
Concurrent Deep Learning Workloads on NVIDIA GPUs

by

Guin Gilman

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

by

May 2021

APPROVED:

Professor Robert J. Walls, Major Thesis Advisor

Professor Charles Davis Roberts, Thesis Reader

Professor Craig E. Wills, Head of Department

Abstract

Deep learning GPU servers that execute latency-sensitive inference requests from

clients often seek to run training tasks alongside inference when there are idle re-

sources in order to improve overall system utilization. We empirically derive the

thread block scheduler’s behavior under such concurrent workloads for NVIDIA’s

Pascal, Volta, and Turing microarchitectures. In contrast to past studies that sug-

gest the scheduler uses a round-robin policy to assign thread blocks to streaming

multiprocessors (SMs), we instead find that the scheduler chooses the next SM based

on the SM’s local resource availability. We show how this scheduling policy can lead

to significant, and seemingly counter-intuitive, performance degradation; for exam-

ple, a decrease of one thread per block resulted in a 3.58X increase in execution

time for one kernel in our experiments. We then investigate the performance of

current concurrency mechanisms on NVIDIA’s new Ampere microarchitecture un-

der deep learning workloads and demonstrate that fluctuating resource requirements

and kernel runtimes make executing such workloads while maintaining consistently

high utilization and low, predictable turnaround times difficult on current NVIDIA

hardware. Moreover, we conclude that the lack of sufficiently flexible preemption

policies, robust task prioritization mechanisms, and contention-aware thread block

scheduling techniques limits the effectiveness of NVIDIA’s concurrency mechanisms.

We estimate that through the use of block-level, contention-aware preemption, it is

possible to achieve 1.5X speedups in turnaround time with comparable utilization

and improved predictability, as long as preemption overhead remains under 1-2ms.

Acknowledgements

I would like to thank my advisor for his guidance and insight during this process,

which has been an immeasurable contribution to making this work one which I am

proud of. I also thank Tian Guo and Samuel Ogden for their feedback and constant

support, and for their contributions to a great portion of the earlier parts of this

work. I would additionally like to thank Professor Charles Robert as the second

reader of this thesis for providing valuable input that improved it greatly. The

members of the CAKE Lab at WPI have also given me a tremendous amount of

support, feedback, and opportunities to share my work that I deeply appreciate. I

thank both the faculty and students for their support. Finally, I would also like to

thank my family for providing me with encouragement throughout this endeavor,

especially my sister Meredith. This accomplishment would have been impossible

without them. Thank you.

i

Contents

1 Introduction 1

2 Background 5

2.1 CUDA Programming Model . 5

2.2 NVIDIA Concurrency Mechanisms 8

3 Related Work 11

3.1 Reverse-Engineering NVIDIA Hardware 11

3.2 Concurrent Scheduling Policies . 13

3.2.1 Temporal Multiplexing . 13

3.2.2 Spatial Multiplexing . 16

4 Kernel Concurrency 18

4.1 Methodology . 19

4.1.1 Deriving the Most-Room Policy 20

4.1.2 Measuring Workload Performance 21

4.2 The Most-Room Policy . 22

4.2.1 A Demonstrative Experiment 23

4.2.2 SM Resource Limits . 24

4.2.3 Tie-Breaking . 25

ii

4.2.4 Further Details . 26

4.3 Performance Implications of the Most-Room Policy 27

4.3.1 A Demonstrative Experiment 27

4.3.2 L1-Cache-Dependent Kernels 28

4.3.3 Compute-Intensive Kernels . 29

4.3.4 Memory-Intensive Kernels . 31

4.3.5 Transfer-Bandwidth-Dependent Kernels 31

4.3.6 Performance Summary . 33

4.4 Summary . 33

5 Application Concurrency 34

5.1 Measurement Methodology . 35

5.2 Characterizing Concurrency Mechanisms 36

5.2.1 Performance Metrics . 36

5.2.2 Workload Characteristics . 38

5.2.3 Priority Streams . 39

5.2.4 Time-Slicing . 42

5.2.5 Multi-Process Service . 45

5.3 Summary . 47

6 Proposed Scheduling Policies 50

6.1 Methodology . 53

6.1.1 Round-Robin Policy . 54

6.1.2 SM-Filling Policy . 56

6.1.3 SM-Division Policy . 58

6.2 Summary . 59

7 Conclusions 60

iii

A Appendix 62

A.1 Kernel Implementations . 62

A.2 Other GPU Kernel Concurrency Results 63

A.3 Turing GPU Deep Learning Workload Results 65

iv

List of Figures

4.1 Concurrent Workloads Experiment. The experimental setup for the

concurrent workloads on the Turing architecture. This example uses

threads as the limiting resource. 21

4.2 Most-Room Policy Experiment. An illustration of the experiment

demonstrating the scheduler’s most-room policy on the Pascal GPU.

Here, SMs 2-4 were omitted for space, as they each contained only

blocks of Kernel X. 23

5.1 Ampere Turnaround Time and Utilization. The average turnaround

times and utilization for each of the three mechanisms on five different

models. Note that the turnaround times are the averages of 5000

inference requests, and the measurement of training execution time

is the average of 10 runs. 48

5.2 Ampere Variance. The variance of the turnaround times for the

ResNet-50 model. Other models’ variance results were omitted for

space, but resemble these. 49

v

A.1 Turing Turnaround Times and Utilization. The average turnaround

times and utilization for each of the three mechanisms on five different

models, on the Turing GPU. Note that the turnaround times are the

averages of 5000 inference requests, and the measurement of training

execution time is the average of 10 runs. 66

A.2 Turing Variance. The variance of the turnaround times for the ResNet-

50 model on the Turing GPU. Other models’ variance results were

omitted for space, but resemble these. 67

vi

List of Tables

4.1 Turing Execution Times. Kernel execution times on the Turing GPU,

with their increase from the serial case noted in parentheses. Times

were averaged over 30 runs; coefficient of variation was less than 3%

for all cases. 28

5.1 Deep Learning Workload Characteristics. The deep learning models

analyzed, along with their relevant attributes to concurrent perfor-

mance. Note that the long-running column shows the proportion of

execution time spent on executing long-running kernels, while the

large kernels columns show the proportion of large kernels to total

kernels. Long-running inference kernels were omitted because they

involved a negligible number of such kernels. 36

6.1 The turnaround times and utilization of the ablative workloads. Note

that these are the averages of ten runs, where the kernels were ensured

to have been launched to the GPU within 1-2ms of each other. 54

A.1 Architectural details of the GPUs used in our experiments. 62

A.2 Pascal Execution Times. Average execution times for kernels in dif-

fering scenarios on the Pascal GPU with 5 SMs. 64

vii

A.3 Volta Execution Times. Average execution times for kernels in dif-

fering scenarios on the Volta GPU with 80 SMs. 64

viii

Chapter 1

Introduction

GPU-based servers are attractive for deep learning applications because such sys-

tems (e.g., TensorRT [28]) offer high-throughput and low latency for inference re-

quests. However, servicing such requests may not consistently utilize the entire

GPU. To make use of such idle resources, recent works have proposed simultane-

ously running multiple model training tasks on a single GPU [36], which could be

extended to inference servers. This requires GPUs to have a scheduling policy that

guarantees the latency-sensitive inference requests are completed in time to assure

quality of service for the user, while also consistently making use of the unoccupied

resources by applying them to resource-hungry training tasks. However, NVIDIA

GPUs have a limited set of tools for running and managing multiple independent

applications concurrently on a single GPU. Further, it is unclear how these exist-

ing mechanisms perform with the aforementioned concurrent training and inference

deep learning workloads—workloads which, as we show in this work, have fluctuat-

ing resource requirements, variable kernel runtimes, and frequent sequential kernel

launches that make existing mechanisms difficult to utilize efficiently in an inference

server context.

1

We examine concurrency on NVIDIA GPUs at two levels: the application level

and the kernel level. Despite being capable of running more than one application

simultaneously, there is only a limited set of circumstances in which kernels from

separate applications are able to share the resources of the GPU at the same time,

and in the case of time-slicing, it is not possible at all. Despite this, concurrent kernel

execution—i.e., running kernels from separate streams at the same time on the same

device—has often been proposed as a means to improve the utilization of general

purpose GPUs [37, 3, 31, 34, 8, 30, 16, 6, 7]. In order to take full advantage of kernel

concurrency, the scheduler must make intelligent decisions to efficiently divide the

GPU’s limited resources among the kernels. Suboptimal decisions by the scheduler

can lead to inefficiencies that impact kernel performance. However, characterizing

the performance implications of such concurrency is challenging due, in large part,

to the black-box nature of NVIDIA’s proprietary thread block scheduler.

We therefore use empirical observations of real hardware to infer the policies of

the thread block scheduler on the Pascal, Volta, and Turing GPU microarchitectures

in Chapter 4. We find, for example, that the scheduler chooses where to assign a

thread block based on the local resource availability of the streaming multiprocessors

(SMs)—we call this the most-room policy. In contrast, most literature assumes that

the scheduler uses a simple round-robin policy [24, 4, 22]. Our observations lead to

the following conclusion: the performance of a kernel in a concurrent workload is

challenging to predict because the performance depends on factors that are external

to the kernel itself. Such factors include (i) the scheduling policies of the thread

block scheduler; (ii) the potential for resource contention across myriad hardware

resources; and (iii) the impact of possibly unpredictable effects such as kernel launch

timing.

At the application level, we examine the three concurrency mechanisms currently

2

available on NVIDIA hardware—priority streams, time-slicing, and MPS—and eval-

uate their performance on deep learning workloads on the new Ampere and Turing

microarchitectures in Chapter 5. (We omit Volta due to the high degree of similarity

to Turing it possesses.) We find them unable to meet the demands of an inference

server in terms of turnaround time, utilization, and predictability due to a lack of

flexibility and insufficient preemption and prioritization policies. In summary, pri-

ority streams are not meant to be utilized by applications with fluctuating or high

resource requirements, leading to the kernels of the higher-priority inference task

experiencing compounded delay as they are forced to wait behind blocks of training

task kernels for GPU resources. Time-slicing disallows separate applications from

utilizing GPU resources simultaneously altogether, making it difficult to improve

utilization from a serial execution case. MPS is designed for use when the concur-

rent tasks all have consistently low resource requirements, which we show is not the

case for deep learning workloads. None of the mechanisms provide sufficient task

prioritization to accomplish the goal of maintaining QoS when servicing inference

requests.

With these limitations in mind, we propose a more flexible set of preemption

strategies for concurrent deep learning workloads in Chapter 6. We argue the need

for changes to NVIDIA hardware to enable per-block preemption that can prioritize

latency-sensitive tasks and present a series of strategies to be applied to different

types of kernels that appear in deep learning workloads. We suggest an SM-filling

policy for large kernels that are contentious and compete directly for per-SM re-

sources like computational units, a round-robin policy for large kernels with low

contention whose blocks can share SMs with less significant degradation, and an

SM-division policy for smaller kernels that are not able to utilize all available GPU

resources. We further discuss the theoretical performance gains that are possible by

3

making such changes to the behavior of the NVIDIA hardware scheduling hierarchy,

demonstrating that it is possible to achieve up to 1.5X speedups in turnaround time

with comparable or improved utilization and predictability.

Our efforts differ from much prior work in that the preemption strategies pre-

sented in this work are specifically tailored to the use case of deep learning inference

server, where one task is latency-sensitive and the other is best-effort. In contrast

to many existing spatial sharing policies [3, 37, 16], we introduce task prioriti-

zation and individual block-level preemption to achieve efficient performance on

inference server workloads with unique traits, such as differences in latency sensi-

tivity and task arrival times. We differ from previously proposed task preemption

strategies [34, 31, 35] that are unable to account for block placements that lead to

degradation in performance due to resource contention.

