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Abstract 

The goal of this project is to design an integrated system that allows for fast and reliable processing 

of high quality video data and in doing so detect and react to the presence of a firearm or other 

weaponry when used in a threatening or dangerous manner. This is accomplished through the 

combined use of computer vision processing techniques implemented on an FPGA as well as a 

convolutional neural network trained to determine the presence of a threat. 
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Introduction 

Public safety is a major concern in today’s modern society. Modern weaponry and firearms 

pose serious threats to the safety and security of the everyday people, and recent events and media 

coverage have only further publicized the inherent dangers that one may face in even the most 

public of places. It is hoped that through the vigilance of the common citizen and the swift response 

of the authorities, violent perpetrators who threaten others with dangerous weaponry can be 

quickly and reliably apprehended and fatalities prevented. But often times, when threatened with 

the very real danger of a live firearm, people panic, and their justified self-preservation may 

prevent the proper authorities from being notified, causing small but noticeable delays in police 

response time at best and resulting in the loss of lives from failure to respond at worst.  

These dangerous situations can often be prevented by proper monitoring technologies such 

as closed circuit television. However, there are many public and even private areas of trespass for 

which such technologies could not easily be implemented. A public park, for instance, cannot 

efficiently be monitored by CCTV systems with human operators due simply in part to their size. 

Trying to correct this issue by adding additional manpower costs both time and money and 

increases the chance that simple human error might occur due to negligence, absence, or simple 

misinterpretation of data. And when a single slip up could lead to death or injury, reliability and 

consistency becomes a very important factor.  

 As such, a system that removes humans from the equation may be an ideal solution. Using 

the CCTV model of approach, but then attempting to automate the process of observation and alert 

can help standardize and streamline the process, but at this current time the technology needed to 

do so is expensive, complicated and somewhat inaccurate due mostly to the limitations of current 

non-specialized software and hardware versus the principal challenge of processing large amounts 

of high quality video data continually over a small amount of time.  
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The focus of our Major Qualifying Project is to design an integrated system that allows for 

fast and reliable processing of high quality video data and in doing so can detect and react to the 

presence of a firearm or other weaponry when used in a threatening or dangerous manner. The 

system would be designed to allow for easy integration in areas where public and private safety is a 

major concern such as parks, banks, schools and areas of transit. The system would also be 

designed to be as autonomous as physically possible, reducing the need for a centralized processing 

hub and allowing for quick and seamless integration in areas or buildings of varying size and 

complexity. It is hoped that through the design and implementation of such a system or device, we 

can come ever closer to ensuring the safety and security of everyday citizens at both the public and 

private level.  

Background Information 

Crime Statistics and Areas of Needed Improvement 

Gun violence is an increasing problem in the United States in recent years. There were 372 

mass shootings in the US in 2015, killing 475 people and wounding 1,870, according to the Mass 

Shooting Tracker[16] . As gun crime increases, the percentage of gun robberies also increases. 

According to the FBI in 2015 there were 4,091 bank robberies which 1,725 of them were 

perpetuated using a firearm[17]. Current systems that are implemented, such as silent alarms or 

panic buttons, rely in the fact that the silent alarm or panic button must be pressed. However this 

becomes harder when someone is pointing a gun at you. The Portland Police bureau[3] 

recommends remaining calm and following the robbers instruction as their guide to robbery 

response. Users might not have the chance to press the button which means that the authorities 

might not ever be called in for help. Or even if the button is pressed the time it took them to able to 
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press it might be enough for the robbery or shooter to flee the scene or a tragic accident might 

happen. In places such as parks, or any public facilities where it is very hard to install these type of 

signaling devices a problem arises. In other areas that these type of alert of system are not 

implemented and someone using other devices tries signal for help, there lies a problem that can be 

solved.  There are definitely areas of improvements that could save lives or prevent the robbery as 

a whole. 

Current Standards for General Weapons Surveillance 

In attempts to combat gun crimes, a significant amount of research has gone into many gun 

detection and prevention based technologies. Most modern research into this field focuses on the 

detection of firearms in general, using technologies such as X-ray and Electro-magnetic scanning 

and profiling to identify and report when a weapon is found on a person’s body. These technologies 

are excellent and profiling and identifying the presence of a firearm using various signals, sensors 

and profile recognition, but they do have some major drawbacks in terms of real world 

applications. The primary faults in these systems are that in many states and counties, open carry of 

weapons is allowed in banks, parks and other highly public places. A system that primarily focuses 

on automatically reporting a gun’s presence and calling the authorities cannot be realistically 

implemented in these places because doing so for someone who simply “has a gun” can be viewed 

as an infringement on basic rights permitted by the 2nd amendment. It can also lead to numerous 

false flags in which police are called and their time occupied in chasing after someone who isn’t 

causing an actual disturbance. In order for an efficient and fair auto-call type gun-detection system 

to be made, the system making a call has to not only identify that a gun is present but be able to 

make intelligent decisions based on the context of how that gun is being used. In this way, isolating 

detection solely to a set list of situations a gun is used in, false alarms and rights infringements can 

be reduced but to do so with many of the aforementioned technologies is almost impossible. Other 
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technologies do, however exist outside the current normal that should prove far more capable of 

accomplishing this complex task: namely systems dealing with processed vision and optical 

imaging.  

Computer Vision: An Alternative Approach to Surveillance 

Computer vision (CV) technologies are nowadays commonly used as an effective approach 

to automated vision processing. CV algorithms can analyze input video streams using models of 

human behavior to provide high-level information of the recorded events. Effectively, CV offers 

contextual understanding as part of detecting potential threats. As a result, recent years have seen 

intelligent video surveillance (IVS) systems being developed to replace the current CCTV systems. 

By implementing CV technologies, these IVS systems can efficiently monitor an area without 

requiring human agents for their operation. 

Most automated surveillance systems are organized in a similar manner “with low-level 

image processing techniques feeding into tracking algorithms which in turn feed into higher level 

scene analysis and/or behaviour analysis modules” [1]. The process, in more detail, can be 

visualized in figure 2-1 below: 

 

   

Figure 2-1: Flow diagram of the computer vision pipeline for a security application [2] 

 

The video input from a recording device is processed by the background model generation 
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module, which looks at whether the present pixels differ from the typical ground-truth values. The 

different pixels are called foreground and are grouped to form into blobs. Blobs are tracked 

throughout the stream and classified as targets, whose behavior is documented in the output video 

metadata. With this process, the vast data that is generated by the current CCTV solutions can be 

handily filtered and anything important is succinctly summarized in the video metadata, the output 

of the low-level content analysis component. As long as the CV algorithm is fast enough to process 

the data in real-time, an IVS system can monitor all operating video cameras simultaneously. 

The metadata generated gets processed by a high-level algorithm in order to detect if any 

event has occurred. The rules for an event are set up by the developers of an IVS during its 

configuration. Based on these rules, the algorithm can then trigger any appropriate response to the 

events detected. An IVS can, therefore, sound an alarm when it detects a breach of security. Given 

that the rules implemented can accurately predict the respective events, an IVS can successfully 

replace human agents who are necessary for current CCTV surveillance systems. 

Current Approaches to CV Surveillance 

After consideration, we believe that with computer vision we are able to bring our projects 

ideas to fruition. By adopting the computer vision techniques, we would be able to correct and build 

upon the ideas and concepts that would bring us closer to a safer and smarter world. With the aid of 

computer vision, a project was able to identify basic skeletal parts of human beings, the head and 

the 4 limbs. They were then able to identify the different poses of multiple people in the camera’s 

view to determine a selection of poses that may be deemed as threatening and dangerous or 

peaceful and harmless to society. Being able to distinguish between a person pointing a gun at 

someone and the victim having their hands raised, as opposed to non-threatening poses, paves a 

great way for the authorities to be alerted, when malicious actions are taking place. There were 5 

instances used in this project, 80% of the algorithm detections for the 5 body parts were correctly 
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positive, the 20% that could not be detected, had problems because the body parts were not 

distinguishable due to shadows and arms being very close to the body [13]. Also, In a study in AGH 

University of Science and Technology in Krakow, Poland, titled Automated Detection of Firearms 

and Knives in a CCTV Image, a team was able to use computer vision through sliding window 

mechanisms, background detection and canny edge detection from already existing surveillance 

cameras, CCTV cameras. This project was based on detecting both knives and firearms. The way the 

computer vision worked was that from the frames it is fed, it would search for human beings, once 

found, it would search for the arms of that person and then try to determine if they are holding any 

objects, if so, they would cross reference the object with their database of positive and negative 

results of either knives or firearms. This project yields a specificity and sensitivity of knife detection 

algorithm of 94.93% and 81.18% respectively whilst having a specificity and sensitivity of firearm 

detection algorithm of 96.69% and 35.98% respectively for the video containing dangerous objects 

and a firearm detection algorithm 100% specificity for video with harmless objects. Meaning that 

when detecting the firearms, all the cases that were detected where 100% firearms, but not all the 

cases where firearms were present, were they reported [12]. From these statistics, it can be seen 

that the guns were a more detectable object than the knives were. These are due to a number of 

facts, including the database of knives and guns, not being of a broader spectrum of situations, for 

example indoors vs outdoors, time of day, weather patterns etc. The main issue is that they are 

using camera images from CCTV camera recording, which suffer from low resolution and blurriness 

due to poor quality and inexpensiveness of the cameras. With all of these problems the project 

faced, they decided to send an alert to a human operator, who would make the decision to call the 

police or not. To solve all of these problems we aim on getting higher quality cameras that would 

provide our algorithms with more detail to clearly and more accurately identify the difference 

between dangerous and harmless objects to furthermore safeguard societies citizens. With an 

extremely accurate system, the time difference that the middleman, operator, introduces when 
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making the final judgement call to call the police or not could be eradicated, thus decreasing the 

time it takes for the police to get there from when a threat is detected. 

Other projects like Terahertz detection of illegal objects disperses high range frequencies 

from 100GHz to 500GHz for scanned imaging to be able to detect metal and dielectric objects under 

clothing. These frequencies use the reflections from the high frequencies to create an image that is 

then used as input to detect the different dangerous object that are being carried under people’s 

clothing [11]. Our project specifically does not want to use any invasive techniques/methods to 

detect dangerous weapons. We would not want our project to alert if a concealed weapon is being 

carried. This not only touches upon privacy issues but also create false alarms in our system 

because carrying a concealed weapon does not mean the weapon is going to be used for malicious 

intent, thus the police do not need to be alerted. It is only when this weapon is being wielded in the 

open that it then becomes a threat to the surrounding people, thus, needs to trigger an alert. 

Improving the Standard: Hardware Acceleration and the FPGA 

Of previous projects, the one most similar to the project we intend to undertake is the 

Automated Detection of Firearms and Knives in a CCTV Image project out of AGH. Fundamentally, 

both their and our projects seek to solve the same problem, information overload of a human 

operator of a CCTV or similar system. Both projects aim to automate the weapon detection in these 

systems. Ultimately, though, the system developed at AGH was found to be unusable for firearm 

detection. The system resulted in too many false positives and was deemed unusable as a result. We 

seek to outperform their project by removing one major limitation for the system, the lack of use of 

specialized hardware. We intend to create a better system by utilizing hardware preprocessing on 

the images before sending them off for software processing resulting in a faster and more 

consistent reading of weapons. 
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Project Methodology 

System Overview, Design Specification, and the Computer Vision 

Pipeline 

Based on our research findings we formulated a block diagram of our IVS system. The basic 

functional requirements can be met with one recording unit, capturing video stream, and a 

processor, running the computer vision algorithms. A response system is also needed to 

appropriately address detected events. Specialized hardware is used to handle the preprocessing of 

the images, in an attempt to improve the system’s performance both in terms of processing speed 

and detection accuracy. The resulting block diagram is shown in figure 3-1 below: 

 

 

Figure 3-1: Basic block diagram of our IVS system. 

 

         The input data acquired by the camera gets quickly processed by the specialized hardware, 

which efficiently filters it. The filtered video gets more slowly processed by the high-level CV 
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algorithms. Based on the detected events, the central processing system can call the response 

system to trigger an alarm or send an emergency message. All system modules will be separately 

connected to the power system.   

Camera / Image Sensor Requirements 

The camera is the main and only input device used in the project. Therefore the criteria 

needed for the camera was investigated to find the specifications needed for a camera that fits our 

needs. The criteria for a camera are its resolution, sensor size, mono or color and CCD(charged 

couple device) or CMOS(complementary metal-oxide semiconductor) sensor[18]. Each of the 

specifications mentioned above were needed to find the optimal camera however the price was the 

deciding factor. 

In terms of the resolution of the camera, its a measure of the detail of the image being 

captured. However, you could also explain resolution of camera as how large the image taken can 

be reproduced. This means that the higher the resolution of the camera the higher the output 

printed image size is. For this project there was no need to have a very high resolution camera since 

the pre-processing stage of the system filtered and trimmed down any unnecessary pixel that input 

image contains. Also the memory had to be taken into consideration since the higher resolution 

camera produce a bigger file. The camera resolution should have been between 1 and 10 

megapixels. [19] 

Also the sensor size needed to be taken into consideration when selecting the camera. The 

sensor size was important since a bigger sensor area will capture an image with higher quality, 

however it required a larger diameter. This made the lens of the camera bulkier as the size grew. 

For example, the Samsung Galaxy S6 has a sensor area of 22.5 mm[20]. Therefore the suggested 

sensor size should be in the range of 15mm and 80mm. For this range every high end phone lies 

within it. Cameras that are used in the top of the line phones tend to be cheaper and produce mid to 
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high resolution images. 

In addition, the camera can either be mono colored or colored. In relation to the project a 

colored was ideal. With a colored camera there was access to more pre-processing algorithms and 

object recognition algorithms. This was due to the body of the person holding the gun being able to 

be filtered as a pink blob.  

Finally, the type of image sensor CCD and CMOS is another feature that needed to be 

considered when choosing the best camera suited for the project. CCD sensor create a higher 

quality image with low noise which help reduce the preprocessing stage since there is less noise to 

be filtered. This was identified as the ideal type of sensor to be used since CMOS sensors need more 

light to create a low image. For the CMOS sensor, the extra noise caused by low light needs to be 

dealt with in the preprocessing stage. After further research, a lot of surveillance cameras use CCD 

sensors since they need to work 24 hours a day including night time where there are small amounts 

of light present. However, in the current camera market CMOS cameras comprise of almost every 

digital camera out in the market. [21] 

 The camera interface that the camera and the FPGA needed to communicate affected which 

board was bought. If the camera chosen had a micro-USB to USB interface, the board would have 

needed to have a USB port. The interface would not have been a problem if the chosen camera was 

a current FPGA module such as the OV5640[21], which is a 5-megapixel FPGA camera module. 

However, if we chose this module the FPGA that is going to be chosen should have enough power.  

Image Pre-Processing and Filtering 

The signal received from the camera will be subjected to two stages of preprocessing, one 

for general image correction and enhancement and one for data extraction and alteration to 

prepare the image for efficient analysis. Though the camera we hope to use would be of a high 

resolution, distortions can still be introduced to the signal that would decrease the probability of 



19 

detecting the firearm or the poses of a potential perpetrator. Techniques must therefore be applied 

to correct the contrast, color, and sharpness and determine different depths in the frames of the 

video signal. Applying such techniques allows the incoming image signal to remain consistent 

across multiple light conditions / settings / times of day while still being accurate to the reference 

images used to train the systems reference profile. Once this is determined, the image can be 

processed with a higher detection rate to determine edges of objects within the frames and can 

further detect the different shapes and objects in the frames. 

 The first thing that would need to be done to augment the image signal would be to correct 

its color. Color hue is typically one of the more difficult attributes to correct but redistributing the 

color saturation or correcting for illumination artifacts in the intensity channel would help our later 

algorithms and processes. Color intensity is usually the only color information that should be 

enhanced since it carries a lot of the information required for our processes and is the most readily 

adjustable. When working with the RGB channels it is normally advised to convert them into a 

certain color space and making alterations strictly to that color space before converting it back to 

RGB. Doing otherwise could cause serious, unwanted alterations to be made to the signal. [CV 

Metrics pg 56-57] Properly adjusted color information within the image can help the system 

differentiate between certain objects more so than would grayscale alone. Skin tones for instance 

can be used to identify the presence of a human body in the image and the positioning of the body 

therewithin. Guns themselves generally tend to fall within the black - silver spectrum of colors and 

can be more readily located by matching profile color palettes to that of the image object being 

analysed. Color can also be used subtractively, flagging and removing irrelevant data and shapes in 

the image such as plants, flooring, furniture and other objects whose color profiles do not match 

with those found in a person holding a gun. 

  Noise, as a consequence of the nature of light and the many sources of it and of false 

reflections / scattering there within, would inevitably be present in the signal and would require 
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removal so as to increase the accuracy of the image signal under scrutiny. The goal of basic image 

noise removal is to remove the noise present without distorting the underlying image heavily. One 

way this could be achieved is through contrast correction. Contrast correction can be implemented 

using thresholding, which segments the image at certain intensity levels to reveal features of 

foreground background and certain objects. There are several forms of thresholding: floor, the 

lowest pixel intensity allowed, ceiling, the highest pixel intensity allowed, ramp, shape of the pixel 

ramp between the floor and the ceiling like linear or log, point, may be a binary threshold point 

without a floor ceiling or ramp. Global Thresholding technique Lookup Tables(LUTs) are good for 

contrast remapping. First iterative experimentation is used to find the best floor, ceiling and ramp, 

then the LUTs can be generated into data tables which would then be used to set thresholds in fast 

code. Below (Figure 3-1) is an example of linear ramp function used. 

 

Figure 3-1: example of a linear ramp function used for contrast correction[34]. (Left) Original image shows palm 

frond detail compressed into a narrow intensity range obscuring details. (Center) Global histogram equalization restores 

some detail. (Right) LUT remap function spreads the intensity values to a narrower range to reveal details of the palm fronds. 

The section of the histogram under the diagonal line is stretched to cover the full intensity range in the right image; other 

intensity regions are clipped. The contrast corrected image will yield more gradient information when processed with a 

gradient operator such as Sobel 

 

Most of these Computer Vision algorithms processes mentioned are fairly large processes 
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that must be repeatedly implemented across a two dimensional array of constantly updating data. 

Implementing the necessary functions required to extract information from an image frame, such as 

whether or not a pre-defined item is present within that frame, would therefore take an incredibly 

long time to implement in purely serial hardware as each individual pixel in an 1080 x 1920 video 

pixel video feed would then need subjected to the same process one at a time. And while doing so is 

possible across the fastest cpus / serial processors on market, it often comes at the expense of 

higher power draw and increased chip size. In most embedded platforms and applications, these 

trade offs cannot be made with the limited resources available, leading to a desperate need for 

more power / size efficient hardware to better divide the processing time via another method.  

