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Abstract 

 The goal of this project was to design a program that would be able to solve a given set 

of quadratic equations with binary coefficients that would effectively reduce the complexity 

required to solve the system normally. To achieve this, the system was converted into a matrix, 

which was then simplified by using a modified version of Gaussian elimination in order to find 

partial solutions that were then combined into a full solution once tested across the entire 

system. To verify the calculated solutions, an exhaustive search was also completed to ensure 

validity. The code for both the modified Gaussian (the recursive method) and the exhaustive 

method can be seen in the Appendix. 
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Background 

The aim of this project was to develop a program that could be used to efficiently solve binary 

quadratic systems on low resource hardware. To achieve this, the given system would first be 

converted into a matrix that would allow the program to use linear algebra to compute the 

solutions. Ordinarily, when using linear algebra to solve a system of equations, there can either 

be no solutions, one solution, or an infinite number of solutions. In the case of a binary system, 

where the values are either 0 or 1, the infinite number of solutions that could have resulted are 

brought down to 2𝑛 possible solutions, where n represents the number of variables in the 

system. For this project, while a quadratic system is being used, it varies very slightly than a 

linear system when solving. As previously mentioned, in a binary system, the only applicable 

values are 0 and 1. Due to this, anything multiplied by 0 is 0, and anything multiplied by 1 is 

itself, which simulates a more linear system. However, when looking at the case of 2𝑛 possible 

solutions, the n here now represents the n linear variables present in the system, none of the 

quadratic. 

 To achieve this goal, a modified version of Gaussian elimination and an exhaustive 

search will be used. As written about in a paper by Wen Wang, and implemented by Liam 

Stearns and Carlton Mugo, to solve a large system converted into a matrix, one should break the 

matrix into smaller segments and solve for the segments produced individually. Due to the 

limitations of Gaussian elimination, which can result in numbers beyond just 0 and 1, the 

exhaustive search is used in conjunction to help verify the solutions as they are found. While 

this does work with linear systems, in a quadratic system, more adjustments must be made. 
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Linear Solving Improvements 

While reviewing the solving process for the linear equation system, it was seen that 

having more subsections, or smaller pieces to find partial solutions for would ultimately help 

reduce the complexity of the system as a whole. Ordinarily, the system would have  2𝑛 potential 

solutions, where n is equal to the number of variables featured in the system. However, by 

reducing the system into subcategories, the complexity of the system would decrease as the 

pieces increased. As an example, in a system with eight variables, the number of possible 

solutions available is 256.  If the system could be broken up into four different groups, the 

number of possible solutions is now 2𝑛−𝑠, where s is equivalent to the number of groups. This 

results in 16 possible solutions, which is drastically better than the initial amount. 

Additionally, circumstances where equations were exact except for a few variables after 

the recursive sorting was done were also observed. To explore this relationship, the team used 

two equations, with equation 1 being written as 0101 0110 = 1, and equation 2 as 0100 0110 = 

0. To establish a relationship between possible solutions and a case like this, a table was created 

to compare the coefficients and the potential solutions to the answers provided in the original 

equation. For a difference in one variable, the following rules were established below. In the 

table below, the Rest category defines what the solution adds to using bitwise addition with the 

exception of the variable in question. The coefficients and right-hand side categories refer to 

what the variable in question is and what their associated answer is. The solution category 

states whether a solution exists or not, and the possible solution section states what the 

variable in question must be masked with in order for the solution, in conjunction with the rest 

of the solution, to exist in the problem.  
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Rest Coefficients  
(E1 & E2) 

Right Hand Side  
(E1 & E2) 

Solution Possible 
Solution 

0 00 00 Yes 0 

0 01 00 No N/A 

0 10 00 No N/A 

0 11 00 No N/A 

0 00 01 No N/A 

0 01 01 Yes 0 

0 10 01 No N/A 

0 11 01 No N/A 

0 00 10 No N/A 

0 01 10 No N/A 

0 10 10 Yes 1 

0 11 10 No N/A 

0 00 11 No N/A 

0 01 11 No N/A 

0 10 11 No N/A 

0 11 11 Yes 1 

1 00 00 No N/A 

1 00 01 Yes 1 

1 00 10 Yes 0 

1 00 11 Yes 0 

1 01 00 Yes 1 

1 01 01 No N/A 

1 01 10 Yes 0 

1 01 11 Yes 0 

1 10 00 Yes 1 

1 10 01 Yes 1 

1 10 10 No N/A 

1 10 11 Yes 0 

1 11 00 Yes 1 

1 11 01 Yes 1 

1 11 10 Yes 0 

1 11 11 No N/A 

Figure 1: Rules for Two Equations with One Differing Variable   

These rules help simplify the solution finding process even more. By finding what the variable 

must be in the solution, the team is able to remove it fully from the equation by making proper 

adjustments through adding the variable to the right-hand side. The removal of this variable 
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helps shrink the complexity of the search, making what was originally 28 possible solutions now 

27 possible solutions. 

To refine this process even further, the team additionally tested this theory with two 

differing coefficients. Like the trials above, the same equations were utilized, however one 

coefficient was changed so that the two different coefficient case could be tested.  This meant 

using equation 1 as 0101 0110 = 1 and equation 2 as 0100 0110 = 0 (for example, equation 1 

would be listed as 0101 1110 = 1, and equation 2 as 0100 0110 = 0). In addition to this, the team 

also tested these conditions under a variety of factors, such as differing variables and differing 

right hand sides, or the same coefficients and same right-hand sides. This was more complex 

than the one differing coefficient but led to more cohesive discoveries found below. In the 

following tables, the blue font stands for the original equations, green are the coefficients in 

question, and red is for the solution coefficients that are being changed. For a solution to be 

viable, it must work for both equations. This is signified by having two 1s in the RHS column. The 

first 1/0 signifies equation 1 and the second 1/0 signifies equation 2. If a solution works, it will 

be highlighted in green. Below is the first case, where the coefficients for each equation were 

the same, but the right-hand sides were different. 
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 A1 A2 A3 A4 A5 A6 A7 A8 RHS 

E1 0 1 0 1 1 1 1 0 1 

E2 0 1 0 0 0 1 1 0 0 

 A1 A2 A3 A4 A5 A6 A7 A8 E1|E2 

 
 
 
 

Solutions 

1 1 1 0 0 1 1 1 Y|N 

1 1 1 0 1 1 1 1 N N 

1 1 1 1 0 1 1 1 N N 

1 1 1 1 1 1 1 1 Y N 

1 0 1 0 0 1 1 1 N Y 

1 0 1 0 1 1 1 1 Y Y 

1 0 1 1 0 1 1 1 Y Y 

1 0 1 1 1 1 1 1 N Y 

Figure 2: Possible Solutions for Equations with Same Coefficients but Different Right-Hand Sides 

As seen above, for this case, a solution is only present when the rest of the solution is 

equivalent to 0, and the coefficients (the ones in red) are either 01 or 10. Using this method, the 

team observed other cases featured in the table below. 

Case # Coefficients E1 = RHS Coefficients E2 =RHS Rest Solutions 

1 11 = 1 00 = 0 0 01, 10 

2 11 = 1 00 = 1 1 00, 11 

3 11 = 0 00 = 1 1 01, 10 

4 11 = 0 00 = 0 0 00, 11 

5 
 

10 = 1 01 = 0 1 01 

0 10 

6 10 = 1 01 = 1 1 00 

0 11 

7 10 =0 01 = 1 1 10 

0 01 

8 10 = 0 01 = 0 1 11 

0 00 

9 00 = 1 11 = 0 1 01, 10 

10 00 = 1 11 = 1 1 00, 11 

11 00 = 0 11 = 1 0 01, 10 

12 00 = 0 11 = 0 0 00, 11 

13 01 = 1 10 = 0 1 10 

0 01 

14 01 = 1 10 = 1 1 00 

0 11 

15 01 = 0 10 = 1 1 01 

0 10 

16 01 = 0 10 = 0 1 11 

0 00 
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Figure 3: Rules for Two Equations with Two Differing Variables   

When reading the chart, the first column shows the case number, the second shows the 

coefficients in the first equation and what the equation equals to, the third column shows the 

coefficients of the second equation in question and that equations right hand side, the fourth 

column shows what the rest of the solution needs to be equal to for it to work, and the final 

column shows what the coefficients in question need to be in order for a solution to be found. 

As an example, when looking at case 1, equation 1 (or E1), would consist of xxx11xxx = 1 and 

equation 2 would be xxx00xxx = 0. For a solution to work in case 1, the rest of the solution must 

be equal to 0 (when you XOR the placeholder x’s in the solution after multiplying it by the 

original coefficients, they must result to 0) and the variables in question can be either 01 or 10. 

By multiplying these variables by the ones in each of the equations in case 1, the solution will 

result in the given right-hand sides (RHS) seen in the original equations, allowing one to store 

these values to be used later in the overall solution. Like the initial observation with the single 

differing variable, solving this allows the team to simplify the equations even further by 

eliminating two variables from the system entirely. 
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Recursive Search Program 

 The recursive search program primarily deals with dividing the system matrix into 

smaller pieces, which in turn decreases the complexity of the system. As completed before by 

Liam Stearns and Carlton Mugo, the recursive search program for this project will also rely on 

first organizing the linear portions of the into a more simplified matrix. In order to do this, the 

linear portion of the matrix is treated as its own separate section. When the separation is 

completed, it is then organized into three different parts, an upper triangle consisting of zeros, 

the independent variables, and the dependent variables. The independent variables here serve 

to separate the zeros from the dependent variables and are the ones that will be solved for 

when deciding the partial solutions. Through this method, it is ideal to isolate the independent 

variables so that the initial equation does not contain dependent variables since the dependent 

variables add to the complexity of the search function. As the function proceeds down the 

different equations, the solved independent variables will become part of the dependent 

variable sets of the subsequent equations. This division can be seen more clearly in Figure 1 

below. 

Figure 4: Matrix Sorted into Independent and Dependent Variables 
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 Like the linear binary system, the quadratic approach organizes the matrix in a similar 

fashion. To start this process, linear weights are assigned to each equation. The weight of each 

equation is determined by the number of ones an equation has in its linear section, excluding 

the right-hand side’s value (referred to as RHS). An equation with a single linear variable will 

have a weight of 1 while an equation with four linear variables will have a weight of 4. Once a 

weight for each equation is determined, the matrix would then be organized in ascending order. 

Here, the smallest weights would be placed at the top of the matrix and the largest weights 

would be placed towards the bottom. This reduces the need for subsets, which were used in the 

linear recursive search algorithm in order to achieve the same result: positioning equations with 

lesser weights and shared variables above heavier ones. Additionally, this allows for the smaller 

groupings of ones to be found earlier on, decreasing the runtime. Once this step is completed, 

the program then focuses on developing the upper triangle of zeros. To do this, the ones in each 

row are pushed as far right as possible to replace the zeros located there. For the initial 

equation, as it only has a single one, this one will be seen in the rightmost position. As the 

program steps down to the next equation, that column would then be ignored in subsequent 

reorganizations until the upper zero triangle is formed. 

 After this linear reorganization is completed, the quadratic variables would then be 

added to the final matrix. Here, these values will not undergo the same organization, but will 

instead be placed in the same order as seen in the linear portion. As an example, if we have the 

linear variables X1, X2, X3, with X3 featured in the rightmost column of the linear matrix, the 

first quadratic section would feature all values including X3 (X3X1 and X3X2 in that order), then 
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X2 quantities (X2X1). There would not be an X1 section as those quantities have already been 

accounted for. 

