extensions

We start by looking at a (relatively) simpler functional, which has been extensively
studied in the last few decades.

Problem 7. Consider two sufficientlys smooth bounded open sets Ω ⊂Rn and Ω ′⊂
RN . Among all Lipschitz mappings u ∈ Lip(Ω ,Ω ′) with prescribed trace, find one
which minimizes the functional

u→
∥∥∥∥ du

∥∥∥∥
∞

.

The problem is related to that of finding a canonical (unique) Lipschitz extension
of the boundary map. We are interested in questions of existence, uniqueness and
continuous dependence from the data.

1.7.1 Aronsson’s approach in the scalar case N = 1

In the following we describe the N = 1 scalar case for this L∞ variational problem.
Since ||∇u||∞ is equivalent to the Lipschitz norm of the scalar function u : Ω → R
this leads to the following

Definition 12. A minimizing Lipschitz extension is an extension of a Lipschitz scalar
function f : ∂Ω → R to u : Ω → R with u = f on ∂Ω and

Lip(u,Ω) = sup
x 6=y,x,y∈Ω

|u(x)−u(y)|
|x− y|

= Lip( f ,∂Ω)

In 1934, independently E. J. MacShane [48] and H. Whitney [68] noted the fol-
lowing:

Theorem 20. Such extensions always exist but are not unique.

The proof of existence is based on the following observation: Assume that an
extension u exists and let λ = Lip( f ,∂Ω). Since Lip(u,Ω) = Lip( f ,∂Ω) then for
all x ∈ ∂Ω and all y ∈Ω one must have

−λ ≤ |u(y)− f (x)|
d(x,y)

≤ λ ,

and hence
f (x)−λd(x,y)≤ u(y)≤ f (x)+λd(x,y).

Since for all x ∈ ∂Ω and y ∈Ω

f (x)−λd(x,y)≤ u(y)≤ f (x)+λd(x,y).
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if we define the upper and lower functions

L(y) = sup
x∈∂Ω

( f (x)−λd(x,y)) and U(y) = inf
x∈∂Ω

( f (x)+λd(x,y))

then these are minimizing Lipschitz extensions of f and so is any u such that L ≤
u≤U in Ω .

Remark 11. We recall an example due to Jensen [44], showing that the problem of
minimal Lipschitz extension does not have a unique solution. Let Ω = B(0,1) and
f (x,y) = 2xy. For every 0≤ α ≤ 1/2 set

uα(x,y) =

{
0 for x2 + y2 ≤ α2

2xy(
√

x2+y2−α)
(1−α)(x2+y2) for α2 ≤ x2 + y2 ≤ 1.

Note that for x2 + y2 = 1 we have uα(x,y) = 2xy and more over

Lip(uα ,Ω) = Lip( f ,∂Ω)

So there are infinitely many distinct minimal Lipschitz extensions.

Problem 8. Is there a special class of canonical extensions for which uniqueness
holds?

In 1967 G. Aronsson (see [4]) proposed a way to localize the functional by intro-
ducing the formal approximation scheme:

• Consider minimzers up of ∫
|∇u|p

They are p−harmonic, i.e. weak solutions of the equation

∆pup = div(|∇up|p−2
∇up) = 0

• In case u ∈C2 then we can rewrite this PDE in non-divergence form

(p−2)|∇u|p−4
(

uiu jui j +
|∇u|2

p−2
∆u
)

= 0

• Let p→ ∞ and formally obtain the ∞−Laplacian

∆∞u = ui juiu j =
1
2
〈∇|∇u|2,∇u〉= 0.

Remark 12. Note that a priori there is no link between solutions of the non-linear,
degenerate elliptic PDE

uiu jui j = 0

and the problem of minimal Lipschitz extensions. The previous computation is
purely formal.
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In [4], Aronsson established a link between sufficiently smooth solutions of the
infinity Laplacian and correspondingly smooth minimizers of the L∞ variational
problem.

