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ABSTRACT 

 

Alzheimer’s disease (AD) is thought to be initiated by the formation of extracellular 

amyloid-β (Aβ) neurotoxin. Our laboratory uses neurotrophic factor (NTF) mimetics to 

increase neuronal survival in the presence of Aβ. This project investigated the potential role 

of the lysosomal protease cathepsin-D (Cat-D) in Aβ-induced cell death in vitro, and the 

effect of NTF therapy on cellular levels of therapeutic anti-oxidative superoxide dismutase 

(SOD) in vivo. A fluorescence substrate assay demonstrated that Cat-D activity increases in 

Aβ-treated human neuronal SHSY cells, while immunoblots demonstrated that NTF 

treatment increases the cellular levels of SOD in the brains of AD mice. Cell morphology and 

viability counts demonstrated that NTF treatment restores viability and neuronal connections 

in vitro, and thus may rescue Cat-D activity levels, as well.  Further testing will be required to 

determine this effect of NTF on Cat-D activity, and accurately place Cat-D within the 

hypothesized cell death cascade. 
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BACKGROUND 

 

Alzheimer’s Disease 

Introduction 

Alzheimer’s disease (AD) was first characterized over a century ago in a single 

patient of the German physician Dr. Alois Alzheimer (Alzheimer’s Foundation, 2010). 

Today, AD is the underlying neurodegenerative disorder responsible for the largest 

percentage of dementia cases worldwide, including an estimated 60 and 80% of all 

documented cases in the United States (AD Association, 2010; Alzheimer’s Foundation of 

America, 2010).  With another American predicted to develop AD every 70 seconds (AD 

Association, 2010), and this rate is forecast to rise with increasing life expectancies, the 

disease has recently been repositioned at the forefront of both therapeutic and preventative 

research initiatives to control its widespread medical, social, and economic repercussions. 

 

Symptoms 

 Early symptoms of AD include impaired functioning in basic tasks and short term 

memory retention, particularly in recalling names and recent events, as well as psychological 

modifications such as general apathy or depression (Alzheimer’s Association, 2010) due to 

the concentrated neuronal cell death in the hippocampus and entorhinnal cortex (Progress 

Report, 2009; Alzheimer’s Foundation of America, 2010). As the disease progresses, 

compromising surrounding regions of the brain, the initial memory loss, disorientation, 

confusion, and psychological effects become more severe while symptoms extend to further 

cognitive functions including judgment,  behavior, speaking, swallowing, and motor control 

(Alzheimer’s Foundation of America, 2010; Progress Report, 2009; Alzheimer’s Association, 

2010). Accompanying sensory decline, such as that shown in visuo-spatial (Johnson et al., 
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2009) and olfactory (Wilson et al., 2009) systems, may even lead to hallucinations 

(Alzheimer’s Foundation of America, 2010), completing the “Four A’s” of Alzheimer’s – 

amnesia, aphasia, apraxia, and agnosia (AFA, 2010). Although these symptoms typically 

appear between age 60 and 70, early-onset cases occur more rarely with symptoms first 

appearing in the 40’s and 50’s.  The latter cases typically have a genetic component, and are 

termed Familial AD (FAD). 

At the cellular level, patients generally present several pathological anomalies 

hallmark to AD, including extracellular aggregations of beta-amyloid (Aβ) protein fragments 

known as “plaques”,  intracellular interwoven fibers of abnormal hyper-phosphorylated tau 

protein known as “neurofibrillary tangles”, and general brain atrophy due to the neuronal 

death caused by widespread synaptic disruption (Alzheimer’s Association, 2010; Progress 

Report, 2009; AFA, 2010).  The average life span following AD diagnosis is 8 to 10 years, at 

which point complications such as immobility and difficulty swallowing often lead to fatal 

pneumonia (Alzheimer’s Association, 2010).  Figure-1 outlines these stages of AD from pre-

symptomatic through advanced dementia relative to various bio-markers.   
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Figure-1:  Diagram of the Various Stages of AD.  Shown are the stages 

of AD from early pre-symptomatic through advanced dementia relative to 

several hallmark bio-markers.  (Progress Report, 2009) 

 

Figure-2 displays cross-sectional views of a normal human brain (upper) and an advanced 

AD brain (lower), clearly illustrating the severe tissue damage in the temporal lobes and an 

expansion of the central ventricles. 

 

 

 

 

 

 

 

 

Figure-2:  Photographs of Normal Human Brain 

(Upper) and AD Brain (Lower).  (Sanders, 2011) 

 

http://www.sciencenews.org/view/download/id/70319/name/___
http://www.sciencenews.org/view/download/id/70319/name/___
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AD Diagnosis 

Alzheimer’s disease is traditionally diagnosed by a combination of observable 

behavioral changes, individual and familial medical histories, cognitive function assessments, 

and periodic brain imaging. However, at present, experienced physicians are capable of 

discerning symptomatic “Possible AD” dementia (a diagnosis which leaves the potential for 

an alternate cause) and “Probable AD” dementia (with no apparent alternate cause) from 

other neurological disorders with approximately 90% accuracy (Progress Report, 2009), at 

which point 60 to 70% of the neurons in the brain are likely already damaged or dead 

(Sanders, 2011).  AD may only be conclusively diagnosed by the presence of Aβ plaque and 

neurofibrillary tau tangle pathologies in a postmortem autopsy (Progress Report, 2009; AFA, 

2010).  

 More advanced diagnostic protocols for enhanced sensitivity to early AD and 

discrimination between types of dementia are currently under investigation in order to 

promote early preventative treatment and reduce neuronal loss.  Standard dementia tests 

dating back to the 1970’s, such as the Mini Mental State Examination (MMSE), are 

undergoing modernization to be self-administered and computer-scored (Saxton et al., 2009). 

Brain imaging initiatives, such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

launched in 2004, are investigating biomarkers and scan features unique to AD (Progress 

Report, 2009), while improved PET imaging using florbetapir has been shown to accurately 

predict up to 96% of AD cases according to validation by postmortem autopsy (Clark et al., 

2011).  Further, Aβ plasma levels have been negatively correlated with cognitive decline in a 

sample of non-dementia elderly, suggesting that as the AD brain forms Aβ-containing senile 

plaques less Aβ is free to move to the plasma, thus diminishing plasma levels and in turn 

implicating the diagnostic potential of simple blood tests (Yaffe et al., 2011).   

 



9 

 

AD Risk Factors 

Age is currently the leading risk factor for the development of AD. Upwards of 90% 

of diagnosed AD individuals are age 60 or older, and the number of individuals within this 

population doubles for every five year interval beyond age 65 (Progress Report, 2009). 

Though the precise relationship between age and the development of AD remains murky, the 

decline in mitochondrial function and metabolic shift of neurons from glucose to fats and 

amino acids which occurs normally in aging has been suggested to predispose the brain to 

AD (Yao et al., 2009; Kadish et al., 2009). In addition, any decline in the brain’s normal 

ability to prevent Aβ build-up (i.e. a decline it its ability to remove Aβ) would lead to 

increased brain levels of the toxin (Mawuenyega et al., 2010). 

Genetics has also been shown to play a major role in AD development.  Mutations in 

three particular genes, amyloid precursor protein (APP) of chromosome-21, presenilin-1 of 

chromosome-14, and presenilin-2 of chromosome-1, have been strongly associated with the 

increased processing of APP protein to form toxic Aβ in early-onset familial AD (Progress 

Report, 2009).  In addition, the ε4 allele of a fourth gene, apolipoprotein E (apoE) on 

chromosome-19, has also been named as a major genetic risk factor in late-onset, sporadic 

AD (Roberson & Mucke, 2006), and the copy number of this ε4 allele has been positively 

correlated with high aggregate Aβ loads in the cortical, frontal, temporal, posterior congulate-

precuneus, parietal, and basal ganglia of human brains by Pittsburg Compound B (PiB) PET 

scans (Reiman et al., 2009).  Several other genes, including cluserin (apoJ, or CLU), 

phosphatidylinositol-binding clathrin assembly protein (PI CALM), CR1, and ADAM10, 

have also been implicated by the Genome-Wide Association Study (GWAS) and smaller 

projects in the development of late-onset AD (Harold et al., 2009; Progress Report, 2009). 

Due to the largely unknown mechanism of AD pathology, a variety of other 

conditions have also been suggested as risk factors for the disease. Various epigenetic case 
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studies offer a variety of “nature-nurture” scenarios, such as the recent implications in one 

twin study of lowered DNA methylation due to pesticide exposure (Mastroeni et al., 2009).  

