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1. Organization of this MQP 
This MQP is a compilation of two 15-page conference papers focusing on flame spread 

modeling of fiber reinforced polymers. Chapter two is the first of the two papers and focuses on 
interior testing. Chapter three is the second of the papers and focuses on exterior testing as 
well as a capstone design exercise.  Abstract and references are included with each respective 
chapter. The MQP also contains a series of appendices to cover material in a complexity not 
covered in the conference style paper.  

2. Development of a Flame Spread Screening Tool for Fiber Reinforced 

Polymers for Interior Applications 
 

2.1. Abstract 

The International Building Code (IBC) is often referenced in the United States to 
establish requirements for new construction. Based on performance criteria established in the 
IBC, interior finish materials are rated Class A, B, or C or pass/fail. The uses of materials are 
limited to particular building areas and applications according to their classification. To obtain a 
classification, materials must undergo full-scale standardized tests: Tunnel Test and Room 
Corner Test (ASTM E 84 or NFPA 286 respectively). The Tunnel Test is beneficial because it is 
less expensive to conduct, provides a greater range of classification, and is a traditional test in 
the field of fire protection. The Room Corner Test is advantageous because the conditions are 
more realistic and comparable to true fire scenarios. Both of these tests impose a potentially 
significant economic penalty for material development. Currently there is no IBC process for 
screening materials based on economical bench-scale standardized testing (ASTM E 1354) to 
assess materials performance in full-scale tests. Fiber reinforced polymers (FRPs) are of growing 
interest in building construction due to their customizability. An initial flame spread model was 
developed relating Cone Calorimeter (ASTM E 1354) test data to full-scale test scenarios in the 
Tunnel Test and Room Corner Test. The flame spread model is capable of screening new 
materials to suggest performance levels in full-scale testing based on material properties of FRP 
systems. 

2.2. Introduction 

Material developers are faced with the challenge of creating new materials that fit both 
an architect’s vision and the Authority Having Jurisdiction’s (AHJ’s) safety requirements.  The 
International Building Code (IBC) [1] is often referenced in the United States by the AHJ to 
establish safety requirements for new construction.  The IBC requires any new interior finish 
material to undergo a full-scale standardized test, either the Tunnel Test (ASTM E84) [2] 
(Appendix G) or the Room Corner Test (NFPA 286) [3] (Appendix F).  The Tunnel Test will result 
in a classification (A, B, or C), and this classification will determine where the material can be 
used inside the building.  The Room Corner Test results are reported as pass/fail.  If the material 
passes it can be used virtually anywhere inside the building.  These tests are both time 
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consuming and costly.  If the desired result is not attained, the material developer must make 
changes and submit the material for retesting. Additional testing imposes a potentially 
significant economic penalty for material development.  Currently, there is no process for 
screening materials based on the more economical bench-scale standardized tests such as the 
Cone Calorimeter (ASTM E 1354) [4] (Appendix A) to assess performance in full-scale tests. 

This project studied the relationship between the material properties measured in the 
Cone Calorimeter of fiber reinforced polymers (FRPs) and their performance in full-scale tests. 
These materials are of growing interest in building construction due to their customizability. An 
initial flame spread model was developed relating Cone Calorimeter material properties to full-
scale test scenarios in the Tunnel Test and Room Corner Test.  The Tunnel Test model was 
based on previous work by Mowrer and Williamson [5] and the Room Corner Test model used 
this work in conjunction with Schebel’s work [6]. Fourteen FRP systems, each with a change in 
one component (e.g. resin type, aggregate type, etc.) were screened using the model. 

In going forward, manufacturers will be able to use this initial model to screen materials 
relative to full-scale standardized test performance, and determine in which applications their 
material can be used. This will enable them to make changes to the material to obtain optimum 
performance without wasting time and resources on multiple full-scale tests. 

2.3. Interior Finishes 

The IBC divides all parts of a building into three sections as seen in Figure 1.  Depending 
on what section of the building (exit enclosure/exit passageway, corridor, or room/enclosed 
space) and the primary use of the building the required classification of the material will change 
(Appendix I). For areas that are important to the means of egress, life safety becomes a 
concern.  The code requirements are stricter because the material needs to be able to 
withstand a fire long enough for people to safely exit.  Table 2-1 summarizes the code 
requirements for non-sprinklered buildings.  The code requirements change if the building is 
fitted with an automatic suppression system. 

 

 

 

Corridors 

Exit Enclosures/ 

 Exit Passageways 

Rooms/ Enclosed 

Spaces 

Figure 2-1:Areas of a Building 
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Table 2-1: IBC Interior Finish Requirements 

 

2.4. Database 

Fourteen (14) FRP systems provided by Kreysler & Associates were designed for interior 
applications. The Baseline FRP Figure 2-2 was a 0.06in (1.5mm) thick polymer concrete layer 
that contained a resin, alumina trihydrate, and sand aggregate. The substrate was a 0.1875in 
(4.8mm) layer consisting of a resin and 4 layers of glass in a chopped strand mat mixed in a 
glass to resin ratio range of 25:75 to 35:65 by weight. The resin used in both layers was 
Norsodyne with intumescent additives. The other FRP systems were modifications of the 
Baseline, each with one variation of a component: sand aggregate was replaced by specified 
fillers, the size of sand aggregate was altered, various pigments were added to the polymer 
concrete, and the surface layer was changed to Norsodyne without an aggregate and the 
substrate layer was changed to DCPD. Additionally, three FRP systems were sandwich panels 
Figure 2-2 with the Baseline FRP on the top face, varying materials in the core, and an identical 
substrate layer on the bottom face. A complete table of FRP systems can be seen in Table 2-2: 
FRP System . 

 

 

Occupancy Example 
Exit Enclosures & Exit 

Passageways 
Corridors 

Rooms & Enclosed 
Spaces 

Assembly-1 & 
Assembly 2 

Theater & Restaurant A A B 

Assembly-3, Assembly-
4, & Assembly 5 

Community Hall, Arena, 
& Stadium 

A A C 

Business, Educational, 
Mercantile, & 
Residential-1 

Office, School, Retail 
Store, & Hotel 

A B C 

Residential-4 
Assisted Living (6-15 

people) 
A B B 

Factory Millwork B C C 

High Hazard 
Storage of Toxic 

Materials 
A A B 

Institutional-1 Assisted Living Facility A B B 
Institutional-2 Hospital A A B 
Institutional-3 Prison A A B 
Institutional-4 Child Daycare Facility A A B 
Residential-2 Apartment B B C 

Residential-3 
Adult Care Facility (<5 

people) 
C C C 

Storage Warehouse B B C 
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Figure 2-2: Baseline FRP 

 

Figure 2-3: Sandwich Panel FRP 

 

Table 2-2: FRP System Modifications 

Filler Aggregate Pigment Resin Core 

Bronze #0/30 White Norsodyne Plywood 

Aluminum #0/60 Grey DCPD Balsa 

 #2/16 Beige  Foam 

 

Following ASTM E 1354 (See Appendix A), the fourteen FRP specimens were tested in 
the Cone Calorimeter to obtain bench-scale material properties. Incident heat fluxes of 25, 50, 
and 75kW/m2 were selected for testing. Various material properties were obtained including 
the heat release rate per unit area (HRRPUA), time to ignition (tf), and mass loss rate. 
Qualitative observations were made during the test to determine other parameters required 
for large-scale prediction (e.g. time to burn out). A database was developed to organize the 
information by specimen type and document each specimen’s characteristics.  Typical variation 
in heat release rate caused by changes to the incident heat flux of the Cone is shown in Figure 
2-4. A complete compilation of Cone data can be found in Appendix J and Appendix K.  
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Figure 2-4: HRRPUA of Baseline FRP at Variable Heat Fluxes 

  

A significant drop in heat release rate was seen at an incident heat flux of 25kW/m2.  
This suggests that this value is near the minimum heat flux for ignition of the material. This is 
further illustrated by the significant increase in time to ignition at the lower heat flux as seen in 
Figure 2-5. 

 

Figure 2-5: Baseline FRP time to Ignition vs Incident Heat Flux 

The Database of inputs each system from the Cone Calorimeter is highlighted in Table 
2-3. These inputs will be used in the Modeling Section below.  
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Table 2-3: Model Inputs at 65kW/m
2
 

 
System 

HRRPUA 
(kW/m2) 

Tf 
(sec) 

Baseline 110 150 
Core_Plywood 60 140 

Core_Balsa 50 130 
Core_Foam 120 60 

Filler_Bronze 110 50 
Filler_Aluminum 110 50 
Pigment_White 110 60 
Pigment_Grey 90 60 
Pigment_Beige 101 60 
Aggregate_030 101 60 
Aggregate_060 110 60 
Aggregate_216 70 70 

Resin_Norsodyne 101 50 
Resin_DCPD 120 30 

 

2.5. The Model 

The model being used is an adaptation of Mower and Williamson’s simple flame spread 
model for thin interior materials [5] (Appendix B). The model uses the parameters measured in 
the Cone to predict the propagation of the pyrolysis front and the burnout front during the test. 
While the pyrolysis front starts at the ignition time, the burnout front beings after a set burnout 
time for the model. Mower and Williamson’s simplified model simulates flame spread through 
the advance of the pyrolysis front which is shown below (Figure 2-6): 

 

 

Figure 2-6: Mowrer and Williamson Flame Spread Model 
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The advancement of the pyrolysis front is based on flame height, pyrolysis height and 
ignition time. Once burnout begins this value is shown by: 
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Mower and Williamson finish their derivation by integrating the equations within 
specific bounds to gain relationships for xp and xb. However, since the source fire plays a 
significant role in the flame spread of standardized tests, the equations have been adapted to 
incorporate the source fire. The driving force behind the model is the forward heating zone, 
represented by the flame length. The flame length is calculated using a linearized 
approximation suggested by Quintiere et. Al [7]. The flame length approximation before 
burnout therefor becomes: 

        ̇         ̇       (2-3) 

A similar flame length approximation is used for times after burnout: 
 

        ̇ (     )       ̇         (2-4) 

Using the flame length approximation including the source fire, Equation 2-.1 can be 
rewritten using Equation 2-3 as: 
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  ̇   )  
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Using Equation 2-5, a relationship is derived for xp before burnout by integrating with 
the bounds of xp=xpo at t=0 and xp=xp at t=t. With these bounds Equation 2-5 can be integrated 
and rearranged: 

   (
    ̇
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  ̇   

     (2-6) 

According to Mower and Williamson [5], the flame spread can be expressed as the 
advancement of the pyrolysis zone, Vp-Vb. Combining Equations 2-1 and 2-2 with Equation 2-4, 
we get a relationship for the advancement of the pyrolysis zone after burnout begins, shown 
below: 

  ( )    ( )  
 (     )

  
 

    ̇
 
    

  ̇ (     )      

  
 

     

   
  (2-7) 

Integrating Equation 2-7 with the bounds of xp-xb=xp1-xpo at t=tb and xp-xb= xp-xb at t=t a 
relationship between the pyrolysis zone and time can be seen below: 

      
((       )     ) 

  (    )    

  
     (2-8) 
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An expression for xb can be derived in a similar fashion by following the work of Schebel 
[6]. Combining Equations 2-2 and 2-8 an expression for Vb is developed: 

   
   

  
 

((       )     ) 
  (    )    

  
         (2-9) 

Integrating Equation 2-9 within the bounds of burnout, xb=xpo at t=tb and xb=xb at t=t, we 
obtain an expression for the advancement of the burnout front after tb: 

   (
  

  
 

  

       
) (   (    )   )  

  (    )

     
        (2-10) 

Where:    
(   

  ̇  
  

  
  )

  
                                  

 ̇     

                  
       

   
                                       (     ̇   )       

 
Combining Equations 2-9 and 2-10, an expression for xp after burnout can be found.  