Theorem 21 (∞−harmonic implies AMLE [4]). C2 solutions of ∆∞u = 0 are Abso-
lute Minimizing Lipschitz Extensions (AMLE), i.e. they minimize Lip(u,D) on every
subdomain D⊂Ω

Lip(u,D) = Lip(u,∂D) for every D⊂Ω

In some sense, the localization built-in in the notion of AMLE is inherited from
the Lp problem. The key observation in the proof is that for C2 solutions one has
|∇u| is constant along integral curves of ∇u in D ⊂ Ω . Aronsson proved that such
curves cannot vanish in the interior of the domain and cannot wind up infinitely
many times within the domain, hence they have to reach the boundary.

As a converse to the previous theorem, Aronsson also proved

Theorem 22. Every C2 AMLE is ∞−harmonic.

Regarding existence of AMLE, Aronsson established the following

Theorem 23. (Existence of AMLE) Given any Ω ⊂Rn and f ∈ Lip(∂Ω) there exists
always a AMLE.

We say that a minimal Lipschitz extension u ∈ Lip(Ω), with boundary values
f ∈ Lip(∂Ω), has the property A , if for every D′ ⊂ D one has u ≤U ′ in D′ where
U ′ is the upper function in D′ with respect to the boundary value u.

The AMLE corresponding to f ∈ Lip(∂Ω) is then defined as

u(x) := inf
g

g(x)

where the inf is taken over all functions with the A property with respect to f .
In 1968 Aronsson proved that there can be at most one u ∈C2(Ω)∩C(Ω̄) solu-

tion of the ∞−Laplacian. Thus showing that there can be at most one C2 AMLE.

Remark 13. Aronsson shows that C2 solutions have nowhere vanishing gradient,
however any C2 solution with boundary data 2xy must have a critical point. So there
may not be C2 solutions of the ∞−Laplacian for this data.

The C2 hypothesis in Aronsson’s work was a severe limitation until in 1993
Jensen (see [44]) removed it using the theory of viscosity solutions, and eventually
proving uniqueness of AMLE.

Definition 13 (Viscosity solution). A continuous function u is ∞−subharmonic in
the viscosity sense if for any point x ∈ Ω and φ ∈ C2(Ω) such that φ − u has a
minimum at x one has φi jφiφ j ≥ 0. Supersolutions and solutions are defined in a
similar fashion.
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See [18], [5], and [17] for a broad exposition and a detailed list of references.

Theorem 24 (Bhattacharya, Di Benedetto, Manfredi [15]). Given fixed boundary
data, p−harmonic functions converge to viscosity ∞−harmonic functions as p→∞.

Theorem 25 (Jensen [44] ). AMLE are viscosity ∞−harmonic functions.

Theorem 26 (Jensen [44]). The Dirichlet problem for viscosity ∞−harmonic func-
tions has a unique solution.

At present, thanks to the work of Armstrong, Barron, Champion, Crandall, De
Pascale, Evans, Gariepy, Jensen, Juutinen, Manfredi, Oberman, Parviainen, Rossi,
Smart, Wang, Yu (to quote just a few) as well as the more recent approach of Naor,
Peres, Sheffield, Schramm and Wilson one can prove the uniqueness of AMLE in
a variety of ways. In particular, this can be achieved without directly using the
∞−Laplacian operator and viscosity solutions for PDE. See [5] and [17] for a de-
tailed account of these developments.

However, at present, out of this multitude of approaches there is no method that
can be immediately extended to approach uniqueness in the vector valued case.

1.7.2 Aronsson’s approach in the vector-valued case N > 1

Existence of minimizing Lipschitz extensions for mappings follows from the clas-
sical

Theorem 27. (Kirszbraun’s Theorem) Let X ,Y be two Hilbert spaces and U ⊂ X
and open set. If f : U → Y is a Lipschitz mapping then there exits an extension
F : X → Y with the same Lipschtiz constant.

However, as we have seen, such extensions may not be unique. Generalizing
Aronsson’s approach beyond the real-valued mappings setting, and in particular to
the vector-valued case u : Ω → RN , is very challenging but, aside from being an
important problem in its own right, may have several potential applications in image
processing (specifically image inpainting and surface reconstruction).