 Ordinarily, to solve for the partial solutions at this point, one would compare the first 

section of independent variables to the right-hand side. In the quadratic system, while this can 

be done, it fails to incorporate the quadratic variables featured in the system, which can alter 

the validity of the solution. To alleviate this issue, the quadratic recursive function will first start 

by setting the initial linear value to either 0 or 1. While this will extend the runtime of the 

system compared to the previous linear approach, this will help by reducing the complexity of 

the system overall. As mentioned previously, when multiplied by 0 or 1, the resulting value will 

either be 0 or the multiplicand. By doing this, as a partial solution is found, it can then be 

applied to the rest of matrix, drastically reducing it. A variable of 0 would result in its erasure in 

the system, while a variable of 1 would result in the value being multiplied by, turning the 

quadratic value into a linear one which can then be added to the linear section. Verifying the 

partial solutions found will still act the same as the linear code, however. To do so, the solution 

is first masked with the variables in the equation, which then undergo bitwise addition in order 

to gain one value, the right-hand side. After comparing this value to the actual right-hand side of 

the equations, if they both are equal, the partial solution is stored, and the program works on 

the next equation. If a partial solution does fail, the program goes back to the previous equation 

and searches for another valid solution. As the aim of this program is to reduce the complexity 

of the system, the aim of the independent variables is to make sure only one variable is present 

in each group. This means that there are only 21 possible solutions for it, and if both fail, there 

are no valid solutions for the system. 
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Example System 

Below is an example of a set of eleven quadratic equations organized into a matrix 

before being used in the recursive search: 

 X1 X2 X3 X4 X5 X1X2 X1X3 X1X4 X1X5 X2X3 X2X4 X2X5 X3X4 X3X5 X4X5 RHS 

E1 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0 1 

E2 1 1 1 0 0 0 1 0 1 0 0 1 1 0 1 1 

E3 1 1 0 1 0 0 1 1 1 1 1 1 0 1 1 0 

E4 1 0 1 1 1 0 0 1 0 0 0 1 1 1 0 0 

E5 1 1 1 0 1 1 1 0 1 1 1 0 0 0 1 0 

E6 0 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1 

E7 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 1 

E8 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 

E9 1 1 1 0 0 0 1 0 0 1 0 1 0 0 1 0 

E10 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 

E11 1 1 0 1 0 0 1 0 0 0 1 0 1 0 1 0 

Figure 5: Matrix Organization of Quadratic System 

To begin the organization, first only the linear portion of the equations are considered. 

Here, the quadratic portions are removed, and weights are assigned to each equation. 

 X1 X2 X3 X4 X5 RHS Weights 

E1 0 1 1 0 1 1 3 

E2 1 1 1 0 0 1 3 

E3 1 1 0 1 0 0 3 

E4 1 0 1 1 1 0 4 

E5 1 1 1 0 1 0 4 

E6 0 0 1 1 0 1 2 

E7 0 0 0 1 0 1 1 

E8 0 0 0 1 1 0 2 

E9 1 1 1 0 0 0 3 

E10 0 1 0 1 0 1 2 

E11 1 1 0 1 0 0 3 

Figure 6: Linear Matrix with Assigned Weights 

With the weights now determined, the matrix is then reorganized with the lesser 

weights on top and the heavier weights at the bottom. 
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 X1 X2 X3 X4 X5 RHS 

E7 0 0 0 1 0 1 

E8 0 0 0 1 1 0 

E6 0 0 1 1 0 1 

E3 1 1 0 1 0 0 

E10 0 1 0 1 0 1 

E1 0 1 1 0 1 1 

E2 1 1 1 0 0 1 

E9 1 1 1 0 0 0 

E11 1 1 0 1 0 0 

E4 1 0 1 1 1 0 

E5 1 1 1 0 1 0 

Figure 7: Linear Matrix Organized by Weight 

 Now that the matrix has been organized by weight, it can now be reorganized to form 

the upper triangle grouping, independent variable grouping, and dependent variable grouping. 

To do this, starting with the first equation in the matrix, if a 1 is found, the entire column swaps 

places with the first 0. In this system, to begin the process, X5 and X4 will swap positions. When 

looking at the subsequent equations, now that X4 has already been moved to its required spot, 

it will not be considered in future organizations. The result of this can be seen below. For clarity, 

the colors used in Figure 1 will be applied here to better highlight the similarities. They will be 

reverted in future examples. 

 X1 X2 X3 X5 X4 RHS 

E7 0 0 0 0 1 1 

E8 0 0 0 1 1 0 

E6 0 0 1 0 1 1 

E3 1 1 0 0 1 0 

E10 0 1 0 0 1 1 

E1 0 1 1 1 0 1 

E2 1 1 1 0 0 1 

E9 1 1 1 0 0 0 

E11 1 1 0 0 1 0 

E4 1 0 1 1 1 0 

E5 1 1 1 1 0 0 

Figure 8: Linear Matrix After Column Swapping 
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 Now that the linear matrix has been fully organized, the quadratic variables are added 

back to the full matrix to be used for the search process. 

 X2 
Terms 

X3 Terms X5 Terms X4 Terms Linear 

Eq X2X1 X3X1 X3X2 X5X1 X5X2 X5X3 X4X1 X4X2 X4X3 X4X5 X1 X2 X3 X5 X4 RHS 

E7  1     1  1  0 0 0 0 1 1 

E8 1  1        0 0 0 1 1 0 

E6    1  1 1 1 1  0 0 1 0 1 1 

E3  1 1 1 1 1 1 1  1 1 1 0 0 1 0 

E10    1       0 1 0 0 1 1 

E1  1  1   1    0 1 1 1 0 1 

E2  1  1 1    1 1 1 1 1 0 0 1 

E9  1 1  1     1 1 1 1 0 0 0 

E11  1      1 1 1 1 1 0 0 1 0 

E4     1 1 1  1  1 0 1 1 1 0 

E5 1 1 1 1    1  1 1 1 1 1 0 0 

Figure 9: Full Quadratic Matrix to be used in the Recursive Search 

With this done, to begin, the first variable, X4, will be set to 0 in the initial search. Due to 

this, the column can be ignored as anything multiplied by 0 results in 0. The same will be 

applied to all X4 terms. 

 X2 
Terms 

X3 Terms X5 Terms X4 Terms Linear 

      0 0 0 0     0  

Eq X2X1 X3X1 X3X2 X5X1 X5X2 X5X3 X4X1 X4X2 X4X3 X4X5 X1 X2 X3 X5 X4 RHS 

E7  1         0 0 0 0  1 

E8 1  1        0 0 0 1  0 

E6    1  1     0 0 1 0  1 

E3  1 1 1 1 1     1 1 0 0  0 

E10    1       0 1 0 0  1 

E1  1  1       0 1 1 1  1 

E2  1  1 1      1 1 1 0  1 

E9  1 1  1      1 1 1 0  0 

E11  1         1 1 0 0  0 

E4     1 1     1 0 1 1  0 

E5 1 1 1 1       1 1 1 1  0 

Figure 10: Setting X4 Terms to Zero 
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 Now that this step has been completed, the program can now search for the first partial 

solution. As seen in equation 7, or E7, for the right-hand side to be valid, X3X1 must be equal to 

1. This means that both X3 and X1 individually equal 1 and can be accounted for in the potential 

solution. With these values now found, X3 and X1 are set to 1, reducing their quadratic terms to 

linear ones. These linear values are then added to the linear section of the whole matrix, being 

replaced with zeros to signify a change in value (in the linear section, a red value signifies this 

change, the quadratic portion does this with a grey value). This is seen in the following matrix: 

 X2 
Terms 

X3 Terms X5 Terms X4 Terms Linear 

X2 X1 X2 X5  X5 0 0 0 0 1  1  0  

Eq X2X1 X3X1 X3X2 X5X1 X5X2 X5X3 X4X1 X4X2 X4X3 X4X5 X1 X2 X3 X5 X4 RHS 

E7  0         1 0 0 0  1 

E8 0  0        0 0 0 1  0 

E6    0  0     0 0 1 0  1 

E3  0 0 0 1 0     0 0 0 0  0 

E10    0       0 1 0 1  1 

E1  0  0       1 1 1 0  1 

E2  0  0 1      0 1 1 1  1 

E9  0 0  1      0 0 1 0  0 

E11  0         0 1 0 0  0 

E4     1 0     1 0 1 0  0 

E5 0 0 0 0       0 1 1 0  0 

Figure 11: Updated Matrix with X1=X3=1 and X4=0 

 With this completed, the program will now step down to the next equation, Equation 8, 

and find the next partial solution. As seen here, X5 is the only variable in question. For the 

partial solution to work, X5 must equal 0. With this now found, all X5 terms will be set to 0, 

removing them from the matrix entirely. 
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 X2 
Terms 

X3 Terms X5 Terms X4 Terms Linear 

X2 X1 X2 0 0 0 0 0 0 0 1  1 0 0  

Eq X2X1 X3X1 X3X2 X5X1 X5X2 X5X3 X4X1 X4X2 X4X3 X4X5 X1 X2 X3 X5 X4 RHS 

E7  0         1 0 0   1 

E8 0  0        0 0 0   0 

E6           0 0 1   1 

E3  0 0        0 0 0   0 

E10           0 1 0   1 

E1  0         1 1 1   1 

E2  0         0 1 1   1 

E9  0 0        0 0 1   0 

E11  0         0 1 0   0 

E4           1 0 1   0 

E5 0 0 0        0 1 1   0 

Figure 12: Updated Matrix with X1=X3=1 and X4=X5=0 

Now, while the previous values so far have been solved for, the adjustments made to the 

matrix have broken the independent variable grouping that was defined previously. To 

overcome this, the program will just reorganize the rows to replace the required independent 

variable. Since X2 is the only variable required, equation 3 and equation 10 will swap places. 

This could have been done in an early phase of the searching algorithm, but as this only affected 

one variable, in this example was left towards the end. In the code itself, this anomaly will be 

accounted for as it arises. 

 X2 
Terms 

X3 Terms X5 Terms X4 Terms Linear 

X2 X1 X2 0 0 0 0 0 0 0 1  1 0 0  

Eq X2X1 X3X1 X3X2 X5X1 X5X2 X5X3 X4X1 X4X2 X4X3 X4X5 X1 X2 X3 X5 X4 RHS 

E7  0         1 0 0   1 

E8 0  0        0 0 0   0 

E6           0 0 1   1 

E10           0 1 0   1 

E3  0 0        0 0 0   0 

E1  0         1 1 1   1 

E2  0         0 1 1   1 

E9  0 0        0 0 1   0 

E11  0         0 1 0   0 
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E4           1 0 1   0 

E5 0 0 0        0 1 1   0 

Figure 13: Reorganized Matrix to Redefine Independent Variables 

 With this modification made, the program will see that in equation 10, for the right-hand 

side to be valid, X2 must be equal to 1. Now that X2 has been decided, the full solution can be 

tested to verify its validity: X1 = X2 = X3 = 1 and X4 = X5 =0. As X5 and X4 are equal to zero, to 

simplify this test below, only the values for X1, X2, and X3 will be shown. In the full code, every 

value will be used, but in the simplified matrix produced, these values have all be converted to a 

linear representation. To verify the solution, it will be first be masked to the values in the given 

variable slot and added together through bitwise addition. If the answer and RHS are 

equivalent, the solution is valid for that equation. If the two values are not equal, the solution 

fails for the whole system. This can be seen below. 

EQ X1 X2 X3 Ans RHS 

E7 1 0 0 1 1 

E8 0 0 0 0 0 

E6 0 0 1 1 1 

E10 0 1 0 1 1 

E3 0 0 0 0 0 

E1 1 1 1 1 1 

E2 0 1 1 0 1 

E9 0 0 1 1 0 

E11 0 1 0 1 0 

E4 1 0 1 0 0 

E5 0 1 1 1 0 

Figure 14: Testing the Full Solution 

As seen in the figure above, the given solution works for all the equations except for equation 2, 

equation 9, and equation 11. This means that having X4 = 0 as the initial case does not work and 

the program should test the case where X4 = 1. Here, while they are featured as separate cases, 

the program will work on both together as it goes, like the linear recursive method. To begin this 
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case, the program will start by setting all X4 terms to 1 and adding them to their respective 

linear components. In addition to this however, since the X4 linear values are guaranteed, these 

values are added to the right-hand side of the equation to reduce the complexity of the matrix. 

This can be seen below. 

