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Abstract 

The goal of this project was to reduce the likelihood of concussions for ice hockey 

players by designing a neck support that utilizes shear thickening fluids. The design incorporated 

a smart fluid of cornstarch and water with ratios of 1:1, 5:3, and 2:1. A testing mechanism was 

created to simulate a concussion causing impact while measuring x and y accelerations 

experienced in the head. Recorded accelerations were applied to the Head Impact Power (HIP), 

Head Injury Criteria (HIC), and Severity Index (SI) parameters, which are commonly used to 

assess the probability of a head injury. Results were then obtained to compare variations of fluid 

ratios in the device as well as the current hockey helmet on the market. After analysis, it was 

found that the 2:1 ratio non-Newtonian fluid best reduced the likelihood of a concussion when 

comparing the acceleration, HIP, HIC and SI indices. 
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 Introduction 

An estimated 1.6 to 3.8 million sports-related concussions occur in the United States each 

year [1]. According to a medical journal review by Thurman and Guerrero, the most severe 

concussions have caused more than 50,000 deaths and another 70,000-90,000 permanent 

disabilities in a year [2] . Concussions can be debilitating and present physical, cognitive, 

emotional, and sleep related symptoms that can last months after the concussion occurred [1].  

Permanent cognitive and memory deficits are among the devastating consequences of incurring 

repeated concussions [3]. All athletes involved in a contact sport are at risk for concussion [4]. 

The detrimental effects of concussions along with the high incidence of sport-related concussions 

have become public knowledge and a top concern of anyone involved with a contact sport. For 

this reason concussions are referred to as "a silent epidemic" [5].  

According to a study published by the National Athletic Trainers Association, ice hockey 

has the highest incidence of concussions for males involved in contact sports [4].  This is due to 

the aggressive nature of the sport as well as the high speeds, up to 30 mph,  ice hockey players 

are able to reach [6].   The force experienced by the player during an impact is directly related to 

the sudden change in the player’s velocity and acceleration.  When ice hockey players get shoved 

into the boards or into other players, they experience higher forces than most other athletes 

simply due to their higher initial speeds [6].  As concussions have become one of the top 

concerns of many people involved with contact sports, rules and regulations regarding hockey 

protective equipment have become stricter. 

Most sports have specific safety equipment that athletes are required to wear to protect 

them from injury.  Many contact sports require that all players wear a helmet that meets 

regulations set specifically for the intended sport. Unfortunately, the required helmets are mainly 
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designed to prevent skull fracture and do little to prevent concussions. Many organizations have 

provided resources for discovering better ways to protect athletes [1]. The research conducted by 

these organizations has provided knowledge on ways to improve the identification and treatment 

of sport-related concussions.  Resources were also contributed to developing better protective 

gear that would hopefully reduce the chance of concussion. Despite these efforts, the incidence 

of sport-related concussions is still alarmingly high and even growing in some demographics [1]. 

Understanding the biomechanics of a concussion helps explain why wearing a helmet has 

minimal effect on preventing concussions.  

Although diagnosis of a concussion can be difficult, the definition of a concussion was 

established with consensus during the 4th International Conference on Concussion in Sport [1].  

In short, a concussion is a brain injury and is defined as a complex pathophysiological process 

affecting the brain, induced by biomechanical forces.  Along with this definition, common 

heuristics of the nature of a concussive head injury were also agreed upon as useful guidelines 

for diagnosis.  One of these guidelines explains that a concussion can be caused by a direct 

impact to the head, or an impact elsewhere on the body that has an impulsive force transmitted to 

the head [1].  Generally helmets are designed to prevent skull fracture and reduce direct focal 

external transfers of force, while having minimal, if any, effect on rotational accelerations [7].  

Since rotational accelerations are the primary underlying mechanism of concussions, this 

explains why external padding secured on the head, like a helmet, has minimal effect on 

preventing concussions [7].  This raises the question, “Is there a better way to protect athletes 

from concussion than traditional safety gear?”   

Recently a study was conducted to discover whether there is a correlation between neck 

strength and risk of concussion.  During this study, athletic trainers working at high schools that 
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participated in the National High School Sports-Related Injury Surveillance Study measured the 

neck strength of all students in school-sponsored soccer, basketball, or lacrosse using both a 

hand-held dynamometer and a hand-held tension scale.   These athletes, distributed throughout 

25 states, were monitored for concussion by tracking the athletic trainers’ weekly submissions of 

exposure and injury data to the National High School Sports-Related Injury Surveillance Study 

online data collection tool.  After two academic years, it was concluded that for every one pound 

increase in neck strength, odds of sustaining a concussion decreased by five percent [7].  The 

moment provided by a strong neck can minimize the effects of an impact by reducing the change 

in acceleration. A helmet incorporating neck support that simulates and enhances the restoring 

moment provided by a strong neck would be able to reduce the change in acceleration of the 

head during an impact. In theory, this type of helmet would decrease the potential for 

concussion. 
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2 Background 

Before attempting to create a device that will reduce the chance of concussions, one must 

fully understand what constitutes a concussion as well as the criteria for diagnosing the severity 

of a concussion.  Discovering the mechanisms in which concussions generally occur in hockey 

will provide essential information for developing protective head gear.  In order to develop 

protective gear that can feasibly be worn by hockey players, it is important to identify the 

standards and regulations hockey equipment must meet. Exploring the hockey equipment 

currently available will provide baselines from which improvements can be made.  Additionally, 

materials that could potentially be utilized in the design as well as testing mechanisms that could 

be used to evaluate the current and modified designs were also researched.  This chapter provides 

the findings of the concussion, hockey, materials, and testing mechanisms research that was 

conducted. 

2.1  Defining Concussions 

Some medical experts define a concussion as an immediate loss of consciousness with a 

period of amnesia after a hit to the head [8, 9]. Other experts define a concussion as brain trauma 

which may result in cognitive, somatic, emotional and sleep disturbances, which can occur 

regardless of whether there was loss of consciousness [9]. Experts agree that all concussions can 

be described as temporary disruptions of brain function due to a direct or indirect impact (i.e. 

“whiplash”) that results in an abrupt change in the acceleration of the head. Because symptoms 

of concussions can often be misinterpreted, some concussions go undiagnosed [10]. 

Even though neurologists and physicians cannot agree upon every post-concussion 

symptom, there are scales for determining the severity of a concussion. One of the scales 

commonly used is the post-traumatic amnesia (PTA) scale, which bases the severity of the 
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traumatic brain injury (TBI) on the duration of the post-traumatic amnesia.  The loss of 

consciousness (LOC) scale bases the severity of the concussion on the duration of the loss of 

consciousness. Although the predictive validity of these scales is well-established, each may be 

influenced by factors unrelated or indirectly related to the TBI [11]. Since the vast majority of 

concussions are not severe and occur without loss of consciousness or post-traumatic amnesia, 

TBI may be present even if the indicators previously used for the scales are not present. Since 

there is no brain scan or blood test to definitively diagnose a concussion, symptom-based scales 

are relied upon.  Relying on a single indicator scale could lead to mild concussions going 

undiagnosed.  Because of the shortcomings of single indicator scales, the Mayo clinic developed 

a classification system that distinguishes the clinical characteristics of the least and the most 

severe TBIs. The Mayo classification system uses multiple indicators to classify TBIs as: a 

moderate-severe TBI in which a TBI definitely occurred; a mild TBI in which a TBI probably 

occurred; or a Symptomatic TBI in which it is possible that a TBI occurred.  The details of the 

Mayo TBI Severity Classification system are shown in Figure 2-1. 
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 _  

Figure 2-1: Mayo TBI Severity Classification [11] 

  

In order to determine the severity or grade of a concussion, neuropsychological testing 

needs to be done [12]. Recent modifications have been made in the evaluation of concussion 

severity to better assess the full range of concussion severities.  Doctors manage each case 

individually and determine the presence and severity of a concussion based on multiple tests and 

scientific evidence [13-15]. The Academy of Sports Medicine and the American Academy of 



15 

 

Neurology developed guidelines in order to diagnose and manage Sport-Related Concussions 

specifically, as shown in Table 2-1 [16, 17]. 

Table 2-1: Guidelines of Management in Sports-Related Concussion [13, 16] 

MARK FIRST TIME CONCUSSION SECOND TIME 

CONCUSSION 

Ranking 1: no loss of 

consciousness, brief period 

of confusion, mental 

symptoms for <15 min 

Remove player from sport 

Examine the player for 5 min 

If in 15 minutes symptoms are 

not present, player may return to 

play 

Allow player to play in 1 

week timeframe if 

symptoms have subsided 

 

Ranking 2: no loss of 

consciousness, brief period 

of confusion, sporadic 

mental symptoms for > 15 

min 

Remove player from sport for rest 

of day 

Examine symptoms of player and 

look for intracranial lesions 

Allow player to play within a 1 

week timeframe 

Allow player to play after 2 

weeks if symptoms have 

subsided 

 

Ranking 3: any sort of 

consciousness lost (place, 

date, etc.) 

Neurological examination in 

hospital until post-concussive 

symptoms stabilize 

Allow player to play in a week if 

unconsciousness lasted seconds 

Do not allow player to play 

until all symptoms have 

been cleared and absent for 

1 month 
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Allow player to play in 2 weeks if 

unconsciousness lasted 1-6 

minutes  

  

 

The American Academy of Pediatrics has developed measuring tools that determine 

sports-related concussion severity and have concluded that a single test cannot suffice for the 

accurate determination of a concussion’s severity.  In the event of potentially severe head 

trauma, there are seven main assessment tools for diagnosing a concussion.  Among the seven 

concussion assessment tools, four of them are especially relevant to hockey concussion injuries. 

The pros and cons of these four assessments are shown in Table 2-2.  
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Table 2-2: Pros and Cons of Concussion Assessment Tools 

TOOL DESCRIPTION CONS PROS 

GSC (Glasgow  

Coma Scale): 

 

Used onsite at time of 

concussion; ranks three levels of 

response: 

(Eye opening) Score: 1-5 

(Verbal Response) Score: 1-5 

(Motor Response) Score: 1-6 

Severity of injury classified as: 

Severe: GCS 3-8 (no lower than 

3) 

Moderate: GCS 9-12 

Mild: GCS 13-15[18] 

Might create 

confusion between 

concussed and non-

concussed subjects 

(history of patient) 

Fast (1-2 min); Can 

determine severity of 

a severe brain injury 

HITS  

(Head Impact 

Telemetry 

System) 

The first system to measure 

impact of players in real time. 

Used by live sensors which send 

information to a computer 

registering it in a 3-D graph of 

the head. Receptor computer can 

be located within 150 yards 

from player. The sensors are 

able to detect duration, 

magnitude, direction and 

ONLY used in sports 

with helmets; 

Correlation of data 

with symptoms can be 

misleading 

Live monitoring of 

impact; Detects and 

record all of the 

impacts that might 

cause concussion 

Good scale 

measuring system 
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location of up to 100 hits. 

Mainly designed for when a 

player experiences a hit of 

10G’s or higher. [19] 

SAC 

(Standardized 

Assessment of 

Concussion) 

SAC is an onsite test that 

measures functions such as:  

Orientation: day, date, month, 

year, time 

Immediate memory: recall of 

five words in three separate 

trials  

Neurologic:  Loss of 

consciousness (occurrence, 

duration), Strength, Amnesia 

(either retrograde or 

anterograde), Sensation, 

Coordination, Delayed Recall, 

Maneuvering and Concentration 

Each is attributed a score out of 

30, the higher the score, the 

more severe concussion [20, 21] 

Correlation of data 

with symptoms can be 

misleading; Useless if 

conducted more than 

48 hours after time of 

injury 

Cannot assess cerebral 

function 

Measures orientation, 

memory, focus; 

Intuitive  operating 

system; Short (5-7 

min) 
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SCAT2  

(Sport 

Concussion 

Assessment 

Tool) 

Mainly focuses on testing 

cognitive skills affected by 

concussion. Does not determine 

concussion degree or athlete’s 

recovery or return to play status. 

[22] 

Long (15-20 min); 

Requires a 

professional to 

conduct; No score or 

scale; Not very 

reliable due to weight 

of symptoms 

Testing of cognitive 

skills affected by 

concussion 

 

With the improved categorization of concussions, doctors are better able to prescribe 

appropriate rehabilitation regimens.  Follow-up assessments during the athlete’s rehabilitation 

must be conducted to accurately determine when a player can safely participate in his or her 

sport again after sustaining a concussion. There are eight main follow-up assessments given at 

different intervals to track the patient’s recovery [19]. Four of the follow-up assessments also 

stand out as particularly relevant to hockey concussion injuries. The pros and cons of these 

assessments are shown in Table 2-3. 

Table 2-3: Pros and Cons of Follow-Up Concussion Assessment [13] 

TOOL DESCRIPTION CONS PROS 

ImPACT 

(Immediate Post-

Concussion 

Assessment 

Cognitive Test) 

Conducted using software 

when an athlete no longer has 

symptoms (24-72 hours post-

injury) 

 

Long (20 min); 

Positive and negative 

rate can be false; No 

scale to determine 

recovery 

Able to diagnose 

multiple areas of 

neurocognitive 

function; Correlated 

http://link.springer.com.ezproxy.wpi.edu/search?dc.title=ImPACT&facet-content-type=ReferenceWorkEntry&sortOrder=relevance
http://link.springer.com.ezproxy.wpi.edu/search?dc.title=Concussion&facet-content-type=ReferenceWorkEntry&sortOrder=relevance
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Measures: player symptoms, 

verbal and visual memory, 

processing speed, and reaction 

time 

 

Gives a summary of 

measurements; can determine 

if player should return to play 

[23] 

MRI tests; No 

professional needed 

DTI or 

Diffusion MRI 

 

(Diffusion 

tension imaging) 

Provides mapping on how 

molecules have spread out in 

biological tissue after a 

concussion. This mainly sees 

water molecule diffusion in 

the brain segment and it is an 

in-vivo, non-invasive testing 

mechanism. It can show 

molecular interaction with 

other macromolecules, with 

fibrous tissue, with 

membranes among others [24] 

Cost; Long time to 

complete; No 

complete diagnosis 

 

Can determine if 

white brain matter is 

affected; Great 

image; No invasion 

of any kind 
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fMRI 

 

(Functional 

magnetic 

resonance 

imaging) 

Uses MRI technology to 

measure brain action by 

indicating changes in blood 

flow patterns; relies on 

neuronal activation coupling. 

It mainly detects and uses 

blood-oxygen-level dependent 

(BOLD) to compare results. It 

specializes in detecting brain 

activity and interaction with 

spinal cord due to change in 

blood flow. It provides high 

resolution images where 

notable change on circulation 

can be shown if area is 

affected [25] 

Cost; Long time to 

complete; Can affect 

blood vessel 

activation  

 

Can detect constant 

abnormalities in 

brain function; Often 

used as clinical 

validation tool to 

assess brain 

functionality; No 

invasion of any kind 

MRS 

 

(Magnetic 

resonance 

spectroscopy) 

Technique to measure 

metabolic variations of brain 

strokes, tumors, disorders, 

Alzheimer's, depressions and 

concussions affecting the 

brain functionality. It is used 

to measure intramyocellular 

Cost; Long time to 

complete; Limitation 

in diagnosis 

Ability to measure 

brain metabolism; 

Delivers information 

on  brain function 

recovery time; No 

invasion of any kind 

http://link.springer.com.ezproxy.wpi.edu/search?dc.title=fMRI&facet-content-type=ReferenceWorkEntry&sortOrder=relevance
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lipid content (IMCL). It uses 

MRI technology which is able 

to send signals based on H+ 

(hydrogen protons) in order to 

get dimensions of the brain in 

x, y, z coordinates and 

determine the concentrations 

of molecules in certain 

areas[26] 

 

2.2 Injuries in hockey 

 Athletes playing contact sports, such as hockey, are at risk for sustaining a concussion. 

Multiple organizations have done studies to understand the frequency and cause of concussions.  

Wilcox et al. performed a study on occurrences of concussions in contact sports. The study 

evaluated eight sports and compiled data on typical injuries. They looked at all concussions, 

excluding concussions due to whiplash injury, spinal cord injury, facial bone fractures, or soft 

tissue injuries. This study found that hockey had the greatest incidence of concussions for males, 

and tae-kwon-do has the greatest incidence rate of concussions for females [6]. According to the 

2008-2010 NCAA Men’s and Women’s Ice Hockey Rules and Interpretations, body checking is 

allowed in men’s ice hockey, but is not allowed in women’s ice hockey. Lack of checking may 

contribute to tae-kwon-do having the greatest incidence rate of concussions in female sports. 

