
AWeD

(Automatic Weapons Detection)
Advisors: Susan Jarvis

Nicholas Bertozzi

Written by :

Skyler Alsever

Georgios Karapanagos

Carlos Monterrosa Diaz

Glen Mould

Paul Raynes

A Major Qualifying Project WORCESTER POLYTECHNIC INSTITUTE

Submitted to the Faculty of

Worcester Polytechnic Institute

 In partial fulfillment of the requirements for the

 Degree in Bachelor of Science

 in

 Electrical and Computer Engineering

October 2016- April 2017

1

Abstract

The goal of this project is to design an integrated system that allows for fast and reliable processing

of high quality video data and in doing so detect and react to the presence of a firearm or other

weaponry when used in a threatening or dangerous manner. This is accomplished through the

combined use of computer vision processing techniques implemented on an FPGA as well as a

convolutional neural network trained to determine the presence of a threat.

2

Table of Contents

Abstract 1

Table of Authors 5

Introduction 9

Background Information 10

Crime Statistics and Areas of Needed Improvement 10

Current Standards for General Weapons Surveillance 11

Computer Vision: An Alternative Approach to Surveillance 12

Current Approaches to CV Surveillance 13

Improving the Standard: Hardware Acceleration and the FPGA 15

Project Methodology 16

System Overview, Design Specification, and the Computer Vision Pipeline 16

Camera / Image Sensor Requirements 17

Image Pre-Processing and Filtering 18

Softcore Processing: FPGAs and HDLs 21

Machine Learning - Neural Network for Object Detection 23

Summary of ML Algorithms 26

OpenCV 27

Decision Making and Alert Systems 28

Power Considerations 29

Mechanical Components: 2 DoF Gimbal 30

Mechanical Components: Mechanical Zoom 31

Verification, Testing, and Methods of Analysis 31

Data Gathering 31

Verification and Testing 32

Project Timeline, Goals and Budget Information 34

Operational Milestones and Stretch Goals 34

Implementation Timeline and Gantt Chart 36

Hardware Resources 37

3

Proposed camera solution: 37

Proposed FPGA Development Board Solution 38

Software Resources and Licensing 38

Total Budget Review and Expenditures 39

Background Conclusion 39

Design Specifications 41

Top Level System Block Diagram 41

Camera 42

Mechanical Components 43

Base 44

Horizontal Gear Piece 45

Vertical Gear Piece 46

Going from Digital to Physical 46

Sensors 47

Image Preprocessing 48

Camera Interface 49

HPS and FPGA Communication 49

Processing Filters 49

Contrast Correction 52

Edge Detection 54

2D Sobel Filter 54

3D Sobel Filter 57

Foreground Detection 58

Implementation of Algorithms on DE1-SoC 61

The Linux Kernel 65

Interrupt Service Routines 67

Machine Learning - Building a Binary Classifier 69

Implementing the CNN 69

Creating the Training Datasets 71

Training the Model 73

Threat Detection Routine 74

Raspberry Pi Prototype 76

Gimbal Control 77

4

System Testing and Evaluation 79

Testing the CNN 79

Implementing the HPS-FPGA data transfer 82

Filters 89

Suggested Improvements / Changes 97

UVC Driver 97

Board Output Voltage 99

Conclusion 100

Glossary 101

References 103

Appendix - A: Random Forest for Object Detection 107

Appendix - B: Multi-classifier Boosting 110

Appendix - C: Computer Vision: Training Script 113

Appendix - D: Computer Vision: Testing Script 116

Appendix - E: Computer Vision: Helper Functions 120

Appendix - F: Matlab ImageToText.m code 130

Appendix - G: Matlab TextToImage.m code 131

Appendix - H: Sobel Filter Verilog Code 132

5

Table of Authors

1. Title Page……Glen

2. Introduction……..Carlos

3. Background Information

1. Crime Statistics and Areas of Needed Improvement……………………………………….Carlos

2. Current Standards for General Weapon’s Surveillance……………………………………..Glen

3. Computer Vision: An Alternative Approach to Surveillance…………………………George

4. Current Approaches to Surveillance………………………………………………………………...Glen

5. Improving the Standard: Hardware Acceleration and the FPGA………………………Paul

4. Project Methodology

1. System Overview, Design Specification, and the Computer Vision Pipeline

1. Camera / Image Sensor Requirements …………………………………………....Carlos

2. Image Pre-Processing and Filtering………………………………………....Carlos, Glen

3. Softcore Processing: FPGA’s and HDL’s…………………………………………….Skyler

4. Machine Learning: Generating a Comparative Profile………………………George

5. OpenCV …………………………………………………………………………………………….Paul

6. Decision Making and Alert System…………………………………………………..…....Glen

7. Power Considerations………………………………………………………………..……….Glen

8. Mechanical Components: 2 DoF Gimbal……………………………………………….Paul

9. Mechanical Components: Mechanical Zoom………………………..……………….Paul

2. Verification, Testing, and Methods of Analysis ……………………………………………George

5. Project Timeline, Goals, and Budget Information…………………………………………………………….All

1. Operational Milestones and Stretch Goals………………………………………………..………….All

2. Implementation Timeline and Gantt Chart……………………………………………….……….Glen

6

3. Hardware Resources………………………………………………………………………….…………….All

1. Proposed Camera Solutions………………………………………………………………Carlos

2. Proposed FPGA Development Board Solution…………………………………….Skyler

4. Software Resources and Licensing……………………………………………….…………………...All

5. Total Budget Review and Expenditures………………………………………….....………………...All

6. Background Conclusion…………………………………………………………………………………………………All

7. Design Specifications……………………………………………………………………………………………………..All

1. Top Level System Block Diagram…………………………………………………………………..…Glen

2. Camera……………………………………………………………………………………………………...…Carlos

3. Mechanical Components………………………………………………………………………………….Paul

1. Base…………………………………………………………………………………………………….Paul

2. Horizontal Gear Piece………………………………………………………………….……….Paul

3. Vertical Gear Piece…………………………………………………………………………...….Paul

4. Going from Digital to Physical………………………………………………………...…….Paul

5. Sensors…………………………………………………………………………………………….….Paul

4. Image Preprocessing………………………………………………………………………….…Carlos, Glen

1. Camera Interface……………………………………………………………………………….Glen

2. HPS and FPGA Communication………………………………………………………….Glen

3. Processing Filters……………………………………………………………………………...Glen

4. Contrast Correction………………………………………………………………..………….Glen

5. Edge Detection…………………………………………………………………….…………….Glen

6. 2D Sobel Filter………………………………………………………………..………………….Glen

7. 3D Sobel Filter……………………………………………………………..…………………….Glen

8. Foreground Detection……………………………………………………………………….Carlos

5. Implementation of Algorithms on DE1-SoC……………………………………………………Skyler

7

6. The Linux Kernel……………………………………………………………………………….…………Skyler

7. Interrupt Service Routines……………………………………………………………………………Skyler

8. Machine Learning – Building a Binary Classifier………………………………………..….George

1. Implementing the CNN……………………………………………………………..…..….George

2. Creating the Training Datasets………………………………………………….…..….George

3. Training the Model……………………………………………………………..…………....George

4. Threat Detection Routine………………………………………………………….…..….George

5. Raspberry Pi Prototype………………………………………………………….……..….George

6. Gimbal Control……………………………………………………………………….…….….George

8. System Testing and Evaluation……………………………………………………………………………………All

1. Testing the CNN…………………………………………………………………………………………George

2. Implementing the HPS-FPGA data transfer……………………………………………………….Glen

3. Filters………………………………………………………………………………………………….Carlos, Glen

9. Suggested Improvements / Changes………………………………………………………………………..……All

1. UVC Driver…………………………………………………………………………………….….Carlos, Skyler

2. Board Output Voltage……………………………………………………………………...……Paul, Skyler

10. Conclusion………………………………………………………………………………………………....…………..…...Paul

11. Glossary…………………………………………………………….………………………………...……………………...All

12. References……………………………………………………………………………………..……………………………...All

13. Appendix - A: Random Forest for Object Detection…………………………………………………George

14. Appendix - B: Multi-classifier Boosting…………………………………………………….………………George

15. Appendix - C: Computer Vision: Training Script………………………………………………...……George

16. Appendix - D: Computer Vision: Testing Script…………………………………………………………George

17. Appendix - E: Computer Vision: Helper Functions…………………………….………………………George

8

18. Appendix - F: Matlab ImageToText.m code……………………………………………..…………Carlos, Glen

19. Appendix - G: Matlab TextToImage.m code………………………………………….……………Carlos, Glen

20. Appendix - H: Sobel Filter Verilog Code…………………………………………………….………Carlos, Glen

9

Introduction

Public safety is a major concern in today’s modern society. Modern weaponry and firearms

pose serious threats to the safety and security of the everyday people, and recent events and media

coverage have only further publicized the inherent dangers that one may face in even the most

public of places. It is hoped that through the vigilance of the common citizen and the swift response

of the authorities, violent perpetrators who threaten others with dangerous weaponry can be

quickly and reliably apprehended and fatalities prevented. But often times, when threatened with

the very real danger of a live firearm, people panic, and their justified self-preservation may

prevent the proper authorities from being notified, causing small but noticeable delays in police

response time at best and resulting in the loss of lives from failure to respond at worst.

These dangerous situations can often be prevented by proper monitoring technologies such

as closed circuit television. However, there are many public and even private areas of trespass for

which such technologies could not easily be implemented. A public park, for instance, cannot

efficiently be monitored by CCTV systems with human operators due simply in part to their size.

Trying to correct this issue by adding additional manpower costs both time and money and

increases the chance that simple human error might occur due to negligence, absence, or simple

misinterpretation of data. And when a single slip up could lead to death or injury, reliability and

consistency becomes a very important factor.

 As such, a system that removes humans from the equation may be an ideal solution. Using

the CCTV model of approach, but then attempting to automate the process of observation and alert

can help standardize and streamline the process, but at this current time the technology needed to

do so is expensive, complicated and somewhat inaccurate due mostly to the limitations of current

non-specialized software and hardware versus the principal challenge of processing large amounts

of high quality video data continually over a small amount of time.

10

The focus of our Major Qualifying Project is to design an integrated system that allows for

fast and reliable processing of high quality video data and in doing so can detect and react to the

presence of a firearm or other weaponry when used in a threatening or dangerous manner. The

system would be designed to allow for easy integration in areas where public and private safety is a

major concern such as parks, banks, schools and areas of transit. The system would also be

designed to be as autonomous as physically possible, reducing the need for a centralized processing

hub and allowing for quick and seamless integration in areas or buildings of varying size and

complexity. It is hoped that through the design and implementation of such a system or device, we

can come ever closer to ensuring the safety and security of everyday citizens at both the public and

private level.

Background Information

Crime Statistics and Areas of Needed Improvement

Gun violence is an increasing problem in the United States in recent years. There were 372

mass shootings in the US in 2015, killing 475 people and wounding 1,870, according to the Mass

Shooting Tracker[16] . As gun crime increases, the percentage of gun robberies also increases.

According to the FBI in 2015 there were 4,091 bank robberies which 1,725 of them were

perpetuated using a firearm[17]. Current systems that are implemented, such as silent alarms or

panic buttons, rely in the fact that the silent alarm or panic button must be pressed. However this

becomes harder when someone is pointing a gun at you. The Portland Police bureau[3]

recommends remaining calm and following the robbers instruction as their guide to robbery

response. Users might not have the chance to press the button which means that the authorities

might not ever be called in for help. Or even if the button is pressed the time it took them to able to

11

press it might be enough for the robbery or shooter to flee the scene or a tragic accident might

happen. In places such as parks, or any public facilities where it is very hard to install these type of

signaling devices a problem arises. In other areas that these type of alert of system are not

implemented and someone using other devices tries signal for help, there lies a problem that can be

solved. There are definitely areas of improvements that could save lives or prevent the robbery as

a whole.

Current Standards for General Weapons Surveillance

In attempts to combat gun crimes, a significant amount of research has gone into many gun

detection and prevention based technologies. Most modern research into this field focuses on the

detection of firearms in general, using technologies such as X-ray and Electro-magnetic scanning

and profiling to identify and report when a weapon is found on a person’s body. These technologies

are excellent and profiling and identifying the presence of a firearm using various signals, sensors

and profile recognition, but they do have some major drawbacks in terms of real world

applications. The primary faults in these systems are that in many states and counties, open carry of

weapons is allowed in banks, parks and other highly public places. A system that primarily focuses

on automatically reporting a gun’s presence and calling the authorities cannot be realistically

implemented in these places because doing so for someone who simply “has a gun” can be viewed

as an infringement on basic rights permitted by the 2nd amendment. It can also lead to numerous

false flags in which police are called and their time occupied in chasing after someone who isn’t

causing an actual disturbance. In order for an efficient and fair auto-call type gun-detection system

to be made, the system making a call has to not only identify that a gun is present but be able to

make intelligent decisions based on the context of how that gun is being used. In this way, isolating

detection solely to a set list of situations a gun is used in, false alarms and rights infringements can

be reduced but to do so with many of the aforementioned technologies is almost impossible. Other

12

technologies do, however exist outside the current normal that should prove far more capable of

accomplishing this complex task: namely systems dealing with processed vision and optical

imaging.

Computer Vision: An Alternative Approach to Surveillance

Computer vision (CV) technologies are nowadays commonly used as an effective approach

to automated vision processing. CV algorithms can analyze input video streams using models of

human behavior to provide high-level information of the recorded events. Effectively, CV offers

contextual understanding as part of detecting potential threats. As a result, recent years have seen

intelligent video surveillance (IVS) systems being developed to replace the current CCTV systems.

By implementing CV technologies, these IVS systems can efficiently monitor an area without

requiring human agents for their operation.

Most automated surveillance systems are organized in a similar manner “with low-level

image processing techniques feeding into tracking algorithms which in turn feed into higher level

scene analysis and/or behaviour analysis modules” [1]. The process, in more detail, can be

visualized in figure 2-1 below:

Figure 2-1: Flow diagram of the computer vision pipeline for a security application [2]

The video input from a recording device is processed by the background model generation

13

module, which looks at whether the present pixels differ from the typical ground-truth values. The

different pixels are called foreground and are grouped to form into blobs. Blobs are tracked

throughout the stream and classified as targets, whose behavior is documented in the output video

metadata. With this process, the vast data that is generated by the current CCTV solutions can be

handily filtered and anything important is succinctly summarized in the video metadata, the output

of the low-level content analysis component. As long as the CV algorithm is fast enough to process

the data in real-time, an IVS system can monitor all operating video cameras simultaneously.

The metadata generated gets processed by a high-level algorithm in order to detect if any

event has occurred. The rules for an event are set up by the developers of an IVS during its

configuration. Based on these rules, the algorithm can then trigger any appropriate response to the

events detected. An IVS can, therefore, sound an alarm when it detects a breach of security. Given

that the rules implemented can accurately predict the respective events, an IVS can successfully

replace human agents who are necessary for current CCTV surveillance systems.

Current Approaches to CV Surveillance

After consideration, we believe that with computer vision we are able to bring our projects

ideas to fruition. By adopting the computer vision techniques, we would be able to correct and build

upon the ideas and concepts that would bring us closer to a safer and smarter world. With the aid of

computer vision, a project was able to identify basic skeletal parts of human beings, the head and

the 4 limbs. They were then able to identify the different poses of multiple people in the camera’s

view to determine a selection of poses that may be deemed as threatening and dangerous or

peaceful and harmless to society. Being able to distinguish between a person pointing a gun at

someone and the victim having their hands raised, as opposed to non-threatening poses, paves a

great way for the authorities to be alerted, when malicious actions are taking place. There were 5

instances used in this project, 80% of the algorithm detections for the 5 body parts were correctly

14

positive, the 20% that could not be detected, had problems because the body parts were not

distinguishable due to shadows and arms being very close to the body [13]. Also, In a study in AGH

University of Science and Technology in Krakow, Poland, titled Automated Detection of Firearms

and Knives in a CCTV Image, a team was able to use computer vision through sliding window

mechanisms, background detection and canny edge detection from already existing surveillance

cameras, CCTV cameras. This project was based on detecting both knives and firearms. The way the

computer vision worked was that from the frames it is fed, it would search for human beings, once

found, it would search for the arms of that person and then try to determine if they are holding any

objects, if so, they would cross reference the object with their database of positive and negative

results of either knives or firearms. This project yields a specificity and sensitivity of knife detection

algorithm of 94.93% and 81.18% respectively whilst having a specificity and sensitivity of firearm

detection algorithm of 96.69% and 35.98% respectively for the video containing dangerous objects

and a firearm detection algorithm 100% specificity for video with harmless objects. Meaning that

when detecting the firearms, all the cases that were detected where 100% firearms, but not all the

cases where firearms were present, were they reported [12]. From these statistics, it can be seen

that the guns were a more detectable object than the knives were. These are due to a number of

facts, including the database of knives and guns, not being of a broader spectrum of situations, for

example indoors vs outdoors, time of day, weather patterns etc. The main issue is that they are

using camera images from CCTV camera recording, which suffer from low resolution and blurriness

due to poor quality and inexpensiveness of the cameras. With all of these problems the project

faced, they decided to send an alert to a human operator, who would make the decision to call the

police or not. To solve all of these problems we aim on getting higher quality cameras that would

provide our algorithms with more detail to clearly and more accurately identify the difference

between dangerous and harmless objects to furthermore safeguard societies citizens. With an

extremely accurate system, the time difference that the middleman, operator, introduces when

15

making the final judgement call to call the police or not could be eradicated, thus decreasing the

time it takes for the police to get there from when a threat is detected.

Other projects like Terahertz detection of illegal objects disperses high range frequencies

from 100GHz to 500GHz for scanned imaging to be able to detect metal and dielectric objects under

clothing. These frequencies use the reflections from the high frequencies to create an image that is

then used as input to detect the different dangerous object that are being carried under people’s

clothing [11]. Our project specifically does not want to use any invasive techniques/methods to

detect dangerous weapons. We would not want our project to alert if a concealed weapon is being

carried. This not only touches upon privacy issues but also create false alarms in our system

because carrying a concealed weapon does not mean the weapon is going to be used for malicious

intent, thus the police do not need to be alerted. It is only when this weapon is being wielded in the

open that it then becomes a threat to the surrounding people, thus, needs to trigger an alert.

Improving the Standard: Hardware Acceleration and the FPGA

Of previous projects, the one most similar to the project we intend to undertake is the

Automated Detection of Firearms and Knives in a CCTV Image project out of AGH. Fundamentally,

both their and our projects seek to solve the same problem, information overload of a human

operator of a CCTV or similar system. Both projects aim to automate the weapon detection in these

systems. Ultimately, though, the system developed at AGH was found to be unusable for firearm

detection. The system resulted in too many false positives and was deemed unusable as a result. We

seek to outperform their project by removing one major limitation for the system, the lack of use of

specialized hardware. We intend to create a better system by utilizing hardware preprocessing on

the images before sending them off for software processing resulting in a faster and more

consistent reading of weapons.

16

Project Methodology

System Overview, Design Specification, and the Computer Vision

Pipeline

Based on our research findings we formulated a block diagram of our IVS system. The basic

functional requirements can be met with one recording unit, capturing video stream, and a

processor, running the computer vision algorithms. A response system is also needed to

appropriately address detected events. Specialized hardware is used to handle the preprocessing of

the images, in an attempt to improve the system’s performance both in terms of processing speed

and detection accuracy. The resulting block diagram is shown in figure 3-1 below:

Figure 3-1: Basic block diagram of our IVS system.

 The input data acquired by the camera gets quickly processed by the specialized hardware,

which efficiently filters it. The filtered video gets more slowly processed by the high-level CV

Camera
Input

Pre

Processing

Central
Processing

Response
Systems

Power
System

Raw Video Filtered Video

Event Decision

17

algorithms. Based on the detected events, the central processing system can call the response

system to trigger an alarm or send an emergency message. All system modules will be separately

connected to the power system.