A first step in this direction was taken by Naor and Sheffield in [51] where the
focus is on absolutely minimizing Lipschitz extensions in the context of tree-valued
mappings. Their main result in [51] consists in existence of a unique AMLE of any
prescribed Lipschitz mappings from a subset of a locally compact length metric
space to a metric theory. Among other things, the authors also introduce a general
definition of discrete infinity harmonic function and prove existence of infinity har-
monic extensions.

Shortly afterwards, in [62], Sheffield and Smart considered minimizing exten-
sions of the Lipschitz norm

Lip(u,Ω) = sup
x,y∈Ω

d(u(x),u(y))
d(x,y)

= sup
Ω

|du|O.
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as well as its discrete analogue for mappings u : G→ RN where G = (E,X ,Y ) is a
finite graph

Su(x) := sup
y≈x

d(u(x),u(y))

and two vertices x,y ∈ E are in relation if they are separated by an edge. The subset
of vertices Y ⊂ X here plays the role of the domain for the mapping to be extended.

Definition 14. A mapping is said to be discrete ∞−harmonic at x ∈ X \Y if there is
no way to decrease Su(x) by changing the value of u at x.

Peres, Schramm. Sheffield and Wilson have shown that for any Lipschtiz f : Y →
R there exists a unique Lipschitz extension u : X→R which is ∞−harmonic. In [62],
Sheffield and Smart prove that the uniqueness fails for the vector valued case.

To recover uniqueness in [62] Sheffield and Smart introduce a new notion, that
of tight extension that is stronger than discrete ∞−harmonic:

Definition 15. (Tightness) Consider mappings u,v : X → RN that agree on Y . The
mapping v is tighter that u on G if

sup{Su| Su > Sv}> sup{Sv| Sv > Su}.

The mapping u is tight on G if there is no tighter v.

Theorem 28 (Sheffield and Smart [62]). Let G = (E,X ,Y ) be a finite connected
graph.

• Every Lipschitz f : Y → RN has a unique tight extension u : X → RN . Moreover
u is tighter than every other extension of f .

• For every p > 0 consider a minimizer up : X → Y of Ip(w) := ∑x(Sw(x))p, with
up = f on Y . As p→ ∞ the mappings up → u pointwise, where u is the tight
extension of f .

Motivated by this result, Sheffield and Smart introduced a notion of tight exten-
sion in the continuous setting: First one sets Lu(x) = infr>0 Lip(u,Ω ∩B(x,r)).

Definition 16. Let u,v ∈C(Ω̄ ,RN) be two Lipschtiz functionn which agree on ∂Ω .
We say that v is tighter that u if

sup{Lu| Lv < Lu}> {Lv| Lv > Lu}.

A mapping u is called tight if there is no tighter v.

Definition 17. A principal direction for for a mapping u ∈C1(Ω ,RN) is a continu-
ous, unit vector field in Ω such that at each point it spans the the principal eigenspace
of duT du. If N = 1 then the field is−∇u/|∇u|. Note that the existence of a principal
direction field implies that the largest eigenvalue for duT du is simple.

Recall that the linear transformation y→ du(x)y sends spheres into ellipsoids.
The principal direction corresponds to the largest axis of such ellipsoid.
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Theorem 29 (Sheffield and Smart [62]). Let u ∈ C3(Ω ,RN) have a principal di-
rection field a ∈C2(Ω ,Rn). The mapping u is tight if and only if

(ui
ja j)kak = 0.

Theorem 30 (Sheffield and Smart [62]). Let Ω ⊂ C be a bounded open set and
u : Ω →C be analytic in a neighborhood of Ω̄ . The mapping u is tight if and only if
either

(i) ∂z∂zu = 0 in Ω (i.e., u is affine); or
(ii) The meromorphic function

Re

(
uzuzz

(uzzz)2

)
≤ 2,

in the set where uzz 6= 0.