There are 3 different sets of inputs for the model being used. The source fire heat 

release rate, flame length coefficient, and the initial burn zone make up the first set of inputs. 

These values come directly from the literature for the respective tests and are taken to be 

constants. The second set of inputs comes directly from the material database: the ignition 

time and HRRPUA. The last set of inputs contains the calibration parameters: time to burnout 

and material burnout time. These parameters were calibrated based on full-scale test data. 

For the Room Corner test we assumed a burn area similar to the work of Schebel [6]. 

Equation 2-11 describes the area of the wall burning while both xp and xb are on the wall. 

Equation 2-12 is effective once xp reaches the ceiling and begins to spread along the walls in the 

T-shape pattern. The T-shaped pattern is represented as 8% of the ceiling height. Equation 2-13 

represents the burn area once both xp and xb have exceeded the ceiling height. The model 

assumes the fire advances radially across the ceiling. 

For xp < H and xb < H 

            (     )(     )(  ̇ )    (2-11) 

For xp > H and xb < H 

            [(    )        (    )  
 

 
(
    

 
 (    ))

 

]  ̇    (2-12) 

For xp > H and xb > H 

            [  (     )  
 

 
(
    

 
 (    ))

 

 
 

 
(
    

 
 (    ))

 

]  ̇   (2-13) 
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2.6. Tunnel Test Calibration Inputs 

The input parameter xp0 represents the length of the initial pyrolysis zone in meters. For 
the Tunnel Test model it is taken as equal to 0.6m. This value was estimated for the Tunnel Test 
based on a heat flux map for ASTM E 84 [8], and the assumption that xp0 would represent an 
ignition length where the heat fluxes are above 30kW/m2, which is consistent with the 
observation in the Cone testing that the critical heat flux of the FRP systems is approximately 
25kW/m2. The maximum heat flux from the heat flux map was approximately 44kW/m2.  The 
average heat flux over the estimated 0.6m was 36kW/m2 which was rounded to 40kW/m2.  The 

input    ̇  represents the heat release rate per unit area of the baseline FRP system at a 
characteristic heat flux composed of the source fire and the insult from wall flames. To obtain 
this characteristic heat flux, the value from the burner (40kW/m2) is added to 25kW/m2.  The 
25kW/m2 is the estimated heat flux from the burning specimen according to the wall [9]. This 
results in a total incident heat flux of 65kW/m2.  From a graph of HRRPUA vs. heat flux from the 
Cone data, and the characteristic heat flux of 65kW/m2, an interpolated value for HRRPUA was 
110kW. The same method of interpolation was used to calculate a time to ignition at a heat flux 
of 65kW/m2 (Similar to Figure 2-5). The input kf is a constant and the value 0.011 is used. This 
value is increased from the suggested 0.01 value due to the forced flow effects in the tunnel. 
Based on the work of Fernandez-Pello [10], forced flow increases the heat transfer between the 
flame and ceiling (this is further detailed in Appendix C). The inputs tb and tbo were calibration 
parameters adjusted during calibration. Ultimately both inputs were assigned a value of 60 
seconds which yielded model results consistent with the actual full-scale test results. After 60 
seconds the flame spread has advanced outside of the source fire heat affected zone. The 
model reflects this by neglecting the source fire after 60 seconds. All calibration inputs are 
outlined in Table 2-4.  
 

2.7. Room Corner Test Calibration Inputs 

In the room corner test, the initial burn zone is equal to 0.5m. This was estimated using 
the work of Williamson and Revenaugh [11]. The input kf is a flame length parameter.  As 
outlined in Clearey and Quintiere’s paper [7] a value 0 .01 is used for buoyant flow.   The input 

   ̇  represents the characteristic heat release per unit area which consists of the heat from the 
source fire to the wall and from the burning material to the wall.  The value used was 85kW/m2. 
An approximate value of 60kW/m2 was used for the heat from the source fire to the wall. An 
additional 25kW/m2 was added to account for the heat from the burning material to the wall 
[9]. Since the cone data was only available for a maximum incident heat flux of 75kW/m2, these 
values were used.   The time to ignition, tf, was selected based on the cone data at 75kW/m2.  
Similar to the tunnel test calibration, tb and tbo were calibration parameters adjusted during 
calibration.  Ultimately, tbo was assigned a value of 400s, and tb was assigned a value of 60s, in 
order to yield the best fit from the model to the actual full-scale test results.    
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Table 2-4: Calibration Inputs 

 

2.8. Results 

The outcome of the Tunnel Test is a flame-spread index (FSI) that classifies materials 
based on burning behavior on surfaces such as walls and ceilings. Flame-spread index is a 
number calculated according to the total area under a flame-spread curve. The Baseline FRP 
system was used to calibrate the model against Tunnel Test results provided by Kreysler & 
Associates. The final result of the calibration procedure of the model for the Tunnel Test 
indicates an FSI of 15 (shown in Figure 2-7) while the experimental data suggests a rating of 20.  
Using the Law of Propagation of Uncertainty, the uncertainty of the calibration process was 

calculated as ± 0.5m (Appendix D). It is calculated that a fluctuation of 0.5m reflects a change 

in FSI of ± 5.   The experimental FSI falls within the uncertainty boundaries of the calculated 
model. With the calibration parameters determined from the Baseline, the model was run for 
all FRP systems.  

 

Figure 2-7: Pyrolysis Front of Baseline FRP in Tunnel Test 

The outcome of the NFPA 286 Room Corner Test is a pass/fail grade based on the heat 

release rate (HRR). Materials that produce less than 800kW are considered passing and have no 

application restrictions, similar to a Class A material [3] (See appendix F). The two step burner 
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Initial burn zone Xpo 0.6 m 0.5 m 

Flame length parameter Kf 0.011 m2/kW 0.010 m2/kW 
HRRPUA Material E(dot)'' 110 kW/m2 110 kW/m2 
HRRPUA Source Q 120 kW/m 230 kW/m 
Time to ignition tf 150 seconds 50 seconds 

Material burnout tbo 60 seconds 400 seconds 
Test burnout tb 60 seconds 60 seconds 
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regime of 286 was used where the HRR of the burner starts at 40kW for 5 minutes followed 

immediately by 160 kW for 10 minutes. The experimental room corner tests were not run in 

exact accordance with NFPA 286. There were four tests each with variations. The first two tests 

(one with the baseline FRP and one with the Norsodyne resin FRP) were run as screening tools.  

Panels were placed vertically up the corner and horizontally across where the wall meets the 

ceiling.  In addition, two panels were placed on the ceiling. For the second two tests, these 

ceiling panels were removed. These configurations can be seen in Figure 2-8 and Figure 2-9. For 

a screening specimen to be considered valid, the pyrolysis zone cannot reach the end of the 

panels.  In these experiments, the ends of the specimens were reached indicating that further 

flame spread would be expected and greater HRRs would be produced.  These greater HRRs 

indicate that the two FRP systems on the walls and ceiling will not pass a NFPA 286 test using a 

full specimen. To simplify the model calibration, two additional experiments were conducted 

using a constant burner HRR of 160kW for 10 minutes.  In one experiment the Baseline FRP was 

used with no ceiling panels, and in the other experiment the surface coating Norsodyne resin 

FRP with ceiling panels was used. As with the Tunnel Test, this model was calibrated against the 

Baseline and Norsodyne surface layer experimental results. The results of these two 

experiments are shown in Figure 2-10 and Figure 2-11. The experimental results without the 

ceiling (Figure 2-10) indicate a maximum HRR of 340kW (prior to compartment effect) while our 

model suggests a maximum of 310kW. Using the Law of Propagation of Uncertainty, the 

uncertainty of the calibration process was calculated as ± 40kW (Appendix D).  The 

experimental results for the test with a ceiling indicate a maximum heat release rate of 

780kW/m2 while the model suggests a maximum of 2000kW/m2 with an uncertainty of ± 40kW. 

 

 

Figure 2-8: Room Corner Test Wall Configuration 
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Figure 2-9: Room Corner Test Ceiling Configuration 

 

 

Figure 2-10: Baseline HRR Calibration Results With No Ceiling 

 

Figure 2-11: Baseline HRR Calibration Results With Ceiling 
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Table 2-5: Simulated Test Results 

 ASTM E84 Tunnel Test 
NFPA 286 Room Corner 

Test 
No Ceiling 

NFPA 286 Room Corner 
Test 

With Ceiling 

Specimen FSI Class HRR (kW) Pass HRR (kW) Pass 
Baseline 15 A 310 Yes 2040 No 

Bronze Filler 45 B 460 Yes 2690 No 
Al Filler 45 B 510 Yes 2740 No 

0/30 Aggregate 30 B 480 Yes 2550 No 
0/60 Aggregate 35 B 410 Yes 2300 No 
2/16 aggregate 20 A 370 Yes 2100 No 
White Pigment 40 B 280 Yes 1310 No 
Grey Pigment 25 A 410 Yes 2120 No 
Beige Pigment 30 B 400 Yes 2300 No 

Norsodyne Resin 40 B 420 Yes 2310 No 

DCPD Resin* 
180 
20 

C 
A 

480 Yes 2550 No 

Plywood Core 15 A 260 Yes 1380 No 
Balsa Core 15 A 350 Yes 2070 No 
Foam Core 15 A 290 Yes 1660 No 

*DCPD Resin has two reported FSIs because there was a large discrepancy in the cone data for time to ignition* 

As seen in Table 2-5, all of the FRP systems received an A or B classification in the Tunnel 
Test and passed the Room Corner Test if the FRP is not placed on the ceiling.  If the FRP were to 
be used on the ceiling, the model predicts the specimen will not meet the passing 
requirements.   

Even though all FRPs passed the tests, the different groups of systems performed 

differently.  Changing the fillers had a significant negative effect on HRR, with these systems 

having an FSI of 45.  This change from the baseline FSI of 15 is significant because it is exceeds 

the bounds of uncertainty of our model.  Changing the aggregates had a less significant effect, 

with FSI values ranging from 20 to 35, but several of these are outside the bounds of our 

uncertainty.  Changing the pigments also had a less significant effect, with FSI values ranging 

from 25 to 40, but several of these are outside the bounds of our uncertainty as well.  The 

addition of cores had little to no impact on the FSI.  As seen in Table 2-5, there are similar 

trends between tests within the groups of systems.  The systems with different fillers had the 

highest HRR, the ones with different pigments had the next highest HRR, the ones with the 

different aggregate sizes had lower HRR, and the systems with the different cores had little to 

no change in HRR. The screening tool was unable to accurately represent the systems with resin 

changes the Norsodyne surface layer and the DCPD substrate layer because their initial burning 

behaviors were outside the paradigm of model. 
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2.9.  Conclusion and Recommendations 

The recommendations of the team are that none of the FRP systems should be used on 
the ceiling.  If a class A rating is desired, the FRPs with different fillers should not be used, and 
systems with different aggregate sizes or pigments should be carefully considered before use.  
The systems with added cores behave similarly to the Baseline FRPs and therefore should be 
able to be used in the same applications.  During our analysis it was determined that the driving 
factor behind changes in performance was the time to ignition.  The systems that ignited the 
quickest had the highest FSI in the Tunnel Test and the highest HRR in the Room Corner Test.  
This should be taken into consideration when analyzing different FRP systems.  In conclusion, 
this project created a simple, easy to use flame spread model for different FRPs that gives a 
better indication of performance of the modified FRPs without spending money on full-scale 
testing.  This allows manufacturers to know where different systems could be used in a 
building.  In the future we hope the framework of this project can be used to facilitate further 
research.   
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3. Development of a Flame Spread Screening Tool for Fiber Reinforced 

Polymers for Interior Applications 

3.1. Abstract 

The International Building Code (IBC) is often referenced in the United States to 

establish requirements for new construction. Based on performance criteria, exterior cladding 

materials are classified as pass or fail, and require a pass in order to be used on the exterior of a 

building (with some exceptions listed in the IBC). To obtain this classification, materials must 

undergo a full-scale standardized test, NFPA 285, which imposes an economic penalty for 

materials development. Currently there is no process for screening materials based on 

economical bench-scale standardized testing such as the Cone Calorimeter (ASTM E 1354) to 

assess materials’ performance in full-scale tests. 