Softcore Processing: FPGAs and HDLs 

FPGAs are reprogrammable hardware logic circuits made up of arrays of hardware logic 

gates and lookup tables and help improve performance of a computerized system by adding a 

adjustable hardware resources to the design space. They are blank slates that can be designed to 

either augment existing serial hardware or to create complete implementations of logical 

operations in stand alone. It differs to a microcontroller such that a microcontroller is an already 

pre-designed circuit that you are unable to alter the main capabilities of and can only instruct and 

re-allocate resources based on the code that you write. For an FPGA however, you would have to 

design the hardware of the circuit to do exactly what you want it to do, including all signal paths, 

voltage considerations and system lag. There are two most popular types of Hardware Description 

Languages (HDLs) used nowadays to configure FPGAs, Verilog and VHDL. The HDL is then 

synthesized into a bit file that is then used to configure the FPGA. This synthesis process is creating 

gate level representations from a higher-level description of design like the HDL. 

An advantage of an FPGA is that it runs faster than a microprocessor as it is a hardware-

based implementation, but a disadvantage is that, the configuration is created using (HDL) that is 
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stored on the RAM, so once the power goes out, it would have to be reconfigured. But there are 

some FPGAs that have a flash chip that can automatically reconfigure it on power up. 

 For our project implementation we will be using a SoC (System on Chip) type FPGA, which 

contains primarily the gate arrays and lookup tables one would find within a standard FPGA as well 

as specially designed HSPs (hard system processor) that essentially functions akin to a low capacity 

serial processor. This selection allows us to make significant reductions in process time for most 

computer vision algorithms we’ll be running both by enabling the parallelization of as much of 

these algorithms as possible (logical hardware implementation via the FPGA) while still being able 

to implement and process the dedicatedly serial operations that cannot be parallelized such as the 

control operations and decision making. In addition to this, using a SoC style FPGA allows us to 

reduce costs by no longer requiring multiple serial micro-controllers/processors in addition to our 

FPGA chip, reducing overall cost of the system and making potential manufacturing more 

affordable. It also allows us to condense and isolate the image based systems of the device from the 

decision making logic engine of the device, which will be implemented on a more straightforward 

micro-controller type implementation instead. This will keep code simpler and less co-dependent 

allowing for faster and more optimal testing at the component level.  

 Due to the complex nature of the problem at hand, namely the complexities involved with 

taking a high resolution image stream and translating it into usable data from which to make 

decisions on, there are actually several ways in which we can implement this SoC type module 

within the overall computer vision pipeline. The main two ways in which this can be done for our 

respective project exist at the low and intermediate stages of this pipeline and involve using the 

FPGA’s mostly parallel nature to either accelerate the image preprocessing algorithms needed to 

clean and adjust the incoming image data to be more compliant with later algorithms such as edge 

detection and feature extraction, or to simply accelerate the aforementioned algorithms 

themselves. For our system we will be attempting to do both, creating hardware implementations 
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through the FPGA that specialize in each sub-process and transformation and connecting them all 

through the HSP control circuit, attempting to implement a system that is both spatially and 

temporally pipelined in the process. This should allow for the fastest implementation times of the 

Computer Vision algorithms possible without sacrificing image quality or algorithm reliability.  

Machine Learning - Neural Network for Object Detection 

 IVS systems need to detect threats and take appropriate action(s) with relatively small 

delays in order to be effective. The time constraints of visual recognition systems have motivated 

research on efficient classification algorithms. A machine learning (ML) approach is proposed by 

Lee et al using convolutional neural networks (CNNs) in a hierarchical feature model (HFM). A CNN 

is a feed-forward neural network that consists of a collection of receptive fields, imitating the way 

brain neurons are organized in the visual cortex. A neural network consists of a number of nodes 

each of which holds a different weight. Collectively, the differences in weight between the nodes 

form a pattern. Items that belong to the same class form similar patterns and therefore models of 

numerical thresholds for each node can form a classifier.  

In its classical form, in a neural network N nodes are used to classify an object with N 

features. A convolutional neural network is a more efficient variation that reduces the number of 

nodes and therefore the computational time. A series of convolution and max-pooling layers are 

used to reduce the number of necessary nodes. Convolution is an operation that attempts to extract 

features that accurately represent the responses of nodes. As a result, similar items that are given 

as input to the network will generate the same classification outcome. Max-pooling is a down-

sampling method that reduces the number of nodes by keeping the highest values of neighboring 

nodes. The highest weights, therefore these contributing more to the distinction between classes, 

are used to represent their respective areas and the nodes with smaller weights are dropped from 

the generated model. 
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The HFM generated by the CNN is used to create a hierarchical classifier ensemble (HCE), 

which ultimately performs the object detection. The object detection framework can be visualized 

in the figure 3-2 below:   

 

 

 

Figure 3-2: “Proposed object detection framework based on the hierarchical feature model (HFM), and 

hierarchical classifier ensemble (HCE)” [4]  

The authors identify three advantages of their proposed framework [4]: 

● Including an augmented object category resolves issues with inter-class ambiguity and 

intra-class variation.  

● HFM is shown to be more effective coupled with the HCE, because HFM’s clustering 

facilitates building the HCE. 

● Confusing data samples are clustered properly to sub-categories and overall detection 

accuracy can be improved. 

As the first step of the algorithm, the regions of interest (ROIs) are detected by using the region 

proposal EdgeBoxes algorithm. The EdgeBoxes algorithm is implemented as proposed by Zitnick 

and Dollr in their “Edge boxes: locating object proposals from edges” paper. [5] The features that 
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are present in a given ROI are generated by using a 16-layer CNN. [4] The CNN is implemented as 

proposed by Girshick in his paper “Fast r-cnn.” [6] The normalized ROI features that are extracted 

can be represented in a deep-feature HFM as shown in the figure 3-2. 

The resulting HFM has three different levels: the inter-class (H-level), the augmented class 

(M-level), and the intra-class (L-level). The root node has all the H-level nodes as children, the H-

level nodes have one or more M-level children nodes, which respectively have one or many L-level 

leaves as children. The hierarchical classifier ensemble (HCE) “is built by training the multi-

category classifier at each node of HFM, which is an assembly of one-versus-all SVMs”. [4] Support 

vector machines (SVMs) is a partial case of kernel-based methods and is a technique that was 

originally intended to build optimal binary classifiers. [5] An SVM implementation is included in the 

OpenCV library. [5] 

The system is able to learn to detect specific data-driven hierarchical categories (in our case 

firearms and human figure can be two possible choices) by using a latent topic model (LTM). The 

LTM is built by fitting a mixture model on the feature representation of a ROI that is extracted by 

the 16-layer CNN. The resulting LTM can summarize each ROI as a combination of K topics, where 

each topic corresponds to one or more super-categories (inter-class nodes). [5] The LTM analysis 

results in a quantitative representation of the HFM shown in figure 3-2. The category space Ω and 

its respective dataset D is reflected by subsets Ωh (super-category space), Ωm (augmented category 

space), and Ωl (sub-category space) and their corresponding datasets Dh, Dm, and Dl. 

The spaces Ωh, Ωm, and Ωl spaces are used to train binary SVM classifiers. To improve 

prediction accuracy, separate classifiers are trained for each space and a combination of their 

scoring ultimately results in the object classification. The mathematics for producing |Ωx| classifiers 

φ1… φx for space Ωx and their projected pseudo-probabilities are shown below: 
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Table 3-1: Formulas to generate the classifiers for the HCE component. 

Parameters A, B, and C for the normalized margin formula are determined through empirical fitting 

and the parameters α and β for the pseudo-probability formula are determined by logistic 

regression. [4]          

The effectiveness of the resulting pseudo-probabilities in classifying several daily objects 

(for instance bus, table, and bottle) is demonstrated by the authors of the paper. The algorithm was 

trained and tested on the PASCAL VOC 2007 and 2012 test sets and most of their detection 

accuracies range between 60% and 90% based on the different targets or variations of the 

algorithm. [4] In addition, the CNN approach is expected to remain relatively effective when there is 

a problem of inter-class ambiguity, which can certainly prove an issue when attempting to detect 

different types of firearms. For this reason, the described object detection framework is a promising 

choice for the ML component of our IVS.  

Summary of ML Algorithms 

 Because of its unsupervised nature and its ability to process large data efficiently, random 

forest is going to be the first machine learning algorithm that we will be implementing. At first, we 
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will be implementing the general framework and testing it against the publicly available PASCAL 

datasets. An additional verification step will then be added to check for a human figure and its pose 

to determine the context. Finally, the implementation of the framework will be customized by 

testing its performance against the dataset containing firearms and knives created by the AGH 

university researchers [8]. At any stage of the development process, if the random forest’s 

performance seems to decline due to inter-class ambiguity and overfitting issues, MCBoost can be 

tested as a more straightforward approach. On the other hand, if the random forest cannot 

accurately predict the classification of an object, the CNN approach can be tested as well.  

OpenCV 

In order to facilitate the development of the machine learning algorithm, we are using a CV 

library. More specifically, we are going to be using OpenCV as our library of choice. The main 

advantages provided by OpenCV are its ease of use for our application and its mutability. OpenCV 

was designed with the specific intention of high efficiency and use in real time applications. It 

features hundreds of functions and unique objects for use in a variety of CV applications. In 

addition, it features a large general purpose ML library. This library was specifically designed to be 

used in CV based ML problems. All of OpenCV is open source and easy to modify to fit our specific 

application.  

The OpenCV ML Library, or MLL for short, features about a dozen ML algorithms. Though all 

of these algorithms work differently, they share a common set of methods that allow the user to 

interact with them. CvStatModel() and ~CvStatModel() are the constructor and deconstructor for 

the models. The constructor can also be used to train the model on construction. train() is used to 

train the model while predict() is used to predict the label or value of any new data. save() and 

load() are used to save and load a model from an XML or YAML file respectively. write() and read() 

do a similar task, but are the generic forms and are generally not used.  
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Decision Making and Alert Systems 

Once a threat is detected, the gimbal, mechanical zoom and alert system come into play. If 

the system is unable to determine if a firearm is present or not, the mechanical zoom would be used 

to zoom into the object to further determine if the object is a firearm and an alert should be sent. If 

a threat is detected, the gimbal, would allow the camera to follow the culprit in the x- or y- plane, 

keeping the culprit at the center of the frame at all times during detection. 

The alert system is an important component of the project. This system, after getting input 

from the processor, will decide whether an alert should be sent out, presence of a dangerous 

situation, or whether no alert should be sent, no dangerous alerts present. 

Most current systems today are either provided through a security company or a Do It 

Yourself (DIY)/Monitor It Yourself (MIY) which have a few implementation techniques. The latter is 

a method in which, any individual could go to a store like Walmart and purchase an alert system kit 

for a one-time fee that they would have to assemble themselves at home using instruction manuals. 

This system opens up a communication line between the police and the customer. The first option is 

an alert system offered from a security company that would install the system for you with a 

monthly or annual subscription fee. This system would send an alert to the security company that is 

providing the service, who have an operator reviewing the surveillance to determine if the alert is 

false or not [14]. Sometimes the operator would even give a call to further investigate before the 

police are called. This method adds a delay to the time the police are alerted, but is used because 

according to Security Sales & Integration, an increase in the number of false alarms to the police 

leads to a decrease in the priority of response from the police to the location. In order to make sure 

that the location always has high priority response from the police, they use the operator.  

There are many trigger techniques in use. Three popular ones are: the panic button trigger, 

the security code trigger, the cash tray bill trap trigger. [15] The panic button is a button that it 
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placed at a strategic place in the location such that the police can be quickly responded to. (e.g. In a 

bank it is placed right under the bank teller's desk, so that if a robber enters the premises, all they 

have to do is extend their hand under their desk and push the button). The security code trigger, is 

a code, separate from your alarm's Personal Identification Number (PIN) code that is to be entered 

into the alarm system’s keypad, used to send an alert to the police in case someone threatens you to 

disable your alarm system. The cash tray bill trap trigger is also convenient as it alerts the police, 

when a bill is removed from the trap that easily inserts into a bank teller's cash tray. 

Our alert system to have a high priority response from the police with as few false alarms as 

possible. Our system can be implemented in a number of ways, but the way we envisioned it was 

for it to automatically and directly alert the police without an operator. This part of the system 

would run in parallel with the camera detection, as the location needs always to be monitored and 

kept secure. The alert system would simply have two actions, if a signal is sent to it, saying there is 

an alert, the system should be able to wake and send an alert to the police, in either an SMS form or 

prerecorded form. Otherwise if nothing is detected and sent, the alert system should be asleep. 

Unlike the other systems with their manual triggers, our system will to be automatically triggered 

by the detection of a presence of a firearm, like a pistol, and irregular human pose, like the 

perpetrator, holding the gun and people raising their hands. The alert system would not conduct 

any process but would take action solely based on direction from central processing. 

Power Considerations 

The whole system is going to need a power source and there are two orientations that 

would be able to provide the system the power we need, a self-contained system or a system 

receiving power directly from the building’s electricity. For the self-contained system, this would 

need batteries that would power the system, an advantage to this is that the system would be able 

to run if the main power in the building is off and the power source would be a direct DC source, the 

disadvantage to this is that the system’s battery, however low power we would like it to run, can 
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only supply a finite amount of power and would need changing, this introduces a time frame in 

which the system would not be running, thus there would be no surveillance for a period if the 

batteries run out. Given the DC voltage being supplied there would only be a need to amplify the 

voltage. Now using the other system orientation, the system would be connected directly to the 

mains of the building and would run with the power supplied to the system from the building, an 

advantage to this is that the system would not need attendance to change the power supply as it 

would be constantly receiving the power it requires and would never run out as is the case in using 

a battery, thus the system would always be able to run its surveillance features and keep the 

location safe. A disadvantage to this system would be that given the power is coming straight from 

the building's main power supply, the voltage would be in AC voltage and the components require 

DC voltage, thus another component would be needed for the system, an AC to DC converter. This 

component would do exactly what it says, this added component would be able to convert the AC 

power supply from the mains of the building to the DC current that the systems components 

require to operate in. This would make sure that the components are receiving the correct input 

voltage, instead of damaging the system. 

Mechanical Components: 2 DoF Gimbal 

Our entire system will be mounted on a 2 degree of freedom gimbal to allow the camera to 

sweep a larger area and focus on a threat when one is detected. A change of a few degrees in the 

camera's angle can mean a drastic change in the scene that is being viewed. In order to facilitate 

this high degree of accuracy that is needed and to also prevent the gimbal from moving when not 

intended, we will use a worm drive on both axes. This gear arrangement consists of a cylindrical 

worm screw driving a larger worm gear. It creates a very large mechanical advantage and has the 

unique quality of being unable to be back driven, which means that only the motor can drive the 

system, not the weight of the system itself. This will allow the gimbal to hold its position without 

needing to use power. 
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Mechanical Components: Mechanical Zoom 

 In addition to the gimbal, we will potentially be implementing zoom functionality to the 

camera. In order to implement this, we intend to use a third party varifocal lens designed for use on 

CCTV systems. A varifocal lens is a camera lens that is able to vary its focal length, but does not 

maintain focus as the focal length changes. These are commonly used with modern day cameras as 

a majority of cameras have some sort of auto-focus feature that can maintain focus as the focal 

length changes. For many varifocal lenses, the zoom and focus features are adjusted manually by 

rotating parts of the lens. These can be easily automated by attaching either a simple wheel or belt 

between the lens and a motor. 

  

Verification, Testing, and Methods of Analysis 

Data Gathering 

         The effectiveness of an IVS system that uses a machine learning algorithm largely depends 

on the quality of the data sets available. The data sets are necessary for both the development stage, 

where data sets are needed to train the algorithm, as well as the testing stage, where parameters of 

the system can be re-configured based on test results. When collecting representative data of our 

events we also need to create the corresponding groundtruth. “This groundtruth describes the 

expectations for the system.” [9] For instance, the appropriate groundtruth for the machine 

learning algorithm would indicate the correct events that should be detected and their appropriate 

responses. The corresponding groundtruth of a given data set can vary depending on whether it is 

used for training or testing purposes. 

         The almost infinite range of possible inputs to the recording device “makes completely 

exhaustive testing of vision algorithms virtually impossible” [9]. Since all computer vision 
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algorithms process frame by frame, our data set can include both static images as well as video 

streams and both should prove useful. In the early stages of development, we can use data sets that 

are publicly available. The researchers from the AGH university generated a dataset that “consists 

of 12,899 images” and their corresponding groundtruth “divided into 9340 NE and 3559 PE 

images” (NE = negative events, i.e. no firearms should be detected, PE = positive event, i.e. firearms 

is present) [10]. The AGH research team also generated a “training and testing set were the same 

size, with 8.5 min of recording resulting in approximately 12,000 frames each” [10]. These publicly 

available data sets will be mainly needed during the early development stages and should be 

replaced by (or merged with) larger data sets as well as data sets that we choose to develop. 

Verification and Testing 

         The data sets can also be used to test and verify the effectiveness of an IVS system. The 

algorithms can be simulated with test images or video as input and its output compared with the 

respective groundtruth. However, because “the system has to perform predictably across an 

intractable number of scenarios and environmental conditions”, we will need to work with 

development tiers. [9] The types of scenarios and environmental parameters are fixed in the first 

developments tiers, but become more relaxed in next tiers. In addition, we need to “ensure correct 

and predictable software performance when porting technology between algorithm development 

environments (such as Matlab and high level programming languages like C# and C++) and product 

deployment code environments such as low-level C-code with processor-specific optimizations” [9]. 

We can ensure that by testing the IVS system as a complete unit. The corresponding unit test will 

look at whether the output from the input data matches its corresponding groundtruth. Unit tests 

will not provide any useful metric for evaluation purposes, “instead, the expectation is that each 

test should pass.” [9] 

         The overall performance of our system can be evaluated by measuring either the false alarm 
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rates per hour (FA/Hr) or the probability of detection (PD) of an event. Calculating FA/Hr can be 

more challenging since “FA/Hr should only be measured on long videos with no or only a few real 

events, representative of the real deployment.” While the AGH team’s data can be used to calculate 

PD, different data sets will be needed for to acquire more verification metrics. In later (more 

technically demanding) development tiers, the groundtruth can also be replaced by a fuzzy 

groundtruth, where more than one representations of the data are accepted as correct. For 

instance, in frames when a person is changing between poses, both the previous and next pose can 

be accepted as correct readings of the data. In addition to ensuring overall performance by unit 

testing, we also need to test each block of the IVS system separately. When changing parameters 

and adding functionalities these tests can help reach better metrics by identifying which module 

has a lower overall performance. [9]   

         For the background generation module, the groundtruth needs to appropriately merge 

marked areas of the foreground that were previously of interest to the background when they are 

no longer relevant. [9] For example, when a person leaves the premises of a bank, but is still visible, 

the foreground should not include the person as they cannot pose a threat anymore. To evaluate the 

performance of the background generation module we can use “the percentage of correctly 

detected foreground pixels, and the number of pixels falsely labeled as foreground.” [9] Based on 

the development tier, the groundtruth should appropriately reflect the expectations from the 

algorithms. In addition, the groundtruth can also be replaced by a fuzzy groundtruth, where more 

than one representations of the background are accepted as correct. For instance, at the exact frame 

when a person exits the area of interest, the groundtruth should accept the person being included 

in either the foreground or the background. 

         The blob generation module can be tested by calculating PD, the probability that a 

groundtruth blob is matched to any blobs detected from the algorithm. Researchers Venetianer and 

Dent “recommend a non-linear weighting to compute Pd: if the groundtruth and detected targets 
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overlap by more than a certain percentage, it is considered a perfect detection” [9]. Fuzzy 

groundtruth can also prove useful for the blob generation module, as an error of few pixels in small 

distant blobs can result in no overlap but still penalize the system for not detecting unimportant 

blobs.     