 X2 
Terms 

X3 Terms X5 Terms X4 Terms Linear 

      X1 X2 X3 X5     1 +X4 

Eq X2X1 X3X1 X3X2 X5X1 X5X2 X5X3 X4X1 X4X2 X4X3 X4X5 X1 X2 X3 X5 X4 RHS 

E7  1     0  0  1 0 1 0  0 

E8 1  1        0 0 0 1  1 

E6    1  1 0 0 0  1 1 0 0  0 

E3  1 1 1 1 1 0 0  0 0 0 0 1  1 

E10    1       0 1 0 0  0 

E1  1  1   0    1 1 1 1  1 

E2  1  1 1    0 0 1 1 0 1  1 

E9  1 1  1     0 1 1 1 1  0 

E11  1      0 0 0 1 0 1 1  1 

E4     1 1 0  0  0 0 0 1  1 

E5 1 1 1 1    0  0 1 0 1 0  0 

Figure 15: Updated Initial Matrix Setting X4 =1 

 With the first matrix now organized, the program can now solve for the partial solutions 

like it did in the initial zero case. Starting with equation 7, for the right-hand side to be valid, X1 

and X3 must be equal to 0. With this found, all X1 and X3 values can be excluded from the 

system. 
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 X2 
Terms 

X3 Terms X5 Terms X4 Terms Linear 

X1=0 0 0 X1=0  X3=0 0 X2 0 X5 0  0  1 +X4 

Eq X2X1 X3X1 X3X2 X5X1 X5X2 X5X3 X4X1 X4X2 X4X3 X4X5 X1 X2 X3 X5 X4 RHS 

E7            0  0  0 

E8            0  1  1 

E6        0    1  0  0 

E3     1   0  0  0  1  1 

E10            1  0  0 

E1            1  1  1 

E2     1     0  1  1  1 

E9     1     0  1  1  0 

E11        0  0  0  1  1 

E4     1       0  1  1 

E5        0  0  0  0  0 

Figure 16: Updated Matrix with X1 = X3 =0 and X4 =1 

With the updated matrix, the program will now look at equation 8 to solve for X5. As X5 is now 

the only variable in equation 8, for the right-hand side to be valid, X5 must equal 1. The program 

will now update the matrix again as it did before. 

 X2 
Terms 

X3 Terms X5 Terms X4 Terms Linear 

X1=0 0 0 X1=0 X2 X3=0 0 X2 0 X5 0  0 1 1 +X4 

Eq X2X1 X3X1 X3X2 X5X1 X5X2 X5X3 X4X1 X4X2 X4X3 X4X5 X1 X2 X3 X5 X4 RHS 

E7            0  0  0 

E8            0  1  1 

E6        0    1  0  0 

E3     0   0  0  1  1  1 

E10            1  0  0 

E1            1  1  1 

E2     0     0  0  1  1 

E9     0     0  0  1  0 

E11        0  0  0  1  1 

E4     0       1  1  1 

E5        0  0  0  0  0 

Figure 17: Updated Matrix with X1 = X3 = 0 and X4 = X5 =1 

While this new matrix does not appear to fit the standard independent variable grouping seen 

in previous examples, as it only features X2 and X5, these columns can be brought closer 
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together to better visualize the grouping. Despite this, the matrix allows for the program to find 

the partial solution for X2 through equation 6. Seen here, for the right-hand side to be valid, X2 

must be equal to 0. With this found, the program now has a partial solution with X1 = X2 = X3 = 

0 and X4 = X5 = 1. As the X4 values have already been added to the right-hand side, the 

resulting X5 values can be tested against the partial solution. This will also be done by masking 

the partial solution with the X5 values. This can be seen below. 

Eq X5 Ans RHS 

E7 0 0 0 

E8 1 1 1 

E6 0 0 0 

E3 1 1 1 

E10 0 0 0 

E1 1 1 1 

E2 1 1 1 

E9 1 1 0 

E11 1 1 1 

E4 1 1 1 

E5 0 0 0 

Figure 18: Testing the Full Solution 

 As seen here, the partial solution fails when applied to equation 9, which means this 

system does not have a solution. 
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Recursive Search Program Code 

 The recursive search program code used for the quadratic system is based off of the 

program Liam Stearns and Carlton Mugo completed for a linear problem set with modifications 

to mask and incorporate the nonlinear terms in. To begin the code, classes are made to 

establish the different equations present in the system, an info matrix to store the values of the 

equations in to later be used in simplification and row manipulation, and a linear matrix for the 

purely linear portions of the equations. Both the info matrix and equation classes include 

variables that discern the equation number, variables in the system, and the equations 

respective right-hand side, but the equation class includes an extra parameter, the linear weight 

of the equation, which is used to sort the equations in order of lightest to heaviest in the code. 

The linear matrix class functions like the info matrix class, but as the name implies, only 

considers the linear portions of the given equations. The equation number and right-hand side 

are also included here. 

 The next part of the code is sum matrix, which takes an equation and organizes it based 

on its weight in a temporary matrix. In the code, the sum matrix helps organize the full matrix, 

which represents the entire system, and the linear matrix, which is primarily used to develop 

the upper triangle and independent portions of the matrix that will later be used to solve the 

system. Here, the full matrix is used as a placeholder, as the values will not change until the 

independent variables are found. This only applies to the linear portion of the matrix since the 

quadratic values are untouched, but the matrix is still included to visually ensure that the 

organization step worked properly.  
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 With the matrices now sorted based on weight, the program now starts to organize the 

matrices based on the 1’s and 0’s. The goal of this step is to clearly define the independent 

variables featured in the system that will then be prioritized in the solving mechanism. To do 

this, the code first steps through each cell in the linear matrix starting with the rightmost cell 

and searches for the nearest 1 in the row. If a 1 is found and there is a 0 before it, those 

columns are swapped, and the index variable of the code is increased, highlighting a position 

change. This allows the code in future rows to ignore the already changed columns, preventing 

further alterations. While this step does only change the positions found in the linear matrix, 

the full matrix is changed just by setting the initial columns equal to the linear matrix. Due to 

this, the full quadratic matrix now has the properly organized linear portions featuring the 

upper triangle, independent variables, and dependent variables, without changing the set 

quadratic ones. 

 Due to time restraints however, the code was not able to be finished in terms of the 

solving mechanism. To accomplish this however, a future team should consider making 

functions that will help reduce the matrix by making the initial lone independent variable either 

a 0 or a 1. In this quadratic example, when a variable is set to 0, all associated variables are also 

reduced to 0. This ultimately means that are removed from the matrix as they do not matter to 

the overall system anymore, but this can be done through masking. By checking the zero 

condition first, it allows the team to focus along one branch of the binary at a time, reducing the 

number of checks the code goes through overall. The other function setting the variable to 1 

makes it so all associated variables are set to the multiplicand, turning what used to be 

quadratic variable into linear ones. These can be added to their respective terms, and the initial 
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independent variable can be added to their respective right-hand sides, as the quantity is now 

set. Like the zero case, it now allows for further simplification. This can be achieved through 

masking the variables as the code continues, but these cases should be observed initially. 

 

 

 

 

 

 

 

 

 

 

 

 

 



27 
 

Exhaustive Search Program 

In addition to the recursive search algorithm, an exhaustive search algorithm was 

developed in order to gauge how efficient the alternative program was compared to testing 

every possible binary solution there was. To do this, the exhaustive search program would cycle 

between every solution available, test them against the given system, and store whichever 

solutions were valid. Solutions that failed to work would be discarded. To produce all the 

possible solutions that could be used for the system, a binary counter was utilized. For the 

system used in this program, it contained five linear variables, resulting in 25 possible solutions. 

The binary counter itself used this number to produce the resulting 5-bit numbers, starting with 

0 and ending with 31, in order to test all 32 possible solutions. 

 Like the linear model developed by Liam Stearns and Carlton Mugo, when given a 

possible solution, the code would first mask the variables with the potential solution and then 

add them together using a bitwise or in order to produce a temporary answer. This answer 

would then be set equal to the original right hand side value of the given equation to verify if it 

worked, and if it did, the solution would be stored. The program differs when it is applied to the 

nonlinear portion of the equation, however. Unlike before, these portions require a double 

masking to account for the two variables being used. For example, when looking at 𝑥1𝑥2, when 

masking this value, you must mask it with the solution for x1 and x2 before completing the 

bitwise addition, allowing for full coverage of the system.  
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Results 

 As of now, the effectiveness of the recursive search program is unable to be calculated 

due to the solving mechanism not being completed. This being said, the search program is 

based on the same process used to solve the linear set of equations, which reduces the possible 

number of solutions from  2𝑛 down to 2𝑛/2, which is a significant complexity drop. This is what 

the program for the quadratic system should theoretically result to, especially since it aims at 

converting the quadratic variables it has into as many linear parts as possible. The exhaustive 

search function also remained the same as the one used previously in the linear set. Despite 

completing two different things, the complexity stayed the same at 2𝑛. 

 While significant progress has been achieved, the code can still be improved to reduce 

the complexity even more. Like Liam Stearns and Carlton Mugo, I utilized many hard coded 

values in order to establish the equations and matrices used in the setup portion of the code. It 

would be beneficial if this could be avoided, streamlining the process even further. I also believe 

that the solving mechanism can be improved more by developing cases like in the linear portion 

where one or two variables differ. This would allow for table checks, reducing the complexity 

even further since hard solution values have already been established. An issue that can arise 

from this, however, is the memory that the board in use has. An Artix-7 Basys 3 FPGA, the board 

I utilize, has 32 megabits of non-volatile flash, which could be used up quickly as the complexity 

of the equations increases. While the methods developed for this project aim at reducing this 

already, quadratic equations grow much more rapidly than linear equations do when a single 

variable is added. This should be considered when continuing with the project. 
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Conclusion 

During this project, the goal was to develop a program that would be able to solve 

binary quadratic systems of equations in a way that would effectively reduce the complexity 

required to solve the system out normally. While the code was not finished due to time 

constraints, the team was able to effectively develop a method to do so based on the research 

of Liam Stearns and Carlton Mugo. Through their research, and modifications made during this 

term, the goal of the method is to turn the quadratic portions of the system into linear 

segments, allowing for a reduction in not only the system, but in the complexity of the solution 

as well. Theoretically, this complexity should match the one found by Mugo and Stearns, 2𝑛/2, 

but more work is needed to verify this. I hope the foundation developed during this project can 

be used by future groups in the completion of this program, and even further, as something that 

can be improved upon further.   
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Appendix 

 The code developed and used for this project can be seen below. Everything was coded 

on EDA Playground and can be simulated on the site without the need for an extra program or 

physical device. 

EDA Playground Quadratic Exhaustive Code: https://www.edaplayground.com/x/LGwM  

Incomplete EDA Playground Quadratic Recursive Code: 

https://www.edaplayground.com/x/rEAW  

 

Verilog Exhaustive Search Code 
`timescale 1ns/1ns 

//Create a module which organizes a given matrix to solve a linear system of equations  

//Create a class which keeps track of an equation and any information tied to it 

class equation; 

  int eqnum;//Tells us which equation 

  int x1; 

  int x2; 

  int x3; 

  int x4; 

  int x5; 

  int x1x2; 

  int x1x3; 

  int x1x4; 

  int x1x5; 

  int x2x3; 

  int x2x4; 

  int x2x5; 

https://www.edaplayground.com/x/LGwM
https://www.edaplayground.com/x/rEAW
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  int x3x4; 

  int x3x5; 

  int x4x5; 

  int rhs;//rhs value for equation  

  int linearWeight;//weight of the equation (num of 1's excluding rhs) 

   

   

  //Function within the class to display the sum for a given equation 

  function void weight_display(); 

    $display("\teqnum = %0d, sum = %0d", eqnum, linearWeight); 

  endfunction 

   

endclass 

 

//Create a class which keeps track of a given rows information for the matrix 

//This makes it easier to perform row and column adjustments 

class info_matrix; 

  int eqnum; 

  int c1; 

  int c2; 

  int c3; 

  int c4; 

  int c5; 

  int c12; 

  int c13; 

  int c14; 

  int c15; 

  int c23; 

  int c24; 

  int c25; 

  int c34; 

  int c35; 
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  int c45; 

  int rhs; 

  //int temp; 

   

  //Function used to display a matrix row 

  function void matrix_display(); 

    $display("\tE%0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d | 
%0d | %0d ", eqnum, c45, c35, c34, c25, c24, c23, c15, c14, c13, c12, c5, c4, c3, c2, c1, rhs); 

   // $display("\t---------------------------------------"); 

  endfunction 

endclass 

 

module exhaustive_search; 

  equation sum_matrix[1:11];//an array to sort based on eq weights 

  equation eq; 

  info_matrix full_matrix[1:11];//an array which acts as our matrix (deals with 1 dimension) 

  info_matrix i_matrix; 

  int t_matrix [1:11][1:15];//temp 2d matrix 

  int final_matrix [1:11][1:15]; 

  int t_array [1:11]; //hold temp values 

  int t_value;//holds the value for a given variable for swapping 

  int t_rhs;//holds a temp rhs value when performing row operations 

  int matrix_max; 

  int bin_count; 

  int t_bin_count; 

  int bin_index; 

  int num_operations; 