This study investigated the relationship between bench-scale material properties of 

various fiber reinforced polymers (FRPs) and their performance in full-scale tests. A flame 
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spread model was developed relating Cone Calorimeter (ASTM E 1354) test data to the full-

scale Multi Story Building Test (NFPA 285). Initial evaluation shows the model to be a useful 

tool for screening materials. In going forward, manufacturers will be able to use this model to 

screen materials relative to full-scale standardized test performance, and determine if their 

material can be used. This will enable them to make changes to the material to obtain optimum 

performance without wasting time and resources on multiple full-scale tests. Additionally, an 

alternative test method was designed as a screening test for NFPA 285 using the dimensions of 

a standard fire test compartment. The accessible test facility will enable more laboratories to 

run the test and predict how the material will behave in the Multi Story Building Test. 

 

3.2. Introduction 

In the United States the International Building Code (IBC) [1], or similar adaptations, is 

referenced to govern new construction projects. The IBC dictates where and how certain 

materials can be used, and therefore influences decisions made by architects and contractors. 

Specifically, it requires that exterior wall assemblies be tested in accordance with and comply 

with the acceptance criteria of the test standard NFPA 285 [12] (Appendix E). However, the 

Multi Story Building Test (NFPA 285) requires a large test facility as well as large testing 

specimens, which limit the number of facilities that can conduct this test for material 

developers. Due to this limitation and the potential economic penalty, when a developer is 

ready to test his product, failure of NFPA 285 is extremely undesirable. 

It was the goal of this project to develop a screening tool to predict behavior of 

materials in the NFPA 285 test using bench-scale material properties obtained from a Cone 

Calorimeter test (ASTM E 1354) [4] (Appendix A). Similar work has been done by the Building 

Research Association of New Zealand (Branz) and is reported in Development of a vertical 

channel test method for regulatory control of combustible exterior cladding system [13]. Branz 

suggests an intermediate test, which would act as a screening test to larger scale exterior test 

methods similar to NFPA 285. The initial model used as a screening tool was adapted from the 

work done by Mowrer and Williamson [5] and was calibrated using the data from Chapter 2 - 

Interior Finishes. When used correctly, the model is able to use input parameters derived from 

cone calorimeter results to calculate the length of flame spread for a specific material in the 

NFPA 285 test. The success of this model would allow material developers to run multiple 

bench-scale tests to refine their materials before spending time, money, and resources on a 

large-scale test such as NFPA 285. 

Finally, this project designed an alternative test method for screening NFPA 285. This 

Exterior Screening Test will provide data to determine whether or not a material will pass or fail 

the NFPA 285 test. The test is developed to mimic the heat fluxes and flame spread associated 
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with NFPA 285 while using smaller room dimensions. 

3.3. Database 

The FRPs used for this project were provided by Kreysler and Associates. They are 

designed for both interior and exterior use and can be modified to possess desired aesthetic 

traits. The Baseline FRP (Figure 3-1) consists of a polymer concrete layer on the top face of a 

substrate. The polymer concrete contains Norsodyne resin, alumina trihydrate, and sand 

aggregate. The substrate contains Norsodyne resin with 4 layers of chopped strand mat glass. 

There were thirteen other FRP systems, each with a change in one component. As portrayed in 

Table 3-1: the sand aggregate was replaced by specified fillers, affecting the reflectivity of the 

FRP; the size of the aggregate was varied, affecting the texture; and various pigments were 

added to the polymer concrete, affecting the color. They also experimented with the resins in 

the FRP. In one sample, the alumina trihydrate and sand aggregate were removed from the 

polymer concrete, leaving the top layer a resin-rich surface of Norsodyne. This mimicked a gel 

coat surface, which could have desirable characteristics to an architect. The final sample was 

experimental: the substrate resin was replaced with a DCPD laminate resin, which is more 

combustible then Norosdyne, to observe the fire protective properties of the Baseline polymer 

concrete. Additionally, as shown in Figure 3-2, three FRP systems were sandwich panels, with 

the Baseline FRP on the top face, varying cores in the middle, and an identical substrate layer 

on the bottom face. These cores were added to increase strength and bending resistance.  

 

Figure 3-1: Baseline FRP 

 

Figure 3-2: FRP Sandwich Panel 

Table 3-1: FRP System Modifications 

 

Filler 

• Bronze 

• Aluminum 

Aggregate 

• #0/30 

• #0/60 

• #2/16 

Pigment 

• White 

• Grey 

• Beige 

Resin 

• Resin rich 
surface 

• DCPD 
Laminate 

Core 

• Plywood 

• Balsa 

• Foam 
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3.4. Cone 

The FRP systems were tested using the Cone Calorimeter in accordance with ASTM 

E1354 (Appendix A) to create a material database of the 14 systems (Cone data found in 

Appendix J). The material database contains information about these systems at three incident 

heat fluxes: 25kW/m2, 50kW/m2, and 75kW/m2. Shown below (Figure 3-3) is the typical heat 

release rate per unit area (HRRPUA) of the Baseline FRP system at 50kW/m2. Using the material 

database, values can be interpolated at the desired incident heat flux. The material properties 

used in the model come directly from the Cone data, including average ignition time and 

average HRRPUA. Shown in Table 3-2, these parameters where taken at an incident heat flux of 

65 kW/m2, which is consistent with the incident heat flux of NFPA 285. 

 

 

 

 

Figure 3-3: Repeat Runs of Baseline FRP at 50kW/m
2 
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Table 3-2: Model Inputs at 65kW/m
2
 

 
System 

HRRPUA 
(kW/m

2
) 

Tf (sec) 

Baseline 110 150 
Core_Plywood 60 140 

Core_Balsa 50 130 
Core_Foam 120 60 

Filler_Bronze 110 50 
Filler_Aluminum 110 50 
Pigment_White 110 60 
Pigment_Grey 90 60 
Pigment_Beige 101 60 
Aggregate_030 101 60 
Aggregate_060 110 60 
Aggregate_216 70 70 

Resin_Norsodyne 101 50 
Resin_DCPD 120 30 

 

3.5. Model 

The model being used is an adaptation of Mowrer and Williamson’s [5] simple flame 

spread model for thin interior materials (for more information see Appendix B). The model uses 

the parameters measured in the Cone to predict the propagation of the pyrolysis front and the 

burnout front during the test. While the pyrolysis front starts at the ignition time, the burnout 

front begins after a set burnout time for the model. Mowrer and Williamson’s simplified model 

simulates flame spread through the advance of the pyrolysis front: 
   

  
    

  ( )   ( )

  
      (3-1) 

The advancement of the pyrolysis front is based on the flame height, the pyrolysis 

height and the ignition time. Once burnout begins this value is shown by: 
   

  
    

  ( )   ( )

   
      (3-2) 

Mowrer and Williamson finish their derivation by integrating the equations within 

specific bounds to gain relationships for xp and xb. However, since the source fire plays a 

significant role in the flame spread of standardized tests, the equations have been adapted to 

incorporate the source fire. The driving force behind the model is the forward heating zone, 

represented by flame length. The flame length is calculated using a linearized approximation 

suggested by Mowrer and Williamson [5]. The flame length approximation before burnout 

therefore becomes: 

        ̇         ̇       (3-3) 

A similar flame length approximation is used for times after burnout: 

        ̇ (     )       ̇         (3-4) 
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Using the flame length approximation including the source fire, Equation 3-1 can be 

rewritten using Equation 3-3 as: 

   

  
 

     ̇  (   
  ̇   )  

  
     (3-5) 

Using Equation 3-5, a relationship is derived for xp before burnout by integrating with 

the bounds of x=xpo at t=0 and x=xp1 at t=tb. With these bounds, Equation 3-5 can be integrated 

and rearranged: 
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According to Mowrer and Williamson [5], the flame spread can be expressed as the 

advancement of the pyrolysis zone, Vp-Vb. Combining Equations 3-1 and 3-2 with Equation 3-4, 

we get a relationship for the advancement of the pyrolysis zone after burnout begins, shown 

below: 

  ( )    ( )  
 (     )

  
 

    ̇
 
    

  ̇ (     )      

  
 

     

   
   (3-7) 

 

Integrating Equation 3-7 with the bounds of xp-xb=xp1-xpo at t=tb and xp-xb= xp-xb at t=t a 

relationship between the pyrolysis zone and time can be seen below: 

      
((       )     ) 

  (    )    

  
    (3-8) 

An expression for xb can be derived in a similar fashion by following the work of Schebel 

[6]. Combining Equations 3-2 and 3-8, an expression for Vb is developed: 

   
   

  
 

((       )     ) 
  (    )    

  
          (3-9) 

Integrating Equation 3-9 within the bounds of burnout, xb=xpo at t=tb and xb=xb at t=t, we 

obtain an expression for the advancement of the burnout front after tb: 

   (
  

  
 

  

       
) (   (    )   )  

  (    )

     
      (3-10) 

Where:    
(   

  ̇  
  

  
  )

  
                                  

 ̇     

                  
       

   
                                       (     ̇   )       

Combining Equations 3-9 and 3-10, an expression for xp after burnout can be found. 

  

There are 3 different sets of inputs for the model being used. The source fire heat 

release rate, flame length correlation, and the initial burn zone make up the first set of inputs. 
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These values come directly from literature regarding NFPA 285 and are taken to be constants 

for each test. The second set of inputs comes directly from the material database: the ignition 

time and HRRPUA. The last set of inputs contains the calibration parameters: time to burnout 

and material burnout time. These parameters were taken to be equal because of their nature 

and were adjusted during the calibration process.  

 

3.6. Results 

The model was calibrated and simulates NFPA 285 based on the calibration process 

used for NFPA 286 and ASTM E 84 (Chapter 2 – Interior Finishes) as well as information 

presented by Ron Alpert [14]. The input parameters are shown in Table 3-3. The value of 

75kW/m was used based on a flame length of 2.5ft on an inert wall, using the flame length 

correlation shown in Equation 3.3. Since there is buoyant flow flame spread present in NFPA 

285, the value of 0.01m2/kW is used for kf as suggested by Cleary [15]. Values of ignition time 

and HRRUPA of the material can be interpolated at an incident heat flux of 65kW/m2 using the 

data in the material database. Work by Ron Alpert [14] suggests an incident heat flux of 

40kW/m2 from the source fire, and a value of 25kW/m2 is assumed for the flame heat flux 

characteristic to the material itself. For NFPA 285, xpo was taken to be 1m based on the heat-

affected zone shown by Ron Alpert [14]. The reasoning behind this is that the source fire has a 

flame length of 1m, and regardless of the material this 1-meter zone is affected. The flame 

spread, which causes a pass or fail of NFPA 285, occurs above this zone. The last model inputs 

are the calibration parameters, which were adjusted based on the test being simulated. Since 

there was no full-scale testing results for the model to be calibrated against, these values were 

taken to be 60 seconds (similar to the calibration process of ASTM E 84 in Chapter 2 – Interior 

Finishes). This data came from the knowledge that the source fire was a driving force of the 

flame spread in the heat-affected zone of the source fire. The source fire was turned off after 

burnout began because it is believed that the source fire intensity is a main component of the 

initial flame spread of the model but not significant above this zone. The uncertainty of the 

model was calculated using the Law of Propagation of Uncertainty as described in Appendix D. 

