
Exposing the Imposter’s Hunger for Power:

Hardware Keylogger Attack Detection

A Major Qualifying Project (MQP) Report
Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements
for the Degrees of Bachelor of Science in

Computer Science
as well as

Electrical and Computer Engineering

By:

Brianna Roskind

Project Advisors:

Prof. Robert Walls (CS)
Prof. Patrick Schaumont (ECE)

Date: April 2023

This report represents the work of one or more WPI undergraduate students submitted to
the faculty as evidence of completion of a degree requirement. WPI routinely publishes

these reports on the web without editorial or peer review. For more information about the
projects program at WPI, see http://www.wpi.edu/Academics/Projects.

http://www.wpi.edu/Academics/Projects


Abstract

This Major Qualifying Project constructed a proof of concept circuit and analysis method for detecting the

presence of a hardware keylogger connected in series between a USB keyboard and USB port on a computer.

Different methods of keylogger detection were reviewed, and the behavior of two keyloggers were examined,

which led to the selection of power signature analysis to detect a keylogger. Data collected in a laboratory

environment unveiled the need for a custom circuit in order to have higher resolution power signature data

available for analysis. Statistical measurement methods for histogram analysis were examined, including

their short-comings, leading to the creation of an augmented form of the KL-algorithm, and the construction

of a threshold detector. With threshold detection, no false positives (mistaken detections) occurred. Of

the two keyloggers tested, one was detected 100% of the time within a 5 minute period, and the other was

detected 100% of the time within a 10 minute period.

Throughout this project, experience in circuit design and analysis, literature review, Python pro-

gramming, and technical writing was acquired. Future directions for this MQP were also identified, including

creating an ASIC chip for production use.

i



Acknowledgements

I would like to thank my two advisors in this MQP, Professor Robert Walls and Professor Patrick Schau-

mont of Worcester Polytechnic Institute (WPI), for their time, encouragement, and support during this

multi-semester project. I’d also like to thank Craig Williams, Senior Manager at Amazon for Threat Intel,

Detection, Intel, and Response, for spending time discussing hardware malware with me, and providing

pointers to online resources. Additionally, I’d like to express my gratitude to WPI for providing me with

the opportunity to execute this project for my MQP.

ii



Contents

1 Introduction 1

2 Background 3

2.1 Background on Keyloggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Keylogger Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.2 Keylogger Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Threat Model and Problem Definition 10

3.1 System/Attacker Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 Corporate Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.2 Attacker’s Access / How Information is Stolen . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Observations 12

4.1 Digital Multimeter Empirical Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Digital Multimeter Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Design of Circuit 22

5.1 Materials to Build Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2 Circuit Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.3 Circuit Cost Breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3.1 Proof of Concept Circuit Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3.2 Circuit on Chip Estimated Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Modifications to KL-divergence algorithm 27

6.1 Methods of Analyzing Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.2 Original KL-divergence algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2.1 What is KL-divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2.2 Properties of KL-divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2.3 Interpreting KL-divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.3 Modification Specifics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7 Detection Results 37

7.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.2 Efficacy of Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8 Conclusion 40

8.1 Future Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

9 Appendix 41

10 References 44

iii



List of Tables

1 Tests of pressing different keyboard keys to observe differences in current drawn. . . . . . . . 18

2 Caps lock off measurements with and without keylogger. . . . . . . . . . . . . . . . . . . . . . 20

3 Caps lock on measurements with and without keylogger. . . . . . . . . . . . . . . . . . . . . . 20

4 Summary of Power draw with and without caps lock and/or keylogger. . . . . . . . . . . . . . 20

List of Figures

1 KeyGrabber USB from www.keelog.com. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 KeyGrabber TimeKeeper USB from www.keelog.com. . . . . . . . . . . . . . . . . . . . . . . 5

3 AirDrive Forensic Keylogger from www.keelog.com. . . . . . . . . . . . . . . . . . . . . . . . . 6

4 AirDrive Forensic Keylogger Pro from www.keelog.com. . . . . . . . . . . . . . . . . . . . . . 7

5 KeyGrabber Forensic Keylogger Max from www.keelog.com. . . . . . . . . . . . . . . . . . . . 8

6 Circuit used to expose wires for digital multimeter. . . . . . . . . . . . . . . . . . . . . . . . . 13

7 Digital Multimeter setup measuring voltage drawn by the keyboard (with a keylogger in place). 15

8 Digital Multimeter setup measuring current drawn by the keyboard (with a keylogger in place). 16

9 Back of Lab Keyboard (DELL 04G481). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

10 Front of Lab Keyboard (DELL 04G481). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

11 Keyboard from Lab Bench #23 has the scroll lock LED completely burnt out, and a dim num
lock LED. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

12 Keyboard from Lab Bench #22 has num lock (on the far left) noticeably dimmer than the
other two LEDs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

13 Keyboard from Lab Bench #24 has the num lock LED completely burnt out. . . . . . . . . . 19

14 Custom circuit diagram for collecting ADC measurements. . . . . . . . . . . . . . . . . . . . . 22

15 Power (W) histogram over 5 minutes without typing or caps lock (DELL 0XD31W keyboard). 27

16 Power (W) histogram over 5 minutes with typing but without caps lock (DELL 0XD31W
keyboard). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

17 Power (W) histogram over 5 minutes with caps lock but without typing (DELL 0XD31W
keyboard). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

18 Convolution of No keylogger Q(x), with bucket size of 0.01, in this test, results in keeping the
distribution centered as it was. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

19 Convolution of Keygrabber Pico Q(x), with bucket size of 0.01, results in shifting the distri-
bution to the left to minimize the KL-score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

20 Convolution of Keygrabber Forensic Q(x), with bucket size of 0.01, results in shifting the
distribution to the left to minimize the KL-score. . . . . . . . . . . . . . . . . . . . . . . . . . 35

21 Convolution of Keygrabber Forensic Q(x), with bucket size of 0.00025, results in shifting the
distribution to the left to minimize the KL-score. . . . . . . . . . . . . . . . . . . . . . . . . . 36