 Hockey is different than other contact sports because players move at higher rates of 

speed on a playing area of solid ice [27]. Hockey players can skate at speeds of up to 30 mph and 
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can slide at maximum rates of 15 mph. Contacting physical obstacles at such high speeds results 

in abrupt deceleration causing the player to experience higher impact forces. A study by Denny-

Brown and Russell, regarding the acceleration and deceleration of the players’ body and 

specifically their head, determined that in order for a concussion to occur, acceleration 

and/or?deceleration must be present [28].   

 A study was performed on men’s and women’s National Collegiate Athletic Association 

Division I ice hockey teams to analyze the magnitude and frequency of head impacts during 

games. This study determined the distribution of the mechanisms of impact and concluded that 

for both men’s and women’s collegiate ice hockey, the most frequent impact mechanism was 

contact with another player.  The impact mechanism that generated the greatest-magnitude head 

accelerations was contact with the ice though the frequency of this type of impact was low [6].  

The distribution of impact mechanisms is shown in Table 2-4. 
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Table 2-4: Impact Mechanisms in Collegiate Ice Hockey [6] 

 

Head Impact % of total impacts, 

(Number of Impacts of that Type) 

Head-Impact Frequency 

per Game By Impact 

Mechanism 

Impact Mechanism Men (n=270) Women (n=242) Men Women 

Contact with another 

player 

50.4 %  (136) 50 %  (121) 0.464 0.208 

Contact with ice 7 %  (19) 11.2 %  (27) 0.104 0.106 

Contact with boards/glass 31.1 %  (84) 17.3 %  (42) 0.349 0.095 

Contact with stick 1.9 %  (5) 2.9 %  (7) Not Provided, because 

incidence rate was 

insignificant 

Contact with goal 0.4 %  (1) 0 %  (0) 

Contact with puck 0.4 %  (1) 0.8 %  (2) 

Indirect Contact 4.4 %  (12) 15.3 %  (37) 0.087 0.1 

Celebrating 4.4 %  (12) 2.5 %  (6) 0.08 0.073 

 

The peak linear and rotational accelerations generated by the impact mechanisms are 

shown in Table 2-5.  
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Table 2-5: Resultant Peak Linear and Rotational Acceleration of Head Impacts Greater than 20g Sustained by Collegiate 

Ice Hockey Players for Each Injury Mechanism (95% Confidence Interval)  

 

Source: Head Impact Mechanisms In Collegiate Ice Hockey[29] 

 

A seven-year study was performed by the Canadian Medical Association Journal (CMAJ) 

to research and provide statistics regarding concussions in the National Hockey League (NHL). 

The CMAJ worked with the NHL to determine two major variables in hockey: concussion and 

time loss.  The goals of this study were to determine the rates and trends of concussions as well 

as the post-concussion signs, symptoms, physical examination findings and time between the 

injury and return to play. This evaluation was performed between the 1997-1998 season and the 

2003-2004 season. Results showed 559 physician-diagnosed concussions throughout the seven 

seasons with an average of 80 per year. The game rate recorded 5.8 concussions per 100 players 

per season and overall, an average of 1.8 concussions per 1000 game player-hours. Of these 559 

concussions, physician regulated recovery time averaged about six days per concussion. Of the 

instances, 69% missed ten or less days of unrestricted play and 31% missed more than ten days 

[30-33]. Statistics regarding positions of players experiencing concussions were highlighted and 

are displayed in Table 2-6. 
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Table 2-6: Percent of Concussions for Each Position 

POSITION 

PLAYERS ON THE 

ICE AT ONCE 

% OF RECORDED 

CONCUSSIONS 

CENTERMEN 1 30.5% 

DEFENSEMEN 2 31.4% 

WINGERS 2 33.6% 

GOALIES 1 4.5% 

 

From the data shown in Table 2-6, centermen, defensemen and wingers recorded 

approximately the same percent of concussions. By factoring in the amount of players on the ice 

at one time, researchers found that centermen experienced concussions twice as often as 

defensemen and wingers.   

Detailed data was presented indicating common post-concussion symptoms. The percent 

occurrence of headaches, dizziness, nausea, neck pain, low energy or fatigue, blurred vision, 

amnesia, and loss of consciousness were all post-concussion symptoms. The distribution of these 

statistics is shown in Table 2-7. 

Table 2-7: Occurrence of Post-Concussion Symptoms 

SYMPTOM % OCCURRENCE 

Headache 71 % 

Dizziness 34 % 

Nausea 24 % 

Neck Pain 23 % 
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Low energy or fatigue 22 % 

Blurred vision 22 % 

Amnesia 21 % 

Loss of consciousness 18 % 

 

Of the 559 concussions occurring during the seven-year period, 13 % of post-concussion 

neurologic examinations were abnormal [33].   

 Many athletes in contact sports experience multiple concussions throughout their 

participation, which raises additional concerns. Research showed that football players who had 

endured multiple concussions were at an increased risk and earlier onset of memory impairment, 

including mild cognitive impairment, and Alzheimer’s dementia. There was also a news release 

in 2009 about a case of chronic traumatic encephalopathy in a former NHL player. The news 

release encouraged researchers to study concussions further in order to better protect athletes in 

potentially harmful situations [33-35].  

Le Bihan et al. recently performed a study that evaluated the incidence rates of 

concussion in junior hockey in comparison to the previously mentioned study of the NHL [35]. 

Neurosurgical Focus evaluated two teams of junior ice hockey players during one regular season. 

Junior ice hockey players range in age from approximately 16-21 years old. Overall, this study 

was not able to observe all 36 regular season games, but the procedure for collecting data used 

six licensed physicians, and 16 non-physician observers, such as kinesiologists, certified ice 

hockey coaches, physical therapists, massage therapists, chiropractors and former junior ice 

hockey players. The overall results of this study were 21 concussions observed in 52 games. This 
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rate can be quantified as 21.52 concussions per 1000 athlete exposures [35]. This study shows 

that not only are concussions a problem in the NHL, but they are a problem early on with 

teenagers in junior ice hockey.  

Hutchison et al. held a study from 1998-2000 with players of ages 15 to 20 in Canadian 

Amateur Hockey leagues to find the rate of concussions occurring in hockey. This study used 

272 participants in its first year of study and 283 in the second year of study; of these 

participants, 115 participated in both year one and year two. Results of this study showed that 

over this two-year period, 379 concussions were reported. Of the 379 reported, 90% of them 

occurred during a game, 7.9% occurred during practice, and 2.1% occurred at other times [32]. 

High rate of concussion is clearly a concern in all levels of ice hockey.  

Many experts agree that ice hockey is a dangerous sport and that players are susceptible 

to concussions during play.  Concussions in hockey affect not only the player injured but also the 

entire team who must play without key players.  Since concussions commonly cause detrimental 

lasting effects, sustaining multiple concussions could cut a player’s career short.  Preventing 

concussions will enhance the sport by allowing good players to participate for longer, making 

team dynamics less erratic.  

 Monitoring athletes during play has been a topic for discussion in concussion detection. 

Multiple products are available and patented that will sense if conditions have occurred that 

could potentially cause a concussion. For instance, a sensor pad was created for use in football 

helmets. This sensor analyzes impacts that players have encountered and quantifies the data for 

observers. After the data is quantified, if a predefined threshold is exceeded, a wireless receiver 

is triggered and indicates that a potentially harmful impact has occurred [36]. This sensor is 
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currently being used by 19 college football teams and is working its way into youth and high 

school leagues. 

 Multiple patents have also been filed on the topic of helmets that incorporate concussion 

indicators and force detection devices. In 1995, a patent was filed called “Sports helmet capable 

of sensing linear and rotational forces.” This design was specifically created to detect not only 

impact on the body, but also to observe both linear and rotational impacts. Accelerometers are 

present in this design and sense three orthogonally oriented linear forces. When the device senses 

an impact exceeding the limits previously specified, an electrical signal is sent to a lamp or LED 

on the sidelines indicating that a potentially harmful impact has occurred [37].  

 A patent titled “Concussion Indicator” was filed in 2013 to monitor the acceleration in a 

helmet. The sensor can be applied to either the inner or outer portion of the helmet depending on 

the athlete’s preference. When the sensor is mounted to the outside of the helmet, indicators can 

be shown to observers. If the sensor is mounted on the inside of the helmet, the player must 

remove the helmet before visualizing the indicator. One of the unique qualities of this design is 

that different indicators signify different degrees of concussions that could have occurred. By 

visualizing the indicator, observers can identify the intensity of a potential concussion [38].  

Research shows that sensors currently used are designed to monitor accelerations and 

calculate the force experienced by athletes. The sensors indicate whether maximum thresholds 

have been reached and if there was a chance that a concussion occurred. The main objective of 

sensors currently on the market is to sense whether or not a concussion has occurred. No 

research was found on how sensors can be used to prevent concussions from occurring. 
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2.3 Head Injury Criterion 

There are many ways to analyze risk of injuries to the head. One common and versatile 

method is the Head Injury Criterion (HIC). The HIC is an equation based on the head’s 

acceleration and time over which the acceleration occurs. The result from the equation is an 

integer that can help determine the likelihood or severity of a head injury. The equation for the 

HIC is as follows: 

Equation 1: 𝑯𝑰𝑪 = (
𝟏

𝒕𝟐−𝒕𝟏
∗ ∫ 𝒂̂(𝒕) ∗ 𝒅𝒕

𝒕𝟐

𝒕𝟏
)

𝟐.𝟓
∗ (𝒕𝟐 − 𝒕𝟏) 

 Equation 2:  𝒂̂ = 𝒂/𝒈 

Where 𝑎̂ is the unit-less, normalized acceleration of the head with respect to gravity, g 

(9.8 m/s2), and t is time measured in seconds. HIC is given therefore given as a unit-less number 

. HIC therefore has units of seconds [39].  Many studies have been completed trying to find at 

what HIC head injuries will occur. The head injuries of concern are usually surface contusions 

and concussions [40]. Shear stress concentration and motion of the brain within the skull are 

known causes of these injuries and directly related to head acceleration with respect to a period 

of time. This is why the HIC is such a useful tool in quantifying the chance of a head injury and 

its severity. 

 An HIC of 200 is commonly considered the threshold at which a concussion may occur 

[41]. When testing protective equipment (i.e. helmets, seat belts, etc.), HIC values below 200 

must be achieved consistently before the design is considered safe to be on the market. However, 

since each situation and person is different, the HIC does not provide definitive proof of 

concussion, but rather it provides an indication of the probability that a concussion occurred.  

There are incidences in which the HIC is under 200 but a head injury did occur, as well as 

incidences in which the HIC is over 200 without a head injury occurring [41, 42]. An HIC of 
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around 240 indicates a 50 % probability of concussion and an HIC around 485 corresponds to 95 

% probability [43].  The HIC is frequently used as a standard when testing equipment, since it 

has been shown to fairly accurately predict how well safety equipment will reduce the risk of 

concussion.    

2.4 Head Impact Power  

Another method to analyze the risk of injury to the head is with the Head Impact Power 

(HIP) equation. While the HIC takes into account only the resultant linear acceleration of the 

head at the center of gravity, the HIP uses both the linear and angular accelerations of the head at 

the center of gravity [43]. This yields a more accurate prediction than the HIC at the cost of 

using a more complicated equation. The equation can be seen below: 

Equation 3: 𝑯𝑰𝑷 = 𝒎𝒉𝒂𝒙(𝒕) ∫ 𝒂𝒙(𝒕)𝒅𝒕 + 𝒎𝒉𝒂𝒚(𝒕) ∫ 𝒂𝒚(𝒕)𝒅𝒕 + 𝒎𝒉𝒂𝒛 (𝒕) ∫ 𝒂𝒛(𝒕)𝒅𝒕 + 𝑰𝒙𝜶𝒙(𝒕) ∫ 𝜶𝒙(𝒕)𝒅𝒕 +

𝑰𝒚𝜶𝒚(𝒕) ∫ 𝜶𝒚(𝒕)𝒅𝒕 + 𝑰𝒛𝜶𝒛(𝒕) ∫ 𝜶𝒛(𝒕)𝒅𝒕  

Where mh is the mass of the head and 𝐼𝑖 are the moments of inertia of the human head 

about the corresponding axis. The ax(t), ay(t), and az(t), are the linear acceleration components 

and αx(t), αy(t), and αz(t) are the angular acceleration components all as functions of time.  Since 

the HIP is a time-dependent function, the maximum value obtained is used as the HIP value [42]. 

When Newman et. al. developed the HIP; its ability to predict concussion risk was compared to 

other head injury assessment functions, including Maximum linear acceleration, Maximum 

linear acceleration with dwell times, the Severity Index (SI), the Head Injury Criterion (HIC), 

and Angular and Linear acceleration GAMBIT equation.  The SI, is the current NOCSAE 

(National Operating Committee on Standards for Athletic Equipment) standard and incorporates 

average acceleration with time, with a limiting value of 1200.  The equation for SI uses a 

resultant linear acceleration in the equation 𝑆𝐼 =  ∫ 𝑎(𝑡)2.5𝑑𝑡
𝑡2

𝑡1
 ([44]. The GAMBIT 
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(Generalized Acceleration Model for Brain Injury) uses angular and linear acceleration in the 

equation 𝐺max(𝑡) = √(
𝑎𝑟𝑒𝑠(𝑡)

250
)

2

+ (
∝𝑟𝑒𝑠(𝑡)

25000
)

2

, where 𝑎𝑟𝑒𝑠(𝑡) and ∝𝑟𝑒𝑠 (𝑡) are the instantaneous 

translational and rotational acceleration respectively. Utilizing game video and the associated 

medical records of twelve NFL head to head impacts, Newman et al. was able to create full-scale 

laboratory reconstruction of the incidences with helmeted Hybrid III dummies.  Each dummy 

was equipped with nine linear accelerometers placed strategically around the head. For each 

reconstructed incidence, all six head injury assessment functions were calculated for each player 

involved in the impact.  The results of the calculations as well as whether a MTBI was reported 

for each case is shown in Table 2-8. 

Table 2-8: Head Injury Assessment Function Results for Each Player Involved in the Impact [43] 

 

Source: A New Biomechanical Assessment of Mild Traumatic Brain Injury Part 2 – Results 

and Conclusions [45] 
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 Based on the 24 cases in Table 2-8, univariate logistic regressions were performed for 

each head injury assessment function.   The concussion probability curves that were generated 

permitted the determination of the specific values of each head injury assessment function that 

corresponded to significant concussion probabilities.  From the probability curve for the HIP, a 

value of 12.79 kW corresponded to a 50% chance of concussion and an HIP of 20.88 kW 

corresponded with a 95% chance that a concussion occurred [43]. These values are only 

preliminary and require additional testing. 

 Logistic regression analysis revealed which of the head injury assessment functions were 

most reliable. In regression analysis, the significance (p-value) is often used to determine if an 

independent variable should be included in the model. According to Newman et al.  𝑝 ≤  .25 is 

used as the threshold for the inclusion of an independent variable; the lower the p-value the 

higher the significance of an independent variable.  Similarly, the -2 Log Likelihood Ratio (-

2LLR) indicates whether adding the independent variable to the constant has improved the 

model.  A zero value of the -2LLR indicates an exact fit of the regression model to the data, ergo 

a smaller value indicates a higher significance.  Newman et al. compared the p-value and -2LLR 

values of each head injury assessment function, shown in Table 2-9, to distinguish the best 

concussion predictor. 

Table 2-9: Results from Logistic Regression Analysis  

 

Source: A New Biomechanical Assessment of Mild Traumatic Brain Injury Part 2 – Results 

and Conclusions [45] 
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The HIP equation proved to be the most significant variable, signifying it is the most 

reliable predictor of concussion out of the head injury assessment functions utilized in this study.   

A more recent study by Marjoux et. al. concluded that an HIP of 24 kW and of 30 kW 

corresponded to 50% and 95% risk of concussion, respectively. 

2.5 Helmet Standards 

With hockey being a high contact sport, protective equipment and contact rules are a 

necessity to reduce the number of injuries.  The importance of regulated hockey equipment 

ensures that each issued item of protective equipment offers a baseline of protection. Hockey 

equipment is regulated by the Hockey Equipment Certification Council (HECC), a non-profit 

organization. All of USA Hockey, NCAA, and the National Federation of State High School 

Association (NFHS) must wear gear that is HECC approved [45]. The HECC uses the 

assessment standards set forth by the American Society for Testing and Materials International 

(ASTM), which is the standard in America.   

The ASTM F1045 standard states proper testing methods as well as the minimum 

requirements.  The standard also defines the proper specifications for head, which are also found 

in the ASTM F2220 standard. Figure 2-2 shows the minimum helmet coverage requirements for 

proper fitting based on the circumference of the head and helmet. It is very important that the 

helmet fits and is tested properly, which is described in the standard.   