It was found that the uncertainty of the model results is +/- 1 foot. This uncertainty is consistent 

with the uncertainty found in the Tunnel test and takes into account the change of input 

parameters for NFPA 285. 

Table 3-3: NFPA 285 Inputs for Baseline System 

Input tf tb tbo xpo  ̇   kf    ̇  
Value 150s 60s 60s 1m 110kW/m2 0.01m2/kW 75kW/m 

 



3-26 
 

The 14 FRP systems can be broken up into five different categories based on the 

changes made to their composition. The five categories are: cores, fillers, aggregate, pigments, 

and resin changes. 

 

Figure 3-4: NFPA 285 Model Results Cores 

 

Figure 3-5: NFPA 285 Model Results Fillers 
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Figure 3-6: NFPA 285 Model Results Aggregates 

 

 

Figure 3-7: NFPA 285 Model Results Pigments 
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Figure 3-8: NFPA 285 Model Results Resin Changes 

 

In Figure 3-4 through Figure 3-8, the results can be seen for each category of FRPs. The 

charts display the flame spread above the top of the window. It is observed that changes made 

to the fillers of the polymer concrete will have the most negative effects on flame spread. It is 

also observed that changing the core of the sandwich panel will have little to no effect since the 

top face is the Baseline FRP. The aggregate and pigment changes experience various changes in 

flame spread. The changes in resin have vastly different effects. Through data obtained in the 

Tunnel Test Model (Chapter 2 – Interior Finishes), it was decided that these two FRP systems 

were outside the paradigm of the NFPA 285 Model. This conclusion was consistent with the 

erratic behavior of the FRPs in the Cone Calorimeter data reports. With the exception of the 

DCPD resin change, all of the systems propagated to a distance below 10 feet. Therefore it is 

predicted that these systems would pass an NFPA 285 standardized test. 
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and mounted on the middle of the other short wall. 1-inch steel angles shall be installed on 

each side of the specimen. A slot burner shall be located along the width of the specimen. The 

slot burner is constructed from a 2-foot long, 1-inch, schedule 40 steel pipe with a ½-inch slot 

cut down the top (a mesh screen is placed below the slot to diffuse the gas). Gas shall be run 

into both ends of the slot burner via two 90-degree elbows. Methane gas lines are installed at 

each elbow, with flow controls on each side to ensure a balanced flame. The flame produced by 

the slot burner will be no higher than 1ft from the floor of the room. This size flame will 

produce a HRRPUW of 12kW/m as seen in the SFPE Handbook [16]. A radiant panel will be 

located one inch behind the slot burner set at 35kW/m2, which takes into account the 

absorptivity of the slot burner flame. This panel should be approximately 2ft wide and 3ft tall. 

The predicted heat flux distribution of the Exterior Screening Test is shown in Figure 3-9 the 

Exterior Screening Test attempts to mimic the upper 8ft of NFPA 285 by using the radiant panel 

and slot burner to produce this heating regime in the standard compartment. The upper 8ft is 

the focus of this test because it is the area where the flame spread will occur, and will 

determine whether or not a material passes or fails. The slot burner will mimic the top of the 

source fire and the radiant heat burner will add in the additional heat flux, which is lost by not 

including the source fire. The test shall be run for 25 minutes in accordance with NFPA 285 

disregarding the preheating of the room [3]. Figure 3-10 and Figure 3-11 show the layout of this 

test with required dimensions.  

 

Figure 3-9: Incident Heat Flux Distribution 
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Figure 3-10: Equivalent Screening Test Front View 

 

 

Figure 3-11: Equivalent Screening Test Top View 

 

3.8. Compartment Effects 

Because this test is conducted within a partially enclosed compartment, it is necessary 

to understand the impacts the compartment will have on the screening test specimen. The 

following equation (3-14) and values (Table 3-4) were used to determine the change in the 

upper gas layer from the ambient conditions. The change in temperature is estimated to be 

72K, which gives an upper layer temperature of 367K. 
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   (3-14) 

Inputs ∆T Rho k Delta g A0 H0 Cp Q Tamb hk At 

Values 72 
1440 
kg/m3 

0.00028 
kW/mK 

0.05m 9.8m/s2 5m2 2m 
1.05 

kJ/kgK 
90 
kW 

295 
K 

0.106 
kW/mK 

41.7 
m2 

 

Table 3-4: Compartment Effects 

It can be observed that the compartment has a minimal effect on the wall specimen due 

to the low increase in upper layer gas temperature. This method is developed by McCaffrey, 

Quintiere, and Harkleroad in the SFPE Handbook [17] and is referenced in Appendix H. 

3.9. Conclusion 

While the model followed the same calibration procedures as the successful screening 

models in Chapter 2, there are still many limitations involved.  The model is only capable of 

screening the vertical flame spread component of NFPA 285. It does not take into consideration 

the horizontal flame spread, and overall temperature requirements for passing NFPA 285, nor 

can it completely model the effect of the flashed over room as a source of heat flux as seen in 

285. Another limitation is that there was no NFPA 285 test data for the 14 FRP systems to 

compare and calibrate the model against. An area of future work would be to run NFPA 285 

tests on the Baseline system (at least) in order to obtain a calibration.  

 As seen in the results, some FRP systems performed better than others. This is due to 

the changes in components. These changes effect the time to ignition, which is the driving force 

of how fast and far a flame front will propagate on a material. Therefore, it is suggested that 

material developers focus on achieving longer times to ignition in order to have the best chance 

of passing a Multi Story Building Test. Through the anaylsis of this model it is observed that 

bench-scale material properties have a dominating affect on full-scale test performance. 
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4. Conclusion 
This project succeeded in creating an initial flame spread modeling tool for FRPs that is 

simple and easy to use.  The model uses material properties from bench-scale tests to predict 

behavior in full-scale tests within reasonable uncertainty.  The full-scale tests modeled in this 

project were the ASTM E84 Tunnel Test, the NFPA 286 Room Corner Test, and the NFPA 285 

Multi Story Building Test.  This is useful to materials developers because it allows them to have 

a better idea of how their FRP systems will perform in expensive full-scale tests while only 

needing to conduct economical bench-scale tests.  This project is also significant because it will 

serve as the base for future work in the field.  Limitations of the model and various input 

parameters will serve as a starting point for future work. Specific recommendations follow: 

 Additional full-scale test data to refine model calibration.  

 Further study of FRP intumescent behavior to better define material properties 

such as time to ignition for use in model simulation. 

 Further study of how the flame spread model represents the forward heating 

zone for materials with low heat release rates per unit area. 

 Refinement of the NFPA 285 compartment based screening test.  
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Appendix A Cone Calorimeter 

 

Cone Calorimeter 

The cone calorimeter is a fire-testing instrument used to quantify the burn characteristics of small 

test samples (100mm x 100mm per ASTM E1354). The main component is a conical radiant electrical 

heater that simulates real fire development by producing a range of heat fluxes.  The characteristics 

measured by the cone calorimeter include: 

 Heat release rate per unit area 

 Cumulative heat released 

 Effective heat of combustion  

 Mass loss rate  

 Total mass loss  

 Smoke obscuration  

While the results from cone calorimeter testing are determined on small specimens, they are an 

accurate representation of the intended product in end use as long as all data obtained during edge 

burning is disregarded. This test method is the starting point for the development of materials with 

desirable fire resistant, flame retardant, and smoke suppressant properties. 

Oxygen Consumption 

Oxygen consumption calorimetry is the basis for determining heat characteristics of the sample. 

Using an oxygen analyzer, the cone calorimeter determines the amount of oxygen consumed during the 

burn. For every 1 kilogram of oxygen consumed during the burn, approximately 13.1*10^3 kilojoules of 

heat are released (ASTM E1354-10a). Heat release rate per unit area and cumulative heat released are 

calculated from this data.  

Load Cell  

The load cell is instrumental to cone calorimetry in that it provides data necessary to characterize 

the burn sample. During the test, the sample is secured on the load cell which measures and records 

mass every second. This data is compiled to calculate total mass loss and mass loss rate. Change in mass 

and heat release rate are needed to calculate effective heat of combustion.  

Products Of Combustion 

Products of combustion are directed through a duct where a helium-neon laser, silicon photodiodes, 

and reference detectors are positioned and programmed to measure smoke obscuration. The initial 

intensity of the laser is recorded using a sample of clean air. This value is compared to the instantaneous 

intensity measurements as the products of combustion flow through the duct. Changes in intensity 

correlate to the density of the products of combustion. 
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Appendix B Flame Spread Model Adaptations 

 

Mowrer and Williamson 

 Mowrer and Williamson used a simplified flame spread model in order to evaluate upward 

flame spread. This model is used to evaluate the flame spread on thin lining materials which are adhered 

to noncombustible substrates. 

Assumptions 

 In Mowrer and Williamson’s flame spread model there are a number of assumptions which are 

made. The first is that the heat flux is considered to be constant in the vicinity of the exposed area and 

zero in the areas which are not exposed. The overall heat flux imposed on the wall by the wall flame is 

treated as a constant value of approximately 25-30 kW/m2 in the pyrolysis and flame zones and zero in 

the other areas. The external heat flux is assumed to be 50-60 kW/m2, which is based on the room fire 

tests which are being considered.  Once the wall fuel in the vicinity of the external ignition source burns 

out, the external source no longer plays a role in the overall heat flux, and the additional wall fuel is 

considered to be exposed only to the heat flux produced by the wall flame. The next assumption is that 

a linearized flame length approximation is used.  There are two models which are used to measure this, 

one before burnout begins and one after burnout. 

Nomenclature 

E - Energy release (kJ) 

 ̇ - Energy release rate (kW) 
kpc - Thermal inertia [(kW/m2-K)2-s] 
k - Flame length parameter 
m - Mass (kg) 

  ̇ - Heat flux (kW/m2) 
t - Time (s) 
T - Temperature (K or C) 
V - Velocity (rn/s) 
x - Length parameter (m) 
 
Subscripts 
 
b - Burnout zone 
bo - Burning duration 
e - External 
f - Flame zone 
ig - Ignition 
p - Pyrolysis zone 
s - Surface 
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Superscripts 
 
‘  Per unit length (m-1) 
‘’ Per unit area (m-2) 
 

 

Figure one is a schematic of the variables and measurements used in this model.  

Equations  

 The equations which are used in the flame spread model are outlined and explained below. 

(1) – Rate of pyrolysis front advance 
 

   
   

  
 

  (    )    ( )

  
 

  ( )    ( )

  
 

In this model, the flame spread rate is defined as the rate of pyrolysis front advance.  This is the change 
in the height of the pyrolysis zone (xp) over time.   
 