Camera / Image Sensor Requirements

The camera is the main and only input device used in the project. Therefore the criteria

needed for the camera was investigated to find the specifications needed for a camera that fits our

needs. The criteria for a camera are its resolution, sensor size, mono or color and CCD(charged

couple device) or CMOS(complementary metal-oxide semiconductor) sensor[18]. Each of the

specifications mentioned above were needed to find the optimal camera however the price was the

deciding factor.

In terms of the resolution of the camera, its a measure of the detail of the image being

captured. However, you could also explain resolution of camera as how large the image taken can

be reproduced. This means that the higher the resolution of the camera the higher the output

printed image size is. For this project there was no need to have a very high resolution camera since

the pre-processing stage of the system filtered and trimmed down any unnecessary pixel that input

image contains. Also the memory had to be taken into consideration since the higher resolution

camera produce a bigger file. The camera resolution should have been between 1 and 10

megapixels. [19]

Also the sensor size needed to be taken into consideration when selecting the camera. The

sensor size was important since a bigger sensor area will capture an image with higher quality,

however it required a larger diameter. This made the lens of the camera bulkier as the size grew.

For example, the Samsung Galaxy S6 has a sensor area of 22.5 mm[20]. Therefore the suggested

sensor size should be in the range of 15mm and 80mm. For this range every high end phone lies

within it. Cameras that are used in the top of the line phones tend to be cheaper and produce mid to

18

high resolution images.

In addition, the camera can either be mono colored or colored. In relation to the project a

colored was ideal. With a colored camera there was access to more pre-processing algorithms and

object recognition algorithms. This was due to the body of the person holding the gun being able to

be filtered as a pink blob.

Finally, the type of image sensor CCD and CMOS is another feature that needed to be

considered when choosing the best camera suited for the project. CCD sensor create a higher

quality image with low noise which help reduce the preprocessing stage since there is less noise to

be filtered. This was identified as the ideal type of sensor to be used since CMOS sensors need more

light to create a low image. For the CMOS sensor, the extra noise caused by low light needs to be

dealt with in the preprocessing stage. After further research, a lot of surveillance cameras use CCD

sensors since they need to work 24 hours a day including night time where there are small amounts

of light present. However, in the current camera market CMOS cameras comprise of almost every

digital camera out in the market. [21]

 The camera interface that the camera and the FPGA needed to communicate affected which

board was bought. If the camera chosen had a micro-USB to USB interface, the board would have

needed to have a USB port. The interface would not have been a problem if the chosen camera was

a current FPGA module such as the OV5640[21], which is a 5-megapixel FPGA camera module.

However, if we chose this module the FPGA that is going to be chosen should have enough power.

Image Pre-Processing and Filtering

The signal received from the camera will be subjected to two stages of preprocessing, one

for general image correction and enhancement and one for data extraction and alteration to

prepare the image for efficient analysis. Though the camera we hope to use would be of a high

resolution, distortions can still be introduced to the signal that would decrease the probability of

19

detecting the firearm or the poses of a potential perpetrator. Techniques must therefore be applied

to correct the contrast, color, and sharpness and determine different depths in the frames of the

video signal. Applying such techniques allows the incoming image signal to remain consistent

across multiple light conditions / settings / times of day while still being accurate to the reference

images used to train the systems reference profile. Once this is determined, the image can be

processed with a higher detection rate to determine edges of objects within the frames and can

further detect the different shapes and objects in the frames.

 The first thing that would need to be done to augment the image signal would be to correct

its color. Color hue is typically one of the more difficult attributes to correct but redistributing the

color saturation or correcting for illumination artifacts in the intensity channel would help our later

algorithms and processes. Color intensity is usually the only color information that should be

enhanced since it carries a lot of the information required for our processes and is the most readily

adjustable. When working with the RGB channels it is normally advised to convert them into a

certain color space and making alterations strictly to that color space before converting it back to

RGB. Doing otherwise could cause serious, unwanted alterations to be made to the signal. [CV

Metrics pg 56-57] Properly adjusted color information within the image can help the system

differentiate between certain objects more so than would grayscale alone. Skin tones for instance

can be used to identify the presence of a human body in the image and the positioning of the body

therewithin. Guns themselves generally tend to fall within the black - silver spectrum of colors and

can be more readily located by matching profile color palettes to that of the image object being

analysed. Color can also be used subtractively, flagging and removing irrelevant data and shapes in

the image such as plants, flooring, furniture and other objects whose color profiles do not match

with those found in a person holding a gun.

 Noise, as a consequence of the nature of light and the many sources of it and of false

reflections / scattering there within, would inevitably be present in the signal and would require

20

removal so as to increase the accuracy of the image signal under scrutiny. The goal of basic image

noise removal is to remove the noise present without distorting the underlying image heavily. One

way this could be achieved is through contrast correction. Contrast correction can be implemented

using thresholding, which segments the image at certain intensity levels to reveal features of

foreground background and certain objects. There are several forms of thresholding: floor, the

lowest pixel intensity allowed, ceiling, the highest pixel intensity allowed, ramp, shape of the pixel

ramp between the floor and the ceiling like linear or log, point, may be a binary threshold point

without a floor ceiling or ramp. Global Thresholding technique Lookup Tables(LUTs) are good for

contrast remapping. First iterative experimentation is used to find the best floor, ceiling and ramp,

then the LUTs can be generated into data tables which would then be used to set thresholds in fast

code. Below (Figure 3-1) is an example of linear ramp function used.

Figure 3-1: example of a linear ramp function used for contrast correction[34]. (Left) Original image shows palm

frond detail compressed into a narrow intensity range obscuring details. (Center) Global histogram equalization restores

some detail. (Right) LUT remap function spreads the intensity values to a narrower range to reveal details of the palm fronds.

The section of the histogram under the diagonal line is stretched to cover the full intensity range in the right image; other

intensity regions are clipped. The contrast corrected image will yield more gradient information when processed with a

gradient operator such as Sobel

Most of these Computer Vision algorithms processes mentioned are fairly large processes

21

that must be repeatedly implemented across a two dimensional array of constantly updating data.

Implementing the necessary functions required to extract information from an image frame, such as

whether or not a pre-defined item is present within that frame, would therefore take an incredibly

long time to implement in purely serial hardware as each individual pixel in an 1080 x 1920 video

pixel video feed would then need subjected to the same process one at a time. And while doing so is

possible across the fastest cpus / serial processors on market, it often comes at the expense of

higher power draw and increased chip size. In most embedded platforms and applications, these

trade offs cannot be made with the limited resources available, leading to a desperate need for

more power / size efficient hardware to better divide the processing time via another method.

Softcore Processing: FPGAs and HDLs

FPGAs are reprogrammable hardware logic circuits made up of arrays of hardware logic

gates and lookup tables and help improve performance of a computerized system by adding a

adjustable hardware resources to the design space. They are blank slates that can be designed to

either augment existing serial hardware or to create complete implementations of logical

operations in stand alone. It differs to a microcontroller such that a microcontroller is an already

pre-designed circuit that you are unable to alter the main capabilities of and can only instruct and

re-allocate resources based on the code that you write. For an FPGA however, you would have to

design the hardware of the circuit to do exactly what you want it to do, including all signal paths,

voltage considerations and system lag. There are two most popular types of Hardware Description

Languages (HDLs) used nowadays to configure FPGAs, Verilog and VHDL. The HDL is then

synthesized into a bit file that is then used to configure the FPGA. This synthesis process is creating

gate level representations from a higher-level description of design like the HDL.

An advantage of an FPGA is that it runs faster than a microprocessor as it is a hardware-

based implementation, but a disadvantage is that, the configuration is created using (HDL) that is

22

stored on the RAM, so once the power goes out, it would have to be reconfigured. But there are

some FPGAs that have a flash chip that can automatically reconfigure it on power up.

 For our project implementation we will be using a SoC (System on Chip) type FPGA, which

contains primarily the gate arrays and lookup tables one would find within a standard FPGA as well

as specially designed HSPs (hard system processor) that essentially functions akin to a low capacity

serial processor. This selection allows us to make significant reductions in process time for most

computer vision algorithms we’ll be running both by enabling the parallelization of as much of

these algorithms as possible (logical hardware implementation via the FPGA) while still being able

to implement and process the dedicatedly serial operations that cannot be parallelized such as the

control operations and decision making. In addition to this, using a SoC style FPGA allows us to

reduce costs by no longer requiring multiple serial micro-controllers/processors in addition to our

FPGA chip, reducing overall cost of the system and making potential manufacturing more

affordable. It also allows us to condense and isolate the image based systems of the device from the

decision making logic engine of the device, which will be implemented on a more straightforward

micro-controller type implementation instead. This will keep code simpler and less co-dependent

allowing for faster and more optimal testing at the component level.

 Due to the complex nature of the problem at hand, namely the complexities involved with

taking a high resolution image stream and translating it into usable data from which to make

decisions on, there are actually several ways in which we can implement this SoC type module

within the overall computer vision pipeline. The main two ways in which this can be done for our

respective project exist at the low and intermediate stages of this pipeline and involve using the

FPGA’s mostly parallel nature to either accelerate the image preprocessing algorithms needed to

clean and adjust the incoming image data to be more compliant with later algorithms such as edge

detection and feature extraction, or to simply accelerate the aforementioned algorithms

themselves. For our system we will be attempting to do both, creating hardware implementations

23

through the FPGA that specialize in each sub-process and transformation and connecting them all

through the HSP control circuit, attempting to implement a system that is both spatially and

temporally pipelined in the process. This should allow for the fastest implementation times of the

Computer Vision algorithms possible without sacrificing image quality or algorithm reliability.

Machine Learning - Neural Network for Object Detection

 IVS systems need to detect threats and take appropriate action(s) with relatively small

delays in order to be effective. The time constraints of visual recognition systems have motivated

research on efficient classification algorithms. A machine learning (ML) approach is proposed by

Lee et al using convolutional neural networks (CNNs) in a hierarchical feature model (HFM). A CNN

is a feed-forward neural network that consists of a collection of receptive fields, imitating the way

brain neurons are organized in the visual cortex. A neural network consists of a number of nodes

each of which holds a different weight. Collectively, the differences in weight between the nodes

form a pattern. Items that belong to the same class form similar patterns and therefore models of

numerical thresholds for each node can form a classifier.

In its classical form, in a neural network N nodes are used to classify an object with N

features. A convolutional neural network is a more efficient variation that reduces the number of

nodes and therefore the computational time. A series of convolution and max-pooling layers are

used to reduce the number of necessary nodes. Convolution is an operation that attempts to extract

features that accurately represent the responses of nodes. As a result, similar items that are given

as input to the network will generate the same classification outcome. Max-pooling is a down-

sampling method that reduces the number of nodes by keeping the highest values of neighboring

nodes. The highest weights, therefore these contributing more to the distinction between classes,

are used to represent their respective areas and the nodes with smaller weights are dropped from

the generated model.

24

The HFM generated by the CNN is used to create a hierarchical classifier ensemble (HCE),

which ultimately performs the object detection. The object detection framework can be visualized

in the figure 3-2 below:

Figure 3-2: “Proposed object detection framework based on the hierarchical feature model (HFM), and

hierarchical classifier ensemble (HCE)” [4]

The authors identify three advantages of their proposed framework [4]:

● Including an augmented object category resolves issues with inter-class ambiguity and

intra-class variation.

● HFM is shown to be more effective coupled with the HCE, because HFM’s clustering

facilitates building the HCE.

● Confusing data samples are clustered properly to sub-categories and overall detection

accuracy can be improved.

As the first step of the algorithm, the regions of interest (ROIs) are detected by using the region

proposal EdgeBoxes algorithm. The EdgeBoxes algorithm is implemented as proposed by Zitnick

and Dollr in their “Edge boxes: locating object proposals from edges” paper. [5] The features that

25

are present in a given ROI are generated by using a 16-layer CNN. [4] The CNN is implemented as

proposed by Girshick in his paper “Fast r-cnn.” [6] The normalized ROI features that are extracted

can be represented in a deep-feature HFM as shown in the figure 3-2.

The resulting HFM has three different levels: the inter-class (H-level), the augmented class

(M-level), and the intra-class (L-level). The root node has all the H-level nodes as children, the H-

level nodes have one or more M-level children nodes, which respectively have one or many L-level

leaves as children. The hierarchical classifier ensemble (HCE) “is built by training the multi-

category classifier at each node of HFM, which is an assembly of one-versus-all SVMs”. [4] Support

vector machines (SVMs) is a partial case of kernel-based methods and is a technique that was

originally intended to build optimal binary classifiers. [5] An SVM implementation is included in the

OpenCV library. [5]

The system is able to learn to detect specific data-driven hierarchical categories (in our case

firearms and human figure can be two possible choices) by using a latent topic model (LTM). The

LTM is built by fitting a mixture model on the feature representation of a ROI that is extracted by

the 16-layer CNN. The resulting LTM can summarize each ROI as a combination of K topics, where

each topic corresponds to one or more super-categories (inter-class nodes). [5] The LTM analysis

results in a quantitative representation of the HFM shown in figure 3-2. The category space Ω and

its respective dataset D is reflected by subsets Ωh (super-category space), Ωm (augmented category

space), and Ωl (sub-category space) and their corresponding datasets Dh, Dm, and Dl.

The spaces Ωh, Ωm, and Ωl spaces are used to train binary SVM classifiers. To improve

prediction accuracy, separate classifiers are trained for each space and a combination of their

scoring ultimately results in the object classification. The mathematics for producing |Ωx| classifiers

φ1… φx for space Ωx and their projected pseudo-probabilities are shown below:

26

Table 3-1: Formulas to generate the classifiers for the HCE component.

Parameters A, B, and C for the normalized margin formula are determined through empirical fitting

and the parameters α and β for the pseudo-probability formula are determined by logistic

regression. [4]

The effectiveness of the resulting pseudo-probabilities in classifying several daily objects

(for instance bus, table, and bottle) is demonstrated by the authors of the paper. The algorithm was

trained and tested on the PASCAL VOC 2007 and 2012 test sets and most of their detection

accuracies range between 60% and 90% based on the different targets or variations of the

algorithm. [4] In addition, the CNN approach is expected to remain relatively effective when there is

a problem of inter-class ambiguity, which can certainly prove an issue when attempting to detect

different types of firearms. For this reason, the described object detection framework is a promising

choice for the ML component of our IVS.

Summary of ML Algorithms

 Because of its unsupervised nature and its ability to process large data efficiently, random

forest is going to be the first machine learning algorithm that we will be implementing. At first, we

27

will be implementing the general framework and testing it against the publicly available PASCAL

datasets. An additional verification step will then be added to check for a human figure and its pose

to determine the context. Finally, the implementation of the framework will be customized by

testing its performance against the dataset containing firearms and knives created by the AGH

university researchers [8]. At any stage of the development process, if the random forest’s

performance seems to decline due to inter-class ambiguity and overfitting issues, MCBoost can be

tested as a more straightforward approach. On the other hand, if the random forest cannot

accurately predict the classification of an object, the CNN approach can be tested as well.

OpenCV

In order to facilitate the development of the machine learning algorithm, we are using a CV

library. More specifically, we are going to be using OpenCV as our library of choice. The main

advantages provided by OpenCV are its ease of use for our application and its mutability. OpenCV

was designed with the specific intention of high efficiency and use in real time applications. It

features hundreds of functions and unique objects for use in a variety of CV applications. In

addition, it features a large general purpose ML library. This library was specifically designed to be

used in CV based ML problems. All of OpenCV is open source and easy to modify to fit our specific

application.

The OpenCV ML Library, or MLL for short, features about a dozen ML algorithms. Though all

of these algorithms work differently, they share a common set of methods that allow the user to

interact with them. CvStatModel() and ~CvStatModel() are the constructor and deconstructor for

the models. The constructor can also be used to train the model on construction. train() is used to

train the model while predict() is used to predict the label or value of any new data. save() and

load() are used to save and load a model from an XML or YAML file respectively. write() and read()

do a similar task, but are the generic forms and are generally not used.

28

Decision Making and Alert Systems

Once a threat is detected, the gimbal, mechanical zoom and alert system come into play. If

the system is unable to determine if a firearm is present or not, the mechanical zoom would be used

to zoom into the object to further determine if the object is a firearm and an alert should be sent. If

a threat is detected, the gimbal, would allow the camera to follow the culprit in the x- or y- plane,

keeping the culprit at the center of the frame at all times during detection.

The alert system is an important component of the project. This system, after getting input

from the processor, will decide whether an alert should be sent out, presence of a dangerous

situation, or whether no alert should be sent, no dangerous alerts present.

Most current systems today are either provided through a security company or a Do It

Yourself (DIY)/Monitor It Yourself (MIY) which have a few implementation techniques. The latter is

a method in which, any individual could go to a store like Walmart and purchase an alert system kit

for a one-time fee that they would have to assemble themselves at home using instruction manuals.

This system opens up a communication line between the police and the customer. The first option is

an alert system offered from a security company that would install the system for you with a

monthly or annual subscription fee. This system would send an alert to the security company that is

providing the service, who have an operator reviewing the surveillance to determine if the alert is

false or not [14]. Sometimes the operator would even give a call to further investigate before the

police are called. This method adds a delay to the time the police are alerted, but is used because

according to Security Sales & Integration, an increase in the number of false alarms to the police

leads to a decrease in the priority of response from the police to the location. In order to make sure

that the location always has high priority response from the police, they use the operator.

There are many trigger techniques in use. Three popular ones are: the panic button trigger,

the security code trigger, the cash tray bill trap trigger. [15] The panic button is a button that it

29

placed at a strategic place in the location such that the police can be quickly responded to. (e.g. In a

bank it is placed right under the bank teller's desk, so that if a robber enters the premises, all they

have to do is extend their hand under their desk and push the button). The security code trigger, is

a code, separate from your alarm's Personal Identification Number (PIN) code that is to be entered

into the alarm system’s keypad, used to send an alert to the police in case someone threatens you to

disable your alarm system. The cash tray bill trap trigger is also convenient as it alerts the police,

when a bill is removed from the trap that easily inserts into a bank teller's cash tray.

Our alert system to have a high priority response from the police with as few false alarms as

possible. Our system can be implemented in a number of ways, but the way we envisioned it was

for it to automatically and directly alert the police without an operator. This part of the system

would run in parallel with the camera detection, as the location needs always to be monitored and

kept secure. The alert system would simply have two actions, if a signal is sent to it, saying there is

an alert, the system should be able to wake and send an alert to the police, in either an SMS form or

prerecorded form. Otherwise if nothing is detected and sent, the alert system should be asleep.

Unlike the other systems with their manual triggers, our system will to be automatically triggered

by the detection of a presence of a firearm, like a pistol, and irregular human pose, like the

perpetrator, holding the gun and people raising their hands. The alert system would not conduct

any process but would take action solely based on direction from central processing.

Power Considerations

The whole system is going to need a power source and there are two orientations that

would be able to provide the system the power we need, a self-contained system or a system

receiving power directly from the building’s electricity. For the self-contained system, this would

need batteries that would power the system, an advantage to this is that the system would be able

to run if the main power in the building is off and the power source would be a direct DC source, the

disadvantage to this is that the system’s battery, however low power we would like it to run, can

30

only supply a finite amount of power and would need changing, this introduces a time frame in

which the system would not be running, thus there would be no surveillance for a period if the

batteries run out. Given the DC voltage being supplied there would only be a need to amplify the

voltage. Now using the other system orientation, the system would be connected directly to the

mains of the building and would run with the power supplied to the system from the building, an

advantage to this is that the system would not need attendance to change the power supply as it

would be constantly receiving the power it requires and would never run out as is the case in using

a battery, thus the system would always be able to run its surveillance features and keep the

location safe. A disadvantage to this system would be that given the power is coming straight from

the building's main power supply, the voltage would be in AC voltage and the components require

DC voltage, thus another component would be needed for the system, an AC to DC converter. This

component would do exactly what it says, this added component would be able to convert the AC

power supply from the mains of the building to the DC current that the systems components

require to operate in. This would make sure that the components are receiving the correct input

voltage, instead of damaging the system.