Other research suggests that vascular disease, diabetes, Lewy body disorders, and other 

conditions common in aged populations may increase AD susceptibility (Schneider et al., 

2009; Sonnen et al., 2009). Also implicated are sleep deprivation, hormone imbalances, 

anesthetics, toxic free radicals, brain injuries, and general inflammation (Dong et al., 2009; 

Kang et al., 2009; AFA, 2010).  Much research in preventative measures to counter some of 

these risk factors has also been conducted, which suggests that ample social interaction, 

healthy diet and exercise, mental exercise, and engaging in “enriching life experiences” might 

act as neuroprotective practices to combat AD (Carlson et al., 2009; Progress Report, 2009; 

Smith et al., 2009).  

 

AD Prevalence 

As of 2009, an estimated 5.1 million Americans are reported to suffer from AD, 

including one of every eight individuals age 65 or older (Figure-3) (Progress Report, 2009; 

AFA, 2010; Alzheimer’s Association, 2010).  Worse, these numbers are definitively 

increasing due to better diagnostic tools and increased life expectancy, with forecasts to 

nearly double as soon as 2030 (Alzheimer’s Disease International, 2010). Incidence rates are 

higher in women than men and in African American and Hispanic populations than 

Caucasian while also varying hugely between global regions, most likely due to differential 

gender life expectancies, medical reporting infrastructure, disease recognition, population 

genetics, or other demographical risk factors (Alzheimer’s Association, 2010).  
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Figure-3:  Alzheimer’s Disease Cognitive Impairment for Various 

Age Groups.  (Alzheimer’s Association, 2010) 

 

Due to this high prevalence, AD was found to be the sixth leading cause of death in 

the United States in 2006, and fifth among those 65 and older (Alzheimer’s Association, 

2010), surpassing diabetes from the previous year (Heron et al., 2008).  Further, while 

mortality rates from other leading causes of deaths worldwide decreased between 2000 and 

2006, including those of stroke, cancer, and the highest ranking heart disease, AD deaths 

increased by 46.1% (Alzheimer’s Association, 2010).  

 

AD Therapies  

The search for AD therapies is supported by a wide base of both national and 

international platforms, including the NIA Division of Neuroscience Translational Research 

Platform and Alzheimer’s Disease Centers, National Alzheimer’s Coordinating Center, 

National Cell Repository for Alzheimer’s Disease, and the Genetics of Alzheimer’s Disease 

Data Storage Site (Petanceska et al., 2009; Alzheimer’s Association, 2010).  Though no cure 

currently exists for AD, five FDA approved drugs and approximately 90 experimental 



12 

 

courses of therapy are in use in the U.S. in attempts to slow or stop the progression of the 

disease (Alzheimer’s Association, 2010).  Of the five approved medications, cholinesterase 

inhibitors (donepezil, galantamine, rivastigmine, and tacrine) attempt to offset damage to 

cholinergic neurons in AD by inhibiting the enzymatic degradation of synaptic acetylcholine, 

while the fifth medication (memantine) prevents excitotoxic overstimulation of NMDA 

glutamate receptors (Roberson & Mucke, 2006). These two AD therapy regimens are often 

used together, though their effects target the symptoms rather than the source of AD.   

Other treatments approved for non-AD disorders, such as antipsychotics, anti-

depressants, nonsteroidal anti-inflammatory drugs (NSAIDS), sildenafil (Viagra®), and 

immune-modulatory polypeptide glatiramer (used in multiple sclerosis), have also been tested 

in AD cases based on their applications to the documented symptoms (Roberson & Mucke, 

2006; Puzzo et al., 2009).  Clinical trials have also investigated correlations between AD and 

factors such as depression, sleep apnea, and the consumption of gingko biloba, DHA omega-

3 fatty acids, and resveratrol (Lu et al., 2009a; Cooke et al., 2009; Snitz et al., 2009; Progress 

Report, 2009, page 42).   

Recently, novel experimental treatment approaches for AD have focused on 

preventing the formation of toxic Aβ by blocking gamma and beta-secretases, blocking 

apoptotic caspases, removing toxic Aβ from the brain through immunizations, upregulating 

Aβ transport proteins, prohibiting the aggregation of Aβ, and inhibiting the hyper-

phosphorylation and aggregation of tau protein (Roberson & Mucke, 2006; Kim et al., 2009; 

Lu et al., 2009b; Luo et al., 2010). Among these novel therapies is the elevation of nerve 

growth factor (NGF) levels in the brain, stimulating the replacement of damaged or dead 

neurons (Roberson & Mucke, 2006; Progress Report, 2009), a neuroregenerative approach 

our lab initially applied to brain ischemia (Adams et al., 2003; Shashoua et al., 2003) and is 

currently testing for AD.  
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AD Socioeconomic Toll 

According to the CDC World Alzheimer’s Report, released in 2001: 

“If dementia care was a country, it would be the world’s 18
th

 largest 

economy, ranking between Turkey and Indonesia.  If it was a company, it 

would be the world’s largest by annual revenue, exceeding Wal-Mart (US 

$414 billion) and Exxon Mobil (US $311 billion)” (Vas, 2001).  

 

In our country alone, the national tab for AD care is estimated to exceed $100 billion 

annually, including $60 billion lost solely to companies and corporations through decreased 

productivity of caregivers and insurance fees (AFA, 2010; Alzheimer’s Association, 2010). 

These numbers also do not account for the time and energy donated by the approximately 

10.9 million emotionally stressed and unpaid caregivers and family members, estimated at an 

additional $144 billion (Figure-4). These soaring expenditures are a result of the substantial 

percentage of all medical attention which the elderly, and particularly those with dementia, 

require – as 12% of the population, they constitute 20% of physician visits, 30% of 

prescriptions, 30% of all hospital visits, 40% of emergency responses, and 90% of nursing 

home residents (Alzheimer’s Association, 2010).  As the average population ages, and the 

incidence rate of AD increases, so will these monetary and emotional tolls. 
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Figure-4:  Cost of AD Dementia and Statistics on Caregivers.  

(Alzheimer’s Association, 2010) 

 

AD Cellular Pathology and the Amyloid Cascade Hypothesis 

The hallmark AD extracellular senile plaques and intracellular neurofibrillary tangles 

originally seen by Alois Alzheimer nearly a century ago have been diagnostic in AD 
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neuropathology ever since.  However, the precise mechanism of AD continues to remain a 

mystery.  Over time research has identified several key mechanistic theories to explain its 

initiation and progression, which are now dominated by the favored amyloid cascade 

hypothesis (Figure-5).  According to this mechanistic explanation for AD, pathogenesis 

begins with the generation of the 40 or 42 amino acid amyloid-beta peptide (Aβ) by genetic 

defect or abnormal processing of the 770 amino acid amyloid precursor protein (APP) via 

gamma- and beta-secretases (Armstrong, 2006; Verdile et al., 2004; Goedert and Spillantini, 

2006; Zheng and Koo, 2006).  Analysis of peptide levels in AD brains implicate the soluble 

AB42 variant as the most pathogenic form of the protein fragment and the key player in the 

initiation of the cascade (Yuan and Yankner, 2000; Takahashi et al., 2008). These soluble, 

highly neurotoxic protein fragments aggregate over time to form extracellular oligomers and, 

eventually, the disease’s hallmark senile plaques.  Although these senile plaques have long 

been held accountable for the disruption of synapse-strengthening long term potentiation 

(LTP), induction of oxidative stress, and intracellular accumulation of altered tau protein 

(Progress Report, 2009; Walsh et al., 2002), recent experiments indicate that low molecular 

weight Aβ monomers and dimers are far more toxic. In particular, these forms of Aβ have 

been shown to achieve their toxic effects by activating, both directly and indirectly, key 

receptors for oxidative stress induction and intracellular death signal stimulation through 

receptors such as RAGE and TNF-R (Yan et al., 1996; Yuan and Yankner, 2000).  Thus new 

drug discovery initiatives to alleviate Aβ-induced cell death must block both apoptotic and 

oxidative stress pathways.   