(2) – Thermal model of heating an inert wall with constant properties 
 

      [
      

  ̇
]

 

 

This formula defines the variable tf, which is used in equation (1).      is defined as the thermal inertia, 
which is a property intrinsic to the material on the wall.  tf is the time that the material takes to heat to 
the point where ignition is possible.   
 

(3) – Rate of fuel burnout 
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   (     )    ( )

   
 

  ( )    ( )

   
 

In this formula, rate of fuel burnout is defined as the velocity of the burnout zone.  This is the change in 
the height of the burnout zone (xb) over time.   
 

(4) – Linearized flame length approximation before burnout 
 

  

  
     ̇ 

This formula defines the flame length before burnout begins, which is the area from the top of the 
pyrolysis zone to the top of the flame.  Kf is a correlating factor used to approximate this.  Cleary and 

Quintiere suggest a value of .01m2/kW for kf.    ̇ is the heat release rate per unit area.   
 

(5) – Dimensionless flame length after burnout begins 
 

(     )

(     )
     ̇ 

This formula defines the flame length after burnout begins, which is the area from the top of the 
pyrolysis zone to the top of the flame.  This formula adjusts for the fact that the flame is no longer at the 
floor level and is rising up the wall.   
 

(6) – Using equation (4) for times t<tb, equation (1) can be written as: 
 

   

  
 (   

  ̇   )  
  

   
  

 

(7) – Equation (6) can be integrated with the limits that x=xpo at t=0 and x=xp at t=t as: 

   

  
 (   

  ̇   )  
  

   
 

 

∫
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(8) – After burnout begins, at times t>tb, the net rate of flame propagation can be expressed as the 

difference between the pyrolysis front velocity and the burnout front velocity: 

 

  ( )    ( )  
 

  
(     )  

     

  
 

     

   
 

(9) – Solving equation (5) for xf and substituting it into equation (8), it can be rearranged to: 
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(10) – Equation (9) can be integrated, with the limits of (xp-xb) = (xp1 – xpo) at t=tb and (xp – xb) = (xp – 

xb) = (xp-xb) at time t=t, to yield the pyrolysis zone length at any time:  
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Schebel 

Schebel applies the flame spread model which is presented in Mowrer and Williamson in order 

to model flame spread in a train car. In this model Schebel makes a few more assumptions in order to 

apply the model to his work 

Assumptions 

  The first assumption which Schebel makes is that there is no preheating of the upper gas layer 

caused by convection and radiation. The heat flux which is used in the cone calorimeter is used as both 

the external heat flux as well as the wall flame heat flux. The areas of which are preheated and spread 

pattern of the flame are based on an expected, predetermined burn pattern (shown below). Any lateral 

spread across the walls is considered to be minimal and therefore it is neglected. However, a region of 

wall along the ceiling will experience lateral flame spread. The depth of this region is estimated as .08h, 

where h is the ceiling height. Mowrer and Williamson’s model is used to establish a pyrolysis area. With 

this pyrolysis area and the expected burn areas, Heat Release Rates can be established.  

 

Equations  

Based on the assumptions made, HRR values are established using pyrolysis areas based on xp – xb, using 

three different equations, based on whether the pyrolysis area is on the wall, the ceiling, or both.   

 

For xp < H and xb < H 

            (     )(    )(  ̇ ) 

For xp > H and xb < H 

            [(    )       (    )  
 

 
(
    

 
 (    ))

 

]  ̇  
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For xp > H and xb > H 

            [  (     )  
 

 
(
    

 
 (    ))

 

 
 

 
(
    

 
 (    ))

 

]  ̇  

Where 

Xpow = Initial source fire width 

H = Ceiling Height 

D = .08H (Representative T-shape depth) 

Inputs  

When doing his calculations, Schebel uses several inputs taken from Cone Calorimeter tests in order to 

simplify the use of the Mowrer and Williamson flame spread model.  The first variable taken from cone 

testing data is the characteristic flame spread time, or tig.  This simplifies the model by directly 

incorporating parameters such as the ignition temperature and the thermal inertia.  Schebel also based 

his heat flux measurements off of data from Cone Calorimeter tests.  He found that the pyrolysis zone 

flame heat flux is 20 kW/m2 greater than the heat flux generated by the cone calorimeter.  As another 

simplification, Schebel assumes that the burnout time is the time of source fire burnout, and is taken to 

be the burnout time observed in the Cone Calorimeter.    

 

Application to other tests 

The methods used by Schebel to adapt the Mowrer and Williamson flame spread model can be used to 

adapt the model to other tests.  The main difference between the tests will be the geometry used to 

determine the HRR vs. Time. 

ASTM E84 Tunnel test  

The geometry of the Tunnel Test is similar to the geometry of the Schebel test before it reaches the 

ceiling, except that the fire travels horizontally along a tunnel instead of vertically up a wall.   
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The critical heat fluxes of FRPs tested in the Cone Calorimeter were found to be approximately 25 

kW/m2.  Any distance along the graph with a heat flux above 30 kW/m2 was taken to be the initial burn 

height to provide a margin of safety.  This distance is approximately .6m down the tunnel.  This is 

confirmed to be reasonable when compared to the total length of the burner flame, which is 

approximately 1.4m.  For the purposes of the model, once this area ignites the source fire is to be 

ignored. 

 

            (     )( )(  ̇ ) 

Where 

W = Width of the tunnel (20in) 

Xpo = .6m 

 

NFPA 286 room corner test  

The geometry in the room corner test is very similar to that in the Schebel test.  The main difference is 

that the fire travels up the corner of a room rather than a flat wall.  This means that the width of the 

burning wall area will be twice as wide, because there will be an area as wide as the source fire on both 

walls.  The initial heat release rate of the burner is 40 kW for the first 5 minutes and 160 kW for the next 

10 minutes.   

 

For xp < H and xb < H 

            (     )(     )(  ̇ ) 

For xp > H and xb < H 
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For xp > H and xb > H 
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Where 

Xpow = Initial source fire width (in the room corner test the burner width is 12in) 

H = Ceiling Height (in the room corner test the ceiling height is 8ft) 

D = .08H (Representative T-shape depth) 

Xpo = .5m 

ISO 9705 Room Corner Test  

The geometry in the ISO 9705 room corner test is very similar to that in the Schebel test.  The main 

difference is that the fire travels up the corner of a room rather than a flat wall.  This means that the 

width of the burning wall area will be twice as wide, because there will be an area as wide as the source 

fire on both walls.  The initial heat release rate is 100kW for the first 10 minutes and 300 kW for the next 

10 minutes.   
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Based on the heat flux maps shown above, the initial burn height is estimated to be the distance of the 

highest heat flux (40-50 kW/m2) nearest to the burner.  This height is approximately .45m.  For the 

purposes of the model it is assumed that once this area ignites the source fire is ignored.   

 

For xp < H and xb < H 

            (     )(     )(  ̇ ) 

For xp > H and xb < H 
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For xp > H and xb > H 
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Where 

Xpow = Initial source fire width (in the room corner test the burner width is 17cm) 

H = Ceiling Height (in the room corner test the ceiling height is 2.4m) 

D = .08H (Representative T-shape depth) 

Xpo = .45m 

 

NFPA 285  

The geometry of the NFPA 285 test is similar to the geometry of the Schebel test before it reaches the 

ceiling, with the source fire width being the width of the window burner.   
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The critical heat fluxes of FRPs tested in the Cone Calorimeter were found to be approximately 25 

kW/m2.  Any distance along the NFPA 286 line on the graph with a heat flux above 30 kW/m2 was taken 

to be the initial burn height to provide a margin of safety.  This distance is approximately 1m.  For the 

purposes of the model, once this area ignites the source fire is to be ignored. 

 

            (     )( )(  ̇ ) 

Where 

W = Width of the window burner (60in) 

Xpo = 1m 
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Appendix C Flame Correlation 

 

The Effect of Tunnel Velocity on Flame kf  

William Parker’s investigation of the fire environment in the ASTM E84 tunnel test reveals the air flow 

information necessary to draw correlations between the E 84 tunnel test and the Zhou & Fernandez-

Pello study of forced flow flame spread across a ceiling. Parker’s paper reveals airflow velocities in 

various stages of the tunnel at ambient air temperatures as well as with the burner on for differing 

amounts of time. As determined in the Zhou study, airflow velocity  1< V < 5 (m/s) will accelerate 

flamespread across the ceiling by reducing the distance between the flame front and the material 

surface. A shorter distance between the flame front and the fuel source enhances heat transfer in the 

forward heating zone.  In Parker’s testing of the tunnel configuration, average airflows were consistently 

in range for an accelerated spread both with and without the burner ignited. Figures 12 through 15 

serve to illustrate these findings in several iterations of the experiment .  
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Appendix D Uncertainty 

 

To determine the amount of uncertainty associated with the flame spread model the team conducted 

an analysis using the Propagation of Uncertainty theory. This method states that the uncertainty of an 

equation can be derived from the equation: 

 ( )  √(
  

  
)
 
  

  (
  

  
)
 
  

  (
  

  
)
 
  

                                                                           (1) 

 
  

  
 Is the partial differentiation of the equation f with respect to n, and s n

is the standard 

deviation of the parameter n.  Since the model uses a different equation once burnout begins, the 

uncertainty must be calculated for both of these equations.  Due to a lack of sufficient data, the 

standard deviation ( ) values for each input parameter were determined by normalizing the 

experimental data rather than a standard formula. 

Algebraic Constants 
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The resulting U(xp) value is the uncertainty of xp before burnout. 

After Burnout 
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The resulting U(xp) value is the uncertainty of xp after burnout. 
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Appendix E NFPA 285 Review 

 

NFPA 285 

This test is used to evaluate the following propagation characteristics: (1) the ability of the wall assembly 

to resist flame propagation over the exterior face of the wall assembly, (2) the ability of the wall 

assembly to resist vertical flame propagation within the combustible components from one story to the 

next, (3) the ability of the wall assembly to resist vertical flame propagation over the interior surface of 

the wall assembly from one story to the next, and (4) the ability of the wall assembly to resist lateral 

flame propagation from the compartment of origin to adjacent compartments or spaces. (NFPA 285, 

2012: 1.3.1) 

Geometry 

The NFPA 285 test apparatus shall be located in test facility having minimum dimensions of 30 feet wide 

by 30 feet deep by 23 feet high. The facility is designed to protect the apparatus and test specimen from 

exposure to wind and precipitation. The test apparatus is a two-story structure with three permanent 

walls and a movable test frame. Each story shall have a height of 15 feet 8 inches and each shall contain 

a test room. Each test room shall have an unfinished inside dimension of 10 feet wide by 10 feet deep 

and an unfinished floor-to-ceiling height of 7 feet. Each story will have one access opening 3.5 feet wide 

by 6.75 feet high, and access on the first floor shall be closed off during the test.  