 

  reg [5:1] binary = 5'd0; 

  reg [5:1] t_binary = 5'd0; 

  reg [5:1] t_solution = 5'd0; 

  int solution_count; 
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  reg eq_rhs1 = 1'b0; 

  reg eq_rhs2 = 1'b0; 

  reg eq_rhs3 = 1'b0; 

  reg eq_rhs4 = 1'b0; 

  reg eq_rhs5 = 1'b0; 

  reg eq_rhs6 = 1'b0; 

  reg eq_rhs7 = 1'b0; 

  reg eq_rhs8 = 1'b0; 

  reg eq_rhs9 = 1'b0; 

  reg eq_rhs10 = 1'b0; 

  reg eq_rhs11 = 1'b0; 

   

  int t_eqnum; 

  int index; 

  int index_array [1:11]; 

  int search_pos; 

  int pos_array [1:15];//keeps track of where variables sit in our matrix 

  int pos_c_array [1:15]; 

  int subset_found;//variable to tell us if a subset for organization has been found 

   

  initial begin 

  //initialize all of our equations   

    eq = new(); 

    eq.eqnum = 1; // 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0 1 

    eq.x1 = 0; 

    eq.x2 = 1; 

    eq.x3 = 1; 

    eq.x4 = 0; 

    eq.x5 = 1; 

    eq.x1x2 = 0; 

    eq.x1x3 = 1; 

    eq.x1x4 = 1; 



35 
 

    eq.x1x5 = 1; 

    eq.x2x3 = 0; 

    eq.x2x4 = 0; 

    eq.x2x5 = 0; 

    eq.x3x4 = 0; 

    eq.x3x5 = 0; 

    eq.x4x5 = 0; 

    eq.rhs = 1; //1 

    eq.linearWeight = 3; 

    sum_matrix[1] = eq; 

     

    eq = new(); 

    eq.eqnum = 2; //1 1 1 0 0 0 1 0 1 0 0 1 1 0 1 1 

    eq.x1 = 1; 

    eq.x2 = 1; 

    eq.x3 = 1; 

    eq.x4 = 0; 

    eq.x5 = 0; 

    eq.x1x2 = 0; 

    eq.x1x3 = 1; 

    eq.x1x4 = 0; 

    eq.x1x5 = 1; 

    eq.x2x3 = 0; 

    eq.x2x4 = 0; 

    eq.x2x5 = 1; 

    eq.x3x4 = 1; 

    eq.x3x5 = 0; 

    eq.x4x5 = 1; 

    eq.rhs = 1; //1 

    eq.linearWeight = 3; 

    sum_matrix[2] = eq; 
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    eq = new(); 

    eq.eqnum = 3; // 1 1 0 1 0 0 1 1 1 1 1 1 0 1 1 0 

    eq.x1 = 1; 

    eq.x2 = 1; 

    eq.x3 = 0; 

    eq.x4 = 1; 

    eq.x5 = 0; 

    eq.x1x2 = 0; 

    eq.x1x3 = 1; 

    eq.x1x4 = 1; 

    eq.x1x5 = 1; 

    eq.x2x3 = 1; 

    eq.x2x4 = 1; 

    eq.x2x5 = 1; 

    eq.x3x4 = 0; 

    eq.x3x5 = 1; 

    eq.x4x5 = 1; 

    eq.rhs = 0; 

    eq.linearWeight = 3; 

    sum_matrix[3] = eq; 

     

    eq = new(); 

    eq.eqnum = 4; // 1 0 1 1 1 0 0 1 0 0 0 1 1 1 0 0 

    eq.x1 = 1; 

    eq.x2 = 0; 

    eq.x3 = 1; 

    eq.x4 = 1; 

    eq.x5 = 1; 

    eq.x1x2 = 0; 

    eq.x1x3 = 0; 

    eq.x1x4 = 1; 

    eq.x1x5 = 0; 
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    eq.x2x3 = 0; 

    eq.x2x4 = 0; 

    eq.x2x5 = 1; 

    eq.x3x4 = 1; 

    eq.x3x5 = 1; 

    eq.x4x5 = 0; 

    eq.rhs = 0; 

    eq.linearWeight = 4; 

    sum_matrix[4] = eq; 

     

    eq = new(); 

    eq.eqnum = 5; // 1 1 1 0 1 1 1 0 1 1 1 0 0 0 1 0 

    eq.x1 = 1; 

    eq.x2 = 1; 

    eq.x3 = 1; 

    eq.x4 = 0; 

    eq.x5 = 1; 

    eq.x1x2 = 1; 

    eq.x1x3 = 1; 

    eq.x1x4 = 0; 

    eq.x1x5 = 1; 

    eq.x2x3 = 1; 

    eq.x2x4 = 1; 

    eq.x2x5 = 0; 

    eq.x3x4 = 0; 

    eq.x3x5 = 0; 

    eq.x4x5 = 1; 

    eq.rhs = 0; 

    eq.linearWeight = 4; 

    sum_matrix[5] = eq; 

     

    eq = new(); 
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    eq.eqnum = 6; // 0 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1 

    eq.x1 = 0; 

    eq.x2 = 0; 

    eq.x3 = 1; 

    eq.x4 = 1; 

    eq.x5 = 0; 

    eq.x1x2 = 0; 

    eq.x1x3 = 0; 

    eq.x1x4 = 1; 

    eq.x1x5 = 1; 

    eq.x2x3 = 0; 

    eq.x2x4 = 1; 

    eq.x2x5 = 0; 

    eq.x3x4 = 1; 

    eq.x3x5 = 1; 

    eq.x4x5 = 0; 

    eq.rhs = 0; 

    eq.linearWeight = 2; 

    sum_matrix[6] = eq; 

     

    eq = new(); 

    eq.eqnum = 7; // 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 1 

    eq.x1 = 0; 

    eq.x2 = 0; 

    eq.x3 = 0; 

    eq.x4 = 1; 

    eq.x5 = 0; 

    eq.x1x2 = 0; 

    eq.x1x3 = 1; 

    eq.x1x4 = 1; 

    eq.x1x5 = 0; 

    eq.x2x3 = 0; 
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    eq.x2x4 = 0; 

    eq.x2x5 = 0; 

    eq.x3x4 = 1; 

    eq.x3x5 = 0; 

    eq.x4x5 = 0; 

    eq.rhs = 1; //1 

    eq.linearWeight = 1; 

    sum_matrix[7] = eq; 

     

    eq = new(); 

    eq.eqnum = 8; // 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 

    eq.x1 = 0; 

    eq.x2 = 0; 

    eq.x3 = 0; 

    eq.x4 = 1; 

    eq.x5 = 1; 

    eq.x1x2 = 1; 

    eq.x1x3 = 0; 

    eq.x1x4 = 0; 

    eq.x1x5 = 0; 

    eq.x2x3 = 1; 

    eq.x2x4 = 0; 

    eq.x2x5 = 0; 

    eq.x3x4 = 0; 

    eq.x3x5 = 0; 

    eq.x4x5 = 0; 

    eq.rhs = 0; 

    eq.linearWeight = 2; 

    sum_matrix[8] = eq; 

     

    eq = new(); 

    eq.eqnum = 9; // 1 1 1 0 0 0 1 0 0 1 0 1 0 0 1 0 



40 
 

    eq.x1 = 1; 

    eq.x2 = 1; 

    eq.x3 = 1; 

    eq.x4 = 0; 

    eq.x5 = 0; 

    eq.x1x2 = 0; 

    eq.x1x3 = 1; 

    eq.x1x4 = 0; 

    eq.x1x5 = 0; 

    eq.x2x3 = 1; 

    eq.x2x4 = 0; 

    eq.x2x5 = 1; 

    eq.x3x4 = 0; 

    eq.x3x5 = 0; 

    eq.x4x5 = 1; 

    eq.rhs = 0; 

    eq.linearWeight = 3; 

    sum_matrix[9] = eq; 

     

    eq = new(); 

    eq.eqnum = 10; // 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 

    eq.x1 = 0; 

    eq.x2 = 1; 

    eq.x3 = 0; 

    eq.x4 = 1; 

    eq.x5 = 0; 

    eq.x1x2 = 0; 

    eq.x1x3 = 0; 

    eq.x1x4 = 0; 

    eq.x1x5 = 1; 

    eq.x2x3 = 0; 

    eq.x2x4 = 0; 
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    eq.x2x5 = 0; 

    eq.x3x4 = 0; 

    eq.x3x5 = 0; 

    eq.x4x5 = 0; 

    eq.rhs = 1; //1 

    eq.linearWeight = 2; 

    sum_matrix[10] = eq; 

     

    eq = new(); 

    eq.eqnum = 11; //1 1 0 1 0 0 1 0 0 0 1 0 1 0 1 0 

    eq.x1 = 1; 

    eq.x2 = 1; 

    eq.x3 = 0; 

    eq.x4 = 1; 

    eq.x5 = 0; 

    eq.x1x2 = 0; 

    eq.x1x3 = 1; 

    eq.x1x4 = 0; 

    eq.x1x5 = 0; 

    eq.x2x3 = 0; 

    eq.x2x4 = 1; 

    eq.x2x5 = 0; 

    eq.x3x4 = 1; 

    eq.x3x5 = 0; 

    eq.x4x5 = 1; 

    eq.rhs = 0; 

    eq.linearWeight = 3; 

    sum_matrix[11] = eq; 

     

    //Assigns values to "cells" of the matrix  

    foreach(sum_matrix[i])begin 

      i_matrix = new(); 
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      i_matrix.eqnum = sum_matrix[i].eqnum; 

      i_matrix.c1 = sum_matrix[i].x1; 

      i_matrix.c2 = sum_matrix[i].x2; 

      i_matrix.c3 = sum_matrix[i].x3; 

      i_matrix.c4 = sum_matrix[i].x4; 

      i_matrix.c5 = sum_matrix[i].x5; 

      i_matrix.c12 = sum_matrix[i].x1x2; 

      i_matrix.c13 = sum_matrix[i].x1x3; 

      i_matrix.c14 = sum_matrix[i].x1x4; 

      i_matrix.c15 = sum_matrix[i].x1x5; 

      i_matrix.c23 = sum_matrix[i].x2x3; 

      i_matrix.c24 = sum_matrix[i].x2x4; 

      i_matrix.c25 = sum_matrix[i].x2x5; 

      i_matrix.c34 = sum_matrix[i].x3x4; 

      i_matrix.c35 = sum_matrix[i].x3x5; 

      i_matrix.c45 = sum_matrix[i].x4x5; 

      i_matrix.rhs = sum_matrix[i].rhs; 

      //fills up our temp 2d array with initial values 

      t_matrix[i][1] = sum_matrix[i].x1; 

      t_matrix[i][2] = sum_matrix[i].x2; 

      t_matrix[i][3] = sum_matrix[i].x3; 

      t_matrix[i][4] = sum_matrix[i].x4; 

      t_matrix[i][5] = sum_matrix[i].x5; 

      t_matrix[i][6] = sum_matrix[i].x1x2; 

      t_matrix[i][7] = sum_matrix[i].x1x3; 

      t_matrix[i][8] = sum_matrix[i].x1x4; 

      t_matrix[i][9] = sum_matrix[i].x1x5; 

      t_matrix[i][10] = sum_matrix[i].x2x3; 

      t_matrix[i][11] = sum_matrix[i].x2x4; 

      t_matrix[i][12] = sum_matrix[i].x2x5; 

      t_matrix[i][13] = sum_matrix[i].x3x4; 

      t_matrix[i][14] = sum_matrix[i].x3x5; 
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      t_matrix[i][15] = sum_matrix[i].x4x5; 

      full_matrix[i] = i_matrix; 

    end 

     

    $display("\t   | x4x5| x3x5| x3x4| x2x5| x2x4| x2x3| x1x5| x1x4| x1x3| x1x2| x5| x4| x3| x2| x1|rhs"); 

     

    foreach(full_matrix[i])begin 

      full_matrix[i].matrix_display(); 

    end    

    $display("=========================================================="); 

    solution_count = 0; 

     

    $display("x5|x4|x3|x2|x1");   

    while(bin_index <= 2**5)begin     

      if(bin_index >= 2**5)begin 

        $display("Number Of Operations = %d", num_operations); 

        break; 

      end    

      binary = bin_index; 