The amyloid cascade hypothesis has been challenged as an accurate model of AD 

initiation and pathogenesis, particularly due to the discovery of significant Aβ loads in non-

demented individuals, the absence of such loads in demented individuals, and null correlation 

between plaque clearance and rescued cognitive function (Sanders, 2011). Models placing 
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inflammation, neuronal DNA duplication, and neurofibrillary tau tangles at the forefront of 

AD pathology have been offered as alternatives (Rapoport et al., 2002; Verdile, 2004; 

Sanders, 2011).  However, mutagenesis experiments have brought the Aβ cascade and tau 

models together to show that abnormal tau production occurs downstream from the Aβ 

initiation of cell death, and is required for one of the end stages of death as neurons lose their 

characteristic shape (Rapoport et al., 2002; Roberson et al., 2007).  Other “theory merging” 

findings include the post-synaptic co-localization of Aβ42 and tau, the direct impact of Aβ and 

anti-Aβ introduction on tau pathology, and the sequestering of the signaling molecule EphB2 

by Aβ, causing severe AD-like cognitive impairment (Sanders, 2011).  Thus, despite scrutiny 

from the scientific community, substantial support for the amyloid cascade continues to 

bolster its acclaim. 
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Figure-5: The Amyloid Cascade Hypothesis. The amyloid cascade 

hypothesis states that Aβ is the major cause for neuronal death and dysfunction 

in AD dementia. Genetic and environmental influences (i.e. APP, PS1 and PS2 

mutations) cause a dysregulation in APP processing resulting in an over-

production and accumulation of highly neurotoxic Aβ42 peptide leading to 

diffuse plaque deposition. Abnormal cell signaling leads to abnormal tau 

production and synaptic loss. The formation of these plaques results in 

microglial and astrocytic activation, oxidative damage, and tau aggregation 

culminating in neuronal loss leading to dementia.  (Verdile et al., 2004) 

 

Neurotrophic Factors 

Neurotrophic factors (NTFs) are proteins that function in nerve regeneration, synaptic 

outgrowth, and long-term memory consolidation in the brain (Lindsay et al., 1994; Progress 

Report, 2009).  NTF levels increase in the brain post-injury (Connor and Dragunow, 1998; 

Ferrer et al., 1998) while gene therapy and stem cell techniques boosting NTFs have 

demonstrated rescue of impaired synaptic function and memory (Nagahara et al., 2009; 

Blurton-Jones et al., 2009). Therefore, NTFs have been studied as possible therapeutics for 
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brain-related neurological disorders such as AD (Barinaga, 1994; Tuszynski and Gage, 1994; 

Shen et al., 1997; Hefti, 1997; Yu and Silva, 2008; Zuccato and Cattaneo, 2009).  

Ependymin (EPN) is a glycoprotein NTF first discovered in the zona ependymal cells 

of goldfish brain (Benowitz and Shashoua, 1997).  Subsequently, ependymins were 

characterized in other organisms, including mice, monkeys, and humans (Adams and 

Shashoua, 1994; Adams et al., 1996; Apostolopoulos et al., 2001). EPN was pursued by our 

lab as an attractive candidate for an Alzheimer’s disease NTF therapeutic, however full-

length NTFs are difficult to deliver to the brain due to their inefficient crossing of the blood 

brain barrier (BBB), leaving surgical intra-cranial injection as the only mode of delivery.   To 

avoid surgical delivery, our laboratory is developing a therapeutic approach using shorter 

synthetic versions of EPN, called EPN peptides, which more efficiently cross the BBB.  

Using this peptide approach, our lab previously demonstrated that treating cultured human 

SHSY cells with Aβ25-35 decreases cell survival, while the addition of human EPN-1 peptide 

(hEPN-1) can restore cell survival (Stovall, 2006).  

 

Cathepsin-D 

The lysosomal cysteine proteases known as cathepsins are the largest cohort of 

proteolytic lysosomal enzymes, comprised of eleven known varieties – B, H, L, S, F, K, C, 

W, X, V, O – plus the lone aspartic lysosomal protease cathepsin-D (Cat-D) (Guicciardi et 

al., 2004; Chwieralski et al., 2006).  Cathepsins B, L, and D, are ubiquitously expressed and 

found in the greatest quantities throughout the body (Guicciardi et al., 2004).  All cathepsins 

in the inactive pro-enzyme form are processed to catalytically active proteases in the acidic 

environment of the lysosome, where they were traditionally believed to exist solely for 

protein degradation and debris clearance from the cell. However, recent research has 

illuminated other functional roles for cathepsins in a variety of pathways, ranging from 
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protein processing and antigen recognition (cathepsin-B), to antigen presentation (cathepsin-

L, S), to bone remodeling (cathepsin-K), to protein targeting and neurodegenerative apoptosis 

(cathepsin-D) (Guicciardi et al., 2004; Chwieralski et al., 2006).  Some roles describe the 

release of these proteases from the acidic lysosomes to the neutral cytosol by lysosomal 

permeabilization, a process thought to be initiated by factors such as TNF-α and excess free 

Ca
2+

 which precedes caspase activation and mitochondrial dysfunction in vitro (Bidere et al., 

2003; Chwieralski, 2006). 

Of the twelve known cathepsins, this project focused on the aspartic protease Cat-D.  

This cathepsin is known to affect tissue homeostasis in post-natal humans and has been 

shown to stimulate metastasis in some cancers (Benes et al., 2008). Cat-D has also been 

implicated in cancer and neurodegenerative apoptotic pathways induced by factors such as 

staurosporine, sphingosine, interferon-γ, and FAS/CD95/APO-1, as well as TNF-α and 

oxidative stress, which play pivotal roles in AD pathogenesis (Guicciardi et al., 2004).  

However, the precise role of Cat-D in apoptotic pathways is not yet known.  Scattered reports 

indicate Cat-D plays a cell death role by increasing the activity of caspases, increasing ROS, 

and decreasing mitochondrial function (Vancompernolle et al., 1998; Zhao et al., 2003; 

Bidere et al., 2003; Conus et al., 2008).  Polymorphisms in the Cat-D gene have also been 

loosely correlated with an increased risk for sporadic AD (Papassotiropoulos et al., 1999; 

Shuur et al., 2009), and Cat-D activity has been shown to increase early in AD (Cataldo et 

al., 1995).  Yet other studies alternately indicate a positive role for Cat-D in the degradation 

of toxic protein accumulations in vivo, such as the alpha-synuclein, Aβ42, and tau 

aggregations which encompass the hallmark pathologies of Lewy Body and AD dementia 

(Qiao et al., 2008; Leissring et al., 2009).  Thus, while research has established Cat-D within 

a selection of AD-associated pathways, it remains unclear whether Cat-D plays an 

aggravating or restorative role in AD neuronal apoptosis. 



20 

 

 

Superoxide Dismutase (SOD) 

Anaerobic cells produce reactive oxygen species (ROS) which are believed to 

contribute to the aging process and many neurodegenerative diseases (Venarucci et al., 1999; 

Allen and Tresini, 2000). The accumulation of ROS triggers oxidative stress which causes 

cellular damage and eventually cell death.  Aβ has been shown to increase the expression of 

Hemoxygenase type 1 (HO-1) and cellular oxidative stress in SHSY cells (Yan et al., 1996). 

Superoxide dismutase (SOD) is an anti-oxidative enzyme which catalyzes the dismutation of 

anionic superoxide in the presence of molecular hydrogen to molecular oxygen and hydrogen 

peroxide (Figure-6; Venarucci et al., 1999; Allen and Tresini, 2000).  

 

 

Figure-6: Chemical formula for the dismutation of anionic superoxide, catalyzed 

by SOD. 

 

SOD primarily acts to protect oxygen-metabolizing eukaryotic cells from the 

detrimental effects of superoxide free radicals (McCord et al., 1971).  Transgenic flies 

overexpressing SOD show a decreased level of oxidative damage and a 33% increase in life-

span compared to the diploid controls (Orr and Sohal, 1994). Also, transgenic mice exhibiting 

diminished SOD expression show an increased predisposition to stroke (Sheng et al., 1999; 

Sampei et al., 2000).  Previous work in our lab showed that the treatment of cultured mouse 

neuroblastoma cells in vitro with a goldfish ependymin mimetic (CMX-8933) increased the 

expression of SOD-1 (Parikh, 2003) which may in turn help to alleviate Aβ-induced 

oxidative stress in neuronal cells.  This project will test the effects of a human NTF hEPN on 

this therapeutic enzyme in transgenic AD mice. 
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PROJECT PURPOSE 

 

This project will investigate the potential role of the lysosomal protease cathepsin-D 

(Cat-D) in Aβ-induced cell death in vitro, and the effect of NTF therapy on cellular levels of 

therapeutic anti-oxidative superoxide dismutase (SOD) in vivo.   

Although Cat-D has previously been implicated in AD, the literature is conflicting; 

some studies indicate Cat-D induces neuronal apoptosis by activating caspases and increasing 

ROS, while other studies suggest a neuroprotective role through the degradation of toxic 

proteins similar to Aβ.  A fluorescence substrate assay will be used to measure Cat-D activity 

in Aβ-treated human neuronal SHSY cells, and to determine whether altered activity levels 

are rescued following treatment with neurotrophic factor.  Cell morphology and viability 

counts will also be monitored during the Aβ and NTF treatments. 