22 No Keylogger No Caps Lock has no false positives (mistaken detection). . . . . . . . . . . . . 38

23 No Keylogger Yes Caps Lock has no false positives (mistaken detection). . . . . . . . . . . . . 38

24 Keylogger Pico No Caps Lock is always correctly detected. . . . . . . . . . . . . . . . . . . . . 38

iv



25 Keylogger Pico Yes Caps Lock is always correctly detected. . . . . . . . . . . . . . . . . . . . 39

26 Keylogger Forensic No Caps Lock is detected within a 10 minute period (2 sampling sessions.
The highlighted line represents a 5 minute period in which the keylogger was not detected. . 39

27 The above is the detect keylogger.py code. This is the file that gets run to try to detect a
keylogger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

28 The above code is from record ADC measurements.py. You need to have this file in place to
run detect keylogger.py (since it has functions imported). . . . . . . . . . . . . . . . . . . . . 43

v



1 Introduction

There are now small and relatively inexpensive USB devices which can be placed between a keyboard and

a computer to covertly record keystrokes and transmit any recorded data to an attacker. The name of this

device is a hardware keylogger. A typical “insertion attack” might consist of an attacker paying a cleanup

crew to insert a keylogger at night while cleaning the office. Attackers may target “high value” assets such

as a CEO, a highly trusted executive, or even a console that is routinely logged into by numerous employees.

Examples of sensitive data that are of interest to such bad actors include passwords and even typed emails

or documents.

There is not currently a foolproof way to detect the existence of a hardware keylogger. The most

common method of hardware keylogger detection is simply for the owner of a computer to be vigilant and

check their USB ports every time they come back from leaving their computer unattended. Since this

completely relies on a human not forgetting to check, and successfully catching any keyloggers when they

check, this is a very error prone process. Additionally, there is also not a good way for the operating system

(OS) to detect whether a keylogger has been added. This is due to the fact that most keyloggers will pass

on the device name and information of the USB keyboard it is connected to when it is registering with a

USB port. Keyloggers, if they are smart, will not let the OS. know that they have a different device name.

This MQP proposes use of power draw analysis for rapidly mitigating such malicious hardware

insertions. Manual checking is a “best intentions” approach which requires a user to perform daily inspection,

and we need a tireless “automated mechanism” for detection. Power draw analysis, for keylogger detection,

mixed with a user warning system, would create a much less error prone solution. An automated method

removes errors from the need for consistent and thorough manual searching. It would also save humans

the time from needing to constantly check. One of the reasons power draw analysis is superior to manual

checking is that power utilization statistics of a true keyboard would be difficult for an attacker to mimic

correctly. A keylogger is, by itself, a processor. In this study we have shown that a keylogger’s variable

power draw statistics have proved to (currently) be detectable in several commercially available keyloggers.

Creating a reliable method of keylogger detection is not an easy task. Keyloggers are designed

to be difficult, if not impossible, to detect via standard methods such as USB protocol based inspection.

Additionally, the physical design of keyloggers is constantly advancing to make them almost impossible

to visually detect. They are often designed to appear as “ordinary looking” USB cables! To ensure the

reliability of our detection method, our solution needs to be tamper-resistant, as even those with minimal

1



physical access to an area are a threat. Employees such as janitor’s can successfully insert and retrieve

keyloggers from USB ports without raising much or any suspicion. Therefore, our ultimate goal is to make

our design part of the motherboard or part of the USB port. This way, a keylogger cannot be placed between

our detection mechanism and the computer, and the detection mechanism cannot be easily tampered with

or removed. However, keyboards themselves can add complexity to keylogger detection via power draw

analysis. The basis of our project is that keyloggers have a detectable power draw. It turns out that LEDs

on keyboards, such as the caps lock key, increase power usage as well when they are on! Therefore a threshold

alone is not enough to detect a keylogger. This means we need a more sophisticated mechanism for detection,

while still ensuring that the end product is cheap to manufacture, in terms of hardware design elements.

The study contributes both hardware and software proof of concept elements to the field of hardware

keylogger detection. This study supplies a hardware design to measure keyboard and keylogger power draw

distributions. We also provide modifications to the KL-divergence algorithm to better compare and analyze

these power distributions for keylogger detection. In our analysis we are comparing histograms that represent

probability distribution functions (PDFs) that can be relatively sparse. The KL-divergence algorithm works

best for probability distribution functions that don’t have any empty buckets. Therefore we first add one to

each bucket to allow the sparse PDFs to be meaningfully compared. Second, we take the absolute value of

the terms summed by the KL-algorithm, such that we penalize differences between PDFs, whether positive

or negative. Thirdly, we include a method of analysis of convolutions of these power distribution graphs to

best align distributions after they are individually normalized. All of these components work together to

continuously detect anomalies in the keyboard power utilization which are indicative of a keylogger.

The following sections of this report outline the observations, conclusions, and testing done to

establish and verify our detection method via power signature analysis. In section 2 we discuss the background

of Keyloggers, with explanations on properties, prices, and the risks they pose. In section 3 we discuss the

threat model and problem definition. In section 4 we review the lab observations that led us to creating a

custom circuit. Section 5 outlines the design and cost breakdown of our circuitry for keylogger detection.

Section 6 outlines the original KL-divergence algorithm along with our augmented KL-algorithm. Section 7

discusses our coding implementation of a threshold detection system, and the efficacy of the results. Section 8

outlines a brief conclusion of the work completed and outlines ideas for future work in the area of combatting

hardware keyloggers.

2



2 Background

2.1 Background on Keyloggers

A keylogger is a physical USB device, smaller than the butt of a cigarette, that can be connected in series

with a USB keyboard, with the purpose of recording keystrokes, and even sometimes performing keystroke

insertion. The typical cost of a keylogger today (in 2023) is approximately $45 to $100 USD (U.S. Dollars).

The website that we found to be trustworthy in selling keyloggers was https://www.keelog.com. All of the

keyloggers we use for study and reference in this MQP came from this site.

2.1.1 Keylogger Examples

While keyloggers in general are very small, they can come in a variety of sizes. For example, a large keylogger

may be 36 mm x 20 mm x 12 mm. For reference, that is a little longer than a grape but still shorter than

a walnut (Tumor Size, n.d.). Keyloggers of this size can range from $45 to $100, depending on the extra

abilities of the keylogger. As can be seen in Figure 1, the KeyGrabber USB, which has 16 megabytes

of memory and 128-bit encryption, costs only $45 (KeyGrabber USB 16MB - USB Hardware Keylogger

With 16MB Flash Drive, n.d.). In Figure 2, we can see the KeyGrabberTimeKeeper USB, which has 16

gigabytes of memory and date and time stamping capabilities, in addition to 128-bit encryption, costs $100

(KeyGrabber TimeKeeper USB MCP 16GB - Premium USB Hardware Keylogger With 16GB Flash Drive,

Time-Stamping and Mac Compatiblity, n.d.).