Mechanical Components: 2 DoF Gimbal

Our entire system will be mounted on a 2 degree of freedom gimbal to allow the camera to

sweep a larger area and focus on a threat when one is detected. A change of a few degrees in the

camera's angle can mean a drastic change in the scene that is being viewed. In order to facilitate

this high degree of accuracy that is needed and to also prevent the gimbal from moving when not

intended, we will use a worm drive on both axes. This gear arrangement consists of a cylindrical

worm screw driving a larger worm gear. It creates a very large mechanical advantage and has the

unique quality of being unable to be back driven, which means that only the motor can drive the

system, not the weight of the system itself. This will allow the gimbal to hold its position without

needing to use power.

31

Mechanical Components: Mechanical Zoom

 In addition to the gimbal, we will potentially be implementing zoom functionality to the

camera. In order to implement this, we intend to use a third party varifocal lens designed for use on

CCTV systems. A varifocal lens is a camera lens that is able to vary its focal length, but does not

maintain focus as the focal length changes. These are commonly used with modern day cameras as

a majority of cameras have some sort of auto-focus feature that can maintain focus as the focal

length changes. For many varifocal lenses, the zoom and focus features are adjusted manually by

rotating parts of the lens. These can be easily automated by attaching either a simple wheel or belt

between the lens and a motor.

Verification, Testing, and Methods of Analysis

Data Gathering

 The effectiveness of an IVS system that uses a machine learning algorithm largely depends

on the quality of the data sets available. The data sets are necessary for both the development stage,

where data sets are needed to train the algorithm, as well as the testing stage, where parameters of

the system can be re-configured based on test results. When collecting representative data of our

events we also need to create the corresponding groundtruth. “This groundtruth describes the

expectations for the system.” [9] For instance, the appropriate groundtruth for the machine

learning algorithm would indicate the correct events that should be detected and their appropriate

responses. The corresponding groundtruth of a given data set can vary depending on whether it is

used for training or testing purposes.

 The almost infinite range of possible inputs to the recording device “makes completely

exhaustive testing of vision algorithms virtually impossible” [9]. Since all computer vision

32

algorithms process frame by frame, our data set can include both static images as well as video

streams and both should prove useful. In the early stages of development, we can use data sets that

are publicly available. The researchers from the AGH university generated a dataset that “consists

of 12,899 images” and their corresponding groundtruth “divided into 9340 NE and 3559 PE

images” (NE = negative events, i.e. no firearms should be detected, PE = positive event, i.e. firearms

is present) [10]. The AGH research team also generated a “training and testing set were the same

size, with 8.5 min of recording resulting in approximately 12,000 frames each” [10]. These publicly

available data sets will be mainly needed during the early development stages and should be

replaced by (or merged with) larger data sets as well as data sets that we choose to develop.

Verification and Testing

 The data sets can also be used to test and verify the effectiveness of an IVS system. The

algorithms can be simulated with test images or video as input and its output compared with the

respective groundtruth. However, because “the system has to perform predictably across an

intractable number of scenarios and environmental conditions”, we will need to work with

development tiers. [9] The types of scenarios and environmental parameters are fixed in the first

developments tiers, but become more relaxed in next tiers. In addition, we need to “ensure correct

and predictable software performance when porting technology between algorithm development

environments (such as Matlab and high level programming languages like C# and C++) and product

deployment code environments such as low-level C-code with processor-specific optimizations” [9].

We can ensure that by testing the IVS system as a complete unit. The corresponding unit test will

look at whether the output from the input data matches its corresponding groundtruth. Unit tests

will not provide any useful metric for evaluation purposes, “instead, the expectation is that each

test should pass.” [9]

 The overall performance of our system can be evaluated by measuring either the false alarm

33

rates per hour (FA/Hr) or the probability of detection (PD) of an event. Calculating FA/Hr can be

more challenging since “FA/Hr should only be measured on long videos with no or only a few real

events, representative of the real deployment.” While the AGH team’s data can be used to calculate

PD, different data sets will be needed for to acquire more verification metrics. In later (more

technically demanding) development tiers, the groundtruth can also be replaced by a fuzzy

groundtruth, where more than one representations of the data are accepted as correct. For

instance, in frames when a person is changing between poses, both the previous and next pose can

be accepted as correct readings of the data. In addition to ensuring overall performance by unit

testing, we also need to test each block of the IVS system separately. When changing parameters

and adding functionalities these tests can help reach better metrics by identifying which module

has a lower overall performance. [9]

 For the background generation module, the groundtruth needs to appropriately merge

marked areas of the foreground that were previously of interest to the background when they are

no longer relevant. [9] For example, when a person leaves the premises of a bank, but is still visible,

the foreground should not include the person as they cannot pose a threat anymore. To evaluate the

performance of the background generation module we can use “the percentage of correctly

detected foreground pixels, and the number of pixels falsely labeled as foreground.” [9] Based on

the development tier, the groundtruth should appropriately reflect the expectations from the

algorithms. In addition, the groundtruth can also be replaced by a fuzzy groundtruth, where more

than one representations of the background are accepted as correct. For instance, at the exact frame

when a person exits the area of interest, the groundtruth should accept the person being included

in either the foreground or the background.

 The blob generation module can be tested by calculating PD, the probability that a

groundtruth blob is matched to any blobs detected from the algorithm. Researchers Venetianer and

Dent “recommend a non-linear weighting to compute Pd: if the groundtruth and detected targets

34

overlap by more than a certain percentage, it is considered a perfect detection” [9]. Fuzzy

groundtruth can also prove useful for the blob generation module, as an error of few pixels in small

distant blobs can result in no overlap but still penalize the system for not detecting unimportant

blobs.

 Testing the tracking of targets can be done by matching each track from the groundtruth to

the closest one detected. If the track detected is closer than a threshold, meaning that the target was

accurately tracked, this target is marked as successfully tracked. The performance metric is

therefore a percentage of the groundtruth tracks being matched. Finally, the classification

component can be evaluated based on how many of the detected blobs were correctly assigned

with their respective event.

 All testing will be conducted in two stages: performance testing and regression testing.

Performance testing evaluates the effectiveness of our IVS system. Performance testing ensures the

basic tier requirements are met. The unit tests that will be used for performance testing are

expected to always be successful. Regression testing ensures the performance of our system

remains consistent as we add more functionalities to our system and as we move to next

development tiers and relax assumptions. During regression testing, the metrics from the

component testing will be used as a basis to appropriately revise parameters as needed. The

ultimate goal of both stages of testing is to increase the overall performance of an IVS system and

ensure it remains consistent.

Project Timeline, Goals and Budget Information

Operational Milestones and Stretch Goals

 Our team has decided to structure the organization and development of our project using a

35

two-pronged approach. As such, the main modules and functions required to implement our system

have been broken into 2 separate categories: Softcore Implementations, including all filters,

accelerators, extractors and any other pre-processing type tasks that can be implemented on the

FPGA logic, and Hardcore Implementations to be implemented across the Hard System Processor of

the SoC, including the C, OpenCV functions, machine learning algorithms and the basic state based

control signals. From this break down we have assigned two primary teams, one devoted to

hardware language (Verilog) programming and one devoted to system level C coding (OpenCV).

 Due to the complexity and scale of each module in the system, we’ve opted to have both

teams work in tandem, developing different but related parts of the system and essentially working

towards each other and a full system integration. As such, each team has various milestone goals to

achieve within their respective focus.

For the OpenCV team, these Milestone are:

● Implementing a Basic Non-specific machine learning algorithm on desktop

● Refining it to focus on a specific image profile

● Generating a training profile based on a set of gathered gun video data

● Scaling it back to work and operate on embedded logic

● Identifying Areas of possible bottleneck for hardware acceleration

● Integrating it into the full system pipeline.

For the Verilog team, these Milestones are:

● Translating General Purpose image filters and operations to Verilog Modules

● Combining modules together to pre-process the video stream

● Test the Verilog modules for accuracy and image quality

● Implement hardware acceleration resources for Serial Process Acceleration

36

● Integrate into the full system pipeline.

These submodule milestones then lead into our total project goals. At the bare minimum, we hope

to have a working system that can identify a generic, easy to detect object (such as a pink square),

track that object and send out a warning signal in real time. From there, we’ll move on using real

guns to train the machine learning algorithm, with the intent to detect a specific and easy to isolate

gun type such as handguns or revolvers.

Implementation Timeline and Gantt Chart

We sat down and drew out the plan for the upcoming 2 terms, C term and D term. As can be

seen in figures 4-1 and 4-2 below, our Gantt chart’s time is based on each week. The main tasks of

our project are broken down into a hardware component or software component to be fulfilled

within the number of weeks allotted to the tasks. The dates are color coded to indicate the different

times within the next 5 months of the project’s lifespan. The cyan blue dates are weeks in which

school is not in session. The yellow dates are weeks which school resumes. The green (C term) and

dark blue (D term) dates are those in which school is in session. The orange dates are the weeks in

which school goes on a break (C Term)/ends for the academic year (D Term). At the bottom of each

Gantt chart there is a section for our deliverables and when we would want to be working on them

or finishing them.

37

Figure 4-1: Gantt Chart for C Term

Figure 4-2: Gantt Chart for D Term

Hardware Resources

Proposed camera solution:

After taking into considerations the specifications that were needed and after selecting

which FPGA board is going to be used. A final decision was made in terms of the camera component.

The camera that was picked is the ELP 2.8-12mm varifocal lens with 2MP. This camera has knobs

that be adjusted which would fulfill the mechanical zoom component of the system. The lens is

between the ranges of 2.8 to 12mm as stated above. The camera is powered by USB, the

development board chosen has an USB input, this means that no extra module will be needed to

communications interface between the camera and the board. The camera outputs file in MJPEG

format which is ideal since it is widely used. However, its compression is not as good as others but

the resolution that the camera would be used would not be highest it can provide. The camera uses

a CMOS sensor since most commercial cameras have this type of sensor due its manufacturing

price. The camera is also multi-colored which is one of the requirements that the system needs. If

we encounter a problem with this camera during our implementation, two other options have been

selected as our backup plan. The OV 5460 which is an fpga camera module with a 5MP pixel

resolution however is does not have adjustable lens. To overcome this an extra lens that can be

adjusted mechanically would be bought and attached. This module outputs an 8/10 bit raw RGB

38

and at 1080p it can record at 30fps. This camera is better in terms of resolution however the

varifocal lens camera provided a lot more in terms of the mechanical parts of the system.

Proposed FPGA Development Board Solution

The proposed FPGA development board chosen is the DE1-SOC DE Board from Terasic. The

board has the latest Altera SOC chip the cyclone V. Which is optimized for video processing

implementations. It has 85,000 flip flops and 4,450 Kbits of embedded memory. In terms of

memory the development board has 64MB of of SDRAM which is going to be used to store the

image streams that the camera is capturing. The camera chosen output size means that a 4 minute

long video will have a size of 20MB. Which is very good considering the retail price of the board. In

terms of the communications that this board has it contains: two USB ports , one USB to UART ,

10/100/1000 Ethernet, PS/2 mouse/keyboard and an IR Emitter/Receiver. For the connectors in

the board we have Two 40-pin Expansion Headers (voltage levels: 3.3V), One 10-pin ADC Input

Header and a One LTC connector (One Serial Peripheral Interface (SPI) Master ,one I2C and one

GPIO interface). It requires a 12V DC input. Overall this FPGA development board should satisfy

our needs.

Software Resources and Licensing

The current software that will the utilized will be Visual Studio 2015 as our c++ IDE. For

image processing and machine learning the OpenCV database will be used. This database is the best

open source computer vision database that has been used and updated over the period of 10 years.

The library will be linked to the IDE to be able to test the algorithms before the parts arrive at the

start of C term. OpenCv version 3.1 for c++ will be used although there are c, java and python

libraries as well. In addition the PASCAL VOC and AGH datasets will be used to start training the

machine learning algorithms. The first dataset contains common objects found in everyday life

39

such as cars, houses, bicycles, etc… The second dataset contains weapons.

Total Budget Review and Expenditures

According to the MQP guidelines every team member is allowed $250 to spend on parts for

the project on hand. Table 4.1 shows the breakdown of our final expenses.

Table 4-1: Budget Breakdown

As we see can see from the table above most of the components for the system are already

bought. The only part that is not considered here are the gimbal 3D-printed parts. Most of this parts

will be done using the 3D printer in the robotics department. The budget allocation is good we have

a good cushion if some problems with parts arises or any other inconvenience.

Background Conclusion

All the individual components for the system have been decided. The decisions were made

after doing the necessary background research. Firstly, we decided that an FPGA would be ideal to

acts as a hardware accelerator for the image processing algorithms being implemented. The system

will be implemented as SoC. After the FPGA was designed, the camera was selected taking into

consideration the specifications datasheet of the board. The chosen camera required power

through USB input. In addition, other options for cameras were presented in the event that an

40

unexpected problem arises with the current camera setup.

For the machine learning algorithms, 3 were investigates thoroughly. It was concluded that

the preferred option would be a random forest however depending on how the implementation

goes the algorithm might change to a Multiple-Classifier Boosting or a Neural Network.

After researching and selecting the main components of the weapon recognition system, the

mechanical aspects of the system were chosen. A Gimbal with two degrees of freedom and varifocal

lens will be implemented. The Gimbal will be almost on its entirety 3D printed however some parts

would need to be built in a machine shop. Milestones and stretch goals were also set for the team to

have a clear understanding of the status of completing the system. These will serve as guidelines

however they are not set in stone. The stretch goals will only be implemented if the base case of the

system is done and there is extra time to implement them.

In addition, a Gantt chart based on the milestones was created clearly showing the different

goals that need to be completing by particular dates. This again will help visualize where we are in

the project and if we are behind or ahead of the time frame. Finally, the budget was written clearly

showing a breakdown of the parts that were bought and their respective prices.

41

Design Specifications

Top Level System Block Diagram

Figure 6-1: Top Level System Block Diagram

Our system takes frames from a camera which are decoded and sent as pixel arrays for filtering to

be done on them and sent back. The filtered pixel arrays are then passed to a neural network which

then detects if a weapon is present, activates a trigger and sends a signal to the motors or servos to

change the scope for the frames.

42

Camera

Figure 6-2: ELP 2.8-12mm Varifocal Lens 2.0megapixel Usb Camera[31]

For the finalized design of the project, the ELP 2.8-12mm Usb Camera module from ELP was

selected to its small profile, high quality varifocal lens, and native support for communication with

Linux based operating systems. The camera itself operates under UVC communication protocols

allowing for easy driver-less integration with most systems that already support them within their

USB driver/handler, including most modern open source Linux OS kernels.

In order to integrate the camera with the chosen development board, the DE1-SoC from

Terasic, certain additional Linux resources are required. The main tools of integration needed are:

● a frame grabbing application designed to communicate with the camera and save both

multi-frame video streams as well as single frame images. Due to the nature of our

implementation, this frame grabber must be fully deployable from the commandline or

included as pre-installed function libraries.

● an integrated ISR module designed to run the frame grabbing application and store visual

information in the correct updating cyclical structure as well as pass that structure’s

address and information to the main line system.

● a calibration module that runs at startup with the frame grabber to ensure that the camera

43

itself is operating in the correct data compression and resolution settings, in this case 1080

x 720 pixels under H.264 encoding.

Each of these three additional resources are implemented to ensure proper storing and accessing of

the video data and are installed in the custom uBoot kernel prior to startup.

Mechanical Components

Figure 6-3: Full Assembled Gimbal

Figure 6-4: Full CAD model of the mechanical components of the system.

44

The finished model is a 5in by 5.5in by 6.63in box with the gimbal inside. The gimbal has an

approximate range of 60 degrees vertically and 50 degrees horizontally. The two main axis are

controlled by worm drives geared 1:98. This number was derived after determining the worm

being used in the drive and the size of the gears for the drive. The gears were determined to be 3in

diameter based on the size of the camera. The worm being used had .06in long teeth and a pitch of

32. From this information, we can calculate the pitch diameter of the gears, 3.06in, by adding the

diameter of the gears without teeth with the length of the teeth. The number of teeth on a gear is

the pitch diameter multiplied by the pitch, in our case 98. Because the worm used has a single helix,

the worm acts as a single toothed gear in this system. This results in the mechanical advantage

mentioned earlier of 1:98. The motors being used are rated to spin at 100 RPM at 6V. When

supplied the 3.3V from the board, the motor will spin at 55 RPM. This will make the axis of the

gimbal spin at 0.56 RPM, or about 3.4 degrees per second. This is slow enough to allow the gimbal

precise control over the position of the camera but fast enough to effectively track an object moving

across the screen.

The gimbal is divided into three main parts, the base, the horizontal gear piece, and the

vertical gear piece. Each of these parts had some combination of motors, servos, encoders, and the

camera mounted onto them. In addition, each of these parts are attached to the others by a single

screw, allowing them to rotate in a single dimension relative to the part they are attached to.

Base

The base acts as the main mounting point and housing for the rest of the parts. It features

mounting points for the horizontal gear piece in the center, a motor to the side of the horizontal

gear piece, an encoder to the other side of the horizontal gear piece, and the main processing board

on the back. The base has four feet holding it .5in off of the ground to allow room for fasteners to

45

hold the horizontal gear piece, motor, and encoder in place. There is also a simple resting block to

assist in holding the motor still.

Figure 6-5: CAD model of the system’s base

Horizontal Gear Piece

The horizontal gear piece controls the left/right movement of the camera and holds the

vertical gear piece, a motor, and an encoder. All of the structure of the gear piece is mounted on top

of a 3in worm gear driven by a motor on the base. The smaller of the two structures holds the

motor controlling the vertical gear piece. The larger structure holds the vertical gear piece and an

encoder to track the vertical gear piece’s movement.

46

Figure 6-6: CAD model for the horizontal gear piece

Vertical Gear Piece

The vertical gear piece controls the up/down movement of the camera and holds the servos

controlling the camera’s zoom functionality. Space is left behind the camera to allow room for the

wires that attach to it. The two servos are offset from each other so that one can control the outer

ring of the camera, the zoom, while the other controls the inner ring, the focus.

Figure 6-7: CAD model of the vertical gear piece

Going from Digital to Physical

Due to the complexity of the parts, all of the parts were 3D printed. Many of the sections,

especially the horizontal gear piece, had to be broken down into smaller parts to facilitate printing.

The parts were then glued back together to get the finished assembly. In addition, nuts were glued

to the vertical gear piece to provide a solid mounting point for the camera. The resulting assembly

was strong, but also very lightweight. As a result, the assembly unfortunately was blown off of a

table a couple days before the pictures below were taken, resulting in some parts not being in place.

47

Figure 6-8: Images of the final assembly of the mechanical component

As can be seen in figure 6-8 above, some parts were not printed exactly as they were modeled. The

most obvious of these is the base. The base itself is shorter than the digital model and it has

additional supports on the side. These changes were done due to the limitations of the printer being

used. The base was slightly too tall for the printer and the supports were needed so that the part

did not collapse while printing. Other than these and a couple other extremely minor changes, the

whole printing process was fast and easy for our application. The parts ended up coming together

quickly once printed, resulting in our main delays being the time needed for the printing itself and

for ordered parts to come in.

Sensors

Connected to both of the axis are encoders. The encoders are each geared with gears half

the size of the axial gears, resulting in a mechanical advantage of 2:1 to the axis themselves. This is

the same as 1:49 to the motors in the case of the encoder for the vertical axis. The primary use of

the encoders is to prevent the gimbal from driving either of the axis too far and breaking itself.

In addition to the encoders, each axis has a limit switch at one of the two outer limits of the

axis. For the vertical axis, the switch is at the lower limit, while for the horizontal axis the switch is

at the left limit. When initializing, the system first drives the vertical axis down until it hits the

lower limit to determine its location, using the value of the encoder here and the known range of

48

the gimbal to later prevent oversteer. Next, the system drives the horizontal axis left until it hits the

left limit to do the same with the horizontal axis.

Figure 6-9: Images of the encoders and limit switches as they are attached in the system

Image Preprocessing

Even though the specifications of our camera and the quality output of the camera are great,

when using this video feed for identification of the weapon, smaller frames of the image are used.