Test Apparatus: 

 

Movable Wall Frame: 
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(NFPA 285, 2012: Chapter 4) 

 

(NFPA 285, 2012: Chapter 5) 

Location of thermocouples on front view of test specimen: 
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Fuel Package 

The test requires two natural gas-fired burners: one placed inside the first-story test room and other 

near the top of the first-story window opening of the test specimen. The burners shall be constructed of 

nominal 2 in outside diameter steel pipe. (NFPA 285, 2012: 4.4) 

Test Duration 

Five minutes after ignition of the test room burner, the gas supply to the window burner shall be turned 

on and burner ignited. Thirty minutes after ignition of the test room burner, the gas supply to both 

burners shall be shut off. Residual burning on the test specimen shall not be extinguished until not less 

than 10 minutes after the gas supply is shut off. Therefore the total test duration is at least 40 minutes 

long. (NFPA 285, 2012: Chapter 8) 

 

Thermal Insult 

Room burner at 900kW, window burner at 400 kW 

Pass/Fail Criteria  
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In order to pass the fire test, the specimen needs to meet the determined performance criteria during 

the 30-minute fire exposure portion of the test in order to pass (NFPA 285, 2012: 10.2). The 

performance criteria specifies that flame propagation on the exterior face of the test specimen shall not 

occur either vertically or horizontally beyond the area of the flame plume impingement by the window 

burner flames. NFPA 285 defines this propagation in Chapter 10. Additionally, flames shall not occur in 

second-story test room, and the temperature in the second-story test room shall not exceed 500 

degrees Fahrenheit above the ambient air temperature at beginning of test. Flames shall also not occur 

beyond the intersection of the test specimen and the side walls of the test apparatus. (NFPA 285, 2012: 

Chapter 10) 

Types of Assemblies 

NFPA 285 is designed to test exterior non-load-bearing wall assemblies and panels used as components 

of curtain wall assemblies that are constructed using combustible materials or that incorporate 

combustible components, and that are intended to be installed on buildings required to have exterior 

walls of noncombustible construction (NFPA, 285, 2012: 1.1.1). Test specimens shall be at minimum 17.5 

feet high and 13.3 feet wide. There shall be a window opening 30 inches high and 78 inches wide with a 

sill height 30 inches above the top of the first-story test room slab. The specimen shall completely cover 

the front face of the test apparatus expect for the window opening. (NFPA 285, 2012: Chapter 5) 

Many different wall assembly systems can be tested using NFPA 285. Most assemblies contain some sort 

of insulation at the core of the system protected by at least one layer of exterior material. An example is 

extruded polystyrene insulation under various exterior finishes, including brick, stone, concrete, EIFS, 

etc.  

 

  



F-56 
 

Appendix F NFPA 286 Review 

 

NFPA 286 

 This section describes NFPA 286, Standard Methods of Fire Tests for Evaluating Contribution of 
Wall and Ceiling Interior Finish to Room Fire Growth (2011 Edition).  This standard provides testing 
procedures to determine how interior finish materials will react when exposed to fire conditions.   

 

Geometry 

 The test occurs in a fire test room that measures 8 ft x 12 ft x 8 ft.  The fire room shall be inside a 
larger room and consist of four walls each at right angles.  Area surrounding the fire test room shall be 
20OC ±10OC with a relative humidity less than 75%.  One doorway measuring 30.75 in x 79.5 in. for 
ventilation is required in the fire test room.  The material being tested is mounted on the walls, ceiling, 
or both (depending on where it is going to be used).   

 

Figure 1: Interior Dimensions of Fire Test Room 

Fuel Package 

 The fuel is provided by a burner, which supplies propane gas of 99% purity.  The top of the 

burner is 12 in. ±2 in. above the floor.  The burner shall switch from the 40kW heat output to the 160kW 

output within 10 seconds.  Ignition of the burner will be by a pilot burner or a remotely controlled spark 

igniter.  If flameout occurs the burner shall be capable of automatic shutoff of the gas supply. 
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Test Duration 

The test is run for a total of fifteen minutes.  The room is exposed to a heat release of 40 kW 
from the burner for 5 minutes, then a heat release of 160 kW for an additional ten minutes.  The ignition 
is turned off after the ten minutes at 160 kW and the test is terminated (unless safety concerns make it 
necessary to terminate earlier).  
 

Thermal Insult  

40kW for 5 minutes, 160kW for an additional 10 minutes 

Report Criteria 

A material is assessed based on: 

 Incident heat flux on the center of the floor 

 Temperature of the gases in the upper part of the fire test room 

 Rate of heat release 

 Smoke release 

 Time to flashover 
A material is said to have passed if all of the following requirements are met: 

During the 40 kW exposure: 

 Flames do not reach the ceiling 
During the 160 kW exposure: 

 Flames do not reach the outer extremity of the sample on any wall or ceiling 

 Flashover does not occur 

 Peak heat release rate never exceeds 800 kW 

 Total smoke released does not exceed 1000 m2 
Flashover is said to occur when two of the following conditions have occurred: 

 Heat release rate exceeds 1 MW 

 Heat flux at the floor exceeds 20 kW/m2 

 Average upper layer temperature exceed 600oC 

 Flames exit doorway 

 Autoignition of a paper target on the floor occurs 
 

Types of Specimen 

This test is used for interior finish materials.  Materials can be tested three different ways; on three 

walls (if the material will only be used on the walls), on three walls and the ceiling (if the materials will 

be used on the walls and ceiling), and only on the ceiling (for those materials only to be used on the 

ceiling).  The material being tested shall be mounted in the fire room as it would be mounted for actual 

use.  The material will be placed on panels and there will be two panels on the end wall, three panels on 

each side wall, and three on the ceiling. 
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Appendix G ASTM E84 Review 

 

ASTM E 84 

This section describes ASTM E84 Standard Test Method for Surface Burning Characteristics of Building 

Materials (2012 Edition). This is a standard for the comparative surface burning behavior of building 

materials and applies to exposed surfaces such as walls and ceilings. The purpose of this test method is 

to determine the relative burning behavior of the material based on flame spread along the sample as 

well as smoke production.  Results of this test provide comparative measurements of surface flame 

spread and smoke density relative to red oak and fiber cement boards.  

Geometry 

A 24-ft long by 20-in wide specimen is secured as the ceiling (downward facing surface) in a fire test 

chamber (17.75-in x 12.0-in x 25-ft).  

 

 

Fuel Package 

One end of the test chamber will have two gas burners directed upward, creating flames against the 

surface of the test specimen.  The two gas burners are spaced 12-in from the end of the test chamber 

and 7 ½ +/- ½ in . below the specimen surface. The burners are fed by one gas inlet split in a tee section 

to supply each burner.   

An air intake shutter is located 54 +/- 5in. upstream of the burner. To provide the proper air turbulence 

for combustion, six refractory fire bricks are located along the side wall of the chamber to provide 

turbulence baffling.  

Test Duration 

The test is to run a total of 10 minutes from the ignition of the burners. The test may be concluded early 

if the specimen is completely consumed in the fire area and no further progressive burning is evident 

and the photoelectric cell reading has returned to the baseline. (section 8 procedure)  
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Pass/Fail Criteria 

When the test is completed, flame spread distance vs time is plotted and the area under the curve is 

calculated. In the event that the flame recedes during the test duration, a horizontal line is drawn from 

the point of recession for the remainder of the test or until the flame front continues past the original 

recession point. If the total area under the curve is less than or equal to 97.5, the area is multiplied by 

.515 to obtain the flame spread index (FSI).  FSI = 0.515 *AT. If the total area is greater than 97.5 the FSI 

is calculated as 4900/(195-AT).  The FSI is rounded to the nearest multiple of 5. (See ASTM E84 appendix 

X2 for derivations)  

Types of Assemblies 

This test is designed to test building materials that will be used as finishing surfaces such as walls or 

ceilings. The test assembly must be a downward facing surface in the ceiling position of the test 

chamber. The test assembly or material has to be capable of mounting in this position by means of self-

support or holding in place by supports along the test surface or by securing the specimen from the 

back. Specimen with supports exhibit lower flame spread index than those able to be tested without 

additional support. Also materials with dripping and delaminating qualities severe enough to alter the 

flame front will also display lower flame spread indexes. 
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Appendix H Compartment Effect 

 

Because this test is conducted within a partially enclosed compartment, it is necessary to understand 

the impacts the compartment will have on the fire temperatures. In this case, the fire starts about 2.4 

meters below the ceiling. The hot products of combustion will create a plume, which will rise toward the 

ceiling due to buoyancy. As it rises, the plume will draw in cooler air from the compartment, therefore 

decreasing the temperature of the plume and increasing its volumetric flow rate. Upon reaching the 

ceiling, the plume will spread out and form a hot gas layer that descends in the room with time. 

Eventually this layer will reach the openings in the room where the hot gas will flow out of the room and 

the outside air will flow into the room. This is known as the two layer or zone model and can be seen in 

the figure below.  

 

MQH Method 

Many assumptions are made for this model. It is assumed that the only interchange between 

the air in the lower part of the room and the hot upper gas layer is through the plume. It is also assumed 

that the compositions and temperatures of each layer is uniform, and that the temperature of the upper 

layer will always be greater than the lower layer. The basic governing principle used to calculate the 

temperature in a compartment fire is the conservation of energy. It states that the energy added to the 

upper layer by the fire is equal to the energy lost from the upper layer from radiation and convection 

plus the energy convected out of the compartment openings. Throughout this test, flashover conditions 
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were never attained, this section focuses on predicting compartment fire temperatures for preflashover 

fires. Specifically, the method of McCaffrey, Quintiere, and Harkleroad was used. These hand 

calculations are an approximate solution that use a limiting set of assumptions for calculating the upper 

gas layer temperature. Based on a simple conservation of energy equation and multiple substitutions, 

the following power-law relationship can be used to solve for this change in temperature: 

 

Heat Transfer Coefficient 

As stated in the above assumptions, the heat transfer coefficient is determined based on the 

thermal penetration time. The equation for calculating the thermal penetration time is as follows: 

 

 

Consequently, the following equations are used to determine the heat transfer coefficient necessary for 

the above analysis. 

 for times greater than the thermal penetration time. 

 for times less than or equal to the thermal penetration time. 

Limitations 

The following limitation exist for this method: 
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 The correlation holds for compartment upper layer gas temperatures up to approximately 

600oC. 

 The correlation applies to steady-state as well as time-dependent fires as long as the transient 

response is the wall conduction phenomenon. 

 The correlation is not applicable to rapidly developing fires in large enclosures in which 

significant fire growth has occurred before the combustion products have exited the 

compartment. 

 The energy release rate of the fire must be determined from data or other correlations. 

 The characteristic fire growth time and thermal penetration time of the room-lining materials 

must be determined in order to evaluate the effective heat transfer coefficient. 

 The correlation is based on data from a limited number of experiments and does not contain 

extensive data on ventilation-controlled fire nor data on combustible walls or ceilings. Most of 

the fuel n the test fires was near the center of the room. 

(SFPE Handbook, Third Edition: 3-6) 
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Appendix I International Building Code Review  

 

Building Code Regulations  

The interior wall and ceiling finish requirements are dependent on two main factors.  The first is 
the type of building or “occupancy” as the building code refers to it and the second is where in the 
building the material is going.  There are ten main types of building occupancies.  The occupancy is 
determined based on the main use/purpose of the building.  Some occupancies are further classified (as 
1, 2, 3, etc.) based on a more specific use. 

Types of Occupancies 

The main occupancy types are:  

 Assembly (A) 

 Business (B) 

 Educational (E) 

 Factory (F) 

 High-Hazard (H) 

 Institutional (I) 

 Mercantile (M) 

 Residential (R) 

 Storage (S) 

 Utility and Miscellaneous (U) 
As described above, to determine a building’s occupancy classification the main purpose of the building 
is used.  Some occupancies types are broken down further with sub-classes.  For interior wall and ceiling 
finish requirements the sub-classes of Assembly, Institutional, and Residential impact the code 
requirements.   