3



Figure 1: KeyGrabber USB from www.keelog.com.

4



Figure 2: KeyGrabber TimeKeeper USB from www.keelog.com.

On the other hand, a small keylogger may be 10 mm x 16 mm x 11 mm, and be priced anywhere

from $45 to $75. For reference, this is longer than a pea and shorter than a peanut (Tumor Size, n.d.). The

website, www.keelog.com, refers to keyloggers of this size as the “smallest keylogger on the market.” Looking

at Figure 3, the AirDrive Forensic Keylogger, which has 16 megabytes of memory, works as a WiFii hotspot,

can have data retrieved remotely, and has memory protection in the form of hardware encryption, costs only

$45. In Figure 4, we can see the AirDrive Forensic Keylogger Pro, which in addition to what the non-pro

version supports, also works as a WiFi device and can send email reports with the recorded keystroke data,

supports time-stamping and live data-streaming, costs $53. An even more complex version can be seen in

Figure 5, the KeyGrabber Forensic Keylogger Max, which has 16 gigabytes of memory, “Sophisticated USB

frame capture algorithm with 32X oversampling,” 128-bit encryption, leaves no wireless footprint, works as

a keylogger and a HID keystroke generator, and has a built-in scripting language interpreter, costs $75.

5



Figure 3: AirDrive Forensic Keylogger from www.keelog.com.

6



Figure 4: AirDrive Forensic Keylogger Pro from www.keelog.com.

7



Figure 5: KeyGrabber Forensic Keylogger Max from www.keelog.com.

2.1.2 Keylogger Features

Possible features on a keylogger include but are not limited to the following:

• Built-in FPGA chip

• Built-in memory

• Built-in RTC + battery

• Date and time-stamping

• E-mail reporting

• HID injection scripts

• Keystroke generation

• Keystroke logging

8



• Live data streaming

• Mac Compatibility Pack (MCP)

• Programmable scripting language

• Remote configuration

• Retrieve data remotely

• Remotely download log

• Text Menu Mode

• USB flash drive mode

• Wi-Fi Access Point

• Wi-Fi Device

The typical memory capacity on a hardware keylogger ranges from 16 MB to 16 GB. For reference,

1 MB is approximately 500 pages of text, or “1 thick book” (Wynn, 2023).

Exfiltration of logged keystrokes may be done via WiFi, manual retrieval of the device or via direct

use of the keyboard connection. WiFi exfiltration of keystrokes makes it easier for the malicious party to

obtain the data without having to physically revisit the insertion point. This prevents the perpetrator from

being caught in the act, and may allow the device to go undetected even longer, since no one will be caught

visually examining or touching the USB device.

9



3 Threat Model and Problem Definition

3.1 System/Attacker Model

3.1.1 Corporate Environment

Computers in corporate workspaces are not fully guarded 24/7. Companies may have security measures to

keep unauthorized personnel from getting in, but they cannot easily identify insiders with malicious intent.

The insiders are often part of cleaning crews or other lower paid personnel who can be bribed by a bad actor

to put a keylogger in place in return for monetary compensation. These companies do not have a good way

to prevent bad actors from compromising such members of their personnel. Larger companies can have too

many employees to ensure everyone is completely loyal to the company, and all it takes is for one insider to

be compromised.

The keylogger, once put in place, will often aim to capture passwords or confidential emails as

they are typed by the victim. Therefore, anyone in the company who has passwords, or knows confidential

information is a potential target.

However, not all computers are at risk from simple hardware keyloggers, as the real target is

computers that use USB keyboards.

3.1.2 Attacker’s Access / How Information is Stolen

Attackers can gain access to the workspace by bribing lower paid personnel to discreetly put a keylogger in

place. Once the keylogger is in place, the attacker can wait days, weeks, or months before attempting to

retrieve data from the keylogger. Retrieval and exfiltration of the keylogger data can happen in a few ways:

1. If the USB keylogger does not have any fancy wireless abilities, a maintenance crew member can be

bribed to remove the keylogger and return it to the attacker.

2. If the USB keylogger has wireless abilities, a cleaning crew member can be bribed to carry a cell phone

belonging to the attacker with them when they are cleaning. When the phone is close enough to the

keylogger to connect, the keylogger can then export the information it collected to the phone.

3. There are even fancier keyloggers that can send out automated email reports of the data they recorded.

10



3.2 Problem Definition

This MQP focuses on the mitigation, and specifically the detection, of USB hardware keyloggers. A secondary

element of mitigation involves notifying a victim of the likely presence of a malicious device, as a visual

inspection (and manual removal) should be sufficient for neutralizing the threat. We perceive that notification

is a straightforward software element that could be implemented in and around an operating system, and

thus we do not focus on that aspect.

What we are exploring is a proof of concept solution, with external inline USB monitoring to detect a

keylogger. We anticipate that the commercial realization of our model would likely include implementation of

the monitoring system inside of a desktop / laptop computer or a docking station. This way, a USB keylogger

could not be placed to circumvent the monitoring circuitry. A complete commercial implementation would

typically involve custom ASIC (Application Specific Integrated Circuit) circuitry, integrated into the USB

hardware system on the motherboard. We consider the proof of concept to have been the critical element of

this MQP, and we don’t offer detailed ASIC design elements.

11



4 Observations

4.1 Digital Multimeter Empirical Methodology

We needed a way to test our hypothesis that there is a noticeable difference in power draw when a keylogger

is in series with a USB keyboard.

In order to obtain the power draw of the keyboard / keylogger, we needed to create a small breakout

circuit so that we could tap the wires going through the USB. A USB has four channels running through it:

power (5 V), ground, source-clock, and source-data. For this portion of the experiment, we will only need

to know about the power and ground wires. Our goal was to use the following equation (see Equation 1) to

calculate the power drawn by the keyboard.

P = I ∗ V (1)

Looking at Equation 1, we can see that there are two measurements we need to calculate power

(P). We need to find I, the current going through the USB port to the keyboard, and V, the voltage being

delivered to the keyboard. Finding V is straightforward, as we can just measure the voltage difference

between the power and ground wires of the USB breakout circuit. Finding I is a little more complicated,

but we can use Equation 2 to calculate I.