These smaller frames used are a zoomed in section of the entire frames and as such are a more

pixelated version of the image and it is hard to differentiate where edges are created. Also, at a

distance similar color start to blend in with each other and are harder to differentiate. With the

three filters we are using, the pre processed feed would make it easier to detect weapons by the

artificial intelligence (AI).

In order to eliminate a substantial amount of time, given the 3 term limit for our project, we

are using HDL Compatible Matlab Simulink blocks that are that would then be able to be used with

Matlab’s HDL Coder to generate Verilog code that can then be turned into .SOF files using Quartus

Prime Software that can then be run on the Altera FGPA Board. Simulink provides a visual approach

to system design, letting us visually see the flow of data in the system. Since Simulink has an HDL

coder pre-installed with various pre-made function algorithm blocks, it allows for a quick

turnaround from vision algorithms and filter concepts to HDL implementations on our Altera

board.

49

Camera Interface

Once the camera feed is processed and accessible by the board, the FPGA would be able to

run Verilog code that runs the filters on the feed to produce a more refined image that would make

it easier for the artificial intelligence to identify a weapon.

HPS and FPGA Communication

We came to realize that it was not as direct as we had thought it was to use the camera feed

input on the operating system, on the FPGA. In doing so we would have to create a way for the FPGA

to obtain the image files for the image filters to be run on and sent back to the operating system.

Processing Filters

When first tackling the image preprocessing, we set of to model it in Matlab first, using

Simulink blocks. This was a test to see if the filters we were choosing were going to give us the

desired effect we wanted. We set up blocks that were not necessarily compatible with the HDL

Coder, but would be able to give us some results for the filters we were choosing to use. We

demonstrated color space conversion, image sharpening, contrast correction and foreground

detection which can be seen in the following figures 6.9 to 6.12.

50

Figure 6-9: Image of the Simulink blocks for color space conversion, contrast correction and Sobel filter [30]

Figure 6-10: Break down of the sobel filter subsystem block [30]

51

Figure 6-11: Original image for the edge detection filters

Figure 6-12: Pictures shown for the applied Matlab example of sobel (left) and Canny (right) filters

52

Figure 6-13: Original (left) and filtered (right) picture for sharpening

We have narrowed down to three filter processes needed to enhance the image and make

weapons more defined and easily detectable. The processes are contrast correction, edge detection

and foreground and background detection.

Contrast Correction

A contrast correction filter would be necessary as it would be able to further identify the

different objects that lie within a limited number of pixels when detecting in a smaller frame.

The histogram equalization is used to correct contrast in the image, this would help in cases

of low light. This accepts an image and spreads out the most frequent intensity values to help better

53

distinguish objects in an image. The Matlab Simulink block model design can be seen figure 6-14

and an example of its input and output can be seen in figures 6.15 and 6.16.

Figure 6-14: Matlab Simulink blocks for the contrast correction

Figure 6-15: Original image for contrast correction

54

Figure 6-16: Contrast corrected image

Edge Detection

There were two filters that we were considering: Sobel and Canny algorithms. We decided

on a sobel filter because this filter was able to generate the edges for us as well as being

computationally simple enough to keep the latency of the system low. The Canny algorithm is more

complex than the Sobel algorithm and identifies edges within the object, not just around the object.

These extra edges within the object is not required.

2D Sobel Filter

For the edge detection, we decided to use the pre existing algorithm for Sobel filter as it was

pretty straightforward to implement and delivered results that meet our expectations and

55

requirements. The Sobel operator performs a 2-D spatial gradient measurement on an image and so

emphasizes regions of high spatial frequency that correspond to edges. The Sobel operations are a

number of mathematical calculations and as such the 2D matrix of the incoming image is converted

into a double. Once the input is a double, it is split into two perfectly identical matrices and dealt

with as the x (horizontal) and y (vertical) edge detection before it is put back together to form the

full function. Each is convolved with a set matrix kernel which vary from each other by a 90-degree

rotation to give the x and y parts. These can be seen in figure 6-17 below represented as Gx and Gy:

Figure 6-17: Picture of the Convolution matrix kernels used for edge detection [22]

Once convolution takes place, these signals are then each squared, and the square root of

the sum is taken. Once the gradients are computed for the input 2D image, a comparison is made

against a threshold value. For this experiment, we use a threshold value of 200. The maximum

threshold value, which depends on the convolution kernel used, is (1 + 2 + 1)*255 - (1 + 2 +1)*0 =

1020. The threshold comparison is used to convert any of the gradients that are more than or equal

to the threshold value of 200 to the white value on the color scale of 0 to 255, which is 255. All

other gradient values that are less than the threshold value are converted to the black value 0. In

56

doing this, the image is converted back to the color scale (i.e. image format) and now represents the

edges of the input image. Figures 6-17, 6-18 and 6-19 respectively show the Matlab Simulink block

for the implementation, the image used for the edge detection and the edge detected image.

Figure 6-18: Edge Detection Block Diagram [31]

57

Figure 6-19 : Original picture used for the sobel filter[32]

Figure 6-20: Output image of sobel filter at two different thresholds[32]

3D Sobel Filter

We are implementing a 3D filter that would be able to take the RBG input from the camera

and detect the edges of the objects in the feed. With the 3D filter, we would not need the color space

conversion to make the feed a grayscale 2D input. The 3D filter would work just as the 2D filter

worked, just that the video stream would be split into 3 identical streams and the convolution in

following figures 21, 22 and 23 would each be assigned and applied to one of the three streams. The

resulting streams would then each be squared and a square root applied to the sum the squares for

the gradient calculation of the image frame in the video feed. These gradients are then compared to

threshold values. The threshold comparison is used to convert any of the gradients that are more

than or equal to the threshold value of 200 to the white value on the color scale of 0 to 255, which is

255. All other gradient values that are less than the threshold value are converted to the black value

0. These assignments of black and white, eliminated all other unnecessary information on the

picture and presents the edges of the input video feed.

58

Figure 6-21: 3D Sobel filter convolution matrix kernel for x plane edge detection [23]

Figure 6-22: 3D Sobel filter convolution matrix kernel for y plane edge detection [23]

Figure 6-23: 3D Sobel filter convolution matrix kernel for z plane edge detection [23]

Foreground Detection

Foreground detection is one of the main block that comprise background subtraction.

Background subtraction is widely used for classifying image pixels into either foreground or

background in presence of stationary cameras. A Gaussian Mixture Model (GMM) model is one such

popular method used for background subtraction due to a good compromise between robustness to

59

various practical environments and real-time constraints. By using the Gaussian Mixture Model

background model, frame pixels are removed from the required video to obtain the desired results.

The foreground image processing has the following block stream.

Figure 6-24: Background Subtraction Block Diagram [24]

The pre-processing block deals with cleaning up the image that contains device noise or

unnecessary environmental elements such as rain or snow. The background modeling block create

compute the model that will be used to compare it to future frames of the video and output If that

frame is a background or a foreground. The foreground detection is the step where the background

model is compared with the video frame and identifies candidate foreground pixels. Finally the data

validations block removes pixels that are not relevant to the image.

A more in depth look at the foreground detection, shows the computations that are done to

decide a given frame is considered background or foreground. The algorithm compares each input

pixels to the mean 'μ' of the associated components. If the value of a pixel is close enough to a

chosen component's mean, then that component is counted as the matched component. To be a

matched component, the difference between the pixels and mean must be less than compared to

the component's standard deviation. 2. Secondly, update the Gaussian weight, mean and standard

deviation (variance) to reflect the new obtained pixel value. The image below shows the different

parameters that the algorithm uses.

60

Figure 6-25: Foreground Algorithm Parameters [25]

The image shown below illustrates the block diagram of the foreground algorithm.

Figure 6-26: Algorithm Block diagram [26]

Figure 6-27: Original Image, Background Model, output Image. [27]

61

Implementation of Algorithms on DE1-SoC

Figure 6-31: DE1-SoC Development Kit by Terasic

Both the Image Pre-Processing and the Machine Learning subsystems operate off the DE1-

SoC development board. This board features an integrated Cyclone V SoC device with a Dual-Core

ARM cortex-9 Hard Processing System, 85K programmable logic elements in standard FPGA

arrangement, 4450 Kbits of embedded memory native to the SoC, as well as 64 MB of SDRAM, 1 GB

of DDR3 SDRAM for the HPS and 2 hard memory controllers. The board also contains multiple I/O

peripherals including push-button user keys, switches, LEDs, 2 40-pin expansion GPIO headers, 2

USB 2.0 ports with ULPI interface, and a set of ADC and DAC arrays for signal processing

applications.

The schematic below illustrates the overall configuration for all peripheral hardware

devices and how they communicate between both the ARM HPS and the FPGA architecture.

62

Figure 6-32 Board Hardware Layout

As is implied through the above schematic, only certain peripheral devices are directly

connected to the HPS section of the Cyclone V. As a result of this, all peripheral devices which

connect directly to the FPGA architecture cannot innately communicate with the HPS. To combat

this issue while still maintaining the advantages gained from direct connection to the FPGA, the

Cyclone V implements a lightweight bridge between the HPS and FPGA architectures on which data

can be transferred, and allowing the HPS to act as master to peripherals on the FPGA side.

The main peripherals accessed through this project are the Clock Generator (for

implementing timing structures necessary for control logic), the ADC pin port (for reading data off

of the potentiometer sensors), the 40 pin GPIO expansion headers (for reading from the limit

63

switches and driving the DC and Servo Motors), and the SDRAM (for local memory storage during

image conversion and filtering). In order to save design time and considering that no special

considerations needed to be made regarding these peripherals with the sole exception of the PWM

generation needed for the servo motor pins, it was decided to implement most of the FPGA

interfaces for these pins using the reference Verilog modules provided in the DE1-SoC computer

design reference from Altera.

 The DE1-SoC computer design reference is a preset library of simple interface FPGA designs

that make using peripherals through the FPGA faster and more efficient. Each of the implemented

controllers and data registers are memory mapped to addresses across the lightweight FPGA-to-

HPS bridge starting from a base address of 0xC0000000 with a max word size of 32 bits. Several of

the peripherals are implemented as parallel ports, supporting input, output, and bidirectional data

transfer through proper direction register configuration. Most of the peripherals also have data

mask settings pre-implemented to allow for interrupt generation from the FPGA. These interrupts

are handled by the generic interrupt controller on the HPS and are generated whenever a register

corresponding to a peripheral device changes value. This primarily comes into play in the

implementation of the timer controller and clock generator but also plays a small role in the motor

control Interrupt Service routine in regards to the limit switches.

Figure 6-33 SDRAM Memory Structure

Proper configuration of the parallel GPIO expansion header ports is responsible for most of

64

our peripheral interfacing and therefore of particular interest. Each pin can hold a state of either 1

or 0, with 1 corresponding to a 3.3 volt lead line at approximately 50 ma and 0 corresponding to

ground. General procedure for outputting values includes setting all direction registry values

necessary to 0 and assigning the corresponding pin a 1 or 0 value, while input lines simply require

directional settings of 1. This is generally handled through the Init_ procedures of each appropriate

ISR that interacts with the GPIO lines (Data Registers D0 through D31).

Figure 6-34 GPIO Pin Structure

65

The Linux Kernel

 Figure 6-35 ARM-Linux Logo [33]

In an effort to simplify design requirements, it was decided that a Linux operating system be

implemented on our ARM HPS. Doing so allowed the design of the image processing subsystem to

be contained to a single binary executable, easily understandable and operable through ARM cross

compilation; removed the need for custom written peripheral drivers for our UVC based webcam,

and keep our control flow to a base level interrupt control flow which comes native in Linux based

kernel systems.

Our Linux distribution is modified version of the general purpose Linux kernel source

(v3.18.0) compiled for ARM based architectures. Kernel compilation and correct building on the

DE1-SoC board requires 4 things:

● A Pre-loader script which prepares the Cyclone V to handle the instructions given by the

main bootloader

● A Boot-loader which takes and creates a bootable image to be loaded onto an SDcard and

used to extract and instantiate Linux on the DE1-SoC

● A Linux Kernel Source

● A Linux file system core for access to and command level interaction and control with the

Linux kernel

66

Figure 6-36 HPS Layout

In addition to all this, there must also be a device tree blob or .dtb file present on boot which

tells the Linux operating system how to interface with all of the peripherals and hardware

resources native to both the HPS and the board itself. Unfortunately, no predefined device trees are

available for the DE1-SoC, meaning this .dtb file must either be ripped from an already existent

Linux implementation (such as those provided on the Altera university site), converted back to a

device tree source file (.dts) which can yield some instabilities or substituted with a more

commonly available device tree from another development board such as the Cyclone V

professional development board at the expense of some native peripheral interfacing on the HPS.

67

Interrupt Service Routines

 Figure 6-37 ISR Motion Control Initialization Example

The overall control flow of our system is handled by 3 interrupt service routines which are called

by the generic interrupt handler of the HPS. The 3 main ISRs are as follows:

1. Camera Capture ISR - responsible for the interfacing between the HPS and the Vari-focal

lens Webcamera peripheral as well as saving captured image feed to the image filter buffer

2. Image Detection ISR - responsible for calling the image detection binary executable

generated by our neural net and passing the filtered image stream data into it

3. Response System ISR - responsible for initializing the positional orientation of the gimbal as

well as its scanning and tracking features and sending an alarm signal if the Detection ISR

has output a threat.

Each of the ISRs are added as kernel modules to the main interrupt service handler native to the

Linux OS during the board’s initial boot up process. This is done through modifications to the uboot

script to allow for additional modules to be added before the main Linux operation is launched.

68

Each ISR is driven using an interrupt timer peripheral on the HPS architecture, each of which is set

during each initialization of the ISR at run time. For the most part, these timers function

independently, and are solely responsible for the timing of each routine.

The Camera Capture ISR is initialized by associating the ISR with the first interrupt timer signal

(HPS Timer 0). The timer is constructed in such a way that the ISR will trigger every .1 seconds to

take a new snap shot of the camera’s input. Frames are captured using functions provided through

the Fswebcamera software as well as the video for Linux utility libraries. Once captured, a frame is

saved to an allocated location on the FPGA’s SDRAM. The SDRAM is initialized to be able to hold 5

separate images at once, to allow for foreground detection and verification of varying degrees and

scales. Every time a new image is captured, it pushes all of the other images down one and drops

the 6th oldest image. This buffer is then connected to the pre-processing filter systems input lines,

allowing for RT level processing and filtering.

The Image Detection ISR runs at the same .1 second resolution as the Camera Capture ISR. Every .1

seconds, the detection ISR checks the output bus registers of the pre-processing filter system (also

stored in SDRAM), makes a local copy of that image, and passes the copy into the image detection

binary callback. This callback function executes the image detection binary executable in a separate

process stream and then ends the ISR. To accommodate for the length of time it takes to run the

detection algorithm, multiple instances are allowed to run at once, taking advantage of the dual

core nature of the ARM. If a threat is detected during the running of the binary, the process stream

is set to append to the count value of the third ISR timer (essentially forcing an interrupt) while

setting the appropriate Data Values in SDRAM to begin the orientation and zoom procedures.

The last ISR, the Motion and Response ISR, is initialized at a .05 second resolution which is 50%

faster than the other two so as to prevent the limit switches and potentiometer value changes from

being ignored. This ISR is initialized to read in values from the SDRAM and the 2 GPIO header

expansion ports. For ease of implementation sake, the right most GPIO (JP1) has been denoted as an

69

input line while the left most GPIO (JP1) is set to output. The Limit Switches and potentiometers are

connected to JP2 while the LEDs, motors and servos are connected to the pins of JP1. Decision

making in the ISR is handled through case based logic. The ISR first checks the SDRAM to see if

initialization values for the potentiometers have been set. If no such values are detected (as would

be denoted by a value of “1”), the gimbal then begins its initialization routine, going to its vertical

and horizontal extremes until it hits a limit switch, at which point the routine saves and stores the

potentiometers initial values using the HPS’s ADC. Once both values are set, the ISR checks to see if

a threat has been registered on the SDRAM’s data line. If one has not, it will simply begin panning

left and right in a loop. If one has, it checks the SDRAM data to see which window the threat was

reported in, and adjusts based on that threat’s location (two flags in the bottom two windows

moves the camera down, one in the top left moves the camera left and up, center only causes the

camera to zoom in while the full size window only causes the camera to zoom out).

Machine Learning - Building a Binary Classifier

Implementing the CNN

The computer vision module uses a CNN to scan the incoming camera frames for firearms.

The implementation of the CNN is based on Google’s open source software library for machine

learning, called Tensorflow. Tensorflow allows the creation of graphs, where each graph represents

a mathematical model, to facilitate numerical computations necessary for machine learning

algorithms. The graphs consist of nodes, each one representing a mathematical operation. Multi-

dimensional arrays, called tensors, are used as graph edges to communicate the data between the

different nodes. The CNN is defined, therefore, as a collection of nodes, where a tensor is given as

input and another tensor returned as output from the last node of the graph. The input tensor is the

incoming camera frame and the output tensor will be the classification label.

70

The TFLearn library is used to facilitate development, as it provides a higher-level API to

Tensorflow. The network architecture loosely follows the architecture proposed by the TFLearn’s

image classification example, which uses the CIFAR-10 dataset. As a result, the input tensor was a

32x32 (width x height) RGB image, or 3 channels, giving a total of 32x32x3 = 3072 nodes. Initially,

the dimensions were kept as 32x32 and were later adjusted to 80x45.

In order to extract the features that we are trying to detect from the input tensor, we will use a

combination of convolution and max-pooling steps:

(1) - 32 filter convolution => (2) – 2 stride max-pooling => (3) - 64 filter convolution =>

(4) – 64 filter convolution => (5) – 2 stride max-pooling

Every convolution layer applies a number of filters (either 32 or 64), each of which is a

square window with a 3x3 pixels size. For instance, the first convolution layer takes as input the

incoming tensor and summarizes it with 32 filters of 3x3 smaller neural networks. Every max-

pooling step is a reduction operation, where each rectangular window of size 2x2 pixels is

represented by its maximum value. As a result, each max-pooling layer reduces the dimensions to a

quarter. The complete network architecture is shown in the figure below:

By applying this routine, the incoming nodes can be summarized using fewer resources.

Each convolution splits the images into tiles and attempts to summarize them with a small neural

networks. Each max-pooling step performs an efficient down-sampling by keeping the most

interesting bits (with respect to graph weights).

After the network architecture has been defined, with each training step a regression layer

is applied and the weights of the model refined. With every training step, the weights are either

increased or decreased based on the network’s performance. The amount of change is defined as

the learning rate of the network and set at 0.001. With a larger learning rate, the network is trained

71

more quickly but may result in overfitting. In to avoid over-fitting, a percentage of the data is

dropped during each training step. Each node of the network has an equal probability of being

dropped, which is defined as the dropout rate of the network. The dropout rate is initially defined

as 0.50 and later adjusted to 0.15.

The output tensor from the last max-pooling layer is summarized by a fully-connected layer

of 512 nodes. These 512 nodes hold the summarized features from the incoming camera frame. The

softmax, or normalized exponential, activation function is used to generate a binary classification

output from the 512 nodes. The complete network architecture is shown in the figure below:

Figure 7-1: Neural Network Architecture [35]

Creating the Training Datasets

The objective of our ML algorithm is to function as a binary classifier that will take an image

as an input and return whether there is a threat (C=1), i.e. a visible firearm, or whether it is safe

(C=0). To train a CNN to respond accordingly we will need a dataset of positive (C=1) and negative

(C=0) examples. During the development stages of the algorithm, a Nerf Gun was used as the

positive class because its distinct colors and features make it an easier target to test with.

72

During early stages of development, the dataset was created by taking individual images of

the Nerf gun with varying backgrounds. To populate our dataset we initially included 2500 negative

100x100 images from the AGH public knives dataset [8]. OpenCV, an open source computer vision

library, was later used to extract individual frames from a video. By using videos, a larger number of

training instances can be handily generated but at the cost of quality and focus. A Python script,

using OpenCV, was used to populate the negative training dataset by splitting each image into its

four quarters. Because a negative instance should contain no visible firearms, for every negative

instance, four additional ones were added by the populating script.