If u is a diffeomorphism and uzz never vanishes then part (ii) can be rewritten as
(∆ −∆∞) log |u−1

z | ≤ 0. In other words, the level sets of |u−1
z | are convex.

1.7.3 A refinement of the Aronsson equation

If we use Aronsson’s scheme in the scalar case then we have seen as (with sufficient
regularity) the approximating p−harmonic functions satisfy

(p−2)|∇u|p−4
(

uiu jui j +
|∇u|2

p−2
∆u
)

= 0

In the vector case, using the Euclidean norm this time, it is easy to see that one
obtains instead

dulk∂ jkul
∂ ju+

|du|2∆u
p−1

= 0. (1.13)

If one lets p→ ∞ then formally we obtain the ∞−Laplacian system

ul
jkul

kui
j = 0 for i = 1, ...,N.

ul
jkul

kui
j = 0 for i = 1, ...,N.

Theorem 31 (Katzourakis [47]). There exists distinct solutions of the ∞−Laplacian
above with the same boundary data.

The explicit counterexamples are all 1−dimensional, with Ω ⊂ R. In view of
such examples it appears that the ∞−Laplacian analogue may not an appropriate
PDE to characterize unique extremals. In [47], Katzourakis observed that one can
recover more information, leading to an augmented (formal) Aronsson system: Re-
call
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dulk∂ jkul
∂ ju+

|du|2∆u
p−1

= 0.

Notice that the term dulk∂ jkul∂ ju lies in the image of du. Consequently for (1.13)
to hold we must also have

πN(du)∆u = 0

where N(du) = {v ∈ RN | duv = 0} is the null-space of the linear application v→
duv and πN denotes the orthogonal projection in RN onto such space. Thus a more
complete choice for the Aronsson system would be the coupled system

ul
jkul

kui
j = 0 and πN(du)∆u = 0, (1.14)

As noted in [47], this system may have discontinuous coefficients even for smooth
du, since the rank of du may change from point to point. Although the previous
derivation is purely formal one has the following variational interpretation

Theorem 32 (Katzourakis [47]). Let Ω ⊂ Rn and u ∈ C2(Ω ,Rn) be diffeomor-
phism with non-vanishing Jacobian. The mapping u solves (1.14) if and only for
every subdomain D⊂⊂Ω and for every g ∈ Lip0(D,R) and ξ ∈ Rn one has

||∇u||L∞(D) ≤ ||∇(u+gξ )||L∞(D)

The actual result is more general and involves C2 mappings u : Ω → RN and an
additional variational characterization.

1.8 Aronsson’s approach for the extremal dilation problem

In this final section we return to the extremal problem for quasiconformal map-
pings and recall recent results by Raich and the author [16] in which the Aronsson’s
approximation scheme is used to introduce a notion of absolute minimizers in the
quasiconformal setting. The goal here is to find a candidate PDE that would play
the role similar to that of the infinity-Laplacian in the AMLE theory. Following the
approach of Sheffield and Smart in [62] we focus on the C2 case. Although this is
an unnatural smoothness hypothesis for quasiconformal mappings, it does provide
some insights into the general problem.

The first step in this approach consists in studying extremal mappings for the
corresponding Lp problem. If p > 1, Ω ⊂Rn and the diffeomorphism u∈C2(Ω ,Rn)
is a critical point of the functional

Fp(u,Ω) :=
∫ |du|np

(detdu)p dx (1.15)

then the mapping u satisfies the system of Euler-Lagrange equations
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(Lpu)i = np∂ j

([
trace(g)

] np−2
2

du−1,T S(g)
)

i j
, for i = 1, ...,n

If we let p→ ∞ then formally one obtains the Aronsson PDE,

(L∞u)i = S(g)i j∂ j
√

trace(g) = 0 for i = 1, ...,n. (1.16)

This PDE tells us that the dilation of the mapping u (i.e.
√

trace(g) ) is constant
along curves tangent to the sub-bundle generated by the rows of S(g).