The remainder of this work is structured as follows. Chapter 2 provides a de-

scription of the CUDA programming model, as well as explanations of the three

high-level concurrency mechanisms examined in this work, and present related work

in Chapter 3. Our derivation of the most-room policy and analysis of its perfor-

mance implications for kernel concurrency are in Chapter 4. In Chapter 5, we detail

the characteristics of deep learning workloads that influence their performance with

different application-level scheduling techniques and analyze the three concurrency

techniques available on NVIDIA devices. We then argue the need for fine-grained

preemption and examine a set of preemption policies designed to increase the effi-

ciency of concurrent deep learning workloads, and provide estimated performance

gains. We then present our conclusions in Chapter 7.

4

Chapter 2

Background

The following section provides a brief overview of the CUDA programming model for

GPU computing, primarily focusing on NVIDIA devices of the Turing [2] and Am-

pere [1] microarchitectures. It also describes the three techniques currently available

for executing multiple tasks concurrently on one GPU: priority streams, time-slicing,

and MPS.

2.1 CUDA Programming Model

CUDA is a programming model for GPU computing on NVIDIA devices. We pro-

vide a brief overview of the terminology and workflow of the CUDA programming

model and NVIDIA GPUs, focusing our discussion on GPUs from the recent Pas-

cal, Volta, Turing, and Ampere microarchitectures; the first devices based on these

architectures were released in 2016, 2017, 2018, and 2020, respectively. We provide

only the details that are necessary to understand the behavior of the thread block

scheduler and concurrency mechanisms examined in this work.

Kernels, Thread Blocks, and Warps. A kernel in CUDA programming is

the term for the code which is executed on the GPU. A kernel is comprised of a

5

logical array of independent thread blocks, known as a grid, that each execute the

same block of code in parallel on different subsets of data. A warp is a group of 32

threads within a block, and instructions are issued per warp, meaning that a warp

is a group of threads which execute in parallel on the GPU.

Streaming Multiprocessors. The GPU executes a kernel by scheduling the

thread blocks to hardware units of computation known as streaming multiprocessors

(SMs). Each SM in a GPU from the Ampere architecture has four warp-scheduler

units, which can each issue instructions to a warp every two cycles [1]. An SM

additionally has a fixed set of resources and resource limits, such as threads, shared

memory, and registers. During execution, blocks are scheduled under the constraint

that the total resource requirements of the resident blocks on the SM cannot exceed

any one of the SM’s resources. For example, consider a GPU that supports 2048

threads and 32 blocks per SM and a kernel with 64 blocks of 32 threads. In this

scenario, a single SM can handle at most 32 blocks from the kernel (given the

32 blocks per SM limit) which means that during execution only half of the SMs

threads are being utilized (i.e., 32 blocks x 32 threads). The SMs are grouped

into Texture Processing Units (TPCs), and these TPCs are further grouped into

Graphics Processing Units (GPCs). The number of SMs per TPC and GPC varies

per card. An SM is considered to be saturated if it can schedule no further blocks

due to a lack of the required resources. We consider two blocks to be colocated if

they are being executed on the same SM simultaneously.

Streams. A stream is a sequence of commands which must be executed in

issue-order on the GPU; more than one stream can exist at a time, and operations

across streams are asynchronous and independent. In a system with a discrete GPU,

where the GPU is a separate device from the CPU and connected by a link such as

PCIe, the kernel and any data it operates on must be transferred to the GPU using

6

streams. Two kinds of commands can be issued to a stream by a CUDA program:

a data transfer command, which causes data to be migrated between the GPU and

CPU over the PCIe link; and a kernel dispatch command, which causes a kernel to

be transferred to and executed on the GPU.

Thread Block Scheduler. The thread block scheduler is responsible for as-

signing thread blocks to SMs to be executed. A new block is assigned as soon as the

resources become available on some SM [22, 4]. Thus, the thread block scheduler

must be aware of the remaining resources of each SM. Once a thread block has been

assigned to an SM, groups of 32 threads called warps are scheduled to the SM’s

execution cores by the SM’s own warp scheduler.

Execution and Copy Queues. There are two separate queues for data transfer

commands and kernel dispatches. The former is called the copy queue and the

latter is called the execution queue, and all streams launch kernels and data copy

commands to these queues. These operations are independent from each other and

performed in the order of their arrival to the respective queues [4]. The only time

when the kernel’s launch time is not the deteriminant factor for their placement

in the execution queue if stream priorities are introduced, in which case the high-

priority stream will be treated as if it were launched first [22]. The two queues allow

data transfer and kernel execution to take place independently of each other, but the

order of arrival still affects the scheduling outcome and therefore the performance

of the kernels.

Concurrent Kernel Execution. Broadly, concurrent kernel execution is the

act of running kernels from separate streams at the same time on the same GPU.

Note that kernel concurrency is only possible for kernels from the same CUDA

context, which is analogous to a CPU process, and contains all resources and actions

performed within the CUDA driver API.

7

This definition of concurrent kernels does not include the case of a single kernel

overlapping data transfer and execution; though, a concurrent kernel may employ

these techniques and we explore the impact of such behavior in Section 4.3.5. Fur-

ther, this definition does not include kernels that are executed serially on the same

stream, i.e., one kernel’s input depends on the output of a previous kernel. For

example, a single application may use one kernel to calculate a large matrix multi-

plication and a separate kernel to further process the result, and launch one after

the other on a single stream.

We highlight the distinction between the concept of data parallelism from parallel

programming—i.e., processing large datasets wherein individual data points can be

processed largely independently—and kernel concurrency [19]. In particular, GPUs

and the kernels that run on them are designed to exploit data parallelism. Again,

only kernels which are separate and independent from each other and occupying the

GPU at the same time qualify as concurrent.

2.2 NVIDIA Concurrency Mechanisms

We refer to executing two independent applications simultaneously on one GPU as

concurrent application execution. An application is defined as a set of one or more

kernels to be executed serially with possible dependencies between them. Concurrent

application execution can involve sharing the GPU in terms of space, time, or both.

When two kernels from separate applications are executed at the same time on

a single GPU, this is referred to as concurrent kernel execution. Note that this is

only possible through the use of an MPS server, or for kernels from within the same

CUDA context using streams. Thread blocks of kernels from separate processes run

on a GPU with no MPS server cannot occupy the GPU at the same time. Thus,

8

concurrent application execution can include concurrent kernel execution but does

not necessarily.

Priority Streams. In this approach, the kernels of the two applications are

launched from within the same process on different streams. Streams can be defined

with one of three priorities; higher-priority streams will preempt the execution of

lower-priority streams at the boundary of a thread block. This means that when

a high-priority stream arrives at the GPU while a low-priority stream is already

occupying the computational resources, the high-priority stream’s thread blocks will

be scheduled after the blocks of the low-priority stream finish, even if the low-priority

stream has unexecuted thread blocks remaining. The high priority stream cannot

interrupt the execution of the lower priority stream’s thread blocks which are already

being executed as it arrives. It is important to note that with this mechanism, the

applications must be launched from within the same process; despite this, the use of

separate streams makes their execution independent from each other to the extent

that they are not reliant on the progress of the other to make progress in their own

execution. However, they are still sensitive to competition for GPU resources.

Time-Slicing. When two applications are run as separate processes (with sepa-

rate CUDA contexts), they cannot share the GPU’s resources as their thread blocks

cannot be located on the GPU at the same time. However, they can share the GPU

through time-slicing. The CUDA application-level scheduler will alternate between

the processes over time, yielding the GPU’s resources completely to one process for

the fixed length of a time-slice [32, 9]. The total resources required by the set of pro-

cesses needs to be less than the resource limits of the GPU; if a process is launched

that needs more resources combined with all other currently executing processes

than a GPU has to offer, it will receive an error instead of being scheduled. This

is because the resources such as shared memory and registers that are used by a

9

process are not transferred on and off the GPU between time-slices.

Multi-Process Service. MPS allows applications run as separate processes to

share the GPU; an MPS server is run on the target GPU, and each process that

starts on that GPU is scheduled by that MPS server. This differs from time-slicing

in that the thread blocks of kernels from separate processes can now occupy the GPU

at the same time, possibly even sharing an SM; in contrast to priority streams, the

kernels can be from separate CUDA contexts. The MPS server can be configured to

limit the number of threads that can be used by any one client; for example, it can

be set so that each client can use no more than 50% of the total amount of threads

offered by the GPU. However, this limit cannot be set for each process launched by a

client individually. NVIDIA recommends that this limit be set to 100%/0.5n, where

n is the number of clients, to allow the load balancer to overlap execution between

clients whenever there are idle resources. MPS is recommended by NVIDIA to be

used in cases where the kernels utilize less than the total available resources of the

GPU in order to achieve resource saturation.

10

Chapter 3

Related Work

There are two broad categories of works which are related to this one: work which

focuses on using empircal analysis to reverse-engineer components of the scheduling

hierarchy on actual NVIDIA hardware, and work which proposes or characterizes

different multiplexing techniques or scheduling policies to more efficiently execute

concurrent workloads.

3.1 Reverse-Engineering NVIDIA Hardware

A significant amount of work has been done to understand the hardware scheduler

when executing a single CUDA application. When assigning thread blocks to SMs,

the only kernel whose blocks can be scheduled at any given time is the one at the

head of the execution queue [4, 22], and a kernel is not removed from the execution

queue until all of its blocks have been scheduled [4]. Blocks are typically assumed to

be assigned to SMs in a round-robin manner [24, 4, 22], which results in the fewest

number of blocks assigned per SM for a given kernel. This continues until there is

not enough of any given resource (e.g. threads, shared memory, registers, etc.) on

any of the SMs to schedule another block [4]. Additional blocks are scheduled as

11

soon as enough resoures become available to do so due to another block completing

its execution [4, 22].

It has been widely observed that the scheduler uses a leftover policy when

scheduling blocks from kernels launched on different streams [24, 37, 4, 22]. This

means that, because only blocks from the kernel at the front of the execution queue

can be scheduled, the blocks of other kernels in the queue will not be scheduled

until all of the blocks from the current kernel have been, even if there is space for

them but not for any more blocks of the current kernel. There is no form of pre-

emption [4]; the queue cannot be skipped, and blocks cannot be paused or stopped

partway through their execution. Making use of priorities, where a stream can either

be high or low prioritiy, works as though the high priority stream is added to the

front of the execution queue [4, 22]. In other words, its blocks are the next to be

scheduled, and no other kernels’ blocks can be scheduled before the high priority

kernel’s blocks have all been scheduled.

Olmedo et al. [32], in contrast, describe in detail all levels of the NVIDIA schedul-

ing hierarchy. It contains three levels: the warp-scheduler, the thread block sched-

uler, and the application scheduler. This is also the only work that provides evidence

that the thread block scheduler does not use a purely round-robin policy to place

blocks on SMs. Additionally, it provides evidence that the copy and execution queues

are scheduled independently from each other, and that this can cause interference

in the execution of applications which rely on both in the concurrent context.

The time-slicing application scheduler is detailed by Capodieci et al. [9]. Each

application maps to a set of channels, and each channel is associated with a partic-

ular time slice length and interleaving level. The runlist is a list of the channels to

check for work in order. To emulate the behavior of a higher priority application

being worked on more, its channels can have a higher interleaving level, meaning

12

that it shows up in the runlist more often. So for every lower priority application

that appears in the runlist, every higher priority application has to appear before

it as many times as its interleaving level dictates. The time slice length is how long

work from the channel is computed until the channel is preempted. Additionally,

when preempting, context is saved, including the constant memory, shared/L1 data,

registers, and L2 data.

3.2 Concurrent Scheduling Policies

Techniques for remedying the lack of efficient mechanisms for concurrent application

execution on NVIDIA GPUs can be divided into two broad categories: time-based

multiplexing and space-based multiplexing. Space-multiplexing focuses on efficiently

sharing GPU resources between kernels with techniques for intra-SM scheduling,

thus improving the utilization of the GPU over time, while time-multiplexing meth-

ods are based on improving the turnaround time of various general-purpose task

sets.