The building is considered an assembly occupancy when many people gather in the building for 
any reason (i.e. religious, social, awaiting transportation, food, drink, etc.).  Since there are such a 
variety of buildings that fall under the assembly occupancy there are sub categories, A-1, A-2, A-3, A-4, 
and A-5.  A-1 occupancies typically have fixed seating and are used for performance or viewing 
performance (i.e. movie theater).  Buildings that are meant for the consumption of food or beverages 
are given an A-2 classification.  A-3 occupancy is given to any other assembly type building except for 
those used for indoor or outdoor sporting events (i.e. place of religious worship, lecture hall, museum, 
pool hall, etc).  Buildings that house indoor sporting events and have spectator seating are considered A-
4 occupancies while structures used for outdoor sporting events are considered A-5 occupancies. 
 Institutional occupancies are buildings in which people live or are cared for because of physical 
limitations (health or age), medical treatment, or because they “are detained for penal or correctional 
purposes”.  The sub-classes of Institutional occupancies are I-1, I-2, I-3, I-4.  An I-1 occupancy refers to a 
building in which people (more than 16) reside and are supervised.  Personal care services are provided.  
Residents are capable of reacting to emergency situations without physical assistance (i.e. alcohol and 
drug centers, assisted living facilities, etc.).  I-2 occupancies are buildings used for any type of 24 hour 
care (physical, mental, or custodial) of people who are not capable of responding to emergency 
situations on their own (i.e. child care facilities (more than 5 children under the age of 2 ½), hospitals, 
nursing homes, etc.).  Buildings in which more than five people reside who are incapable of self 
preservation because of security restraints are considered I-3 occupancies (i.e. jails).  I-4 occupancies are 
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buildings in which people, regardless of age are cared for (for less than 24 hours) by someone other than 
relatives/guardians. 
 Residential occupancies are buildings in which people sleep in, but are not considered 
institutional occupancies.  The sub-classes of Residential occupancies are R-1, R-2, R-3, and R-4.  R-1 
occupancies are building where people do not stay permanently (less than 30 consecutive days).  These 
would include things like hotels or motels.  R-2 occupancies are building in which more than two 
sleeping/dwelling units are present.  The occupants tend to be permanent.  This would include 
apartments, dormitories, fraternities, monasteries, etc.  R-3 occupancies are building where the 
occupants are normally permanent but are not classified as R-1, R-2, R-4, or I.  R-4 occupancies are 
building used for assisted living of more than 5 people but no more than 16. 
 For Business, Educational, Factory, High-Hazard, Mercantile, Storage, Utility and Miscellaneous 
occupancies any sub-classes that may exist do not matter for the interior wall and ceiling finish 
requirements.  A business occupancy is a building used as an office, for professional services, or other 
equivalent purposes (i.e. print shop, post office, educational occupancies above the 12th grade, etc.).  An 
educational occupancy is a building used for educational purposes until the 12th grade.  Factory 
assemblies are buildings used for any type or process in manufacturing excluding those classified as 
High-Hazard or Storage.  This includes assembling, disassembling, fabricating, finishing, etc.  High-Hazard 
occupancies are buildings used for the same purpose as a factory assembly except the materials being 
manufactured constitute physical or health hazards.  Mercantile occupancies are comprised of buildings 
used for the display of goods for sale. Storage occupancies are buildings used for storage purposes. 
Utility and Miscellaneous buildings are those that cannot be classified under any other category. 

 

Material Classifications and Building Areas  

 The International Building Code classifies materials based on results from ASTM E 84 or UL 723 
testing.  There are three different classifications, Class A, Class B, or Class C.  The different classes are 
determined by the flame spread index and smoke-developed during the tests.  The following table 
details the different classifications: 
 

Class Flame Spread Index Smoke Developed Index 

A 0-25 0-450 

B 26-75 0-450 

C 76-200 0-450 

 
 The code gives a minimum requirement.  If the code says that a class B material is needed, then 
either a class A or class B material can be used.  A class C material would not be allowed in that 
particular section of that type of occupancy.  A class C requirement means a class A, B, or C material may 
be used.  When the code says class A material is needed, only a class A material can be used. 

Requirements for interior finishes depend on where in the building the material is going to be.  
The International Building Code divides buildings into three sections: exit enclosures, corridors, and 
rooms and enclosed spaces.  The occupancy type will also affect the material requirements.    
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Class C materials 

 Class C materials are only permitted in exit enclosures in F, R-2, R-3, and S occupancies.  They 
are permitted in corridors in B, E, M, R-1, R-4, I-1, F, R-2, R-3, and S occupancies.  For rooms and 
enclosed spaces class C materials are allowed in all assembly and residential occupancies, B, E, M, H, F, 
S, I-1, and I-3 occupancies. 

 

Class B Materials 

 Class B materials are permitted wherever class C materials are allowed as well as in exit 
enclosures in all assembly, B, E, M, R-1, R-4, H, I-1, I-2, and I-4 occupancies.  They are permitted in 
corridors in all assembly, H, I-2, and I-4 occupancies.  For rooms and enclosed spaces class B materials 
are allowed in I-2, and I-4 occupancies. 

 

Class A Materials 

Class A materials are permitted wherever class B and C materials are allowed as well as in exit 
enclosures in I-3 occupancies.  They are permitted in corridors in I-3 occupancies.   

 

Non-Sprinklered Buildings 

 All of the above requirements are assuming the building is sprinklered.  If the occupancy is not 
protected by an automatic sprinkler system the interior finish requirements change.  Essentially any area 
that had a class B requirement in a sprinklered building would require a class A material in a non-
sprinklered building.  Many class C requirements in sprinklered buildings become class B requirements 
for non-sprinklered buildings.  All of the requirements are increased by a class in the exit enclosure 
sections for a non-sprinklered building.  The only corridor requirement that does not increase in a non-
sprinklered building is in the F occupancies.  There were more requirements that remained the same for 
rooms and enclosed spaces for non-sprinklered buildings.  These included A-3, A-3, A-4, A-5, B, E, M, R-1, 
F, I-2, I-4, R-2, S occupancies.  No requirements changed for R-3 occupancies regardless of whether the 
building was sprinklered or not.  There are no restrictions for U occupancies in a sprinklered or non-
sprinklered building. 
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Appendix J Cone: Heat Release Rate Histories 

 

25 kw/m2 Heat Release rate analysis  

Thirteen FRP systems are analyzed in the context of heat release rate. This briefing highlights all thirteen 

systems as well as groups the systems in terms of pigments, filler, gel, and aggregate composition for 

comparison purposes.  

Baseline FRP System 

No gelcoat 

Polymer concrete: Norsodyne H 81269 TF with 6% cobalt & DDM-9 

Alumina Trihydrate: 10% of resin by weight 

Sand: 150% of resin by weight, split evenly between #0/30 and #2/16 

1-1/2 parts sand to 1 part resin 

No pigment 

Approximately 60 mil thickness (aggregate dependent) 

3/16" single skin laminate: Norsodyne H 81269 TF with 6% cobalt & DDM-9 

4 layers of 1.5 ounce chopped strand mat 

Glass to resin ratio range: 25:75 to 35:65 by weight 

System 1 – Addition of 1/2" plywood core & 3/16” rear skin (Note that core separation was observed in 

several samples)  

System 2 – Addition of 3/4" balsa core & 3/16” rear skin 

System 3 – Addition of 1/2" polyurethane foam core & 3/16” rear skin 

System 4 – Bronze filler instead of sand: 1 part bronze powder to 1 part resin by weight 

System 5 – Aluminum filler instead of sand: 1 part aluminum powder to 2 parts resin by weight 

System 6 – Straight Norsodyne H 81269 TF as gelcoat in place of resin based polymer concrete 

System 7 – Addition of white pigment to polymer concrete 

System 8 – Addition of grey pigment to polymer concrete 

System 9 – Addition of beige pigment to polymer concrete 

System 10 – #0/30 aggregate only  

System 11 – #0/60 aggregate only 

System 12 – #2/16 aggregate only 

System 13 – DCPD Laminate resin (with 6 layers of glass) instead of Norsodyne  
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50 kw/m^2 Heat Release rate analysis  

Thirteen FRP systems are analyzed in the context of heat release rate. This briefing highlights all thirteen 

systems as well as groups the systems in terms of pigments, filler, gel, and aggregate composition for 

comparison purposes.   

Additionally, Samples 5, 7, 10, and 13 were selected for further testing with an alternate test method 

with no sample frame for comparison purposes.  

Baseline FRP System 

No gelcoat 

Polymer concrete: Norsodyne H 81269 TF with 6% cobalt & DDM-9 

Alumina Trihydrate: 10% of resin by weight 

Sand: 150% of resin by weight, split evenly between #0/30 and #2/16 

1-1/2 parts sand to 1 part resin 

No pigment 

Approximately 60 mil thickness (aggregate dependent) 

3/16" single skin laminate: Norsodyne H 81269 TF with 6% cobalt & DDM-9 

4 layers of 1.5 ounce chopped strand mat 

Glass to resin ratio range: 25:75 to 35:65 by weight 
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System 1 – Addition of 1/2" plywood core & 3/16” rear skin (Note that core separation was observed in 

several samples)  

System 2 – Addition of 3/4" balsa core & 3/16” rear skin 

System 3 – Addition of 1/2" polyurethane foam core & 3/16” rear skin 

System 4 – Bronze filler instead of sand: 1 part bronze powder to 1 part resin by weight 

System 5 – Aluminum filler instead of sand: 1 part aluminum powder to 2 parts resin by weight 

System 6 – Straight Norsodyne H 81269 TF as gelcoat in place of resin based polymer concrete 

System 7 – Addition of white pigment to polymer concrete 

System 8 – Addition of grey pigment to polymer concrete 

System 9 – Addition of beige pigment to polymer concrete 

System 10 – #0/30 aggregate only  

System 11 – #0/60 aggregate only 

System 12 – #2/16 aggregate only 

System 13 – DCPD Laminate resin (with 6 layers of glass) instead of Norsodyne   
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75 kw/m^2 Heat Release rate analysis  

Thirteen FRP systems are analyzed in the context of heat release rate. This briefing highlights all thirteen 

systems as well as groups the systems in terms of pigments, filler, gel, and aggregate composition for 

comparison purposes.  

Baseline FRP System 

No gelcoat 

Polymer concrete: Norsodyne H 81269 TF with 6% cobalt & DDM-9 

Alumina Trihydrate: 10% of resin by weight 

Sand: 150% of resin by weight, split evenly between #0/30 and #2/16 

1-1/2 parts sand to 1 part resin 

No pigment 

Approximately 60 mil thickness (aggregate dependent) 

3/16" single skin laminate: Norsodyne H 81269 TF with 6% cobalt & DDM-9 

4 layers of 1.5 ounce chopped strand mat 

Glass to resin ratio range: 25:75 to 35:65 by weight 

System 1 – Addition of 1/2" plywood core & 3/16” rear skin (Note that core separation was observed in 

several samples)  

System 2 – Addition of 3/4" balsa core & 3/16” rear skin 
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System 3 – Addition of 1/2" polyurethane foam core & 3/16” rear skin 

System 4 – Bronze filler instead of sand: 1 part bronze powder to 1 part resin by weight 

System 5 – Aluminum filler instead of sand: 1 part aluminum powder to 2 parts resin by weight 

System 6 – Straight Norsodyne H 81269 TF as gelcoat in place of resin based polymer concrete 

System 7 – Addition of white pigment to polymer concrete 

System 8 – Addition of grey pigment to polymer concrete 

System 9 – Addition of beige pigment to polymer concrete 

System 10 – #0/30 aggregate only  

System 11 – #0/60 aggregate only 

System 12 – #2/16 aggregate only 

System 13 – DCPD Laminate resin (with 6 layers of glass) instead of Norsodyne  
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Heat Release rate analysis At variable heat flux  

Thirteen FRP systems are analyzed in the context of heat release rate. This briefing highlights all thirteen 

systems as well as groups the systems in terms of pigments, filler, gel, and aggregate composition for 

comparison purposes.  