I = V/R (2)

Looking at Equation 2, to calculate the current, I, we can see that there are two more intermediate

measurements we need. These measurements represent a resistor being put in series with the power line of

the USB breakout. We will use the value of the resistor in ohms as the denominator (R), and the voltage

drop across the resistor as the numerator (V). Finding the voltage drop across the resistor just means we

need a measure of the voltage before and after the resistor, and we will subtract these values. The circuit

diagram of this setup can be seen in Figure 6.

12



Figure 6: Circuit used to expose wires for digital multimeter.

13



To test our hypothesis, we went to the ECE lab in Atwater Kent to use a digital multimeter to

gather the aforementioned voltage measurements we needed to calculate power draw. We built the circuit,

from the circuit diagram in Figure 6, on a breadboard. The circuit can be seen in Figure 7 with the digital

multimeter set up to measure the voltage drawn by the keyboard. To do this, we placed the positive probe of

the Digital Multimeter on the 5V power line (close to the computer USB breakout), and placed the negative

probe of the Digital Multimeter on the ground line. The circuit can be seen in Figure 8 with the digital

multimeter set up to measure the current drawn by the keyboard (voltage drop across a 1 ohm resistor). To

do this, we placed the positive probe of the Digital Multimeter on the 5V power line (close to the computer

USB breakout, before the 1 ohm resistor), and placed the negative probe of the Digital Multimeter on the

power line (close to the keyboard USB breakout, after the 1 ohm resistor).

14



Figure 7: Digital Multimeter setup measuring voltage drawn by the keyboard (with a keylogger in place).

15



Figure 8: Digital Multimeter setup measuring current drawn by the keyboard (with a keylogger in place).

16



In the lab, we performed tests on multiple DELL 04G481 Keyboards (See Figures 9 and 10)

Figure 9: Back of Lab Keyboard (DELL 04G481).

Figure 10: Front of Lab Keyboard (DELL 04G481).

4.2 Digital Multimeter Data Analysis

With our circuit fully connected, we tried pressing different keys on the lab keyboard to see what caused a

difference in the current drawn (See Table 1). We chose to focus on current drawn rather than power drawn

17



for this small test since the USB will try to output a steady 5V, and it does that by allowing the current to

fluctuate more (i.e. the current draw is more sensitive to change).

Noticeable Difference in Current Draw Seen

Pressing caps lock (turning on and off LED) Yes

Pressing num lock (turning on and off LED) Yes

Pressing scroll lock (turning on and off LED) Yes

Pressing any non-LED key once No

Pressing any non-LED key in quick succession No

Pressing and holding any non-LED key No

Holding shift while pressing any non-LED key No

Table 1: Tests of pressing different keyboard keys to observe differences in current drawn.

As can be seen in Table 1, pressing keys that turned on LEDs was the only cause of any noticeable

difference in the current drawn. However, we noticed that the difference did vary depending on the brightness

of the LED being turned on. Pictures of a few lab keyboards with all LEDs turned on (caps lock, num lock,

and scroll lock) can be seen in Figures 11 - 13.

Figure 11: Keyboard from Lab Bench #23 has the scroll lock LED completely burnt out, and a dim num
lock LED.

18



Figure 12: Keyboard from Lab Bench #22 has num lock (on the far left) noticeably dimmer than the other
two LEDs.

Figure 13: Keyboard from Lab Bench #24 has the num lock LED completely burnt out.

We next ran tests in this setup to measure the voltage and current draws with and without the

keylogger when caps lock is on and when caps lock is off (See Tables 2, 3, and 4). We specifically chose to

19



test the keyboard with the brightest caps lock LED (from lab bench #23, see 11), since we wanted to see

how much of a difference a fresh / not burnt out LED would make in the power draw.

Without Caps Lock

Power

Drawn

Voltage

Drawn

Current

Drawn

Voltage drop

across resistor

(1 ohm) Resistor

strength

Without Keylogger 10 mW 5.3 V 1.9 mA 4.5 mV 2.4 ohms

With Pico Keylogger 58 mW 5.3 V 11 mA 27 mV 2.4 ohms

With Forensic Keylogger 39 mW 5.2 V 7.5 mA 18 mV 2.4 ohms

Table 2: Caps lock off measurements with and without keylogger.

With Caps Lock

Power

Drawn

Voltage

Drawn

Current

Drawn

Voltage drop

across resistor

(1 ohm) Resistor

strength

Without Keylogger 19 mW 5.3 V 3.6 mA 8.7 mV 2.4 ohms

With Pico Keylogger 68 mW 5.2 V 13 mA 31 mV 2.4 ohms

With Forensic Keylogger 49 mW 5.3 V 9.2 mA 22 mV 2.4 ohms

Table 3: Caps lock on measurements with and without keylogger.

Without Caps Lock With Caps Lock

Without Keylogger 10 mW 19 mW

With Pico Keylogger 58 mW 68 mW

With Forensic Keylogger 39 mW 49 mW

Table 4: Summary of Power draw with and without caps lock and/or keylogger.

As Seen in Table 4, we observed that LEDs on a keyboard increase the average power utilization

levels. A LED of similar size to one on a caps lock key adds approximately 10 mW per LED to the keyboard

voltage draw. This means that with enough LEDs (caps lock, scroll lock, num lock, etc.) a keyboard can

gain an additional 30 mW of voltage draw due to human usage rather than keylogger insertion. That means

that a keyboard with no keylogger inserted, but with caps lock, num lock, and scroll lock on, could draw

as much power as 40 mW. However, as can be seen in table 4, a keyboard with no LED keys on, and the

20



forensic keylogger plugged in, would only draw 39 mW of power. This cross over means that we cannot

define a clear threshold saying, “if your average power exceeds X, then there must be a keylogger,” without

knowing more information about the state of the keyboard (whether those LEDs were on).

Since our goal in this MQP is to create a non-invasive method of detection, we did not want to

rely on asking the keyboard for the current state of certain keys or keeping a record of such key presses.

Therefore a simple power threshold, as mentioned previously, will not be a workable solution.

The measurements we were taking with the digital multimeter were not showing us a record of the

changes in power for small time increments. To combat this, we tried using an oscilloscope in the lab to

visualize any such changes, by setting a positive edge trigger. However there was too much noise and not

enough precision to make sense of the images.