35 

 

 

Figure 2-2: F2220 Specifications for Head forms, Area of Coverage [16] 

 

The Testing Methods include impact and drop testing and a shock absorption test. The 

impact requirement states that the helmet must remain intact, meaning that it must have no 

visible cracks in the helmet while withstanding impact accelerations up to 300 g’s [44]. The 

chinstrap also needs to up hold standards.  It has to have a separation force from the helmet from 

between 50 and 500 N. Also, while exerting 109 N the chinstrap must not exceed one inch of 

displacement [46]. Each of these tests must be executed using ambient, hot, and cold 

temperatures to ensure that the helmet can withstand all forces during game play.  After proper 

certification that the helmet meets all requirements by the ASTM F1045 standard, the HECC will 
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then place their label of approval on the helmet.  This label is not to be altered or taken off , or 

the equipment certification becomes void [45].  

  A study by Robert Edward Wall, attempted to answer the question of what standard to 

use in the National Hockey League (NHL) due to it being an international league. The three 

standards that were compared were the ASTM, Canadian Standards Association (CSA) and 

International Organization Standards (ISO). This study showed that not one single standard 

would shine over the others.  In fact, each standard had an area where it performed better than 

another, making it a difficult comparison. Most importantly, it was concluded that the helmets 

tested performed relatively the same when based on peak acceleration measurements, but there 

were differences during multiple impacts. Wall suggests the possibility of combining the 

standards to create one single standard that can be accepted worldwide [47].  

2.6 In Play Regulations 

Regulations during play are also set in place to aid in reducing the number of severe 

injuries.  There are many different sets of rules based on age and location. The lower the age, the 

more regulations developed for play and more equipment requirements.  The NHL offers the 

least amount of regulated protection for its players due to it being played by the most advanced 

athletes. In the NHL, hitting or checking from behind or contacting a player’s head during a hit 

or check results in penalties or possible ejection from the game. At the NHL level of play, a 

helmet is the only headgear required [48]. Since the NHL is essentially an international league, it 

has not adopted one set of standards for its protective headgear; generally ASTM or CSA 

certified equipment is used. 

The collegiate level is regulated by the National Collegiate Athletic Association (NCAA).  

Players must wear HECC approved helmet and face mask that is securely fastened. The NCAA 



37 

 

also requires the use of a mouth guard. Penalties can arise if a player is checked from behind, 

charged, boarded, or undergoes contact to the head as mentioned in the NCAA 2014 rulebook.  

These regulations were put in place to help reduce injury and frequency of concussions.  

Despite the implementation of rules and regulations, the occurrence of concussion is still 

higher than one would hope. Only further implementing rules, regulations and more advanced 

protective equipment can promote a reduction in the rate and severity of concussions that may 

arise from playing hockey. 

2.7 Current Protective Equipment in Ice Hockey 

Modern hockey helmets can be classified by level of protection.  There are helmets 

specifically designed for beginners, for professional players, and for many levels in between 

[49]. The equipment guide on PureHockey.com, shown in Figure 2-3, classifies the Reebok 11k 

helmet, the Bauer Re-Akt Helmet, and the Bauer IMS 9.0 Helmet as offering “Elite Level 

Protection”, which is the highest level of protection.  Reebok achieved the elite level protection 

of the 11k helmet by designing it with “a better fit equals more safety” in mind [50].  While most 

modern hockey helmets offer length-wise adjustment, and some advanced helmets offer length- 

and width-wise adjustment, the 11k helmet provides the only 360 degree adjustment available 

[50]. The 11k helmet accomplishes the 360 degree fit by utilizing Reebok’s Microdial II 

Anchoring system, which wraps the Expanded Polypropylene (EPP) foam, foam commonly used 

for impact absorption in helmets, around the unique shapes of the player’s head and locks the 

helmet into place [50]. This system eliminates gaps and pressure points to provide a more 

protective and comfortable fit.  The composite subshell of this helmet makes it Reebok’s lightest 

fully adjustable helmet. 
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Figure 2-3: Helmet Comparison 

Source: Adapted from Pure Hockey Webpage[51] 

 

The Bauer helmets have many features that contribute to their classification as “Elite 

protection.”  Both Bauer models utilize Vertex foam and Poron XRD liners for impact 

management, as well as dual-density ear covers with clear protective film to eliminate abrasion 

[52]. The Vertex foam has the same density as EPP foam but is lighter and provides improved, 

high- and low- energy impact protection [52]. The Poron XRD foam is made up of urethane 

molecules that are flexible until placed under high pressure at which time the molecules 

momentarily stiffen [53]. It has been shown to absorb 90% of the energy of a high-force impact.  

Poron XRD is also very lightweight and breathable. The Vertex foam is used on areas of the 

helmet proven to experience less impact, while Poron XRD is placed in the areas where the 

majority of impacts occur [52]. The Bauer helmets also feature memory foam temple pads that 
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provide maximum comfort and a snug fit.  Bauer products also employ MICROBAN, which 

offers antimicrobial protection to resist odors and mildew.   

The Bauer Re-Akt helmet is marketed as the first hockey helmet to offer protection 

against all types of hits [54]. Whereas all certified hockey helmets are required to protect against 

high-energy linear impacts, the Bauer Re-Akt also protects against low-energy linear impacts, 

and rotational impacts. Rotational impacts have been shown to cause serious head injuries [55].  

The Bauer Re-Akt helmet achieves this optimal protection by utilizing Bauer’s SUSPEND-

TECH liner system. Upon impact the SUSPEND-TECH liner remains with the head, ensuring 

the placement of pads is maintained, while the shell with its interior liner rotate to absorb and 

deflect the forces of the impact [54]. This system is advertised as being able to minimize the 

movement of the head during impacts, which would greatly reduce the likelihood of a 

concussion [55]. 

The current padding inside most hockey helmets is an expanded polypropylene and vinyl 

nitrile.  These two paddings have shown to have very similar effects on the risk of injury as 

concluded in a study on the effects of impact management materials in ice hockey helmets on 

head injury criteria [4].  All three of the models mentioned above offer tool-free adjustment to 

make fitting the helmets to the player’s head quick and easy [51].  Many experts agree that the 

proper fitting of the helmet and cage is as important for protection as the helmet’s design [51]. 

Regardless of the impact absorbance technology or stability features incorporated in a helmet, if 

the helmet does not fit properly, it will not protect a player’s head sufficiently [51].  

Despite all the features and protective measures, hockey helmets still seem 

underwhelming compared to the top rated football helmets. When comparing the interior of a 

hockey helmet to the interior of a football helmet, as seen in Figure 2-4, it is apparent how much 

more cushioning is available in the football helmet [56].  Considering hockey follows football as 
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the sport inflicting the majority of concussions, the lack of padding in hockey helmets compared 

to football helmets is drastic.  Perhaps the huge difference in helmet interiors is due to hockey 

having different conditions and mechanisms in which concussions occur than those in football.   

Another possibility could be that football manufacturers have been improving their 

designs in response to Virginia Techs five-point STAR (Summation of Tests for the Analysis of 

Risk) rating system that was first implemented in 2011.  Virginia Tech tests football helmets and 

awards the helmet one to five stars depending on its ability to reduce the risk of head injury and 

concussion.  The head of the biomedical engineering department at Virginia Tech, Dr. Duma, led 

meetings with scientists and football helmet manufacturers to discuss improving head protection 

and providing the science behind the methodology of the STAR rating system.  The STAR rating 

system makes consumers aware of which football helmets reduce the risk of concussion the 

most, motivating the manufacturers to strive for the five-star mark, the highest rating awarded by 

the Virginia Tech helmet ratings. Each year more of the newly released football helmets are 

achieving the five-star rating.  In the past two years, Virginia Tech has begun lab and rink testing 

and analysis to develop an analogous STAR rating system for hockey helmets.  The hope is that 

this rating system will have a similar impact on hockey helmets by motivating and informing 

hockey helmet manufacturers on improving the protective ability of their hockey helmets [56-

58].  
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Figure 2-4: Comparison of Hockey Vs. Football Helmet  

Source: NCHL [59] 

 

In addition to helmets, face protection is an important factor in preventing serious injuries 

considering pucks can travel up to 100 miles per hour. Rules requiring face protection vary from 

league to league.  All face protectors connect to the player’s helmet and fall into one of three 

categories. The most common facial protection for amateur players is the full cage, which 

consists of metal bars running vertically and horizontally across the player’s face [60]. The full 

cage offers full protective coverage, great ventilation, and the most durability [60]. The cage is 

very affordable and requires little to no maintenance [60].  However, some players feel that the 

wire cage is distracting while playing [60].  

The second option for facial protection is the full shield, which consists of an impact-

resistant plastic covering the eyes and mouth with breathable holes at the bottom of the mask 

[60]. The full shield offers the same amount of protection as the cage without the distraction of 
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wires running through the player’s line of sight. The downside of full shields is that more 

maintenance is required than with the cage [60]. Usually, anti-fog solution must be applied to the 

surface of the shield before each game to limit the amount of fog that occurs during play [60]. 

Most shields come with an anti-scratch coating that must also be applied to the mask to improve 

its durability [60]. Even with proper maintenance, typically the full shield still will not last as 

long as a cage would  [60].  

The last option is called a visor or a half shield and is for hockey players over the age of 

18 years old that are in a league that does  not require full facial protection [60]. Half shields are 

made of high impact-resistant, transparent plastic that covers the top half of the face stopping at 

the bottom of the nose [61]. The half shield provides the least inhibited vision, with its 

transparent plastic offering excellent straight ahead and peripheral vision [61]. The half shield 

does not tend to fog up as much as the full shield but, still experiences some fog issues [60]. The 

half shield is more flexible than the full shield, making it slightly less durable [60]. This option 

provides the least protection because it leaves the mouth, jaw, chin, and the bottom of the nose 

vulnerable to injury [60].   

As of now, wearing the helmet face cage or visor is optional for NHL players [62]. The 

IIHF, Hockey Canada, and USA Hockey require players whom are women or under the age of 

18 to wear full face masks [62]. IIHF and Hockey Canada also require at least a visor be worn by 

players not mandated to use full facial protection, which covers the remaining players that don’t 

fall into the above categories [62]. Many hockey players complain that the face cage/visor 

impacts their field of vision, which explains why many NHL players choose not to wear them.  

Hockey Canada requires and USA Hockey recommends that neck laceration protectors 

are used for all positional players. This is because, although neck laceration injuries are rare, 

when a neck laceration does occur it can be very serious and even deadly. There are three main 
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types of neck protectors available for non-goalie players [63]. The most common is the strap 

style neck protector, which provides the least amount of coverage [63]. The next style is the 

“Strap Yoke” which offers a bit more protection than the strap. Both of these types of neck 

protection are usually made of ballistic nylon or a similar material. The least common neck 

protector is the Turtleneck; it offers the most coverage and is usually made of 100% Kevlar or 

Armortex with abrasion resistant properties [63]. Figure 2-5  shows each of the neck laceration 

protector styles along with the percentage of players who wear each [63].  However, since 

laboratory testing of neck laceration protectors may not represent actual on-ice mechanisms of 

injury, their effectiveness is undetermined.  A study done by the Mayo Clinic showed that 

players have experienced lacerations while wearing each type of neck protector available. 

According to this study, 27% of the neck laceration incidences reported occurred while the 

player was wearing a neck protector.  All the neck protectors currently available are intended for 

laceration prevention, meaning their purpose is to prevent cuts and scrapes to the area covered. 

So, the neck protectors do not protect against the impact of a puck or stick to the neck, and do 

not provide any support against whiplash.   

 

Figure 2-5: Types of Neck Laceration Protectors and Percentage of Players who Wear Each [63] 
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2.8 Testing Methods 

 There are numerous ways to test how a helmet protects against impact forces. Three very 

common impact tests are the drop weight impact test, pendulum impact test and air cylinder 

impact test. Similar forces can be exerted on the helmet as a result of each testing method but, 

depending on the desired impact, one test may be better suited than another. 

2.8.1 Drop Weight Impact Test 

 A drop weight impact test involves dropping a weight on the device in order to simulate a 

desired impact force. Gravity, height of the drop, and the mass of the object being dropped are 

the factors that change the force of the impact. The impact force from this test is linear and 

unidirectional. The drop is guided by rails during the free fall stage to assure a straight down 

impact [64]. The assumption has to be made that the rails are frictionless in order to calculate the 

impact velocity through conservation of energy. The initial potential energy can be calculated 

before the drop and that energy will equal the final kinetic energy at the moment of impact. 
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Figure 2-6: Drop Weight Impact Test [65] 

2.8.2 Pendulum Impact Test 

 A pendulum impact test is similar to a drop weight impact test in that it also uses 

conservation of energy to determine the impact velocity. Instead of dropping a weight vertically 

onto the device to be tested, the weight is swung from a set height on a stiff arm as a pendulum. 

This allows for a horizontal impact on the device to be tested. A horizontal impact may be 

preferred over a vertical impact due to the rotational accelerations that could result in addition to 

linear accelerations. Generally, a pendulum impact test is used to break a specimen. Having 

broken the specimen, the pendulum swings back to a height lower than the starting point. The 

energy it took to break the specimen can then be calculated [66]. This test can be modified, 

however, by the use of a catch mechanism in order to just apply an impact force to a device. 
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Figure 2-7: Pendulum Impact Test 

Source: Pendulum Impact [66] 

2.8.3 Air Cylinder Impact Test 

 An air cylinder uses compressed air to deliver a controlled linear force [67]. Most air 

cylinders have specific forces that can be exerted for different amounts of air pressure. The force 

that the cylinder can exert also depends on the size of the bore or any attachments to the end of 

it. Air cylinders are useful for impact testing since, for the same air pressure, the force will 

always be the same. Since the capabilities of an air cylinder are known at the time of purchase, 

very few calculations are needed to assure the correct force will be applied to the device being 

tested. These devices can be used to apply both linear and rotational forces to the device being 

tested like the pendulum impact device. The main drawback is that this device cannot run on 

gravity, like the two previously mentioned, and needs to be powered by compressed air. 
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Figure 2-8: Air Cylinders  

Source: McMaster Carr [67] 

2.9 Smart Materials 

Smart fluids are versatile materials with many possible applications in engineering that 

have properties that respond to different stimuli, such as forces, electrical fields, and magnetic 

fields. Non-Newtonian fluids have viscosities that change in response to shear rate. As a 

comparison, “normal,” Newtonian fluids flow continuously under shear.  A common example of 

a non-Newtonian fluid is Oobleck.  Oobleck is a suspension of cornstarch in water that has a 

shear rate dependent viscosity that increases with increasing shear rate.  Oobleck can become so 

viscous in response to a time-dependent force that it transforms into an elastic solid. Once the 

shear force is removed Oobleck returns to its original, low-viscosity state.  

Extensive research was done on different smart fluids in a Major Qualifying Project from 

2014 [68]. Specifically, that project group focused on fluids that demonstrated shear thickening, 

or increasing viscosity when a shear stress is applied.  The goal of their project was to use shear 

thickening fluids in a device to slow down a football player’s head during an impact.  Their 

research led them to focus on Polyethylene Glycol (PEG) and Oobleck as possibilities to use 

inside of the device they designed.  These two smart fluids both demonstrate shear thickening 
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and other similar physical properties. Because these fluids’ viscosities increase depending on 

shear rate, they were used in the football helmet device to reduce the acceleration of a player’s 

head during a hit. Two other fluids that were mentioned in this MQP report for possible 

application in the device were electro rheological and magneto rheological fluids. 

The properties of Oobleck can be modified by adding glucose or cooking it until it 

becomes a gel. Adding glucose to the suspension increases the viscosity that can be reached 

when a force is applied [69]. Cooking the cornstarch and water suspension increases the 

viscosity of the fluid both before and after a shear stress is applied. The longer it is cooked the 

greater its viscosity due to evaporation of the water and additional swelling of the cornstarch 

molecules. There are countless combinations of modifications that can be made to a cornstarch 

and water suspension allowing for specific, desired traits to be achieved. 

Polyethylene Glycol (PEG) is a polymer that has dilatant properties which means its 

viscosity increases when shearing is present. PEG has the same molecular structure as 

Polyethylene Oxide (PEO) and Polyoxyethelyne. Yet each of these polymers has different 

physical properties mainly due to their differing molecular masses. This polymer is labeled as 

PEG when the molecular mass is less than 20,000 g/mol and PEO when the molecular mass is 

greater than 20,000 g/mol. POE, however, can refer to the polymer of any molecular mass [2].  