3.2.1 Temporal Multiplexing

Time-multiplexing methods are a technique used for improving turnaround time

as opposed to utilization, and there are a number of approaches which have been

taken to enable preemption on GPUs. The first of these is context-switching, in

which a currently-executing block’s execution context is saved in some reserved

section of global memory so that it can be abandoned and another block can be

scheduled in its place [34]. The cost of this is the memory access throughput which

is necessary for saving the state (the execution contexts of every thread, the shared

memory, the register file, etc. will all use up a not unreasonable amount of the

13

available bandwidth for global memory accesses). While the transfer is occurring,

not only can that bandwidth not be used, the resources can’t, so computation time

is sacrificed. This cost is typically thought of as so prohibitive as to render the

benefits of preemption on GPUs worthless [30, 3].

The second technique is SM-draining, where once a kernel is designated for

preemption, its currently-executing blocks finish executing, but no new ones are

scheduled, and the new kernels’ blocks get scheduled instead [34]. This avoids the

overhead of saving the execution state, since a kernel’s blocks are all independent

and execution can be resumed by continuing to schedule the rest of the interrupted

kernel’s blocks, but it comes at the cost of the remaining execution time left for all

of the currently-executing blocks.

Lastly, there is SM-flushing, which involves abandoning the execution of the

blocks on the preempted kernel entirely [31, 30], meaning that the cost is no longer

the remaining execution times of the blocks, but the recomputation that will have to

occur when the blocks are re-scheduled later. Additionally, this only works for blocks

that are idempotent at the point in time in which they are preempted [31, 30]. Due

to the different costs and benefits of these approaches, using different techniques

for different scenarios in order to achieve the lowest cost for preemption at any

given moment is more efficient than choosing one over the others at all times [31].

However, time multiplexing on its own has been shown to provide less speedup than

space multiplexing techniques overall [16], and these techniques on their own do not

guarantee the optimal assignment of resources at any given point in time, only an

efficient way to preempt kernel execution if necessary.

Another technique for enabling preemption involves the use of a technique called

persistent threads programming (PTP), which was developed as a way of bypassing

the proprietary hardware thread scheduler on NVIDIA devices and allowing the

14

programmer to influence the scheduling of work to the GPU through software [35].

This is done by scheduling exactly as many blocks as can fit on the SMs of the GPU

in one round (termed as ’thread groups’ instead of thread blocks to differentiate

them from the traditional sense of CUDA thread blocks, as these are persistent

blocks that occupy the GPU until the entire kernel’s runtime is complete). These

thread groups pick tasks from a work queue, where tasks are a subset of the work of

the kernel that would originally have been performed by one standard thread block.

The thread groups keep performing tasks from this work queue until it is empty,

at which point they terminate. [35]. This allows the scheduler to place all of the

kernel’s blocks on the GPU at once, and makes interrupting and resuming them

simpler, but requires rewriting the kernels themselves, which is not always possible

given the use of proprietary libraries such as CuDNN in many real deep learning

workloads.

Other approaches involve reordering the kernels in the execution and copy queues

to avoid serialization due to data transfer dependency bottlenecks. For example,

one approach is to separate the copy operations and kernel execution from one

application into two different CUDA streams [30]; another is to group dependent

operations into tasks, which can then be reordered in the queue to achieve a greater

degree of overlap [8]; and a third is to reorder GPU operations and launch them to

different CUDA streams to better overlap computation [21]. While these approaches

do achieve better PCIe bandwidth utilization and overall execution time, they do

not directly address the problem of SM resource underutilization.

Some deadline-based approaches exist [9], although for specific architectures with

more limited resources than those available on a server GPU. None of these ap-

proaches are tailored to the specific type of deep learning workloads we are interested

in scheduling efficiently. The closest to this area would be Xiao et al.’s scheduler

15

for GPU server clusters, which dynamically scales the resource requirements of deep

learning jobs at runtime and then schedules high-priority jobs and best-effort jobs

cooperatively in the cluster through over-provisioning [36]. However, this approach

does not consider any lower aspects of the NVIDIA scheduling hierarchy such as

the thread block scheduler which are necessary to maintain contention-aware block

placement.

3.2.2 Spatial Multiplexing

For space multiplexing, the GPU shares its resources between the blocks of multiple

kernels concurrently, thus improving resource utilization of the GPU over time. One

way to accomplish this is inter-SM slicing, which means dividing the SMs among

the kernels and scheduling blocks to run on the SMs which were assigned to that

block’s kernel. Assigning kernels a number of SMs based on profiles of their perfor-

mance relative to resource assignment in isolation achieves a higher turnaround time

than cooperative multitasking by itself, which is a method of preemption in which

applications voluntarily yield to others at times as when they are idle. However,

even simpler methods such as assigning all the kernels an equal number of SMs also

achieve a lesser but not insignificant speedup in turnaround time [3].

However, this does not solve the problem of wasted resources per-SM, as most

kernels do not use up every available resource that an SM has. Intra-SM slicing

addresses this by assigning blocks from different kernels to the same SM to execute

concurrently instead of assigning kernels to SMs. The division of blocks between

kernels on an SM is not optimal when using first-come first-served, leftover, or an

even-partitioning strategy (where each kernel gets a fixed and equal amount of the

SM’s resources) [37]. Running portions of the kernels to profile their performance

relative to resource availability, and then assigning kernels’ blocks to SMs using a

16

water-filling approach to minimize the performance loss of any given kernel achieves

higher resource utilization and improved turnaround time [37].

Separate from these two approaches are those which are based on modifying or

profiling the kernels themselves in order to reduce contention and interference when

they are run simultaneously. Elastic kernels are kernels which are able to be, at a fine

granularity, transformed into kernels which use a less contentious amount of an SM’s

resources. This is accomplished by mapping 2D logical grids and 3D logical thread

blocks into 1D versions [30]. Approaches which analyze colocated kernels as they run

and adjust the scheduling to meet QoS requirements tend to be generalized enough

that they assume no knowledge about the behavior of the concurrent application’s

kernels which could be used to prevent contention [38], which is a tighter restriction

than necessary in the case of a deep learning inference server.

There has also been some preliminary work to suggest that a combination of

time and space multiplexing can lead to even greater turnaround time and resource

utilization than either in isolation [16]. However, all of these techniques typically

assume a task set that is fixed, with uniform start times, making them difficult to

apply to an inference server without also developing a sufficient preemption and

eviction policy, given the stochastic nature of the inference requests.

17

Chapter 4

Kernel Concurrency

Improving utilization requires that the kernels of two separate applications be sched-

uled together, with thread blocks arranged onto SMs to occupy as many resources as

possible. However, NVIDIA GPUs severely limit the ability to share SMs between

blocks of separate kernels, and due to being proprietary in nature, it is difficult to

know how thread block scheduling choices are made.

Thus, in this chapter, we examine the performance of kernel-level concurrency

on NVIDIA devices. We characterize the behavior of the hardware thread block

scheduler on GPUs under concurrent kernel workloads in Section 4.2. We introduce

the most-room policy, a previously unknown scheduling policy used to determine

the placement of thread blocks on SMs. We define the most-room policy as follows:

The most-room policy dictates that a kernel block will be scheduled to the

streaming multiprocessor that, at the time of scheduling, can support the most

blocks from the current kernel, with only one block scheduled to that SM at a time.

This calculation takes into account each SM’s current resource availability, but it

does not account for potential resource contention with blocks already on the SM.

This policy breaks ties between SMs using a pre-defined device-specific ordering.

18

We then examine the performance implications of the most-room policy under

concurrent kernel workloads in Section 4.3. We demonstrate that the policy can

result in counter-intuitive performance drops with only small changes made to the

structure of the concurrent kernels. For example, a decrease of one thread per block

resulted in a 3.58X increase in execution time for one kernel in our experiments.

Finally, we highlight the scheduler’s impact on concurrent kernel workloads with

purpose-built kernels that emulate common classes of general purpose GPU kernels:

L1-cache-dependent, compute-intensive, memory-intensive, and PCIe-bandwidth-

dependent. We found performance differences due to resource contention between

kernels and a lack of kernel-level fairness.

4.1 Methodology

We selected three GPUs which are representative of NVIDIA’s three recent microar-

chitectures: Pascal, Volta, and Turing. These three GPUs represent a range of use

cases; the Pascal GPU is found in laptops, the Volta GPU is used in cloud comput-

ing servers, and the Turing GPU is a high-end desktop GPU. All three are discrete

GPUs. We ran a similar set of experiments on all three devices, with adjustments

to tailor the workload to the specific hardware capabilities and resource limits of

the GPU under observation. See Appendix A.2 for a summary of each device’s

architectural details.

We identified individual streaming multiprocessors (SMs) using the smid register,

which returns a unique value for each SM. We differentiated thread blocks by their

blockIdx values, a predefined tuple of identifiers for each thread block. We use

SM0 to denote the SM with id 0, and B0 to denote the block of a kernel B with

a blockIdx.x value of 0. Our experiments in this work fall into two categories:

19

deriving the scheduler’s policy and characterizing the performance impact of the

derived policy.

4.1.1 Deriving the Most-Room Policy

The results presented in Section 4.2 are based on the following empirical methodol-

ogy.

To derive the most-room scheduling policy of the thread block scheduler, we used

a basic workload structure consisting of two kernels, X and Y, for our experiments,

where each kernel was launched on a separate CUDA stream. In all cases, Kernel

X was launched first and followed later by Kernel Y.

The kernels consisted of code that used the globaltimer register to spin each

block for a number of seconds proportional to the id of the assigned SM. In partic-

ular, this difference in block execution time guaranteed that the blocks for Kernel

X would finish executing in the order in which they were assigned. Further, the

timing guaranteed that Kernel Y’s blocks were scheduled after the first block of

Kernel X finished executing, but before any of Kernel X’s other blocks had finished.

In other words, at the moment Kernel Y was launched, SM0 was empty while SMs

1–n each contained exactly one of Kernel X’s blocks. Kernel X consisted of a set of

n blocks (where n was the number of SMs on the GPU), while Kernel Y had three

thread blocks, so all of the SMs contained one block of Kernel X except the empty

one. The number of threads per block and the execution times of these kernels were

configured such that the placement of the blocks from Kernel Y allowed us to derive

the scheduler’s policy.

20

SM0 SM2 SM4 SM6 SM67SM0 SM2 SM4 SM6 SM67

Concurrent Colocated CaseConcurrent Isolated Case

Kernel A (512 threads)Kernel B (32/33 threads)

Figure 4.1: Concurrent Workloads Experiment. The experimental setup for
the concurrent workloads on the Turing architecture. This example uses
threads as the limiting resource.

4.1.2 Measuring Workload Performance

The results presented in Section 4.3 are based on the following empirical methodol-

ogy.

To investigate the performance implications of the most-room policy, we designed

a set of concurrent workloads with kernels whose block dimensions made their block

placement sensitive to the most-room policy. We wrote these workloads instead of

running kernels from an existing benchmark suite (e.g., Rodinia [10]) in order to

have more control over the scheduling outcome and the particular resource under

contention. We used the execution time of the individual kernels as the performance

metric, measured with NVIDIA’s kernel profiling tool nvprof [25]. We used four

different classes of purpose-built kernels: L1-cache-dependent, compute-inten-sive,

memory-intensive, and PCIe-transfer-dependent.

All of the performance experiments followed the same basic structure, an example

of which is illustrated in Figure 4.1. First, each experiment consisted of two kernels

21

from separate applications, termed Kernel A and Kernel B. Note that these kernels

were distinct from the Kernels X and Y described in Section 4.1.1. Kernel A was

launched first, with n − 1 blocks, where n was the number of SMs on the GPU.

This guaranteed that all n− 1 blocks were scheduled to a separate SM, leaving one

empty SM remaining.

We varied the number and specific resource requirements of Kernel B’s blocks,

such that the scheduler assigned all of B’s blocks to the empty SM in some experi-

mental runs, and in other runs colocated B’s blocks with Kernel A’s blocks. We refer

to these scenarios as the concurrent-isolated case and the concurrent-colocated case,

respectively, and illustrate both in Figure 4.1. As a baseline, we also ran each kernel

serially (i.e., without concurrency); we refer to this as the serial case. Note that in

the serial case experiments, the blocks of Kernel B were scheduled to separate SMs.

4.2 The Most-Room Policy

Understanding the thread block scheduler requires answering the following ques-

tions. First, when does the scheduler choose to schedule another block? Second,

which block does the scheduler choose? And third, where will that block be placed?