We decided that in order to have a better insight on the power draw, we should look at power draw

distributions collected by an analog to digital converter (ADC). To do this, we would need to build our own

circuit and write code to gather information from our ADC Circuit.

21



5 Design of Circuit

To get a closer look at power distributions, with more precision of measurements, we needed to make a

custom circuit with an ADC (analog to digital converter). The circuit diagram for this custom circuit can

be seen in Figure 14.

Figure 14: Custom circuit diagram for collecting ADC measurements.

5.1 Materials to Build Setup

• Raspberry Pi 3 Model B (labeled as computer in circuit diagram)

• USB keyboard

• Breadboard

• Male USB breakout

22



• Female USB breakout

• A 10K potentiometer

• 5 Resistors

– A single 1 Ω resistor

– Four 1 MΩ resistors

• 2 Capacitors

– Two 1 µF capacitors

• ADS1115 16-Bit ADC with 4 Channels

– Capable of taking up to 128 samples per second (Sps)

• Stemma Qt breakout

• 4 Male to female wires

5.2 Circuit Rationale

Our goal was to use equation 1 to calculate the power drawn by the keyboard. Further explanation of how

we can get the current (I) and voltage (V) measurements can be found in section 6. However, rather than

having the digital multimeter take measurements, we feed the measuring points into our analog to digital

converter. The Analog to digital converter has 4 channels, however, we will only use three of them. Our

ground reference will go in channel 0 (P0 in Figure 14). Our voltage draw reference will go in channel 1 (P1

in Figure 14). We note that we need to sample the voltage drawn, rather than just assuming it outputs a

constant 5V, since there will be variance and changes in this voltage output as it tries to correct itself to

always stay at 5V. Our current draw reference (far side of the resistor) will go in channel 3 (P3 in Figure

14). We chose these specific channels since our chosen ADC was able to perform subtractions between these

(Channel 1 - Channel 0 to get the voltage draw (V), and Channel 1 - Channel 3 to get the current draw (I)

(since we are using a 1 ohm resistor)). Not all channels on the ADC are wired to do these high precision

subtractions.

P = I ∗ V (1)

23



We tried to design our circuit to be taking measurements and power from the same source. This is

why the ADC has power provided to it via an I2C interface connected to the computer, or in our case, the

Raspberry Pi 3. We also assume for our set up that if a keylogger is plugged into this circuit, it is plugged

in on the keyboard side of the circuit, not the computer side (see Figure 14).

The voltage that is supplied to power the ADC will act as the ceiling power that our ADC can

detect. We include a bypass capacitor in between the power and ground supplied to the ADC to ensure

voltage stability. Since we are supplying approximately 5V from the computer to the ADC, our ADC will

not be able to detect above 5V. Since the voltage measurements that the ADC is sampling are near 5V

(taken around the 1 ohm resistor before the keyboard), we will use voltage dividers to half these voltage

values. This way we can assure full accuracy of measurements without hitting the 5V ceiling.

The top voltage divider, connecting to P1, is a normal voltage divider consisting of two 1 M ohm

resistors. However, in the bottom voltage divider, we placed a potentiometer of 10 k ohms between the two

1 M ohm resistors. The potentiometer is there to account for the fact that the resistors we were using were

not all exactly equal to 1 M ohm in strength. All resistors have some error. However, since we are taking two

measurements relatively close to each other (to get the current), we need to have high precision and equal

treatment of the two voltage measurements through their respective voltage dividers. Essentially we need

the ratio of resistance before and after the voltage sample (taken at the midpoint of the voltage divider) to

be the same. The potentiometer allows us to tune, by hand, the resistance of the second voltage divider to

match the first one. Once our circuit is set up, and we can take samples from the ADC, we will adjust the

potentiometer as follows.

1. Connect the computer side USB breakout to the computer, but leave the keyboard side USB breakout

disconnected from any keyboard or keylogger.

2. Run a script that prints out the measurements from the ADC, and adjust the potentiometer so that

the voltage drop across the 1 ohm resistor (P3 - P1) is as close to being centered at zero as possible.

3. The potentiometer can be adjusted using a screwdriver for more precision.

The 2 USB breakouts connect the four USB channels (Ground, Power, Data+, and Data-) through

our breadboard from the computer to the keyboard. In our case, our computer (Raspberry Pi 3) had a USB

protocol that would always supply 5V over the power line to the keyboard, which is why we have labeled

the power line 5V. We also made sure to connect the USB ground to all other ground references so we avoid

creating a ground loop.

24



To monitor current we added a 1 ohm resistor in line with the 5V (power) line in between the USB

breakouts. We used Equation 2 to calculate the current. However, we specifically chose to use a 1 ohm

resistor (measuring 1.0 ohms), which means R = 1 in Equation 2. This means that Equation 2 simplifies to

I = V. For further explanation of how taking these measurements work, refer to section 4.1.

I = V/R (2)

To smooth out this current measurement, we also added a capacitor in parallel to the 1 ohm resistor.

This helps to smooth out any sharp spikes in voltage that may occur between sampling measurements.

5.3 Circuit Cost Breakdown

This circuit is a relatively inexpensive set up for detection.

5.3.1 Proof of Concept Circuit Cost

The bulk of the cost for our circuit is in the analog to digital converter (ADC). The other elements are

relatively inconsequential. Below is the cost analysis of elements needed for the prototype circuit.

• 1 16-bit ADC ≈ $14.95 per ADC on Adafruit

– https://www.adafruit.com/product/1085

– (ADS1115 16-Bit ADC - 4 Channel With Programmable Gain Amplifier, n.d.)

• 2 USB breakouts:

– 1 Male breakout ≈ $1.95 per Male breakout

∗ https://www.adafruit.com/product/4448

∗ (USB Type A Plug Breakout Cable With Premium Female Jumpers, n.d.)

– 1 Female breakout ≈ $1.95 per Female breakout

∗ https://www.adafruit.com/product/4449

∗ (USB Type A Jack Breakout Cable With Premium Female Jumpers, n.d.)

• 1 10kΩ ≈ $0.80 per potentiometer

– https://www.amazon.com/MCIGICM-Breadboard-Trim-Potentiometer-Arduino/dp/B07S69443J

25



– (MCIGICM (10 Pcs) 10K Ohm Breadboard Trim Potentiometer Kit With Knob for Arduino,

n.d.)