Initially, all images for training are separated into two class folder, ‘classes/0/’ and

‘classes/1/’, where the 0-class is the negative, i.e. no nerf-gun class, and the 1-class is the positive,

i.e. nerf-gun detected, class. Two Python scripts are used to preprocess the images: renameFile()

and genResized(). First, renameFile() renames all images in the databases to “fileX.jpg”, where X is

the image number. The produced files now have a consistent naming and type. The database is then

formatted with the genResized() script, which resizes all images to a specific size, in our case 80x45

pixels.

The formatted images are converted to RGB matrices, in a 80x45x3 = width*height*colors

format. The matrices are split to a training dataset (80% of total) and a validation dataset (20% of

total). The RGB values of each pixel were normalized from their original 0-255 range to 0-1. Finally,

for each of the training and validation datasets, an equal in length array of Bytes is appended that

holds the class label (00H – safe, 01H –threat) of each image as part of the supervised learning.

73

Figure 7-2: Dataset Pre-Processing Pipeline

Training the Model

The generated training and validation datasets are further populated prior to training with

the help of Tensorflow functions. Copies of the original images are added to the dataset, after being

either blurred, flipped horizontally or rotated. All three processes are applied at random and with

random parameters, i.e. the blur coefficient or angle of rotation. The training routine consists of a

combination of convolution and max-pooling steps, as shown before. The CNN is trained to

recognize the patterns generated by the negative and positive samples of our training sets,

representing the safe and threat scenarios for a given number of training steps, called epochs. Most

models were trained for 100-300 epochs, depending on the size of the training dataset and the

difficulty of the task. Low environmental-noise datasets generally required less epochs and training

for more resulted in overfitting.

74

During training, the console output shows some statistics, such as the training step, the

accuracy and the process time. These statistics help while refining the parameters of the neural

network. While the model is being trained, a snapshot of the model’s metadata is saved every 4

training steps. Each training step with the current configuration takes approximately 2 minutes to

process. At the end of the training, the final model is saved, together with a checkpoint file that is

necessary to load the model.

Figure 7-3: Console output during training

The CNN is implemented and trained in Python using the TFLearn wrapper library for

Tensorflow. The trained model is exported using Tensorflow’s freezeGraph() function that returns

a saved snapshot of the weights of the model. In order for the model to be ported to our FPGA, we

needed to build it targetting an ARM-Linux processor. For this purpose, a C++ version of our project

was implemented with the Tensorflow C++ API. A virtual machine was set up using VirtualBox and

running Ubuntu 16.10 in order to build the C++ project, with the help of the Bazel build tool.

Threat Detection Routine

The same network architecture used for training is also defined for the testing routine. The

512-node CNN takes a 80x45x3 RGB matrix as input and returns a [x][y] tuple, where x+y = 1, x =

prob(no-threat), and y = prob(threat). Essentially, the network returns two probabilities for two

mutually exclusive events as floats, with a value between 0 and 1. An example result would be in the

75

form [0.4, 0.6], meaning that the network predicts that there is a 40% (C=0) chance that the image

is safe and 60% (C=1) that a firearm is present.

The test images have a 1280x720 size. A sliding routine is implemented in Python that

returns 5 sub-images from the original images to be scanned using OpenCV’s rectangle() function. A

sliding window of size 640x360 produces 5 images by scanning a 2x2 matrix of the image plus an

additional 640x360 sub-image at the center of the frame. The 5 images of size 640x360 and the

original one are all resized to 80x45 pixel images and then converted to a 80x45x3 matrix (like

Figure 1). The complete detection routine with the sliding window is visually demonstrated the

figure below:

Figure 7-4: Detection Routine Example

Original 1280* 720 pixels JPG image
Generated 640* 360 sub images

1

3

2

4

5

Images resized to 80x45 pixels Detection routine complete, found
3 matches.

76

By using the sliding window routine, each incoming frame generates 6 probabilities from

the CNN. As a result, the sliding window is a trade-off between processing time and accuracy. If the

resources permitted, the sliding window could be performed with an even smaller size to generate

more sub-images to test. The threshold for triggering the alarm is currently set at 2 out of 6 having

over 0.5 probability of being a threat or 1 out of 6 having a probability bigger than or equal to 0.75.

By setting this type of threshold, the number of false positives is reduced. When used without the

sliding window routine, the threshold for an alarm remains at a 0.5 output.

Raspberry Pi Prototype

A prototype of the threat detection routine was implemented using a Raspberry Pi 3.0. The

Raspberry Pi was chosen as it is based on an ARMv7A processor and has a 1GB of available RAM

like the Altera programming board. There is also an active community of Pi developers providing

tutorials, troubleshooting support and open source libraries online. In addition, the GUI provided

by Raspberry Pi’s Raspbian OS facilitates development and testing.

In order to port the project on the Raspberry Pi, the C++ detection routine using Tensorflow

needed to be compiled targeting the ARMv7A architecture. The Bazel build tool was compiled using

GCC and linked within the Raspbian OS. The Bazel tool was then used to compile the Tensorflow

project and to generate the executable files. The model graph was also edited for compatibility

issues. The nodes in the graph that corresponded to the dropout operations were removed, as the

mathematical operations were neither compatible with the 32-bit architecture, nor necessary for

the detection routine. A webcam was used to capture the input camera frames, using the UCV driver

for Raspbian.

The Pi detection routine used OpenCV to read in the camera frames from the webcam. The

camera capture’s dimensions were set to 1280x720 and the sliding window was also implemented

77

for the C++ routine using OpenCV, with the same parameters as discussed before. Whenever a

threat was detected, a test alarm was played via HDMI or Pi’s audio output.

Gimbal Control

 During operation, the gimbal pans left and right to get a view of the entire area. When a

threat is detected, the gimbal will begin to track it and zoom in order to maintain a good view of the

threat. In order to determine the location of the threat and the level of zoom, the results of the

sliding window are analyzed. Depending on which windows a threat is detected in, the system can

know the direction of the threat relative to the current view and adjust accordingly. In order to

determine level of zoom, the number of windows that return a threat are analyzed. The more

windows that detect a threat, the larger the threat is on screen. Psuedocode for these behaviors can

be seen below.

// Global vars
Int rightBound
Int leftBound

// Initialization
// Vertical Axis
While (limit switch is not pressed) {
 Drive axis down
}
Stop axis
for(15 degrees) {
 Drive axis up
}
Stop axis

// Horizontal Axis
While (limit switch is not pressed) {
 Drive axis left
}
Stop axis
leftBound = horizontalPot.value
rightBound = leftBound - value (dont know value yet, need to test for value)

// Panning
While (!threat detected) {
 If (drivingLeft) {
 Drive axis left
} else if (drivingRight) {
 Drive axis right
}
 If (horizontalPot.value >= leftBound) {

78

 drivingLeft = false
 drivingRight = true
 }
 If (horizontalPot.value <= rightBound) {
 drivingLeft = true
 drivingRight = flase
 }
}

// Threat tracking
While (threat detected) {
 If (threatLocation = leftHalf) {
 If (horizontalPot.value <= leftBound) {
 Drive axis left
 } else {
 Stop axis
 }
 } else if (threatLocation = rightHalf) {
 If (horizontalPot.value >= rightBound) {
 Drive axis left
 } else {
 Stop axis
 }
 }
If (threatLocation = upperHalf) {
 Drive axis up
 } else if (threatLocation = lowerHalf) {
 If (!limit switch pressed) {
 Drive axis down
 } else {
 Stop axis
 }
 }
 If (numberOfWindows > 2) {
 Zoom out
 }
 else {
 Zoom in
 }
}

// Threat no longer detected
While (!vertical limit switch pressed) {
 Drive axis down
}
Stop axis
For (15 degrees) {
 Drive axis up
}
Stop axis
Resume panning

Figure 7-5: Pseudocode for gimbal control

79

System Testing and Evaluation

Testing the CNN

During the development of the CNN, statistics were gathered in order to evaluate its

performance and refine its parameters. The time and space complexity of the algorithm was

evaluated based on the training time, the detection time and the size of the model graph of weights.

By varying the format of our input node and training the model for 10 epochs, the below table is

produced:

 TABLE 7-1: CNN Development Statistics

Model Type

(WxH)

Training Time - 10 epochs /

seconds

Graph Size

32x32 RGB 48.07 8,424 KB

80x45 RGB 85.41 30,952 KB

64x64 RGB 89.48 33,000 KB

100x100 RGB 165.64 80,232 KB

160x90 RGB 218.72 117,992 KB

The training time does not increase exponentially and therefore wasn’t a constraint. Most

models needed around 200 epochs training that should be completed in around 12 hours training

80

time for the worst case (160x90). The graph size was around 118MB in the worst case, which is

relatively small compared to the available 8GB in the SD card.

Based on the validation set (20% of the training dataset), cross-validation statistics are

gathered during training, the validation loss and the validation accuracy. The validation loss is a

measurement of the average error per classification and the validation accuracy is the percentage of

the validation instance correctly recalled. These statistics help determine whether the CNN model is

capable of extracting features from the training dataset. In Table XX, the cross-validation statistics

are depicted with varying dropout and learning rates for the model:

Table 7-2 : Cross-validation statistics with Varying Dropout / Learning Rate

Dropout

Rate

Learning Rate Validation Loss Validation

Accuracy %

1 0.001 5.55 75.88

0.005 5.55 75.88

0.1 5.55 75.88

5 0.001 0.2047 93.97

0.005 5.55 75.88

0.1 5.55 75.88

81

10 0.001 0.1873 91.46

0.005 5.55 75.88

0.1 5.55 75.88

15 0.001 0.1712 92.46

0.005 5.55 75.88

0.1 5.55 75.88

25 0.001 0.2027 90.95

0.005 5.55 75.88

0.1 5.55 75.88

Because 75.88% was the percentage of the negative training instances in the dataset, all

table rows shaded in blue show cases where the model wasn’t able to learn anything meaningful, in

contrast to rows shaded in red. The parameters offering the best results were observed to be 15%

dropout rate and learning rate equal to 0.001.

The processing time of the CNN and the detection routine was evaluated using the Pi

Prototype. The input size was varied between 32x32 and 160x90 pixels and the run time was

measured both with and without the sliding window routine. The resulting processing times for

82

reading 10 camera frames as input, processing them and classifying them are summarized in the

table below:

Table 7-3: Average run times to process 10 frames for varying CNN node size.

Model Type

(WxH)

Processing time / sec Processing time

sliding window / sec

32x32 RGB 1.85 2.04

80x45 RGB 4.75 16.34

64x64 RGB 5.08 18.16

100x100 RGB 11.26 48.59

160x90 RGB 16.16 72.00

The 80x45 size was chosen as it offers either 0.6 FPS or 2.1 FPS, resulting in a couple of seconds

delay in the worst case. With the addition of different modules responsible for capturing and pre-

processing the frames, the FPS of the detection routine can be even higher than the one shown by

the Pi prototype.

Implementing the HPS-FPGA data transfer

Due to the camera we bought not being able to be connected directly to the Field

Programmable Gate Array part of the DE1-SOC board, we had to connect it through USB to the

83

operating system on our HPS. In order to be able to implement the filters on the camera input we

had to send the data from the Linux OS we booted on the Hard Processing System to a buffer line on

the FPGA’s 64MB SDRAM. Luckily to our advantage of our board having both the ARM processor

and the FPGA components, there is a way for both components of the board to exchange

information from one to another (i.e. HPS to FPGA and FPGA to HPS) using the Advanced eXtensible

Interface (AXI) bridge. The AXI bridge is a pre-existing communication line for the interfacing of

components on the FPGA with the HPS. There are 2 types of AXI bridges for communication

between the HPS and the FPGA (Figure a):

● HPS to FPGA Bridge

● Lightweight HPS to FPGA Bridge

We are using the HPS to FPGA Bridge instead of the Lightweight HPS to FPGA Bridge because it

works with a larger number of bits; While the HPS to FPGA can use 32, 64 or 128 bits, the

lightweight can only handle 32 bits.

84

Figure 8-1: Picture of the AXI Bridge

Using Quartus II and Altera system integration tool QSYS we were able to establish this

communication link from the FPGA to the HPS and vice versa. Using Quartus, for all the components

to be used on the FPGA, the pin locations to all these components must be mapped on the project.

For FPGA components, the devices are allocated to specific pin locations that are for those purposes

(Figure 8-4) but for the HPS components there are no pin locations available to declare, so they are

just listed with pin directions and IO standards (Figure 8-5).

Using QSYS we are able to utilize the Avalon memory mapped master and slave to establish

the communication link between HPS and FPGA. IP Cores are used to establish control over the HPS

and SDRAM Controller (Figure 8-2). HPS serves as the master and the SDRAM is the slave so the AXI

master is connected to Avalon memory mapped slave of the SDRAM. In order to correctly access the

data from the SDRAM, the clock input would have to be changed. The board has a standard clock

speed of 50MHz but the SDRAM desires a clock speed of 100MHz thus a the SDRAM controller takes

an input of 100MHz from a SDRAM clock generator which uses Phased Lock Loop (PLL) to generate

a 100MHz clock speed from 50MHz (Figure 8-2). Once these are all connected, the source code for

the SDRAM Controller is generated (Figure 8-6) and added to the Verilog system module (Figure 8-

3). Once these components are made a batch file generate_hps_qsys_header.sh is provided by Altera

to generate a header file, hps_0.h, for the HPS C code (Figure 8-7).

85

Figure 8-2: Screenshot of QSYS Avalon memory map

Figure 8-3: Screenshot of Quartus SDRAM source code

86

Figure 8-4: Screenshot of Pin programmer for SDRAM

Figure 8-5: Screenshot of Pin programmer for HPS DDR3 RAM

Figure 8-6: Screenshot of generated source code for system in QSYS

87

Figure 8-7: Screenshot of hps_0.h

Once all the links are made and all the groundwork for the SDRAM and HPS connections are

set, we would be able to use the HPS to receive and write data to and read data from the SDRAM.

Using Altera provided Eclipse for the DE1 SOC board, in C code we were able to use memory

mapping to map physical memory addresses on the board to virtual memory addresses. Here we

are able to access the memory device driver “/dev/mem” with the open system call then using the

mmap system call to map the HPS physical address to a virtual address. From here we are able to

use the SDRAM offset that is provided from the generated header file to be able to correctly use the

designated memory address mapped for the SDRAM (Figure 8-8). From here we use C code to

navigate through the memory address of the SDRAM for read from and write to functions.

88

Figure 8-8: Screenshot of SDRAM virtual memory mapping

For testing the SDRAM, we wrote C code that maps the SDRAM memory and accesses five

consecutive 32 bit memory locations (Figure 8-9). A while loop is used to increment a counter

variable that allows us to move through these five consecutive 32 bit memory slots whilst read and

write operations are done on the memory. For each memory location the address and data are

printed out using the printf command, then using pointer logic the data in the memory location is

initialized to 0x0 then the same memory address and data are printed out, but with the memory

data value changed (Figure 8-10). A makefile provided by Altera used to compile C code for the

ARM architecture was used to compile the executable to test the SDRAM (Figure 8-11). In Figure j,

you would realize that the executable AWeD_SDRAM is run twice (./AWeD_SDRAM), this is to show

that the previous memory written to with 0x0 was indeed stored.

Figure 8-9: Screenshot of the test C Code

89

Figure 8-10: Screenshot of the test output

Figure 8-11: Screenshot of the Makefile

Filters

Our first approach to be able to test the algorithms was to test them using modelsim. To be

able to do this we needed to decompress the JPEG into raw data. The raw data would be stored in a

90

text file that would be inputted to the testbench. When we first thought about the problem for

extracting the pixel array from the encoded JPEG image, we researched into how to extract raw

image data on a byte level. We found out that each JPEG image has a header that consists of 20 bytes

of information that defines the file as a JPEG (Figure 8-12). The first two bytes of a JPEG image are

FF D8 and the last 2 bytes are FF D9, this made it easy to identify an image in memory. After being

able to identify where the data needed from the byte stream where, we needed to figure out how

we would be able to identify the red, green and blue (RGB) values of each pixel. Here we came into

an obstacle as we realized that in order to get the RGB values of the pixels in a JPEG we would have

to code a few decoding processes to run on the JPEG file (Figure 8-13). To solve this problem we

sought to use functions from an open source JPEG library called, jpeglib, to extract the 2-D pixel

array of the JPEG images being stored. However we found out that these functions would add more

instructions for the ARM processor which affects the performance of the machine learning

algorithm. After this consideration, Matlab was our third option. We came across two Matlab

scripts, ImageToText.m and TextToImage.m, that were able to extract the pixel bytes from the

image and store it in a text file and vice versa. The original image and its corresponding raw byte

file can be found in figures 8-14 and 8-15 respectively.

91

Figure 8-12: Structure of a JPEG header file [31]

Figure 8-13: Processes to decode the RGB from the JPEG encoded format [32]

92

Figure 8-14: Original Nerf gun image

Figure 8-15: Screenshot of the raw byte text file of original Nerf gun image

As you can see above the image is now converted from a JPEG to a raw byte text file. If the

text file above was to be run in through the text file to image convertor we would see the original

nerf gun image.

93

Greyscale color conversion is the first filter that is implemented. This filter reduces the data

needed to be processed by 3 from a 3 channel Red, Green, Blue (RGB) to a single channel grayscale.

This filter takes each R, G and B values as input and outputs a single set of values for the grayscaled

image. The implementation of the grayscale conversion hinged on this line of Verilog code:

assign Y = (R>>2)+(R>>5)+(G>>1)+(G>>4)+(B>>4)+(B>>5);

The Verilog code is written with bitwise operations rather than solely arithmetic operations not

only because of the ease of conversion but also because it would be able to run faster and with less

memory used than arithmetic functions.

Figure 8-16: grayscale image

94

Figure 8-17: Grayscale Raw Bytes Text file

Sobel Filter was chosen to be able to define the edges of the objects in the frame more

clearly. It accepts a greyscale image and outputs a binary image with an image consisting of only

two colors: white and black. This filter was compiled and simulated in modelsim (Figure 8-18). The

raw bytes were tested before and after the sobel filter and indeed the output was a binary file, that

represented a 1 for white and 0 for black (Figure 8-19).

95

Figure 8-18: ModelSim Compilation and Simulation of sobel filter

96

Figure 8-19: Screenshot of raw bytes for sobel filtered image

97

Suggested Improvements / Changes

 Our final system detects a specific type of Nerf gun. This is a significantly more limited

detection than what we had set out to do. The main reason for this more limited scope was due to

testing and experimenting on our machine learning algorithm. We did not have the time to get the

thousands of extra pictures needed or spend the extra time every time we would retrain. Given the

extra time and pictures, our system could theoretically be trained to detect a wider variety of

weapons and also take into account the pose of the person with the gun, but due to our limited time,

we were unable to train for these extra parameters.

 Many small issues were encountered when assembling the gimbal. Most of these were

caused by unfamiliarity with designing for 3D printing and could be easily avoided if the assembly

were to be printed again. These issues do not include enough supports for some overhanging

sections, larger parts being hard to divide to both fit the printer and be supported, and holes being

printed too small for assembly. Several of the larger overhangs needed to have extra supports

added before printing. This resulted in some supports being in the way of the moving parts and

needing to be removed after printing. In addition, most of the larger parts were broken into smaller

parts that were then glued back together after printing. This resulted in some loose or weak

connections between parts which had to be glued back together several times. Most of the holes

that were printed ended up being slightly too tight for the parts that they fit onto. Many of these

holes were just drilled out, but some of the non-circular holes, such as the D shaped holes for the

encoder gears, had to be melted larger in order to properly fit. This resulted in the encoders being

unreliable at times due to the poor mounting of the gears.

UVC Driver

 Due to time and hardware constraints in terms of the camera's interface being USB 2.0 the

98

HPS was used to be able to capture images. The camera can be interfaced through the FPGA.

However, a USB driver was needed to be written for the board to recognize the device as a camera.