         Testing the tracking of targets can be done by matching each track from the groundtruth to 

the closest one detected. If the track detected is closer than a threshold, meaning that the target was 

accurately tracked, this target is marked as successfully tracked. The performance metric is 

therefore a percentage of the groundtruth tracks being matched. Finally, the classification 

component can be evaluated based on how many of the detected blobs were correctly assigned 

with their respective event. 

         All testing will be conducted in two stages: performance testing and regression testing. 

Performance testing evaluates the effectiveness of our IVS system. Performance testing ensures the 

basic tier requirements are met. The unit tests that will be used for performance testing are 

expected to always be successful. Regression testing ensures the performance of our system 

remains consistent as we add more functionalities to our system and as we move to next 

development tiers and relax assumptions. During regression testing, the metrics from the 

component testing will be used as a basis to appropriately revise parameters as needed. The 

ultimate goal of both stages of testing is to increase the overall performance of an IVS system and 

ensure it remains consistent. 

Project Timeline, Goals and Budget Information 

Operational Milestones and Stretch Goals 

 Our team has decided to structure the organization and development of our project using a 
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two-pronged approach. As such, the main modules and functions required to implement our system 

have been broken into 2 separate categories: Softcore Implementations, including all filters, 

accelerators, extractors and any other pre-processing type tasks that can be implemented on the 

FPGA logic, and Hardcore Implementations to be implemented across the Hard System Processor of 

the SoC, including the C, OpenCV functions, machine learning algorithms and the basic state based 

control signals. From this break down we have assigned two primary teams, one devoted to 

hardware language (Verilog) programming and one devoted to system level C coding (OpenCV).  

 Due to the complexity and scale of each module in the system, we’ve opted to have both 

teams work in tandem, developing different but related parts of the system and essentially working 

towards each other and a full system integration. As such, each team has various milestone goals to 

achieve within their respective focus. 

  

For the OpenCV team, these Milestone are:  

● Implementing a Basic Non-specific machine learning algorithm on desktop  

● Refining it to focus on a specific image profile  

● Generating a training profile based on a set of gathered gun video data  

● Scaling it back to work and operate on embedded logic 

● Identifying Areas of possible bottleneck for hardware acceleration 

● Integrating it into the full system pipeline.  

 

For the Verilog team, these Milestones are: 

● Translating General Purpose image filters and operations to Verilog Modules 

● Combining modules together to pre-process the video stream 

● Test the Verilog modules for accuracy and image quality 

● Implement hardware acceleration resources for Serial Process Acceleration 
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● Integrate into the full system pipeline. 

 

These submodule milestones then lead into our total project goals. At the bare minimum, we hope 

to have a working system that can identify a generic, easy to detect object (such as a pink square), 

track that object and send out a warning signal in real time. From there, we’ll move on using real 

guns to train the machine learning algorithm, with the intent to detect a specific and easy to isolate 

gun type such as handguns or revolvers.  

Implementation Timeline and Gantt Chart 

We sat down and drew out the plan for the upcoming 2 terms, C term and D term. As can be 

seen in figures 4-1 and 4-2 below, our Gantt chart’s time is based on each week. The main tasks of 

our project are broken down into a hardware component or software component to be fulfilled 

within the number of weeks allotted to the tasks. The dates are color coded to indicate the different 

times within the next 5 months of the project’s lifespan. The cyan blue dates are weeks in which 

school is not in session. The yellow dates are weeks which school resumes. The green (C term) and 

dark blue (D term) dates are those in which school is in session. The orange dates are the weeks in 

which school goes on a break (C Term)/ends for the academic year (D Term). At the bottom of each 

Gantt chart there is a section for our deliverables and when we would want to be working on them 

or finishing them. 
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Figure 4-1: Gantt Chart for C Term 

 

 

Figure 4-2: Gantt Chart for D Term 

Hardware Resources 

Proposed camera solution: 

After taking into considerations the specifications that were needed and after selecting 

which FPGA board is going to be used. A final decision was made in terms of the camera component. 

The camera that was picked is the ELP 2.8-12mm varifocal lens with 2MP. This camera has knobs 

that be adjusted which would fulfill the mechanical zoom component of the system. The lens is 

between the ranges of 2.8 to 12mm as stated above. The camera is powered by USB, the 

development board chosen has an USB input, this means that no extra module will be needed to 

communications interface between the camera and the board. The camera outputs file in MJPEG 

format which is ideal since it is widely used. However, its compression is not as good as others but 

the resolution that the camera would be used would not be highest it can provide. The camera uses 

a CMOS sensor since most commercial cameras have this type of sensor due its manufacturing 

price. The camera is also multi-colored which is one of the requirements that the system needs. If 

we encounter a problem with this camera during our implementation, two other options have been 

selected as our backup plan. The OV 5460 which is an fpga camera module with a 5MP pixel 

resolution however is does not have adjustable lens. To overcome this an extra lens that can be 

adjusted mechanically would be bought and attached. This module outputs an 8/10 bit raw RGB 
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and at 1080p it can record at 30fps. This camera is better in terms of resolution however the 

varifocal lens camera provided a lot more in terms of the mechanical parts of the system.  

Proposed FPGA Development Board Solution 

The proposed FPGA development board chosen is the DE1-SOC DE Board from Terasic.  The 

board has the latest Altera SOC chip the cyclone V. Which is optimized for video processing 

implementations.  It has 85,000 flip flops and 4,450 Kbits of embedded memory.  In terms of 

memory the development board has 64MB of of SDRAM which is going to be used to store the 

image streams that the camera is capturing. The camera chosen output size means that a 4 minute 

long video will have a size of 20MB. Which is very good considering the retail price of the board. In 

terms of the communications that this board has it contains: two USB ports , one USB to UART , 

10/100/1000 Ethernet,  PS/2 mouse/keyboard and an IR Emitter/Receiver. For the connectors in 

the board we have Two 40-pin Expansion Headers (voltage levels: 3.3V), One 10-pin ADC Input 

Header and a One LTC connector (One Serial Peripheral Interface (SPI) Master ,one I2C and one 

GPIO interface ). It requires a 12V DC input. Overall this FPGA development board should satisfy 

our needs. 

Software Resources and Licensing 

The current software that will the utilized will be Visual Studio 2015 as our c++ IDE. For 

image processing and machine learning the OpenCV database will be used. This database is the best 

open source computer vision database that has been used and updated over the period of 10 years. 

The library will be linked to the IDE to be able to test the algorithms before the parts arrive at the 

start of C term. OpenCv version 3.1 for c++ will be used although there are c, java and python 

libraries as well. In addition the PASCAL VOC and AGH datasets will be used to start training the 

machine learning algorithms.  The first dataset contains common objects found in everyday life 
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such as cars, houses, bicycles, etc… The second dataset contains weapons. 

Total Budget Review and Expenditures 

According to the MQP guidelines every team member is allowed $250 to spend on parts for 

the project on hand. Table 4.1 shows the breakdown of our final expenses. 

Table 4-1: Budget Breakdown 

 

 

As we see can see from the table above most of the components for the system are already 

bought. The only part that is not considered here are the gimbal 3D-printed parts. Most of this parts 

will be done using the 3D printer in the robotics department. The budget allocation is good we have 

a good cushion if some problems with parts arises or any other inconvenience. 

Background Conclusion 

All the individual components for the system have been decided. The decisions were made 

after doing the necessary background research. Firstly, we decided that an FPGA would be ideal to 

acts as a hardware accelerator for the image processing algorithms being implemented. The system 

will be implemented as SoC. After the FPGA was designed, the camera was selected taking into 

consideration the specifications datasheet of the board. The chosen camera required power 

through USB input. In addition, other options for cameras were presented in the event that an 
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unexpected problem arises with the current camera setup. 

For the machine learning algorithms, 3 were investigates thoroughly. It was concluded that 

the preferred option would be a random forest however depending on how the implementation 

goes the algorithm might change to a Multiple-Classifier Boosting or a Neural Network.  

After researching and selecting the main components of the weapon recognition system, the 

mechanical aspects of the system were chosen. A Gimbal with two degrees of freedom and varifocal 

lens will be implemented. The Gimbal will be almost on its entirety 3D printed however some parts 

would need to be built in a machine shop. Milestones and stretch goals were also set for the team to 

have a clear understanding of the status of completing the system. These will serve as guidelines 

however they are not set in stone. The stretch goals will only be implemented if the base case of the 

system is done and there is extra time to implement them. 

In addition, a Gantt chart based on the milestones was created clearly showing the different 

goals that need to be completing by particular dates. This again will help visualize where we are in 

the project and if we are behind or ahead of the time frame. Finally, the budget was written clearly 

showing a breakdown of the parts that were bought and their respective prices. 
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Design Specifications 

Top Level System Block Diagram 

 

Figure 6-1: Top Level System Block Diagram 

Our system takes frames from a camera which are decoded and sent as pixel arrays for filtering to 

be done on them and sent back. The filtered pixel arrays are then passed to a neural network which 

then detects if a weapon is present, activates a trigger and sends a signal to the motors or servos to 

change the scope for the frames. 
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Camera 

 

Figure 6-2: ELP 2.8-12mm Varifocal Lens 2.0megapixel Usb Camera[31] 

For the finalized design of the project, the ELP 2.8-12mm Usb Camera module from ELP was 

selected to its small profile, high quality varifocal lens, and native support for communication with 

Linux based operating systems. The camera itself operates under UVC communication protocols 

allowing for easy driver-less integration with most systems that already support them within their 

USB driver/handler, including most modern open source Linux OS kernels.  

In order to integrate the camera with the chosen development board, the DE1-SoC from 

Terasic, certain additional Linux resources are required. The main tools of integration needed are: 

 

● a frame grabbing application designed to communicate with the camera and save both 

multi-frame video streams as well as single frame images. Due to the nature of our 

implementation, this frame grabber must be fully deployable from the commandline or 

included as pre-installed function libraries.  

● an integrated ISR module designed to run the frame grabbing application and store visual 

information in the correct updating cyclical structure as well as pass that structure’s 

address and information to the main line system. 

● a calibration module that runs at startup with the frame grabber to ensure that the camera 
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itself is operating in the correct data compression and resolution settings, in this case 1080 

x 720 pixels under H.264 encoding.  

Each of these three additional resources are implemented to ensure proper storing and accessing of 

the video data and are installed in the custom uBoot kernel prior to startup.  

Mechanical Components 

 

Figure 6-3: Full Assembled Gimbal 

 

 

 

Figure 6-4: Full CAD model of the mechanical components of the system. 
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The finished model is a 5in by 5.5in by 6.63in box with the gimbal inside. The gimbal has an 

approximate range of 60 degrees vertically and 50 degrees horizontally. The two main axis are 

controlled by worm drives geared 1:98. This number was derived after determining the worm 

being used in the drive and the size of the gears for the drive. The gears were determined to be 3in 

diameter based on the size of the camera. The worm being used had .06in long teeth and a pitch of 

32. From this information, we can calculate the pitch diameter of the gears, 3.06in, by adding the 

diameter of the gears without teeth with the length of the teeth. The number of teeth on a gear is 

the pitch diameter multiplied by the pitch, in our case 98. Because the worm used has a single helix, 

the worm acts as a single toothed gear in this system. This results in the mechanical advantage 

mentioned earlier of 1:98. The motors being used are rated to spin at 100 RPM at 6V. When 

supplied the 3.3V from the board, the motor will spin at 55 RPM. This will make the axis of the 

gimbal spin at 0.56 RPM, or about 3.4 degrees per second. This is slow enough to allow the gimbal 

precise control over the position of the camera but fast enough to effectively track an object moving 

across the screen. 

The gimbal is divided into three main parts, the base, the horizontal gear piece, and the 

vertical gear piece. Each of these parts had some combination of motors, servos, encoders, and the 

camera mounted onto them. In addition, each of these parts are attached to the others by a single 

screw, allowing them to rotate in a single dimension relative to the part they are attached to. 

Base 

The base acts as the main mounting point and housing for the rest of the parts. It features 

mounting points for the horizontal gear piece in the center, a motor to the side of the horizontal 

gear piece, an encoder to the other side of the horizontal gear piece, and the main processing board 

on the back. The base has four feet holding it .5in off of the ground to allow room for fasteners to 
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hold the horizontal gear piece, motor, and encoder in place. There is also a simple resting block to 

assist in holding the motor still. 

 

Figure 6-5: CAD model of the system’s base 

Horizontal Gear Piece 

The horizontal gear piece controls the left/right movement of the camera and holds the 

vertical gear piece, a motor, and an encoder. All of the structure of the gear piece is mounted on top 

of a 3in worm gear driven by a motor on the base. The smaller of the two structures holds the 

motor controlling the vertical gear piece. The larger structure holds the vertical gear piece and an 

encoder to track the vertical gear piece’s movement. 
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Figure 6-6: CAD model for the horizontal gear piece 

Vertical Gear Piece 

The vertical gear piece controls the up/down movement of the camera and holds the servos 

controlling the camera’s zoom functionality. Space is left behind the camera to allow room for the 

wires that attach to it. The two servos are offset from each other so that one can control the outer 

ring of the camera, the zoom, while the other controls the inner ring, the focus. 

 

Figure 6-7: CAD model of the vertical gear piece 

Going from Digital to Physical 

Due to the complexity of the parts, all of the parts were 3D printed. Many of the sections, 

especially the horizontal gear piece, had to be broken down into smaller parts to facilitate printing. 

The parts were then glued back together to get the finished assembly. In addition, nuts were glued 

to the vertical gear piece to provide a solid mounting point for the camera. The resulting assembly 

was strong, but also very lightweight. As a result, the assembly unfortunately was blown off of a 

table a couple days before the pictures below were taken, resulting in some parts not being in place. 
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Figure 6-8: Images of the final assembly of the mechanical component 

 

As can be seen in figure 6-8 above, some parts were not printed exactly as they were modeled. The 

most obvious of these is the base. The base itself is shorter than the digital model and it has 

additional supports on the side. These changes were done due to the limitations of the printer being 

used. The base was slightly too tall for the printer and the supports were needed so that the part 

did not collapse while printing. Other than these and a couple other extremely minor changes, the 

whole printing process was fast and easy for our application. The parts ended up coming together 

quickly once printed, resulting in our main delays being the time needed for the printing itself and 

for ordered parts to come in. 

Sensors 

Connected to both of the axis are encoders. The encoders are each geared with gears half 

the size of the axial gears, resulting in a mechanical advantage of 2:1 to the axis themselves. This is 

the same as 1:49 to the motors in the case of the encoder for the vertical axis. The primary use of 

the encoders is to prevent the gimbal from driving either of the axis too far and breaking itself.  

In addition to the encoders, each axis has a limit switch at one of the two outer limits of the 

axis. For the vertical axis, the switch is at the lower limit, while for the horizontal axis the switch is 

at the left limit. When initializing, the system first drives the vertical axis down until it hits the 

lower limit to determine its location, using the value of the encoder here and the known range of 
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the gimbal to later prevent oversteer. Next, the system drives the horizontal axis left until it hits the 

left limit to do the same with the horizontal axis.  

 

Figure 6-9: Images of the encoders and limit switches as they are attached in the system 

Image Preprocessing 

Even though the specifications of our camera and the quality output of the camera are great, 

when using this video feed for identification of the weapon, smaller frames of the image are used. 

These smaller frames used are a zoomed in section of the entire frames and as such are a more 

pixelated version of the image and it is hard to differentiate where edges are created. Also, at a 

distance similar color start to blend in with each other and are harder to differentiate. With the 

three filters we are using, the pre processed feed would make it easier to detect weapons by the 

artificial intelligence (AI). 

In order to eliminate a substantial amount of time, given the 3 term limit for our project, we 

are using HDL Compatible Matlab Simulink blocks that are that would then be able to be used with 

Matlab’s HDL Coder to generate Verilog code that can then be turned into .SOF files using Quartus 

Prime Software that can then be run on the Altera FGPA Board. Simulink provides a visual approach 

to system design, letting us visually see the flow of data in the system. Since Simulink has an HDL 

coder pre-installed with various pre-made function algorithm blocks, it allows for a quick 

turnaround from vision algorithms and filter concepts to HDL implementations on our Altera 

board. 
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Camera Interface 

Once the camera feed is processed and accessible by the board, the FPGA would be able to 

run Verilog code that runs the filters on the feed to produce a more refined image that would make 

it easier for the artificial intelligence to identify a weapon. 

 

HPS and FPGA Communication 

We came to realize that it was not as direct as we had thought it was to use the camera feed 

input on the operating system, on the FPGA. In doing so we would have to create a way for the FPGA 

to obtain the image files for the image filters to be run on and sent back to the operating system. 

Processing Filters 

When first tackling the image preprocessing, we set of to model it in Matlab first, using 

Simulink blocks. This was a test to see if the filters we were choosing were going to give us the 

desired effect we wanted. We set up blocks that were not necessarily compatible with the HDL 

Coder, but would be able to give us some results for the filters we were choosing to use. We 

demonstrated color space conversion, image sharpening, contrast correction and foreground 

detection which can be seen in the following figures 6.9 to 6.12. 
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Figure 6-9: Image of the Simulink blocks for color space conversion, contrast correction and Sobel filter [30] 

 

Figure 6-10: Break down of the sobel filter subsystem block [30] 
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Figure 6-11: Original image for the edge detection filters 

 

Figure 6-12: Pictures shown for the applied Matlab example of sobel (left) and Canny (right) filters 
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Figure 6-13: Original (left) and filtered (right) picture for sharpening 

 

We have narrowed down to three filter processes needed to enhance the image and make 

weapons more defined and easily detectable. The processes are contrast correction, edge detection 

and foreground and background detection. 

Contrast Correction 

A contrast correction filter would be necessary as it would be able to further identify the 

different objects that lie within a limited number of pixels when detecting in a smaller frame. 

The histogram equalization is used to correct contrast in the image, this would help in cases 

of low light. This accepts an image and spreads out the most frequent intensity values to help better 
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distinguish objects in an image. The Matlab Simulink block model design can be seen figure 6-14 

and an example of its input and output can be seen in figures 6.15 and 6.16. 

 

Figure 6-14: Matlab Simulink blocks for the contrast correction 

 

Figure 6-15: Original image for contrast correction 



54 

 

Figure 6-16: Contrast corrected image 

Edge Detection 

There were two filters that we were considering: Sobel and Canny algorithms. We decided 

on a sobel filter because this filter was able to generate the edges for us as well as being 

computationally simple enough to keep the latency of the system low. The Canny algorithm is more 

complex than the Sobel algorithm and identifies edges within the object, not just around the object. 

These extra edges within the object is not required. 