Alternately, ROS has been shown to play a direct role in neuronal death due to AD.  

Because SOD is an enzyme known to therapeutically reduce ROS, we will also investigate 

whether our neurotrophic factor treatment could increase the cellular levels of SOD in the 

brain.  These SOD levels in AD transgenic mice treated with vehicle or NTF will be 

measured by immunoblot analysis. 
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MATERIALS AND METHODS 

 

In vivo AD Mouse Model 

Alzheimer’s mice (5X transgenic for human amyloid precursor protein (APP) and 

presenilin (PSEN) mutations; The Jackson Laboratory #006554) were aged to 9 months, at 

which age senile plaque formation is prevalent, then dosed 2X per day for two weeks with 20 

mg/kg hEPN NTF mimetic, after which brains and livers were harvested and stored at -80ºC. 

 

Genotyping AD Mouse Tissues 

Genotypes of AD mice were confirmed through PCR for APP and PSEN transgenes. 

DNA was isolated by both crude alkaline tissue lysis and phenol extraction techniques, then 

amplified with primers for human APP or PSEN.  

 

Alkaline Lysis of AD Mouse Liver 

Isolated liver tissue from AD mice was retrieved from -80°C storage, and thawed for 

five minutes.  A 2 mm liver section was cut using a razor blade, and placed in a 1.5 mL 

microfuge tube.  A 75 μL aliquot of Lysis Buffer (25 mM NaOH, 0.2 mM EDTA) was added 

to each tissue section, and each tube was placed in a thermocycler at 98°C for one hour, then 

cooled to 15°C.  Each tube was briefly micro-centrifuged to pull solution from the lid, then 

75 μL of Neutralization Buffer (40 mM Tris-HCl, pH 5.5) was added to each tube and mixed 

by inversion. Each sample was then centrifuged at 4000 rpm for three minutes to pellet cell 

debris. A 10 μL aliquot of supernatant was taken to be used later in PCR, and the remaining 

lysate was stored at 4ºC. 
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PCR 

Master mixes (400 µL) were prepared for ten APP and PSEN genotyping reactions 

(50 μL per reaction) according to the following table: 

 

APP: 

 237 μL of dH2O 

 50 μL of 10X PCR buffer 

 25 μL of 50 mM MgCl2 

 10 μL of 10 mM dNTPs 

 25 μL of 20 μM APP-3610 

 25 μL of 20 μM APP-3611 

 12.5 μL 20 μM Ctrl-8744 

 12.5 μL of 20 μM Ctrl-8745 

 3 μL of 5 U / μL Taq 

Polymerase 

 

PSEN: 

 196 μL of dH2O 

 50 μL of 10X PCR buffer 

 25 μL of 50 mM MgCl2 

 10 μL of 10 mM dNTPs 

 33 μL of 20 μM PSEN-1644 

 33 μL of 20 μM PSEN-1645 

 25 μL 20 μM Ctrl-7338 

 25 μL of 20 μM Ctrl-7339 

 3 μL of 5 U / μL Taq 

Polymerase 

 

Master mix (40 µL) was aliquoted into tubes containing 10 µL of tissue lysate (to make a 50 

µL reaction), then subjected to PCR as follows:  Step 1: 94°C for three minutes; Step 2: 94°C 

for 30 seconds, 52°C for one minute, 72°C for one minute; Repeat Step 2 for 35 cycles; Step 

3:  72 °C for two minutes; Step 4: 4 °C infinitely.  Following PCR, 5.5 µL of 10X Sample 

Buffer (0.025% xylene cyanole, 100 mM EDTA pH 8.0, 50% glycerol) was added to each 50 

µL reaction, then 10 µL was loaded onto a 2.5% agarose gel in 1X TAE buffer containing 1 

µg/mL (final concentration) Ethidium Bromide.  The first lane was loaded with 10 µL of 100 

bp DNA ladder (0.5 µg).  Gels were electrophoresed at approximately 60 V for 1.5 hr, then 

were photographed by UV trans-illumination. 

 

Brain Whole Cell Lysates 

A small slice of brain tissue (0.1 mg) was mixed with 1 mL of Complete Lysis Buffer 

[20 mM HEPES pH 7.9, 10 mM KCl, 300 mM NaCl, 1 mM MgCl2, 0.1% Triton X-100, 20% 

glycerol, 0.5 mM DTT (freshly added; Gibco), and 0.5 mM PMSF (freshly added; Sigma)], 
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then homogenized by ten up-and-down strokes using a 1 mL glass dounce homogenizer.  

Homogenates were incubated on ice for five minutes with occasional vortexing to ensure cell 

lysis, then microfuged for five minutes at 13,000 rpm to pellet cell debris.  Supernatant 

aliquots were stored at -80°C. 

 

SOD & Tubulin Immunoblots 

Total cellular protein concentrations for each lysate were assayed by Bradford Assay.  

Appropriate volumes providing 5 µg per lane for tubulin or 2 µg per lane for SOD were 

mixed with 4X sample buffer (0.5 M stacking gel buffer, 8% SDS, 20% glycerol, 40% β- 

mercaptoethanol, and 0.4% bromophenyl blue) to make a total load volume of 5 µL. 

Kaleidoscope Pre-Stained Standard (10 µL, Bio-Rad) was mixed with an equal volume of 1X 

sample buffer (20 µL load volume).  The Biotinylated Broad Range Standard (Bio-Rad) was 

prepared using 10 μL of 1X sample buffer and 1 μL (0.5 μg) of the biotinylated standard.  All 

samples were boiled for two minutes to ensure protein denaturation, then loaded onto gels 

containing 10% polyacrylamide, 0.38 M resolving buffer, 0.1% SDS, 0.1% ammonium 

persulfate, and 0.05% TEMED.  The upper stacker was composed of  5% polyacrylamide, 

0.125 M stacking buffer, 0.1% SDS, 0.1% APS, 0.1% TEMED.  Electrode buffer included 25 

mM Tris, 0.192 M glycine, and 0.1% SDS.  Gels were pre-run for five to ten minutes at 150 

volts to equilibrate with the buffer, then electrophoresed for approximately 150 volts for three 

hours.  

Once electrophoresis was complete, the protein was electroblotted to nitrocellulose 

membrane (Whatman, 0.45 μm pore size) in pre-chilled transfer buffer (48 mM Tris, 39 mM 

glycine, 0.037% SDS, 20% methanol).  Transblotting was performed at 50 volts for two 

hours at 4°C with stirring.  Membranes were then submerged in blocking solution (1% 
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casein, 1X PBS, 0.2% Tween- 20) with the membrane protein-side up. The membrane was 

blocked for at least one hour at room temperature with rocking. 

Primary antibody incubations for SOD contained 25 μL of 90 mg/ml rabbit anti-

bovine SOD-1 (Rockland) added to 50 mL of fresh blocker solution (1:2000 dilution), to give 

a final concentration of  45 μg/mL.  Primary antibody incubations for β-tubulin contained 25 

μL of 500 μg/ml anti-β-tubulin (Imgenex, IMG-5810A) mixed with 50 mL of fresh blocker 

solution (1:2000 dilution) to give a final concentration of 0.25 μg/mL. Membranes were 

incubated with primary antibody for two hours at room temperature with rocking, then were 

washed twice for two minutes with PBS-Tween (1X PBS, 0.05% Tween) using vigorous 

shaking on a gyratory shaker. Secondary antibody incubations included a 0.4 mg/mL final 

concentration of goat-anti-rabbit-HRP (Pierce) and a 0.5 mg/mL final concentration 

Streptavidin-HRP (Pierce; 1:1000 dilutions of glycerol stocks; 25 μL of secondary antibody 

added to 25 mL blocker).  Secondary antibody incubations were performed for two hours at 

room temperature with gentle shaking. Membranes were then washed three times with PBS-

Tween for two minutes with vigorous shaking on a gyratory shaker, then rinsed briefly with 

1X PBS before detection. 