• 2 1µF capacitors ≈ $0.07 per capacitor

• 5 Resistors:

– 4 1MΩ resistors ≈ $0.02 per resistor

– 1 1Ω resistor ≈ $0.06 per resistor

5.3.2 Circuit on Chip Estimated Cost

As previously noted, the most expensive part of the circuit is the ADC. Looking closer at our ADC board we

bought from Adafruit, we noticed that the ADC chip used was the Texas Instruments ADS1115. We have

found the ADS1115 Texas instrument chip for as little as $1.00 in bulk (Ads1115 Price and Stock, n.d.).

This means that the cost of the production full circuit on chip may be as low, if not lower than, $2.00.

26



6 Modifications to KL-divergence algorithm

6.1 Methods of Analyzing Histograms

We aggregated a time-series of power utilizations into histograms, and used that to define both the signature

of a keyboard (personal DELL 0XD31W keyboard, as well as Lab DELL 04G481), and the signature of a

key-logger plus keyboard. We noticed that the histograms had visually different shapes depending on caps

lock (see Figure 17) vs no caps lock (see Figures 15 and 16).

Figure 15: Power (W) histogram over 5 minutes without typing or caps lock (DELL 0XD31W keyboard).

27



Figure 16: Power (W) histogram over 5 minutes with typing but without caps lock (DELL 0XD31W key-
board).

28



Figure 17: Power (W) histogram over 5 minutes with caps lock but without typing (DELL 0XD31W key-
board).

When comparing figures 15 and 16 (no typing vs typing, both without caps lock), we can see a

small difference in the histograms. When looking closely, each of the histograms in figure 16 (blue, yellow,

and red), are spread out more than they are in figure 15. However, the main shape, number of modes and

spacing of modes, is still very similar. In our methods of analyzing histograms, simply typing as compared

to a baseline of no typing always scores as being recognized as a similar histogram. Therefore, we will focus

our explanation in this section on comparing the no typing no caps lock histogram (Figure 15) with the no

typing yes capslock histogram (Figure 17), as they are the most visually different.

Therefore, we were looking for a method to confirm that the blue (no keylogger) histogram in

Figure 17 (with caps lock) was more similar to the blue (no keylogger) histogram in Figure 15 (without caps

lock), than any of the other yellow or red (keylogger) histograms. The KL-divergence (Kullback–Leibler

divergence) algorithm came up during literature review as being a good option for comparing histograms

since it does not make any assumptions about the distribution of the data being analyzed. Most other

methods did make assumptions about the distribution being normal or Gaussian, which was not the case

with our data.

29



6.2 Original KL-divergence algorithm

6.2.1 What is KL-divergence

KL-divergence, otherwise known as Kullback–Leibler divergence, is a statistical distance for measuring how

different two probability distributions are from each other. KL-divergence is, most simply put, a measure of

relative entropy. Entropy is a measure of disorder or randomness. Therefore, KL-divergence asks, “If we use

one distribution as a model for the other, how much randomness do we experience?” The general equation

for KL-divergence can be seen in equation 3 (MacKay, 2003).

DKL(P ||Q) =
∑
x

P (x) ∗ log(P (x)

Q(x)
) (3)

6.2.2 Properties of KL-divergence

Most importantly, KL-divergence does not make any assumptions about the shape of these probability

distributions (normal / Gaussian distribution, etc.).

However, by observing equation 3, we can see that DKL(P ||Q) ̸= DKL(Q||P ) (MacKay, 2003).

This means that the magnitude of the KL-score of two distributions is not reflexive. This inequality is due

to two reasons:

1. The KL divergence sum uses P(x) as a multiplier for DKL(P ||Q) and Q(x) as multiplier forDKL(Q||P ).

2. log(P (x)
Q(x) ) = − log(P (x)

Q(x) )

Therefore, when we apply the KL-algorithm to our data, we will use the same P, as our reference distribution,

and change out the Q for different distributions we want to compare to it.

There are two special cases for which the partial KL-score is interpreted separately from the sum in

equation 3. If the denominator of the logarithm (Q(x)) or the numerator of the logarithm (P(x)) has a value

of 0, that partial sum is evaluated as 0. This proved to be very relevant in our work, as we had numerous

buckets with 0 samples, and this pattern of 0s was very significant in discriminating the sample histogram

from the baseline.

30



6.2.3 Interpreting KL-divergence

Since KL-divergence is a measure of entropy, a low KL-divergence score means that the two distributions are

very similar. On the other hand a large KL-divergence value means that the two probability distributions

in question are very different.

6.3 Modification Specifics

In analyzing our data, we always normalize our dataset to fit with the minimum and maximum sitting at 0

and 1 respectively. The data is then placed into a discrete number of buckets between these two values, to

be processed by our augmented KL-algorithm.

There are three main changes we made to the KL-divergence algorithm for our specific histogram

analysis.

1. Add one to each bucket.

2. Take the absolute value of the logarithm.

3. Convolution is used to find the best fit KL-score.

Our first change is adding one to each bucket in our histogram. Our power-utilization histograms

had numerous quantized buckets containing zero samples. The presence of these zeros provides significant

information, and is critical to our histogram differentiation analysis. As was previously noted in section

6.2.2, if either of the corresponding buckets in the two histograms being compared is 0, the partial original

KL-score sum for that bucket will be 0. This means that if one histogram has a 0 in that bucket and the

other has a large value, the original KL-score will not reflect that there was any difference. Recall that a low

KL-score means the two distributions in question are more similar. By adding one to each bucket, turning

information-rich “zeros” into “ones,” the KL-score is well defined for taking the log of the ratio. This means

that our augmented KL-score is able to interpret the dissimilarity of two histograms for a bucket which was

originally empty.

Our second change is to take the absolute value of the logarithm. The logarithm of the KL-score

(see equation 3) takes the log of the ratio of P(x) / Q(x). It is important to note that the log of any positive

fraction less than 1 is a negative value. This means that if P(x), the numerator, is ever less than Q(x), the

denominator, the partial sum for the original KL-score will be negative. Since a lower KL-score means a

higher similarity between distributions, the ability to subtract difference obscures the true similarity measure

31



of the histograms. In our case, we want to determine if the histograms are as close to matching as possible.