       

      //eq_rhs1 = 
(binary[1]&full_matrix[1].c1)+(binary[2]&full_matrix[1].c2)+(binary[3]&full_matrix[1].c3)+(binary[4]&full_matrix[1]
.c4)+(binary[5]&full_matrix[1].c5)+(binary[6]&full_matrix[1].c6)+(binary[7]&full_matrix[1].c7); 

       

      eq_rhs1 = 
(binary[1]&full_matrix[1].c1)+(binary[2]&full_matrix[1].c2)+(binary[3]&full_matrix[1].c3)+(binary[4]&full_matrix[1]
.c4)+(binary[5]&full_matrix[1].c5)+(binary[1]&binary[2]&full_matrix[1].c12)+(binary[1]&binary[3]&full_matrix[1].c
13)+(binary[1]&binary[4]&full_matrix[1].c14)+(binary[1]&binary[5]&full_matrix[1].c15)+(binary[2]&binary[3]&full_
matrix[1].c23)+(binary[2]&binary[4]&full_matrix[1].c24)+(binary[2]&binary[5]&full_matrix[1].c25)+(binary[3]&bina
ry[4]&full_matrix[1].c34)+(binary[3]&binary[5]&full_matrix[1].c35)+(binary[4]&binary[5]&full_matrix[1].c45); 

       

      eq_rhs2 = 
(binary[1]&full_matrix[2].c1)+(binary[2]&full_matrix[2].c2)+(binary[3]&full_matrix[2].c3)+(binary[4]&full_matrix[2]
.c4)+(binary[5]&full_matrix[2].c5)+(binary[1]&binary[2]&full_matrix[2].c12)+(binary[1]&binary[3]&full_matrix[2].c
13)+(binary[1]&binary[4]&full_matrix[2].c14)+(binary[1]&binary[5]&full_matrix[2].c15)+(binary[2]&binary[3]&full_
matrix[2].c23)+(binary[2]&binary[4]&full_matrix[2].c24)+(binary[2]&binary[5]&full_matrix[2].c25)+(binary[3]&bina
ry[4]&full_matrix[2].c34)+(binary[3]&binary[5]&full_matrix[2].c35)+(binary[4]&binary[5]&full_matrix[2].c45); 
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      eq_rhs3 = 
(binary[1]&full_matrix[3].c1)+(binary[2]&full_matrix[3].c2)+(binary[3]&full_matrix[3].c3)+(binary[4]&full_matrix[3]
.c4)+(binary[5]&full_matrix[3].c5)+(binary[1]&binary[2]&full_matrix[3].c12)+(binary[1]&binary[3]&full_matrix[3].c
13)+(binary[1]&binary[4]&full_matrix[3].c14)+(binary[1]&binary[5]&full_matrix[3].c15)+(binary[2]&binary[3]&full_
matrix[3].c23)+(binary[2]&binary[4]&full_matrix[3].c24)+(binary[2]&binary[5]&full_matrix[3].c25)+(binary[3]&bina
ry[4]&full_matrix[3].c34)+(binary[3]&binary[5]&full_matrix[3].c35)+(binary[4]&binary[5]&full_matrix[3].c45); 

       

      eq_rhs4 = 
(binary[1]&full_matrix[4].c1)+(binary[2]&full_matrix[4].c2)+(binary[3]&full_matrix[4].c3)+(binary[4]&full_matrix[4]
.c4)+(binary[5]&full_matrix[4].c5)+(binary[1]&binary[2]&full_matrix[4].c12)+(binary[1]&binary[3]&full_matrix[4].c
13)+(binary[1]&binary[4]&full_matrix[4].c14)+(binary[1]&binary[5]&full_matrix[4].c15)+(binary[2]&binary[3]&full_
matrix[4].c23)+(binary[2]&binary[4]&full_matrix[4].c24)+(binary[2]&binary[5]&full_matrix[4].c25)+(binary[3]&bina
ry[4]&full_matrix[4].c34)+(binary[3]&binary[5]&full_matrix[4].c35)+(binary[4]&binary[5]&full_matrix[4].c45); 

       

      eq_rhs5 = 
(binary[1]&full_matrix[5].c1)+(binary[2]&full_matrix[5].c2)+(binary[3]&full_matrix[5].c3)+(binary[4]&full_matrix[5]
.c4)+(binary[5]&full_matrix[5].c5)+(binary[1]&binary[2]&full_matrix[5].c12)+(binary[1]&binary[3]&full_matrix[5].c
13)+(binary[1]&binary[4]&full_matrix[5].c14)+(binary[1]&binary[5]&full_matrix[5].c15)+(binary[2]&binary[3]&full_
matrix[5].c23)+(binary[2]&binary[4]&full_matrix[5].c24)+(binary[2]&binary[5]&full_matrix[5].c25)+(binary[3]&bina
ry[4]&full_matrix[5].c34)+(binary[3]&binary[5]&full_matrix[5].c35)+(binary[4]&binary[5]&full_matrix[5].c45); 

       

      eq_rhs6 = 
(binary[1]&full_matrix[6].c1)+(binary[2]&full_matrix[6].c2)+(binary[3]&full_matrix[6].c3)+(binary[4]&full_matrix[6]
.c4)+(binary[5]&full_matrix[6].c5)+(binary[1]&binary[2]&full_matrix[6].c12)+(binary[1]&binary[3]&full_matrix[6].c
13)+(binary[1]&binary[4]&full_matrix[6].c14)+(binary[1]&binary[5]&full_matrix[6].c15)+(binary[2]&binary[3]&full_
matrix[6].c23)+(binary[2]&binary[4]&full_matrix[6].c24)+(binary[2]&binary[5]&full_matrix[6].c25)+(binary[3]&bina
ry[4]&full_matrix[6].c34)+(binary[3]&binary[5]&full_matrix[6].c35)+(binary[4]&binary[5]&full_matrix[6].c45); 

       

      eq_rhs7 = 
(binary[1]&full_matrix[7].c1)+(binary[2]&full_matrix[7].c2)+(binary[3]&full_matrix[7].c3)+(binary[4]&full_matrix[7]
.c4)+(binary[5]&full_matrix[7].c5)+(binary[1]&binary[2]&full_matrix[7].c12)+(binary[1]&binary[3]&full_matrix[7].c
13)+(binary[1]&binary[4]&full_matrix[7].c14)+(binary[1]&binary[5]&full_matrix[7].c15)+(binary[2]&binary[3]&full_
matrix[7].c23)+(binary[2]&binary[4]&full_matrix[7].c24)+(binary[2]&binary[5]&full_matrix[7].c25)+(binary[3]&bina
ry[4]&full_matrix[7].c34)+(binary[3]&binary[5]&full_matrix[7].c35)+(binary[4]&binary[5]&full_matrix[7].c45); 

       

      eq_rhs8 = 
(binary[1]&full_matrix[8].c1)+(binary[2]&full_matrix[8].c2)+(binary[3]&full_matrix[8].c3)+(binary[4]&full_matrix[8]
.c4)+(binary[5]&full_matrix[8].c5)+(binary[1]&binary[2]&full_matrix[8].c12)+(binary[1]&binary[3]&full_matrix[8].c
13)+(binary[1]&binary[4]&full_matrix[8].c14)+(binary[1]&binary[5]&full_matrix[8].c15)+(binary[2]&binary[3]&full_
matrix[8].c23)+(binary[2]&binary[4]&full_matrix[8].c24)+(binary[2]&binary[5]&full_matrix[8].c25)+(binary[3]&bina
ry[4]&full_matrix[8].c34)+(binary[3]&binary[5]&full_matrix[8].c35)+(binary[4]&binary[5]&full_matrix[8].c45); 
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      eq_rhs9 = 
(binary[1]&full_matrix[9].c1)+(binary[2]&full_matrix[9].c2)+(binary[3]&full_matrix[9].c3)+(binary[4]&full_matrix[9]
.c4)+(binary[5]&full_matrix[9].c5)+(binary[1]&binary[2]&full_matrix[9].c12)+(binary[1]&binary[3]&full_matrix[9].c
13)+(binary[1]&binary[4]&full_matrix[9].c14)+(binary[1]&binary[5]&full_matrix[9].c15)+(binary[2]&binary[3]&full_
matrix[9].c23)+(binary[2]&binary[4]&full_matrix[9].c24)+(binary[2]&binary[5]&full_matrix[9].c25)+(binary[3]&bina
ry[4]&full_matrix[9].c34)+(binary[3]&binary[5]&full_matrix[9].c35)+(binary[4]&binary[5]&full_matrix[9].c45); 

       

      eq_rhs10 = 
(binary[1]&full_matrix[10].c1)+(binary[2]&full_matrix[10].c2)+(binary[3]&full_matrix[10].c3)+(binary[4]&full_matri
x[10].c4)+(binary[5]&full_matrix[10].c5)+(binary[1]&binary[2]&full_matrix[10].c12)+(binary[1]&binary[3]&full_mat
rix[10].c13)+(binary[1]&binary[4]&full_matrix[10].c14)+(binary[1]&binary[5]&full_matrix[10].c15)+(binary[2]&bina
ry[3]&full_matrix[10].c23)+(binary[2]&binary[4]&full_matrix[10].c24)+(binary[2]&binary[5]&full_matrix[10].c25)+(
binary[3]&binary[4]&full_matrix[10].c34)+(binary[3]&binary[5]&full_matrix[10].c35)+(binary[4]&binary[5]&full_m
atrix[10].c45); 

       

      eq_rhs11 = 
(binary[1]&full_matrix[11].c1)+(binary[2]&full_matrix[11].c2)+(binary[3]&full_matrix[11].c3)+(binary[4]&full_matri
x[11].c4)+(binary[5]&full_matrix[11].c5)+((binary[1]&binary[2])&full_matrix[11].c12)+((binary[1] & 
binary[3])&full_matrix[11].c13)+((binary[1]&binary[4])&full_matrix[11].c14)+((binary[1] & 
binary[5])&full_matrix[11].c15)+((binary[2]&binary[3])&full_matrix[11].c23)+((binary[2] & 
binary[4])&full_matrix[11].c24)+((binary[2]&binary[5])&full_matrix[11].c25)+((binary[3] & 
binary[4])&full_matrix[11].c34)+((binary[3]&binary[5])&full_matrix[11].c35)+((binary[4] & 
binary[5])&full_matrix[11].c45); 

       

      num_operations++; 

       

      if(((eq_rhs1 == full_matrix[1].rhs) && (eq_rhs2 == full_matrix[2].rhs) && (eq_rhs3 == full_matrix[3].rhs) && 
(eq_rhs4 == full_matrix[4].rhs) && (eq_rhs5 == full_matrix[5].rhs) && (eq_rhs6 == full_matrix[6].rhs) && (eq_rhs7 
== full_matrix[7].rhs) && (eq_rhs8 == full_matrix[8].rhs) && (eq_rhs9 == full_matrix[9].rhs) && (eq_rhs10 == 
full_matrix[10].rhs) && (eq_rhs11 == full_matrix[11].rhs)) == 1) 

         

        begin 

        $display("Sol =  %b  %b  %b  %b  %b", binary[5], binary[4], binary[3],binary[2], binary[1]); 

      end 

     //$display("Solution = %b", binary); 

      bin_index++; 

    end  

  end 

endmodule 
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Verilog Code for Recursive Search Function 
`timescale 1ns/1ns 

 

//Create a class which keeps track of an equation and any information tied to it 

class equation; 

  int eqnum;//Tells us which equation 

  //int x0;//values for x0-x7 

  int x1; 

  int x2; 

  int x3; 

  int x4; 

  int x5; 

  int x1x2; 

  int x1x3; 

  int x1x4; 

  int x1x5; 

  int x2x3; 

  int x2x4; 

  int x2x5; 

  int x3x4; 

  int x3x5; 

  int x4x5; 

  int rhs;//rhs value for equation  

  int linearWeight;//weight of the linear portion of equation (num of 1's excluding rhs) 

   

   

  //Function within the class to display the sum for a given equation 

  function void weight_display(); 

    $display("\teqnum = %0d, sum = %0d", eqnum, linearWeight); 

  endfunction 

   

endclass 
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//Create a class which keeps track of a given rows information for the matrix 