 Smart fluids are not limited to reacting to shear stresses. Electro rheological (ER) and 

magneto rheological (MR) fluids are two sophisticated smart fluids that react to electric and 

magnetic fields respectively. The responses can occur within a few milliseconds but do differ 

depending on the fluid.  ER fluids have a much weaker response than MR fluids and are 

generally unusable unless enhanced [3]. MR fluids can be used without any additional 

enhancements due to their stronger effects. MR fluids are also not as easily affected by 

contamination as ER fluids making them much more useful in many applications [4]. 
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Table 2-10: Viscosity and Price of Various Smart Fluids 

Material Viscosity (η) at 25o C 

Price per gram 

without water 

PEG - 400 70 cP $0.028 

PEO 12-50 cP $7.74 

Cornstarch Suspension 400-53,000cP* $0.0026 

Glucose as an additive N/A $0.0011 

Polyanaline Dependent on applied voltage $12.36 

*The viscosity of the cornstarch and water suspension is a range due to the effects cooking and 

glucose can have on it. Any value within this range can be obtained. 
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3 Methodology 

 With the knowledge acquired from the background research, the project goal and 

objectives were more fully defined.  A plan for achieving the project goals and objectives was 

devised and followed throughout the design process. This plan involved identifying design 

variables, generating the variations available for each variable and developing a method for 

evaluating how well each variation would contribute to achieving the project goals and 

objectives.  The variations were assessed against critical design criteria.  Assessing the variations 

against the design criteria involved research, engineering intuition, dynamic calculations, 

computational analysis and preliminary performance testing.  This section describes the process 

of defining project objectives, and design development.  

3.1 Project Goal and Objectives 

With the nearly four million estimated sports-related concussions a year, athletes risk 

suffering the devastating effects of sustaining a concussion, each time they play the game they 

love. Ice hockey players are especially at risk due to the higher speeds obtained and the hard ice 

playing environment. Numerous studies have concluded that there is a high risk of concussion 

for ice hockey players at all levels of play.  The concerns and effects of concussions have lead 

league officials to seek equipment that better protects players from concussions.  

The goal of this project is to reduce the risk of concussion for ice hockey players by 

incorporating neck support into the current helmet design to provide an additional restoring 

moment during impact that will reduce the acceleration of the head.  The addition of a neck 

support that simulates and enhances the restoring moment provided by a strong neck should 

reduce the risk of concussion. This is based on the finding that for every one pound increase in 

neck strength, as measured by a hand-held dynamometer and tension scale, the odds of 
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sustaining a concussion decrease by five percent [7].  The ambition of the neck support 

incorporated helmet is to generate HIP values less than 24 kW when subject to a force typically 

experienced during a hockey game. Achieving HIP values below 24 kW will result in a less than 

50% chance of sustaining a concussion. In order to achieve our goal, we established the variables 

involved with incorporating the neck support and developed options for each variable.  The 

variables we established along with options for each variable are shown in Table 3-1. To 

determine which option would be used we devised a list of determining criteria. 
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Table 3-1: Options for Each Design Variable 

Variables Options 

Material 

Oobleck 

-Different concentrations 

-Cooked vs. uncooked… 

Borax and PVA 

MR fluids 

Pattern 

One solid 

Vertical strips  

Horizontal strips 

Amount of Overlap with Helmet 

 

Covering back of head entirely 

Up to lower back of head 

Barely overlapping with helmet 

How Far it Extends Down the back 

 

In line with shoulders 

To mid-shoulder blade 

To bottom of shoulder blade 

Amount of Wrap Around 

 

Just on back of neck 

To beneath the ears 

All the way around 

Method of Implementation Velcro around neck 
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Make it adhesive to skin 

Memory forming materials 

Ear-muff mechanism 

Flat spring  

 

In addition to achieving the main goal, the hope is that the modified helmet could be 

feasibly worn during an ice hockey game without imposing any significant limitations that a 

typical helmet would not impose. Although it is not the main focus of the project, in order to 

make implementing the design feasible, we developed the following objectives. 

Feasibility Objectives: 

1. The players’ range of motion while wearing the modified helmet should not be 

decreased by more than 4% of their range of motion with the current helmet.  

2. The player is able to remove the modified helmet in no more than an extra 5 

seconds compared to the removal time of a current hockey helmet.  

3. The design shall not incorporate any extrusions that will negatively affect player 

comfort or safety. 

3.2 Designing the Neck-Support-Integrated-Helmet 

A process for determining the best option for each of the previously identified variables 

was created.  With these feasibility objectives in mind the first three determining criteria for 

evaluating the options for each variable were created as shown in the Table 3-2.  In addition the 

main goal and feasibility objectives, cost, availability, and ease of implementation were also 

determining factors.  Table 3-2 shows the complete list of determining criteria that was 



54 

 

established, along with how each option’s ability to meet the criteria will be assessed. The 

questions in the Table 3-2 will be assessed for each option and compared to determine the best 

option for each variable.   
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Table 3-2: Determining Criteria  

Determining Criteria Questions to Assess Each Option 

Affordable? How much will it cost to implement?  

Available? Do we have access to the required materials? 

How easy will it be obtain all the required materials? 

How much time will it take to obtain all the required materials? 

Easy to implement? Is there a plan for implementing this option? 

If so, how many steps will it take to get the option implemented? 

Reduces HIP? Does computational analysis predict this option will help reduce the 

HIP? 

Do calculations predict this option will help reduce HIP? 

Does engineering intuition predict this option will help reduce HIP? 

Allows Full Range of 

Motion? 

Does this option provide the flexibility necessary to allow full range of 

motion? 

How many degrees of freedom are potential affected by this option? 

Easy to Use? Will this option require additional steps to equip the helmet? 

It so, how many additional steps does this option require? 

Is it comfortable and 

Safe? 

Will this option cause parts to be protruding off of helmet? If so, how 

many? 

Will this option utilize hard materials that can injure someone upon 

impact more so than a typical helmet? 

Will this option lead to sharps corners or parts on the helmet? 
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Before deciding on the specifics of the helmet modification, a baseline hockey helmet 

was chosen.  It was important that the baseline helmet be commonly used so that the results of 

testing could be extended to typical hockey situations.  In order to ensure that the helmet 

purchased was a popular one, the choice of helmet was limited to those presented in the 

equipment guide on PureHockey.com (seen in Figure 2-3). In addition, it was required that the 

helmet offer good protection before any modifications; thus, any observed improvements can be 

attributed to the modification and not an unsafe baseline helmet.  Ideally, either the Bauer IMS 

9.0 or the Reebok 11k would be used since these helmets are classified as elite protection.  The 

Bauer Re-Akt helmet was quickly eliminated from consideration since the SUSPEND-TECH 

liner could make it infeasible to modify the helmet.   

Two helmets were required so that one could remain unmodified to test as a control and 

the other to modify for comparison to the controlled results.  Reusing the control helmet by 

modifying it after it has been tested could produce inaccurate results, since the integrity of the 

helmet might diminish from enduring multiple impacts. Based on the need for two helmets and 

budgetary restraints, two Bauer IMS 7.0 helmets were purchased; this was the helmet that 

offered the best protection out of the affordable options.  Utilizing a cage was determined to be 

necessary for testing so that the dummy head would not be impacted directly.  One of the 

helmets was purchased with a cage that could be transferred to whichever helmet is being tested 

at the time.  

Once the helmets were purchased, options for each variable were evaluated against the 

determining criteria. Each variable needs to be determined before building a prototype, since 

time and budget constraints will only allow for the fabrication of a single prototype.  
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3.2.1 Options for the Smart Fluids 

The first variable that was evaluated was the smart material that would be used for the 

neck support.  The material choice is a critical variable that will have a huge influence on 

whether the prototype meets the main goal of lowering the HIP.  Although, the other neck 

support variables will contribute, an appropriate choice for the material is crucial for creating a 

device that will successfully reduce the HIP. There are two main requirements the material of the 

neck support must meet: 

1) The material must be able to provide a restoring moment against the force of an 

impact to reduce the acceleration of the head.  

2) The material must provide the player with uninhibited use of his or her full range of 

motion.  

At first glance, these requirements seem somewhat contradictory, but a smart fluid that 

exhibits shear thickening in response to stimuli should be capable of performing both 

requirements.  The materials identified as potential candidates for the neck support were ER 

fluids, MR fluids, cross-linked polymers, and Oobleck.  First, the availability, affordability, and 

ease of implementation of each option were considered, enabling the elimination of ER and MR 

fluids from consideration, based on their cost and complicated implementation. Then cross-

linked polymers were eliminated since they break when exposed to high shear force.  Therefore, 

the material of the neck support was determined to be Oobleck.  

The fact that Oobleck has a low resting-state viscosity and exhibits shear thickening in 

response to a large shear force rate, makes it a very suitable material for fulfilling both the 

material requirements. However, the standard two part cornstarch to one part water Oobleck 
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concentration may make it prone to settling at the bottom of the capsules used to enclose it due to 

its low resting viscosity.  This could impede its ability to meet the first requirement, since the 

material must remain distributed throughout the vertical length of the neck support in order to 

provide sufficient restoring moment, as illustrated in the Figure 3-1. 

 

Figure 3-1: Effect of Oobleck Settling at the Bottom of the Neck Support 

As discussed in the background section, there are several modifications of the Oobleck 

creation process that result in variations of Oobleck that display different properties.  

Experimentations with these modifications were conducted to determine which would produce 

Oobleck with properties that best achieve the material requirements.  The properties of interest 

include resting viscosity, and the relationship between viscosity and shear rate.  

In order to determine the viscosity properties of the Oobleck produced from each variation 

experiment, balls of different mass will be dropped through a volume of Oobleck. The time it 
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takes for the balls to move through the Oobleck will be utilized to obtain the viscosity properties 

of each.  The complete procedure for determining the viscosity of Oobleck is shown in Appendix 

C. 

3.2.1.1 Oobleck Creation Variation Experiments 

The Oobleck creation variation experiments include varying concentration, microwaving, 

boiling, and stove-top cooking of the Oobleck. The first experiment was to compare uncooked 

Oobleck to Oobleck cooked using a 1000 Watt microwave for differing amounts of time. The 

microwave seemed to be too aggressive of an option since a difference of ten seconds resulted in 

a completed gelled over solid. The second experiment involved cooking the Oobleck in plastic 

bags in hot water. The procedure used for this experiment is shown in Appendix C. Only subtle 

changes in initial viscosity were observed from this experiment. This method is much more 

difficult than using a microwave to cook the Oobleck. It is necessary to mix up the Oobleck in 

the bags periodically while cooking to assure the texture stays consistent. Additionally, the bags 

need to be kept away from the sides of the pot and up off the bottom by use of a steaming rack to 

keep the plastic from melting. Increasing the concentration of cornstarch to water was attempted 

but the shear thickening properties of the Oobleck made mixing difficult. The next experiment 

involved cooking the Oobleck directly in a pan on the stove top to evaporate the water out of the 

suspension. 

 One cup of water was mixed with one cup of cornstarch in a small pan. Once the 

suspension was uniform, it was cooked over heat three (low-medium) on a gas stove. The 

mixture was stirred constantly during the cooking process until it started to form a paste and 

become very thick. Once the mixture no longer had flowing fluid left, it was removed from the 
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heat and then taken out of the pan to help stop the cooking process. Once cooled, the Oobleck 

had the texture and viscosity of Play Doh but had lost the desirable shear thickening properties it 

had when it was a liquid. 

 This experiment was repeated using one cup of water mixed with one cup of cornstarch 

and one tablespoon of white sugar, glucose. Glucose has been shown to increase the viscosity of 

liquid Oobleck. However, once it was cooked and then cooled, this modified Oobleck had no 

discernable difference between the stove-top cooked Oobleck without glucose. 

 It is believed that the desired paste-like substance with shear thickening properties was 

not achieved due to the amount of heat retained in the cooked Oobleck. It took over 30 minutes 

for the mixture to cool and during that time more of the water had evaporated. This turned the 

paste, observed at the end of the cooking period, into crumbly dough. This dough was easily 

manipulated but did not have any of the shear thickening properties necessary to reduce the 

accelerations of the head during impact. Adding water back to the dough was attempted in order 

to make a paste however, the shear thickening properties were not recovered. Table 3-3 shows 

the results from experimenting with various modifications to the Oobleck creation process.  
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Table 3-3: Results from Modifications in the Creation of Oobleck 

Cornstarch to 

Water 

Concentration 

Modification Method 

and Duration 

Initial Viscosity 

Shear 

Thickening 

Exhibited* 

Comments 

2:1 Unmodified    

2:1 

Microwave 

20 sec   Slightly gelled 

2:1 30 sec Like solid No Entirely gelled over 

2:1 

Plastic bags 

in boiling 

water 

1 min 

Unnoticeable difference 

from uncooked 

Yes 

 

5 min 

Unnoticeable difference 

from uncooked 

Yes 

 

10 min 

Unnoticeable difference 

from uncooked 

Yes 

 

15 min 

Slightly higher than 

uncooked 

Somewhat 

 

1:1 Stove Top Like Play-Doh No Like Play Doh 

1:1:1 

Stove Top with 1 

tablespoon of glucose 

Like Play-Doh No 

Like Play Doh 

 

The desired resting viscosity is one that permits full range of motion but also ensures the 

Oobleck remains distributed throughout the vertical length of neck. A resting viscosity similar to 

the viscosity of Play Doh would make the Oobleck capable of staying distributed throughout the 

vertical length of the neck.  The challenge is to create an Oobleck with a resting viscosity similar 

to that of Play Doh that retains its shear thickening properties.  
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3.2.1.2 Calculations for Determining Necessary Dampening Coefficient 

The shear thickening to force relationship, formally called a constitutive model, of each 

variation of Oobleck helps distinguish which variation of Oobleck should be used.  First, the 

dampening coefficient necessary for providing a sufficient restoring moment upon impact was 

calculated.  In order to perform the necessary viscosity calculations, a full understanding of how 

concussions typically occur in hockey had to be obtained and modelled mathematically. Since 

player-to-player collisions are the most common  impact mechanism during ice hockey games, a 

player skating at top speeds into a stationary player was modelled [6]. The average weight of a 

professional ice hockey player is 210 pounds force plus 30 pounds force of equipment [70].  This 

means the average mass of a professional hockey player with equipment is 109 kg.  Donaldson et 

al. studied the accelerations of elite skaters instructed to skate as fast they could, starting from a 

stand-still [10]. Data were collected after a specified duration, and the average of the elite 

skaters’ accelerations was 4.375 m/s2 [8].   Considering a worst-case scenario, in which the 

player hitting into the stationary player transfers the entire force to the impacted player, the 

obtained values were used in the following equation to determine a typical force experienced by 

an ice hockey player.  

Equation 4: 𝑭𝒊𝒎𝒑𝒂𝒄𝒕 = 𝒎𝒑𝒍𝒂𝒚𝒆𝒓 ∗ 𝒂𝒑𝒍𝒂𝒚𝒆𝒓 

Where, 𝐹𝑖𝑚𝑝𝑎𝑐𝑡  is the force experienced by the player being impacted, 𝑚𝑝𝑙𝑎𝑦𝑒𝑟  is the 

average mass of an equipped professional hockey player, and  𝑎𝑝𝑙𝑎𝑦𝑒𝑟 is the average acceleration 

of an elite skater.  This provided a force of 476 N, which would be used to test the helmets. 

Using Figure 3-2 below as a free body diagram and rearranging the sum of moments 

equations provided the following differential equation: 
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Figure 3-2: Free Body Diagram of Head During Impact 

 

Equation 5: 

 

Where, 𝐼𝑦 = 233 𝑘𝑔 ∗ 𝑐𝑚2 , and is the moment of inertia about the center of gravity of 

the human head [28] 

𝑘𝑛𝑒𝑐𝑘𝑠 = 50 
𝑁∗𝑚

𝑟𝑎𝑑
, and is the spring constant that has been used to model the 

response of the human neck during impact [71] 

𝑘𝑑𝑎𝑚𝑝 = 5 
𝑠∗𝑁∗𝑀

𝑟𝑎𝑑
, and is the dampening coefficient that has been used to model 

the response of the human neck during impact [71] 
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𝑑𝐶𝐺𝑧 = 55 𝑚𝑚 and 𝑑𝐶𝐺𝑥 = 13 𝑚𝑚, and are the distance from the head’s center 

of gravity to the point about which the head rotates (the Occipital Condyle 

(OC)) along the z- and x- axis respectively [72]. 

 Solving the above differential equation provided the equations for the angular 

displacement, velocity, and acceleration of the center of gravity of the player’s head, shown with 

corresponding graphs below (the complete calculation can be seen in Appendix B.) 