This means we want to penalize any type of difference, whether a distribution has less or more values in a

bucket than the baseline distribution. By taking the absolute value of the logarithm in the original KL-score,

we effectively penalize all differences. Our augmented KL-algorithm can be seen in equation 4. Note that

we always have the same number of samples in the Baseline and Test datasets. The BaselineCount seen in

equation 4 is the total number of recorded samples plus the number of fictional samples (1s added to each

bucket).

DKL(Baseline||Test) =
∑
x

Baseline(x)

BaselineCount
∗ log(Baseline(x)

Test(x)
) (4)

Finally, we use convolution to get the best fit for our KL-score. Essentially if the modes of the two

distributions are slightly misaligned due to noise on the far ends factoring into the normalization, we want to

be able to align the shapes when comparing them. To convolve the two distributions, we essentially move the

Q distribution across the P distribution, taking the KL-score at each step of the convolution (See Figures 19

- 20). We note that the time to perform these convolutions using bucket sizes of 0.1 takes approximately 0.3

seconds. It is also notable that while we are using bucket sizes of 0.1 for our trials, this could be implemented

with even more discrete bucket sizes, in which case convolution is even more necessary (See Figure 21).

32



DELL 0XD31W keyboard

Trial 5 No Keylogger Typing v.s. Trial 7 No Keylogger

Original score = 92.383

Shifted score = 92.383

Shifted right-starting index = 100

Total time to compute: 0.035528 s

Figure 18: Convolution of No keylogger Q(x), with bucket size of 0.01, in this test, results in keeping the
distribution centered as it was.

33



DELL 0XD31W keyboard

Trial 5 No Keylogger Typing v.s. Trial 7 No Keylogger

Original score = 209.43

Shifted score = 185.24

Shifted right-starting index = 97

Total time to compute: 0.036254 s

Figure 19: Convolution of Keygrabber Pico Q(x), with bucket size of 0.01, results in shifting the distribution
to the left to minimize the KL-score.

34



DELL 0XD31W keyboard

Trial 5 No Keylogger Typing v.s. Trial 7 No Keylogger

Original score = 235.85

Shifted score = 206.04

Shifted right-starting index = 96

Total time to compute: 0.033694 s

Figure 20: Convolution of Keygrabber Forensic Q(x), with bucket size of 0.01, results in shifting the distri-
bution to the left to minimize the KL-score.

35



DELL 0XD31W keyboard

Trial 5 No Keylogger Typing v.s. Trial 7 No Keylogger

Original score = 6500.2

Shifted score = 5757.1

Shifted right-starting index = 3466

Total time to compute: 46.573 s

Figure 21: Convolution of Keygrabber Forensic Q(x), with bucket size of 0.00025, results in shifting the
distribution to the left to minimize the KL-score.

36



7 Detection Results

7.1 Implementation

We implemented our augmented KL-divergence method, see equation 4, in Python. Once we were able to

see the KL-scores calculated for different distributions (using DELL 0XD31W keyboard) with and without a

keylogger in place, we set on tuning a threshold for keylogger detection. If the score is above our threshold,

we would notify the user that there has been a keyboard change. This can mean that a new device was

plugged in, or even a keylogger has been added to the keyboard. The Python code for implementation of

the algorithm can be found in the appendix (primary Python file is detect keylogger.py).

We needed to slightly tune our threshold KL-score for detecting a keylogger. Our method for

calculating the threshold in this proof of concept was to take 3 five minute samples of the keyboard in its

normal state (no keylogger inserted), but with caps lock on, which is when the distribution is most different

from a no caps lock on scenario. We then took the maximum and minimum of the augmented KL-scores

from these 3 trials and applied them in equation 5. Note that the threshold score is calculated by taking

a percentage of the range of noKeyloggerScores and adding it to the maximum noKeyloggerScore we have

seen. We tuned the denominator used, and found that 2 (using 50% of the range) resulted in the best

threshold. Our goal in tuning was to have 0 false positives (for keylogger detected) and allowing minimal

false negatives.

thresholdScore = (
NoKeyloggerScoreMax−NoKeyloggerScoreMin

2
) + noKeyloggerScoreMax (5)

7.2 Efficacy of Detection

With our threshold in place we ran multiple tests without a keylogger, with the pico keylogger, and with

the forensic keylogger, with and without caps lock. Thanks to our threshold we received no false positives

(mistaken detection) (See Figures 22 and 23). With our tuned threshold we were able to detect the pico

keylogger 100% of the time, regardless of whether the caps lock LED was on or off (See tables 24 and 25)

(Hardware Keylogger - KeyGrabber Pico, n.d.). When capslock was turned off, our tuned threshold was able

to detect the forensic keylogger 9 out of 10 times, with only 15,000 samples per decision, but it was even

more detectable when caps lock was on (Hardware Keylogger - KeyGrabber Forensic Hardware Keylogger,

37



n.d.). This means that while the forensic keylogger may have a very low KL-score for one five minute period,

it will be detectable in the following five minute period. Put in other words, in a fifty minute period of

detection, the forensic keylogger may be undetected for five minutes (See Figure 26). The threshold used in

the below testing was 1.21707.

# (USING 15,000 samples) For No Keylogger NO Caps Lock:

# The augmented KL-score is: 0.5351992773825941

# The augmented KL-score is: 0.31641487489734677

# The augmented KL-score is: 0.25765348294024815

# The augmented KL-score is: 0.2962992215354933

Figure 22: No Keylogger No Caps Lock has no false positives (mistaken detection).

# (USING 15,000 samples) For No Keylogger YES Caps Lock:

# The augmented KL-score is: 1.138321700508211

# The augmented KL-score is: 0.9835992318366247

# The augmented KL-score is: 1.0780442542603117

# The augmented KL-score is: 0.9808159751397285

Figure 23: No Keylogger Yes Caps Lock has no false positives (mistaken detection).

# (USING 15,000 samples) For Keylogger Pico NO Caps Lock:

# The augmented KL-score is: 2.5202791557622737 ← KEYLOGGER DETECTED

# The augmented KL-score is: 2.1647753994249204 ← KEYLOGGER DETECTED

# The augmented KL-score is: 1.8265117643781354 ← KEYLOGGER DETECTED

# The augmented KL-score is: 2.5372695255955566 ← KEYLOGGER DETECTED

Figure 24: Keylogger Pico No Caps Lock is always correctly detected.