Problem 9. What is the lowest regularity for the mapping u for which the PDE

(L∞u)i = S(g)i j∂ j
√

trace(g) = 0 for i = 1, ...,n

is meaningful?

Remark 14. It is tempting to define solutions of (1.16) as quasiconformal mappings
such that their dilation trace(g) is constant along all curves tangent to the sub-bundle
generated by the rows of S(g). Observe that for this definition to be meaningful at
the very least one would need regularity for u such that constant linear combinations
of the rows of S(g) generate integral flows (for instance S(g)∈ BV ) and the quantity
trace(g) must be continuous (so it can be evaluated along such integral curves) .

It is important to note that classical solutions of the extremal quasiconformal
problems, e.g. Teichmüller mappings, solve (1.16) in the regions where they are C2

smooth.

Proposition 4. (1) Any Teichmüller map of the form u := ψ ◦ v ◦ φ−1 with ψ,φ
conformal and v affine is a solution of L∞u = 0. (2) the quasiconformal mappings
u(x) = |x|α−1x for α > 0 solve L∞u = 0 away from the origin. (3) Let 0 < α < 2π and
(r,θ ,z) be cylindrical coordinates for x = (x1, ...,xn) where x1 = r cosθ , x2 = r sinθ

and x j = z j, 3≤ j ≤ n. The quasiconformal mapping

u(r,θ ,z) =

{
(r,πθ/α,z) 0≤ θ ≤ α

(r,π +π
θ−α

2π−α
,z) α < θ < 2π

(1.17)

solves L∞u = 0 away from the set r = 0.

The following theorem establishes a link between the formal PDE (1.16) and the
L∞-variational problem.

Theorem 33 ([16]). If u : Ω → Rn C2 is a quasiconformal solution of L∞u = 0 in
Ω , then

(i) For every D⊂Ω one has supD̄

√
trace(g) = sup∂D

√
trace(g).

(ii) For every D⊂Ω one has infD̄
√

trace(g) = inf∂D
√

trace(g).
(iii) There exists C = C(n) > 0 such that for every C2 domain D ⊂ Ω and w :

D̄→ Rn C2 quasiconformal such that u = w on ∂ D one has supD

√
trace(g(u))≤

C supD

√
trace(g(w))|.
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(iv) If n = 2 the dilation |g| is constant in Ω and if u is affine in a neighborhood
of ∂Ω then u must be an affine transformation throughout Ω .

Sketch of the proof Show that any interior maximum points for |g| propagate
along curves tangent to the span of the rows of S(g) until they reach the boundary.
This is achieved by using the fact that S(g) is either vanishing or has at least rank
higher than two. This is used to construct a non self-intersecting curve of this kind
and showing that (i) its total length must be finite; (ii) the curve cannot vanish in Ω .
Points (i) and (ii) imply then that the curve must reach the boundary. ut

Theorem 34 ([16]). If u : Ω → Rn C2 is a quasiconformal absolute extremal, i.e.
for every D ⊂ Ω and w : D̄→ Rn C2 quasiconformal such that u = w on ∂ D one
has supD

√
trace(g(w))≤ supD

√
trace(g(w)), then L∞u = 0 in Ω .

Sketch of the proof Arguing by contradiction we assume there is a ball B ⊂⊂ Ω

s.t. L∞u 6= 0 in B. We construct a better competitor for the variational problem: i.e.
a C2 quasiconformal diffeomorphism V : B̄→ Rn with same boundary values as u
on ∂B and supB trace g(V ) < supB trace g(u). This is done by perturbing u with a
finite number of ”bumps” that reduce the dilation near the boundary. ut

Remark 15. A similar result was proved much earlier by Barron, Jensen and Wang
in their important work [11] with a different, less constructive proof. The advantage
of the approach in [16] is that it provides a competitor which is also quasiconformal.