SuperSignal West Pico chemiluminescent substrate (Pierce) was used to detect protein 

presence by combining equal amounts of Stable Peroxidase Solution and Luminol/Enhancer 

Solution just prior to use, and incubating the membrane in the fresh substrate solution for five 

minutes with protein-side facing upward at room temperature. The substrate was then 

allowed to drip from the membrane without drying, then placed between two clear plastic 

sheets (Gibco) in a film cassette.  Tubulin blots were exposed to Biomax XAR-5 film 

(Kodak) for four minutes, and SOD blots for one second.  Film was developed automatically 

in the Kodak M35A X-Omat Processor. 
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Human SH-SY5Y Cell Culture 

Human SH-SY5Y neuroblastoma cells (commonly termed SHSY) were obtained 

from medium-adapted liquid nitrogen stocks previously prepared in our laboratory.  Culture 

medium contained 500 mL DMEM-F-12 (ATCC), 50 mL of FBS (Gibco, ATCC, or 

Hyclone) to give a final concentration of 10%, and 0.275 mL of 10 mg/mL gentamycin 

(BioWhittaker) to give a final concentration of 5 μg/mL.  The DMEM-F-12, FBS, and 

gentamycin were mixed in the 500 mL medium bottle, then filter sterilized.  Medium was 

stored at 4°C.   

To thaw our lab’s SHSY cells from liquid nitrogen storage, the cells were placed in a 

37°C water bath for one to two minutes until completely thawed, then carefully re-suspended 

and transferred into a 15 mL conical tube where 5 mL of pre-warmed medium was added. 

The tube was centrifuged for five minutes at 6500 rpm, the supernatant aspirated from the 

tube, and the cell pellet re-suspended in 4 mL of pre-warmed cell culture medium, which was 

then plated into a T-25 flask and placed in a 37°C + 5% CO2 humidified incubator. We did 

note, however, that this protocol for thawing and plating appeared to damage commercially 

purchased ATCC vials of frozen cells.   

Cultures were fed every 3-4 days until flasks achieved approximately 80% 

confluency, at which point cultures were split 1:2 into new flasks. To feed cultures, the old 

medium was aspirated and replaced with 4 mL of fresh, pre-warmed medium. To split 

cultures, the old medium was aspirated and replaced with pre-warmed medium (8 mL for T-

25, 30 mL for T-75), and the flask scraped to release the cells from the floor of the flask. The 

cells were then re-suspended and pipetted into new flasks (4 mL for T-25, 15 mL for T-75).  

To freeze SHSY cells, confluent T-75 flasks were scraped and the cell suspension 

centrifuged for five minutes at 6500 rpm. The supernatant was aspirated, and 1 mL of pre-

warmed freezing medium (Gibco) was added. The cells were re-suspended, pipetted into a 
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freezing vial, and stored at -80°C in a Styrofoam® rack for insulation to slow the freezing 

process. After 24 hours, the cells were moved to liquid nitrogen storage. 

For plating experiments, 70 to 75% confluent T-75s were aspirated, trypsinized for 

approximately two minutes at 37°C with 5 mL of 0.25% Trypsin-EDTA (Gibco), then re-

suspended with 10 mL pre-warmed medium in a 15 mL conical tube. The cell suspension was 

centrifuged, aspirated, and the cell pellet was re-suspended in 24 mL of pre-warmed medium 

and plated into six T-25s, each containing a total of 4 mL cell suspension. For Aβ treatment 

conditions, Yankner peptide (Tocris; see below) was introduced to flasks at 20 µM (80 µL of 

1 mM stock per 4 ml medium).  For hEPN treatment conditions, hEPN-1 peptide 

(BioTherapeutix, Inc.) was introduced to flasks at 150 µM (160 µL of 3.75 mM stock per 4 

ml medium). Untreated, control flasks generally reached approximately 80% confluency after 

72 hours, at which point cells were subjected to morphology and trypan blue exclusion cell 

counts (see below) and harvested by scraping to prepare whole cell lysates. 

 

Yankner Peptide 

Human Yankner peptide (Aβ25-35) was purchased from Tocris Bioscience (#1429, 

Batch 5B). The peptide was stored in 1 mM stock suspension (1 mg, 943 nmol peptide added 

to 0.94 mL of 1 mM sodium bicarbonate) at -20°C. The Yankner peptide was used at a final 

concentration of 20 μM in human SHSY cell culture, which has been proven sufficient 

previously in our lab for producing neurotoxic effects. 

 

hEPN-1 Neurotrophic Factor 

Several human ependymin–1 (hEPN-1) peptides containing the same amino acid 

sequence in different salt conditions were provided by BioTherapeutix, Inc. (Brookline, MA) 

or CS Bio Company (Menlo Park, CA).  Peptides were received as dry powders and stored at 
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-20°C. For plating experiments, hEPN-1 peptides were used at a final concentration of 150 

µM (1 mg of peptide added to 1 mL of filtered DMEM-F-12 medium). 

 

Cell Morphology Counts 

Three representative regions of each experimental flask were imaged at 72 hours post-

plating by a Leica inverted microscope and camera attachment at 20x magnification. Images 

were used to count cells with free stellate morphologies, physically networked morphologies, 

and free non-stellate (lacking protrusions, or “balled up”) morphologies, as well as total cells 

per viewing field. Counts from all three representative regions of flasks were averaged to 

provide final morphology estimates as a percentage of total cell counts. 

 

Trypan Blue Exclusion Viability Assay 

Cell suspensions harvested from experimental flasks were vortexed, and 10 µL 

aliquots of suspension were transferred to a 1.5 mL eppendorf tube. Each aliquot was 

vortexed and pipetted onto a clean microscope slide with an equal volume of 0.4% Trypan 

Blue (Gibco), and the solution was mixed using a pipette tip and spread to create an area of 

about 1cm by 1cm. Three representative regions of each slide were imaged (as described 

above), and images were used to count total viable (Trypan Blue-excluding) and non-viable 

cells. Counts from all three representative images were again averaged to provide final 

viability estimates as a percentage of total cell counts.  

 

SHSY Whole Cell Lysates 

Experimental T-25 flasks were harvested via scraping, and the cell suspensions were 

transferred to 15 mL conical tubes and centrifuged for five minutes at 500x g to obtain cell 

pellets, disregarding pre-selection for lysosomes. After reserving 1 mL of supernatant for 
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assaying, the remaining supernatant was aspirated and 200 µL of Complete Lysis Buffer [20 

mM HEPES pH 7.9, 10 mM KCl, 300 mM NaCl, 1 mM MgCl2, 0.1% Nonidet P40, 20% 

glycerol, 0.5 mM DTT (Gibco; added fresh) and 0.5 mM PMSF (Sigma; added fresh)] was 

added to each pellet, and the re-suspended pellet transferred to a 1.5 mL microfuge tube.  

Suspensions were incubated on ice for five minutes with occasional vortexing to ensure lysis, 

after which lysates were microfuged for five minutes at 13,000 rpm to pellet cell debris. The 

clarified supernatant was aliquoted into eppendorf tubes, and stored at -80°C. 

 

Cathepsin-D Activity Assays 

All Cat-D activity assays were performed using a Cathepsin-D Activity Assay Kit 

(Sigma, CS0800) designed to quantify Cat-D activity in solution by measuring the 

fluorescence of MCA (7-methoxycoumarin-4-acetyl) released from the substrate (MCA-Gly-

Lys-Pro-Ile-Leu-Phe-Phe-Arg-Leu-Lys(DNP)-D-Arg-NH2) in response to enzyme-substrate 

binding. The manufacturer’s protocol, which described the kit’s application to 100 µL 

reactions prepared in 96-well plates and assessed by plate readers, was adapted for use with a 

single 100 µL microcuvette via the preparation of reactions in microfuge tubes, individual 

processing of reactions, and intermittent cuvette cleaning with 0.1 N Nitric Acid followed by 

distilled water.  An MCA standard curve was established from MCA Standard Solution 

(Sigma) to relate MCA concentration to fluorescence, and to optimize fluorimeter settings to 

the protocol.  The medium and lysate preferences were established for the assay protocol, and 

Pepstatin A- inhibited reactions were used to demonstrate near complete enzyme-substrate 

specificity and the effectiveness of three minute time courses (see Results).  