38



# (USING 15,000 samples) For Keylogger Pico YES Caps Lock:

# The augmented KL-score is: 1.721395640080059 ← KEYLOGGER DETECTED

# The augmented KL-score is: 2.185020219277311 ← KEYLOGGER DETECTED

# The augmented KL-score is: 1.504407197004179 ← KEYLOGGER DETECTED

# The augmented KL-score is: 2.146501677832364 ← KEYLOGGER DETECTED

Figure 25: Keylogger Pico Yes Caps Lock is always correctly detected.

# (USING 15,000 samples) For Keylogger Forensic NO Caps Lock:

# The augmented KL-score is: 2.6653660035459885 ← KEYLOGGER DETECTED

# The augmented KL-score is: 2.037338861949006 ← KEYLOGGER DETECTED

# The augmented KL-score is: 0.7569435724672036

# The augmented KL-score is: 1.9337000080055862 ← KEYLOGGER DETECTED

Figure 26: Keylogger Forensic No Caps Lock is detected within a 10 minute period (2 sampling sessions.
The highlighted line represents a 5 minute period in which the keylogger was not detected.

As we can see in figure 26, the forensic keylogger occasionally dips below the threshold by a little

bit, but the majority of the time, it is above the threshold. Therefore, while one 5 minute detection period

did not detect the keylogger, the next and previous 5 minute detection periods did.

39



8 Conclusion

We were able to create a custom circuit to sample power draw from a USB keyboard, and used our cus-

tom augmented KL-algorithm to perform threshold detection of keyloggers. We also verified that it was

strictly insufficient to merely monitor average power consumption, or median power consumption, as a sim-

ple thresholding mechanism. This is due to keyboard LED’s, such as capslock, drawing considerable power,

with multiple LEDs adding up to more power draw than a keylogger.

8.1 Future Study

Future work on this project includes testing on more keyboards, further validating the methods we have

demonstrated. Once validation is complete, we’d suggest the implementation of our custom monitoring

circuit and code as a small ASIC (Application-Specific Integrated Circuit) chip that could be built into a

computer. Eventually we hope to see standard USB ASIC circuitry meticulously monitor power usage and

implement the techniques discussed in this project. We hope to see such circuitry and associated software

then integrated into operating systems such as LINUX.

40



9 Appendix

41



Figure 27: The above is the detect keylogger.py code. This is the file that gets run to try to detect a
keylogger.

42



Figure 28: The above code is from record ADC measurements.py. You need to have this file in place to run
detect keylogger.py (since it has functions imported).

43



10 References

1. ADS1115 16-Bit ADC - 4 Channel with Programmable Gain Amplifier. (n.d.). Adafruit Industries.

Retrieved April 23, 2023, from https://www.adafruit.com/product/1085

2. ads1115 Price and Stock. (n.d.). Findchips. Retrieved April 23, 2023, from

https://www.findchips.com/search/ads1115

3. Hardware Keylogger - KeyGrabber Forensic Hardware Keylogger. (n.d.). Keelog. Retrieved April 23,

2023, from https://www.keelog.com/keygrabber-keylogger/

4. Hardware Keylogger - KeyGrabber Pico. (n.d.). Keelog. Retrieved April 23, 2023, from

https://www.keelog.com/keygrabber-pico/

5. KeyGrabber TimeKeeper USB MCP 16GB - Premium USB Hardware Keylogger with 16GB Flash

Drive, Time-stamping and Mac Compatiblity. (n.d.). Keelog. Retrieved April 23, 2023, from

https://www.keelog.com/keygrabber-timekeeper-usb-mcp-premium-usb-hardware-keylogger-with-flash-

drive-time-stamping-and-mac-compatiblity/

6. KeyGrabber USB 16MB - USB Hardware Keylogger with 16MB Flash Drive. (n.d.). Keelog. Re-

trieved April 23, 2023, from https://www.keelog.com/keygrabber-usb-usb-hardware-keylogger-with-

flash-drive/

7. MacKay, D. J. (2003, September 25). Information Theory, Inference and Learning Algorithms - David

J. C. MacKay. Google Books. Retrieved April 23, 2023, from

https://books.google.com/books?id=AKuMj4PN EMC

8. MCIGICM (10 Pcs) 10K Ohm Breadboard Trim Potentiometer kit with Knob for Arduino. (n.d.).

Amazon.com. Retrieved April 23, 2023, from https://www.amazon.com/MCIGICM-Breadboard-Trim-

Potentiometer-Arduino/dp/B07S69443J

9. Tumor size. (n.d.). Mayo Clinic. Retrieved April 23, 2023, from https://www.mayoclinic.org/diseases-

conditions/breast-cancer/multimedia/tumor-size/img-20006260

10. USB Type A Jack Breakout Cable with Premium Female Jumpers. (n.d.). Adafruit Industries. Re-

trieved April 23, 2023, from https://www.adafruit.com/product/4449

44



11. USB Type A Plug Breakout Cable with Premium Female Jumpers. (n.d.). Adafruit Industries.

Retrieved April 23, 2023, from https://www.adafruit.com/product/4448

12. Wynn, L.S. (2023, March 28). How Much Text is in a Kilobyte or Megabyte? (with pictures).

EasyTechJunkie. Retrieved April 23, 2023, from https://www.easytechjunkie.com/how-much-text-

is-in-a-kilobyte-or-megabyte.htm

45


	Introduction
	Background
	Background on Keyloggers
	Keylogger Examples
	Keylogger Features


	Threat Model and Problem Definition
	System/Attacker Model
	Corporate Environment
	Attacker’s Access / How Information is Stolen

	Problem Definition

	Observations
	Digital Multimeter Empirical Methodology
	Digital Multimeter Data Analysis

	Design of Circuit
	Materials to Build Setup
	Circuit Rationale
	Circuit Cost Breakdown
	Proof of Concept Circuit Cost
	Circuit on Chip Estimated Cost


	Modifications to KL-divergence algorithm
	Methods of Analyzing Histograms
	Original KL-divergence algorithm
	What is KL-divergence
	Properties of KL-divergence
	Interpreting KL-divergence

	Modification Specifics

	Detection Results
	Implementation
	Efficacy of Detection

	Conclusion
	Future Study

	Appendix
	References