Remark 16. Recently in [46], Katzourakis applied the refined derivation technique
we described earlier to the quasiconformal setting and obtained the formal extended
system:

duakJkidublJl j∂klub + |du|2[πN(duJ)]abJi j∂i jub = 0

where J = g−1S(g) and g = duT du. The equation is composed of two linearly in-
dependent parts. The first, in the case of diffeomorphisms between domains of Rn

coincides with the system we have described earlier. The second component is new
but it is not yet clear how it relates to the variational problem. The paper [46] also
provides a necessary and sufficient condition for C2 mappings to satisfy this system.

1.8.1 A gradient flow approach

Let Ω ⊂ Rn is a bounded, C2,α smooth, open set. Currently we do not know how to
prove existence of solutions of (1.16) or how to attack the extremal problems for a
fixed homotopy class of quasiconformal mappings. A possible strategy for a proof
consists in finding solutions of a gradient flow up(x, t) for the functional Fp(u,Ω)
defined in (1.15). The long term existence and suitable estimates (independent of p
as p→ ∞) for such flow then would yield the existence of the asymptotic mapping
wp(x) = limt→∞ up(x, t) which would be a candidate for the Lp minimization prob-
lem within the homotopy class of the initial data. The solution to the L∞ problem
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then could be achieved by establishing estimates on wp independent of p and letting
p→ ∞.

For a fixed diffeomorphism u0 : Ω → Rn, we want to study diffeomorphism so-
lutions u(x, t) of the initial value problem{

∂tu =−Lpu in Ω × (0,T ).
u = u0 at Ω ×{t = 0} (1.18)

where we recall that

(Lpu)i = np∂ j

(
|g|

np−2
2 du−1,T S(g)

)
i j
, for i, j = 1, ...,n

If there is a T > 0 such that a solution u ∈C2(Ω × (0,T )) exists with detdu > 0 in
Ω × (0,T ), then

d
dt

Fp(u,Ω) =−
(

1
|Ω |

∫
Ω

|Lpu|2dx
)
≤ 0,

i.e., the p-distortion is nonincreasing along the flow. Hence we obtain

Proposition 5. If u∈C2(Ω× [0,T ),Rn)∩C1(Ω̄× [0,T ),Rn) is a solution of (1.18)
with detdu > 0 in Ω̄ × [0,T ), then for all 0 ≤ t < T , ‖Kup‖

p
Lp(Ω) = ‖Ku‖p

Lp(Ω)−∫ T
0 ‖Lpu(·, t)‖L2(Ω)dt and consequently

‖Ku‖Lp(Ω×{t}) ≤ ‖Ku0‖Lp(Ω). (1.19)

It is immediate to show that the functional Fp(u,Ω) is invariant by conformal
deformation. Therefore, if we let s 7→ Fs : Rn→ Rn be a one-parameter semi-group
of conformal transformations, then solutions to the PDE system

∂tu = Lpu+
d
ds

Fs(u)
∣∣∣∣
s=0

would also satisfy (1.19). Recall that the flow Fs is conformal if

S(dD) =
dD +dDT

2
− 1

n
trace (dD)In = 0

where D = ( d
ds Fs)

∣∣∣∣
s=0
◦F−1

0 = ( d
ds Fs)

∣∣∣∣
s=0

and S denotes the Ahlfors operator. If

n = 2 then this amounts to ∂z̄D = 0. If n≥ 3 there is more rigidity and conformality
requires that

D(x) = a+Bx+2(c · x)x−|x|2c

for any vectors a,c and matrix B with S(B) = 0 (see [58]).
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We observe that in light of conformal invariance, if u(x, t) is a solution of (1.18)
in Ω×(0,T ) and v(x, t) = δu(λx,δ−2t) for some λ ,δ > 0, then v(x, t) is still a solu-
tion with initial data v0(x) = δu0(λx) in an appropriately scaled domain. Applying
inversions in a suitable way will also yield new solutions from u(x, t).

Usual elliptic/parabolic PDE techniques do not apply. The main difficulty con-
sists in the fact that the functional is not convex but only quasi-convex (in the sense
of Morrey). In order to study the gradient flow it helps to rewrite the system in
non-divergence form3.