//This makes it easier to perform row and column adjustments 

class info_matrix; 

  int eqnum; 

  int c1; 

  int c2; 

  int c3; 

  int c4; 

  int c5; 

  int c12; 

  int c13; 

  int c14; 

  int c15; 

  int c23; 

  int c24; 

  int c25; 

  int c34; 

  int c35; 

  int c45; 

  int rhs; 

   

   

  //Function used to display a matrix row 

  function void matrix_display(); 

    $display("\tE%0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d | 
%0d | %0d ", eqnum, c45, c35, c34, c25, c24, c23, c15, c14, c13, c12, c5, c4, c3, c2, c1, rhs); 

   // $display("\t---------------------------------------"); 

  endfunction 

     

   

endclass 
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//Class used to organize matrix based on linear portions only 

  class linear_matrix; 

  int eqnum; 

  int c1; 

  int c2; 

  int c3; 

  int c4; 

  int c5; 

  int rhs; 

   

    //Function used to display a matrix row 

  function void linMatrix_display(); 

    $display("\tE%0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d ", eqnum, c5, c4, c3, c2, c1, rhs); 

   // $display("\t---------------------------------------"); 

  endfunction 

 

  endclass 

 

 

module recursive_solve; 

   

  equation sum_matrix[1:11];//an array to sort based on eq weights 

  equation eq; 

  info_matrix full_matrix[1:11];//an array which acts as our matrix (deals with 1 dimension) 

  linear_matrix linearFull_matrix[1:11]; 

  info_matrix i_matrix; 

  linear_matrix lin_matrix; 

  int t_matrix [1:11][1:15];//Area where temp matrix is stored 

  int l_matrix [1:11][1:5]; //Linear matrix values 

  int final_matrix [1:11][1:15];//Final matrix is used to reference to the matrix before any row operations 

  int t_array [1:11]; //hold temp values 
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  int l_array [1:11]; 

  int l_value; 

  int l_rhs; 

   

  int t_value;//holds the value for a given variable for swapping 

  int t_rhs;//holds a temp rhs value when performing row operations 

  int matrix_max;//Matrix Max is the number of rows - 1 that we are finding partial solutions for 

  int bin_count;//Used when counting in binary 

  int bin_index;//Monitors Search FSM Position (aka which row we are operating on)  

  int num_operations; //Number of times we compare a partial solution against an rhs 

  int num_fullsol; //Number of times a full solution is checked 

  int bin_count_array [11:1];//Used to keep track of partial solutions for each equation 

 

  reg [5:1] binary = 5'd0; 

  reg [5:1] t_binary = 5'd0; 

  reg [5:1] t_solution = 5'd0; 

  reg eq_rhs = 1'b0; 

   

  int t_eqnum;// 

  int index;//Used for checking tracking right most 0 position 

  int index_array [1:11];//stores right most 0 position for each row 

  int pos_array [1:5];//keeps track of where variables sit in our matrix 

   

   

  initial begin 

  //initialize all of our equations   

    eq = new();   // x1 x2 x3 x4 x5 x1x2 x1x3 x1x4 x1x5 x2x3 x2x4 x2x5 x3x4 x3x5 x4x5 rhs 

    eq.eqnum = 1; // 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0 1 

    eq.x1 = 0; 

    eq.x2 = 1; 

    eq.x3 = 1; 
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    eq.x4 = 0; 

    eq.x5 = 1; 

    eq.x1x2 = 0; 

    eq.x1x3 = 1; 

    eq.x1x4 = 1; 

    eq.x1x5 = 1; 

    eq.x2x3 = 0; 

    eq.x2x4 = 0; 

    eq.x2x5 = 0; 

    eq.x3x4 = 0; 

    eq.x3x5 = 0; 

    eq.x4x5 = 0; 

    eq.rhs = 1; //1 

    eq.linearWeight = 3; 

    sum_matrix[1] = eq; 

     

    eq = new(); 

    eq.eqnum = 2; //1 1 1 0 0 0 1 0 1 0 0 1 1 0 1 1 

    eq.x1 = 1; 

    eq.x2 = 1; 

    eq.x3 = 1; 

    eq.x4 = 0; 

    eq.x5 = 0; 

    eq.x1x2 = 0; 

    eq.x1x3 = 1; 

    eq.x1x4 = 0; 

    eq.x1x5 = 1; 

    eq.x2x3 = 0; 

    eq.x2x4 = 0; 

    eq.x2x5 = 1; 

    eq.x3x4 = 1; 

    eq.x3x5 = 0; 
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    eq.x4x5 = 1; 

    eq.rhs = 1; //1 

    eq.linearWeight = 3; 

    sum_matrix[2] = eq; 

     

    eq = new(); 

    eq.eqnum = 3; // 1 1 0 1 0 0 1 1 1 1 1 1 0 1 1 0 

    eq.x1 = 1; 

    eq.x2 = 1; 

    eq.x3 = 0; 

    eq.x4 = 1; 

    eq.x5 = 0; 

    eq.x1x2 = 0; 

    eq.x1x3 = 1; 

    eq.x1x4 = 1; 

    eq.x1x5 = 1; 

    eq.x2x3 = 1; 

    eq.x2x4 = 1; 

    eq.x2x5 = 1; 

    eq.x3x4 = 0; 

    eq.x3x5 = 1; 

    eq.x4x5 = 1; 

    eq.rhs = 0; 

    eq.linearWeight = 3; 

    sum_matrix[3] = eq; 

     

    eq = new(); 

    eq.eqnum = 4; // 1 0 1 1 1 0 0 1 0 0 0 1 1 1 0 0 

    eq.x1 = 1; 

    eq.x2 = 0; 

    eq.x3 = 1; 

    eq.x4 = 1; 



52 
 

    eq.x5 = 1; 

    eq.x1x2 = 0; 

    eq.x1x3 = 0; 

    eq.x1x4 = 1; 

    eq.x1x5 = 0; 

    eq.x2x3 = 0; 

    eq.x2x4 = 0; 

    eq.x2x5 = 1; 

    eq.x3x4 = 1; 

    eq.x3x5 = 1; 

    eq.x4x5 = 0; 

    eq.rhs = 0; 

    eq.linearWeight = 4; 

    sum_matrix[4] = eq; 

     

    eq = new(); 

    eq.eqnum = 5; // 1 1 1 0 1 1 1 0 1 1 1 0 0 0 1 0 

    eq.x1 = 1; 

    eq.x2 = 1; 

    eq.x3 = 1; 

    eq.x4 = 0; 

    eq.x5 = 1; 

    eq.x1x2 = 1; 

    eq.x1x3 = 1; 

    eq.x1x4 = 0; 

    eq.x1x5 = 1; 

    eq.x2x3 = 1; 

    eq.x2x4 = 1; 

    eq.x2x5 = 0; 

    eq.x3x4 = 0; 

    eq.x3x5 = 0; 

    eq.x4x5 = 1; 
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    eq.rhs = 0; 

    eq.linearWeight = 4; 

    sum_matrix[5] = eq; 

     

    eq = new(); 

    eq.eqnum = 6; // 0 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1 

    eq.x1 = 0; 

    eq.x2 = 0; 

    eq.x3 = 1; 

    eq.x4 = 1; 

    eq.x5 = 0; 

    eq.x1x2 = 0; 

    eq.x1x3 = 0; 

    eq.x1x4 = 1; 

    eq.x1x5 = 1; 

    eq.x2x3 = 0; 

    eq.x2x4 = 1; 

    eq.x2x5 = 0; 

    eq.x3x4 = 1; 

    eq.x3x5 = 1; 

    eq.x4x5 = 0; 

    eq.rhs = 1;  

    eq.linearWeight = 2; 

    sum_matrix[6] = eq; 

     

    eq = new(); 

    eq.eqnum = 7; // 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 1 

    eq.x1 = 0; 

    eq.x2 = 0; 

    eq.x3 = 0; 

    eq.x4 = 1; 

    eq.x5 = 0; 
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    eq.x1x2 = 0; 

    eq.x1x3 = 1; 

    eq.x1x4 = 1; 

    eq.x1x5 = 0; 

    eq.x2x3 = 0; 

    eq.x2x4 = 0; 

    eq.x2x5 = 0; 

    eq.x3x4 = 1; 

    eq.x3x5 = 0; 

    eq.x4x5 = 0; 

    eq.rhs = 1; //1 

    eq.linearWeight = 1; 

    sum_matrix[7] = eq; 

     

    eq = new(); 

    eq.eqnum = 8; // 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 

    eq.x1 = 0; 

    eq.x2 = 0; 

    eq.x3 = 0; 

    eq.x4 = 1; 

    eq.x5 = 1; 

    eq.x1x2 = 1; 

    eq.x1x3 = 0; 

    eq.x1x4 = 0; 

    eq.x1x5 = 0; 

    eq.x2x3 = 1; 

    eq.x2x4 = 0; 

    eq.x2x5 = 0; 

    eq.x3x4 = 0; 

    eq.x3x5 = 0; 

    eq.x4x5 = 0; 

    eq.rhs = 0; 
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    eq.linearWeight = 2; 

    sum_matrix[8] = eq; 

     

    eq = new(); 

    eq.eqnum = 9; // 1 1 1 0 0 0 1 0 0 1 0 1 0 0 1 0 

    eq.x1 = 1; 

    eq.x2 = 1; 

    eq.x3 = 1; 

    eq.x4 = 0; 

    eq.x5 = 0; 

    eq.x1x2 = 0; 

    eq.x1x3 = 1; 

    eq.x1x4 = 0; 

    eq.x1x5 = 0; 

    eq.x2x3 = 1; 

    eq.x2x4 = 0; 

    eq.x2x5 = 1; 

    eq.x3x4 = 0; 

    eq.x3x5 = 0; 

    eq.x4x5 = 1; 

    eq.rhs = 0; 

    eq.linearWeight = 3; 

    sum_matrix[9] = eq; 

     

    eq = new(); 

    eq.eqnum = 10; // 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 

    eq.x1 = 0; 

    eq.x2 = 1; 

    eq.x3 = 0; 

    eq.x4 = 1; 

    eq.x5 = 0; 

    eq.x1x2 = 0; 
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    eq.x1x3 = 0; 

    eq.x1x4 = 0; 

    eq.x1x5 = 1; 

    eq.x2x3 = 0; 

    eq.x2x4 = 0; 

    eq.x2x5 = 0; 

    eq.x3x4 = 0; 

    eq.x3x5 = 0; 

    eq.x4x5 = 0; 

    eq.rhs = 1; //1 

    eq.linearWeight = 2; 

    sum_matrix[10] = eq; 

     

    eq = new(); 

    eq.eqnum = 11; //1 1 0 1 0 0 1 0 0 0 1 0 1 0 1 0 

    eq.x1 = 1; 

    eq.x2 = 1; 

    eq.x3 = 0; 

    eq.x4 = 1; 

    eq.x5 = 0; 

    eq.x1x2 = 0; 

    eq.x1x3 = 1; 

    eq.x1x4 = 0; 

    eq.x1x5 = 0; 

    eq.x2x3 = 0; 

    eq.x2x4 = 1; 

    eq.x2x5 = 0; 

    eq.x3x4 = 1; 

    eq.x3x5 = 0; 

    eq.x4x5 = 1; 

    eq.rhs = 0; 

    eq.linearWeight = 3; 
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    sum_matrix[11] = eq; 

     

    //Sorts the equations with the heaviest equations at the top 

    sum_matrix.sort with (item.linearWeight); 

     

    //Assigns values to "cells" of the matrix  

    foreach(sum_matrix[i])begin 

      i_matrix = new(); 

      i_matrix.eqnum = sum_matrix[i].eqnum; 

       

      i_matrix.c1 = sum_matrix[i].x1; 

      i_matrix.c2 = sum_matrix[i].x2; 

      i_matrix.c3 = sum_matrix[i].x3; 

      i_matrix.c4 = sum_matrix[i].x4; 

      i_matrix.c5 = sum_matrix[i].x5; 

      i_matrix.c12 = sum_matrix[i].x1x2; 

      i_matrix.c13 = sum_matrix[i].x1x3; 

      i_matrix.c14 = sum_matrix[i].x1x4; 

      i_matrix.c15 = sum_matrix[i].x1x5; 

      i_matrix.c23 = sum_matrix[i].x2x3; 

      i_matrix.c24 = sum_matrix[i].x2x4; 

      i_matrix.c25 = sum_matrix[i].x2x5; 

      i_matrix.c34 = sum_matrix[i].x3x4; 

      i_matrix.c35 = sum_matrix[i].x3x5; 

      i_matrix.c45 = sum_matrix[i].x4x5; 

      i_matrix.rhs = sum_matrix[i].rhs; 