For assay preparation, SHSY cell lysates were thawed from -80ºC storage, and added 

to 100 µL total volume Cat-D activity assay reactions, prepared in 0.5 mL microfuge tubes 

and adjusted for a 1:5 lysate-to-reaction volume ratio from the manufacturer’s suggested 
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protocol.  Immediately upon the addition of Cat-D substrate (Sigma), the tube was flicked 

briefly to mix, and the fluorescence was quantified by fluorimeter (Photon Technology 

International) and PTI software through single point captures at 20 second intervals over 

three minutes with default settings and excitation wavelength 328 nm, emission wavelength 

389 nm, excitation (Ex2) slit width 1.25 nm or 0.31 mm (W), and gated detectors at 50% 

emission. For treatment comparisons, fluorescence values were adjusted for baseline by 

subtracting values from a blank reaction (without enzyme) at each time point. Purified Cat-D 

(0.1 unit/mL purified bovine spleen Cat-D, Sigma) was also run at a 1:5 enzyme-to-reaction 

volume ratio as a positive control. 
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RESULTS 

 

Genotyping of Transgenic Alzheimer’s Mice 

Our laboratory’s Alzheimer’s mouse colony is maintained long-term by breeding 

normal non-transgenic (WT) females to 5X transgenic males (AD mice).  Because the 

offspring can either be WT or transgenic, and the genotype is not obvious by coat color, 

genotyping was performed post-mortem on brain tissue.  To help ensure a more accurate 

assessment, both human APP and PSEN transgenes were measured in both crude alkaline 

tissue lysates and purified DNA.   

Genotyping was initiated in our lab over the summer, and was then completed in this 

project with a particular focus on mice which proved difficult to genotype.  PCR samples 

were separated by electrophoresis through 2.5% agarose gels, and gels were photographed by 

UV trans-illumination (Figure-7A). Gels from the PCR reactions of two independent alkaline 

lysates and six phenol extractions were considered in determining consensus genotypes for 

five previously unknown mice (Figure-7B).  Two known negative and known positive 

transgenic mice were used as experimental controls. 
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Figure-7: Confirmation of Transgenic Alzheimer’s Mouse Genotypes. 
DNA from unknown mice (arbitrary identifiers M4, M9, M11, M14, M15) was 

isolated from brain tissue by both alkaline lysis and phenol extraction techniques, 

then amplified by PCR for human APP and PSEN transgenes. Amplified DNA was 

separated by electrophoresis through 2.5% agarose gels then photographed by UV 

trans-illumination. A. Representative gel lanes from brain phenol extracted DNA of 

two known positives (M3, M6), two known negatives (M2, M10), and five unknown 

mice. The lower band in each reaction represents a load control amplified from a 

non-transgenic gene.  B. Summary table of consensus genotypes for five unknown 

mice (arbitrary identifiers M4, M9, M11, M14, and M15) determined from two 

alkaline lysates and six phenol extractions. Known positives (M3, M6) and negatives 

(M2, M10) were included as experimental controls.  

 

SOD 

Immunoblots were used to determine the cellular levels of superoxide dismutase 

(SOD-1) in the brains of nine month old AD mice treated with vehicle (N=8) or 2 mg/kg 
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hEPN (N=8) by oral gavage. Whole cell lysates of harvested brain tissue, thawed from -80ºC 

storage, were separated by PAGE, electroblotted to nitrocellulose membrane, then probed for 

both SOD-1 (16 kDa) and housekeeper tubulin (55 kDa) (Figure-8A). The mean optical 

density of each band was analyzed by Scion image analysis software, which demonstrated a 

statistically significant increase (student’s t-test, p<0.01) in SOD-1 for the hEPN-treated mice 

(Figure-8B). These results indicate that the cellular levels of anti-oxidative SOD-1 were 

significantly elevated in hEPN treated AD mice relative to vehicle treated controls. 

 

 

Figure-8: Brain SOD-1 Levels Increase with hEPN in vivo.  

Proteins in brain lysates from eight vehicle-treated AD transgenic mice and eight hEPN-1-

treated AD mice were separated by PAGE, blotted to nitrocellulose, and probed for SOD-1 

and load control tubulin. All blots were run simultaneously with SOD-1 using a 2µg total 

protein load and β-Tubulin using a 5µg total protein load. A. Immunoblot results (N=8) for 

SOD-1 (16 kDa) and β-tubulin (55 kDa). Protein was detected by SuperSignal West Pico 

chemiluminescent substrate (Pierce), and exposed to Biomax XAR-5 film (Kodak) for four 

minutes (tubulin) or one second (SOD).  Film was developed automatically in the Kodak 

M35A X-Omat Processor.   B. Analysis of the optical density (OD) of the immunoblot image 

in panel A by Scion software.  Brain SOD-1 levels significantly increase (p<0.01) in AD mice 

following treatment for two weeks with 2 mg/kg hEPN by oral gavage.  Error bars indicate 

one standard deviation. 
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In vitro Alzheimer’s Model with Aβ and hEPN 

Our laboratory previously showed that treating cultured human SHSY neuronal cells 

with Aβ acts as an in vitro model for AD.  The Aβ treatment was shown to decrease cell 

survival (Stovall, 2006), increase caspase-3 (Kapoor, 2007), increase tau hyper-

phosphorylation, and increase TUNEL staining (Ronayne, 2008).  Further, treating the cells 

simultaneously with Aβ and goldfish EPN decreased those events.   This project extended 

these previous studies by investigating human, rather than goldfish, EPN treatments, and by 

analyzing the theorized mediator of cell death cathepsin-D. 

 

Trypan Blue Exclusion Viability Counts 

Trypan Blue staining was used to investigate cell viability in our in vitro AD model. 

Viable cells exclude Trypan Blue stain because the dye cannot pass through the intact cell 

membrane, resulting in the white “halo” observed around these healthy cells. Alternately, 

non-viable cells absorb Trypan Blue stain because the dye can leak through the depolarized 

cell membrane, resulting in the very dark blue color exhibited by these damaged cells.   

As in our lab’s previous projects, the shorter Yankner peptide was used as a substitute 

for Aβ due to its increased solubility while still retaining the receptor binding domain 

necessary for the induction of cell death.  SHSY cells treated with Yankner peptide or 

Yankner plus hEPN at 24 hours, or left untreated as a negative control, were harvested at 72 

hours post-plating and stained with Trypan Blue (Gibco; Figure-9A).  The Yankner treated 

cultures showed an observable increase in the percentage of non-viable cells relative to 

untreated control cultures, and a slight reversal of this viable–to-non-viable cell ratio 

occurred in Yankner plus hEPN treated cells.  The percent of viable and non-viable cells were 

calculated for two independent plating experiments, using three representative images from 
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each treatment.   The data show a statistically significant decrease (student’s t-test, p<0.01) in 

viable cells from Yankner treated cultures relative to untreated cultures.  The data also 

indicated a slight recovery in viable cells for the Yankner plus hEPN culture relative to the 

Yankner culture (Figure-9B). 

 

 

Figure-9: Analysis of Cell Viability. 

Human SHSY neuroblastoma cells were treated with Yankner, Yankner plus hEPN, or left 

untreated at 24 hours post-plating.  A. Shown are three representative photomicrographs at 

20x magnification after cells were harvested and stained with Trypan Blue at 72 hours post 

plating.  An increase in the percentage of blue non-viable cells demonstrated that Yankner is 

neurotoxic at 20 μM (center panel), while hEPN at 150 μM (right panel) partially rescues 

the percentage of viable cells back to untreated levels. B. Averaged data from two 

independent viability assays demonstrated a decreased ratio of viable-to-non-viable cells in 

Yankner treated culture relative to untreated culture (p<0.01), and a partial rescue with hEPN 

treatment.  Error bars indicate one standard deviation. 
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Cell Morphology Counts 

Cell morphology was also investigated in our in vitro AD model as another measure 

of Yankner-induced neurotoxicity and potential hEPN rescue. Three representative regions of 

various cultures were imaged by a Leica inverted microscope and camera attachment 

(Figure-10A). In these cultures, normal, healthy SHSY cells maintained a stellate 

morphology and numerous intercellular connections, while damaged SHSY cells displayed 

an abnormal rounded morphology with few connections.  Morphology counts for free stellate, 

physically networked, and free non-stellate morphologies were calculated as percentages of 

total cell counts, and averaged over three independent plating experiments.  The data showed 

a statistical increase in free non-stellate morphology and a statistical decrease in physically 

networked morphology within Yankner treated cultures relative to untreated control 

(p<0.001; Figure-10B), as well as a nearly complete rescue by hEPN. 
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Figure-10: Analysis of Cell Morphology in Response to Yankner and hEPN.  
Human SHSY neuroblastoma cells were treated with Yankner, Yankner plus hEPN, or left 

untreated at 24 hours post-plating.  A. Representative images of Yankner treated, Yankner 

plus hEPN, and untreated SHSY cultures, taken at 72 hours post-plating by a Leica inverted 

microscope and camera attachment with 20x magnification.  The data illustrate neurotoxicity 

of Yankner peptide at 20 µM, and significant rescue by hEPN at 150 µM.  B. Quantitation of 

cell morphology counts confirm that Yankner toxin significantly decreases the percentage of 

networked cells while increasing non-stellate morphology relative to untreated control 

(p<0.001), with a near complete rescue by hEPN (p<0.05). 