 

Figure 3-3: Graph of Angular Displacement of the Head vs. Time, F = 476 N 

 

Equation 6: 𝜃(𝑡) = 𝑐1 ∗ 𝑒𝑟1∗𝑡 +  𝑐2 ∗ 𝑒𝑟2∗𝑡 + 𝐴 ∗ sin(Ω𝐹 ∗ 𝑡) + 𝐵 ∗ cos (Ω𝐹 ∗ 𝑡), 

Where, 𝜃(𝑡) is the angular displacement of the center of gravity of the head as a function 

of time, 

t is time in seconds,  

ΩF is the forcing frequency and was estimated using graphs, and  

𝐶1, 𝐶2, 𝐴, 𝐵, 𝑟1, & 𝑟2 are all constants that were solved for using initial value 

conditions (the calculations of these constants can be seen in Appendix B.) 
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Through differentiation the equations for angular velocity and acceleration were 

determined: 

  Angular Velocity:   

 

Figure 3-4: Graph of Angular Velocity of Head vs. Time, F = 476 N 

 

Equation 7: 𝝎(𝒕) = 𝒄𝟏 ∗ 𝒓𝟏 ∗ 𝒆𝒓𝟏∗𝒕 + 𝒄𝟐 ∗ 𝒓𝟐 ∗ 𝒆𝒓𝟐∗𝒕 + 𝑨 ∗ 𝛀𝑭 ∗ 𝐜𝐨𝐬(𝛀𝑭 ∗ 𝒕) − 𝑩 ∗ 𝛀𝑭 ∗ 𝐬𝐢𝐧 (𝛀𝑭 ∗ 𝒕) 

Angular Acceleration: 

 

Figure 3-5: Graph of Acceleration of Head vs. Time, F = 476 N 

Equation 8:  𝜶(𝒕) = 𝒄𝟏 ∗ 𝒓𝟏 
𝟐 ∗ 𝒆𝒓𝟏∗𝒕 + 𝒄𝟐 ∗ 𝒓𝟐

𝟐 ∗ 𝒆𝒓𝟐∗𝒕 − 𝑨 ∗ 𝛀𝑭
𝟐 ∗ 𝐬𝐢𝐧(𝛀𝑭 ∗ 𝒕) − 𝑩 ∗ 𝛀𝑭

𝟐 ∗ 𝒄𝒐𝐬(𝛀𝑭 ∗ 𝒕) 

 

Unfortunately, when this information was entered into the HIP equation, it only produced 

a value of 1.077 kW, way below the 50% concussion likelihood HIP value of around 24 kW.  
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Therefore, initial assumptions were reexamined.  It was concluded that the low HIP value was 

probably because the force used in the calculations was determined from a standing start, static 

view point.  A more accurate force was then acquired using the change in momentum equation.   

Again, considering a worst-case scenario of two players skating their fastest at 30 mph 

and hitting head on (causing one to come to a complete stop), provides the initial momentum and 

the final velocity of one of the players. Rearranging the impulse equals change in momentum 

formula and plugging in the known variables allowed the impact force to be calculated as seen in 

the equations below (the complete calculations can be seen in Appendix B).   

Equation 9: 𝑰𝒎𝒑𝒖𝒍𝒔𝒆 =  𝚫𝒎𝒐𝒎𝒆𝒏𝒕𝒖𝒎 

Equation 10: 𝑰𝒎𝒑𝒖𝒍𝒔𝒆 = 𝑭 ∗ 𝒕          Equation 11:  𝚫𝒎𝒐𝒎𝒆𝒏𝒕𝒖𝒎 = 𝒎𝒉𝒑 ∗ (𝒗𝒊 − 𝒗𝒇) 

Equation 12: 𝑭 =
𝒎𝒉𝒑∗(𝒗𝒊−𝒗𝒇)

𝒕
= 𝟏. 𝟐𝟏𝟕 ∗ 𝟏𝟎𝟓𝑵 

Where, F is the impact force 

 t is the estimated time duration of impact  

 mhp is the average mass of an equipped hockey player 

 vi & vf  are initial and final velocity, respectfully 

This force generated an extremely large acceleration and HIP value, indicating that the 

worst-case scenario that was modelled may have been too extreme.   

In an attempt to obtain a more realistic value for the force capable of producing a 

concussion in a hockey player, background research was consulted for head accelerations that 

have been obtained from sensors located in helmets of athletes.  Provided in the study Newman 

et al., conducted for developing the HIP were the maximum linear accelerations sensed in the 
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heads of NFL players who had collided head to head with another player along with whether 

either player sustained a concussion.  Averaging the accelerations of the players who had 

sustained a concussion generated an acceleration of 953.3 m/s2. Using this acceleration and the 

typical mass of a human head in the force equals mass times acceleration equation provided a 

force of 4.195 * 103 N (Complete calculations can be seen in Appendix B). 

 Utilizing this force to solve for new constants in the angular displacement, velocity and 

acceleration equations generated the following graphs: 

 

Figure 3-6: Graph of Angular Displacement of Head vs. Time F = 4.195*103 N 

 

Figure 3-7: Graph of Angular Velocity of Head vs. Time, F = 4.195*103 N 
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Figure 3-8: Graph of Acceleration of Head vs. Time F = 4.195*103 N 

 

 This acceleration generated an HIP of 60 kW which is twice the 30 kW HIP value that 

corresponds to 95% concussion risk, but is still an obtainable value in certain situations. 

However, a force that would generate an HIP value that is more typical of an ice hockey player 

was still desired.  Also provided in the study conducted by Newman et al. was the peak 

acceleration corresponding to a 50% chance of concussion. So this acceleration of 761.5 m/s2 

was multiplied by the mass of the human head to obtain a force of 3.35 *103 N.  Using this force 

to solve for new constants in the angular displacement, velocity, and acceleration equations 

generated the following graphs (complete calculations can be seen in Appendix B). 
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Figure 3-9: Graph of Angular Displacement of Head vs. Time, F=3.35*103 N 

 

Figure 3-10: Graph of Angular Velocity of Head vs. Time, F = 3.35*103 N 
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Figure 3-11: Graph of Acceleration of Head vs. Time F = 3.35*103 N 

 

Using the acceleration equation generated by a force of 3.35*103 N produces a reasonable 

HIP value of about 38 kW, as seen in Figure 3-12, below. This HIP indicates that there is over a 

95% concussion risk. 
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Figure 3-12: HIP Value Corresponding to a Force of 3.35*103 N 

This force generates a realistic HIP value indicating very high risk of concussion. 

However, this force cannot be achieved using the air cylinder already purchased for the test rig. 

The exploration of alternative test methods is discussed in Section 3.3. 

  The solution found from the exploration of alternative test methods was to scale-down 

the mass of the head and the tension in the neck proportionately to the ratio between the realistic 

force of 3.35*103 N and the small, maximum force the air cylinder is able to deliver . The largest 

force that could be achieved using the air cylinder was calculated by multiplying the area of the 

air cylinder bore by 100 psi (the maximum pressure available).  The maximum force that can be 

generated using the air cylinder is 786 N. Dividing the realistic force of 3.35*103 N by the 

maximum force achievable provided a scaling factor of 4.26.  To determine the validity of the 

scaling down test rig solution a mathematical model in which the average mass of a human head, 

the spring and dampening coefficients used for modelling the human neck and the moment of 

inertia were divided by the scaling factor.  Once equations utilizing the scaled-down values were 



72 

 

created a variable representing the dampening coefficient of the neck support was added (see 

below).  

Equation 13 Scaled-Down Differential Equation Including a Dampening Coefficient of the Neck Support 

 

Where P = 100 psi, and is the maximum available pressure, 

AreaBore = 11cm2, and is the cross-section area of the air cylinder bore 

Mhead, Iy, kdamp, and knecks are the values listed previously divided by the scaling 

factor 

Solving the differential equations with 𝑘𝑜𝑜𝑏𝑙𝑒𝑐𝑘 = 0
𝑚2∗𝑘𝑔

𝑠
 generated the following 

angular displacement, velocity, and acceleration graphs.  

 

Figure 3-13: Graph for Angular Displacement from Scaled-Down Values and Dampening Coefficient = 0 

m2*kg/s 
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Figure 3-14: Graph for Angular Velocity from Scaled-Down Values and Dampening Coefficient = 0 m2*kg/s 

 

Figure 3-15: Graph for Angular Acceleration from Scaled-Down Values and Dampening Coefficient = 0 m2*kg/s  
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Figure 3-16: Graph and Equation for the HIP Generated from the Scaled-Down Values and Dampening Coefficient = 0 

m2*kg/s 

As shown in Figure 3-16, the scaled-down version of the impact generated an HIP value 

of 8 kW.  Multiplying this scaled-down HIP by the scaling factor produces an HIP value of 34 

kW very similar to the HIP generated from the mathematical model utilizing the realistic force.   

This HIP value just slightly exceeds the 30 kW value that corresponds to 95% risk of concussion.   

The calculations were done in MathCad so the dampening coefficient could be changed 

and the equations and HIP value would automatically update (complete calculations can be seen 

in Appendix B.)  First 𝑘𝑜𝑜𝑏𝑙𝑒𝑐𝑘 = 𝑘𝑑𝑎𝑚𝑝 = 1.173.
𝑚2∗𝑘𝑔

𝑠
 , the scaled-down dampening 

coefficient of the neck was tried.  Multiplying the HIP produced, by the scaling factor, generated 

an HIP value of 16.305 kW which is below the 24 kW threshold corresponding to 50 % risk of 

concussion.  In order to determine the smallest dampening coefficient still capable of producing 

HIP values below 24 kW, the dampening coefficient was set equal to varying amounts until a 

dampening coefficient that generated an HIP value just below 24 kW was found.  The 

dampening coefficient necessary for generating an HIP less than 30 kW, corresponding to 95 % 

concussion risk, was also determined. How much the different dampening coefficients were able 
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to reduce the HIP was quantified by calculating the HIP reduction percentage using the following 

equation: 

%𝐻𝐼𝑃𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =
𝐻𝐼𝑃𝑛𝑜 𝑛𝑒𝑐𝑘 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 − 𝐻𝐼𝑃𝑛𝑒𝑐𝑘 𝑠𝑢𝑝𝑝𝑜𝑟𝑡

𝐻𝐼𝑃𝑛𝑜 𝑛𝑒𝑐𝑘 𝑠𝑢𝑝𝑝𝑜𝑟𝑡
∗ 100% 

Where, 𝐻𝐼𝑃𝑛𝑜 𝑛𝑒𝑐𝑘 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 34.242 𝑘𝑊, and is the HIP generated when dampening 

coefficient of neck support equals 0 
𝑚2∗𝑘𝑔 

𝑠
 

 𝐻𝐼𝑃𝑛𝑒𝑐𝑘 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 is the HIP generated by the dampening coefficient 

Table 3-4  lists the values guessed for the dampening coefficients along with the 

corresponding HIP values that were generated, and the HIP reduction percentage.  

Table 3-4: Determining the Smallest Dampening Coefficient Capable of Reducing Risk of 

Concussion to below 50% 

𝑘𝑜𝑜𝑏𝑙𝑒𝑐𝑘  (
𝑚2∗𝑘𝑔 

𝑠
) HIP (kW) % HIP 

Reduction from 

HIP from no 

neck support 

0 (No neck support) 34.242 N/A 

𝑘𝑑𝑎𝑚𝑝 =  1.173 16.305 52.4 % 

1 17.667 47.4 % 

.75 20.095 40.2 % 

.5 23.302 30.7 % 

.45 24.071 28.4 % 
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.47 23.757 29.3 % 

.46 23.913 28.8 % 

.25 27.733 17.5 % 

.2 28.829 14.2 % 

.18 29.293 12.8 % 

.15 30.016 10.7 % 

.16 29.771 11.4 % 

 

As shown in Table 3-4, in order to reduce the chance of concussion to less than 95% (i.e. 

less than a 30 kW HIP value), a dampening coefficient of .16 
𝑚2∗𝑘𝑔 

𝑠
 is necessary. In order to 

generate an HIP below 24 kW, indicating a concussion risk less than 50 %, a 28.8 % HIP 

reduction is necessary.  The dampening coefficient capable of this percentage reduction was 

found to be .46 
𝑚2∗𝑘𝑔 

𝑠
, as indicated by the green shading above. This means in order to achieve 

the project goal, the neck support must induce a dampening coefficient of at least .46 
𝑚2∗𝑘𝑔 

𝑠
. 

3.2.2 Material Options for Oobleck Capsules  

The material and method for encapsulating the Oobleck also had to be determined. The 

Oobleck has to be enclosed in liquid-tight capsules that will be sewn into a fabric-like material 

that fits around the neck.  The capsule material has to endure impacts without rupturing and be 

flexible enough so that it does not interfere with the properties of the Oobleck.  The material for 

enclosing the Oobleck was chosen based on durability, resistance to leakage, impact 

characteristics, availability and price. The first affordable option tested was thick, powder-free 

nitrile gloves.  These gloves are flexible, abrasion resistant, and meant to be a barrier between 
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skin and the chemicals or biohazards being handled [73]. The gloves provide a leak-proof barrier 

between the Oobleck and the neck support fabric.  To utilize the gloves as Oobleck capsules, the 

fingers were cut off and filled with Oobleck.  The fingers should be short and thin enough so that 

the Oobleck will not all settle at the bottom but rather remain distributed throughout the length of 

the finger. These fingers would then be sewn into the fabric of the neck support. A few options 

for sealing the capsules were tested.   

First, a finger from the nitrile glove was filled to capacity using a funnel while still 

allowing room to be able to tie a knot to seal it.  The Oobleck used was roughly 2.25:1 

cornstarch concentration.  First, the capsule was dropped on the ground.  When no signs of 

cracks or leaks were present, we submitted it to the next test involving a 50th percentile male 

jumping on it.  The capsule appeared to retain its integrity. For the final test, a collegiate softball 

player threw the Oobleck capsule as hard as possible at a wall.  The capsule was thoroughly 

examined and no leaks or tears were present.  

Although a simple knot seemed to secure the Oobleck sufficiently, other sealing options 

were tested to determine if there was an option that did not create a protrusion (knot) on the 

capsule. Oobleck was funneled into another finger, filling it almost entirely while leaving just 

enough of an opening to cover it in super glue. The opening was pushed and held closed until the 

super glue dried. Then the finger was dropped and Oobleck started leaking out.  

So another glove was made the same way but had an additional step of folding the glued 

seam over and gluing it to itself to reinforce the seal.  This finger withstood being dropped on the 

floor but ruptured when thrown by the collegiate softball player at the wall.  It is believed that 

the integrity of the glove was compromised by the hardening of the glue. The glue seam created 
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a stiff edge that inhibited the nitrile’s flexibility forcing it to rupture when hit hard enough.  

Therefore, it was decided to just use a knot to seal the capsules. 

After review of the integrity of using the nitrile gloves, examination of other materials 

was then researched. The implementation of a material that is of proper length and width was 

desirable. Initially the use of a balloon for balloon animals had been analyzed.  After testing the 

strength and integrity of the twisting balloons it was then desirable to find a new source to 

encapsulate the Oobleck. Through some research for material that resembled the twisting 

balloons it was then brought to our attention that medical Penrose tubing would provide a 

stronger and more reliable method of containing the Oobleck. A very similar method of testing 

the Penrose was then performed and it seemed to withstand all tests that were performed. The 

Penrose showed to be stronger and have a higher tolerance to the stresses that the neck support 

would offer.   

3.2.3 Evaluating the Options for the Neck Support Pattern 

Choosing the right pattern in which the Oobleck is arranged in the neck support is also a 

very important decision since different patterns may help or hinder the material’s ability to 

achieve the project’s goals and objectives.  Designing the neck support pattern involves 

determining the orientation of the Oobleck capsules, how many capsule-filled pockets should be 

in the neoprene, and how many capsules should be in each pocket. First, the orientation of the 

Oobleck capsule was considered.  Free body diagrams (see Figure 3-17) were created for vertical 

and horizontal orientation of the capsules. From the free body diagrams, it became apparent that 

a vertical orientation would be necessary to ensure that the material provides a sufficient 

restoring moment in response to a force.   
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Figure 3-17: Free Body Diagrams for Horizontally and Vertically Aligned Oobleck Capsules 

 

In order to determine how many pockets to use, the decision on how far around the neck 

the neck support should wrap needed to be made.  Wrapping all the way around the neck was 

eliminated from consideration due to a high potential of reducing the player’s range of motion 

and comfort.  Wrapping it around to right beneath each ear was the option chosen since it would 

provide a restoring moment from more angles than a neck support just covering the back of the 

neck.  Once this decision was made, the corresponding length around the dummy’s neck was 

measured as roughly six inches.  After measuring the diameter of the Oobleck capsules, simple 

division was used to determine that the maximum amount of pockets that could fit was six. 