It has been shown in previous work that the scheduler chooses when and which

block using a leftover policy (see Section 3). However, in contrast to previous stud-

ies, we find that the scheduler chooses where to place a block based on the SMs’

local resource availability; we call this behavior the most-room policy. Due to the

black-box nature of the NVIDIA hardware, we draw our conclusions from empirical

observations of the scheduler.

22

SM0

SM1
X1

X0
Time

X Y

Y0
Y1

Y2

Figure 4.2: Most-Room Policy Experiment. An illustration of the experiment
demonstrating the scheduler’s most-room policy on the Pascal GPU. Here,
SMs 2-4 were omitted for space, as they each contained only blocks of Kernel
X.

4.2.1 A Demonstrative Experiment

We illustrate the most-room policy with the following experiment run on the Pascal

GPU and depicted in Figure 4.2. For this experiment, we used a workload consisting

of two kernels, A and B, which were launched in that order. Kernel X was composed

of five blocks, as the Pascal GPU had five SMs, with 256 threads in each block. Block

X0 (assigned to SM0 by the scheduler) always finished executing first, while block

X4 (assigned to SM4) finished executing last. Kernel Y was composed of three

blocks, each of 160 threads.

If the scheduler followed a pure round-robin policy, as is widely believed to be the

case [24, 4, 22], then we would expect that blocks Y0, Y1, and Y2 would be placed

on SM0, SM1, and SM2 respectively. Instead, the scheduler placed two blocks on

SM0 and one block on SM1—a decision which, as we argue below, was based on

each SMs’ local resource availability.

Let us first consider why Y0 was scheduled to SM0. At the time of the decision,

SM0 was empty and thus could support the maximum of 2048 threads, meaning

that it had room for up to 12 blocks of Kernel Y. The other four SMs, having one

23

block of Kernel X already resident, had only 1792 threads available and thus only

had room for 11 blocks of Kernel Y.

The second block of Kernel Y was also scheduled to SM0, resulting in Y0 and

Y1 executing on the same SM. With Y0 already executing, SM0 had 1888 threads

available and could then fit only 11 blocks of Kernel Y. As all of the SMs could fit

11 blocks of Kernel Y, the first SM was chosen (SM0) per the tie-breaking ordering.

Finally, the third block of Kernel Y was scheduled to SM1. At the time of the

decision, SM0 was executing two blocks of Kernel Y, and thus had 1728 threads

available. As SM0 could fit only 10 blocks of Kernel Y, the scheduler chose the first

SM out of the remaining four that could fit 11 blocks each (SM1).

This behavior, where the scheduler places the next block onto the SM which

can host the largest number of blocks of the current kernel, is what we term the

most-room policy. We discuss the finer details of this policy below.

4.2.2 SM Resource Limits

Determining which SM has the most room is dependent on a number of factors, and

we find that it is specific to the moment in time when the block is being scheduled

and is therefore re-evaluated for each block. As discussed previously, blocks require

a number of computational resources which the SM provides, including shared mem-

ory, threads, and registers. If a block requires more of any one of these resources

than an SM has available, it cannot be assigned to that SM. Thus, the first re-

source to run out when assigning blocks of that kernel to SMs becomes the limiting

resource.

For the previous experiment, threads were the limiting factor, but we have also

identified shared memory, the hardware limits on blocks per SM, and warps per

SM as limiting factors. However, we cannot be certain that we have identified all

24

limiting factors given the black-box nature of the scheduler.

We ran a modified version of the experiment discussed above, where Kernel X

consisted of five blocks with 1024 threads per block and Kernel Y consisted of three

blocks with 32 threads per block. This meant that the limiting factor was the

number of blocks allowed per SM, since 1024 free threads is enough room for up to

32 blocks of Kernel Y. On the Pascal GPU, this limit of blocks per SM was 32. In

this experiment, the first two blocks of Kernel Y were assigned to SM0, and the last

was assigned to SM1. This result is consistent with the most-room policy: at the

time block Y0 was scheduled, SMs 1–4 had room for 31 blocks of Kernel Y (already

having one block of Kernel X each), so SM0 was chosen because it was empty and

had room for up to 32 blocks of Kernel Y. Then, as all the SMs were tied with space

for 31 blocks, Y1 and Y2 were placed on the first two SMs respectively.

When we increased the number of threads per block in Kernel Y to 33, but left

Kernel X the same, all three blocks of Kernel Y were placed on SM0. The limiting

factor had become the number of warps per SM instead of the maximum number of

blocks per SM. On the Pascal GPU, each SM can have up to 64 warps scheduled,

and the blocks of Kernel Y at the size of 33 threads now required two warps instead

of one. The SMs running one block of Kernel X already had 32 active warps, and

could thus fit only 16 blocks of Kernel Y.

4.2.3 Tie-Breaking

The scheduler appears to use a per-device fixed ordering to break the ties between

SMs, always picking the first SM that appears in that ordering. In our experiments

with the Pascal GPU, for instance, we observed that when SM0 was empty, the

scheduler always chose to place the next block on SM0, no matter which other SMs

were also empty.

25

However, this tie-breaking ordering is not as simple as choosing the SM in as-

cending order of id number, as the previous observation might suggest. For instance,

on the Pascal GPU, the ordering was a simple ascending order: 0, 1, 2, 3, 4. On the

Turing GPU, however, the order can be best summarized as an evens-then-odds or-

dering: 0, 2, 4, 6, ..., 66, 1, 3, 5, 7, ..., 67. While the orderings were different among

the different GPUs, none of the GPUs’ thread block schedulers ever deviated from

their respective orderings when breaking ties between blocks in our experiments.

We suspect the ordering depends in part on the grouping of SMs into Texture

Processing Clusters (TPCs) and TPCs into Graphics Processing Clusters (GPCs).

On the Turing GPU, for example, there was a total of six GPCs, with two SMs per

TPC and 5-6 TPCs per GPC. We used the methodology of Pai [29] to determine

which SMs belonged to which GPC, and found that the even-then-odds ordering

caused blocks to be spread across GPCs and TPCs. This behavior may be intended

to be a form of load balancing.

4.2.4 Further Details

The most-room policy is often indistinguishable from round-robin in the case of a

single kernel. This is because blocks of the same kernel are of equal dimensions and

typically there is little divergence in the executed instructions of the blocks, so the

resources available on each SM will remain mostly identical when a single kernel

is executing. We posit this as a reason for the frequent use of round-robin as a

description of the scheduler’s placement policy.

Additionally, we found no evidence that the shape of the block or grid influences

the scheduler’s decision. For example, a 32x2 thread block was indistinguishable

from a 64x1 thread block from the perspective of the scheduler.

Finally, the most-room policy has performance implications for concurrent ker-

26

nels, including performance drops that are difficult to understand without knowledge

of the scheduler’s most-room policy. The results from concurrent kernel execution

can seem counter-intuitive at first glance without knowledge of the most-room pol-

icy. We explore these issues in the next section.

4.3 Performance Implications of the Most-Room

Policy

In this section, we highlight the impact of the scheduler and its most-room policy

on concurrent kernels. We empirically show how minute variations in the structure

of the kernel’s blocks cause the scheduler to make different placement decisions that

result in large variations of kernel performance. While the observations given below

apply to all three GPUs used in this study, this section only presents the empirical

results for the Turing GPU; the results for the Pascal and Volta GPUs can be found

in Appendix A.2. See Appendix A.1 for the kernel implementation details.

4.3.1 A Demonstrative Experiment

Consider the basic experimental structure that we used for the Turing GPU. The

two kernels A and B were each launched on two different CUDA streams. Kernel

A had 67 blocks of 512 threads and it was launched first, guaranteeing that all 67

blocks would be scheduled to a separate SM (SMs 0-66), with SM67 left empty.

Kernel B had two versions: one with 8 blocks of 32 threads, and one with 8 blocks

of 33 threads. The version with 33 threads was the concurrent-isolated case. The

limiting agent for Kernel B was the number of threads, so all of the 8 blocks of

Kernel B were scheduled to the empty SM67. The version with 32 threads was the

concurrent-colocated case; the limiting agent for Kernel B was the hardware limit

27

Table 4.1: Turing Execution Times. Kernel execution times on the Turing
GPU, with their increase from the serial case noted in parentheses. Times
were averaged over 30 runs; coefficient of variation was less than 3% for all
cases.

Serial (ms) Concurrent-Isolated (ms) Concurrent-Colocated (ms)

Kernel A Kernel B Total Kernel A Kernel B Kernel A Kernel B

L1 Cache-Dependent 85 79 164 85 79 105 (1.24X) 105 (1.33X)

Compute-Intensive 523 365 888 527 529 (1.45X) 530 676 (1.85X)

Memory-Intensive 949 10 959 951 224 (22.4X) 955 961 (96.1X)

Transfer-Bandwidth-Dep 369 130 499 385 (1.04X) 355 (2.73X) 388 (1.05X) 466 (3.58X)

on the number of blocks per SM, so the first of Kernel B’s blocks was placed on

the empty SM67. The rest were placed according to the tie-breaking ordering (see

Section 4.2.3), with one per SM. This resulted in one block of Kernel A and one

block of Kernel B on SMs 0, 2, 4, 6, 8, 10, and 12.

As described above, the only difference between the con-current-isolated and

concurrent-colocated cases is that the Kernel B uses 33 threads per block in the

concurrent-isolated case and 32 threads per block in the concurrent-colocated case.

This minor difference in threads per block had a negligible impact on runtime (in

the serial case), but triggered different scheduling decisions.

4.3.2 L1-Cache-Dependent Kernels

As all blocks on an SM share the same L1 cache, the performance of L1-cache-

dependent kernels depends primarily on the amount of cache contention [37] (i.e.,

L1-cache-dependent kernels perform better when the cache is available for their

exclusive use).

As summarized in Table 4.1, the execution time of both kernels in the concurrent-

isolated case mirrored that of the baseline (i.e., the serial case). In other words,

when the scheduler placed all of Kernel B’s blocks on a separate SM from Kernel

28

A’s blocks, both kernels executed with the same performance as if they each had a

dedicated GPU. However, when blocks from both kernels were scheduled to the same

SM (i.e., the concurrent-colocated case), there was a 1.24X increase in execution time

for Kernel A and a 1.33X increase for B.

We attribute this loss of performance to increased cache contention caused by

the scheduler’s decision to co-locate blocks from Kernels A and B. In particular, the

most-room policy does not account for interactions between separate kernels. In

the concurrent-isolated case, there was no increase in execution time, as the kernels

were executing on separate SMs and each SM had a separate L1 cache—there-fore

there was no increase in cache contention.

Further, we observed performance degradation even when a single block of Kernel

B was placed on an SM with Kernel A. In particular, we also ran the 33-thread

version of Kernel B with 9 blocks instead of 8, which led to one block of Kernel B

being assigned to an SM other than 67—one where Kernel A had a block running,

thus causing interference. This experiment resulted in an execution time of 105ms

for both kernels, the same as the concurrent-colocated case.

Finally, while concurrent kernel execution was faster than serial execution in

both cases, the end-to-end execution time of the workload was also impacted by

the scheduling decisions; for the Turing GPU we observed 164ms for the serial case,

85ms (0.52X) for the concurrent-isolated case, and 105ms (0.64X) for the concurrent-

colocated case. Note that the total execution time of the concurrent cases is the

max of the execution times of A and B.

4.3.3 Compute-Intensive Kernels

Compute-intensive kernels perform a high number of computational operations, and

their performance is bounded by the number of these operations that can be per-

29

formed on an SM per unit of time. In the concurrent-isolated case, Kernel A saw no

change in performance, while Kernel B experienced a 1.45X increase in execution

time. Again, we attribute this decrease in performance to increased contention for

resources (i.e., the functional units which perform these operations). However, in

this case, the contention is between blocks of Kernel B only rather than contention

between blocks of Kernels A and B. Recall that in the baseline serial execution, all of

the blocks of Kernel B were scheduled to separate SMs, whereas in the concurrent-

isolated case, all eight blocks of Kernel B were scheduled to the same SM. In other

words, there was more contention for computational resources than when Kernel B

was run by itself and each of the eight blocks were executing on a different SM.