2D Sobel Filter 

For the edge detection, we decided to use the pre existing algorithm for Sobel filter as it was 

pretty straightforward to implement and delivered results that meet our expectations and 
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requirements. The Sobel operator performs a 2-D spatial gradient measurement on an image and so 

emphasizes regions of high spatial frequency that correspond to edges. The Sobel operations are a 

number of mathematical calculations and as such the 2D matrix of the incoming image is converted 

into a double. Once the input is a double, it is split into two perfectly identical matrices and dealt 

with as the x (horizontal) and y (vertical) edge detection before it is put back together to form the 

full function. Each is convolved with a set matrix kernel which vary from each other by a 90-degree 

rotation to give the x and y parts. These can be seen in figure 6-17 below represented as Gx and Gy: 

 

Figure 6-17: Picture of the Convolution matrix kernels used for edge detection [22] 

 

Once convolution takes place, these signals are then each squared, and the square root of 

the sum is taken. Once the gradients are computed for the input 2D image, a comparison is made 

against a threshold value. For this experiment, we use a threshold value of 200. The maximum 

threshold value, which depends on the convolution kernel used, is (1 + 2 + 1)*255 - (1 + 2 +1)*0 = 

1020. The threshold comparison is used to convert any of the gradients that are more than or equal 

to the threshold value of 200 to the white value on the color scale of 0 to 255, which is 255. All 

other gradient values that are less than the threshold value are converted to the black value 0. In 
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doing this, the image is converted back to the color scale (i.e. image format) and now represents the 

edges of the input image. Figures 6-17, 6-18 and 6-19 respectively show the Matlab Simulink block 

for the implementation, the image used for the edge detection and the edge detected image. 

 

Figure 6-18: Edge Detection Block Diagram [31] 
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Figure 6-19 : Original picture used for the sobel filter[32] 

 

Figure 6-20: Output image of sobel filter at two different thresholds[32] 

3D Sobel Filter 

We are implementing a 3D filter that would be able to take the RBG input from the camera 

and detect the edges of the objects in the feed. With the 3D filter, we would not need the color space 

conversion to make the feed a grayscale 2D input. The 3D filter would work just as the 2D filter 

worked, just that the video stream would be split into 3 identical streams and the convolution in 

following figures 21, 22 and 23 would each be assigned and applied to one of the three streams. The 

resulting streams would then each be squared and a square root applied to the sum the squares for 

the gradient calculation of the image frame in the video feed. These gradients are then compared to 

threshold values. The threshold comparison is used to convert any of the gradients that are more 

than or equal to the threshold value of 200 to the white value on the color scale of 0 to 255, which is 

255. All other gradient values that are less than the threshold value are converted to the black value 

0. These assignments of black and white, eliminated all other unnecessary information on the 

picture and presents the edges of the input video feed. 
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Figure 6-21: 3D Sobel filter convolution matrix kernel for x plane edge detection [23] 

 

Figure 6-22: 3D Sobel filter convolution matrix kernel for y plane edge detection [23] 

 

Figure 6-23: 3D Sobel filter convolution matrix kernel for z plane edge detection [23] 

Foreground Detection 

Foreground detection is one of the main block that comprise background subtraction. 

Background subtraction is widely used for classifying image pixels into either foreground or 

background in presence of stationary cameras. A Gaussian Mixture Model (GMM) model is one such 

popular method used for background subtraction due to a good compromise between robustness to 
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various practical environments and real-time constraints. By using the Gaussian Mixture Model 

background model, frame pixels are removed from the required video to obtain the desired results. 

The foreground image processing has the following block stream. 

 

Figure 6-24: Background Subtraction Block Diagram [24] 

 

The pre-processing block deals with cleaning up the image that contains device noise or 

unnecessary environmental elements such as rain or snow. The background modeling block create 

compute the model that will be used to compare it to future frames of the video and output If that 

frame is a background or a foreground.  The foreground detection is the step where the background 

model is compared with the video frame and identifies candidate foreground pixels. Finally the data 

validations block removes pixels that are not relevant to the image. 

A more in depth look at the foreground detection, shows the computations that are done to 

decide a given frame is considered background or foreground. The algorithm compares each input 

pixels to the mean 'μ' of the associated components. If the value of a pixel is close enough to a 

chosen component's mean, then that component is counted as the matched component. To be a 

matched component, the difference between the pixels and mean must be less than compared to 

the component's standard deviation. 2. Secondly, update the Gaussian weight, mean and standard 

deviation (variance) to reflect the new obtained pixel value. The image below shows the different 

parameters that the algorithm uses. 
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Figure 6-25: Foreground Algorithm Parameters [25] 

The image shown below illustrates the block diagram of the foreground algorithm. 

 

Figure 6-26: Algorithm Block diagram [26] 

 

 

Figure 6-27: Original Image, Background Model, output Image. [27]  
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Implementation of Algorithms on DE1-SoC 

 

 

Figure 6-31: DE1-SoC Development Kit by Terasic  

 

Both the Image Pre-Processing and the Machine Learning subsystems operate off the DE1-

SoC development board. This board features an integrated Cyclone V SoC device with a Dual-Core 

ARM cortex-9 Hard Processing System, 85K programmable logic elements in standard FPGA 

arrangement, 4450 Kbits of embedded memory native to the SoC, as well as 64 MB of SDRAM, 1 GB 

of DDR3 SDRAM for the HPS and 2 hard memory controllers. The board also contains multiple I/O 

peripherals including push-button user keys, switches, LEDs, 2 40-pin expansion GPIO headers, 2 

USB 2.0 ports with ULPI interface, and a set of ADC and DAC arrays for signal processing 

applications.  

The schematic below illustrates the overall configuration for all peripheral hardware 

devices and how they communicate between both the ARM HPS and the FPGA architecture. 
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Figure 6-32 Board Hardware Layout 

As is implied through the above schematic, only certain peripheral devices are directly 

connected to the HPS section of the Cyclone V. As a result of this, all peripheral devices which 

connect directly to the FPGA architecture cannot innately communicate with the HPS. To combat 

this issue while still maintaining the advantages gained from direct connection to the FPGA, the 

Cyclone V implements a lightweight bridge between the HPS and FPGA architectures on which data 

can be transferred, and allowing the HPS to act as master to peripherals on the FPGA side.   

The main peripherals accessed through this project are the Clock Generator (for 

implementing timing structures necessary for control logic), the ADC pin port (for reading data off 

of the potentiometer sensors), the 40 pin GPIO expansion headers (for reading from the limit 
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switches and driving the DC and Servo Motors), and the SDRAM (for local memory storage during 

image conversion and filtering). In order to save design time and considering that no special 

considerations needed to be made regarding these peripherals with the sole exception of the PWM 

generation needed for the servo motor pins, it was decided to implement most of the FPGA 

interfaces for these pins using the reference Verilog modules provided in the DE1-SoC computer 

design reference from Altera.  

 The DE1-SoC computer design reference is a preset library of simple interface FPGA designs 

that make using peripherals through the FPGA faster and more efficient. Each of the implemented 

controllers and data registers are memory mapped to addresses across the lightweight FPGA-to-

HPS bridge starting from a base address of 0xC0000000 with a max word size of 32 bits. Several of 

the peripherals are implemented as parallel ports, supporting input, output, and bidirectional data 

transfer through proper direction register configuration. Most of the peripherals also have data 

mask settings pre-implemented to allow for interrupt generation from the FPGA. These interrupts 

are handled by the generic interrupt controller on the HPS and are generated whenever a register 

corresponding to a peripheral device changes value. This primarily comes into play in the 

implementation of the timer controller and clock generator but also plays a small role in the motor 

control Interrupt Service routine in regards to the limit switches.  

 

Figure 6-33 SDRAM Memory Structure 

Proper configuration of the parallel GPIO expansion header ports is responsible for most of 
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our peripheral interfacing and therefore of particular interest. Each pin can hold a state of either 1 

or 0, with 1 corresponding to a 3.3 volt lead line at approximately 50 ma and 0 corresponding to 

ground. General procedure for outputting values includes setting all direction registry values 

necessary to 0 and assigning the corresponding pin a 1 or 0 value, while input lines simply require 

directional settings of 1. This is generally handled through the Init_ procedures of each appropriate 

ISR that interacts with the GPIO lines (Data Registers D0 through D31).  

 

Figure 6-34 GPIO Pin Structure 
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The Linux Kernel 

 

 Figure 6-35 ARM-Linux Logo [33] 

In an effort to simplify design requirements, it was decided that a Linux operating system be 

implemented on our ARM HPS. Doing so allowed the design of the image processing subsystem to 

be contained to a single binary executable, easily understandable and operable through ARM cross 

compilation; removed the need for custom written peripheral drivers for our UVC based webcam, 

and keep our control flow to a base level interrupt control flow which comes native in Linux based 

kernel systems.  

Our Linux distribution is modified version of the general purpose Linux kernel source 

(v3.18.0) compiled for ARM based architectures. Kernel compilation and correct building on the 

DE1-SoC board requires 4 things:  

● A Pre-loader script which prepares the Cyclone V to handle the instructions given by the 

main bootloader 

● A Boot-loader which takes and creates a bootable image to be loaded onto an SDcard and 

used to extract and instantiate Linux on the DE1-SoC 

● A Linux Kernel Source 

● A Linux  file system core for access to and command level interaction and control with the 

Linux kernel 
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Figure 6-36 HPS Layout 

In addition to all this, there must also be a device tree blob or .dtb file present on boot which 

tells the Linux operating system how to interface with all of the peripherals and hardware 

resources native to both the HPS and the board itself. Unfortunately, no predefined device trees are 

available for the DE1-SoC, meaning this .dtb file must either be ripped from an already existent 

Linux implementation (such as those provided on the Altera university site), converted back to a 

device tree source file (.dts) which can yield some instabilities or substituted with a more 

commonly available device tree from another development board such as the Cyclone V 

professional development board at the expense of some native peripheral interfacing on the HPS. 
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Interrupt Service Routines 

 

 Figure 6-37 ISR Motion Control Initialization Example       

 

The overall control flow of our system is handled by 3 interrupt service routines which are called 

by the generic interrupt handler of the HPS. The 3 main ISRs are as follows: 

1. Camera Capture ISR - responsible for the interfacing between the HPS and the Vari-focal 

lens Webcamera peripheral as well as saving captured image feed to the image filter buffer 

2. Image Detection ISR  - responsible for calling the image detection binary executable 

generated by our neural net and passing the filtered image stream data into it 

3. Response System ISR - responsible for initializing the positional orientation of the gimbal as 

well as its scanning and tracking features and sending an alarm signal if the Detection ISR 

has output a threat.  

Each of the ISRs are added as kernel modules to the main interrupt service handler native to the 

Linux OS during the board’s initial boot up process. This is done through modifications to the uboot 

script to allow for additional modules to be added before the main Linux operation is launched. 
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Each ISR is driven using an interrupt timer peripheral on the HPS architecture, each of which is set 

during each initialization of the ISR at run time. For the most part, these timers function 

independently, and are solely responsible for the timing of each routine. 

The Camera Capture ISR is initialized by associating the ISR with the first interrupt timer signal 

(HPS Timer 0). The timer is constructed in such a way that the ISR will trigger every .1 seconds to 

take a new snap shot of the camera’s input. Frames are captured using functions provided through 

the Fswebcamera software as well as the video for Linux utility libraries. Once captured, a frame is 

saved to an allocated location on the FPGA’s SDRAM. The SDRAM is initialized to be able to hold 5 

separate images at once, to allow for foreground detection and verification of varying degrees and 

scales. Every time a new image is captured, it pushes all of the other images down one and drops 

the 6th oldest image. This buffer is then connected to the pre-processing filter systems input lines, 

allowing for RT level processing and filtering.  

The Image Detection ISR runs at the same .1 second resolution as the Camera Capture ISR. Every .1 

seconds, the detection ISR checks the output bus registers of the pre-processing filter system (also 

stored in SDRAM), makes a local copy of that image, and passes the copy into the image detection 

binary callback. This callback function executes the image detection binary executable in a separate 

process stream and then ends the ISR. To accommodate for the length of time it takes to run the 

detection algorithm, multiple instances are allowed to run at once, taking advantage of the dual 

core nature of the ARM. If a threat is detected during the running of the binary, the process stream 

is set to append to the count value of the third ISR timer (essentially forcing an interrupt) while 

setting the appropriate Data Values in SDRAM to begin the orientation and zoom procedures.  

The last ISR, the Motion and Response ISR, is initialized at a .05 second resolution which is 50% 

faster than the other two so as to prevent the limit switches and potentiometer value changes from 

being ignored. This ISR is initialized to read in values from the SDRAM and the 2 GPIO header 

expansion ports. For ease of implementation sake, the right most GPIO (JP1) has been denoted as an 
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input line while the left most GPIO (JP1) is set to output. The Limit Switches and potentiometers are 

connected to JP2 while the LEDs, motors and servos are connected to the pins of JP1. Decision 

making in the ISR is handled through case based logic. The ISR first checks the SDRAM to see if 

initialization values for the potentiometers have been set. If no such values are detected (as would 

be denoted by a value of “1”), the gimbal then begins its initialization routine, going to its vertical 

and horizontal extremes until it hits a limit switch, at which point the routine saves and stores the 

potentiometers initial values using the HPS’s ADC. Once both values are set, the ISR checks to see if 

a threat has been registered on the SDRAM’s data line. If one has not, it will simply begin panning 

left and right in a loop. If one has, it checks the SDRAM data to see which window the threat was 

reported in, and adjusts based on that threat’s location (two flags in the bottom two windows 

moves the camera down, one in the top left moves the camera left and up, center only causes the 

camera to zoom in while the full size window only causes the camera to zoom out).  

Machine Learning - Building a Binary Classifier 

Implementing the CNN 

The computer vision module uses a CNN to scan the incoming camera frames for firearms. 

The implementation of the CNN is based on Google’s open source software library for machine 

learning, called Tensorflow. Tensorflow allows the creation of graphs, where each graph represents 

a mathematical model, to facilitate numerical computations necessary for machine learning 

algorithms. The graphs consist of nodes, each one representing a mathematical operation. Multi-

dimensional arrays, called tensors, are used as graph edges to communicate the data between the 

different nodes. The CNN is defined, therefore, as a collection of nodes, where a tensor is given as 

input and another tensor returned as output from the last node of the graph. The input tensor is the 

incoming camera frame and the output tensor will be the classification label.    
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The TFLearn library is used to facilitate development, as it provides a higher-level API to 

Tensorflow. The network architecture loosely follows the architecture proposed by the TFLearn’s 

image classification example, which uses the CIFAR-10 dataset. As a result, the input tensor was a 

32x32 (width x height) RGB image, or 3 channels, giving a total of 32x32x3 = 3072 nodes. Initially, 

the dimensions were kept as 32x32 and were later adjusted to 80x45. 

In order to extract the features that we are trying to detect from the input tensor, we will use a 

combination of convolution and max-pooling steps: 

(1) - 32 filter convolution => (2) – 2 stride max-pooling => (3) - 64 filter convolution => 

(4) – 64 filter convolution => (5) – 2 stride max-pooling 

Every convolution layer applies a number of filters (either 32 or 64), each of which is a 

square window with a 3x3 pixels size. For instance, the first convolution layer takes as input the 

incoming tensor and summarizes it with 32 filters of 3x3 smaller neural networks. Every max-

pooling step is a reduction operation, where each rectangular window of size 2x2 pixels is 

represented by its maximum value. As a result, each max-pooling layer reduces the dimensions to a 

quarter. The complete network architecture is shown in the figure below: 

By applying this routine, the incoming nodes can be summarized using fewer resources. 

Each convolution splits the images into tiles and attempts to summarize them with a small neural 

networks. Each max-pooling step performs an efficient down-sampling by keeping the most 

interesting bits (with respect to graph weights). 

After the network architecture has been defined, with each training step a regression layer 

is applied and the weights of the model refined. With every training step, the weights are either 

increased or decreased based on the network’s performance. The amount of change is defined as 

the learning rate of the network and set at 0.001. With a larger learning rate, the network is trained 
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more quickly but may result in overfitting. In to avoid over-fitting, a percentage of the data is 

dropped during each training step. Each node of the network has an equal probability of being 

dropped, which is defined as the dropout rate of the network. The dropout rate is initially defined 

as 0.50 and later adjusted to 0.15. 

The output tensor from the last max-pooling layer is summarized by a fully-connected layer 

of 512 nodes. These 512 nodes hold the summarized features from the incoming camera frame. The 

softmax, or normalized exponential, activation function is used to generate a binary classification 

output from the 512 nodes. The complete network architecture is shown in the figure below: 

  

Figure 7-1: Neural Network Architecture [35] 

Creating the Training Datasets 

The objective of our ML algorithm is to function as a binary classifier that will take an image 

as an input and return whether there is a threat (C=1), i.e. a visible firearm, or whether it is safe 

(C=0). To train a CNN to respond accordingly we will need a dataset of positive (C=1) and negative 

(C=0) examples. During the development stages of the algorithm, a Nerf Gun was used as the 

positive class because its distinct colors and features make it an easier target to test with. 



72 

During early stages of development, the dataset was created by taking individual images of 

the Nerf gun with varying backgrounds. To populate our dataset we initially included 2500 negative 

100x100 images from the AGH public knives dataset [8]. OpenCV, an open source computer vision 

library, was later used to extract individual frames from a video. By using videos, a larger number of 

training instances can be handily generated but at the cost of quality and focus. A Python script, 

using OpenCV, was used to populate the negative training dataset by splitting each image into its 

four quarters. Because a negative instance should contain no visible firearms, for every negative 

instance, four additional ones were added by the populating script. 

Initially, all images for training are separated into two class folder, ‘classes/0/’ and 

‘classes/1/’, where the 0-class is the negative, i.e. no nerf-gun class, and the 1-class is the positive, 

i.e. nerf-gun detected, class. Two Python scripts are used to preprocess the images: renameFile() 

and genResized(). First, renameFile() renames all images in the databases to “fileX.jpg”, where X is 

the image number. The produced files now have a consistent naming and type. The database is then 

formatted with the genResized() script, which resizes all images to a specific size, in our case 80x45 

pixels. 

The formatted images are converted to RGB matrices, in a 80x45x3 = width*height*colors 

format. The matrices are split to a training dataset (80% of total) and a validation dataset (20% of 

total). The RGB values of each pixel were normalized from their original 0-255 range to 0-1. Finally, 

for each of the training and validation datasets, an equal in length array of Bytes is appended that 

holds the class label (00H – safe, 01H –threat) of each image as part of the supervised learning. 
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Figure 7-2: Dataset Pre-Processing Pipeline 

 

Training the Model 

The generated training and validation datasets are further populated prior to training with 

the help of Tensorflow functions. Copies of the original images are added to the dataset, after being 

either blurred, flipped horizontally or rotated. All three processes are applied at random and with 

random parameters, i.e. the blur coefficient or angle of rotation. The training routine consists of a 

combination of convolution and max-pooling steps, as shown before. The CNN is trained to 

recognize the patterns generated by the negative and positive samples of our training sets, 

representing the safe and threat scenarios for a given number of training steps, called epochs. Most 

models were trained for 100-300 epochs, depending on the size of the training dataset and the 

difficulty of the task. Low environmental-noise datasets generally required less epochs and training 

for more resulted in overfitting.   
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During training, the console output shows some statistics, such as the training step, the 

accuracy and the process time. These statistics help while refining the parameters of the neural 

network. While the model is being trained, a snapshot of the model’s metadata is saved every 4 

training steps. Each training step with the current configuration takes approximately 2 minutes to 

process. At the end of the training, the final model is saved, together with a checkpoint file that is 

necessary to load the model. 