Based on the measurements it was decided that two pockets would run along the back of the 

neck and then two pockets would be on each side of the neck support shown in Figure 3-18. The 

pockets of the neck support will fasten close using Velcro so that after the initial testing, capsules 

can be examined for leakage. This will also permit varying the amount of capsules in the pockets 
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so that additional tests can be performed to discover how many capsules per pocket would be 

optimal. 

 

Figure 3-18: Dimensioned Sketch of Neck Support Pattern 

 

3.2.4 Neck Support Enclosure Material 

After researching potential materials, neoprene was chosen to fabricate the neck support 

that will hold the capsules of Oobleck within it.  Neoprene is a synthetic rubber used in many 

applications due to its flexibility, durability, and resistance to breaking down in water [74]. Some 

of its uses are wet suits, waders, mouse pads, elbow and knee pads, insulated can holders, and 

orthopedic braces. Neoprene can be purchased as is, with fabric laminated on one side, or with 

fabric laminated on both sides.  
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Due to its flexibility, durability, and water resistance, neoprene was chosen for the fabric 

of the neck support.  This material can be sewn using a sewing machine and can be put under 

tension to help keep the shape of the neck support. Additionally, its water resistance is helpful in 

case any leakage occurs with fluid holders in the neck support. It will not add a noticeable 

amount of protection to the player but will be soft, light, and form fitting for comfort and 

mobility. 

3.2.5 Evaluating the Options for Implementation Methods 

  Determining how to ensure that the neck support form-fits to the neck is a challenge.  Ideas 

were brainstormed and narrowed down to the most feasible ideas.  One design idea is to 

incorporate the mechanism found within flexible ear muffs. This ear muff mechanism would be 

sewn into the top and bottom of the neck support fabric and then be pushed around the neck.  

This idea may be accompanied by the use of two torsion springs to ensure the top of the back of 

the neck support is against the back of the neck beneath the helmet. These methods along with 

other feasible implementation methods are evaluated in Table 3-5 and Table 3-6. 

Table 3-5: Determining Method of Implementation to Best Meet Determining Criteria 

Variable: 

Implementation 

Method 

Options 
Adhesion to 

skin 

Memory 

Forming 

Materials 

Ear muff 

mechanism 

Torsion 

Spring 

Available? 

Do we have access to 

the required materials 

for this option? 

Yes Potentially Yes Yes 
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How easy will it be to 

obtain all the required 

materials for this 

option? 

Fairly easy once 

appropriate 

material is 

determined 

Unknown Very easy Very easy 

How much time will it 

take to obtain all the 

required materials for 

this option? 

Depending on 

finding the right 

material and 

shipping 

Unknown 

2-10 

business 

days 

depending 

on shipping 

2-10 

business 

days 

depending 

on shipping 

Affordable? 

How much will it cost 

to implement this 

option? 

Unknown Yes 
Less than 

$14  

Less than 

$12  

Easy to 

Implement? 

Is there a plan for 

implementing this 

option? 

Yes No Yes Somewhat 

If so, how many steps 

will it take to get the 

option implemented? 

At least 2 At least 3 At least 3 At least 4 

 

Easy to Use? 

 

Will this option 

require additional 

steps to equip? 

Yes No Yes No 

How many extra steps 

will need to be 

followed to equip? 

1 0 1 0 
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Comfortable 

and Safe? 

Will this option 

necessitate the use of 

dangerous materials or 

protruding parts? 

No Yes No Unknown 

*Additional Considerations: Will skin adhesive be reusable? Is there a memory forming material that 

remains somewhat flexible? 

Table 3-6: Determining How Far Down the Back the Neck Support Should Extend to Best Meet the Determining Criteria 

Variable: How Far 

Down Back 
Options 

In line with 

shoulders 

Down to mid-

shoulder blade 

Down to 

bottom of 

shoulder blade 

Easy to Implement? 

Is there a plan for 

implementing this option? 

 

Yes No No 

If so, how many steps will 

it take to get the option 

implemented? 

At least 2 At least 3 At least 3 

Easy to Use? 

Will it interfere with other 

padding worn by hockey 

players? 

No Unknown Yes 

 

3.3 ANSYS Workbench Analysis 

 In order to simulate the physical impact test being performed, SolidWorks models were 

created and imported into ANSYS Workbench. Three separate assemblies were created for 

testing purposes.  
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Figure 3-19: SolidWorks Head Model 

 There is a consistent surface on the front of each model representing the 1.5 inch 

diameter bore of the air cylinder. There is also a point on the right side of the head depicting a 

point in which acceleration will be recorded during the dynamic test. The radius of the neck is 

2.36 inches and the length of the neck is 4.3 inches, as found in anatomical data. The radius of 

the head is 3.57 inches and the head height is 9.4 inches. The second assembly uses the current 

helmet model with a simplified version of a hockey helmet with only 100 degrees of helmet 

wrapped around the back of the head. Only 100 degrees were used because we were advised that 

this is a simplified model and is more reasonable to test in ANSYS.  
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Figure 3-20: SolidWorks Current Helmet Model 

 A quarter inch of material was used for the outer shell of the helmet and an inch of 

material for the inner shell was used for the inner padding. The outer padding is represented as 

polycarbonate in the models, the inner padding is represented as polystyrene, the neck as soft 

tissue, and the head as polyethylene. The third assembly includes a current helmet with an 

addition of an inch of material wrapping around the neck. The material wrapped around the neck 

is represented as polyethylene.  
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Figure 3-21: SolidWorks Head with Additional Neck Support 

 The ANSYS models were testing by fixing the base of the neck cylinder and applying a 

force of 3350 N in the x-direction at the location of the 1.5 inch cutout. The incident occurs over 

a period of 12 ms and an acceleration is recorded at the point on the right side of the head. The 

acceleration component type is considered “all” as opposed to a specific coordinate direction.  

3.3.1 Test Results of the ANSYS Modeling 

 The first assembly was solved in ANSYS and recorded the following accelerations: 
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Figure 3-22: ANSYS Results of Head Model 

 

The second assembly was solved as well and gave the following data.  
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Figure 3-23: ANSYS Results of Current Helmet Model 

 

The third assembly was solved and recorded the following data.  
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Figure 3-24: ANSYS Results of Neck Support Model 

The accelerations in meters per second squared for each model were compiled in relation to time 

in the following table. The models were then graphed for comparison. 

Table 3-7: Recorded Accelerations with Respect to Time in ANSYS Modeling 

Time Helmet Neck Support 

Just 

head 

1.18E-38 0 0 0 

6.00E-04 12104 12322 2987.1 

1.20E-03 13059 13341 -10179 

1.80E-03 16764 17063 -9130 

2.40E-03 9785.2 14531 3936.5 
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3.00E-03 11677 14109 584.52 

3.60E-03 11169 10413 -8508.7 

4.20E-03 7796.1 8743.3 1437.2 

4.80E-03 9606.6 8671.8 1683.9 

5.40E-03 11454 12191 5409.3 

6.00E-03 9002.4 9706 -3080.1 

6.60E-03 7006.7 6874.2 -5250.1 

7.20E-03 4982.8 3557.2 -1944.5 

7.80E-03 4974.7 4526.3 -3917 

8.40E-03 3171.2 5507.6 4603.3 

9.00E-03 5786 8887.2 -2905.8 

9.60E-03 4416.8 3056.7 -1035 

1.02E-02 6221.8 4444.1 3886.7 

1.08E-02 2820.5 5926.3 -927.11 

1.14E-02 3053.5 5988.7 632 

1.20E-02 4437.5 5367 928.57 
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Figure 3-25: Comparison Graph of ANSYS Output Accelerations 

Maximum accelerations were also recorded for each model. A table and graph with this 

information is shown below. 

Table 3-8: Maximum Accelerations of Each Model in ANSYS 

Model Maximum acceleration 

Just Head 5409.3 

Helmet 16764 

Neck Support 17063 
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Figure 3-26: Graph Comparison of Maximum Acceleration in ANSYS 

From the data received in ANSYS, our models did not show the expected results. The 

singular head model showed smaller accelerations than the helmet models. Since the goal of 

hockey helmets currently on the market is to prevent concussions, data showing that an 

unprotected head will experience lower accelerations and therefore less of a chance of 

concussions is inaccurate. The neck support model and current helmet recorded very similar 

values. Because we are adding support to the neck, we expected the recorded accelerations to be 

dampened by the support. The discrepancies could have been recorded due to over simplification 

of the neck support model. ANSYS Workbench does not allow the importation of highly 

complex models, so we were unable to include all details and aspects of our design in the 

ANSYS models. Because the models required simplification, the results could have been 

affected and therefore we received discrepancies between our anticipated, calculated, and 

modeled results.  
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4 Final Design 

 The final design was chosen under the criteria from Chapter 3 in this report. The 

following list highlights all the main components of the final design.  

 Pattern: Vertical 

 Enclosure: Neoprene 

 Smart Fluid: Oobleck 

 Smart Fluid Enclocure: Penrose 

 Amount of coverage: In line with shoulders and on back of neck. 

 Implementation of the neoprene, penrose and oobleck are the main components of the 

device. A CAD model of this design is shown in Figure 4-1, below. 

 

Figure 4-1: Sketch of Final Design 

4.1 Prototyping  

The process of prototyping was quite straightforward. A schematic was drawn up for 

dimensioning. The neoprene was then sewn into the desired pattern based on the test set-up 

dimensioning. It is important that the device sets on the test set-up as intended to accrue accurate 

results. The Penrose tubing was cut to the proper length and then filled with oobleck. The 
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‘oobleck logs’ would then be inserted into the slots on the neoprene sleeve. The neck support is 

then fastened to the helmet by use of Velcro for testing purposes. Figure 4-2, below, shows the 

prototype attached to the test mechanism and the helmet.  

 

Figure 4-2: The Prototype 
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5 Test Set-Up and Procedure 

Testing is necessary in order to determine if the project goals and objectives are met. 

Since the main goal of this project was to reduce the HIP during an impact, an impact test must 

be conducted. During the impact test the acceleration of the head as a function of time must be 

obtained in order to calculate the HIP value.  Additionally, the testing procedure used on our 

prototype must also be conducted on an unmodified helmet so that comparisons can be made.  

Then, even if our goal of reducing the HIP to below 24 kW is not achieved, whether our 

prototype is an improvement compared to current hockey head gear can still be determined.  In 

addition to evaluating how well the prototype meets the project goal. This chapter describes the 

set-up and procedure for the impact tests as well as the feasibility objectives assessments.  

5.1 Developing the Test Rig 

Considering the force of 476 N that was determined from the average mass and 

acceleration of hockey players used in force equals mass times acceleration, it was determined 

that an air cylinder impact test would be the best choice for testing the helmets. This test is the 

most controlled method and requires the least amount of space. A single-acting, spring-return 

cylinder with a bore diameter of 1.5 inches from McMaster Carr was purchased for the test set-

up.  The diameter of the bore was used to determine the necessary pressure using the following 

equation. The pressure had to be less than 100 psi since that is the maximum amount of pressure 

available in the labs. 

Equation 14: 𝐹𝑜𝑟𝑐𝑒 = 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 ∗ 𝐴𝑟𝑒𝑎 

Equation 15: 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 =
𝐹𝑜𝑟𝑐𝑒

𝜋

4
∗𝐷𝑏𝑜𝑟𝑒

2  
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Where 𝐷𝑏𝑜𝑟𝑒
2  is the squared diameter of the bore of the air cylinder in meters-squared.   

With the chosen air cylinder the equation yielded a necessary pressure of around 60 psi 

which is well below the 100 psi available.  Using additional properties of the air cylinder found 

on the product information section of its website, calculations were done to determine the 

necessary stroke length based on the duration of time for which the air cylinder should remain in 

contact with the helmet during the impact test. Based on the calculations, which can be seen in 

Appendix B, we purchased the four-inch stroke length option for the air cylinder since it would 

provide additional length than the necessary length to leave room for error. 

5.1.1 Structure of the Test Rig 

Once the appropriate air cylinder was chosen, a test rig for conducting the helmet impact 

test was devised.  The design of the test rig is essential for accurate testing of the prototype and 

unmodified helmet.  It was important to be able to administer a regulated impact force. The head-

form that would wear the helmet was salvaged from a previous MQP and the rest of the rig was 

designed and created around the head-form and air cylinder.  To ensure accuracy and 

repeatability of the tests, the test mechanism had to keep every component secured to each other 

in some way. There were a few specifications that were defined that were important for 

designing the test rig. 

 Needs to be rigid; headpiece and impact device must be connected 

 Have the ability to rotate the head piece 

 Have ability to adjust the height of the impact device  

 Must be small and light enough to transport 
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A pneumatic air cylinder was attached to a rigid metal structure and supplies the amount of force 

needed to impact the head form. The initial test set-up, shown below, exhibits most of the 

specifications listed above.  The use of a perforated metal allows for the air cylinder to be height 

adjusted for various impacts. The metal will also allow for a bolt together feature that will offer 

easy disassembly if need be. The initial design, also allowed the metal structure to be bolted to 

the head form.  

 

Figure 5-1: Sketch of Test Rig 

After performing some research on available parts, it was found that a perforated steel 

angle frame would be suitable for this application since it offers support from two directions. A 

reiteration of the design was then modeled in SolidWorks as shown in Figure 5-2.   
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Figure 5-2: SolidWorks Reiteration of Test Rig 

The base of this test set-up was a ¼ inch thick piece of plywood that provides stability 

and ensures the base is more rigid than the head-form so that the base remains still while the 

head-form rotates upon impact.  Calculations were executed to ensure that a ¼ inch thick piece 

of plywood would be strong enough to hold and transport the rest of the test set-up without 

bending too much (see Appendix B.)  The metal is held together by nuts and bolts as well as 

corner braces to ensure that it stays square and rigid.  It also is bolted down to the plywood 

through the use of the perforated angle iron.  The air cylinder is bolted to two cross bars that 

allow for height adjustment for different impacts. Ensuring that the air cylinder is level is 

essential for administering a straight-on impact.  The use of extra washers to prop up the front 

side of the bracket was needed to level the cylinder.   
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The dimensions of the metal structure are 12”x 24” x 6”.  The head stands about 19 

inches off the board so the height of 24 inches on the metal structure will cover an impact at the 

top of the head.  The small cross bars on the structure are 6 inches, which makes the structure 

slightly wider than the cylinder itself.  The length of 12 inches was slightly long but the 

placement allows the vertical (24”) pieces to be adjusted to the proper length of the air cylinder. 

The metal was cut precisely so that the holes align properly.  The air cylinder has foot brackets 

that are 9.5 inches apart, which means the bars holding the cylinder to the structure are that far 

apart and set into the rectangular structure.  

 

Figure 5-3: Finished Test Set-up 

After constructing the metal test structure, the head-form was altered so that it could 

mount to the piece of plywood.   Unnecessary metal on the bottom of the head-form was cut off 

and leveled so that holes could be drilled to allow the head-form to be bolted to the perforated 
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angle frame at the required height.  This allows for an easy on and off application of the head-

form.  All the components were placed on the plywood in their appropriate places and the holes 

were traced and then drilled.  Then all the components were bolted together securely.    

The head of the dummy was then recreated with the head of a CPR dummy and filled 

with foam to ensure that the head was a solid object. Bolts were placed inside the head in a 

manner that was consistent with the current test neck. From here, the center of gravity was found 

for accelerometer placement. 

5.1.1.1 Determining Center of Mass 

The new dummy head needed to have a pin-pointed center of mass. Since the head was 

an irregular shape the center of mass needed to be determined by the use of the hanging string 

method. The procedure of this process if as follows: 

1. Attach a piece of string, which is long enough to hold onto, to any point on the dummy 

head. 

2. Attach a second piece of string that is weighted with a nut tied to the end to the same 

point as the first string. Make sure it is long enough to span the dummy head. 

3. Lift the dummy head by the first string. 

4. Draw a straight line where the weighted string falls. 

5. Repeat steps 1-4 to get the intersection of two lines. This intersection shows where the 

center of mass is. 

6. Repeat steps 1-5 until you have found an intersection for the center of mass on the side, 

top, and back of the dummy head. 
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Figure 5-4: Finding Center of Mass 

 Tape was then placed at each intersection point and drawn on to indicate the correct spot. 

Once found, holes were drilled in those locations to allow for the accelerometers to fit into to 

help hold them in place during testing.   