Baseline FRP System 

No gelcoat 

Polymer concrete: Norsodyne H 81269 TF with 6% cobalt & DDM-9 

Alumina Trihydrate: 10% of resin by weight 

Sand: 150% of resin by weight, split evenly between #0/30 and #2/16 

1-1/2 parts sand to 1 part resin 

No pigment 

Approximately 60 mil thickness (aggregate dependent) 

3/16" single skin laminate: Norsodyne H 81269 TF with 6% cobalt & DDM-9 

4 layers of 1.5 ounce chopped strand mat 

Glass to resin ratio range: 25:75 to 35:65 by weight 

System 1 – Addition of 1/2" plywood core & 3/16” rear skin (Note that core separation was observed in 

several samples)  

System 2 – Addition of 3/4" balsa core & 3/16” rear skin 
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System 3 – Addition of 1/2" polyurethane foam core & 3/16” rear skin 

System 4 – Bronze filler instead of sand: 1 part bronze powder to 1 part resin by weight 

System 5 – Aluminum filler instead of sand: 1 part aluminum powder to 2 parts resin by weight 

System 6 – Straight Norsodyne H 81269 TF as gelcoat in place of resin based polymer concrete 

System 7 – Addition of white pigment to polymer concrete 

System 8 – Addition of grey pigment to polymer concrete 

System 9 – Addition of beige pigment to polymer concrete 

System 10 – #0/30 aggregate only  

System 11 – #0/60 aggregate only 

System 12 – #2/16 aggregate only 

System 13 – DCPD Laminate resin (with 6 layers of glass) instead of Norsodyne  
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Appendix K Cone: Specific Extinction Area Histories 

 

Specific Extinction Area analysis –  25kW/M2 

Thirteen FRP systems are analyzed in the context of specific extinction area. This briefing highlights all 

thirteen systems as well as groups the systems in terms of pigments, filler, gel, and aggregate 

composition for comparison purposes.  

Baseline FRP System 

No gelcoat 

Polymer concrete: Norsodyne H 81269 TF with 6% cobalt & DDM-9 

Alumina Trihydrate: 10% of resin by weight 

Sand: 150% of resin by weight, split evenly between #0/30 and #2/16 

1-1/2 parts sand to 1 part resin 

No pigment 

Approximately 60 mil thickness (aggregate dependent) 

3/16" single skin laminate: Norsodyne H 81269 TF with 6% cobalt & DDM-9 

4 layers of 1.5 ounce chopped strand mat 

Glass to resin ratio range: 25:75 to 35:65 by weight 

System 1 – Addition of 1/2" plywood core & 3/16” rear skin (Note that core separation was observed in 

several samples)  

System 2 – Addition of 3/4" balsa core & 3/16” rear skin 

System 3 – Addition of 1/2" polyurethane foam core & 3/16” rear skin 

System 4 – Bronze filler instead of sand: 1 part bronze powder to 1 part resin by weight 

System 5 – Aluminum filler instead of sand: 1 part aluminum powder to 2 parts resin by weight 

System 6 – Straight Norsodyne H 81269 TF as gelcoat in place of resin based polymer concrete 

System 7 – Addition of white pigment to polymer concrete 

System 8 – Addition of grey pigment to polymer concrete 

System 9 – Addition of beige pigment to polymer concrete 

System 10 – #0/30 aggregate only  

System 11 – #0/60 aggregate only 

System 12 – #2/16 aggregate only 

System 13 – DCPD Laminate resin (with 6 layers of glass) instead of Norsodyne  
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Specific Extinction Area analysis –  50kW  /m2 

Thirteen FRP systems are analyzed in the context of specific extinction area. This briefing highlights all 

thirteen systems as well as groups the systems in terms of pigments, filler, gel, and aggregate 

composition for comparison purposes.  

Baseline FRP System 

No gelcoat 

Polymer concrete: Norsodyne H 81269 TF with 6% cobalt & DDM-9 

Alumina Trihydrate: 10% of resin by weight 

Sand: 150% of resin by weight, split evenly between #0/30 and #2/16 

1-1/2 parts sand to 1 part resin 

No pigment 

Approximately 60 mil thickness (aggregate dependent) 

3/16" single skin laminate: Norsodyne H 81269 TF with 6% cobalt & DDM-9 

4 layers of 1.5 ounce chopped strand mat 

Glass to resin ratio range: 25:75 to 35:65 by weight 

System 1 – Addition of 1/2" plywood core & 3/16” rear skin (Note that core separation was observed in 

several samples)  

System 2 – Addition of 3/4" balsa core & 3/16” rear skin 
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System 3 – Addition of 1/2" polyurethane foam core & 3/16” rear skin 

System 4 – Bronze filler instead of sand: 1 part bronze powder to 1 part resin by weight 

System 5 – Aluminum filler instead of sand: 1 part aluminum powder to 2 parts resin by weight 

System 6 – Straight Norsodyne H 81269 TF as gelcoat in place of resin based polymer concrete 

System 7 – Addition of white pigment to polymer concrete 

System 8 – Addition of grey pigment to polymer concrete 

System 9 – Addition of beige pigment to polymer concrete 

System 10 – #0/30 aggregate only  

System 11 – #0/60 aggregate only 

System 12 – #2/16 aggregate only 

System 13 – DCPD Laminate resin (with 6 layers of glass) instead of Norsodyne  
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Specific Extinction Area analysis –  75kW 

Thirteen FRP systems are analyzed in the context of specific extinction area. This briefing highlights all 

thirteen systems as well as groups the systems in terms of pigments, filler, gel, and aggregate 

composition for comparison purposes.  

Baseline FRP System 

No gelcoat 

Polymer concrete: Norsodyne H 81269 TF with 6% cobalt & DDM-9 

Alumina Trihydrate: 10% of resin by weight 

Sand: 150% of resin by weight, split evenly between #0/30 and #2/16 

1-1/2 parts sand to 1 part resin 

No pigment 

Approximately 60 mil thickness (aggregate dependent) 

3/16" single skin laminate: Norsodyne H 81269 TF with 6% cobalt & DDM-9 

4 layers of 1.5 ounce chopped strand mat 

Glass to resin ratio range: 25:75 to 35:65 by weight 

System 1 – Addition of 1/2" plywood core & 3/16” rear skin (Note that core separation was observed in 

several samples)  

System 2 – Addition of 3/4" balsa core & 3/16” rear skin 
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System 3 – Addition of 1/2" polyurethane foam core & 3/16” rear skin 

System 4 – Bronze filler instead of sand: 1 part bronze powder to 1 part resin by weight 

System 5 – Aluminum filler instead of sand: 1 part aluminum powder to 2 parts resin by weight 

System 6 – Straight Norsodyne H 81269 TF as gelcoat in place of resin based polymer concrete 

System 7 – Addition of white pigment to polymer concrete 

System 8 – Addition of grey pigment to polymer concrete 

System 9 – Addition of beige pigment to polymer concrete 

System 10 – #0/30 aggregate only  

System 11 – #0/60 aggregate only 

System 12 – #2/16 aggregate only 

System 13 – DCPD Laminate resin (with 6 layers of glass) instead of Norsodyne  
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Specific Extinction Area analysis –  Variable heat flux  

Thirteen FRP systems are analyzed in the context of specific extinction area. This briefing highlights all 

thirteen systems as well as groups the systems in terms of pigments, filler, gel, and aggregate 

composition for comparison purposes.  

Baseline FRP System 

No gelcoat 

Polymer concrete: Norsodyne H 81269 TF with 6% cobalt & DDM-9 

Alumina Trihydrate: 10% of resin by weight 

Sand: 150% of resin by weight, split evenly between #0/30 and #2/16 

1-1/2 parts sand to 1 part resin 

No pigment 

Approximately 60 mil thickness (aggregate dependent) 

3/16" single skin laminate: Norsodyne H 81269 TF with 6% cobalt & DDM-9 

4 layers of 1.5 ounce chopped strand mat 

Glass to resin ratio range: 25:75 to 35:65 by weight 

System 1 – Addition of 1/2" plywood core & 3/16” rear skin (Note that core separation was observed in 

several samples)  

System 2 – Addition of 3/4" balsa core & 3/16” rear skin 
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System 3 – Addition of 1/2" polyurethane foam core & 3/16” rear skin 

System 4 – Bronze filler instead of sand: 1 part bronze powder to 1 part resin by weight 

System 5 – Aluminum filler instead of sand: 1 part aluminum powder to 2 parts resin by weight 

System 6 – Straight Norsodyne H 81269 TF as gelcoat in place of resin based polymer concrete 

System 7 – Addition of white pigment to polymer concrete 

System 8 – Addition of grey pigment to polymer concrete 

System 9 – Addition of beige pigment to polymer concrete 

System 10 – #0/30 aggregate only  

System 11 – #0/60 aggregate only 

System 12 – #2/16 aggregate only 

System 13 – DCPD Laminate resin (with 6 layers of glass) instead of Norsodyne  
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Appendix L  B-Parameter Analysis 

 

B-Parameter Calculation 

The following briefing outlines the calculations and assumptions involved in determining the B-

parameter. 

 

B = .01*(HRRPUA)-1-(Tig/Tb) 

 

Where HRRPUA is the average heat release rate per unit area, Tig is the time to ignition, and Tb 

is the burn duration. 

 

Time of Burn 

To identify the most accurate burn duration, two critical points were selected from each test. 

These points intend to accurately locate the point where the flaming sample loses one 

dimensionality and begins to edge burn. The two points being considered are referred to as the 

short burn and the long burn. When the flame cone is reduced to multicellular flaming well 

below the intensity of the original peak the short burn time is noted. A long burn time is noted 

when the multicellular flames are further reduced to isolated, candle-like flames.   

Data Analysis  

With a long and short burn time identified, the remaining values are obtained from the data 

acquisition system to complete the analysis.  

From the data acquisition summary, the following values are collected:  

1. Shutter open time  

2. Time to ignition  

3. Short burn time  

4. Long burn time 

 

Tig = Time to ignition – Shutter open time 

Tb = Burn time – Time to ignition 
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 Finally, the average HRRPUA for both the long and short burn times are calculated by averaging the 

HRRPUA of the calculated Burn times described above.  
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Appendix M Smoke Calculations 

 

After reviewing the data, there were some questions regarding the smoke calculations 

for a couple of tests.  Two problems were observed from the tests in question.  Two 

tests (White Pigment and Plywood Core) showed extremely high smoke numbers while 

the other test (Balsa Core) had negative smoke numbers.  These errors were corrected 

the same way.  After examining the raw data, it appeared there may have been a 

problem with the compensating photodiode.  Therefore the smoke numbers were 

recalculated using just the main photodiode.  The equation used to calculate smoke 

is  (   )     
  

 
, where Io is the compensating photodiode and the I is the main 

photodiode.  In the adjusted smoke calculations, the average reading of the main 

photodiode during the clean air burn was used instead of the compensating photodiode 

reading.  The adjusted smoke graphs can be seen below.  The shape of the graphs are 

the same, the adjusted calculation caused the graph to shift. 
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