In the concurrent-colocated scenario, Kernel A remained unaffected, but Kernel

B experienced a 1.85X increase in execution time from the serial case. However,

when we swapped the launch order of A and B, we observed only a small degradation

for both kernels. Both concurrent cases exhibited only a slight improvement in total

execution time compared to the serial case.

These results demonstrate that when two compute-inten-sive kernels are run con-

currently, the scheduler’s decisions can have a disproportionate impact on the per-

formance of the kernels. This observation has important implications for kernel-level

fairness, as the second kernel gets starved for resources in the concurrent-colocated

scenario. Thus, even if Kernel B gets scheduled to an SM, the scheduler’s implicit

preference for Kernel A (due only to the fact that it was launched first) seemingly

resulted in the majority of the functional units being assigned exclusively to Kernel

A, preventing Kernel B from using the resources it needed to finish executing.

30

4.3.4 Memory-Intensive Kernels

Memory-intensive kernels are dependent on global memory throughput for their

performance due to the high volume of global memory accesses that they incur. In

the serial baseline, Kernels A and B exhibit very different execution times due to

the difference in the number of threads per block. When run concurrently (i.e.,

isolated and colocated executions), the execution time of Kernel A was mostly un-

affected; however, the execution time of Kernel B was impacted significantly. In

the concurrent-isolated case, the execution time of Kernel B increased 22.4X, and in

the concurrent-colocated case, the execution time increased by 96.1X. Both concur-

rent cases had total execution times comparable to the serial case (i.e., concurrency

offered little improvement).

The increase in execution time for Kernel B during the concurrent-isolated case

can be explained by the increase in contention for global memory throughput when

all eight blocks reside on the same SM. The performance of Kernel B worsened

drastically, whereas Kernel A saw almost no change in execution time. This is

most likely due to the difference in size of the two kernels. Kernel A, having a

much higher number of threads, made a much larger number of global memory

accesses. Global memory is SRAM, physically present on the GPU and accessible

by all SMs. Therefore, Kernel A used a larger portion of the global memory transfer

bandwidth. Thus, when sharing the bandwidth with Kernel B, it was less affected

by the contention.

4.3.5 Transfer-Bandwidth-Dependent Kernels

Transfer-bandwidth-dependent kernels depend on the speed at which page faults

can be handled by the GPU. For a system with a discrete GPU, the PCIe link

31

connects the CPU and GPU. All input data and code must be transferred over

this link. The classic model for handling this transfer is to send all of the input

data over the link prior to the start of kernel execution. However, as the PCIe link

becomes a performance bottleneck in this load-then-execute model, NVIDIA has

been progressively adding features that allow for the overlap of data transfer and

kernel execution. One such feature is Unified Virtual Memory (UVM).

For NVIDIA GPUs, UVM allows the programmer to treat memory as if it is

shared between the CPU and GPU, even though in actuality, data must still be

transferred between them over the PCIe link. With UVM, data can be trans-

ferred completely asynchronously as the kernels are being executed, with data being

fetched on-demand as it is accessed by the kernels using paging. Thus, PCIe transfer

bandwidth becomes another resource that is shared between concurrently executing

kernels.

When run concurrently, we observed a minor performance degradation for Ker-

nel A but a substantial degradation for Kernel B. In the concurrent-isolated case,

the runtime for Kernel A increased by 1.04X and the runtime for Kernel B increased

by 2.73X. In the concurrent-colocated case, Kernel A saw a 1.05X increase, while

Kernel B experienced a larger 3.58X increase from the baseline. One possible expla-

nation for the larger increase in the concurrent-colocated case is that there was more

contention for transfer-related, SM-specific resources, like the translation lookaside

buffer (TLB). Despite the increase in the individual execution times, the total ex-

ecution time of the workload was slightly less than the serial case. Note that even

in the serial case, the performance of PCIe transfer bandwidth-sensitive kernels de-

pends on the rate at which paged memory transfers can be performed during kernel

execution, which can depend on qualities such as TLB sensitivity and prefetching

policies [39, 6, 11].

32

4.3.6 Performance Summary

The impact of the most-room policy on performance depends on the type of kernel

being executed. For example, the scheduler’s decisions disproportionately affect in-

dividual kernel performance for compute- and memory-intensive kernels, resulting in

poor kernel-level fairness. Transfer-bandwidth-dependent and L1-cache-dependent

kernels are impacted by contention for resources such as PCIe bandwidth, the TLB,

and the L1 cache, which is worsened when the two concurrent kernels are colocated.

Finally, when the blocks of Kernels A and B were executed on separate SMs,

concurrency offered an improvement in total execution time versus serial execution.

However, when blocks from different kernels were placed on the same SM, that

improvement lessened and, in some cases, dissipated entirely.

4.4 Summary

In summary, we have presented evidence that the thread block scheduler on NVIDIA

devices uses a most-room policy to assign thread blocks to SMs, as opposed to

the round-robin scheduling assumed by prior work. We have also demonstrated

how scheduling decisions made under this policy can impact the performance of

concurrent workloads.

Our results evince three factors that influence the performance of a kernel in

a concurrent workload: (i) the scheduling policies of the thread block scheduler;

(ii) the potential for resource contention across myriad hardware resources; and

(iii) the impact of possibly unpredictable effects such as kernel launch timing. The

implication is that predicting the performance of concurrent kernel execution is

challenging because the kernel’s performance depends on factors that are external

to the kernel itself.

33

Chapter 5

Application Concurrency

While NVIDIA GPUs possess certain limitations that restrict the sharing of SMs

between kernels, they do have the ability to run multiple indepedent applications

simultaneously on a single device. However, the mechanisms which provide this

functionality are limited by certain factors, including lack of preemption, insufficient

prioritization, and being usable only with applications that share a CUDA context.

In this chapter, we analyze the performance of currently-existing mechanisms

for concurrently executing multiple applications on a single NVIDIA GPU, in the

context of a deep learning inference server: priority streams, time-slicing, and MPS.

We explain the deep learning models that we use in addition to our experimental

design to represent a deep learning inference server in Section 5.1. We then analyze

the attributes of deep learning workloads that influence the effectiveness of priority

streams, time-slicing, and MPS in Section 5.2. A significant portion of the runtime

of deep learning training and inference tasks are small kernels with short runtimes

that underutilize the GPU’s resources. However, is also the case for some models

that up to half of the runtime is spent on long-running or large kernels that occupy

GPU resources for a significant amount of time. This poses a problem for achiev-

34

ing high utilization, as the resource demands of deep learning jobs are fluctuating.

We additionally evaluate the performance of the three mechanisms in terms of the

metrics relevant to a deep learning inference server, and find that all three mecha-

nisms are lacking in features that they would need to possess to maintain both high

turnaround time and high utilization consistently.

5.1 Measurement Methodology

We examine the performance of priority streams, time-slicing, and MPS for con-

currently executing multiple applications on one GPU by analyzing deep learning

training and inference tasks designed to resemble the scenario of an inference server

responding to user requests and training models with spare resources. We utilized a

set of five Pytorch deep learning models to measure the actual impact of the three

scheduling mechanisms on performance when running inference and training con-

currently. All tests were performed on the recently released NVIDIA Geforce RTX

3090 GPU of the Ampere microarchitecture.

We trained and tested these five models on a subset of images from the ImageNet

database [14]. We ran the training task for each model for a length of five epochs,

and the batch sizes we used were the maximum possible before encountering an out-

of-memory error, detailed in Table 5.1. This was to ensure that the GPU’s resources

could reach as close to saturation as possible. We ran the inference task for each

model as a series of 5000 consecutive image classifications at a batch size of one, to

represent a series of incoming inference requests. The data reported in Table 5.1

were collected using NVIDIA’s kernel profiling tool Nsight Systems [27].

We first ran both inference and training without any other concurrent tasks

as a baseline for comparison. The only modification necessary was for the priority

35

streams method, which required some small changes to the models so that the train-

ing and inference tasks were launched from the same process on different streams.

All of the kernels from the training and inference tasks were launched to separate

streams, such that the inference task’s kernels were always on a stream that was of

a higher priority than that of the training task.

5.2 Characterizing Concurrency Mechanisms

In this section, we empirically examine and characterize the performance of priority

streams, time-slicing, and MPS for running concurrent deep learning workloads on

NVIDIA GPUs, presenting both their advantages and limitations. As we discuss be-

low, we find that priority streams and MPS result in comparatively poor turnaround

times and predictability for the inference task due to lack of fine-grained preemption,

while time-slicing results in low utilization resulting from an inability to colocate

kernels from different applications.

5.2.1 Performance Metrics

Training Batch Size Long-Running Training Kernels Large Inference Kernels Large Training Kernels
(imgs) (% of runtime) (% of kernels) (% of kernels)

ResNet-50 [13] 128 56.63 15.85 42.70
ResNet-152 [13] 64 6.72 7.75 39.12
AlexNet [20] 256 3.28 2.28 56.40
VGG-19 [33] 64 41.60 42.19 70.32
DenseNet-201 [15] 64 6.76 34.39 21.55

Table 5.1: Deep Learning Workload Characteristics. The deep learning mod-
els analyzed, along with their relevant attributes to concurrent performance.
Note that the long-running column shows the proportion of execution time
spent on executing long-running kernels, while the large kernels columns show
the proportion of large kernels to total kernels. Long-running inference kernels
were omitted because they involved a negligible number of such kernels.

36

In evaluating the performance of a concurrency mechanism for the use case of a

deep learning inference server, it is necessary to analyze both the degree to which

users will be able to expect their requests are executed in a reasonable amount of

time and how well-utilized the server’s resources are. Therefore, the three main

factors that we consider are as follows.

Turnaround time. The inference requests sent to the server represent latency-

critical jobs that should be prioritized in order to complete them as fast as necessary

to meet QoS requirements. Acceptable turnaround times depend on the application,

but the best case turnaround time is when the inference request is executed alone,

with no interference from other concurrent work being performed on the GPU. We

define the inference turnaround time as the time it takes to service an inference re-

quest once received. We then use the inference time when running alone on the GPU

as the baseline and compare that to the inference time achieved in the concurrent

cases.

Utilization. Ideally, between the training and inference tasks, GPU resources

would be as close to peak utilization at any given point in time as possible. With

more requests to compute, this becomes easier to accomplish, but the balancing of

those resources between tasks that need to make progress becomes more complex.

For the purposes of our evaluation, we measure utilization as the end-to-end time of

the training task. Since the training task is ideally computed with spare resources

not needed for meeting inference requests’ deadlines, any time that the training task

is being executed on the GPU represents those idle resources being utilized. High

utilization means that the training task finishes sooner while still maintaining low

turnaround times for the inference requests.

Predictability. Maintaining a consistent response time is a key factor in provid-

ing a high quality of experience for the end-user. An ideal system would show little

37

variation in the time it takes to service inference requests. We therefore measure

predictability as the variance in turnaround time.

5.2.2 Workload Characteristics

A deep learning model, whether performing training or inference, consists of a se-

quence of kernels that are launched onto the GPU serially to perform computations

on subsets of the data. Two kernel properties play an important role in the per-

formance of the examined techniques: length and size. A long-running kernel is

one that takes longer than 1ms to run when executed on the GPU in isolation. A

large kernel is one with a big enough grid size that its kernels cannot all fit onto the

GPU to be executed simultaneously. This occurs when a kernel requires more of a

particular resource than is available on the SMs. Once one resource on an SM is

used up completely, no more blocks can be scheduled to that SM, even while other

resources remain unused. The first resource to run out is known as the limiting

resource for a kernel [12].

Both long-running and large kernels pose a problem for the task of efficiently

servicing inference requests as they are submitted to the server. Long-running ker-

nels occupy GPU resources for a significant amount of time, and so mechanisms

that lack the ability to interrupt thread blocks mid-execution must instead wait for

them to finish before reassigning those resources. Large kernels often inefficiently

occupy GPU resources by preventing further thread blocks from being scheduled

and making use of the non-limiting resources.