      //fills up our temp 2d array with initial values 

       

      t_matrix[i][1] = sum_matrix[i].x1; 

      t_matrix[i][2] = sum_matrix[i].x2; 

      t_matrix[i][3] = sum_matrix[i].x3; 

      t_matrix[i][4] = sum_matrix[i].x4; 
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      t_matrix[i][5] = sum_matrix[i].x5; 

      t_matrix[i][6] = sum_matrix[i].x1x2; 

      t_matrix[i][7] = sum_matrix[i].x1x3; 

      t_matrix[i][8] = sum_matrix[i].x1x4; 

      t_matrix[i][9] = sum_matrix[i].x1x5; 

      t_matrix[i][10] = sum_matrix[i].x2x3; 

      t_matrix[i][11] = sum_matrix[i].x2x4; 

      t_matrix[i][12] = sum_matrix[i].x2x5; 

      t_matrix[i][13] = sum_matrix[i].x3x4; 

      t_matrix[i][14] = sum_matrix[i].x3x5; 

      t_matrix[i][15] = sum_matrix[i].x4x5; 

      full_matrix[i] = i_matrix; 

       

      lin_matrix = new(); 

      lin_matrix.eqnum = sum_matrix[i].eqnum; 

      lin_matrix.c1 = sum_matrix[i].x1; 

      lin_matrix.c2 = sum_matrix[i].x2; 

      lin_matrix.c3 = sum_matrix[i].x3; 

      lin_matrix.c4 = sum_matrix[i].x4; 

      lin_matrix.c5 = sum_matrix[i].x5; 

      lin_matrix.rhs = sum_matrix[i].rhs; 

       

      l_matrix[i][1] = sum_matrix[i].x1; 

      l_matrix[i][2] = sum_matrix[i].x2; 

      l_matrix[i][3] = sum_matrix[i].x3; 

      l_matrix[i][4] = sum_matrix[i].x4; 

      l_matrix[i][5] = sum_matrix[i].x5; 

       

      linearFull_matrix[i] = lin_matrix; 

    end 

     

    foreach(full_matrix[i])begin 
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      full_matrix[i].c1 = t_matrix[i][1]; 

      full_matrix[i].c2 = t_matrix[i][2]; 

      full_matrix[i].c3 = t_matrix[i][3]; 

      full_matrix[i].c4 = t_matrix[i][4]; 

      full_matrix[i].c5 = t_matrix[i][5]; 

      full_matrix[i].c12 = t_matrix[i][6]; 

      full_matrix[i].c13 = t_matrix[i][7]; 

      full_matrix[i].c14 = t_matrix[i][8]; 

      full_matrix[i].c15 = t_matrix[i][9]; 

      full_matrix[i].c23 = t_matrix[i][10]; 

      full_matrix[i].c24 = t_matrix[i][11]; 

      full_matrix[i].c25 = t_matrix[i][12]; 

      full_matrix[i].c34 = t_matrix[i][13]; 

      full_matrix[i].c35 = t_matrix[i][14]; 

      full_matrix[i].c45 = t_matrix[i][15]; 

    end 

     

    $display("\t   | x4x5| x3x5| x3x4| x2x5| x2x4| x2x3| x1x5| x1x4| x1x3| x1x2| x5| x4| x3| x2| x1| rhs"); 

    foreach(full_matrix[i])begin 

      full_matrix[i].matrix_display(); 

   

    end  

    $display("=================================================="); 

     

    //Copy Matrix Values to Final Matrix for future referencing 

    for(int i = 1; i <= 11; i++) begin 

      for(int j = 1; j <= 5; j++) begin //15 

        final_matrix[i][j] = l_matrix[i][j]; //t_matrix 

      end 

    end 

     

    //stores info as of what variable is in what column 
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    foreach(pos_array[i])begin 

      pos_array[i] = i; 

    end 

     

    foreach(linearFull_matrix[i])begin 

      linearFull_matrix[i].c1 = l_matrix[i][1]; 

      linearFull_matrix[i].c2 = l_matrix[i][2]; 

      linearFull_matrix[i].c3 = l_matrix[i][3]; 

      linearFull_matrix[i].c4 = l_matrix[i][4]; 

      linearFull_matrix[i].c5 = l_matrix[i][5]; 

    end 

     

     

     

    /*$display("\t   | x4x5| x3x5| x3x4| x2x5| x2x4| x2x3| x1x5| x1x4| x1x3| x1x2| x5| x4| x3| x2| x1| rhs"); 

    //$display("\t---------------------------------------"); 

    foreach(full_matrix[i])begin 

      full_matrix[i].matrix_display(); 

   

    end    */ 

  

    $display("\t   | x5| x4| x3| x2| x1| rhs"); 

    //$display("\t---------------------------------------"); 

    foreach(linearFull_matrix[i])begin 

      linearFull_matrix[i].linMatrix_display(); 

   

    end  

    $display("=================================================="); 

     

   

    //Placing ones on right hand side of matrix (Should only focus on linear portion for now) 
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  index = 1; //we want to maintain the index throughout the rows, so we only set it to 0 beforehand 

   //here max num j == 5 

    foreach(linearFull_matrix[j])begin 

      foreach(l_matrix[j][i])begin //for each cell in the matrix 

        if(i>=index)begin//as long as i is beyond the index position (rightmost 0 pos) 

          if(l_matrix[j][i] == 1)begin//if we find a 1, we swap the entire column of the rightmost 0 and the current 1 
column 

           

            l_array[j] = l_matrix[j][index];  

            l_array[j+1] = l_matrix[j+1][index];  

            l_array[j+2] = l_matrix[j+2][index];  

            l_array[j+3] = l_matrix[j+3][index];  

            l_array[j+4] = l_matrix[j+4][index];  

           

            l_value = pos_array[index];  

           

            l_matrix[j][index] = l_matrix[j][i];  

            l_matrix[j+1][index] = l_matrix[j+1][i];  

            l_matrix[j+2][index] = l_matrix[j+2][i];  

            l_matrix[j+3][index] = l_matrix[j+3][i];  

            l_matrix[j+4][index] = l_matrix[j+4][i];  

           

            pos_array[index] = pos_array[i];  

           

            l_matrix[j][i] = l_array[j];  

            l_matrix[j+1][i] = l_array[j+1];  

            l_matrix[j+2][i] = l_array[j+2];  

            l_matrix[j+3][i] = l_array[j+3];  

            l_matrix[j+4][i] = l_array[j+4];  

           

            pos_array[i] = l_value;//updates the reference for which variables are in which column 

          // $display("row = %0d ,index = %0d, i = %0d", j,index, i); 
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          index++; 

        end 

        end 

                    

      end 

      index_array[j] = index; 

      //$display("index = %0d", index_array[j]); 

    end 

 

   // foreach(pos_array[i])begin 

     // $display("pos %0d = x%0d", i, pos_array[i]); 

    // end 

 

     

    //Updates the new matrix column positons ie [i][[pos_array[0]] after grouping 1s 

    foreach(linearFull_matrix[i])begin 

      //full_matrix[i].c0 = final_matrix[i][pos_array[0]]; 

      linearFull_matrix[i].c1 = final_matrix[i][pos_array[1]]; 

      linearFull_matrix[i].c2 = final_matrix[i][pos_array[2]]; 

      linearFull_matrix[i].c3 = final_matrix[i][pos_array[3]]; 

      linearFull_matrix[i].c4 = final_matrix[i][pos_array[4]]; 

      linearFull_matrix[i].c5 = final_matrix[i][pos_array[5]]; 

    end 

     

    $display("\t   | x%0d| x%0d| x%0d| x%0d| x%0d|rhs", pos_array[5], pos_array[4], pos_array[3], pos_array[2], 
pos_array[1]); 

     

    linearFull_matrix[1].linMatrix_display(); 

    linearFull_matrix[2].linMatrix_display(); 

    linearFull_matrix[3].linMatrix_display(); 

    linearFull_matrix[4].linMatrix_display(); 

    linearFull_matrix[5].linMatrix_display(); 
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    linearFull_matrix[6].linMatrix_display(); 

    linearFull_matrix[7].linMatrix_display(); 

    linearFull_matrix[8].linMatrix_display(); 

    linearFull_matrix[9].linMatrix_display(); 

    linearFull_matrix[10].linMatrix_display(); 

    linearFull_matrix[11].linMatrix_display(); 

     

    $display("=================================================="); 

 bin_count = 0; 

     

    foreach(full_matrix[i])begin 

      //full_matrix[i].c0 = final_matrix[i][pos_array[0]]; 

      full_matrix[i].c1 = final_matrix[i][pos_array[1]]; 

      full_matrix[i].c2 = final_matrix[i][pos_array[2]]; 

      full_matrix[i].c3 = final_matrix[i][pos_array[3]]; 

      full_matrix[i].c4 = final_matrix[i][pos_array[4]]; 

      full_matrix[i].c5 = final_matrix[i][pos_array[5]]; 

      full_matrix[i].c12 = t_matrix[i][6]; 

      full_matrix[i].c13 = t_matrix[i][7]; 

      full_matrix[i].c14 = t_matrix[i][8]; 

      full_matrix[i].c15 = t_matrix[i][9]; 

      full_matrix[i].c23 = t_matrix[i][10]; 

      full_matrix[i].c24 = t_matrix[i][11]; 

      full_matrix[i].c25 = t_matrix[i][12]; 

      full_matrix[i].c34 = t_matrix[i][13]; 

      full_matrix[i].c35 = t_matrix[i][14]; 

      full_matrix[i].c45 = t_matrix[i][15]; 

    end   

       

    //Displays the matrix when fully organzed 

    $display("\t   | x4x5| x3x5| x3x4| x2x5| x2x4| x2x3| x1x5| x1x4| x1x3| x1x2| x%0d| x%0d| x%0d| x%0d| 
x%0d|rhs", pos_array[5], pos_array[4], pos_array[3], pos_array[2], pos_array[1]); 
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    full_matrix[1].matrix_display(); 

    full_matrix[2].matrix_display(); 

    full_matrix[3].matrix_display(); 

    full_matrix[4].matrix_display(); 

    full_matrix[5].matrix_display(); 

    full_matrix[6].matrix_display(); 

    full_matrix[7].matrix_display(); 

    full_matrix[8].matrix_display(); 

    full_matrix[9].matrix_display(); 

    full_matrix[10].matrix_display(); 

    full_matrix[11].matrix_display(); 

     

    $display("==================================================");             

 

    //Fills the array bin_count_array with a corresponding values as of the max size for a partial solution 

    foreach(bin_count_array[i])begin 

      if((index_array[i]-index_array[i-1])==1)begin 

        matrix_max = i-1; 

        $display("matrix_max = %0d", matrix_max); 

      end 

      bin_count_array[i] = 0; 

    end   

  end 

   

   

  //Starts the search portion of recursive solve. 

  initial begin 

    bin_count = 1; 

    num_operations = 0; 

    num_fullsol = 0; 

    bin_index = 1; 
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$display("\tx%0d|x%0d|x%0d|x%0d|x%0d|x%0d|x%0d", pos_array[5], pos_array[4], pos_array[3], pos_array[2], 
pos_array[1]);  

    //begin our FSM with exit state being when first row is fully exhausted 

    while(binary <= ((2**index_array[1])-1))begin 

       

       

     // function void matrix_display(); 

   // $display("\tE%0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d | %0d ", eqnum, c45, c35, c34, c25, c24, 
c23, c15, c14, c13, c12, c5, c4, c3, c2, c1, rhs); 

   // $display("\t---------------------------------------"); 

 // endfunction 

       

       