(Lpu)i = Aik
j`(du)uk

j`.

with

Aik
j`(q)=−p

|q|np−2

(detq)p

[
np(qk`q ji +qi jq`k)−n(np−2)

qi jqk`

|q|2
−|q|2(q`iq jk + pq`kq ji)−nδkiδ j`

]
.

This form of the PDE has a remnant of ellipticity in the form of the so-called
Legendre-Hadamard property: There exists constants C1,C2 > 0 depending respec-
tively only on n and on p and on n such that for a.e. q ∈ Rn×n and for all ξ ,η ∈ Rn

C1(n, p)p|η |2|ξ |2 |q|
np−2

(detq)p ≤ Aik
j`(q)ηiξ

j
ηkξ

`

≤C2(n)p2|η |2|ξ |2
(
|q|np−2

(detq)p +
|q|n(p+2)−2

(detq)p+2

)
Using the latter, Raich and the author established in [16] certain Schauder type

estimates for the gradient flow (i.e. a gain of two derivatives with respect to the
regularity of the right hand side and the coefficients of the PDE). The Schauder
estimates in turn allow to rephrase the system (1.18) as a fixed point problem for a
contraction map, leading to the short time existence and uniqueness result

Definition 18. Let Ω ⊂ Rn be a smooth bounded domain and for T > 0 let Q =
Ω × (0,T ). The parabolic boundary is defined by ∂parQ = (Ω ×{t = 0})∪ (∂Ω ×
(0,T )). The parabolic distance is d((x, t),(y,s)) := max(|x− y|,

√
|t− s|). For α ∈

(0,1) we define the parabolic Hölder class C0,α(Q) := {u ∈C(Q,R)| ‖u‖Cα (Q) :=
[u]α +‖u‖0 < ∞}, where

[u]α := sup
(x,t),(y,s)∈Q and (x,t)6=(y,s)

|u(x, t)−u(y,s)|
d((x, t),(y,s))α

and |u|0 = supQ |u|. For K ∈ N we let CK,α(Q) = {u : Q → R| ∂xi1
· · ·∂xiK

u ∈
C0,α(Q)}.

Proposition 6. Let u0 : Ω →Rn be a C2,α diffeomorphism for some 0 < α < 1 with
detdu0 ≥ ε > 0 in Ω̄ . Assume that Lpu0 = 0 for all x ∈ ∂Ω . There exist constants

3 To do this however one has to assume existence of two derivatives for the solution
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C,T > 0 depending on p,n,Ω ,ε,‖u0‖C1,α (Ω̄), and a sequence of diffeomorphisms
{uh} in C2,α(Q) with Q = Ω × (0,T ) so that

(a) detuh ≥ ε

2 for all (x, t) ∈ Q,
(b) ‖uh‖C2,α (Q) +‖∂tuh‖C0,α (Q) ≤C‖u0‖C2,α (Ω),

(c)

{
∂tuh,i−Aik

jl(duh−1)∂ j∂luh,k = 0 in Q
uh = u0 on ∂parQ.

Theorem 35. If u(x,0) ∈ C2,α+boundary conditions then there exists a unique
C2,α

1 (Ω × (0,T ),Rn) solutions for small T = T (p,n,u0,Ω) > 0.

Although the previous result establishes short time existence, the dependence of
the interval of existence from p remains an obstacle to the study of the asymptotic
limit p→ ∞. In order to carry out the program we outlined earlier, one would need
a global existence result, as well as estimates independent of p as p→∞. Currently
there is very little literature about gradient flows of quasi-convex functionals but a
an important paper of Evans-Gangbo-Savin [21] lays out a strategy to obtain global
estimates: Following [21], Raich and the author in [16] let β = det du−1 then show
that β solves the scalar PDE

∂tβ = [ai j(du)β ]i j

with

ai j = p
(

δi j−n
du jkduik

|du|2

)√
|g|

np
.

Although the lack of a sign in the symbol prevents us from using the maximum
principle and establishing immediate global bounds, this PDE is a starting point for
the study of global estimates.
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