Figure 7-3: Console output during training 

The CNN is implemented and trained in Python using the TFLearn wrapper library for 

Tensorflow. The trained model is exported using Tensorflow’s freezeGraph() function that returns 

a saved snapshot of the weights of the model. In order for the model to be ported to our FPGA, we 

needed to build it targetting an ARM-Linux processor. For this purpose, a C++ version of our project 

was implemented with the Tensorflow C++ API. A virtual machine was set up using VirtualBox and 

running Ubuntu 16.10 in order to build the C++ project, with the help of the Bazel build tool.   

Threat Detection Routine 

The same network architecture used for training is also defined for the testing routine. The 

512-node CNN takes a 80x45x3 RGB matrix as input and returns a [x][y] tuple, where x+y = 1, x = 

prob(no-threat), and y = prob(threat). Essentially, the network returns two probabilities for two 

mutually exclusive events as floats, with a value between 0 and 1. An example result would be in the 
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form [0.4, 0.6], meaning that the network predicts that there is a 40% (C=0) chance that the image 

is safe and 60% (C=1) that a firearm is present. 

The test images have a 1280x720 size. A sliding routine is implemented in Python that 

returns 5 sub-images from the original images to be scanned using OpenCV’s rectangle() function. A 

sliding window of size 640x360 produces 5 images by scanning a 2x2 matrix of the image plus an 

additional 640x360 sub-image at the center of the frame. The 5 images of size 640x360 and the 

original one are all resized to 80x45 pixel images and then converted to a 80x45x3 matrix (like 

Figure 1). The complete detection routine with the sliding window is visually demonstrated the 

figure below: 

 

Figure 7-4: Detection Routine Example 

Original 1280* 720 pixels JPG image       
Generated  640* 360 sub images 

1 

3 

2 

4 

5 

Images resized to 80x45 pixels Detection routine complete, found 
3 matches. 
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By using the sliding window routine, each incoming frame generates 6 probabilities from 

the CNN. As a result, the sliding window is a trade-off between processing time and accuracy. If the 

resources permitted, the sliding window could be performed with an even smaller size to generate 

more sub-images to test. The threshold for triggering the alarm is currently set at 2 out of 6 having 

over 0.5 probability of being a threat or 1 out of 6 having a probability bigger than or equal to 0.75. 

By setting this type of threshold, the number of false positives is reduced. When used without the 

sliding window routine, the threshold for an alarm remains at a 0.5 output. 

Raspberry Pi Prototype 

A prototype of the threat detection routine was implemented using a Raspberry Pi 3.0. The 

Raspberry Pi was chosen as it is based on an ARMv7A processor and has a 1GB of available RAM 

like the Altera programming board. There is also an active community of Pi developers providing 

tutorials, troubleshooting support and open source libraries online. In addition, the GUI provided 

by Raspberry Pi’s Raspbian OS facilitates development and testing. 

In order to port the project on the Raspberry Pi, the C++ detection routine using Tensorflow 

needed to be compiled targeting the ARMv7A architecture. The Bazel build tool was compiled using 

GCC and linked within the Raspbian OS. The Bazel tool was then used to compile the Tensorflow 

project and to generate the executable files. The model graph was also edited for compatibility 

issues. The nodes in the graph that corresponded to the dropout operations were removed, as the 

mathematical operations were neither compatible with the 32-bit architecture, nor necessary for 

the detection routine. A webcam was used to capture the input camera frames, using the UCV driver 

for Raspbian. 

The Pi detection routine used OpenCV to read in the camera frames from the webcam. The 

camera capture’s dimensions were set to 1280x720 and the sliding window was also implemented 
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for the C++ routine using OpenCV, with the same parameters as discussed before. Whenever a 

threat was detected, a test alarm was played via HDMI or Pi’s audio output.  

Gimbal Control 

 During operation, the gimbal pans left and right to get a view of the entire area. When a 

threat is detected, the gimbal will begin to track it and zoom in order to maintain a good view of the 

threat. In order to determine the location of the threat and the level of zoom, the results of the 

sliding window are analyzed. Depending on which windows a threat is detected in, the system can 

know the direction of the threat relative to the current view and adjust accordingly. In order to 

determine level of zoom, the number of windows that return a threat are analyzed. The more 

windows that detect a threat, the larger the threat is on screen. Psuedocode for these behaviors can 

be seen below. 

// Global vars 
Int rightBound 
Int leftBound 
 
// Initialization 
// Vertical Axis 
While (limit switch is not pressed) { 
 Drive axis down 
} 
Stop axis 
for(15 degrees) { 
 Drive axis up 
} 
Stop axis 
 
// Horizontal Axis 
While (limit switch is not pressed) { 
 Drive axis left 
} 
Stop axis 
leftBound = horizontalPot.value 
rightBound = leftBound - value (dont know value yet, need to test for value) 
 
// Panning 
While (!threat detected) { 
 If (drivingLeft) { 
  Drive axis left 
} else if (drivingRight) { 
 Drive axis right 
} 
 If (horizontalPot.value >= leftBound) { 
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  drivingLeft = false 
  drivingRight = true 
 } 
 If (horizontalPot.value <= rightBound ) { 
  drivingLeft = true 
  drivingRight = flase 
 } 
} 
 
// Threat tracking 
While (threat detected) { 
 If (threatLocation = leftHalf) { 
  If (horizontalPot.value <= leftBound) { 
   Drive axis left 
  } else { 
   Stop axis 
  } 
 } else if (threatLocation = rightHalf) { 
  If (horizontalPot.value >= rightBound) { 
   Drive axis left 
  } else { 
   Stop axis 
  } 
 } 
If (threatLocation = upperHalf) { 
  Drive axis up 
 } else if (threatLocation = lowerHalf) { 
  If (!limit switch pressed) { 
   Drive axis down 
  } else { 
   Stop axis 
  } 
 } 
 If (numberOfWindows > 2) { 
  Zoom out 
 } 
 else { 
  Zoom in 
 } 
} 
 
// Threat no longer detected 
While (!vertical limit switch pressed) { 
 Drive axis down 
} 
Stop axis 
For (15 degrees) { 
 Drive axis up 
} 
Stop axis 
Resume panning 
 

Figure 7-5: Pseudocode for gimbal control 
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System Testing and Evaluation 

Testing the CNN 

During the development of the CNN, statistics were gathered in order to evaluate its 

performance and refine its parameters. The time and space complexity of the algorithm was 

evaluated based on the training time, the detection time and the size of the model graph of weights. 

By varying the format of our input node and training the model for 10 epochs, the below table is 

produced:   

 TABLE 7-1: CNN Development Statistics  

Model Type 

(WxH) 

Training Time - 10 epochs / 

seconds 

Graph Size 

32x32 RGB 48.07 8,424 KB 

80x45 RGB 85.41 30,952 KB 

64x64 RGB 89.48 33,000 KB 

100x100 RGB 165.64 80,232 KB 

160x90 RGB 218.72 117,992 KB 

  

The training time does not increase exponentially and therefore wasn’t a constraint. Most 

models needed around 200 epochs training that should be completed in around 12 hours training 
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time for the worst case (160x90). The graph size was around 118MB in the worst case, which is 

relatively small compared to the available 8GB in the SD card.     

Based on the validation set (20% of the training dataset), cross-validation statistics are 

gathered during training, the validation loss and the validation accuracy. The validation loss is a 

measurement of the average error per classification and the validation accuracy is the percentage of 

the validation instance correctly recalled. These statistics help determine whether the CNN model is 

capable of extracting features from the training dataset. In Table XX, the cross-validation statistics 

are depicted with varying dropout and learning rates for the model: 

Table 7-2 : Cross-validation statistics with Varying Dropout / Learning Rate 

Dropout 

Rate 

Learning Rate Validation Loss Validation 

Accuracy % 

1 0.001 5.55 75.88 

0.005 5.55 75.88 

0.1 5.55 75.88 

5 0.001 0.2047 93.97 

0.005 5.55 75.88 

0.1 5.55 75.88 
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10 0.001 0.1873 91.46 

0.005 5.55 75.88 

0.1 5.55 75.88 

15 0.001 0.1712 92.46 

0.005 5.55 75.88 

0.1 5.55 75.88 

25 0.001 0.2027 90.95 

0.005 5.55 75.88 

0.1 5.55 75.88 

  

Because 75.88% was the percentage of the negative training instances in the dataset, all 

table rows shaded in blue show cases where the model wasn’t able to learn anything meaningful, in 

contrast to rows shaded in red. The parameters offering the best results were observed to be 15% 

dropout rate and learning rate equal to 0.001. 

The processing time of the CNN and the detection routine was evaluated using the Pi 

Prototype. The input size was varied between 32x32 and 160x90 pixels and the run time was 

measured both with and without the sliding window routine. The resulting processing times for 
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reading 10 camera frames as input, processing them and classifying them are summarized in the 

table below: 

Table 7-3: Average run times to process 10 frames for varying CNN node size. 

Model Type 

(WxH) 

Processing time / sec Processing time 

sliding window / sec 

32x32 RGB 1.85 2.04 

80x45 RGB 4.75 16.34 

64x64 RGB 5.08 18.16 

100x100 RGB 11.26 48.59 

160x90 RGB 16.16 72.00 

  

The 80x45 size was chosen as it offers either 0.6 FPS or 2.1 FPS, resulting in a couple of seconds 

delay in the worst case. With the addition of different modules responsible for capturing and pre-

processing the frames, the FPS of the detection routine can be even higher than the one shown by 

the Pi prototype. 

Implementing the HPS-FPGA data transfer 

Due to the camera we bought not being able to be connected directly to the Field 

Programmable Gate Array part of the DE1-SOC board, we had to connect it through USB to the 
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operating system on our HPS. In order to be able to implement the filters on the camera input we 

had to send the data from the Linux OS we booted on the Hard Processing System to a buffer line on 

the FPGA’s 64MB SDRAM. Luckily to our advantage of our board having both the ARM processor 

and the FPGA components, there is a way for both components of the board to exchange 

information from one to another (i.e. HPS to FPGA and FPGA to HPS) using the Advanced eXtensible 

Interface (AXI) bridge. The AXI bridge is a pre-existing communication line for the interfacing of 

components on the FPGA with the HPS. There are 2 types of AXI bridges for communication 

between the HPS and the FPGA (Figure a): 

● HPS to FPGA Bridge 

● Lightweight HPS to FPGA Bridge 

We are using the HPS to FPGA Bridge instead of the Lightweight HPS to FPGA Bridge because it 

works with a larger number of bits; While the HPS to FPGA can use 32, 64 or 128 bits, the 

lightweight can only handle 32 bits. 
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Figure 8-1: Picture of the AXI Bridge 

  

Using Quartus II and Altera system integration tool QSYS we were able to establish this 

communication link from the FPGA to the HPS and vice versa. Using Quartus, for all the components 

to be used on the FPGA, the pin locations to all these components must be mapped on the project. 

For FPGA components, the devices are allocated to specific pin locations that are for those purposes 

(Figure 8-4) but for the HPS components there are no pin locations available to declare, so they are 

just listed with pin directions and IO standards (Figure 8-5). 

Using QSYS we are able to utilize the Avalon memory mapped master and slave to establish 

the communication link between HPS and FPGA. IP Cores are used to establish control over the HPS 

and SDRAM Controller (Figure 8-2). HPS serves as the master and the SDRAM is the slave so the AXI 

master is connected to Avalon memory mapped slave of the SDRAM. In order to correctly access the 

data from the SDRAM, the clock input would have to be changed. The board has a standard clock 

speed of 50MHz but the SDRAM desires a clock speed of 100MHz thus a the SDRAM controller takes 

an input of 100MHz from a SDRAM clock generator which uses Phased Lock Loop (PLL) to generate 

a 100MHz clock speed from 50MHz (Figure 8-2). Once these are all connected, the source code for 

the SDRAM Controller is generated (Figure 8-6) and added to the Verilog system module (Figure 8-

3). Once these components are made a batch file generate_hps_qsys_header.sh is provided by Altera 

to generate a header file, hps_0.h,  for the HPS C code (Figure 8-7). 
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Figure 8-2: Screenshot of QSYS Avalon memory map 

 

 

Figure 8-3: Screenshot of Quartus SDRAM source code 
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Figure 8-4: Screenshot of Pin programmer for SDRAM 

 

 

Figure 8-5: Screenshot of Pin programmer for HPS DDR3 RAM 

  

Figure 8-6: Screenshot of generated source code for system in QSYS 
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Figure 8-7: Screenshot of hps_0.h 

  

Once all the links are made and all the groundwork for the SDRAM and HPS connections are 

set, we would be able to use the HPS to receive and write data to and read data from the SDRAM. 

Using Altera provided Eclipse for the DE1 SOC board, in C code we were able to use memory 

mapping to map physical memory addresses on the board to virtual memory addresses. Here we 

are able to access the memory device driver “/dev/mem” with the open system call then using the 

mmap system call to map the HPS physical address to a virtual address. From here we are able to 

use the SDRAM offset that is provided from the generated header file to be able to correctly use the 

designated memory address mapped for the SDRAM (Figure 8-8 ). From here we use C code to 

navigate through the memory address of the SDRAM for read from and write to functions. 
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Figure 8-8: Screenshot of SDRAM virtual memory mapping 

 

For testing the SDRAM, we wrote C code that maps the SDRAM memory and accesses five 

consecutive 32 bit memory locations (Figure 8-9). A while loop is used to increment a counter 

variable that allows us to move through these five consecutive 32 bit memory slots whilst read and 

write operations are done on the memory. For each memory location the address and data are 

printed out using the printf command, then using pointer logic the data in the memory location is 

initialized to 0x0 then the same memory address and data are printed out, but with the memory 

data value changed (Figure 8-10). A makefile provided by Altera used to compile C code for the 

ARM architecture was used to compile the executable to test the SDRAM (Figure 8-11). In Figure j, 

you would realize that the executable AWeD_SDRAM is run twice (./AWeD_SDRAM), this is to show 

that the previous memory written to with 0x0 was indeed stored. 

 

Figure 8-9: Screenshot of the test C Code 
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Figure 8-10: Screenshot of the test output 

 

Figure 8-11: Screenshot of the Makefile 

  

Filters 

Our first approach to be able to test the algorithms was to test them using modelsim. To be 

able to do this we needed to decompress the JPEG into raw data. The raw data would be stored in a 
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text file that would be inputted to the testbench. When we first thought about the problem for 

extracting the pixel array from the encoded JPEG image, we researched into how to extract raw 

image data on a byte level. We found out that each JPEG image has a header that consists of 20 bytes 

of information that defines the file as a JPEG (Figure 8-12). The first two bytes of a JPEG image are 

FF D8 and the last 2 bytes are FF D9, this made it easy to identify an image in memory. After being 

able to identify where the data needed from the byte stream where, we needed to figure out how 

we would be able to identify the red, green and blue (RGB) values of each pixel. Here we came into 

an obstacle as we realized that in order to get the RGB values of the pixels in a JPEG we would have 

to code a few decoding processes to run on the JPEG file (Figure 8-13). To solve this problem we 

sought to use functions from an open source JPEG library called, jpeglib, to extract the 2-D pixel 

array of the JPEG images being stored. However we found out that these functions would add more 

instructions for the ARM processor which affects the performance of the machine learning 

algorithm. After this consideration, Matlab was our third option. We came across two Matlab 

scripts, ImageToText.m and TextToImage.m, that were able to extract the pixel bytes from the 

image and store it in a text file and vice versa. The original image and its corresponding raw byte 

file can be found in figures 8-14 and 8-15 respectively. 
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Figure 8-12: Structure of a JPEG header file [31] 

 

 

Figure 8-13: Processes to decode the RGB from the JPEG encoded format [32] 
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Figure 8-14: Original Nerf gun image 

 

Figure 8-15: Screenshot of the raw byte text file of original Nerf gun image 

As you can see above the image is now converted from a JPEG to a raw byte text file. If the 

text file above was to be run in through the text file to image convertor we would see the original 

nerf gun image. 
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Greyscale color conversion is the first filter that is implemented. This filter reduces the data 

needed to be processed by 3 from a 3 channel Red, Green, Blue (RGB) to a single channel grayscale. 

This filter takes each R, G and B values as input and outputs a single set of values for the grayscaled 

image. The implementation of the grayscale conversion hinged on this line of Verilog code: 

assign Y = (R>>2)+(R>>5)+(G>>1)+(G>>4)+(B>>4)+(B>>5); 

The Verilog code is written with bitwise operations rather than solely arithmetic operations not 

only because of the ease of conversion but also because it would be able to run faster and with less 

memory used than arithmetic functions. 

 

 

Figure 8-16: grayscale image  
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Figure 8-17: Grayscale Raw Bytes Text file 

 

Sobel Filter was chosen to be able to define the edges of the objects in the frame more 

clearly. It accepts a greyscale image and outputs a binary image with an image consisting of only 

two colors: white and black. This filter was compiled and simulated in modelsim (Figure 8-18). The 

raw bytes were tested before and after the sobel filter and indeed the output was a binary file, that 

represented a 1 for white and 0 for black (Figure 8-19). 
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Figure 8-18: ModelSim Compilation and Simulation of sobel filter 
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Figure 8-19: Screenshot of raw bytes for sobel filtered image 
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Suggested Improvements / Changes 

 Our final system detects a specific type of Nerf gun. This is a significantly more limited 

detection than what we had set out to do. The main reason for this more limited scope was due to 

testing and experimenting on our machine learning algorithm. We did not have the time to get the 

thousands of extra pictures needed or spend the extra time every time we would retrain. Given the 

extra time and pictures, our system could theoretically be trained to detect a wider variety of 

weapons and also take into account the pose of the person with the gun, but due to our limited time, 

we were unable to train for these extra parameters. 

 Many small issues were encountered when assembling the gimbal. Most of these were 

caused by unfamiliarity with designing for 3D printing and could be easily avoided if the assembly 

were to be printed again. These issues do not include enough supports for some overhanging 

sections, larger parts being hard to divide to both fit the printer and be supported, and holes being 

printed too small for assembly. Several of the larger overhangs needed to have extra supports 

added before printing. This resulted in some supports being in the way of the moving parts and 

needing to be removed after printing. In addition, most of the larger parts were broken into smaller 

parts that were then glued back together after printing. This resulted in some loose or weak 

connections between parts which had to be glued back together several times. Most of the holes 

that were printed ended up being slightly too tight for the parts that they fit onto. Many of these 

holes were just drilled out, but some of the non-circular holes, such as the D shaped holes for the 

encoder gears, had to be melted larger in order to properly fit. This resulted in the encoders being 

unreliable at times due to the poor mounting of the gears. 

UVC Driver 

 Due to time and hardware constraints in terms of the camera's interface being USB 2.0 the 
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HPS was used to be able to capture images. The camera can be interfaced through the FPGA. 

However, a USB driver was needed to be written for the board to recognize the device as a camera. 