Overall, Table 5.1 shows that a significant portion of the training task execution

time will be spent on executing large kernels from either the training or inference

tasks, sometimes reaching up to half of the runtime for training. For some models,

such as VGG-19 and ResNet-201, it is also the case that approximately half of

38

the training task’s runtime will be comprised of executing long-running kernels,

in addition. Therefore, we can say that for these deep learning workloads, there

are potentially large gains to be achieved by using preemption-based scheduling

techniques, as explored in Chapter 6. Additionally, preemption will be a key factor

in reducing delay and ensuring predictability/avoiding QoS violations. However,

because there is also a significant amount of kernels that are small and/or short-

running, there is also a large potential gain in being able to spatially share the GPU

during execution, as no task is occupying all of the GPU’s resources constantly

during their execution.

5.2.3 Priority Streams

For the priority streams case, both the inference and training workloads were launched

from within the same process on separate CUDA streams, with the inference kernels

being on higher-priority streams than those of the training tasks. Both workloads

were comprised of a sequence of consecutive kernels that get launched serially to

the GPU to be executed. When one of the high-priority inference kernels arrives,

its blocks become the next in line to be scheduled, so it replaces the blocks of any

executing lower-priority kernels as they finish.

Priority streams result in a low turnaround time in cases where the training task

contains many short-running kernels. AlexNet demonstrates this in Figure 5.1a,

where turnaround time was only 3.54ms, the shortest of the three, and almost 97%

of the training execution time was spent on short-running kernels. When a training

task kernel uses up enough of one resource (e.g., threads or shared memory) so

that no more blocks can be scheduled, this disallows kernels on other streams from

progressing effectively and prevents the other underutilized resources from being

used. For AlexNet, the majority of the training task’s large kernels were limited by

39

the hardware limit on the number of blocks per SM, meaning that no other blocks

could be scheduled when these kernels were occupying the GPU. Even for the rest

of the kernels, which may have left room for blocks of the higher-priority inference

task to be colocated with the training task blocks, the SM’s resources were not being

utilized efficiently, as the inference task was only able to use resources leftover from

the training task’s grid.

Priority streams did, however, see consistent results in terms of utilization, as

seen in Figure 5.1b, usually increasing the training execution time by 20-30 seconds.

This tended to be on the lower side compared to the other two mechanisms. Priority

streams can achieve good utilization primarily because when kernels are run on

separate streams from within the same process, it is possible to colocate blocks from

different kernels by scheduling them to the same SM and thus utilize more resources

within SMs between them. A large reason for the consistency in utilization is the

fact that almost all of the inference kernels for each of the five models were short-

running. While the training kernels were interrupted by the higher-priority kernels

of the inference task, they were able to return their thread blocks to the GPU

quickly, as well.

Priority streams additionally perform better when potential contention due to

colocation is low. Colocation of blocks from different applications allows for finer-

grained resource assignment, but it also presents the problem of contention for

resources when the blocks that are sharing an SM require conflicting amounts of the

same resource. This, in turn, can lead to significant performance degradation [12,

37]. However, if this contention is low enough due to the blocks sharing an SM

requiring complementary resources, priority streams will see increased utilization

with a less significant degradation in turnaround times.

With high contention, priority streams’ performance can become unpredictable.

40

In fact, unless it is clear what effects contention will have on the runtimes of the

kernels, it is challenging to predict the performance of colocated kernels[37]. The

increases in turnaround times compared to time-slicing observed in Figure 5.1a is

partially explained by the fact that colocation is occurring in the priority streams

case and not in the time-slicing case, introducing some contention.

The biggest reason that the priority streams approach performs the worst of the

three in terms of turnaround time is due to a phenomenon we term compounded

delay, which is an instance of the convoy effect [5]. The inference workload is

comprised of a sequence of consecutive kernels that frequently depend on the output

of the previous kernel, as is the training workload, and this fact is what causes the

compounded delay. When a high priority kernel is finished executing, there is a

window of time before the next kernel is launched and reaches the GPU. In this

time, the lower-priority kernel resumes executing and fills the GPU with its thread

blocks. As the GPU cannot preempt executing blocks, the next high priority kernel

must wait for those blocks to finish executing. This adds the execution times of

those blocks to the high priority kernel’s runtime every time that one is submitted

to the GPU, resulting in longer turnaround times.

We can see the effects of this delay in the results from the models besides

AlexNet in Figure 5.1a, where the turnaround times are frequently over twice as

long compared to the baseline. Models such as ResNet-50 and VGG-19 saw the

worst turnaround time, and these models spent about half of their execution time

on long-running kernels; this resulted in a larger slowdown incurred by compounded

delay as the inference kernels waited longer behind the blocks of these longer-running

kernels. In fact, we can see that despite being able to consider the inference task as

higher-priority, the effects of compounded delay are enough for the priority streams

turnaround times to be worse than that of MPS in almost all cases, despite MPS

41

having no notion of priorities.

Compounded delay is also the reason for the large degree of variance in turnaround

time seen in Figure 5.2a. Spikes in delay were experienced during the time the train-

ing epochs were executing on the GPU, as those kernels, typically being longer-

running, forced the inference tasks’ kernels to wait for longer. In contrast, the

turnaround times were lower during validiation, when the training task was launch-

ing shorter-running kernels to the GPU.

A final limitation to the priority streams approach is that it requires that all

tasks are launched from within the same process. Given the difficultly in designing

a system where both the training framework and the inference applications are a

part of the same process, this is a considerable disadvantage.

5.2.4 Time-Slicing

The training and inference tasks in this case were launched as separate processes

to the same GPU. As demonstrated in Figure 5.2b, time-slicing offers the most

predictable performance of the three because blocks from the training kernels and

blocks from the inference kernels never execute at the same time. This eliminates

contention for SM resources during block execution, and the inference kernel does

not need to wait for any blocks of the training task to finish executing before being

scheduled to the GPU. Thus the primary factor that influences turnaround time is

the number of other jobs that are being executed concurrently, as this changes the

amount of time that any one job must wait for access to the GPU’s resources. The

reason for this is that time slots are a fixed size and are assigned round-robin to

each process. As far as we could determine, the time slot size and interleaving level

assigned to each process cannot be configured.1

1The Jetson devices do allow such configuration [9].

42

The major trade-off inherent in using time-slicing is predictability at the cost of

utilization. The inference task effectively has the entire GPU during its timeslice;

while great for predictability, this also means that extra GPU resources sit idle.

None of the models’ inference tasks spend a majority of the time on large kernels,

and some, such as AlexNet and ResNet-152, spend virtually none (2-7% of the

total execution time). This means that when using time-slicing to execute inference

requests, a large portion of time is spent with vastly underutilized GPU resources.

Further, time-slicing offers limited ability to configure based on application needs.

As the time-slice length is fixed, the inference requests can never be completed any

faster than the current schedule for the set of concurrently executing tasks will

allow. Average turnaround time increased the most for the VGG-19 and DenseNet-

201 models at around 10ms, but because the inference requests are always run

in isolation when using time-slicing, the increase in turnaround time tends to be

consistently small.

Low turnaround time came at the expense of utilization, which was frequently

the worst of the three surveyed mechanisms. This is the major detriment of time-

slicing; due to the lack of spatial sharing capabilities, it does not truly solve the GPU

resource utilization problem being addressed by concurrently executing training and

inference. For the ResNet models and particularly for DenseNet-201, the lack of

ability to colocate tasks makes utilization suffer dramatically, increasing the training

time to over 100 seconds more in Figure 5.1b. The reason VGG-19 and AlexNet

don’t see such an increase is due to the shorter lengths of their inference tasks; they

completed earlier and ceased interfering with the training task partway through,

allowing it to then utilize the GPU resources in isolation. Turnaround time stayed

consistently low using time-slicing, and this is because the tasks launched by the

inference workload were guaranteed consistent access to the SMs whenever their

43

time-slice window would appear.

Another limitation of time-slicing is that the resource requirements of any tasks

being run simultaneously as separate processes cannot together exceed the resource

limitations of the GPU, or an error will be thrown. For instance, if two applications

are launched that use an amount of shared memory within the GPU’s limitations,

but together utilize more shared memory than the upper bound, this will cause the

second process to reach the GPU for scheduling to crash with an out-of-memory

error. Thus, the inference task is not actually getting full access to the GPU’s

resources; it can use the warp scheduler and compute units without interference, but

still has to share the global memory, shared memory, and registers. The reason these

resources are shared is, presumably, because swapping them out would introduce

prohibitively high context switching overheads.

This also places a further limit on the training task, which had to be scaled down

from its maximum batch size in order to allow space for the inference task without

running into this error. Thus, despite the fact that the two tasks never occupy the

GPU at the same time, they are drastically underutilizing the resources even when

only blocks from their kernels are on the GPU. Given that the point of executing

the training task alongside the inference requests was to improve utilization, this is

a rather debilitating limitation.

This problem is compounded by the fact that it cannot be known ahead of time

precisely how many resources the inference task, in particular, will require. Given

that we don’t know the rate at which inference requests will be received by the server,

we can either perform inference for a single image at a time, choose a fixed batch size

to use for performing inference, or perform inference using variable-sized batches.

Single image inference has predictable resource usage, so an out-of-memory error can

be avoided; however, this will add queueing delay (i.e., one image now has to wait

44

for the previous request to be serviced first). Fixed batch sizes also have predictable

resource usage as they are just the generalized case of single-image inference, so we

can tune the training task to accommodate that while minimizing queueing delay.

However, if we don’t fill up the batch for a particular run, then we will have even

lower utilization. Dynamic batch sizing is probably impossible given the possibility

of incurring an out-of-memory error.

5.2.5 Multi-Process Service

The main strength of MPS is that it guarantees that a set of tasks with small

enough kernels can all have some GPU resources simultaneously, similar to the

priority streams approach. However, MPS is not able to prioritize the execution

of one task over another; instead, it uses load-balancing to provide more equitable

progress whenever there are idle resources [26]. Thus, in those cases, both the

training and inference tasks are guaranteed to make progress that is more balanced

between the two applications. This is the main reason that the MPS turnaround

times and utilization in Figure 5.1 are typically better than priority streams; given

that Table 5.1 shows that at least half of all of the models’ inference and training

kernels are small, MPS can employ this load-balancing during a significant portion

of the tasks’ execution.

One important limitation of MPS is that the resource limit is the same for all

processes, so it is not possible to prioritize one application over another. Further,

resources are assigned on essentially a first-come, first-served basis (up to the per-

process limit). More specifically, the GPU schedules kernel blocks from separate

processes as if they originated from different streams within the same CUDA con-

text. This means that the blocks are scheduled according to the leftover policy,

which dictates that all of the blocks from the most recently-arrived kernel must first

45

be dispatched and executed on the GPU before any other kernels’ blocks can be

scheduled [4]. This presents a problem for the task that arrives at the GPU later,

especially if that task is of a higher priority than the currently-executing one, as

the running time of the second task is needlessly throttled. A more proportionate

division of resources would result in a more acceptable amount of degradation to

the later-arriving and higher-priority task’s turnaround time.

Thus, MPS causes a much greater degree of degradation for the inference tasks

than the training tasks in Figure 5.1 due to its first-come, first-served scheduling

policies. For instance, ResNet-152 saw the turnaround time double, but the training

task execution time only increased by a few seconds, which was the best performance

of the three mechanisms. The training task has, on average, longer-running kernels

with larger grids for all models except DenseNet-201. This was the model where

MPS performed the best in terms of both turnaround time, at an increase of 15.7ms,

and utilization, increased by only 11 seconds. For the other four models that aver-

aged longer-running training kernels, the inference task was more often starved for

resources, forced to make progress with what was leftover.

This also caused some degree of variance in turnaround time, as seen in Fig-

ure 5.2c. This variance was not as large as that observed in the priority streams

case, as inference request satisfaction is partially dependent on the degree to which

the training task is utilizing the GPU’s resources. The advantage of MPS over time-

slicing, however, is that it does improve utilization by being able to host both tasks

on the GPU simultaneously. Thus, resources are far less underutilized for almost all

of the models analyzed, despite most of the degradation in execution time being for

the latency-sensitive inference tasks.