 

Cathepsin-D Fluorescent Substrate Activity Assays 

According to a litany of recent research, the lysosomal aspartic protease cathepsin-D 

(Cat-D) correlates with a variety of both pathogenic and therapeutic intracellular pathways.  

In some cases, studies showed Cat-D involvement in apoptotic pathways leading to caspase 

initiation and cell death, while other research Cat-D has been associated with the degradation 

and clearance of toxic aggregations such as those characteristic of Alzheimer’s disease.  Due 

to this largely unresolved debate, and the lack of research to our knowledge regarding Cat-D 
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enzymatic activity in Aβ cascade models, the second primary goal of this project was to 

establish a successful Cat-D activity assay protocol for our SHSY in vitro Alzheimer’s 

model, and to use this assay to observe the effects of our established Yankner insult and 

hEPN rescue on Cat-D activity. 

A Cathepsin-D Activity Assay kit (Sigma, CS0800) designed for 100 µL reaction 

volumes was used to quantify Cat-D activity in solutions by measuring the fluorescence of 

MCA (7-methoxycoumarin-4-acetyl) released from the substrate (MCA-Gly-Lys-Pro-Ile-

Leu-Phe-Phe-Arg-Leu-Lys(DNP)-D-Arg-NH2) in response to enzyme-substrate binding. The 

manufacturer’s protocol was adapted for use with a single 100 µL microcuvette via the 

preparation of reactions in microfuge tubes, individual processing of reactions, and 

intermittent cuvette cleaning with 0.1 M Nitric Acid and distilled water.  

An MCA standard curve, relating MCA fluorescence to known concentrations in 

solution, was first established (R
2
 = 0.9814) for the adjusted fluorimeter and microcuvette 

system over an MCA concentration gradient of 0.25 to 1.5 nmoles (Figure-11).  The 

fluorimeter excitation and emission wavelengths (328 nm, 389 nm) were also optimized for 

MCA fluorescence based on these variable concentration trials (data not shown).  
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Figure-11:  Fluorescent MCA Standard Curve for Cat-D Activity Assay.   

MCA (7-methoxycoumarin-4-acetyl) standard solution (Sigma) was diluted with assay buffer 

(Sigma) to concentrations 0.25, 0.50, 0.75, 1.00, 1.25, and 1.50 nmoles in 100 µL total 

volumes, and fluorescence was measured individually. Fluorescence values were plotted 

against MCA concentration, and linearly regressed with origin 0.00 to provide a slope of 

3157.3 with R
2
 = 0.9814. 

 

 

In order to adapt the activity assay to SHSY lysates, the viability of Cat-D in the 

presence of culture medium and SHSY lysis buffer was established. Undiluted culture 

medium and whole cell lysates (20 µL) were added to 100 µL total volume reactions and 

allowed to incubate immediately upon the introduction of substrate for 30 minutes at 37ºC.  

At 30 minutes, MCA fluorescence was quantified by fluorimeter (Figure-12A), indicating 

that Cat-D was barely active within culture medium but significantly active in cultured cells. 

To assure that the culture medium was not interfering with fluorescence data, 0.001 units (10 

µL) of 0.1 unit/mL purified Cat-D from bovine spleen (Sigma) was introduced to either 10 

µL medium or 10 µL lysate reactions, and fluorescence was measured after a 30 minute 

incubation at 37ºC (Figure-12B). This data demonstrated insignificant inhibition of 

exogenously added Cat-D enzyme by the culture medium relative to pure Cat-D alone (blue 
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and green histobars, panel B).   Thus, while the culture medium did not interfere with the 

activity assay, it was not found to be a significant source of Cat-D activity. 

 

 

Figure-12: Establishment of Cell Lysis Buffer as Preferable over Culture 

Medium for Cat-D Activity Assays.  
Undiluted medium or whole cell lysate from an untreated SHSY culture, together with 0.1 

unit/mL purified bovine spleen Cat-D positive control (20 µL total), were added to 100 µL 

total reaction volumes and incubated for 30 minutes at 37ºC to determine viability and relative 

Cat-D activity of each.  A. Fluorescence from representative assay of culture medium, lysates, 

and 0.1 U/mL purified Cat-D, corrected for baseline (blank), demonstrated a lack of Cat-D 

activity in culture medium, with most of the activity instead residing within the cell lysate.  B. 

Fluorescence from representative assay of culture medium and lysates with and without 0.1 

U/mL purified Cat-D, corrected for baseline (blank), validated viability of both medium and 

lysates for activity assay. 
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To establish the specificity of the substrate for Cat-D present in whole cell lysates and 

purified from bovine spleen (Sigma), and to establish the potential for performing activity 

time-courses, three minute activity assays (N=3) were performed on uninhibited and 

Pepstatin-A-inhibited reactions.  The fluorescence was recorded at 20 second intervals 

(Figure-13A), averaged, and adjusted for baseline (blank) (Figure-13B).  The data showed 

fluorescence values within an acceptable range (0-4000 FLU), leading to the adoption of 

three minute time-courses in all subsequent assays without need for the sensitivity of the 30 

minute reactions.  The data also showed that Pepstatin-A-inhibited reactions exhibited low 

fluorescence even below baseline values, indicating that Cat-D, rather than other proteases 

present in culture lysates, was solely responsible for substrate cleavage.  Thus, the 

fluorescence recorded in subsequent assays was attributed to Cat-D activity alone. 
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Figure-13:  Cat-D Substrate Specificity.  
Undiluted whole cell lysate from untreated SHSY cultures (N=3) and purified bovine spleen 

Cat-D positive control (20 µL each) were added to 100 µL total reaction volumes and 

fluorescence was recorded by fluorimeter immediately upon introduction of substrate at 20 

second intervals for three minutes to determine specificity of Cat-D and substrate. A. 

Fluorescence from uninhibited lysate reactions was within acceptable range (0-4000 FLU) 

and distinct from that of blank and 0.1 U/mL purified Cat-D, while fluorescence from 

inhibited lysate reactions was equal or below baseline. B. Average fluorescence from three 

uninhibited and inhibited lysate reactions (left) and one uninhibited and inhibited 0.1 U/mL 

purified Cat-D reaction (right), corrected for baseline (blank) fluorescence. Insignificant 

fluorescence of corrected inhibited reactions demonstrated near complete specificity of the 

substrate for Cat-D enzyme.  

 

After establishing the main Cat-D reaction format, and demonstrating its effectiveness 

for measuring Cat-D activity alone, the assay was then applied to Yankner treated cultures.  

The assay was used to monitor the effect of Yankner treatment at time of plating and 12, 24, 

36, and 48 hours post-plating. The fluorescence of undiluted reactions from SHSY cultures 
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treated at 24-hour intervals (Figure-14A) and 12-hour intervals (Figure-14B) was recorded 

by fluorimeter and adjusted for baseline (blank).  Yankner treatment at 24 hours post-plating 

produced optimal Cat-D activity over all alternate conditions, establishing this condition as 

the standard treatment schedule for all subsequent experiments. 

 

 
 

Figure-14:  Cat-D Activity in SHSY Cells Following Yankner Treatment.  
Undiluted whole cell lysates from SHSY cultures treated with Yankner peptide at 24-hour and 

12-hour intervals post-plating (20 µL each) was added to 100 µL total reaction volumes and 

fluorescence was recorded by fluorimeter immediately upon introduction of substrate at 20 

second intervals for three minutes to determine optimal Yankner regimen for inducing Cat-D 

activity. Blank and 0.1 U/mL purified Cat-D reactions (not shown) validated each assay. A. 

Representative assay of lysates from Yankner treated cultures at 0, 24, and 48 hours post-

plating, adjusted for baseline (blank). The Yankner treatment at 24 hours post-plating (purple 

histobars) demonstrated the highest Cat-D activity. B. Representative assay of lysates from 

Yankner treated cultures at 0, 12, 24, 36, and 48 hours post-plating, adjusted for baseline 

(blank). Again, Yankner treatment at 24 hours post-plating (purple histobars) demonstrated 

highest Cat-D activity. 
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Using this optimized 24 hr post-plating Yankner addition for the SHSY in vitro AD 

model, the assay was repeated (N=3) to assess significance and repeatability (Figure-15).  In 

all cases, Yankner treatment at 24 hours post-plating produced significantly elevated Cat-D 

activity in SHSY lysates relative to lysates from untreated cultures. 