The amount of research and development to be able to create such driver was not viable in our 

current time frame. The current implementation of the boards is running from a Linux SD card 

image that it mounted at boot up. This Linux version is made for embedded platforms. The UVC 

driver formally referred as USB Device Class definition for Video Devices(ref) is what defines video 

streaming functionality for the USB. With this driver, the Linux kernel is able recognize the USB 

device as a camera. This then can be used in different webcam software to be able to capture video 

or images needed for the detection algorithm. The software that was used to capture the frames of 

an incoming video was Fswebcam. This software was used because it does not require many extra 

supporting libraries and it can be controlled using the command line. The figure shown below 

shows the image capture from the command line. 
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Figure 9-1 Output Frame image  

There were some initial setbacks while trying to obtain this driver since some sd card images 

provided by Altera don't have this driver installed, and required re-compilation to add the driver 

and get it to function properly. However, resources provided by Altera via email allowed for a 

partial remedy to this issue.  

Board Output Voltage 

 The board we are using features two 40 pin I/O connector ports. 8 pins on each port are 

predesignated for use, leaving 32 configurable input and output pins on each port for us to use. The 

intent, was to use these ports as the input and output needed to interface with the motors, servos, 

and sensors of the gimbal. This worked fine for the sensors, but ran into issues for the motors. The 

plan was to have the DC motors connected to two pins. Have both pins set to 0 to keep the motor 

still and set one or the other to 1 in order to drive the motor in varying directions. The pins 

supposedly are connected to the 3.3V rail of the board, meaning that the motor would run on 3.3V 

when driving, enough to properly drive the gimbal. However, when we went to actually try this, the 

motor did not receive enough power to actually drive the gimbal. After testing many possibilities, 

we determined that it was due to the pins not actually outputting 0 and 3.3V when set to 0 and 1, 

but actually 0 and .56V instead while the motor was connected. After more research, we 

determined that the only feasible solution was to build voltage amplifiers that pulled directly from 

the 3.3V rail. Unfortunately, when we went to build the voltage amplifiers, we discovered that not 

only did we not have any working OpAmps, but we also did not have the proper capacitors to build 

a voltage amplifier from transistors. We also did not have enough time for the parts to come in in 

order to properly fix this problem. 
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Conclusion 

 The design and implementation of this project, though difficult and not without issues, 

shows significant amounts of potential in terms of the application of such designs going forward. 

That such high demand processes such as those required for computer vision analysis can be 

ported to run on ARM embedded based architectures alone speaks greatly towards the potential for 

embedded vision applications in everyday life. In addition to this, the Cyclone V’s SoC based 

architecture, with its integration of programmable FPGA architecture, and with all of the flexibility 

and process re-distribution that such architecture allows, only further adds credence to the 

feasibility of such designs becoming more and more widespread.  

 The architecture and resources we were designing on ultimately were cheap, mostly meant 

for educational purposes and for far more simplistic demos than what is attempted through our 

project implementation. That we could create a prototype that came so close to meeting our goals 

implies that further development with more professional level tools may soon lead to systems of far 

greater practicality than our own entering the market and potentially addressing the very societally 

relevant issue of armed robbery and assault. Some of these systems may even be in development at 

this current time.  

 There was a lot to learn and a lot to discover in regards to seeing this project come to 

fruition. The team spent many long hours poring over technical documents from Altera, Google, 

Cornell, Terasic, Mathworks, ARM, Unix, and many more in an effort to fully understand and utilize 

what hardware we’d need and then how far we could push that hardware and use it to our 

advantage programmatically. Whether it was filter design optimization with Simulink, to kernel 

recompilation for ARM architectures with Linux, Neural Network creation and calibration with 

Tensorflow, or hardware driver reallocation and creation with Verilog and Quartus, these were all 

things that were not innately known to the team that have now become second nature and whose 
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sum creates a system level design toolbox that can likely solve not only the problem we set out to 

address of violent gun based crimes but countless other issues and hardships addressing society.   

Though there are many things in regards to this project that the team would like to revisit 

or see revisited, the work that was done and the knowledge that was gained throughout the project, 

all of which is dually reflected and stated in this report, has satisfied our team adequately. The 

accuracy and reliability of our system came very close to our intended benchmarks, and we now 

feel we have solid evidence that systems like ours may soon start contributing to lowering gun 

crime and swifter police response time.  We look forward to carrying this knowledge on into our 

future endeavors and we hope that through our design process that we have indeed helped come 

ever closer to ensuring the safety, security, and comfort of everyday citizens at both the public and 

private level. 

 

Glossary 

AGH -- AGH University of Science and Technology in Krakow, Poland 

FPGA -- Field Programmable Gate Array 

CCTV -- Closed Circuit Television 

CV -- Computer Vision 

IVS -- Intelligent Video Surveillance 

ML -- Machine Learning 

MLL -- OpenCV Machine Learning Library 

RPM -- Rotations per Minute 

Sensitivity - How good our system is able to detect a firearm when a firearm is present (True 

Positive) 

Specificity - How good our system would be at not detecting a firearm when a firearm is not present 
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(True negative) 
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Appendix - A: Random Forest for Object Detection 

    A random forest is a collection of T binary decision trees, where each node of the tree can 

have up to two leaves as children. The random forest takes an image patch as input, evaluates it at 

each node (starting from the root node) and sends it to the left or right child of the node 

accordingly. The forest can be used for either a classification or a regression task. For a 

classification task, each leaf L of a forest returns a probability for the image patch to be classified as 

c given as p(c|L). For a regression task, the forest returns an estimate, as a distribution, for the 

location and scale of the object. [7]     

 During training, each tree is trained on a random subset of the training dataset. This helps 

avoid overfitting and efficiently processing large amounts of data. For each sampled image “For 

each sampled patch 𝑃𝐼 that does not belong to the background, the offset to a reference point of the 

object 𝑑𝐼 is stored” [7]. The training set therefore consists of patches 𝑃𝐼 and their corresponding 

extracted image features 𝐹𝐼 , their class label 𝑐𝐼 and the offset 𝑑𝐼 from the center of the patch. A 

recommended size for each image patch is 16x16 pixels” [7].  

 A split function is defined as 𝑓𝛷(𝑃) that returns 0 or 1, given features Φ and image patch P, 

where 0 corresponds to the left child and 1 to the right child. The split function gets updated to 

reflect the training set “while the tree grows recursively: 

1. Generate a random set of parameters Φ = {φk}.  

2. Divide the set of patches 𝐴𝑛𝑜𝑑𝑒 into two subset 𝐴𝐿  and  𝐴𝑅 for each φ ∈ Φ:  

● 𝐴𝐿 (φ) = {P ∈ 𝐴𝑛𝑜𝑑𝑒|𝑓𝛷(𝑃) = 0}  

● 𝐴𝑅 (φ) = {P ∈ 𝐴𝑛𝑜𝑑𝑒|𝑓𝛷(𝑃) = 1}  

3. Select the split parameters φ∗ that maximize a gain function g:  

𝜑∗ =  𝑎𝑟𝑔𝑚𝑎𝑥 𝑔 (𝜑, 𝐴𝑛𝑜𝑑𝑒)  
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𝑤ℎ𝑒𝑟𝑒 𝑔 (𝜑, 𝐴𝑛𝑜𝑑𝑒)  =  𝐻 (𝐴𝑛𝑜𝑑𝑒)  − ∑

𝑆∈{𝐿,𝑅}

|𝐴𝑆 (𝜑)|

|𝐴𝑛𝑜𝑑𝑒|
  𝐻 (𝐴𝑆 (𝜑)).    

𝑎𝑛𝑑 𝜑 ∈ 𝛷 

Depending on the task, H(A) is chosen such that g measures the gain of the classification or 

regression performance of the children in comparison to the current node.  

4. Continue growing with the training subsets 𝐴𝐿 and 𝐴𝑅 if some predefined stopping criteria 

are not satisfied; otherwise, create a leaf node and store the statistics of the training data 

𝐴𝑛𝑜𝑑𝑒” [7]. 

The resulting class probability is given as:  

𝑝(𝐿) =
|𝐴𝑐

𝐿| ∗ 𝑟𝑐

∑𝑐 ( |𝐴𝑐
𝐿| ∗ 𝑟𝑐)

; 𝑟𝑐 =
|𝐴|

|𝐴𝑐|
 [7] 

Where |𝐴𝑐
𝐿| is the set of patches that reach leaf L with a class label c. Finally, by using the offset d of 

the samples one can calculate the spatial distribution by estimating 𝑝(𝑐, 𝐿). [7] The class probability 

is used for classification tasks and the spatial distribution to estimate the location for regression 

tasks. 

 Random forests are able to detect objects by creating a distribution of 𝑝(𝐿𝑡(𝑦)), where 

ℎ(𝑐, 𝑥, 𝑠) is the probability of an object of class c, with size s to be located at reference point x, for 

the leaf L of tree t at image location y. The distribution is defined by having each tree vote on the 

classification of the incoming image patch. The votes of all trees for all image patches are averaged 

and the resulting value determines the classification of the processed image and therefore the 

appropriate threat detection.  

 As far as the implementation is concerned, low level features such as “color, gradients, or 

Gabor filters” can be used because they are computationally efficient. In order to avoid overfitting 

one can force a stopping criteria on the depth of the trees [7]. Finally, several options for the split 



109 

function as well as the estimation of the spatial distribution will be investigated to find the most 

effective for firearm detection.  
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Appendix - B: Multi-classifier Boosting 

 

Cambridge professors Tae-Kyun Kim and Roberto Cipolla propose a multi-classifier 

boosting algorithm called MCBoost, which attempts to efficiently and accurately detect multiple 

features of the processed image simultaneously. Boosting algorithms combine several weak-

learners, i.e. relatively poor predictors of an event, to create strong learners, which are more closely 

correlated with the classification of an event. A training set consisting of positive (visible firearm) 

and negative (no visible threat) images is used to calculate the weights of multiple weak-learners 

whose combination results in strong learners. During training, the weak-learners that are observed 

to predict their strong learners (visible firearm, human figure, trigger detected) are given more 

weight and thus strong learners become more accurate as the training set grows. Finally, the strong 

learners can be used to classify events as threat in the processed images. [3] 

             The MCBoost algorithm considers “K strong classifiers, each of which is represented by a 

linear combination of weak-learners as 

 

where akt and hkt are the weight and the score of t-th weak-learner of k-th strong classifier”. Each 

weak-learner is a predictor of a single visual feature while strong classifiers are “devoted to a 

subset of input patterns” [3]. To aggregate multiple strong classifiers, a Noisy-OR is formulated as 

 

where P(x) = 1 / (1 + exp(-Hk(x)). The Noisy-OR framework calculates the “joint probability using 

all k classifiers for any x” [3]. If at least one classifier detects a threat, the image is flagged as 

positive. As a result, classifiers get trained to negatively flag all non-object images, which ensures 
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low false-positive rates. Initially, sample weights wki are assigned for the i-th sample and the k-th 

classifier as either wki = 1 if it was detected in a positive sample (visible firearm) or  wki = 1 / k if it 

was detected in a negative sample (non-object image) and  wki = 0 otherwise. The goal is to 

maximize 

 

where xi is the i-th image sample and hkt ∈ {−1, +1} are the weak-learners from the set of all 

available weak-learners H. To optimize running speed, H can be a subset of the available weak-

learners containing only the weak-learners located around the expected decision boundary 

(firearms of known max size can be assigned with decision boundaries). [3] 

After the initialization of the weights, each new round updates the sample weights in an 

attempt to increase the overall accuracy of the classification algorithm and to minimize the risk of 

misclassifications. The weights are updated, following the AnyBoost method, by taking the 

derivative of a cost function defined for J with respect to the classifier score. The MCBoost 

algorithm is described in pseudocode in the figure below: 

              

Figure 4: Pseudocode for the MCBoost algorithm [3]. 

 

The outcome of the MCBoost algorithm is multiple boosting classifiers that can detect threats in 



112 

processed images. These classifiers can also be used to create a decision tree that reduces even 

further the classification time. [3]   
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Appendix - C: Computer Vision: Training Script 

1 #### Author: Georgios Karapanagos #### 

2 # Training script for 2-node classification network 

3 # 

4 # For references see below: 

5 """ 

6 Based on the tflearn example located here: 

7 https://github.com/tflearn/tflearn/blob/master/examples/images/convnet_cifar10.py 

8 

9 Loosely following Adam Geitgey's suggested network architucre, found at: 

10 https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-

convolutional-neural-networks-f40359318721 

11 """ 

12 

13 # # -*- coding: utf-8 -*- 

14 from __future__ import division, print_function, absolute_import 

15 import tensorflow as tf 

16 # Import tflearn and some helpers 

17 from tflearnmaster.tflearn.models import dnn 

18 from tflearnmaster.tflearn.data_utils import shuffle, to_categorical 

19 from tflearnmaster.tflearn.layers.core import input_data, dropout, fully_connected 

20 from tflearnmaster.tflearn.layers.conv import conv_2d, max_pool_2d 

21 from tflearnmaster.tflearn.layers.estimator import regression 

22 from tflearnmaster.tflearn.data_preprocessing import ImagePreprocessing 

23 from tflearnmaster.tflearn.data_augmentation import ImageAugmentation 

24 import util_helpers 

25 import time 

26 

27 start_time = time.time() 

28 

29 # Load the data set 

30 trainSize = 1775 

31 testSize = 443 

32 size = 32 

33 (X, Y), (X_test, Y_test) = util_helpers.prepMat(trainSize, testSize, 80 ,45) 

34 

35 # Convert to 2 classes boolean array 

36 Y = to_categorical(Y, 2) 

37 Y_test = to_categorical(Y_test, 2) 

38 

39 # Shuffle the data 
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40 X, Y = shuffle(X, Y) 

41 

42 # Make sure the data is normalized 

43 img_prep = ImagePreprocessing() 

44 img_prep.add_featurewise_zero_center() 

45 img_prep.add_featurewise_stdnorm() 

46 

47 # Populate the dataset by flipping, rotating and blurring 

48 img_aug = ImageAugmentation() 

49 img_aug.add_random_flip_leftright() 

50 img_aug.add_random_rotation(max_angle=25.) 

51 img_aug.add_random_blur(sigma_max=3.) 

52 

53 # Definition of our Network Architecture 

54 # Input is a 32x32 image with 3 color channels (red, green and blue) 

55 network = input_data(shape=[None, 80, 45, 3], 

56                   data_preprocessing=img_prep, 

57                   data_augmentation=img_aug, 

58                   name="input_node") 

59 network = conv_2d(network, 32, 3, activation='relu') 

60 network = max_pool_2d(network, 2) 

61 network = conv_2d(network, 64, 3, activation='relu') 

62 network = conv_2d(network, 64, 3, activation='relu') 

63 network = max_pool_2d(network, 2) 

64 

65 # Fully-connected 512 node neural network 

66 network = fully_connected(network, 512, activation='relu') 

67 

68 # Drop a percentage to reduce over-fitting 

69 network = dropout(network, 0.15) 

70 

71 # Final 2-node network that predicts output of '0' or '1' for two classes 

72 network = fully_connected(network, 2, activation='softmax', name="out") 

73    

74 # Set parameters for training method 

75 network = regression(network, optimizer='adam', 

76                   loss='categorical_crossentropy', 

77                   learning_rate=0.001) 

78 

79 # Initialize DNN model 

80 model = dnn.DNN(network, tensorboard_verbose=0, checkpoint_path='newDemo_checkpoint') 

81 

82 train_time = time.time() 
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83 

84 # Train the model, by fitting data for n_epoch steps 

85 model.fit(X, Y, n_epoch=50, shuffle=True, validation_set=(X_test, Y_test), 

86        show_metric=True, batch_size=96, 

87        snapshot_epoch=True, 

88           run_id='det_cnn') 

89 

90 # Export trained model to file 

91 model.save("newDemo_checkpoint") 

92 

util_helpers.save_graph(model.session,"output","newDemo_checkpoint","checkpoint_state","input_

graph.pb","output_graph.pb") 

93 

94 

95 print("--- %s seconds training ---" % (time.time() - train_time)) 

96 print("--- %s seconds total ---" % (time.time() - start_time)) 
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Appendix - D: Computer Vision: Testing Script 
  1 #### Author: Georgios Karapanagos #### 
  2 # Testing script for 2-node classification network 

  3 # 

  4 # For references see below: 

  5 """ 

  6 Based on the tflearn example located here: 

 7 https://github.com/tflearn/tflearn/blob/master/examples/images/convnet_cifar10.py 

  8 

  9 Loosely following Adam Geitgey's suggested network architucre, found at: 

10 https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-

convolutional-neural-networks-f40359318721 

11 """ 

12 

 13 # -*- coding: utf-8 -*- 

14 from __future__ import division, print_function, absolute_import 

15 import tensorflow as tf 

16 # Import tflearn and some helpers 

17 from tflearnmaster.tflearn.models import dnn 

18 from tflearnmaster.tflearn.layers.core import input_data, dropout, fully_connected 

19 from tflearnmaster.tflearn.layers.conv import conv_2d, max_pool_2d 

20 from tflearnmaster.tflearn.layers.estimator import regression 

21 from tflearnmaster.tflearn.data_preprocessing import ImagePreprocessing 

22 from tflearnmaster.tflearn.data_augmentation import ImageAugmentation 

23 from scipy.misc import toimage, imresize, imsave 

24 import numpy as np 

25 from PIL import Image 

26 import util_helpers 

27 from heapq import heappush, heappop 

28 

 29 # Node size 

30 size = 32 

31 sizeH = 45 

32 sizeW = 80 

33 

 34 # Make sure the data is normalized 

35 img_prep = ImagePreprocessing() 

36 img_prep.add_featurewise_zero_center() 

37 img_prep.add_featurewise_stdnorm() 

38 

 39 # Populate the dataset by flipping, rotating and blurring 

40 img_aug = ImageAugmentation() 
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41 img_aug.add_random_flip_leftright() 

42 img_aug.add_random_rotation(max_angle=25.) 

43 img_aug.add_random_blur(sigma_max=3.) 

44 

 45 # Definition of our Network Architecture 

46 # Input is a 32x32 image with 3 color channels (red, green and blue) 

47 network = input_data(shape=[None, 80, 45, 3], 

48                   data_preprocessing=img_prep, 

49                   data_augmentation=img_aug, 

50                   name="input_node") 

51 network = conv_2d(network, 32, 3, activation='relu') 

52 network = max_pool_2d(network, 2) 

53 network = conv_2d(network, 64, 3, activation='relu') 

54 network = conv_2d(network, 64, 3, activation='relu') 

55 network = max_pool_2d(network, 2) 

56 

 57 # Fully-connected 512 node neural network 

58 network = fully_connected(network, 512, activation='relu') 

59 

 60 # Drop a percentage to reduce over-fitting 

61 network = dropout(network, 0.15) 

62 

 63 # Final 2-node network that predicts output of '0' or '1' for two classes 

 64 network = fully_connected(network, 2, activation='softmax', name="out") 

65   

 66 # Set parameters for training method 

67 network = regression(network, optimizer='adam', 

68                   loss='categorical_crossentropy', 

69                   learning_rate=0.001) 

70 #sess.run(init_op) 

71 # Initialize DNN model 

72 model = dnn.DNN(network, tensorboard_verbose=0, checkpoint_path='high_checkpoint') 

73 

 74 # Load classifier 

75 model.load("high_checkpoint-3600") 

76 

 77 negSize = 1403 

78 posSize = 1204 

79 # negSize = 1403 

80 # posSize = 1204 

81 testSize = (posSize+negSize)+1 

82 X_train = np.empty((testSize,sizeW,sizeH,3)) 

83 
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 84 # Sliding window with test image to generate 10 images to test 

85 imgs = [] 

86 for k in range(0,negSize): 

 87  imgs += util_helpers.slidingWindowDemo("testHighBig/0/file" + str(k) + ".jpg",sizeH, 

sizeW) 

88 

 89 for k in range(0,posSize): 

 90  imgs += util_helpers.slidingWindowDemo("testHighBig/1/file" + str(k) + ".jpg",sizeH, 

sizeW) 

91 

 92 trIndex = 0 

 93 foundInd = 0 

 94 totalProb = 0 

95 threatFound = 0 

96 

 97 # Test all images for threat 

98 foundAt = [] 

99 maxNeg = [] 

100 for img in imgs: 

101  for x in range(0,sizeW): 

102         for y in range(0,sizeH): 

103                 for color in range(0,3): 

104                         X_train[trIndex][x][y][color] = float(img[x][y][color] / 255) 

105 

106  # Predict 

107  prediction = model.predict([X_train[trIndex]]) 

108  print("PREDICTION: " + str(prediction[0])) 

109 

110  # Keep statistics of overall threat 

111  totalProb += prediction[0][1] 

112  #print("Found with " + str(prediction[0][1]) + " confidence.") 