46

5.3 Summary

In summary, we have shown the three mechanisms for executing concurrent work-

loads currently available on NVIDIA GPUs—priority streams, time-slicing, and

MPS—have limitations that reduce their ability to handle concurrent deep learning

workloads efficiently. In particular, the features of these deep learning workloads,

such as kernel size, length, and their nature as a sequence of frequntly-launched

kernels introduce severe inefficiencies when executed concurrently by these mecha-

nisms. Their inflexible preemption policies and limited notions of task prioritization

are poorly-suited to execute this type of mixed, latency-sensitive workload while

also maintaining high utilization.

47

(a) Average Turnaround Times

(b) Average Utilization

Figure 5.1: Ampere Turnaround Time and Utilization. The average
turnaround times and utilization for each of the three mechanisms on five
different models. Note that the turnaround times are the averages of 5000
inference requests, and the measurement of training execution time is the
average of 10 runs.

48

(a) Priority Streams

(b) Time-Slicing

(c) MPS

Figure 5.2: Ampere Variance. The variance of the turnaround times for the
ResNet-50 model. Other models’ variance results were omitted for space, but
resemble these.

49

Chapter 6

Proposed Scheduling Policies

While using priority streams does allow for the preemption of a kernel being executed

on the GPU if the arriving kernel is of a higher priority, it does not actually interrupt

any of the blocks currently on the GPU, instead waiting for them to finish execution

before scheduling any blocks of the new kernel. MPS similarly has no mechanism

for interrupting the execution of a block; this lack of block-level preemption is what

causes the performance degradation seen in Section 5.2. The compounded delay

incurred as a result causes the priority stream turnaround times to be comparable

to that of MPS, which has no notion of priorities at all. Time-slicing, while able to

preempt blocks in the middle of their execution, is only able to clear the entire GPU

of all currently-executing thread blocks, with no ability to partially preempt the

GPU. Additionally, the preempted task is still occupying resources such as shared

memory and registers, limiting the amount of computation that can be done by the

preempting task.

To address these issues, we consider the need for fine-grained thread block pre-

emption, which allows for any arbitrary set of thread blocks to be removed from

the GPU during execution and relaunched at a later time. This will allow tasks to

50

spatially and temporally share the GPU’s resources for improved utilization without

coming at the expense of turnaround time. This will vastly improve predictability

over the priority streams and MPS approaches, as the effects of compounded delay

and the leftover policy are eliminated. The preempted kernel will take longer, but

the overhead of preemption will be offset by more efficient resource utilization and

the improvements to predictability and turnaround time for the inference task.

We frame the problem of the concurrent execution of inference and training

tasks as follows. The training task will be executing on the GPU when the inference

request arrives; the GPU must preempt precisely as many thread blocks of the

training task as necessary to meet the desired turnaround time for the inference

request so that utilization can be maximized and the overhead for preempting the

blocks of the training task is limited. Additionally, the thread block scheduler will

have to know to replace completed inference blocks with waiting inference blocks

and completed training blocks with the queued training blocks.

The question that is posed by such a scenario is which blocks of the training

task should be preempted to make space for the blocks of the inference task. The

choice of blocks must be proportional, meaning that enough of the resources end

up assigned to the inference task that it can make acceptable progress and meet its

deadline; and it must be contention-aware, so that progress on the inference task is

not impeded unnecessarily by competition for hardware resources.

Kernels require different sets of resources, and can be classified as such into

categories like memory-intensive, compute-intensive, or L1-cache-dependent; if two

blocks whose performance depends on the same resource are colocated on an SM

together, competition for those resources can cause significant performance degra-

dation and drastically increase the kernels’ runtimes [12]. Block placement should

therefore seek to minimize the amount of contention that will be incurred when

51

colocating blocks on a given SM, so as not to impede the progress of the latency-

sensitive inference task. In particular, colocating blocks from different kernels can

result in performance gains for both kernels if they fall into different categories. If

the kernels fall into the same category, we want to avoid colocating their blocks; we

would instead want to put each onto their own SMs. There will still be contention,

but it will be more predictable.

It is known which resources are required by different layers in convolutional

neural networks, so it is reasonable to assume we would know this information about

the kernels of a given deep learning workload. For example, fully-connected layers of

deep learning models are memory-intensive, while convolutional layers are compute-

intensive [23]. Further kernel profiling can also be conducted for information specific

to the models being hosted by the server before beginning training.

Below, we consider three potential block preemption strategies that may be

employed to reduce contention: round-robin, SM-filling, and SM-division. The first

two policies are useful when preempting large training kernels, and the last is for

sets of small kernels. We can consider kernels to belong to different categories based

on their reliance upon certain resources for performance, as described above, and

the implementation of the chosen preemption strategy can take that into account

when choosing which blocks to preempt. We estimate the performance gains that are

possible to achieve through the use of these strategies on a set of ablative workloads,

described below, which emulate the relevant properties of deep learning workloads

but allow for fine-grained control over their attributes and behaviors.

52

6.1 Methodology

Given that it is not possible to modify proprietary NVIDIA hardware to directly test

other preemption strategies, we designed these ablative kernels to be representative

of actual training and inference workloads based on our characterization of them

in Section 5.2. We analyze the three proposed strategies regarding three different

categories of ablative workloads on a Geforce RTX 3090 GPU of the new Ampere

microarchitecture. The following analysis could be applied to the previous Turing

microarchitecture, as well, because we achieved similar results on the previous Turing

microarchitecture; those results are elided for space.

Each workload was comprised of a sequence of ten kernels, and their runtimes in

isolation are shown in the first column of Table 6.1. The total execution time is the

time it takes for all ten kernels to finish executing serially, mimicking the training

and inference structure of a sequence of kernels. We examined workloads comprised

of both small and large kernels, as both types make up a significant portion of

actual deep learning workloads. For the small kernels, the 82 training kernel blocks

fit one per SM and left available 1024 threads of the total 1536 threads per SM. The

inference kernel blocks were small enough (128 threads) to fit alongside the blocks

of the training kernel. The large kernels had thread blocks of the same size as the

small workload for both training and inference, but the grid size was 5248, which

was large enough that only a portion of the blocks could fit on the GPU at once.

Contentious kernels, which include the small kernel workload, performed a series

of computational instructions repeatedly, to spin for the desired runtime. These

kernels were therefore compute-intensive, as they depended on access to computa-

tional units for their performance. The low-contention kernels performed a series of

local memory operations to reduce the impact of resource contention between the

53

blocks of the kernels. Thus, both types of kernels were able to spin for enough time

to mimic the inference execution time and individual kernel runtimes of real deep

learning workloads.

6.1.1 Round-Robin Policy

Baseline Priority Streams Time-Slicing MPS 100% Proposed Estimate
(ms) (ms) (ms) (ms) (ms)

Small Kernels
Low Priority 12.6 49.2 30.9 31.8 23.8
High Priority 17.2 39.1 29.5 21.3 19.9

Low-Contention Kernels
Low Priority 19.0 41.5 29.5 27.6 34
High Priority 13.1 21.8 26.6 27.9 19

Contentious Kernels
Low Priority 14.2 43.5 29.7 26.3 29
High Priority 14.7 28.4 29.8 25.8 20

Table 6.1: The turnaround times and utilization of the ablative workloads.
Note that these are the averages of ten runs, where the kernels were ensured to have been
launched to the GPU within 1-2ms of each other.

The round-robin policy preempts one block of the training task per SM in round-

robin order, replacing it with as many blocks as possible from the inference task

until the desired number of blocks are scheduled. To account for any slowdown

due to contention that may arise from colocating blocks from two different kernels,

the round-robin policy will slightly overestimate the number of high-priority blocks

needed to be scheduled, by one block per SM. This policy has the advantage of

spreading out the blocks of the preempting task between SMs, which as described

above will reduce contention between blocks of the inference kernel. If the pre-

empting and preempted kernels are of different types, the round-robin policy also

improves effective utilization by placing more low-contention blocks together on the

same SMs.

54

To analyze the effectiveness of the round-robin policy on low-contention, large

kernel tasks, we look at the ablative workload termed low-contention in Table 6.1.

We set the target turnaround time to 19.5ms (approximately 1.5X the 13ms time in

isolation), and so we would need to place 75% of the maximum number of inference

task blocks on the GPU to make the required amount of progress. This would

provide a 9ms improvement over the turnaround time observed using MPS, or a

roughly 1.45X speedup.

The original low-contention kernels, shown in row two of Table 6.1, could fit 984

thread blocks on the GPU at once in isolation, so the minimum number required

to meet the deadline would 738 blocks, or nine per SM. The round-robin policy

will schedule the equivalent of ten blocks per SM to offset any degradation due to

contention; this would mean 820 total blocks. The round-robin policy would result

in a block placement where for half of the total SMs, all blocks of the training task

would be preempted and replaced with inference task blocks, while for the other half

of the SMs, all but one block of the training task would be preempted and replaced

with blocks of the inference task. Thus, half of the SMs will have 12 blocks of the

inference task, and the other will have eight blocks of the inference task and one

block of the training task. There will be 820 blocks of the inference kernel on the

GPU, along with 41 blocks of the training kernel.

The training task makes approximately 1/6th of the progress it would in isolation

for the 19ms the inference task is still executing, and then full progress once the

inference task completes. Thus, the training task will get through about 1/6th of

its work during the inference task execution, and then the remaining 5/6ths will be

completed in isolation. This will result in a turnaround time of about 19ms, and a

utilization level of approximately 34ms.

This turnaround time is an improvement of 2-9ms compared to all three concur-

55

rency mechanisms; the utilization is a 7ms reduction in the priority streams case,

as it guarantees some progress by the training task. Thus, as long as the overhead

of the preemption remains at or around 1-2ms, round-robin preemption will signifi-

cantly reduce turnaround time while achieving comparable utilization levels to the

MPS and time-slicing cases.

6.1.2 SM-Filling Policy

The SM-filling strategy isolates the blocks of the two tasks as much as possible, for

when their expected contention is high. To do so, SM-filling places the blocks of

the preempting inference kernel by filling up entire SMs, only evicting blocks on

a different SM when the current SM has no more room. If both the training and

inference tasks are bound by the same resource requirements, using this technique

limits their interference with each other by keeping them as separate as possible.

Thus, this policy is most useful in the case where the kernels come from the same

contention category. It is also good for predictability because we can profile per-

formance a priori. Note that SM-filling preempts an entire SM before scheduling

any blocks; in the case where some blocks of the inference task could have fit before

preemption, the blocks currently on the GPU are preempted first and relaunched to

a different SM to minimize contention.

We next look at the performance of the contentious, large-kernel workload, la-

beled as contentious in Table 6.1. We set the target turnaround time to be approx-

imately 1.5X the baseline inference time, which would be about 20ms. This means

that again 3/4ths of the inference kernels’ blocks should be scheduled to the GPU at

any point in time, and using the SM-filling policy, this would mean that 61 SMs will

have 12 blocks of the inference task, and one will have six leftover blocks, leaving

space for one block of the training task on that final SM. The remaining 20 SMs will

56

each have 3 blocks of the training task each, for a total of 61 training task blocks

on the GPU.

To estimate the training task time, we can use a similar method to the analysis

performed on the round-robin policy. The training task makes roughly 1/4th of the

progress it would in isolation for the 20ms that the inference task is still executing,

and then full progress once the inference task completes. Thus, the training task

will get through about 1/3rd of its work during the inference task execution, and

then the remaining 2/3rds will be completed in isolation. This will result in a

turnaround time of about 20ms, and a utilization level of about 29ms. The SM-

filling preemption policy can thus achieve considerable improvements in turnaround

time and utilization, as long as the preemption overhead remains less than 1-2ms.

It is important to note that the preemption overhead for both the SM-filling and

the round-robin techniques will only occur once, when the inference task first arrives

to be scheduled. This is in contrast to time-slicing, which incurs an overhead every

timeslice. While SM-filling will have a more expensive overhead, as the execution

contexts of the interrupted blocks will have to be flushed from the GPU to allow the

inference task to utilize those resources, the fact that it does not occur repeatedly

will limit its impact.