The amount of research and development to be able to create such driver was not viable in our

current time frame. The current implementation of the boards is running from a Linux SD card

image that it mounted at boot up. This Linux version is made for embedded platforms. The UVC

driver formally referred as USB Device Class definition for Video Devices(ref) is what defines video

streaming functionality for the USB. With this driver, the Linux kernel is able recognize the USB

device as a camera. This then can be used in different webcam software to be able to capture video

or images needed for the detection algorithm. The software that was used to capture the frames of

an incoming video was Fswebcam. This software was used because it does not require many extra

supporting libraries and it can be controlled using the command line. The figure shown below

shows the image capture from the command line.

99

Figure 9-1 Output Frame image

There were some initial setbacks while trying to obtain this driver since some sd card images

provided by Altera don't have this driver installed, and required re-compilation to add the driver

and get it to function properly. However, resources provided by Altera via email allowed for a

partial remedy to this issue.

Board Output Voltage

 The board we are using features two 40 pin I/O connector ports. 8 pins on each port are

predesignated for use, leaving 32 configurable input and output pins on each port for us to use. The

intent, was to use these ports as the input and output needed to interface with the motors, servos,

and sensors of the gimbal. This worked fine for the sensors, but ran into issues for the motors. The

plan was to have the DC motors connected to two pins. Have both pins set to 0 to keep the motor

still and set one or the other to 1 in order to drive the motor in varying directions. The pins

supposedly are connected to the 3.3V rail of the board, meaning that the motor would run on 3.3V

when driving, enough to properly drive the gimbal. However, when we went to actually try this, the

motor did not receive enough power to actually drive the gimbal. After testing many possibilities,

we determined that it was due to the pins not actually outputting 0 and 3.3V when set to 0 and 1,

but actually 0 and .56V instead while the motor was connected. After more research, we

determined that the only feasible solution was to build voltage amplifiers that pulled directly from

the 3.3V rail. Unfortunately, when we went to build the voltage amplifiers, we discovered that not

only did we not have any working OpAmps, but we also did not have the proper capacitors to build

a voltage amplifier from transistors. We also did not have enough time for the parts to come in in

order to properly fix this problem.

100

Conclusion

 The design and implementation of this project, though difficult and not without issues,

shows significant amounts of potential in terms of the application of such designs going forward.

That such high demand processes such as those required for computer vision analysis can be

ported to run on ARM embedded based architectures alone speaks greatly towards the potential for

embedded vision applications in everyday life. In addition to this, the Cyclone V’s SoC based

architecture, with its integration of programmable FPGA architecture, and with all of the flexibility

and process re-distribution that such architecture allows, only further adds credence to the

feasibility of such designs becoming more and more widespread.

 The architecture and resources we were designing on ultimately were cheap, mostly meant

for educational purposes and for far more simplistic demos than what is attempted through our

project implementation. That we could create a prototype that came so close to meeting our goals

implies that further development with more professional level tools may soon lead to systems of far

greater practicality than our own entering the market and potentially addressing the very societally

relevant issue of armed robbery and assault. Some of these systems may even be in development at

this current time.

 There was a lot to learn and a lot to discover in regards to seeing this project come to

fruition. The team spent many long hours poring over technical documents from Altera, Google,

Cornell, Terasic, Mathworks, ARM, Unix, and many more in an effort to fully understand and utilize

what hardware we’d need and then how far we could push that hardware and use it to our

advantage programmatically. Whether it was filter design optimization with Simulink, to kernel

recompilation for ARM architectures with Linux, Neural Network creation and calibration with

Tensorflow, or hardware driver reallocation and creation with Verilog and Quartus, these were all

things that were not innately known to the team that have now become second nature and whose

101

sum creates a system level design toolbox that can likely solve not only the problem we set out to

address of violent gun based crimes but countless other issues and hardships addressing society.

Though there are many things in regards to this project that the team would like to revisit

or see revisited, the work that was done and the knowledge that was gained throughout the project,

all of which is dually reflected and stated in this report, has satisfied our team adequately. The

accuracy and reliability of our system came very close to our intended benchmarks, and we now

feel we have solid evidence that systems like ours may soon start contributing to lowering gun

crime and swifter police response time. We look forward to carrying this knowledge on into our

future endeavors and we hope that through our design process that we have indeed helped come

ever closer to ensuring the safety, security, and comfort of everyday citizens at both the public and

private level.

Glossary

AGH -- AGH University of Science and Technology in Krakow, Poland

FPGA -- Field Programmable Gate Array

CCTV -- Closed Circuit Television

CV -- Computer Vision

IVS -- Intelligent Video Surveillance

ML -- Machine Learning

MLL -- OpenCV Machine Learning Library

RPM -- Rotations per Minute

Sensitivity - How good our system is able to detect a firearm when a firearm is present (True

Positive)

Specificity - How good our system would be at not detecting a firearm when a firearm is not present

102

(True negative)

103

References

[1] H. M. Dee and S. A. Velastin. How close are we to solving the problem of automated visual

surveillance?: A review of real-world surveillance, scientific progress and evaluative mechanisms.

Machine Vision and Applications 19(5), pp. 329-343. 2008.

[2] P. L. Venetianer and H. Deng. Performance evaluation of an intelligent video surveillance system

– A case study. Computer Vision and Image Understanding 114(11), pp. 1292-1302. 2010.

[3] T. Kim and R. Cipolla, “Multiple Classifier Boosting and Tree-Structured Classifiers“, in Machine

Learning for Computer Vision (2013th ed.).

[4] B. Lee, E. Erdenee, S. Jin and P. K. Rhee, Efficient object detection using convolutional neural

network-based hierarchical feature modeling. Signal, Image and Video Processing 10(8), pp. 1503-

1510. 2016.

[5] D. Fleet, T. Pajdla, B. Schiele, T. Tuytelaars, “Edge Boxes: Locating Object Proposals from Edges “

in Computer Vision - ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12,

2014, Proceedings, Part V.

[6] R. Girshick. Fast R-CNN. 2015.

[7] N. Razavi, "An introduction to random forests for multi-class object detection", in Outdoor and

Large-Scale Real-World Scene Analysis: 15th International Workshop on Theoretical Foundations

of Computer Vision, Dagstuhl Castle, Germany, June 26-July 1, 2011.

[8] M. Grega, A. Matiolanski, P. Guzik and M. Leszczuk. Automated detection of firearms and knives

104

in a CCTV image. Sensors 16(1), pp. 47. 2016

[9] P. L. Venetianer and H. Deng. Performance evaluation of an intelligent video surveillance system

– A case study. Computer Vision and Image Understanding 114(11), pp. 1292-1302. 2010.

[10] M. Grega, A. Matiolanski, P. Guzik and M. Leszczuk. Automated detection of firearms and knives

in a CCTV image. Sensors 16(1), pp. 47. 2016.

[11] R. Appleby, P. R. Coward and G. N. Sinclair. "Terahertz detection of illegal objects," in

SpringerLinkAnonymous Available: http://link.springer.com/chapter/10.1007/978-1-4020-6503-

3_15.

[12]M. Grega, A. Matiolanski, P. Guzik and M. Leszczuk. Automated detection of firearms and knives

in a CCTV image. Sensors 16(1), pp. 47. 2016.

[13] Automated Visual Recognition of Armed Robbery. Orlando. Available:

http://crcv.ucf.edu/papers/robbery.pdf. [Online]. [Accessed: 05 -Nov -2016]

[14] J. Jacobson. (). How Do DIY, MIY Security Systems Affect Police Response to Alarm Activation?.

Available:

http://www.securitysales.com/article/how_do_diy_miy_security_systems_affect_police_response_t

o_alarm_activation.

[15] F. Sherman and F. Sherman. (). How Do Silent Bank Alarms Work?. Available:

http://www.ehow.com/how-does_4564481_silent-bank-alarms-work.html.

[16] G. V. Archive, "Mass shootings - 2015," in GunViolencearchive.org, 2015. [Online]. Available:

http://www.gunviolencearchive.org/reports/mass-shootings/2015. Accessed: Nov. 11, 2016.

[17] FBI, "Reports and publications," in FBI, Federal Bureau of Investigation, 2016. [Online].

Available: https://www.fbi.gov/stats-services/publications. Accessed: Nov. 20, 2016.

http://link.springer.com/chapter/10.1007/978-1-4020-6503-3_15
http://link.springer.com/chapter/10.1007/978-1-4020-6503-3_15
http://www.securitysales.com/article/how_do_diy_miy_security_systems_affect_police_response_to_alarm_activation
http://www.securitysales.com/article/how_do_diy_miy_security_systems_affect_police_response_to_alarm_activation
http://www.ehow.com/how-does_4564481_silent-bank-alarms-work.html

105

[18]T. Dempsey, "Compare digital camera sensor sizes: 1″-Type, 4/3, APS-C, full frame 35mm,"

2013. [Online]. Available: http://photoseek.com/2013/compare-digital-camera-sensor-sizes-full-

frame-35mm-aps-c-micro-four-thirds-1-inch-type/. Accessed: Nov. 16, 2016.

[19] john, "Working of digital camera-block diagram, parameters, color filtering," in Camera

Technology, Electronic Circuits and Diagram-Electronics Projects and Design, 2010. [Online].

Available: http://www.circuitstoday.com/working-of-digital-cameras. Accessed: Nov. 3, 2016.

[20] "Infographic: The difference between CMOS and CCD sensors," in Educational, PetaPixel, 2016.

[Online]. Available: http://petapixel.com/2016/05/10/infographic-difference-cmos-ccd-sensors/.

Accessed: Nov. 4, 2016.

[21] "Camera Sensors," in sparkfun. [Online]. Available:

https://cdn.sparkfun.com/datasheets/Sensors/LightImaging/OV5640_datasheet.pdf. Accessed:

Dec. 20, 2016.

[22] http://homepages.inf.ed.ac.uk/rbf/HIPR2/sobel.htm

[23] http://www.aravind.ca/cs788h_Final_Project/gradient_estimators.htm

[24] Alavianmehr, Mohammad Ali, Ashkan Tashk, and Amir Sodagaran. "Video Foreground Detection

Based on Adaptive Mixture Gaussian Model for Video Surveillance Systems." Journal of Traffic and

Logistics Engineering 3.1 (2015): n. pag. Web

[25] Raviraj Singh Shekhawat, Software Developer at CEERI, Pilani Follow. "Background

Subtraction." LinkedIn SlideShare. N.p., 09 Dec. 2011. Web. 05 Mar. 2017.

[26] Stauffer, C., and W.e.l. Grimson. "Adaptive Background Mixture Models for Real-time Tracking."

Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(Cat. No PR00149) (n.d.): n. pag. Adaptive Background Mixture Models for Real-time Tracking. IEE.

http://www.aravind.ca/cs788h_Final_Project/gradient_estimators.htm

106

Web.

[27] Raviraj Singh Shekhawat, ;Software Developer at CEERI, Pilani Follow. "Background

Subtraction." LinkedIn SlideShare. N.p., 09 Dec. 2011. Web. 05 Mar. 2017

[28] Tensorflow, Image Recognition, Available: www.tensorflow.org/tutorials/image_recognition

[29] Adam Gitney, Deep Learning and Convolutional Neural Networks, Available:

https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-convolutional-

neural-networks-f40359318721

[30]"Edge Detection - MATLAB & Simulink". Mathworks.com. N.p., 2017. Web. 27 Apr. 2017. Matlab Sobel

Filter model: https://www.mathworks.com/discovery/edge-detection.html

[31] JPEG File Interchange Format: Summary From The Encyclopedia Of Graphics File Formats".

Fileformat.info. N.p., 2017. Web. 27 Apr. 2017. Available:

http://www.fileformat.info/format/jpeg/egff.htm

[32] http://stackoverflow.com/questions/23852907/c-get-rgb-from-byte-array

[33] "Arch Linux ARM". Archlinuxarm.org. N.p., 2017. Web. 27 Apr. 2017. Available:

https://archlinuxarm.org/

[34] Krig, Scott. Computer vision metrics. California: Apress Media, 2014. pp79

[35] H. R. Roth et al. DeepOrgan: Multi-level deep convolutional networks for automated pancreas

segmentation. 2015.

https://www.mathworks.com/discovery/edge-detection.html
http://www.fileformat.info/format/jpeg/egff.htm

107

Appendix - A: Random Forest for Object Detection

 A random forest is a collection of T binary decision trees, where each node of the tree can

have up to two leaves as children. The random forest takes an image patch as input, evaluates it at

each node (starting from the root node) and sends it to the left or right child of the node

accordingly. The forest can be used for either a classification or a regression task. For a

classification task, each leaf L of a forest returns a probability for the image patch to be classified as

c given as p(c|L). For a regression task, the forest returns an estimate, as a distribution, for the

location and scale of the object. [7]

 During training, each tree is trained on a random subset of the training dataset. This helps

avoid overfitting and efficiently processing large amounts of data. For each sampled image “For

each sampled patch 𝑃𝐼 that does not belong to the background, the offset to a reference point of the

object 𝑑𝐼 is stored” [7]. The training set therefore consists of patches 𝑃𝐼 and their corresponding

extracted image features 𝐹𝐼 , their class label 𝑐𝐼 and the offset 𝑑𝐼 from the center of the patch. A

recommended size for each image patch is 16x16 pixels” [7].

 A split function is defined as 𝑓𝛷(𝑃) that returns 0 or 1, given features Φ and image patch P,

where 0 corresponds to the left child and 1 to the right child. The split function gets updated to

reflect the training set “while the tree grows recursively:

1. Generate a random set of parameters Φ = {φk}.

2. Divide the set of patches 𝐴𝑛𝑜𝑑𝑒 into two subset 𝐴𝐿 and 𝐴𝑅 for each φ ∈ Φ:

● 𝐴𝐿 (φ) = {P ∈ 𝐴𝑛𝑜𝑑𝑒|𝑓𝛷(𝑃) = 0}

● 𝐴𝑅 (φ) = {P ∈ 𝐴𝑛𝑜𝑑𝑒|𝑓𝛷(𝑃) = 1}

3. Select the split parameters φ∗ that maximize a gain function g:

𝜑∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑔 (𝜑, 𝐴𝑛𝑜𝑑𝑒)

108

𝑤ℎ𝑒𝑟𝑒 𝑔 (𝜑, 𝐴𝑛𝑜𝑑𝑒) = 𝐻 (𝐴𝑛𝑜𝑑𝑒) − ∑

𝑆∈{𝐿,𝑅}

|𝐴𝑆 (𝜑)|

|𝐴𝑛𝑜𝑑𝑒|
 𝐻 (𝐴𝑆 (𝜑)).

𝑎𝑛𝑑 𝜑 ∈ 𝛷

Depending on the task, H(A) is chosen such that g measures the gain of the classification or

regression performance of the children in comparison to the current node.

4. Continue growing with the training subsets 𝐴𝐿 and 𝐴𝑅 if some predefined stopping criteria

are not satisfied; otherwise, create a leaf node and store the statistics of the training data

𝐴𝑛𝑜𝑑𝑒” [7].

The resulting class probability is given as:

𝑝(𝐿) =
|𝐴𝑐

𝐿| ∗ 𝑟𝑐

∑𝑐 (|𝐴𝑐
𝐿| ∗ 𝑟𝑐)

; 𝑟𝑐 =
|𝐴|

|𝐴𝑐|
 [7]

Where |𝐴𝑐
𝐿| is the set of patches that reach leaf L with a class label c. Finally, by using the offset d of

the samples one can calculate the spatial distribution by estimating 𝑝(𝑐, 𝐿). [7] The class probability

is used for classification tasks and the spatial distribution to estimate the location for regression

tasks.

 Random forests are able to detect objects by creating a distribution of 𝑝(𝐿𝑡(𝑦)), where

ℎ(𝑐, 𝑥, 𝑠) is the probability of an object of class c, with size s to be located at reference point x, for

the leaf L of tree t at image location y. The distribution is defined by having each tree vote on the

classification of the incoming image patch. The votes of all trees for all image patches are averaged

and the resulting value determines the classification of the processed image and therefore the

appropriate threat detection.

 As far as the implementation is concerned, low level features such as “color, gradients, or

Gabor filters” can be used because they are computationally efficient. In order to avoid overfitting

one can force a stopping criteria on the depth of the trees [7]. Finally, several options for the split

109

function as well as the estimation of the spatial distribution will be investigated to find the most

effective for firearm detection.

110

Appendix - B: Multi-classifier Boosting

Cambridge professors Tae-Kyun Kim and Roberto Cipolla propose a multi-classifier

boosting algorithm called MCBoost, which attempts to efficiently and accurately detect multiple

features of the processed image simultaneously. Boosting algorithms combine several weak-

learners, i.e. relatively poor predictors of an event, to create strong learners, which are more closely

correlated with the classification of an event. A training set consisting of positive (visible firearm)

and negative (no visible threat) images is used to calculate the weights of multiple weak-learners

whose combination results in strong learners. During training, the weak-learners that are observed

to predict their strong learners (visible firearm, human figure, trigger detected) are given more

weight and thus strong learners become more accurate as the training set grows. Finally, the strong

learners can be used to classify events as threat in the processed images. [3]

 The MCBoost algorithm considers “K strong classifiers, each of which is represented by a

linear combination of weak-learners as

where akt and hkt are the weight and the score of t-th weak-learner of k-th strong classifier”. Each

weak-learner is a predictor of a single visual feature while strong classifiers are “devoted to a

subset of input patterns” [3]. To aggregate multiple strong classifiers, a Noisy-OR is formulated as

where P(x) = 1 / (1 + exp(-Hk(x)). The Noisy-OR framework calculates the “joint probability using

all k classifiers for any x” [3]. If at least one classifier detects a threat, the image is flagged as

positive. As a result, classifiers get trained to negatively flag all non-object images, which ensures

111

low false-positive rates. Initially, sample weights wki are assigned for the i-th sample and the k-th

classifier as either wki = 1 if it was detected in a positive sample (visible firearm) or wki = 1 / k if it

was detected in a negative sample (non-object image) and wki = 0 otherwise. The goal is to

maximize

where xi is the i-th image sample and hkt ∈ {−1, +1} are the weak-learners from the set of all

available weak-learners H. To optimize running speed, H can be a subset of the available weak-

learners containing only the weak-learners located around the expected decision boundary

(firearms of known max size can be assigned with decision boundaries). [3]

After the initialization of the weights, each new round updates the sample weights in an

attempt to increase the overall accuracy of the classification algorithm and to minimize the risk of

misclassifications. The weights are updated, following the AnyBoost method, by taking the

derivative of a cost function defined for J with respect to the classifier score. The MCBoost

algorithm is described in pseudocode in the figure below:

Figure 4: Pseudocode for the MCBoost algorithm [3].

The outcome of the MCBoost algorithm is multiple boosting classifiers that can detect threats in

112

processed images. These classifiers can also be used to create a decision tree that reduces even

further the classification time. [3]

113

Appendix - C: Computer Vision: Training Script

1 #### Author: Georgios Karapanagos ####

2 # Training script for 2-node classification network

3 #

4 # For references see below:

5 """

6 Based on the tflearn example located here:

7 https://github.com/tflearn/tflearn/blob/master/examples/images/convnet_cifar10.py

8

9 Loosely following Adam Geitgey's suggested network architucre, found at:

10 https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-

convolutional-neural-networks-f40359318721

11 """

12

13 # # -*- coding: utf-8 -*-

14 from __future__ import division, print_function, absolute_import

15 import tensorflow as tf

16 # Import tflearn and some helpers

17 from tflearnmaster.tflearn.models import dnn

18 from tflearnmaster.tflearn.data_utils import shuffle, to_categorical

19 from tflearnmaster.tflearn.layers.core import input_data, dropout, fully_connected

20 from tflearnmaster.tflearn.layers.conv import conv_2d, max_pool_2d

21 from tflearnmaster.tflearn.layers.estimator import regression

22 from tflearnmaster.tflearn.data_preprocessing import ImagePreprocessing

23 from tflearnmaster.tflearn.data_augmentation import ImageAugmentation

24 import util_helpers

25 import time

26

27 start_time = time.time()

28

29 # Load the data set

30 trainSize = 1775

31 testSize = 443

32 size = 32

33 (X, Y), (X_test, Y_test) = util_helpers.prepMat(trainSize, testSize, 80 ,45)

34

35 # Convert to 2 classes boolean array

36 Y = to_categorical(Y, 2)

37 Y_test = to_categorical(Y_test, 2)

38

39 # Shuffle the data

114

40 X, Y = shuffle(X, Y)

41

42 # Make sure the data is normalized

43 img_prep = ImagePreprocessing()

44 img_prep.add_featurewise_zero_center()

45 img_prep.add_featurewise_stdnorm()

46

47 # Populate the dataset by flipping, rotating and blurring

48 img_aug = ImageAugmentation()

49 img_aug.add_random_flip_leftright()

50 img_aug.add_random_rotation(max_angle=25.)