113  # if threat is detected, prob(threat) > prob(nothreat) 

114  if(prediction[0][1] > prediction[0][0]): 

115         temp = toimage(img) 

116         if((trIndex / 5) < negSize ): 

117                 heappush(maxNeg, (prediction[0][1])) 

118 

119         # if prob(threat) >= 0.75 

120         if(prediction[0][1] >= 0.75): 

121                 imsave("test-dataset/FOUND/EZ" + str(trIndex) + ".jpg", temp) 

122                 threatFound += 2 

123         else: 

124                 imsave("test-dataset/FOUND/" + str(trIndex) + ".jpg", temp) 
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125                 threatFound += 1 

126  trIndex += 1   

127  if(trIndex % 5 == 0): 

128         foundAt.append([trIndex, threatFound]) 

129         threatFound = 0 

130 

131 

132 z = 0 

133 foundTrue = 0 

134 foundFalse = 0 

135 for k in foundAt: 

136  print(k) 

137  if(z<negSize): 

138         if(k[1] >= 2): 

139                 foundFalse +=1 

140  else: 

141         if(k[1] >= 2): 

142                 foundTrue += 1       

143  z += 1 

144   

145 

146 

147 print("-----------Printing results of Negative dataset---------------") 

148 print("Found " + str(negSize-foundFalse) + " true negatives!") 

149 print("Found " + str(foundFalse) + " false positives!") 

150 print("Classified " + str(100*foundFalse/negSize) + "%% incorrectly!") 

151 

152 print("-----------Printing results of Positive dataset---------------") 

153 print("Found " + str(foundTrue) + " true positives!") 

154 print("Found " + str(posSize - foundTrue) + " false negatives!") 

155 print("Classified " + str(100*(posSize - foundTrue)/posSize) + "%% incorrectly!") 

156 

157 print("Total Accuracy: " + str((negSize-foundFalse+posSize - foundTrue)/(negSize+posSize)) + 

" % ") 

158 print("Found " + str(foundInd) + " matches")   

159 

160 # Print the top 20 false positives value 

161 for k in range(0,20): 

162  V = heappop(maxNeg) 

163  print(V) 
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Appendix - E: Computer Vision: Helper Functions 

   1 #### Author: Georgios Karapanagos #### 

  2 # Helper functions to prepare training and testing datasets 

  3 ####  

  4 

  5 import glob, os 

  6 import numpy as np 

  7 import time 

  8 from array import * 

  9 from PIL import Image 

 10 from scipy.misc import toimage, imresize, imread, imsave 

 11 import tensorflow as tf 

 12 from tensorflow.python.tools import freeze_graph 

 13 import export 

 14 import cv2 

 15 import matplotlib.pyplot as plt 

 16 import matplotlib.image as mpimg 

 17 import scipy 

 18 from scipy import ndimage 

 19 import camera 

 20 

 21 # Renames all files in reg that match the type as a RegEx to file0.jpg - filen.jpg 

 22 # - example call: renameFile(r'C:/Users/George/Documents/MQP/Nerf-Dataset', r'*.jpeg') 

 23 def renameFile(dir, typeRegEx): 

 24  i = 0 

 25  for imagePath in glob.iglob(os.path.join(dir, typeRegEx)): 

 26         title, ext = os.path.splitext(os.path.basename(imagePath)) 

 27         os.rename(imagePath, os.path.join(dir + "/file" + str(i)+ ".jpg")) 

 28         i = i + 1 

 29         # wait to avoid memory-write problem 

 30         time.sleep(0.01) 

 31 

 32 # Generates a resized to height*width version of the given image database 

 33 # - example call: genResized("Nerf-Dataset",  ".jpeg", 34, "small", size)     

 34 def genResized(dir, type, imageNum, desc, height, width): 

 35  for i in range(imageNum): 

 36         # Load the image file 

 37         img = imread(dir + desc + '/file' + str(i) + type, mode="RGB") 

 38          

 39         # Scale it to 32x32 

 40         img = imresize(img, (height, width), interp="bicubic").astype(np.float32, casting='unsafe') 
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 41 

 42         #Save the image to new folder 

 43         imsave(dir + desc + '/file' + str(i) + '.jpg', img) 

 44 

 45 

 46 # Custom version of genResized with rotation and 1024x720 output 

 47 # - example call: genResizedTest("C:/Users/George/Documents/MQP/test-dataset",  ".jpeg", 34)   

 48 def genResizedTest(dir, type, imageNum): 

 49  for i in range(imageNum): 

 50         if(i >= 0): 

 51                 # Load the image file 

 52                 im = Image.open(dir + '/file' + str(i) + type) 

 53                 pix = im.load() 

 54                  

 55                 # Scale it to 32x32 

 56                 #pix2 = (im.rotate(270)).resize([720,1024]) 

 57                 pix2 = im.resize([720,1024]) 

 58 

 59                 #Save the image to new folder 

 60                 pix2.save(dir + '/file' + str(i) + '.jpeg') 

 61 

 62 # Prepares training matrix of size*size input for the CNN 

 63 # - example call: prepMat(3279, 364, 32) 

 64 def prepMat(trainSize, testSize, sizeW, sizeH): 

 65  i = 0 

 66  X_train = np.empty((trainSize, sizeW, sizeH, 3)) 

 67  Y_train = array('B') 

 68  X_test = np.empty((testSize, sizeW, sizeH, 3)) 

 69  Y_test = array('B') 

 70  trainNum = 0 

 71  testNum = 0 

 72  # finds and loads all items in "classes" in the "train-dataset" folder that end with .jpg 

 73  for dirname, dirnames, filenames in os.walk('./newDemo'): 

 74         for filename in filenames: 

 75                 if filename.endswith('.jpg'): 

 76                         i = i + 1 

 77 

 78                         # Load the image file 

 79                         im = Image.open(os.path.join(dirname, filename)) 

 80 

 81                         # Load image into matrix 

 82                         pix = im.load() 

 83 

 84                         # Get class label from folder name 
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 85                         # e.g. /Classes/0/xx.jpg -> 0 

 86                         class_name = int(os.path.join(dirname).split('\\')[-1]) 

 87                         w, h = im.size 

 88                     # 9/10ths are the training set 

 89                         if(i%10 > 1): 

 90                                # Append the class label as Byte 

 91                                Y_train.append(class_name) 

 92                              for x in range(0,sizeW): 

 93                                        for y in range(0,sizeH): 

 94                                               for color in range(0,3): 

 95                                                    X_train[trainNum][x][y][color] = float(pix[x,y][color] / 255) 

 96                                trainNum+=1 

 97                         # 1/10th is the validation (or test) set    

 98                         else: 

 99                                # Append the class label as Byte    

100                                Y_test.append(class_name) 

101                                for x in range(0,sizeW): 

102                                        for y in range(0,sizeH): 

103                                               for color in range(0,3): 

104                                                    X_test[testNum][x][y][color] = float(pix[x,y][color] / 255) 

105                                testNum+=1 

106 

107  print("Height", h) 

108  print("Width", w) 

109  print(i) 

110  print("test", testNum) 

111  print("train", trainNum)                                           

112  return (X_train, Y_train), (X_test, Y_test)   

113 

114 # GREYSCALE , 1-CHANNEL VERSION 

115 def prepMatGrey(trainSize, testSize, sizeW, sizeH): 

116  i = 0 

117  X_train = np.empty((trainSize, sizeW, sizeH, 1)) 

118  Y_train = array('B') 

119  X_test = np.empty((testSize, sizeW, sizeH, 1)) 

120  Y_test = array('B') 

121  trainNum = 0 

122  testNum = 0 

123  # finds and loads all items in "classes" in the "train-dataset" folder that end with .jpg 

124  for dirname, dirnames, filenames in os.walk('./statTrain64'): 

125         for filename in filenames: 

126                 if filename.endswith('.jpg'): 

127                         i = i + 1 

128 
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129                      # Load the image file 

130                         im = Image.open(os.path.join(dirname, filename)) 

131 

132                         # Load image into matrix 

133                         pix = im.load() 

134 

135                         # Get class label from folder name 

136                         # e.g. /Classes/0/xx.jpg -> 0 

137                         class_name = int(os.path.join(dirname).split('\\')[-1]) 

138                         w, h = im.size 

139                         tempColor = 0 

140                     # 9/10ths are the training set 

141                         if(i%10 > 1): 

142                                # Append the class label as Byte 

143                                Y_train.append(class_name) 

144                                for x in range(0,sizeW): 

145                                        for y in range(0,sizeH): 

146                                               #for color in range(0,3): 

147                                               tempColor += 0.21 * float(pix[x,y][0] / 255) 

148                                               tempColor += 0.72 * float(pix[x,y][1] / 255) 

149                                               tempColor += 0.07 * float(pix[x,y][2] / 255) 

150                                               X_train[trainNum][x][y][0] = tempColor 

151                                               tempColor = 0 

152                                trainNum+=1 

153                         # 1/10th is the validation (or test) set    

154                         else: 

155                                # Append the class label as Byte    

156                                Y_test.append(class_name) 

157                                for x in range(0,sizeW): 

158                                        for y in range(0,sizeH): 

159                                               #for color in range(0,3): 

160                                               tempColor += 0.21 * float(pix[x,y][0] / 255) 

161                                               tempColor += 0.72 * float(pix[x,y][1] / 255) 

162                                               tempColor += 0.07 * float(pix[x,y][2] / 255) 

163                                               X_train[testNum][x][y][0] = tempColor 

164                                               tempColor = 0 

165                                testNum+=1 

166 

167  print("Height", h) 

168  print("Width", w) 

169  print(i) 

170  print("test", testNum) 

171  print("train", trainNum)                                           

172  return (X_train, Y_train), (X_test, Y_test)   
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173 

174 

175 # Scanning routine that produces 10 subsets of the image as output                                      

176 # - example call: slidingWindow("test-dataset/file27.jpeg", 32) 

177 def slidingWindow(img, sizeH, sizeW): 

178  # open image   

179  img = Image.open(img) 

180 

181  # load pixels RGB arrays 

182  pix = img.load() 

183   

184  # get image dimensions 

185  width = int(img.size[0]) 

186  print("width: " + str(width)) 

187  height = int(img.size[1]) 

188  print("height: " + str(height)) 

189  ##### 1280 (40*32) x 720 (30*32) 

190  ##### 720 (30*32) x 1280 (40*32) 

191 

192  # output array 

193  out = [] 

194 

195  # first append full image resized to nodeSize*nodeSize 

196  out.append(imresize(img, (sizeH, sizeW), interp="bicubic").astype(np.float32, casting='unsafe')) 

197 

198  #convert to numpy array 

199  imArr = np.empty((height,width,3)) 

200  for x in range(0,w): 

201         for y in range(0,width): 

202                 for color in range(0,3): 

203                         imArr[x][y][color] = pix[x,y][color] 

204 

205  ##### 1/4 rotation 

206  xStep = int(height/2) 

207  yStep = int(width/2) 

208  img_4 = [] 

209  for i in range(0,9): 

210         img_4.append(np.empty((xStep,yStep,3))) 

211 

212  xOffset = 0 

213  yOffset = 0  

214  index = 0 

215  # 5-level loop, best loop 

216  for w in range(0,3): 
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217         for h in range(0,3): 

218                 for x in range(0, xStep): 

219                         for y in range(0, yStep): 

220                                for color in range(0,3): 

221                                        tarX = int(x+(xOffset*xStep/2)) 

222                                        tarY = int(y+(yOffset*yStep/2)) 

223                                        img_4[index][x][y][color] = imArr[tarX][tarY][color] 

224 

225                 index += 1 

226                 xOffset += 1 

227                 print("yo") 

228         yOffset += 1 

229         xOffset = 0 

230 

231  # Append the 4 generated images to output array    after resizing them 

232  for i in range(0,9): 

233         temp = toimage(img_4[i]) 

234         out.append(imresize(temp, (sizeH, sizeW), interp="bicubic").astype(np.float32, casting='unsafe')) 

235  return out   

236 

237 # freeze_graph to save current weights into file to use in C++ testing routine 

238 def 

save_graph(sess,output_path,checkpoint,checkpoint_state_name,input_graph_name,output_graph_name): 

239  # We save out the graph to disk, and then call the const conversion 

240  # routine. 

241  checkpoint_state_name = "checkpoint_state" 

242  input_graph_name = "input_graph.pb" 

243  output_graph_name = "output_graph.pb" 

244 

245  input_graph_path = os.path.join("C:/Users/George/Documents/MQP/tmp/", input_graph_name) 

246  input_saver_def_path = ""    

247  input_binary = False 

248  input_checkpoint_path = os.path.join("C:/Users/George/Documents/MQP/", 'saved_checkpoint') + "-

9000" 

249 

250  # Note that we this normally should be only "output_node"!!! 

251  output_node_names = "out/Softmax" 

252  restore_op_name = "save/restore_all" 

253  filename_tensor_name = "save/Const:0" 

254  output_graph_path = os.path.join("C:/Users/George/Documents/MQP/tmp/", output_graph_name) 

255  clear_devices = True 

256 

257  export.freeze_graph(input_graph_path, input_saver_def_path, 

258                            input_binary, input_checkpoint_path, 
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259                            output_node_names, restore_op_name, 

260                            filename_tensor_name, output_graph_path, 

261                            clear_devices, "") 

262 

263 # Scanning routine that produces 10 subsets of the image as output                                      

264 # - example call: slidingWindow("test-dataset/file27.jpeg", 32) 

265 def slidingWindowDemo(img, sizeH, sizeW): 

266  # open image   

267  img = Image.open(img) 

268  # img = cv2.imread(img,1) 

269  # load pixels RGB arrays 

270  pix = img.load() 

271  # pix = np.asarray(img) 

272  # get image dimensions 

273  width = int(img.size[0]) 

274  print("width: " + str(width)) 

275  height = int(img.size[1]) 

276  print("height: " + str(height)) 

277  ##### 1280 (40*32) x 720 (30*32) 

278  ##### 720 (30*32) x 1280 (40*32) 

279 

280  out = [] 

281  # first append full image resized to nodeSize*nodeSize 

282  out.append(imresize(img, (sizeH, sizeW), interp="bicubic").astype(np.float32, casting='unsafe')) 

283 

284  # #convert to numpy array 

285  imArr = np.empty((height,width,3)) 

286  for x in range(0,height): 

287         for y in range(0,width): 

288                 for color in range(0,3): 

289                         imArr[x][y][color] = pix[y,x][color] 

290 

291  ##### 1/4 rotation 

292  xStep = int(height/2) 

293  yStep = int(width/2) 

294  img_4 = [] 

295  for k in range(0,4): 

296         img_4.append(np.empty((xStep,yStep,3))) 

297 

298  index = 0    

299  for w in range(0,2): 

300         for h in range(0,2): 

301                 for x in range(0, xStep): 

302                         for y in range(0, yStep): 
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303                                        for color in range(0,3): 

304                                               tarX = int(x+(xStep * w)) 

305                                               tarY = int(y+(yStep * h)) 

306                                               img_4[index][x][y][color] = imArr[tarX][tarY][color] 

307                 index +=1  

308 

309 

310  # Append the 4 generated images to output array    after resizing them 

311  for i in range(0,4): 

312         temp = toimage(img_4[i]) 

313         width = int(temp.size[0]) 

314         print("width: " + str(width)) 

315         height = int(temp.size[1]) 

316         print("height: " + str(height)) 

317         out.append(imresize(temp, (sizeH, sizeW), interp="bicubic").astype(np.float32, casting='unsafe')) 

318  return out   

319 

320 

321 # RGB to GRAY formula 

322 def rgb2gray(rgb): 

323  return np.dot(rgb[...,:3], [0.299, 0.587, 0.114]) 

324 

325 # Converts the training dataset from RGB to BW 

326 # - example call: convertToBW("C:/Users/George/Documents/MQP/train-dataset",  ".jpeg", 34)   

327 def convertToBW(dir, type, imageNum): 

328  for i in range(imageNum): 

329         if(i >= 0): 

330                 # Load the image file 

331                 # img = mpimg.imread('image.png')   

332                 # gray = rgb2gray(img)    

333                 # plt.imshow(gray, cmap = plt.get_cmap('gray')) 

334                 # plt.show() 

335 

336                 readPath = dir + '/0/small-file' + str(i) + type 

337                 writePath = "C:/Users/George/Documents/MQP/train-dataset-bw/0/small-file" + str(i) + 

'.jpg' 

338                 img = Image.open(readPath).convert('L') 

339                 img.save(writePath) 

340                 # im_gray = cv2.imread(dir + '/1/small-file' + str(i) + type, cv2.IMREAD_GRAYSCALE) 

341                 # #(thresh, im_bw) = cv2.threshold(im_gray, 128, 255, cv2.THRESH_BINARY | 

cv2.THRESH_OTSU) 

342                 # cv2.imwrite("C:/Users/George/Documents/MQP/train-dataset-bw/1/small-file" + str(i) + 

'.jpg', im_gray) 

343                 # #Save the image to new folder 
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344                  

345 # Test sliding window, only appends original image 

346 def slidingWindowDemoTest(img, nodeSize): 

347  # open image   

348  img = Image.open(img) 

349 

350  # load pixels RGB arrays 

351  pix = img.load() 

352   

353  # get image dimensions 

354  width = int(img.size[0]) 

355  print("width: " + str(width)) 

356  height = int(img.size[1]) 

357  print("height: " + str(height)) 

358  ##### 1280 (40*32) x 720 (30*32) 

359  ##### 720 (30*32) x 1280 (40*32) 

360 

361  # output array 

362  out = [] 

363 

364  # first append full image resized to nodeSize*nodeSize 

365  out.append(imresize(img, (nodeSize, nodeSize), interp="bicubic").astype(np.float32, 

casting='unsafe')) 

366 

367  return out   

368 

369 

370 # Converts captures frames to their quarters. Essentially, creating a dataset 4x as big. 