5.1.1.2 Accelerometer Placement 

Three accelerometers were placed in the dummy head at the predrilled locations. The 

accelerometers were tangent to the surface of the dummy head and located along the x and y 

axes of the center of mass. Two accelerometers measured linear acceleration in the x direction 

and one accelerometer measured linear acceleration in the y direction. One x accelerometer was 

located on the side of the head and the other was located on the top of the head. The y 

accelerometer was placed on the back of the head. The x accelerometer on the top of the head 

and the y accelerometer data were used to calculate the HIP, HIC, and SI values.  
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5.1.2 Pneumatic Circuit Connecting Air Supply to Air Cylinder 

The pneumatic circuit consists of the air supply, the air tank, the air cylinder, hose, and a 

solenoid switch.  The air supply allows for a maximum of 100 psi output.  A hose with quick 

connect fittings connects the air supply to the tank. Attached to the air tank is a pressure gauge 

that indicates the air pressure being delivered to the cylinder. The air tank also has an output that 

is controlled by a valve.  A quarter inch tube, with male quick connect fittings of ¼” and a 1/8’’ 

NPT, connect the output valve of the air tank to input port on the solenoid switch (each equipped 

with the corresponding female NPT fittings).  Another strip of the quarter inch tubing connects 

the 1/8” NPT female fitting of the output port on the solenoid switch to the 1/8” NPT female 

fitting on the input port of the air cylinder. A LabView program was created to monitor the air 

pressure entering the switch. Once a pressure of 100 psi is detected, the switch will be triggered 

manually to release the air into the air cylinder. The complete LabView program is shown in 

Appendix A. Utilizing the switch ensures the release of pressure is instantaneous which reduces 

the presence of a pressure gradient.   

5.1.3 LabView Program 

LabVIEW is software developed by National Instruments which allows users to have 

virtual controls when designing processes for testing, measuring, or controlling applications. It 

allows users to create and interact with signals or data in the science industry. We needed one 

LabVIEW VI divided into 2 parts; the first part consists of the design of a VI that controls the 

activation of the pneumatic system and the second part consists of attaining measurements form 

the accelerometers located in the dummy.  
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This is a step by step of the LabVIEW program that will aid us in having an n effective 

deployment mechanism in order to hit the dummy head by generating the necessary force. 

 

To start, we will have to detail a list of equipment and materials in order to understand the 

VIs purpose, use and setting. By this, we aim to use this terms in the VI sequence of events in 

order to have coherence and make scene.  This list is found bellow: 

Materials needed: 

1. DAQ Device 

2. Pressure Tank 

3. Strain Gauge 

4. Air outlet from wall (air pressure Source) 

5. Hose 

a. (from outlet wall to inlet tank) 

b. (from outlet tank to solenoid valve and from solenoid valve to cylinder) 

6. T-connector with two valves 

7. Solenoid valve 

8. Power Supply 

9. Circuit board 

10. Resistors 

11. Wire 

a. Banana/gator cables 

b. Electrical wire 

c. BNC wire 

12. Accelerometers 
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To start describing the VI for the Test Rig we began by adding in a while loop, with a 

STOP if true condition. This will allow the VI to run unless the requirements in the inside don’t 

start to function. Two case structures were added in order for the accelerometers to start reading 

before the deployment of the cylinder. We proceeded to add the first DAQ Assist. This DAQ 

Assist will be in the first loop of the case structure in order for it to begin reading the 

accelerometers before the deployment. In this DAQ, we are going to connect terminal ports from 

AI.1-3. The way to set this up is by adding in the DAQ assist menu, an Acquire Signal Voltage 

and then selecting the corresponding channels. AI.11 will have the first X direction 

accelerometer located in the top of the head. AI.2 will have the second accelerometer input, 

which will be in the X direction as well but at center of gravity on the side of the head. Finally, 

AI.3 goes to the third accelerometer which will be in the Y direction. In the property menu, we 

are going to set up the voltage ranges from -5V to 5V in all three channels.  

The terminals allow for acquiring data from the accelerometers and transpose it to the 

gravitational acceleration. In order to do this, we need to convert the voltage reading by dividing 

it the sensitivity given in the accelerometers which corresponds to 8mV/g times 1000. Each time 

we test. We have to set the nominal zero value in order for the accelerometers to zero out and 

have accurate readings.  This can be seen bellow in the Figure 5-5. 
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Figure 5-5: Block Diagram 

In the final part of this case structure, we are able to see a Write to file function. This 

function is going to be were the data is going to be written and saved. Every single time we 

tested, files where created previously and then overwritten. Each different trial had its own file. 

In order to match our data findings, we included a waveform graph at the end. 

For the second part of the case structure we are going to enable another DAQ Assist will 

have an ANALOG INPUT (AI) signal that is going to be connected into port AI.0 (the first port) 

in this port we are going to receive voltage change signals from the strain gauge located at the 

end of the tank to check the pressure. As we want the pressure results to give us results in (PSI) 

units. We found a Voltage/Pressure ratio which enabled to read this pressure in PSI in the front 

panel. This ratio was 33, therefore the next step was to include a multiplier in order to read and 

convert Volts to Pressure. This signal is going to go divided into 3 main terminals.  

The First reading will be in DBL format. This will show on the front panel as “Reading 

Pressure in Tank” in the form of numbers. The second terminal will go to “Pressure Gauge 

Check” which simply consists of a virtual pressure gauge shown in the frontal panel as a dial. 
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This will enable us to check the accuracy in three spots, the actual pressure gauge in the tank, the 

reading in tank, and the virtual pressure gauge. After this is checked, we included a “Pressure at 

Target Amount” as a minimum benchmark in order to have the sufficient pressure for the 

necessary force to be deployed. This control allowed us to filter if the pressure was reached at a 

certain level, it will shoot a signal to a Boolean in the front panel that will lid up to indicate the 

pressure at target amount was reached. This is going to enable the proper deployment of the 

cylinder.  

We added a “if grater” function in order to activate the switch. Therefore, if the pressure 

is greater than the minimum pressure we want, this will allow the correct signal to be given for 

the deployment of the switch. If true, the signal will come out as 1V, therefore we added a 

voltage multiplier in order to activate the solenoid valve. This will finally send the signal to the 

last DAQ Assist which will give the trigger to let air pass in and out of the cylinder in order to 

reach a deployment. 
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All this can be summarized and organized in the front panel where we were able to 

control all this mechanisms. This could be better observed in Figure 5-6, below. 

 

Figure 5-6: Front Panel 
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5.2 Impact Testing Methods 

The helmet will be impacted in one direction but with multiple variables being checked: 

1. Helmet with the neck support 

a. With no oobleck enclosures 

b. Oobleck with 5:3 ratio 

c. Oobleck with 2:1 ratio 

d. Oobleck with 1:1 ratio 

2. Helmet without the neck support 

3. Without the helmet and the neck support 

The location of the tests on the helmet will occur on the front of the helmet located on the 

Reebok logo. Each test set will be impacted three times at a pressure of 100 psi. Accelerometers 

in the head will provide the accelerations to a program that will output acceleration as a function 

of time. This will be used to calculate the HIP value. The complete acceleration acquisition 

program can be seen in Appendix A. The averages of HIP values at each location of the 

unmodified helmet will be compared to the averages of the corresponding HIP values of the 

modified helmet. The comparison of HIP values of our modified helmet to the unmodified 

helmet will help conclude whether our design is an improvement to the hockey helmets’ ability 

to reduce the risk of concussion.  

5.3 Re-Evaluating the Test Set-Up 

The 476 N force that the test set-up was designed to generate results in an HIP value that 

is way too low. This means that the force would not likely result in concussion and may not be 

enough to trigger the shear thickening response of the Oobleck. However, this was not 

discovered until after the test rig was built and ready to use.  The pressure necessary to produce 
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the more realistic force of 3.35 * 103 N was calculated using Equation 15: 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 =
𝐹𝑜𝑟𝑐𝑒

𝜋

4
∗𝐷𝑏𝑜𝑟𝑒

2 .  

This indicated that a pressure of 426 psi was required, which is exceeds the available 100 psi.   

Calculations were performed to model the scaled-down impact test. The maximum force 

(i.e. force generated at 100 psi,) that the air cylinder can produce is 786 N.  A scaling factor of 

4.26 was determined by dividing the realistic force of around 3.35 * 103 N by the 786 N force 

possible. The mass, spring constant, dampening coefficient, and moment of inertia of the head 

were all divided by the scaling factor.  The angular displacement, velocity, and acceleration 

equations and graphs generated can be seen in Figure 3-13, Figure 3-14, and Figure 3-15, 

respectively. The scaled-down model generated an HIP value just above the 30 kW threshold 

corresponding to 95% risk of concussion, as shown in Figure 3-16. 
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6 Analysis and Discussion 

Data was acquired for six different conditions during testing. Each condition was tested nine 

times to observe the consistency of the results and to assure there were ample samples of data. 

The data was plotted over 50 milliseconds in Microsoft Excel as acceleration vs. time to observe 

the acceleration curves of each impact.  

Listed below are the six different conditions in the order they were tested:  

1. Helmet only 

2. No helmet and no neck support 

3. Helmet and neck support with 2:1 ratio 

4. Helmet and neck support with 1:1 ratio 

5. Helmet and neck support with 5:3 ratio  

6. Helmet and empty neck support 

Graphs from each test are shown in Figure 6-1 to Figure 6-12. The graphs are labeled 

with the test and the position of the accelerometer.  
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Figure 6-1 : No Helmet and No Neck Support X-Axis 

 

Figure 6-2: No Helmet and No Neck Support Y-Axis 

 

Figure 6-3: Helmet with No Neck Support X-Axis 
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Figure 6-4: Helmet with No Neck Support Y-Axis 

 

Figure 6-5: Helmet and Empty Neck Support X-Axis 

 

Figure 6-6: Helmet and Empty Neck Support Y-Axis 
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Figure 6-7: Helmet and 1:1 Ratio X-Axis 

 

Figure 6-8: Helmet and 1:1 Ratio Y-Axis 
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Figure 6-9: Helmet and 5:3 Ratio X-Axis 

 

Figure 6-10: Helmet and 5:3 Ratio Y-Axis 
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Figure 6-11: Helmet 2:1 Ratio X-Axis 

 

Figure 6-12: Helmet and 2:1 Ratio Y-Axis 

    Each of these curves show the acceleration of the head from impact to the equilibrium. 

Acceleration was measured in g’s (y axis) while time was measured in milliseconds (x axis) 

shown in Figure 6-1 to Figure 6-12. From these graphs the initial impact to the head was cropped 

giving six to seven data points to which an equation was fit. The seven data points isolated the 

impact of the air cylinder with initial and final values at y=0. This recorded the maximum 

acceleration and up to the maximum rotation of the head. Graphs of the isolated six to seven x 

and y values are shown below for the helmet and neck support with a 5:3 ratio.  
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Figure 6-13: Initial Impact – Helmet with Neck Support with 5:3 Ratio X-Axis 

 

Figure 6-14: Initial Impact - Helmet with Neck Support with 5:3 Ratio Y-Axis 

By plotting the values in a reduced curve, a best-fit equation could be extracted. The y 

values closest to zero were chosen at the start and end of the time frame in order to provide 

accurate results when integrating the HIP, HIC, and SI equations. An online polynomial 

generator was used to find 5th order polynomial equations for the data. The polynomial was 

generated so acceleration was dependent on time and could then be used in the standard injury 

indices calculations. An example from the online polynomial generator that was used is shown in 

Figure 6-15. 
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Figure 6-15: Online Polynomial Generator 

This online generator related acceleration in g’s to time in seconds in order to fit a 

polynomial equation. As shown in Figure 6-15: Online Polynomial Generator, time and acceleration 

values were entered into columns to develop equations. Equations were obtained from the data 

for both the top x-axis accelerometer and back y-axis accelerometer in order to compute the HIP, 

HIC and SI values.  

6.1 MathCad Analysis 

 A MathCad program was used to evaluate the data once a time dependent equation was 

fit to each of the acceleration curves. The program gives the results of the HIP in Watts and the 

HIC and SI as a unit-less numbers. The MathCad program is shown below. 
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Figure 6-16: MathCad Analysis Program 
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6.2 Final Results 

Once each scenario was run through the MathCad program, the final results were compiled 

into Error! Reference source not found.. The average for all of the results were computed and 

compiled in Error! Reference source not found.. The values for HIP, HIC and SI that correlate 

with a high risk of concussion, as found in outside studies, is shown in Table 6-3. 

The percent change in comparison to just the helmet was not calculated and graphed for 

each of the scenarios. The helmet only test showed inconsistent results in comparison to the no 

helmet and helmet with empty neck support. Because the empty neck support is made of 

neoprene, it should not provide a significant effect on output accelerations. The helmet only test 

had an average HIP of 115 Watts, HIC of 28, SI of 55, x acceleration of -50 g’s and y 

acceleration of -19 g’s. The average values for the helmet only are significantly lower than the 

results for no helmet and helmet with empty neoprene. Further investigation of this outlier is 

included in 6.5 Discussion.   

The accuracy of these results rely upon the precision of the accelerometers, the scale used 

to weigh the dummy head and the significant figures of the given moments of inertia. The 

accelerometers measured 1 data point per millisecond and had a sensitivity of 8 mV/g. Therefore, 

these particular accelerometers were able to measure the acceleration readings at 8 + 0.5mV. Due 

to the sensitivity, there was noise during testing making the accelerometer read about + 0.5g for 

each point. The mass of the head was found using an electronic scale which read out to three 

decimal places. The given moments of inertia also read out to three decimal places. This means 

the results are expected to be accurate to a whole number. All of the results are given as whole 

numbers to account for any inaccuracies. 
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Table 6-1: Final Results 

 

Test HIP (W) HIC SI Max Accel. (X) Max Accel. (Y)

No Helmet or 

Neck Support

2.1 164 65 118 -87 -50

2.2 168 63 108 -81 -35

2.3 173 76 133 -89 -55

3.1 184 75 136 -92 -54

3.2 175 73 131 -90 -53

Helmet Only

1.1 127 20 54 -57 -20

1.2 101 23 46 -51 -17

1.3 102 22 43 -52 -17

2.1 110 25 42 -47 -21

2.2 122 44 92 -42 -22

3.1 122 33 55 -48 -19

3.2 119 26 54 -53 -20

Helmet and Empty 

Neck Support

1.1 142 31 61 -54 -29

1.2 147 32 60 -55 -29

1.3 139 29 58 -52 -29

2.1 144 31 61 -54 -30

2.2 144 29 58 -52 -30

2.3 141 30 58 -53 -28

3.1 146 36 58 -53 -31

3.2 149 33 64 -55 -31

3.3 60 14 18 -29 -17
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Test HIP (W) HIC SI Max Accel. (X) Max Accel. (Y)

1-1 Ratio

1.1 138 26 55 -51 -29

1.2 137 32 57 -54 -28

1.3 140 29 56 -54 -29

2.1 143 35 57 -56 -28

2.2 143 36 58 -53 -30

2.3 137 29 56 -53 -27

5-3 Ratio

1.1 132 29 56 -49 -28

1.2 147 34 61 -53 -30

1.3 122 29 56 -42 -29

2.1 139 30 59 -50 -30

2.2 137 30 60 -52 -28

2.3 110 28 60 -41 -20

3.1 141 31 59 -52 -29

3.2 134 30 54 -50 -30

3.3 123 27 51 -48 -28

2-1 Ratio

1.1 99 25 40 -50 -18

1.3 99 24 40 -51 -19

2.1 106 25 46 -53 -19

2.2 100 24 40 -51 -17

2.3 96 24 40 -50 -16

3.1 102 22 44 -54 -16

3.2 93 23 39 -50 -15

3.3 92 23 38 -50 -14
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Table 6-2: Averaged Results 

 

Various sources and experiments give different values associated with risk of concussion. 

Some sources show HICs as low as 200 causing significant brain injury, while others show that 

same risk occurring around 1000.  This means that there is no concrete number that shows the 

experiment would have caused a concussion. The numbers are guidelines to assess what the 

experimental data is showing. A compilation of HIP, HIC, and SI values which a person should 

not exceed are shown from different sources in  

Table 6-3 below. 

Table 6-3: HIP. HIC, SI Risk Values 

HIP HIC SI Source 

20.88 kW N/A 1200 [43] 

N/A 200 N/A [41] 

N/A 1000 1000 [44] 

24kW 500 N/A [42] 

N/A 400 N/A [41] 

 

AVG HIP STDEV. AVG HIC STDEV. AVG SI STDEV. AVG Max A(X) STDEV. AVG Max A(Y) STDEV.