    /*  function void zero(); 

        if (pos_array[1] == full_matrix[i].c1) begin 

          full_matrix[i].c1 = 0 

          full_matrix[i].c12 = 0 

          full_matrix[i].c13 = 0 

          full_matrix[i].c14 = 0 

          full_matrix[i].c15 = 0 

        end else if (pos_array[1] == full_matrix[i].c2) begin 

          full_matrix[i].c2 = 0 

          full_matrix[i].c12 = 0 

          full_matrix[i].c23 = 0 

          full_matrix[i].c24 = 0 

          full_matrix[i].c25 = 0 

        end else if (pos_array[1] == full_matrix[i].c3) begin 

          full_matrix[i].c3 = 0 

          full_matrix[i].c13 = 0 

          full_matrix[i].c23 = 0 

          full_matrix[i].c34 = 0 
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          full_matrix[i].c35 = 0 

        end else if (pos_array[1] == full_matrix[i].c4) begin 

          full_matrix[i].c4 = 0 

          full_matrix[i].c14 = 0 

          full_matrix[i].c24 = 0 

          full_matrix[i].c34 = 0 

          full_matrix[i].c45 = 0 

        end   

        end 

      endfunction */ 

       

     /* function one(); 

        if pos_array[1] = full_matrix[i].c1 begin 

           

          else if pos_array[1] = full_matrix[i].c2; 

          full_matrix[i].c2 = 0; 

          full_matrix[i].c12 = 0; 

          full_matrix[i].c23 = 0; 

          full_matrix[i].c24 = 0; 

          full_matrix[i].c25 = 0; 

          else if pos_array[1] = full_matrix[i].c3; 

          full_matrix[i].c3 = 0; 

          full_matrix[i].c23 = 0; 

          full_matrix[i].c34 = 0; 

          full_matrix[i].c35 = 0; 

          else if pos_array[1] = full_matrix[i].c4; 

          full_matrix[i].c4 = 0; 

          full_matrix[i].c34 = 0; 

          full_matrix[i].c45 = 0; 

        end 

      endfunction */ 
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      if(bin_index == 0 && binary <= ((2**index_array[1])-1))begin//Checking first row partial solution as long as it is 
not completely exaughsted 

        num_operations++; 

        binary = bin_count_array[1];//Binary is our binary representation of our Binary counter 

        if(binary > ((2**index_array[1])-1))begin //If we reach limit for partial solution, break the search 

          break; 

        end 

        //$display("bintest %0b", binary[0]); 

        //$display("eq_rhs = %0b : rhs = %0b", eq_rhs, full_matrix[0].rhs); 

        //$display("Index = %0d, Value = %3b " , 0, binary); 

         

        //t_solution[0] = binary[0];//stores the binary counter value into our partial solution for testing 

        t_solution[1] = binary[1]; 

        t_solution[2] = binary[2]; 

        //determines the value of the left side of the matrix by masking the partial solution with the matrix values and 
summing them together 

        eq_rhs = (full_matrix[bin_index].c1 & t_solution[1]) + (full_matrix[bin_index].c2 & t_solution[2]) + 
(full_matrix[bin_index].c3 & t_solution[3]) + (full_matrix[bin_index].c4 & t_solution[4]) + (full_matrix[bin_index].c5 
& t_solution[5]) + (full_matrix[bin_index].c12 & t_solution[1] & t_solution[2]) + (full_matrix[bin_index].c13 & 
t_solution[1] & t_solution[3]) + (full_matrix[bin_index].c14 & t_solution[1] & t_solution[4]) + 
(full_matrix[bin_index].c15 & t_solution[1] & t_solution[5]) + (full_matrix[bin_index].c23 & t_solution[2] & 
t_solution[3]) + (full_matrix[bin_index].c24 & t_solution[2] & t_solution[4]) + (full_matrix[bin_index].c25 & 
t_solution[2] & t_solution[5]) + (full_matrix[bin_index].c34 & t_solution[3] & t_solution[4]) + 
(full_matrix[bin_index].c35 & t_solution[3] & t_solution[5]) + (full_matrix[bin_index].c45 & t_solution[4] & 
t_solution[5]); 

        if(eq_rhs == full_matrix[bin_index].rhs)begin//compares Left hand size sum to right hand side value  

            //$display("Solution = %b", t_solution); 

            bin_index = 2; //Tells FSM to move onto next row 

          end 

        bin_count_array[1] = bin_count_array[1] + 1;//Increments our partial solution 

 

      end  

      if(bin_index == 1 )begin 

  num_operations++; 

        //$display("eq_rhs = %0b : rhs = %0b", eq_rhs, full_matrix[0].rhs); 
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        if(bin_count_array[1] == (2**(index_array[2]-index_array[2-1])))begin //if weve seen every possible soultion 
for this partial solution, reset partial solution incrementation and return to previous row 

          bin_count_array[1] = 0; 

          bin_index = 1; 

        end 

         

        if(bin_index != 1)begin 

          //$display("Index = %0d, Value = \t%2b " , 1, bin_count_array[1]);   

           

          t_binary = bin_count_array[1]; 

          t_solution[3] = t_binary[1];//stores the binary counter value into our partial solution for testing 

          t_solution[4] = t_binary[2]; 

          //determines the value of the left side of the matrix by masking the partial solution with the matrix values 
and summing them together 

          eq_rhs = (full_matrix[bin_index].c1 & t_solution[1]) + (full_matrix[bin_index].c2 & t_solution[2]) + 
(full_matrix[bin_index].c3 & t_solution[3]) + (full_matrix[bin_index].c4 & t_solution[4]) + (full_matrix[bin_index].c5 
& t_solution[5]) + (full_matrix[bin_index].c12 & t_solution[1] & t_solution[2]) + (full_matrix[bin_index].c13 & 
t_solution[1] & t_solution[3]) + (full_matrix[bin_index].c14 & t_solution[1] & t_solution[4]) + 
(full_matrix[bin_index].c15 & t_solution[1] & t_solution[5]) + (full_matrix[bin_index].c23 & t_solution[2] & 
t_solution[3]) + (full_matrix[bin_index].c24 & t_solution[2] & t_solution[4]) + (full_matrix[bin_index].c25 & 
t_solution[2] & t_solution[5]) + (full_matrix[bin_index].c34 & t_solution[3] & t_solution[4]) + 
(full_matrix[bin_index].c35 & t_solution[3] & t_solution[5]) + (full_matrix[bin_index].c45 & t_solution[4] & 
t_solution[5]); 

          if(eq_rhs == full_matrix[bin_index].rhs)begin//compares Left hand size sum to right hand side value 

            //$display("Solution = %b", t_solution); 

            bin_index = 3;//Tells FSM to move onto next row 

          end 

          bin_count_array[1] = bin_count_array[1] + 1;//Increments our partial solution 

           

        end 

         

         

 

      end 

      if(bin_index == 3)begin 

        num_operations++; 
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        if(bin_count_array[2] == (2**(index_array[3]-index_array[3-1])))begin//if weve seen every possible soultion for 
this partial solution, reset partial solution incrementation and return to previous row 

          bin_count_array[2] = 0; 

          bin_index = 2; 

        end 

         

 

        if(bin_index != 2)begin 

          //$display("Index = %0d, Value = \t\t%2b " , 2, bin_count_array[2]); 

          t_binary = bin_count_array[2]; 

          t_solution[5] = t_binary[1];//stores the binary counter value into our partial solution for testing 

           

          //determines the value of the left side of the matrix by masking the partial solution with the matrix values 
and summing them together 

          eq_rhs = (full_matrix[bin_index].c1 & t_solution[1]) + (full_matrix[bin_index].c2 & t_solution[2]) + 
(full_matrix[bin_index].c3 & t_solution[3]) + (full_matrix[bin_index].c4 & t_solution[4]) + (full_matrix[bin_index].c5 
& t_solution[5]) + (full_matrix[bin_index].c12 & t_solution[1] & t_solution[2]) + (full_matrix[bin_index].c13 & 
t_solution[1] & t_solution[3]) + (full_matrix[bin_index].c14 & t_solution[1] & t_solution[4]) + 
(full_matrix[bin_index].c15 & t_solution[1] & t_solution[5]) + (full_matrix[bin_index].c23 & t_solution[2] & 
t_solution[3]) + (full_matrix[bin_index].c24 & t_solution[2] & t_solution[4]) + (full_matrix[bin_index].c25 & 
t_solution[2] & t_solution[5]) + (full_matrix[bin_index].c34 & t_solution[3] & t_solution[4]) + 
(full_matrix[bin_index].c35 & t_solution[3] & t_solution[5]) + (full_matrix[bin_index].c45 & t_solution[4] & 
t_solution[5]); 

          if(eq_rhs == full_matrix[bin_index].rhs)begin//compares Left hand size sum to right hand side value 

            //$display("Solution = %b", t_solution); 

            bin_index = 4;//Tells FSM to move onto next row 

          end 

          bin_count_array[2] = bin_count_array[2] + 1;//Increments our partial solution 

           

        end 

         

      end 

       

      if(bin_index == 4)begin 

        num_operations++; 
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        if(bin_count_array[3] == (2**(index_array[4]-index_array[4-1])))begin//if weve seen every possible soultion for 
this partial solution, reset partial solution incrementation and return to previous row 

          bin_count_array[3] = 0; 

          bin_index = 3; 

        end 

         

         

        if(bin_index != 4 )begin 

          //$display("Index = %0d, Value = \t\t\t%1b " , 3, bin_count_array[3]); 

          t_binary = bin_count_array[3]; 

           

          //determines the value of the left side of the matrix by masking the partial solution with the matrix values 
and summing them together 

          eq_rhs = (full_matrix[bin_index].c1 & t_solution[1]) + (full_matrix[bin_index].c2 & t_solution[2]) + 
(full_matrix[bin_index].c3 & t_solution[3]) + (full_matrix[bin_index].c4 & t_solution[4]) + (full_matrix[bin_index].c5 
& t_solution[5]) + (full_matrix[bin_index].c12 & t_solution[1] & t_solution[2]) + (full_matrix[bin_index].c13 & 
t_solution[1] & t_solution[3]) + (full_matrix[bin_index].c14 & t_solution[1] & t_solution[4]) + 
(full_matrix[bin_index].c15 & t_solution[1] & t_solution[5]) + (full_matrix[bin_index].c23 & t_solution[2] & 
t_solution[3]) + (full_matrix[bin_index].c24 & t_solution[2] & t_solution[4]) + (full_matrix[bin_index].c25 & 
t_solution[2] & t_solution[5]) + (full_matrix[bin_index].c34 & t_solution[3] & t_solution[4]) + 
(full_matrix[bin_index].c35 & t_solution[3] & t_solution[5]) + (full_matrix[bin_index].c45 & t_solution[4] & 
t_solution[5]); 

           

          if(eq_rhs == full_matrix[bin_index].rhs)begin//compares Left hand size sum to right hand side value 

            num_fullsol++;//increments number of full solutions which have been tested against rhs and remaining 
equations 

            //determines the value of the left side of the matrix by masking the full solution with the matrix values and 
summing them together 

            eq_rhs = (full_matrix[bin_index].c1 & t_solution[1]) + (full_matrix[bin_index].c2 & t_solution[2]) + 
(full_matrix[bin_index].c3 & t_solution[3]) + (full_matrix[bin_index].c4 & t_solution[4]) + (full_matrix[bin_index].c5 
& t_solution[5]) + (full_matrix[bin_index].c12 & t_solution[1] & t_solution[2]) + (full_matrix[bin_index].c13 & 
t_solution[1] & t_solution[3]) + (full_matrix[bin_index].c14 & t_solution[1] & t_solution[4]) + 
(full_matrix[bin_index].c15 & t_solution[1] & t_solution[5]) + (full_matrix[bin_index].c23 & t_solution[2] & 
t_solution[3]) + (full_matrix[bin_index].c24 & t_solution[2] & t_solution[4]) + (full_matrix[bin_index].c25 & 
t_solution[2] & t_solution[5]) + (full_matrix[bin_index].c34 & t_solution[3] & t_solution[4]) + 
(full_matrix[bin_index].c35 & t_solution[3] & t_solution[5]) + (full_matrix[bin_index].c45 & t_solution[4] & 
t_solution[5]); 

            if(eq_rhs == full_matrix[bin_index+1].rhs)begin//if the masking and then sum of the full solution and last 
row values equals the rhs of last eq 

              num_operations++; 
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             //display our valid solution 

              $display("Sol =  %b  %b  %b  %b  %b",t_solution[5], t_solution[4], t_solution[3],t_solution[2], t_solution[1]); 

            end 

          end 

          //increment partial solution 

    bin_count_array[3] = bin_count_array[3] + 1; 

        end 

         

      end 

 

    end 

   

   

    $display("Number Of Operations = %d", num_operations); 

    $display("Number Of Full Solution Checks = %d", num_fullsol); 

   

   

    end 

 

endmodule 

 