371 def toQuarters(imageNum): 

372  for i in range(imageNum): 

373         if(i%8 == 0): 

374                 # Load the image file 

375                 img = Image.open('toQuarter/file' + str(i) + '.jpg') 

376                  

377                 pix = imresize(img, (720, 1280), interp="bicubic").astype(np.float32, casting='unsafe') 

378                 # load pixels RGB arrays 

379                 # pix = img.load() 

380                  

381                 # get image dimensions 

382                 width = int(img.size[0]) 

383                 print("width: " + str(width)) 

384                 height = int(img.size[1]) 

385                 print("height: " + str(height)) 

386                 ##### 1280 (40*32) x 720 (30*32) 
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387                 ##### 720 (30*32) x 1280 (40*32) 

388 

389                 #convert to numpy array 

390                 imArr = np.empty((height,width,3)) 

391                 for x in range(0,height): 

392                         for y in range(0,width): 

393                                for color in range(0,3): 

394                                     imArr[x][y][color] = pix[x,y][color] 

395 

396                 ##### 1/4 rotation 

397                 xStep = int(height/2) 

398                 yStep = int(width/2) 

399                 img_4 = [] 

400                 for k in range(0,4): 

401                         img_4.append(np.empty((xStep,yStep,3))) 

402 

403                 index = 0    

404                 for w in range(0,2): 

405                         for h in range(0,2): 

406                                for x in range(0, xStep): 

407                                        for y in range(0, yStep): 

408                                                       for color in range(0,3): 

409                                                               tarX = int(x+(xStep * w)) 

410                                                               tarY = int(y+(yStep * h)) 

411                                                            img_4[index][x][y][color] = imArr[tarX][tarY][color] 

412                                index +=1  

413 

414 

415                 # Append the 9 generated images to output array    after resizing them 

416                 for z in range(0,4): 

417                         temp = toimage(img_4[z]) 

418                         #Save the image to new folder 

419                         temp.save('Quarters/file' + str(i) + str(z) + '.jpg') 
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Appendix - F: Matlab ImageToText.m code 
clc; close all 

 

[fName,pName] = uigetfile('*.*'); 

row = 128;col = 128; noImage = 2; 

I = imresize(imread([pName fName]), [row col]); 

figure, imshow(uint8(I)); 

 

fid = fopen('input.txt', 'w'); 

 

for noI = 1:noImage 

    for i = 1:row 

        for j = 1:col 

            %Break and Concat Color Component 

            fprintf(fid, '%s\n',[dec2hex(I(i,j,1),2) dec2hex(I(i,j,2),2) dec2hex(I(i,j,3),2)]); 

        end 

    end 

end 

fclose(fid); 
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Appendix - G: Matlab TextToImage.m code 
clc; close all; 

 

fid = fopen("result_img.txt"); 

txtData = textscan(fid, '%s'); 

txtData = cell2mat(txtData{1,1}); 

 

textImage = zeros(row,col,3); 

 

for noI = 1:noImage 

     idx = (noI - 1) *row*col + 1:noI*row*col; 

     tempData = txtData(idx,:); 

     textImage(:,:,1) = reshape(hex2dec(tempData(:,1:2)), col, row)'; 

     textImage(:,:,2) = reshape(hex2dec(tempData(:,3:4)), col, row)'; 

     textImage(:,:,3) = reshape(hex2dec(tempData(:,5:6)), col, row)'; 

 

     figure, imshow(uint8(textImage)); 

end 
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Appendix - H: Sobel Filter Verilog Code 
 

// ------------------------------------------------------------- 

//  

// File Name: C:\Users\skids\Documents\MATLAB\hdl_prj\Sobel\hdlcoder_sobel\SobelCore.v 

// Created: 2017-02-21 20:43:31 

//  

// Generated by MATLAB 9.1 and HDL Coder 3.9 

//  

// ------------------------------------------------------------- 

 

 

// ------------------------------------------------------------- 

//  

// Module: SobelCore 

// Source Path: hdlcoder_sobel/Pixel-Stream HDL Model/Edge Detection/Edge Detector/SobelCore 

// Hierarchy Level: 3 

//  

// Sobel Core 

//  

// ------------------------------------------------------------- 

 

`timescale 1 ns / 1 ns 

 

module SobelCore 

          ( 

           clk, 

           reset, 

           enb, 

           pixelInVec_0, 

           pixelInVec_1, 

           pixelInVec_2, 

           ShiftEnb, 

           Gv, 

           Gh 

          ); 

 

 

 

  input   clk; 

  input   reset; 

  input   enb; 
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  input   [7:0] pixelInVec_0;  // uint8 

  input   [7:0] pixelInVec_1;  // uint8 

  input   [7:0] pixelInVec_2;  // uint8 

  input   ShiftEnb; 

  output  signed [10:0] Gv;  // sfix11_En3 

  output  signed [10:0] Gh;  // sfix11_En3 

 

  reg [7:0] pixel1Shift;  // uint8 

  reg [7:0] pixel1Shift2;  // uint8 

  reg [7:0] pixel1Shift3;  // uint8 

  reg [7:0] pixel3Shift;  // uint8 

  reg [7:0] pixel3Shift2;  // uint8 

  reg [7:0] pixel3Shift3;  // uint8 

  wire [8:0] adder_1;  // ufix9 

  wire [8:0] adder_2;  // ufix9 

  wire [8:0] GvAdder1;  // ufix9 

  reg [8:0] GvAdder1Delay;  // ufix9 

  reg [7:0] pixel2Shift;  // uint8 

  reg [7:0] pixel2Shift2;  // uint8 

  reg [7:0] pixel2Shift3;  // uint8 

  wire [7:0] p2S3x2;  // ufix8_E1 

  reg [7:0] p2S3x2Delay;  // ufix8_E1 

  wire [9:0] adder_add_cast;  // ufix10 

  wire [9:0] adder_4;  // ufix10 

  wire [9:0] GvAdder2;  // ufix10 

  reg [9:0] GvAdder2Delay;  // ufix10 

  wire [7:0] p2Sx2;  // ufix8_E1 

  reg [7:0] p2Sx2Delay;  // ufix8_E1 

  wire [8:0] adder_6;  // ufix9 

  wire [8:0] adder_7;  // ufix9 

  wire [8:0] GvAdder3;  // ufix9 

  reg [8:0] GvAdder3Delay;  // ufix9 

  wire [9:0] adder_add_cast_1;  // ufix10 

  wire [9:0] adder_9;  // ufix10 

  wire [9:0] GvAdder4;  // ufix10 

  reg [9:0] GvAdder4Delay;  // ufix10 

  wire [10:0] subtractor_sub_temp;  // ufix11 

  wire [10:0] subtractor_1;  // ufix11 

  wire [10:0] subtractor_2;  // ufix11 

  wire signed [10:0] GvAdder5;  // sfix11 

  wire signed [10:0] gvdtc1;  // sfix11_En3 

  reg signed [10:0] gvdtc1Delay;  // sfix11_En3 

  wire [7:0] p3S2x2;  // ufix8_E1 
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  reg [7:0] p3S2x2Delay;  // ufix8_E1 

  wire [8:0] adder_11;  // ufix9 

  wire [8:0] adder_12;  // ufix9 

  wire [8:0] GhAdder3;  // ufix9 

  reg [8:0] GhAdder3Delay;  // ufix9 

  wire [9:0] adder_add_cast_2;  // ufix10 

  wire [9:0] adder_14;  // ufix10 

  wire [9:0] GhAdder4;  // ufix10 

  reg [9:0] GhAdder4Delay;  // ufix10 

  wire [7:0] p1S2x2;  // ufix8_E1 

  reg [7:0] p1S2x2Delay;  // ufix8_E1 

  wire [8:0] adder_16;  // ufix9 

  wire [8:0] adder_17;  // ufix9 

  wire [8:0] GhAdder1;  // ufix9 

  reg [8:0] GhAdder1Delay;  // ufix9 

  wire [9:0] adder_add_cast_3;  // ufix10 

  wire [9:0] adder_19;  // ufix10 

  wire [9:0] GhAdder2;  // ufix10 

  reg [9:0] GhAdder2Delay;  // ufix10 

  wire [10:0] subtractor_sub_temp_1;  // ufix11 

  wire [10:0] subtractor_4;  // ufix11 

  wire [10:0] subtractor_5;  // ufix11 

  wire signed [10:0] GhAdder5;  // sfix11 

  wire signed [10:0] ghdtc1;  // sfix11_En3 

  reg signed [10:0] ghdtc1Delay;  // sfix11_En3 

 

 

  always @(posedge clk or posedge reset) 

    begin : p1Shift_process 

      if (reset == 1'b1) begin 

        pixel1Shift <= 8'b00000000; 

      end 

      else begin 

        if (enb && ShiftEnb) begin 

          pixel1Shift <= pixelInVec_0; 

        end 

      end 

    end 

 

 

 

  always @(posedge clk or posedge reset) 

    begin : p1Shift2_process 
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      if (reset == 1'b1) begin 

        pixel1Shift2 <= 8'b00000000; 

      end 

      else begin 

        if (enb && ShiftEnb) begin 

          pixel1Shift2 <= pixel1Shift; 

        end 

      end 

    end 

 

 

 

  always @(posedge clk or posedge reset) 

    begin : p1Shift3_process 

      if (reset == 1'b1) begin 

        pixel1Shift3 <= 8'b00000000; 

      end 

      else begin 

        if (enb && ShiftEnb) begin 

          pixel1Shift3 <= pixel1Shift2; 

        end 

      end 

    end 

 

 

 

  always @(posedge clk or posedge reset) 

    begin : p3Shift_process 

      if (reset == 1'b1) begin 

        pixel3Shift <= 8'b00000000; 

      end 

      else begin 

        if (enb && ShiftEnb) begin 

          pixel3Shift <= pixelInVec_2; 

        end 

      end 

    end 

 

 

 

  always @(posedge clk or posedge reset) 

    begin : p3Shift2_process 

      if (reset == 1'b1) begin 
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        pixel3Shift2 <= 8'b00000000; 

      end 

      else begin 

        if (enb && ShiftEnb) begin 

          pixel3Shift2 <= pixel3Shift; 

        end 

      end 

    end 

 

 

 

  always @(posedge clk or posedge reset) 

    begin : p3Shift3_process 

      if (reset == 1'b1) begin 

        pixel3Shift3 <= 8'b00000000; 

      end 

      else begin 

        if (enb && ShiftEnb) begin 

          pixel3Shift3 <= pixel3Shift2; 

        end 

      end 

    end 

 

 

 

  assign adder_1 = {1'b0, pixel1Shift3}; 

  assign adder_2 = {1'b0, pixel3Shift3}; 

  assign GvAdder1 = adder_1 + adder_2; 

 

 

 

  always @(posedge clk or posedge reset) 

    begin : reg_rsvd_process 

      if (reset == 1'b1) begin 

        GvAdder1Delay <= 9'b000000000; 

      end 

      else begin 

        if (enb) begin 

          GvAdder1Delay <= GvAdder1; 

        end 

      end 

    end 
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  always @(posedge clk or posedge reset) 

    begin : p2Shift_process 

      if (reset == 1'b1) begin 

        pixel2Shift <= 8'b00000000; 

      end 

      else begin 

        if (enb && ShiftEnb) begin 

          pixel2Shift <= pixelInVec_1; 

        end 

      end 

    end 

 

 

 

  always @(posedge clk or posedge reset) 

    begin : p2Shift2_process 

      if (reset == 1'b1) begin 

        pixel2Shift2 <= 8'b00000000; 

      end 

      else begin 

        if (enb && ShiftEnb) begin 

          pixel2Shift2 <= pixel2Shift; 

        end 

      end 

    end 

 

 

 

  always @(posedge clk or posedge reset) 

    begin : p2Shift3_process 

      if (reset == 1'b1) begin 

        pixel2Shift3 <= 8'b00000000; 

      end 

      else begin 

        if (enb && ShiftEnb) begin 

          pixel2Shift3 <= pixel2Shift2; 

        end 

      end 

    end 
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  assign p2S3x2 = pixel2Shift3; 

 

 

 

  always @(posedge clk or posedge reset) 

    begin : reg_rsvd_1_process 

      if (reset == 1'b1) begin 

        p2S3x2Delay <= 8'b00000000; 

      end 

      else begin 

        if (enb) begin 

          p2S3x2Delay <= p2S3x2; 

        end 

      end 

    end 

 

 

 

  assign adder_add_cast = {1'b0, {p2S3x2Delay, 1'b0}}; 

  assign adder_4 = {1'b0, GvAdder1Delay}; 

  assign GvAdder2 = adder_4 + adder_add_cast; 

 

 

 

  always @(posedge clk or posedge reset) 

    begin : reg_rsvd_2_process 

      if (reset == 1'b1) begin 

        GvAdder2Delay <= 10'b0000000000; 

      end 

      else begin 

        if (enb) begin 

          GvAdder2Delay <= GvAdder2; 

        end 

      end 

    end 

 

 

 

  assign p2Sx2 = pixel2Shift; 
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  always @(posedge clk or posedge reset) 

    begin : reg_rsvd_3_process 

      if (reset == 1'b1) begin 

        p2Sx2Delay <= 8'b00000000; 

      end 

      else begin 

        if (enb) begin 

          p2Sx2Delay <= p2Sx2; 

        end 

      end 

    end 

 

 

 

  assign adder_6 = {1'b0, pixel1Shift}; 

  assign adder_7 = {1'b0, pixel3Shift}; 

  assign GvAdder3 = adder_6 + adder_7; 

 

 

 

  always @(posedge clk or posedge reset) 

    begin : reg_rsvd_4_process 

      if (reset == 1'b1) begin 

        GvAdder3Delay <= 9'b000000000; 

      end 

      else begin 

        if (enb) begin 

          GvAdder3Delay <= GvAdder3; 

        end 

      end 

    end 

 

 

 

  assign adder_add_cast_1 = {1'b0, {p2Sx2Delay, 1'b0}}; 

  assign adder_9 = {1'b0, GvAdder3Delay}; 

  assign GvAdder4 = adder_add_cast_1 + adder_9; 

 

 

 

  always @(posedge clk or posedge reset) 

    begin : reg_rsvd_5_process 

      if (reset == 1'b1) begin 
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        GvAdder4Delay <= 10'b0000000000; 

      end 

      else begin 

        if (enb) begin 

          GvAdder4Delay <= GvAdder4; 

        end 

      end 

    end 

 

 

 

  assign subtractor_1 = {1'b0, GvAdder2Delay}; 

  assign subtractor_2 = {1'b0, GvAdder4Delay}; 

  assign subtractor_sub_temp = subtractor_1 - subtractor_2; 

  assign GvAdder5 = subtractor_sub_temp; 

 

 

 

  // Gv: Right-shift 3 bit to perform divided by 8 

  assign gvdtc1 = GvAdder5; 

 

 

 

  always @(posedge clk or posedge reset) 

    begin : reg_rsvd_6_process 

      if (reset == 1'b1) begin 

        gvdtc1Delay <= 11'sb00000000000; 

      end 

      else begin 

        if (enb) begin 

          gvdtc1Delay <= gvdtc1; 

        end 

      end 

    end 

 

 

 

  assign p3S2x2 = pixel3Shift2; 

 

 

 

  always @(posedge clk or posedge reset) 

    begin : reg_rsvd_7_process 
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      if (reset == 1'b1) begin 

        p3S2x2Delay <= 8'b00000000; 

      end 

      else begin 

        if (enb) begin 

          p3S2x2Delay <= p3S2x2; 

        end 

      end 

    end 

 

 

 

  assign adder_11 = {1'b0, pixel3Shift}; 

  assign adder_12 = {1'b0, pixel3Shift3}; 

  assign GhAdder3 = adder_11 + adder_12; 

 

 

 

  always @(posedge clk or posedge reset) 

    begin : reg_rsvd_8_process 

      if (reset == 1'b1) begin 

        GhAdder3Delay <= 9'b000000000; 

      end 

      else begin 

        if (enb) begin 

          GhAdder3Delay <= GhAdder3; 

        end 

      end 

    end 

 

 

 

  assign adder_add_cast_2 = {1'b0, {p3S2x2Delay, 1'b0}}; 

  assign adder_14 = {1'b0, GhAdder3Delay}; 

  assign GhAdder4 = adder_add_cast_2 + adder_14; 

 

 

 

  always @(posedge clk or posedge reset) 

    begin : reg_rsvd_9_process 

      if (reset == 1'b1) begin 

        GhAdder4Delay <= 10'b0000000000; 

      end 
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      else begin 

        if (enb) begin 

          GhAdder4Delay <= GhAdder4; 

        end 

      end 

    end 

 

 

 

  assign p1S2x2 = pixel1Shift2; 

 

 

 

  always @(posedge clk or posedge reset) 

    begin : reg_rsvd_10_process 

      if (reset == 1'b1) begin 

        p1S2x2Delay <= 8'b00000000; 

      end 

      else begin 

        if (enb) begin 

          p1S2x2Delay <= p1S2x2; 

        end 

      end 

    end 

 

 

 

  assign adder_16 = {1'b0, pixel1Shift}; 

  assign adder_17 = {1'b0, pixel1Shift3}; 

  assign GhAdder1 = adder_16 + adder_17; 

 

 

 

  always @(posedge clk or posedge reset) 

    begin : reg_rsvd_11_process 

      if (reset == 1'b1) begin 

        GhAdder1Delay <= 9'b000000000; 

      end 

      else begin 

        if (enb) begin 

          GhAdder1Delay <= GhAdder1; 

        end 

      end 
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    end 

 

 

 

  assign adder_add_cast_3 = {1'b0, {p1S2x2Delay, 1'b0}}; 

  assign adder_19 = {1'b0, GhAdder1Delay}; 

  assign GhAdder2 = adder_add_cast_3 + adder_19; 

 

 

 

  always @(posedge clk or posedge reset) 

    begin : reg_rsvd_12_process 

      if (reset == 1'b1) begin 

        GhAdder2Delay <= 10'b0000000000; 

      end 

      else begin 

        if (enb) begin 

          GhAdder2Delay <= GhAdder2; 

        end 

      end 

    end 

 

 

 

  assign subtractor_4 = {1'b0, GhAdder4Delay}; 

  assign subtractor_5 = {1'b0, GhAdder2Delay}; 

  assign subtractor_sub_temp_1 = subtractor_4 - subtractor_5; 

  assign GhAdder5 = subtractor_sub_temp_1; 

 

 

 

  // Gh: Right-shift 3 bit to perform divided by 8 

  assign ghdtc1 = GhAdder5; 

 

 

 

  always @(posedge clk or posedge reset) 

    begin : reg_rsvd_13_process 

      if (reset == 1'b1) begin 

        ghdtc1Delay <= 11'sb00000000000; 

      end 

      else begin 

        if (enb) begin 
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          ghdtc1Delay <= ghdtc1; 

        end 

      end 

    end 

 

 

 

  // Gv: Cast to the specified gradient data type. Full precision if outputing binary image only 

  assign Gv = gvdtc1Delay; 

 

  // Gh: Cast to the specified gradient data type. Full precision if outputing binary image only 

  assign Gh = ghdtc1Delay; 

 

endmodule  // SobelCore 

 

 