No Helmet or Neck 

Support
173 7 70 5 125 10 -88 4 -49 7

Helmet Only 115 10 28 8 55 16 -50 4 -19 2

Helmet and Empty 

Neck Support
135 27 29 6 55 13 -51 8 -28 4

1-1 Ratio 139 3 31 4 56 1 -53 1 -29 1

5-3 Ratio 132 11 30 2 57 3 -48 4 -28 3

2-1 Ratio 98 4 24 1 41 3 -51 1 -17 2
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6.3 Comparison to No helmet and no neck support 

In order to compare every test scenario to the no helmet and no neck support test, we 

calculated averages and computed percent reduction for acceleration HIC, HIP, and SI standard 

injury criteria. The graph and results can be seen below in Figure 6-17. 

 

Figure 6-17: Percent Change in Comparison to No Helmet 

Initially we compared the no helmet and no neck support vs. the helmet and empty neck 

support. By incorporating the helmet and empty neck support, we saw a decrease in acceleration 

of about 42% in the x axis direction and a decrease of 43% in the y axis direction. The 

calculations obtained from the MathCad file show a decrease of 22% in the HIP index criteria, 

58% in the HIC index criteria and 56% in the SI index criteria. Most of these values show a 

reduction of almost 50% compared to the values obtained on the test for no helmet and no neck 

support. Our data shows that by incorporating the helmet and empty neck support we were able 

to meet our goal of decreasing the likelihood of a concussion.  
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Next, we compared no helmet and no neck support vs. helmet and neck support with 1:1 

ratio. By incorporating the helmet and neck support with 1:1 ratio, we can see a decrease in 

acceleration of about 39% in the x axis direction and a 42% in the y axis direction. The 

calculations obtained from the MathCad file show a decrease in the HIP index criteria of 19%, in 

the HIC index criteria of 56% and in the SI index criteria of 55%. All these values showed a 

reduction, but when adding the shear thickening fluid with a 1:1 ratio, we did not see a decrease 

from the helmet and empty neck support results. This was due to the fact that the 1:1 ratio 

suspension did not exhibit the sufficient shear thickening properties. The 1:1 ratio contained too 

much water in comparison to cornstarch which did not supply enough resistance to the head 

motion. In all of the 1:1 tests, there was less of a decrease in likelihood of a concussion when 

compared to the empty neoprene tests.  

Third, we compared no helmet and no neck support vs. helmet and neck support with 5:3 

ratio. By incorporating helmet and neck support with 5:3 ratio, we saw a decrease in acceleration 

of about 45% in the x axis direction and a 44% in the y axis direction. Out of all tests analyzed to 

this point, the 5:3 ratio had the greatest reduction in acceleration in the x axis direction. The 

reduction in acceleration and the calculations obtained from the MathCad file indicate a decrease 

in the HIP index criteria of 24%, in the HIC index criteria of 58% and in the SI index criteria of 

54%. There was a greater decrease in acceleration in comparison to the 1:1 ratio and just the 

helmet with empty neck support. While the 5:3 ratio contained more cornstarch than the 1:1 

ratio, the fluid did not exhibit ideal shear thickening properties. The 5:3 ratio was not a thick 

enough fluid to significantly reduce the probability of a concussion. While not the best case 

scenario, there was improvement from the 1:1 ratio. 
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Lastly, we compared no helmet and no neck support vs. helmet and neck support with 2:1 

ratio. The 2:1 ratio was the thickest fluid we tested. By incorporating the helmet and neck 

support with 2:1 ratio, we observed a decrease in acceleration of about 42% in the x axis 

direction and 66% in the y axis direction. The reduction in acceleration in the y axis direction 

was more than 12% greater than the previous test. There was a decrease in the HIP index criteria 

of 43%, in the HIC index criteria of 66% and in the SI index criteria of 67%. All of the percent 

reductions showed a greater decrease in acceleration in comparison to the other four tests. The 

2:1 ratio was the most effective when trying to reduce the likelihood of a concussion as shown in 

Figure 6-17. 

6.4 Comparison to Helmet and Empty Neck Support  

In order to determine the neck support that best reduced the likelihood of a concussion, we 

averaged data to calculate the percent reduction for acceleration, HIC, HIP, and SI in comparison 

to the helmet and empty neck support. A graph and table of the results can be seen below in 

Figure 6-18. 
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Figure 6-18: Percent Change in Comparison to Helmet and Empty Neck Support 

The comparison of the helmet and empty neck support helmet and neck support with 1:1 

ratio showed a slight increase in HIP, HIC, SI, and acceleration. The growth of HIP was 4%, 

HIC was 6% and SI was 2%. The acceleration in the x axis direction increased by 5% while the y 

axis direction increased by 1%. These increases were not drastic enough to be considered 

statistically significant. According to the accuracy of this experiment, the results are within the 

range of deviation. 

When comparing the helmet and empty neck support vs. helmet and neck support with a 5:3 

ratio, a slightly better result was found than the neck support using a 1:1 ratio. The HIP 

decreased by 2% while the HIC and SI increased by 1% and 4% respectively. The acceleration in 

the x axis direction decreased by 5% and 1% in the y axis direction. These results were a positive 

indication but were still not significant due to the accuracy of the experiment. 

Lastly, we compared the helmet and empty neck support vs. helmet and neck support with 

2:1 ratio. This ratio exhibited the best performance in reducing the risk of concussion. The 
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decrease in HIP was 27%, in HIC was 19%, and in SI 25%. While the x axis acceleration 

increased by 1%, the y axis acceleration decreased by 40%. The x axis acceleration increasing 

could have been due to a number of factors including accuracy and use of averages in calculating 

the percent changes. 

6.5 Discussion  

A discussion section was written in order to elaborate on the final results. Different trends 

were observed after comparing the following 6 scenarios: no helmet and no neck support, helmet 

only, helmet and empty neck support, helmet and neck support with 1:1 ratio, helmet and neck 

support with 5:3 ratio and a helmet and neck support with 2:1 ratio. 

Referencing Table 6-2, we observed a decreasing trend of maximum accelerations, HIC 

values, HIP values, and SI values. The helmet only test did not follow the trend. In comparison 

to the helmet and empty neck support, we can see an acceleration difference of about 20 g’s The 

values obtained were significantly lower than all cases except the 2:1 ratio. The 2:1 ratio had the 

lowest HIP, HIC and SI results. Since the 2:1 ratio was the thickest ratio we tested, we expected 

these results.  

The result of the helmet only test was unexpected for many reasons. One reason was due to 

the high flexibility and lack of change in stiffness of the neoprene brace. If an extremely rigid 

material was used, an increase in acceleration may have been observed due to the increased 

impulse from a shortened duration period. Second, because rubber is an absorbent material, the 

neck support should have reduced the acceleration by better dispersing forces across the head.  

Combining these ideas and looking at the results led us to believe that outside factors may 

have altered our findings. This could have been because the stiffness of the neck changed after 



129 

 

the first test performed. Even though we controlled the torque of the neck, the rubber spacers in 

the neck provided addition stiffness that may have changed between tests. We also speculate that 

the rubber in the neck may have generated heat from friction after repeated hits during testing 

causing the rubber to soften. During the first test we performed, the no helmet test, the rubber 

was cold and rigid exhibiting a higher stiffness. As the neck repeatedly bent, heat was generated 

and the compliance of the material increased. Another contributing factor could have been due to 

inconsistencies in tightness of the helmet. The helmet could have been looser in the following 

scenarios, allowing for more movement of the accelerometers. If any of these possibilities 

occurred, the data set would show inconsistencies. 

For the reasons mentioned above, we classified the helmet only data as an outlier.  Since this 

data was inconsistent with the rest, we question the validity of the test and would recommend a 

future retest of this scenario. Due to the skewed data, we only compared the remaining test 

results. We compared data using two benchmarks: the results obtained from the no helmet and no 

neck support and the helmet and empty neck support, to see if the neck brace caused a reduction 

in acceleration and in chance of concussion.  

7 Conclusion 

The goal of this project was to reduce the likelihood of concussions for ice hockey players by 

designing a neck support that utilizes shear thickening fluids. We designed a neck brace in order 

to incorporate a sheer thickening fluid that would reduce acceleration upon abrupt changes in 

force. We modified the ratios of the shear thickening fluid from 1:1, 5:3, and 2:1 in order to see 

the most effective response to a concussion simulating impact.  
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The neck brace was made of neoprene with pockets for the insertion of containers filled with 

fluid. Two long pockets formed the principal structure of the neck support with attachments to 

the outer part of the helmet. This extended vertically along the spine past the base of the skull. In 

the lower portion of the neck support there were three pockets per side. The length wrapped 

around the neck in a 135 degree rotation extending from each side of the spine. 

In order to test the effectiveness of the design, a testing mechanism was created to simulate a 

concussion causing impact while measuring x and y accelerations experienced in a head model. 

Recorded accelerations were analyzed using the Head Impact Power (HIP), Head Injury Criteria 

(HIC), and Severity Index (SI) equations, which are commonly used to assess the probability of 

an internal head injury. Results were then obtained to compare variations of fluid ratios in the 

device as well as the current hockey helmet on the market. 

Our final conclusion from testing was that the 2:1 ratio was the most effective in reducing the 

risk of concussion. When compared to the test with no helmet and no neck support, there was a 

decrease in acceleration of about 42% in the x axis direction and a 66% in the y axis direction. 

The HIP decreased by 43%, HIC by 66% and SI by 67%. In comparison to the helmet and empty 

neck support test, there was a decrease in HIP by 27%, HIC by 19%, and SI by 25%. These 

results are significant and provide proof of concept. The original goal of the project was to obtain 

a high risk of concussion when testing without a neck support. This was not obtained due to a 

variety of factors, addressed in future recommendations, however the results are still significant 

and provide insight for future work. 

Developing a device to reduce the likelihood of concussion in hockey is highly desirable.  

While developing our design concept, our key criteria was to use a non-Newtonian fluid to allow 
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for normal motion but restrict abrupt motion during collisions. Throughout our design and testing 

process we utilized three different ratios of fluid to test the reduction of acceleration.  

7.1 Recommendations for Future Work 

After completing and testing our design concept we contemplated some changes for future 

work. The overall goal of this project was to show proof of concept in using shear thickening 

fluids in a neck support to reduce the risk of concussion in ice hockey players. While the results 

showed a decrease in risk of concussion, there are physical changes and additional testing that 

could be done in order to obtain improved results. Specifically, a preliminary test should be 

conducted before each official trial to catch any outliers or cause for concern. During our test 

procedure, we were not able to simultaneously analyze and compare the data. If we were able to 

analyze and compare during testing, the helmet only outlier would have been evident. For future 

work, groups could use the MathCad program during testing to screen for outliers and make 

necessary corrections.   

The testing mechanism of the device is intact and fully functional. A lot of time was spent 

creating and validating a testing mechanism. This presents the opportunity for a future group to 

invest their time in researching and experimenting with the use of different non-Newtonian fluids 

other than oobleck. Oobleck is a cornstarch and water suspension which was simple to make and 

inexpensive. However, it has grows mold when not refrigerated and the cornstarch will settle and 

separate from the water if not agitated. This leaves work to be done in finding a more desirable 

smart fluid.   

While the test setup was effective and still is usable, it was unable to create forces that 

correlate with a high risk of concussion. By using the majority of the existing test rig, a future 
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team could allocate more of their budget to purchasing a larger cylinder. Our group was 

restricted by both budget and testing space. The testing space required the use of a less powerful 

cylinder for safety reasons.  

SolidWorks and ANSYS Workbench simulations were conducted in order to theoretically 

model the results of the experiment. This tool was meant to show if the scenarios would cause a 

risk of concussion without a neck brace present. The simulations did not record anticipated 

results and were generally inconclusive. While we were not relying solely on the ANSYS results 

to determine if we were meeting the criterion for a high risk of concussion, it would have been a 

valuable cross checking method. Therefore future recommendations are made to explore 

different options to more accurately model the desired information. ANSYS Workbench was 

very difficult to use to model an acceleration that varied with time. A different modeling tool 

may be able to better simulate the dynamics of the scenarios.  

In order to utilize the capabilities of ANSYS, the SolidWorks model had to be greatly 

simplified. Another future recommendation is to create a more advanced SolidWorks model for 

the neck support to be used with a different modeling tool for increased accuracy. By more 

precisely representing the neoprene sleeve, shear thickening fluid, and total surface area of the 

neck support, more accurate results are likely to be recorded. 

 The neck brace that was made was the first prototype of the device and has many 

opportunities for improvement. This particular design was not incorporated into the helmet in a 

cohesive manner. The attachment was to the outside back of the helmet using Velcro. While 

functional for testing, it is not a feasible design for use in a hockey game. Our group would 

suggest devising a better implementation system into the helmet, either making it easily 

detachable or permanently attached while being recessed into the helmet. This would eliminate 
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the risk of it detaching during game play and would increase contact area between the brace and 

the user. 

 Another physical design change suggested is to incorporate springs or other rigid 

materials into the long back of the neck support to better shape the device and create more 

opposing moment to the motion of the head. While our results showed proof of concept, they 

were nowhere near as drastic as we as we were aiming to achieve. The use of different materials 

in conjuncture with a smart fluid could positively affect the results the neck support have on 

reducing acceleration. 

 A portion of the testing that we were not able to achieve was subjective testing range of 

motion and comfortability. These tests were not possible as the current prototype is designed for 

specific use on the dummy head and neck. This dummy head and neck system was from a 

previous MQP project and was not build accurately to the human body. A more 

anthropometrically designed neck support should be created based off of what shear thickening 

fluid works the best from the results of testing. Usability is an important factor when creating 

sports equipment and should be heavily considered.  

The concepts developed in this product show potential for future marketability due to a 

lack of similar devices currently on the market. Having a device that is easily removable is 

desirable due to the fact that the helmet would not have to be pre-made with the device attached. 

The implementation of other shear thickening materials could allow for better opposing forces 

and reduction of the probability of a concussion. By utilizing future recommendations and the 

testing set up our group has validated, future teams will be able to continue creating designs and 

apply their entire budget to the production of new product.  
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9 Appendices 

9.1 Appendix A: LabVIEW 

To start, we will have to detail a list of equipment and materials in order to understand the 

VIs purpose, use and setting. By this, we aim to use this terms in the VI sequence of events in 

order to have coherence and make scene.  This list is found bellow: 

Materials needed: 

13. DAQ Device 

14. Pressure Tank 

15. Strain Gauge 

16. Air outlet from wall (air pressure 

source) 

17. Hose 

a. (from outlet wall to inlet 

tank) 

b. (from outlet tank to solenoid 

valve and from solenoid 

valve to cylinder) 

18. T-connector with two valves 

19. Solenoid valve 

20. Power Supply 

21. Circuit board 

22. Resistors 

23. Wire 

a. Banana/gator cables 

b. Electrical wire 

c. BNC wire 

24. Accelerometers 
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Figure 9-1: Block Diagram 

 

Figure 9-2: Front Panel  
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9.2 Appendix B: Calculations 

9.2-1: Original Calculations 

Original Calculations 

 

Determining Necessary Pressure and Stroke Length 
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For better results used initial acceleration instead of velocity 

 

Necessary Stroke Length: 
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After Impulse (i.e. after air cylinder is not in contact with head/helmet 
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Determining at what time head returns to zero

 

 



154 

 

 

Before and After Impulse: 
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Calculating HIP 
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The HIP was found to be too low from these calculations. 

9.2-2: Calculations; Using Impulse Equals Change in Momentum to Find Force 

Using Impulse equals change in momentum to calculate force 

  



157 

 

 

 

 



158 

 

 

 



159 

 

 

 



160 

 

 

After Cylinder leaves contact with head/helmet 
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The HIP was found to be too large in these calculations. 
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9.2-3: Force Calculated from Average Maximum Head-Acceleration of Concussed NFL Players in Newman et al. Study 
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HIP value is too high to realistically reflect a hockey collision. 
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9.2-4: Calculating Force from Maximum Head Acceleration Corresponding to 95% Concussion Risk According to 

Newman et al. 

Finding Force from average mass of head and the maximum head acceleration found to 

correspond to 95% concussion risk according to Newman et al. 



171 

 



172 

 

 

Calculating necessary pressure 
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Considering larger air cylinder 
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Considering Hammer Test 
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9.2-5: Calculations for Scaled-Down Test Set Up 

 



176 

 

  



177 

 

Scaling Factor 
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9.2-6: Calculations for Finding Necessary Damping Coefficient of Neck Support 
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9.2-7: Calculation for Determining Necessary Thickness of Plywood for the Test Rig Base
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9.3 Appendix C: Procedures 

9.3-1: Procedure for Determining Oobleck's Viscosity to Force Relationship 
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9.3-2 : Hot Water Oobleck Cooking Procedure 
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9.4 Appendix D: Miscellaneous 

Standard Assessment of Concussion 

 