51 img_aug.add_random_blur(sigma_max=3.)

52

53 # Definition of our Network Architecture

54 # Input is a 32x32 image with 3 color channels (red, green and blue)

55 network = input_data(shape=[None, 80, 45, 3],

56 data_preprocessing=img_prep,

57 data_augmentation=img_aug,

58 name="input_node")

59 network = conv_2d(network, 32, 3, activation='relu')

60 network = max_pool_2d(network, 2)

61 network = conv_2d(network, 64, 3, activation='relu')

62 network = conv_2d(network, 64, 3, activation='relu')

63 network = max_pool_2d(network, 2)

64

65 # Fully-connected 512 node neural network

66 network = fully_connected(network, 512, activation='relu')

67

68 # Drop a percentage to reduce over-fitting

69 network = dropout(network, 0.15)

70

71 # Final 2-node network that predicts output of '0' or '1' for two classes

72 network = fully_connected(network, 2, activation='softmax', name="out")

73

74 # Set parameters for training method

75 network = regression(network, optimizer='adam',

76 loss='categorical_crossentropy',

77 learning_rate=0.001)

78

79 # Initialize DNN model

80 model = dnn.DNN(network, tensorboard_verbose=0, checkpoint_path='newDemo_checkpoint')

81

82 train_time = time.time()

115

83

84 # Train the model, by fitting data for n_epoch steps

85 model.fit(X, Y, n_epoch=50, shuffle=True, validation_set=(X_test, Y_test),

86 show_metric=True, batch_size=96,

87 snapshot_epoch=True,

88 run_id='det_cnn')

89

90 # Export trained model to file

91 model.save("newDemo_checkpoint")

92

util_helpers.save_graph(model.session,"output","newDemo_checkpoint","checkpoint_state","input_

graph.pb","output_graph.pb")

93

94

95 print("--- %s seconds training ---" % (time.time() - train_time))

96 print("--- %s seconds total ---" % (time.time() - start_time))

116

Appendix - D: Computer Vision: Testing Script
 1 #### Author: Georgios Karapanagos ####
 2 # Testing script for 2-node classification network

 3 #

 4 # For references see below:

 5 """

 6 Based on the tflearn example located here:

 7 https://github.com/tflearn/tflearn/blob/master/examples/images/convnet_cifar10.py

 8

 9 Loosely following Adam Geitgey's suggested network architucre, found at:

10 https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-

convolutional-neural-networks-f40359318721

11 """

12

 13 # -*- coding: utf-8 -*-

14 from __future__ import division, print_function, absolute_import

15 import tensorflow as tf

16 # Import tflearn and some helpers

17 from tflearnmaster.tflearn.models import dnn

18 from tflearnmaster.tflearn.layers.core import input_data, dropout, fully_connected

19 from tflearnmaster.tflearn.layers.conv import conv_2d, max_pool_2d

20 from tflearnmaster.tflearn.layers.estimator import regression

21 from tflearnmaster.tflearn.data_preprocessing import ImagePreprocessing

22 from tflearnmaster.tflearn.data_augmentation import ImageAugmentation

23 from scipy.misc import toimage, imresize, imsave

24 import numpy as np

25 from PIL import Image

26 import util_helpers

27 from heapq import heappush, heappop

28

 29 # Node size

30 size = 32

31 sizeH = 45

32 sizeW = 80

33

 34 # Make sure the data is normalized

35 img_prep = ImagePreprocessing()

36 img_prep.add_featurewise_zero_center()

37 img_prep.add_featurewise_stdnorm()

38

 39 # Populate the dataset by flipping, rotating and blurring

40 img_aug = ImageAugmentation()

117

41 img_aug.add_random_flip_leftright()

42 img_aug.add_random_rotation(max_angle=25.)

43 img_aug.add_random_blur(sigma_max=3.)

44

 45 # Definition of our Network Architecture

46 # Input is a 32x32 image with 3 color channels (red, green and blue)

47 network = input_data(shape=[None, 80, 45, 3],

48 data_preprocessing=img_prep,

49 data_augmentation=img_aug,

50 name="input_node")

51 network = conv_2d(network, 32, 3, activation='relu')

52 network = max_pool_2d(network, 2)

53 network = conv_2d(network, 64, 3, activation='relu')

54 network = conv_2d(network, 64, 3, activation='relu')

55 network = max_pool_2d(network, 2)

56

 57 # Fully-connected 512 node neural network

58 network = fully_connected(network, 512, activation='relu')

59

 60 # Drop a percentage to reduce over-fitting

61 network = dropout(network, 0.15)

62

 63 # Final 2-node network that predicts output of '0' or '1' for two classes

 64 network = fully_connected(network, 2, activation='softmax', name="out")

65

 66 # Set parameters for training method

67 network = regression(network, optimizer='adam',

68 loss='categorical_crossentropy',

69 learning_rate=0.001)

70 #sess.run(init_op)

71 # Initialize DNN model

72 model = dnn.DNN(network, tensorboard_verbose=0, checkpoint_path='high_checkpoint')

73

 74 # Load classifier

75 model.load("high_checkpoint-3600")

76

 77 negSize = 1403

78 posSize = 1204

79 # negSize = 1403

80 # posSize = 1204

81 testSize = (posSize+negSize)+1

82 X_train = np.empty((testSize,sizeW,sizeH,3))

83

118

 84 # Sliding window with test image to generate 10 images to test

85 imgs = []

86 for k in range(0,negSize):

 87 imgs += util_helpers.slidingWindowDemo("testHighBig/0/file" + str(k) + ".jpg",sizeH,

sizeW)

88

 89 for k in range(0,posSize):

 90 imgs += util_helpers.slidingWindowDemo("testHighBig/1/file" + str(k) + ".jpg",sizeH,

sizeW)

91

 92 trIndex = 0

 93 foundInd = 0

 94 totalProb = 0

95 threatFound = 0

96

 97 # Test all images for threat

98 foundAt = []

99 maxNeg = []

100 for img in imgs:

101 for x in range(0,sizeW):

102 for y in range(0,sizeH):

103 for color in range(0,3):

104 X_train[trIndex][x][y][color] = float(img[x][y][color] / 255)

105

106 # Predict

107 prediction = model.predict([X_train[trIndex]])

108 print("PREDICTION: " + str(prediction[0]))

109

110 # Keep statistics of overall threat

111 totalProb += prediction[0][1]

112 #print("Found with " + str(prediction[0][1]) + " confidence.")

113 # if threat is detected, prob(threat) > prob(nothreat)

114 if(prediction[0][1] > prediction[0][0]):

115 temp = toimage(img)

116 if((trIndex / 5) < negSize):

117 heappush(maxNeg, (prediction[0][1]))

118

119 # if prob(threat) >= 0.75

120 if(prediction[0][1] >= 0.75):

121 imsave("test-dataset/FOUND/EZ" + str(trIndex) + ".jpg", temp)

122 threatFound += 2

123 else:

124 imsave("test-dataset/FOUND/" + str(trIndex) + ".jpg", temp)

119

125 threatFound += 1

126 trIndex += 1

127 if(trIndex % 5 == 0):

128 foundAt.append([trIndex, threatFound])

129 threatFound = 0

130

131

132 z = 0

133 foundTrue = 0

134 foundFalse = 0

135 for k in foundAt:

136 print(k)

137 if(z<negSize):

138 if(k[1] >= 2):

139 foundFalse +=1

140 else:

141 if(k[1] >= 2):

142 foundTrue += 1

143 z += 1

144

145

146

147 print("-----------Printing results of Negative dataset---------------")

148 print("Found " + str(negSize-foundFalse) + " true negatives!")

149 print("Found " + str(foundFalse) + " false positives!")

150 print("Classified " + str(100*foundFalse/negSize) + "%% incorrectly!")

151

152 print("-----------Printing results of Positive dataset---------------")

153 print("Found " + str(foundTrue) + " true positives!")

154 print("Found " + str(posSize - foundTrue) + " false negatives!")

155 print("Classified " + str(100*(posSize - foundTrue)/posSize) + "%% incorrectly!")

156

157 print("Total Accuracy: " + str((negSize-foundFalse+posSize - foundTrue)/(negSize+posSize)) +

" % ")

158 print("Found " + str(foundInd) + " matches")

159

160 # Print the top 20 false positives value

161 for k in range(0,20):

162 V = heappop(maxNeg)

163 print(V)

120

Appendix - E: Computer Vision: Helper Functions

 1 #### Author: Georgios Karapanagos ####

 2 # Helper functions to prepare training and testing datasets

 3 ####

 4

 5 import glob, os

 6 import numpy as np

 7 import time

 8 from array import *

 9 from PIL import Image

 10 from scipy.misc import toimage, imresize, imread, imsave

 11 import tensorflow as tf

 12 from tensorflow.python.tools import freeze_graph

 13 import export

 14 import cv2

 15 import matplotlib.pyplot as plt

 16 import matplotlib.image as mpimg

 17 import scipy

 18 from scipy import ndimage

 19 import camera

 20

 21 # Renames all files in reg that match the type as a RegEx to file0.jpg - filen.jpg

 22 # - example call: renameFile(r'C:/Users/George/Documents/MQP/Nerf-Dataset', r'*.jpeg')

 23 def renameFile(dir, typeRegEx):

 24 i = 0

 25 for imagePath in glob.iglob(os.path.join(dir, typeRegEx)):

 26 title, ext = os.path.splitext(os.path.basename(imagePath))

 27 os.rename(imagePath, os.path.join(dir + "/file" + str(i)+ ".jpg"))

 28 i = i + 1

 29 # wait to avoid memory-write problem

 30 time.sleep(0.01)

 31

 32 # Generates a resized to height*width version of the given image database

 33 # - example call: genResized("Nerf-Dataset", ".jpeg", 34, "small", size)

 34 def genResized(dir, type, imageNum, desc, height, width):

 35 for i in range(imageNum):

 36 # Load the image file

 37 img = imread(dir + desc + '/file' + str(i) + type, mode="RGB")

 38

 39 # Scale it to 32x32

 40 img = imresize(img, (height, width), interp="bicubic").astype(np.float32, casting='unsafe')

121

 41

 42 #Save the image to new folder

 43 imsave(dir + desc + '/file' + str(i) + '.jpg', img)

 44

 45

 46 # Custom version of genResized with rotation and 1024x720 output

 47 # - example call: genResizedTest("C:/Users/George/Documents/MQP/test-dataset", ".jpeg", 34)

 48 def genResizedTest(dir, type, imageNum):

 49 for i in range(imageNum):

 50 if(i >= 0):

 51 # Load the image file

 52 im = Image.open(dir + '/file' + str(i) + type)

 53 pix = im.load()

 54

 55 # Scale it to 32x32

 56 #pix2 = (im.rotate(270)).resize([720,1024])

 57 pix2 = im.resize([720,1024])

 58

 59 #Save the image to new folder

 60 pix2.save(dir + '/file' + str(i) + '.jpeg')

 61

 62 # Prepares training matrix of size*size input for the CNN

 63 # - example call: prepMat(3279, 364, 32)

 64 def prepMat(trainSize, testSize, sizeW, sizeH):

 65 i = 0

 66 X_train = np.empty((trainSize, sizeW, sizeH, 3))

 67 Y_train = array('B')

 68 X_test = np.empty((testSize, sizeW, sizeH, 3))

 69 Y_test = array('B')

 70 trainNum = 0

 71 testNum = 0

 72 # finds and loads all items in "classes" in the "train-dataset" folder that end with .jpg

 73 for dirname, dirnames, filenames in os.walk('./newDemo'):

 74 for filename in filenames:

 75 if filename.endswith('.jpg'):

 76 i = i + 1

 77

 78 # Load the image file

 79 im = Image.open(os.path.join(dirname, filename))

 80

 81 # Load image into matrix

 82 pix = im.load()

 83

 84 # Get class label from folder name

122

 85 # e.g. /Classes/0/xx.jpg -> 0

 86 class_name = int(os.path.join(dirname).split('\\')[-1])

 87 w, h = im.size

 88 # 9/10ths are the training set

 89 if(i%10 > 1):

 90 # Append the class label as Byte

 91 Y_train.append(class_name)

 92 for x in range(0,sizeW):

 93 for y in range(0,sizeH):

 94 for color in range(0,3):

 95 X_train[trainNum][x][y][color] = float(pix[x,y][color] / 255)

 96 trainNum+=1

 97 # 1/10th is the validation (or test) set

 98 else:

 99 # Append the class label as Byte

100 Y_test.append(class_name)

101 for x in range(0,sizeW):

102 for y in range(0,sizeH):

103 for color in range(0,3):

104 X_test[testNum][x][y][color] = float(pix[x,y][color] / 255)

105 testNum+=1

106

107 print("Height", h)

108 print("Width", w)

109 print(i)

110 print("test", testNum)

111 print("train", trainNum)

112 return (X_train, Y_train), (X_test, Y_test)

113

114 # GREYSCALE , 1-CHANNEL VERSION

115 def prepMatGrey(trainSize, testSize, sizeW, sizeH):

116 i = 0

117 X_train = np.empty((trainSize, sizeW, sizeH, 1))

118 Y_train = array('B')

119 X_test = np.empty((testSize, sizeW, sizeH, 1))

120 Y_test = array('B')

121 trainNum = 0

122 testNum = 0

123 # finds and loads all items in "classes" in the "train-dataset" folder that end with .jpg

124 for dirname, dirnames, filenames in os.walk('./statTrain64'):

125 for filename in filenames:

126 if filename.endswith('.jpg'):

127 i = i + 1

128

123

129 # Load the image file

130 im = Image.open(os.path.join(dirname, filename))

131

132 # Load image into matrix

133 pix = im.load()

134

135 # Get class label from folder name

136 # e.g. /Classes/0/xx.jpg -> 0

137 class_name = int(os.path.join(dirname).split('\\')[-1])

138 w, h = im.size

139 tempColor = 0

140 # 9/10ths are the training set

141 if(i%10 > 1):

142 # Append the class label as Byte

143 Y_train.append(class_name)

144 for x in range(0,sizeW):

145 for y in range(0,sizeH):

146 #for color in range(0,3):

147 tempColor += 0.21 * float(pix[x,y][0] / 255)

148 tempColor += 0.72 * float(pix[x,y][1] / 255)

149 tempColor += 0.07 * float(pix[x,y][2] / 255)

150 X_train[trainNum][x][y][0] = tempColor

151 tempColor = 0

152 trainNum+=1

153 # 1/10th is the validation (or test) set

154 else:

155 # Append the class label as Byte

156 Y_test.append(class_name)

157 for x in range(0,sizeW):

158 for y in range(0,sizeH):

159 #for color in range(0,3):

160 tempColor += 0.21 * float(pix[x,y][0] / 255)

161 tempColor += 0.72 * float(pix[x,y][1] / 255)

162 tempColor += 0.07 * float(pix[x,y][2] / 255)

163 X_train[testNum][x][y][0] = tempColor

164 tempColor = 0

165 testNum+=1

166

167 print("Height", h)

168 print("Width", w)

169 print(i)

170 print("test", testNum)

171 print("train", trainNum)

172 return (X_train, Y_train), (X_test, Y_test)

124

173

174

175 # Scanning routine that produces 10 subsets of the image as output

176 # - example call: slidingWindow("test-dataset/file27.jpeg", 32)

177 def slidingWindow(img, sizeH, sizeW):

178 # open image

179 img = Image.open(img)

180

181 # load pixels RGB arrays

182 pix = img.load()

183

184 # get image dimensions

185 width = int(img.size[0])

186 print("width: " + str(width))

187 height = int(img.size[1])

188 print("height: " + str(height))

189 ##### 1280 (40*32) x 720 (30*32)

190 ##### 720 (30*32) x 1280 (40*32)

191

192 # output array

193 out = []

194

195 # first append full image resized to nodeSize*nodeSize

196 out.append(imresize(img, (sizeH, sizeW), interp="bicubic").astype(np.float32, casting='unsafe'))

197

198 #convert to numpy array

199 imArr = np.empty((height,width,3))

200 for x in range(0,w):

201 for y in range(0,width):

202 for color in range(0,3):

203 imArr[x][y][color] = pix[x,y][color]

204

205 ##### 1/4 rotation

206 xStep = int(height/2)

207 yStep = int(width/2)

208 img_4 = []

209 for i in range(0,9):

210 img_4.append(np.empty((xStep,yStep,3)))

211

212 xOffset = 0

213 yOffset = 0

214 index = 0

215 # 5-level loop, best loop

216 for w in range(0,3):

125

217 for h in range(0,3):

218 for x in range(0, xStep):

219 for y in range(0, yStep):

220 for color in range(0,3):

221 tarX = int(x+(xOffset*xStep/2))

222 tarY = int(y+(yOffset*yStep/2))

223 img_4[index][x][y][color] = imArr[tarX][tarY][color]

224

225 index += 1

226 xOffset += 1

227 print("yo")

228 yOffset += 1

229 xOffset = 0

230

231 # Append the 4 generated images to output array after resizing them

232 for i in range(0,9):

233 temp = toimage(img_4[i])

234 out.append(imresize(temp, (sizeH, sizeW), interp="bicubic").astype(np.float32, casting='unsafe'))

235 return out

236

237 # freeze_graph to save current weights into file to use in C++ testing routine

238 def

save_graph(sess,output_path,checkpoint,checkpoint_state_name,input_graph_name,output_graph_name):

239 # We save out the graph to disk, and then call the const conversion

240 # routine.

241 checkpoint_state_name = "checkpoint_state"

242 input_graph_name = "input_graph.pb"

243 output_graph_name = "output_graph.pb"

244

245 input_graph_path = os.path.join("C:/Users/George/Documents/MQP/tmp/", input_graph_name)

246 input_saver_def_path = ""

247 input_binary = False

248 input_checkpoint_path = os.path.join("C:/Users/George/Documents/MQP/", 'saved_checkpoint') + "-

9000"

249

250 # Note that we this normally should be only "output_node"!!!