 

Figure-15:  Cat-D Activity in Yankner Treated SHSY Cells Relative to 

Untreated Controls.  
Undiluted whole cell lysates from SHSY cultures treated with 20 µM Yankner peptide at 24-

hours post-plating or left untreated (20 µL each) were added to 100 µL total reaction volumes 

and fluorescence was recorded by fluorimeter immediately upon introduction of substrate at 

20 second intervals for three minutes. Blank and 0.1 U/mL purified Cat-D reactions (not 

shown) validated each assay. Fluorescence from lysates of Yankner treated cultures (N=3) 

demonstrated observably increased fluorescence over lysates of untreated cultures (N=3; all 

fluorescence values adjusted for baseline), with statistical significance at time points 100, 120, 

140, 160, and 180 seconds (student’s t-test; * = p<0.05, ** = p<0.01). Error bars denote one 

standard deviation. 

 

In order to determine whether treatment of SHSY cells with hEPN could lower the 

Yankner-induced increase in Cat-D activity, the assay was applied to untreated, Yankner 

treated, and Yankner plus hEPN-treated cultures (Figure-16).  In the single preliminary trial 

of this experiment, EPN treatment appeared to produce the highest Cat-D activity at all time 

points tested.   
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Figure-16:  Cat-D Activity in SHSY Cells Following Yankner and Yankner plus 

hEPN Treatment.  
Undiluted whole cell lysates from SHSY cultures treated with 20 µM Yankner peptide, 20 

µM Yankner peptide plus 150 µM hEPN, or untreaed at 24-hours post-plating (20 µL each) 

were added to 100 µL total reaction volumes and fluorescence was recorded by fluorimeter 

immediately upon introduction of substrate at 20 second intervals for three minutes. Blank 

and 0.1 U/mL purified Cat-D reactions (not shown) validated the assay. Preliminary assay of 

all three conditions, adjusted for baseline (blank), demonstrated increased fluorescence in 

Yankner treated culture lysates relative to untreated culture lysates, and further increased 

fluorescence in Yankner plus hEPN treated culture lysates relative to lysates of both untreated 

and Yankner treated conditions. 
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DISCUSSION 

 

 This project was undertaken to extend our laboratory’s previous studies of both in 

vitro and in vivo systems for mimicking Alzheimer’s disease. It has been shown by our lab 

that treating cultured human SHSY neuronal cells in the presence of Yankner peptide 

decreases cell viability (Stovall, 2006), activates caspase-3 (Kapoor, 2007), and increases tau 

hyper-phosphorylation and TUNEL staining (Ronayne, 2008).  Treatment with goldfish EPN 

partially reversed these effects, while also increasing cellular inhibitors of apoptosis (cIAPs) 

(Rawal, 2009).  This project further extended these studies through the analysis of human 

EPN in a similar in vitro model with a focus on the theorized mediator of cell death, 

cathepsin-D. Past studies in our lab which analyzed the effects of human EPN on transgenic 

Alzheimer’s mice in vivo were also extended in this project with particular focus on the anti-

oxidative enzyme superoxide dismutase 1 (SOD-1). 

 

SOD 

As AD cell death is known to involve increases in reactive oxidative stress (ROS), we 

hypothesized that treatment with a NTF might increase cellular levels of enzymes known to 

reduce ROS, such as superoxide dismutase 1 (SOD-1).  In the brains of nine-month old 

transgenic Alzheimer’s mice treated with hEPN neurotrophic factor for two weeks, cellular 

levels of therapeutic anti-oxidative SOD-1 assayed by immunoblots (N=8) were significantly 

(p<0.01) increased relative to vehicle-treated mice. This indicates that AD mice treated with 

hEPN are able to increase SOD-1 production in vivo. Therefore, hEPN-treated mice should 

be better able to catalyze the dismutation of anionic superoxide, resulting in the reduction of 

oxidative stress and apoptosis in brain cells – a conclusion which may also help to explain 

our earlier results indicating that Yankner plus hEPN treatment of SHSY cells increases cell 
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survival over Yankner treatment alone.  This line of experimentation could be extended in 

future studies by assaying other enzymes known to alleviate ROS, including catalase and 

glutathione peroxidase. 

 

In vitro Alzheimer’s Model with Aβ and hEPN 

Normal SHSY neuronal cells have a stellate morphology and form numerous inter-

cellular connections.  In our in vitro tests with cultured SHSY cells, Yankner neurotoxin 

(mimicking Aβ) was found to significantly decrease the percentage of connected neuronal 

cells (p<0.001) and increase cells with non-stellate morphology (p<0.001), while hEPN 

treatment demonstrated a near complete rescue of these effects (p<0.05).  A trypan blue 

viability assay similarly demonstrated significant loss of cell viability with Yankner treatment 

(p<0.01) and slight rescue by hEPN. While the establishment of the in vitro system was time 

consuming, requiring the testing of various batches of Yankner for solubility and potency, 

these findings prove that Yankner is neurotoxic and reduces the number of networked, viable 

cells in vitro, validating our in vitro AD model and in turn supporting the amyloid cascade 

hypothesis (see Background) which proposed that Aβ formation initiates AD in vivo.  This 

data also illustrated the capability of human hEPN therapeutic treatment to partially rescue 

Aβ-induced apoptosis.   

 

Cathepsin-D Activity Fluorescent Substrate Assays 

The major portion of this project was spent developing a fluorescent substrate assay 

for cathepsin-D (Cat-D) activity.  Following the treatment of cultured human SHSY 

neuroblastoma cells in vitro with Yankner peptide, Cat-D enzyme activity was shown to 

significantly increase (p<0.05 or p<0.01) relative to untreated cultures.  Further, treatment of 

identical samples with Pepstatin-A inhibitor confirmed that the increased fluorescence 
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observed in Yankner treated lysates could be attributed solely to enzymatic Cat-D activity, 

rather than other unrelated proteases.  These results suggest that Yankner treatment elevates 

Cat-D activity in SHSY culture, hinting that Cat-D may play a role in the cellular responses 

to this toxin in vitro and, potentially, within the in vivo AD mouse model.  The reason for this 

increased Cat-D activity is not yet clear, however, and previous research supports roles in 

both the therapeutic degradation of apoptotic proteins and the damaging mediation of cell 

death.  This dilemma could be directly addressed in future studies using RNAi to knockdown 

Cat-D expression in SHSY cells prior to Yankner treatment, elucidating whether the presence 

of Cat-D is required for Yankner induced cell death.  Yet regardless of the outcomes, our data 

suggest that Aβ likely plays a role in the cellular apoptotic pathways of AD. 

 

Future Recommendations 

At this time, we were unable to clearly demonstrate whether hEPN treatment lowers 

or increases Cat-D levels in vitro. Further plating experiments with our in vitro model, such 

as hEPN time-courses or dose-response studies, could be performed to demonstrate the 

ability of hEPN to rescue Cat-D activity and to help more accurately place Cat-D within the 

hierarchy of Aβ-initiated cell death cascade, providing us with a critical, novel look at the 

molecular pathogenesis of this devastating neurodegenerative disease.  Our Cat-D activity 

assay may also be applied to alternate experimental models, such as transgenic Alzheimer’s 

mice similar to those used in this project’s investigation of SOD, to measure Cat-D activity in 

more complicated biological systems. Since cultured neuronal cells are amenable to RNAi 

treatments, that technique could also be explored to knockdown expression of individual 

pathway components (Cat-D, caspase-3, caspase-2, caspase-9, caspase-12) (Figure-17) and 

determine which are essential for Aβ-induced cell death.  With respect to ROS studies, 

enzymes other than SOD which help to alleviate ROS (such as catalase or glutathione 
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peroxidase) could also be monitored in our AD mice.  Further, a TBARS assay could be used 

to determine whether cytoplasmic ROS actually declines with hEPN treatment, in correlation 

with our observed increases in SOD levels. 

 

 

Figure-17: Diagram Summarizing Our Lab’s Previous Work and our 

Hypothesized Role for Cat-D.   Our lab previously demonstrated that treatment of 

cultured SHSY cells with Yankner peptide decreases cell survival (Stovall, 2006), increases 

Caspases-2 and -3 (Kapoor, 2007), and increases tau hyper-phosphorylation and TUNEL 

staining for DNA fragmentation (Ronayne, 2008), while treatment of cells with EPN 

increases cellular inhibitors of apoptosis (cIAPs) (Rawal, 2009), presumably using a different 

receptor. This project introduces the lysosomal aspartic protease cathepsin-D to the proposed 

death pathways of neuronal apoptosis, though its precise role and position within the 

hierarchy remain unidentified.  
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