251 output_node_names = "out/Softmax"

252 restore_op_name = "save/restore_all"

253 filename_tensor_name = "save/Const:0"

254 output_graph_path = os.path.join("C:/Users/George/Documents/MQP/tmp/", output_graph_name)

255 clear_devices = True

256

257 export.freeze_graph(input_graph_path, input_saver_def_path,

258 input_binary, input_checkpoint_path,

126

259 output_node_names, restore_op_name,

260 filename_tensor_name, output_graph_path,

261 clear_devices, "")

262

263 # Scanning routine that produces 10 subsets of the image as output

264 # - example call: slidingWindow("test-dataset/file27.jpeg", 32)

265 def slidingWindowDemo(img, sizeH, sizeW):

266 # open image

267 img = Image.open(img)

268 # img = cv2.imread(img,1)

269 # load pixels RGB arrays

270 pix = img.load()

271 # pix = np.asarray(img)

272 # get image dimensions

273 width = int(img.size[0])

274 print("width: " + str(width))

275 height = int(img.size[1])

276 print("height: " + str(height))

277 ##### 1280 (40*32) x 720 (30*32)

278 ##### 720 (30*32) x 1280 (40*32)

279

280 out = []

281 # first append full image resized to nodeSize*nodeSize

282 out.append(imresize(img, (sizeH, sizeW), interp="bicubic").astype(np.float32, casting='unsafe'))

283

284 # #convert to numpy array

285 imArr = np.empty((height,width,3))

286 for x in range(0,height):

287 for y in range(0,width):

288 for color in range(0,3):

289 imArr[x][y][color] = pix[y,x][color]

290

291 ##### 1/4 rotation

292 xStep = int(height/2)

293 yStep = int(width/2)

294 img_4 = []

295 for k in range(0,4):

296 img_4.append(np.empty((xStep,yStep,3)))

297

298 index = 0

299 for w in range(0,2):

300 for h in range(0,2):

301 for x in range(0, xStep):

302 for y in range(0, yStep):

127

303 for color in range(0,3):

304 tarX = int(x+(xStep * w))

305 tarY = int(y+(yStep * h))

306 img_4[index][x][y][color] = imArr[tarX][tarY][color]

307 index +=1

308

309

310 # Append the 4 generated images to output array after resizing them

311 for i in range(0,4):

312 temp = toimage(img_4[i])

313 width = int(temp.size[0])

314 print("width: " + str(width))

315 height = int(temp.size[1])

316 print("height: " + str(height))

317 out.append(imresize(temp, (sizeH, sizeW), interp="bicubic").astype(np.float32, casting='unsafe'))

318 return out

319

320

321 # RGB to GRAY formula

322 def rgb2gray(rgb):

323 return np.dot(rgb[...,:3], [0.299, 0.587, 0.114])

324

325 # Converts the training dataset from RGB to BW

326 # - example call: convertToBW("C:/Users/George/Documents/MQP/train-dataset", ".jpeg", 34)

327 def convertToBW(dir, type, imageNum):

328 for i in range(imageNum):

329 if(i >= 0):

330 # Load the image file

331 # img = mpimg.imread('image.png')

332 # gray = rgb2gray(img)

333 # plt.imshow(gray, cmap = plt.get_cmap('gray'))

334 # plt.show()

335

336 readPath = dir + '/0/small-file' + str(i) + type

337 writePath = "C:/Users/George/Documents/MQP/train-dataset-bw/0/small-file" + str(i) +

'.jpg'

338 img = Image.open(readPath).convert('L')

339 img.save(writePath)

340 # im_gray = cv2.imread(dir + '/1/small-file' + str(i) + type, cv2.IMREAD_GRAYSCALE)

341 # #(thresh, im_bw) = cv2.threshold(im_gray, 128, 255, cv2.THRESH_BINARY |

cv2.THRESH_OTSU)

342 # cv2.imwrite("C:/Users/George/Documents/MQP/train-dataset-bw/1/small-file" + str(i) +

'.jpg', im_gray)

343 # #Save the image to new folder

128

344

345 # Test sliding window, only appends original image

346 def slidingWindowDemoTest(img, nodeSize):

347 # open image

348 img = Image.open(img)

349

350 # load pixels RGB arrays

351 pix = img.load()

352

353 # get image dimensions

354 width = int(img.size[0])

355 print("width: " + str(width))

356 height = int(img.size[1])

357 print("height: " + str(height))

358 ##### 1280 (40*32) x 720 (30*32)

359 ##### 720 (30*32) x 1280 (40*32)

360

361 # output array

362 out = []

363

364 # first append full image resized to nodeSize*nodeSize

365 out.append(imresize(img, (nodeSize, nodeSize), interp="bicubic").astype(np.float32,

casting='unsafe'))

366

367 return out

368

369

370 # Converts captures frames to their quarters. Essentially, creating a dataset 4x as big.

371 def toQuarters(imageNum):

372 for i in range(imageNum):

373 if(i%8 == 0):

374 # Load the image file

375 img = Image.open('toQuarter/file' + str(i) + '.jpg')

376

377 pix = imresize(img, (720, 1280), interp="bicubic").astype(np.float32, casting='unsafe')

378 # load pixels RGB arrays

379 # pix = img.load()

380

381 # get image dimensions

382 width = int(img.size[0])

383 print("width: " + str(width))

384 height = int(img.size[1])

385 print("height: " + str(height))

386 ##### 1280 (40*32) x 720 (30*32)

129

387 ##### 720 (30*32) x 1280 (40*32)

388

389 #convert to numpy array

390 imArr = np.empty((height,width,3))

391 for x in range(0,height):

392 for y in range(0,width):

393 for color in range(0,3):

394 imArr[x][y][color] = pix[x,y][color]

395

396 ##### 1/4 rotation

397 xStep = int(height/2)

398 yStep = int(width/2)

399 img_4 = []

400 for k in range(0,4):

401 img_4.append(np.empty((xStep,yStep,3)))

402

403 index = 0

404 for w in range(0,2):

405 for h in range(0,2):

406 for x in range(0, xStep):

407 for y in range(0, yStep):

408 for color in range(0,3):

409 tarX = int(x+(xStep * w))

410 tarY = int(y+(yStep * h))

411 img_4[index][x][y][color] = imArr[tarX][tarY][color]

412 index +=1

413

414

415 # Append the 9 generated images to output array after resizing them

416 for z in range(0,4):

417 temp = toimage(img_4[z])

418 #Save the image to new folder

419 temp.save('Quarters/file' + str(i) + str(z) + '.jpg')

130

Appendix - F: Matlab ImageToText.m code
clc; close all

[fName,pName] = uigetfile('*.*');

row = 128;col = 128; noImage = 2;

I = imresize(imread([pName fName]), [row col]);

figure, imshow(uint8(I));

fid = fopen('input.txt', 'w');

for noI = 1:noImage

 for i = 1:row

 for j = 1:col

 %Break and Concat Color Component

 fprintf(fid, '%s\n',[dec2hex(I(i,j,1),2) dec2hex(I(i,j,2),2) dec2hex(I(i,j,3),2)]);

 end

 end

end

fclose(fid);

131

Appendix - G: Matlab TextToImage.m code
clc; close all;

fid = fopen("result_img.txt");

txtData = textscan(fid, '%s');

txtData = cell2mat(txtData{1,1});

textImage = zeros(row,col,3);

for noI = 1:noImage

 idx = (noI - 1) *row*col + 1:noI*row*col;

 tempData = txtData(idx,:);

 textImage(:,:,1) = reshape(hex2dec(tempData(:,1:2)), col, row)';

 textImage(:,:,2) = reshape(hex2dec(tempData(:,3:4)), col, row)';

 textImage(:,:,3) = reshape(hex2dec(tempData(:,5:6)), col, row)';

 figure, imshow(uint8(textImage));

end

132

Appendix - H: Sobel Filter Verilog Code

// ---

//

// File Name: C:\Users\skids\Documents\MATLAB\hdl_prj\Sobel\hdlcoder_sobel\SobelCore.v

// Created: 2017-02-21 20:43:31

//

// Generated by MATLAB 9.1 and HDL Coder 3.9

//

// ---

// ---

//

// Module: SobelCore

// Source Path: hdlcoder_sobel/Pixel-Stream HDL Model/Edge Detection/Edge Detector/SobelCore

// Hierarchy Level: 3

//

// Sobel Core

//

// ---

`timescale 1 ns / 1 ns

module SobelCore

 (

 clk,

 reset,

 enb,

 pixelInVec_0,

 pixelInVec_1,

 pixelInVec_2,

 ShiftEnb,

 Gv,

 Gh

);

 input clk;

 input reset;

 input enb;

133

 input [7:0] pixelInVec_0; // uint8

 input [7:0] pixelInVec_1; // uint8

 input [7:0] pixelInVec_2; // uint8

 input ShiftEnb;

 output signed [10:0] Gv; // sfix11_En3

 output signed [10:0] Gh; // sfix11_En3

 reg [7:0] pixel1Shift; // uint8

 reg [7:0] pixel1Shift2; // uint8

 reg [7:0] pixel1Shift3; // uint8

 reg [7:0] pixel3Shift; // uint8

 reg [7:0] pixel3Shift2; // uint8

 reg [7:0] pixel3Shift3; // uint8

 wire [8:0] adder_1; // ufix9

 wire [8:0] adder_2; // ufix9

 wire [8:0] GvAdder1; // ufix9

 reg [8:0] GvAdder1Delay; // ufix9

 reg [7:0] pixel2Shift; // uint8

 reg [7:0] pixel2Shift2; // uint8

 reg [7:0] pixel2Shift3; // uint8

 wire [7:0] p2S3x2; // ufix8_E1

 reg [7:0] p2S3x2Delay; // ufix8_E1

 wire [9:0] adder_add_cast; // ufix10

 wire [9:0] adder_4; // ufix10

 wire [9:0] GvAdder2; // ufix10

 reg [9:0] GvAdder2Delay; // ufix10

 wire [7:0] p2Sx2; // ufix8_E1

 reg [7:0] p2Sx2Delay; // ufix8_E1

 wire [8:0] adder_6; // ufix9

 wire [8:0] adder_7; // ufix9

 wire [8:0] GvAdder3; // ufix9

 reg [8:0] GvAdder3Delay; // ufix9

 wire [9:0] adder_add_cast_1; // ufix10

 wire [9:0] adder_9; // ufix10

 wire [9:0] GvAdder4; // ufix10

 reg [9:0] GvAdder4Delay; // ufix10

 wire [10:0] subtractor_sub_temp; // ufix11

 wire [10:0] subtractor_1; // ufix11

 wire [10:0] subtractor_2; // ufix11

 wire signed [10:0] GvAdder5; // sfix11

 wire signed [10:0] gvdtc1; // sfix11_En3

 reg signed [10:0] gvdtc1Delay; // sfix11_En3

 wire [7:0] p3S2x2; // ufix8_E1

134

 reg [7:0] p3S2x2Delay; // ufix8_E1

 wire [8:0] adder_11; // ufix9

 wire [8:0] adder_12; // ufix9

 wire [8:0] GhAdder3; // ufix9

 reg [8:0] GhAdder3Delay; // ufix9

 wire [9:0] adder_add_cast_2; // ufix10

 wire [9:0] adder_14; // ufix10

 wire [9:0] GhAdder4; // ufix10

 reg [9:0] GhAdder4Delay; // ufix10

 wire [7:0] p1S2x2; // ufix8_E1

 reg [7:0] p1S2x2Delay; // ufix8_E1

 wire [8:0] adder_16; // ufix9

 wire [8:0] adder_17; // ufix9

 wire [8:0] GhAdder1; // ufix9

 reg [8:0] GhAdder1Delay; // ufix9

 wire [9:0] adder_add_cast_3; // ufix10

 wire [9:0] adder_19; // ufix10

 wire [9:0] GhAdder2; // ufix10

 reg [9:0] GhAdder2Delay; // ufix10

 wire [10:0] subtractor_sub_temp_1; // ufix11

 wire [10:0] subtractor_4; // ufix11

 wire [10:0] subtractor_5; // ufix11

 wire signed [10:0] GhAdder5; // sfix11

 wire signed [10:0] ghdtc1; // sfix11_En3

 reg signed [10:0] ghdtc1Delay; // sfix11_En3

 always @(posedge clk or posedge reset)

 begin : p1Shift_process

 if (reset == 1'b1) begin

 pixel1Shift <= 8'b00000000;

 end

 else begin

 if (enb && ShiftEnb) begin

 pixel1Shift <= pixelInVec_0;

 end

 end

 end

 always @(posedge clk or posedge reset)

 begin : p1Shift2_process

135

 if (reset == 1'b1) begin

 pixel1Shift2 <= 8'b00000000;

 end

 else begin

 if (enb && ShiftEnb) begin

 pixel1Shift2 <= pixel1Shift;

 end

 end

 end

 always @(posedge clk or posedge reset)

 begin : p1Shift3_process

 if (reset == 1'b1) begin

 pixel1Shift3 <= 8'b00000000;

 end

 else begin

 if (enb && ShiftEnb) begin

 pixel1Shift3 <= pixel1Shift2;

 end

 end

 end

 always @(posedge clk or posedge reset)

 begin : p3Shift_process

 if (reset == 1'b1) begin

 pixel3Shift <= 8'b00000000;

 end

 else begin

 if (enb && ShiftEnb) begin

 pixel3Shift <= pixelInVec_2;

 end

 end

 end

 always @(posedge clk or posedge reset)

 begin : p3Shift2_process

 if (reset == 1'b1) begin

136

 pixel3Shift2 <= 8'b00000000;

 end

 else begin

 if (enb && ShiftEnb) begin

 pixel3Shift2 <= pixel3Shift;

 end

 end

 end

 always @(posedge clk or posedge reset)

 begin : p3Shift3_process

 if (reset == 1'b1) begin

 pixel3Shift3 <= 8'b00000000;

 end

 else begin

 if (enb && ShiftEnb) begin

 pixel3Shift3 <= pixel3Shift2;

 end

 end

 end

 assign adder_1 = {1'b0, pixel1Shift3};

 assign adder_2 = {1'b0, pixel3Shift3};

 assign GvAdder1 = adder_1 + adder_2;

 always @(posedge clk or posedge reset)

 begin : reg_rsvd_process

 if (reset == 1'b1) begin

 GvAdder1Delay <= 9'b000000000;

 end

 else begin

 if (enb) begin

 GvAdder1Delay <= GvAdder1;

 end

 end

 end

137

 always @(posedge clk or posedge reset)

 begin : p2Shift_process

 if (reset == 1'b1) begin

 pixel2Shift <= 8'b00000000;

 end

 else begin

 if (enb && ShiftEnb) begin

 pixel2Shift <= pixelInVec_1;

 end

 end

 end

 always @(posedge clk or posedge reset)

 begin : p2Shift2_process

 if (reset == 1'b1) begin

 pixel2Shift2 <= 8'b00000000;

 end

 else begin

 if (enb && ShiftEnb) begin

 pixel2Shift2 <= pixel2Shift;

 end

 end

 end

 always @(posedge clk or posedge reset)

 begin : p2Shift3_process

 if (reset == 1'b1) begin

 pixel2Shift3 <= 8'b00000000;

 end

 else begin

 if (enb && ShiftEnb) begin

 pixel2Shift3 <= pixel2Shift2;

 end

 end

 end

138

 assign p2S3x2 = pixel2Shift3;

 always @(posedge clk or posedge reset)

 begin : reg_rsvd_1_process

 if (reset == 1'b1) begin

 p2S3x2Delay <= 8'b00000000;

 end

 else begin

 if (enb) begin

 p2S3x2Delay <= p2S3x2;

 end

 end

 end

 assign adder_add_cast = {1'b0, {p2S3x2Delay, 1'b0}};

 assign adder_4 = {1'b0, GvAdder1Delay};

 assign GvAdder2 = adder_4 + adder_add_cast;

 always @(posedge clk or posedge reset)

 begin : reg_rsvd_2_process

 if (reset == 1'b1) begin

 GvAdder2Delay <= 10'b0000000000;

 end

 else begin

 if (enb) begin

 GvAdder2Delay <= GvAdder2;

 end

 end

 end

 assign p2Sx2 = pixel2Shift;

139

 always @(posedge clk or posedge reset)

 begin : reg_rsvd_3_process

 if (reset == 1'b1) begin

 p2Sx2Delay <= 8'b00000000;

 end

 else begin

 if (enb) begin

 p2Sx2Delay <= p2Sx2;

 end

 end

 end

 assign adder_6 = {1'b0, pixel1Shift};

 assign adder_7 = {1'b0, pixel3Shift};

 assign GvAdder3 = adder_6 + adder_7;

 always @(posedge clk or posedge reset)

 begin : reg_rsvd_4_process

 if (reset == 1'b1) begin

 GvAdder3Delay <= 9'b000000000;

 end

 else begin

 if (enb) begin

 GvAdder3Delay <= GvAdder3;

 end

 end

 end

 assign adder_add_cast_1 = {1'b0, {p2Sx2Delay, 1'b0}};

 assign adder_9 = {1'b0, GvAdder3Delay};

 assign GvAdder4 = adder_add_cast_1 + adder_9;

 always @(posedge clk or posedge reset)

 begin : reg_rsvd_5_process

 if (reset == 1'b1) begin

140

 GvAdder4Delay <= 10'b0000000000;

 end

 else begin

 if (enb) begin

 GvAdder4Delay <= GvAdder4;

 end

 end

 end

 assign subtractor_1 = {1'b0, GvAdder2Delay};

 assign subtractor_2 = {1'b0, GvAdder4Delay};

 assign subtractor_sub_temp = subtractor_1 - subtractor_2;

 assign GvAdder5 = subtractor_sub_temp;

 // Gv: Right-shift 3 bit to perform divided by 8

 assign gvdtc1 = GvAdder5;

 always @(posedge clk or posedge reset)

 begin : reg_rsvd_6_process

 if (reset == 1'b1) begin

 gvdtc1Delay <= 11'sb00000000000;

 end

 else begin

 if (enb) begin

 gvdtc1Delay <= gvdtc1;

 end

 end

 end

 assign p3S2x2 = pixel3Shift2;

 always @(posedge clk or posedge reset)

 begin : reg_rsvd_7_process

141

 if (reset == 1'b1) begin

 p3S2x2Delay <= 8'b00000000;

 end

 else begin

 if (enb) begin

 p3S2x2Delay <= p3S2x2;

 end

 end

 end

 assign adder_11 = {1'b0, pixel3Shift};

 assign adder_12 = {1'b0, pixel3Shift3};

 assign GhAdder3 = adder_11 + adder_12;

 always @(posedge clk or posedge reset)

 begin : reg_rsvd_8_process

 if (reset == 1'b1) begin

 GhAdder3Delay <= 9'b000000000;

 end

 else begin

 if (enb) begin

 GhAdder3Delay <= GhAdder3;

 end

 end

 end

 assign adder_add_cast_2 = {1'b0, {p3S2x2Delay, 1'b0}};

 assign adder_14 = {1'b0, GhAdder3Delay};

 assign GhAdder4 = adder_add_cast_2 + adder_14;

 always @(posedge clk or posedge reset)

 begin : reg_rsvd_9_process

 if (reset == 1'b1) begin

 GhAdder4Delay <= 10'b0000000000;

 end

142

 else begin

 if (enb) begin

 GhAdder4Delay <= GhAdder4;

 end

 end

 end

 assign p1S2x2 = pixel1Shift2;

 always @(posedge clk or posedge reset)

 begin : reg_rsvd_10_process

 if (reset == 1'b1) begin

 p1S2x2Delay <= 8'b00000000;

 end

 else begin

 if (enb) begin

 p1S2x2Delay <= p1S2x2;

 end

 end

 end

 assign adder_16 = {1'b0, pixel1Shift};

 assign adder_17 = {1'b0, pixel1Shift3};

 assign GhAdder1 = adder_16 + adder_17;

 always @(posedge clk or posedge reset)

 begin : reg_rsvd_11_process

 if (reset == 1'b1) begin

 GhAdder1Delay <= 9'b000000000;

 end

 else begin

 if (enb) begin

 GhAdder1Delay <= GhAdder1;

 end

 end

143

 end

 assign adder_add_cast_3 = {1'b0, {p1S2x2Delay, 1'b0}};

 assign adder_19 = {1'b0, GhAdder1Delay};

 assign GhAdder2 = adder_add_cast_3 + adder_19;

 always @(posedge clk or posedge reset)

 begin : reg_rsvd_12_process

 if (reset == 1'b1) begin

 GhAdder2Delay <= 10'b0000000000;

 end

 else begin

 if (enb) begin

 GhAdder2Delay <= GhAdder2;

 end

 end

 end

 assign subtractor_4 = {1'b0, GhAdder4Delay};

 assign subtractor_5 = {1'b0, GhAdder2Delay};

 assign subtractor_sub_temp_1 = subtractor_4 - subtractor_5;

 assign GhAdder5 = subtractor_sub_temp_1;

 // Gh: Right-shift 3 bit to perform divided by 8

 assign ghdtc1 = GhAdder5;

 always @(posedge clk or posedge reset)

 begin : reg_rsvd_13_process

 if (reset == 1'b1) begin

 ghdtc1Delay <= 11'sb00000000000;

 end

 else begin

 if (enb) begin

144

 ghdtc1Delay <= ghdtc1;

 end

 end

 end

 // Gv: Cast to the specified gradient data type. Full precision if outputing binary image only

 assign Gv = gvdtc1Delay;

 // Gh: Cast to the specified gradient data type. Full precision if outputing binary image only

 assign Gh = ghdtc1Delay;

endmodule // SobelCore