It is also possible to consider a slight modification of SM-filling, where instead

of flushing everything from the SM, we take a similar approach to the time-slicing

strategy and only flush the scheduling information for a subset of the training blocks.

This will still have the problem of needing to tune the resource utilization to be

lower, but the context-switching overhead will be much smaller. This concept could

be applied to reduce the overhead of the other preemption strategies discussed, as

well.

57

6.1.3 SM-Division Policy

The final policy we propose is SM-division, which functions similarly to MPS, but

allows for dynamic resource scaling. For small kernels, the round-robin policy suf-

fices when contention is low. However, using the round-robin policy on contentious

kernels could result in severe performance degradation. Additionally, using the SM-

filling policy will result in most of the inference blocks placed on a small subset of

SMs while the others are left empty, causing unnecessary contention.

Thus, SM-division instead divides the SMs between the tasks proportionally

based on their priority. This is in contrast to the SM-filling policy, which simply

preempts entire SMs and fills them with kernels of the higher-priority task. The

SM-division policy instead sets aside a portion of the SMs for the higher-priority

task that minimizes the number of blocks per SM as much as possible to reduce

contention, while also allowing the training task to fit on the remaining SMs.

For small kernels, the runtime is essentially as long as the longest-running block,

so contention between any two blocks increases the runtime. Thus, we divide SMs

between the tasks by first giving the inference task as many SMs as it needs to place

the minimum number of blocks m per SM possible (in other words, the baseline).

Then, the remaining SMs go to the training task. If there are not enough remaining

SMs to fit all of the blocks of the training task, the division is shifted to give the

inference task enough SMs to fit m + 1 blocks per SM, and the remaining SMs are

given to the training kernel. This continues until either a division is found where

all blocks can fit on the GPU simultaneously without sharing SMs, or the inference

kernel blocks cannot take up any fewer SMs.

Using SM-division, the inference task would get 42 SMs with two blocks per SM,

leaving the training task the other half of the SMs, also with two blocks per SM.

To estimate these runtimes, we ran actual workloads that would amount to these

58

placements (two blocks of each per SM) and report their average runtimes.

Thus, SM-division can achieve comparable results to MPS and improve turnaround

time compared to time-slicing, as long as preemption overhead is less than 5-6ms.

This technique has the advantage of being able to assign more resources to higher-

priority and latency-sensitive tasks. Like MPS, both tasks can make progress, but

with the SM-division policy, the higher-priority task is as uninhibited as possible.

6.2 Summary

We have argued the need for fine-grained block preemption and a more robust notion

of task prioritization to more efficiently execute concurrent deep learning workloads.

We then proposed a set of three policies which use those: mechanisms: round-robin,

SM-filling, and SM-division, which allow for kernels to share SMs but take into

account the potential performance degradation investigated in Chapter 5 due to

contention when similar kernels have to share resources. We achieved estimated

potential performance improvements of up to 1.5X turnaround times when using

these policies which utilize fine-grained preemption, demonstrating the need for

such a mechanism to exist on NVIDIA GPUs.

59

Chapter 7

Conclusions

Current NVIDIA GPUs are not capable of efficiently executing the kinds of concur-

rent deep learning workloads which would be useful to an inference server provider.

Such providers would be concerned with maintaining high utilization while also

continuously meeting QoS requirements for servicing latency-sensitive requests, and

NVIDIA devices are currently unable to meet that demand. We have enumerated

the most-room policy as the block placement policy for concurrent kernels, which

leads to counter-intuitive scheduling outcomes and often significant performance

degradation as it does not take into account contention for per-SM resources. Addi-

tionally, NVIDIA’s current mechanisms for application-level concurrency—priority

streams, time-slicing, and MPS—each have their own set of limitations, and each

lack a fine-grained preemption policy which we have shown could drastically improve

the turnaround times of concurrent applications.

While the proposed preemption strategies show promise, testing fine-grained

preemption on actual hardware will require modification to proprietary NVIDIA

components and, as such, cooperation from the NVIDIA corporation. In future

work, we intend to build on these findings through analysis of a wider set of deep

60

learning models, such as recurrent neural networks. We will also use such results

to suggest further modifications to the NVIDIA scheduling hierarchy at both the

kernel and application level which are capable of addressing the effects of other

myriad factors not considered in this work, such as memory transfer bandwidth

contention.

It is important to reiterate that we are limited to empirical observations of the

scheduler, and thus, the policies we describe are not guaranteed to be precisely what

the hardware implements—though, the most-room policy description is consistent

with all of our empirical observations. Thus, we hope that our work will be useful

in improving the accuracy of existing GPU simulators and, consequently, assist in

the development of concurrency-aware scheduling policies. We intend to use our

understanding of NVIDIA’s concurrency mechanisms and thread block scheduler

to implement more accurate simulators and present the theoretical advantages of

fine-grained preemption and contention-aware spatial multiplexing policies through

the use of such simulators as future work.

We intend for this work to catalyze the creation of more robust and efficient

techniques for concurrent deep learning workloads in the future. We emphasize

that such mechanisms should involve both efficient preemption mechanisms and

contention-aware block placement policies to achieve greater concurrent workload

performance. We also expect this work to serve as a baseline for comparison for

work on concurrency mechanisms on NVIDIA devices. Additionally, we hope to see

the proposed fine-grained preemption mechanisms implemented in future NVIDIA

devices, as we have demonstrated their utility for real GPU workloads.

61

Appendix A

Appendix

Table A.1: Architectural details of the GPUs used in our experiments.

Arch. Compute Capability SMs Threads per SM Threads per Block Blocks per SM Warps per SM

GeForce GTX 1080 Pascal 6.0 5 2048 1024 32 64

Tesla V100 Volta 7.0 80 2048 1024 32 64

GeForce RTX 2080 Ti Turing 7.5 68 1024 1024 16 32

GeForce RTX 3090 Ampere 8.0 82 1536 1024 32 64

A.1 Kernel Implementations

To emulate an L1-cache-dependent kernel, we used an approach based on the one

taken by Naghibijouybari et al [24]. We implemented a kernel which uses each

thread in a block to repeatedly access texture memory. We used knowledge of

the specific structure of the L1 caches on each GPU, such as their size and set-

associativity [18, 17], to make these accesses highly cacheable but vulnerable to

replacement by repeatedly accessing data from different sets of the cache. To confirm

these kernels’ dependence on the cache, we measured the L1 cache hit rate in the

serial case, and found that they experience a 90% hit rate on average, ranging from

75%-95%.

62

In order to emulate a compute-intensive kernel, we designed the kernels to oc-

cupy the functional units by performing repeated floating point operations—these

functional units are the hardware components that the SMs use to perform compu-

tations. Further, we avoided memory accesses in our kernel design to prevent global

memory access contention from impacting performance.

To emulate a memory-intensive kernel, we designed a kernel which repeatedly

accesses indices of a large array stored in global memory. When threads write to

memory addresses nearby each other in global memory, their individual accesses can

be coalesced to save memory transfer bandwidth. Using writes as opposed to reads

prevents the data from being cached in the L1/texture cache. To avoid memory

coalescing impacting these results, the threads’ memory accesses were spaced apart.

As these addresses were far away from each other for all threads within a warp,

they cannot be coalesced efficiently, causing more data to be transferred per global

memory access.

To emulate dependence on PCIe transfer bandwidth, we designed a kernel which

triggers a large number of page far-faults, meaning that the page is not in the

GPU’s global memory but instead must be transferred over the PCIe link. To

do this, the kernel accesses memory such that the threads within a block target

addresses nearby each other, but threads from different blocks target addresses that

are distant. Further, accesses can be coalesced within blocks, which limits the effect

of global memory transfer bandwidth contention on the performance of these kernels.

A.2 Other GPU Kernel Concurrency Results

The relevant architectural details for each of the three GPUs looked at in this work

can be found in Table A.1. The only differences in the kernels run on the Pascal and

63

Table A.2: Pascal Execution Times. Average execution times for kernels in
differing scenarios on the Pascal GPU with 5 SMs.

Serial (ms) Concurrent-Isolated (ms) Concurrent-Colocated (ms)

Kernel A Kernel B Total Kernel A Kernel B Kernel A Kernel B

L1 Cache-Dependent 63 45 108 63 45 94 (1.49X) 94 (2.09X)

Compute-Intensive 780 415 1195 780 415 895 (1.15X) 915 (2.20X)

Memory-Intensive 1233 49 1282 1233 274 (5.59X) 1270 1270 (25.9X)

Transfer-Bandwidth-Dep 1588 239 1827 1680 (1.06X) 523 (2.19X) 1689 (1.06X) 1686 (7.05X)

Table A.3: Volta Execution Times. Average execution times for kernels in
differing scenarios on the Volta GPU with 80 SMs.

Serial (ms) Concurrent-Isolated (ms) Concurrent-Colocated (ms)

Kernel A Kernel B Total Kernel A Kernel B Kernel A Kernel B

L1 Cache-Dependent 85 51 136 84 55 104 (1.22X) 104 (2.04X)

Compute-Intensive 869 333 1202 870 480 (1.44X) 871 986 (2.96X)

Memory-Intensive 2458 34 2492 2459 622 (18.29X) 2492 710 (20.88X)

Transfer-Bandwidth-Dep 3156 121 3277 3194 (1.01X) 1113 (9.2X) 3295 (1.04X) 1325 (10.95X)

Volta GPUs were related to the hardware differences between them and the Turing

GPU, such as the number of threads per block and the total number of blocks. The

only other change was that for the L1-cache-dependent kernel, adjustments were

made for the differences in the size and architecture of the caches.

The results for the Pascal GPU can be seen in Table A.2, and those for the

Volta GPU can be found in Table A.3. The only major difference in these results

from the Turing GPU is that for the memory-intensive kernel on the Pascal GPU,

Kernel B did not see any performance degradation in the concurrent-isolated case.

This is because of the fact that with only four blocks, there was no contention for

computational resources when they were all scheduled to the same SM; the Turing

GPU kernel had eight blocks, and scheduling all eight to one GPU was enough to

cause some contention. However, we stress that the ultimate meaning behind these

results remains the same; the same impacts on execution time were found in the

Pascal and Volta GPU results as in the Turing results, indicating the same behavior

64

from the scheduler during the execution of these concurrent workloads.

A.3 Turing GPU Deep Learning Workload Re-

sults

Figures A.1 and A.2 show the results for the same set of five deep learning models

examined in Section 5.2 run on an NVIDIA 2080 RTX GPU of the Turing microar-

chitecture, the predecessor of Ampere. Note that batch sizes for the models had

to be reduced in most cases from the Ampere cases, reported in Table 5.1, with a

batch size of 64 for ResNet-50, 16 for ResNet-152, 256 for AlexNet, 32 for VGG-19,

and 16 for DenseNet-201.

These results resemble those of the Ampere microarchitecture, with the exception

that priority streams perform much worse in terms of utilization in general. The

reason for this is the reduced computational power and resources of the Turing GPU;

it had fewer SMs and could fit fewer blocks of the kernels at a time than the Ampere

GPU, and coupled with the lower batch sizes, the kernel execution times and overall

runtimes of the tasks increased. This caused fewer opportunities for colocation of

the kernels of the two tasks, resulting in worse utilization.

65

(a) Average Turnaround Times

(b) Average Utilization

Figure A.1: Turing Turnaround Times and Utilization. The average
turnaround times and utilization for each of the three mechanisms on five
different models, on the Turing GPU. Note that the turnaround times are the
averages of 5000 inference requests, and the measurement of training execution
time is the average of 10 runs.

66

(a) Priority Streams

(b) Time-Slicing

(c) MPS

Figure A.2: Turing Variance. The variance of the turnaround times for the
ResNet-50 model on the Turing GPU. Other models’ variance results were
omitted for space, but resemble these.

67

Bibliography

[1] Nvidia ampere ga102 gpu architecture: The ultimate play. Technical report,
NVIDIA, September 2018.

[2] Nvidia turing gpu architecture: Graphics reinvented. Technical report,
NVIDIA, September 2020.

[3] J. T. Adriaens, K. Compton, N. S. Kim, and M. J. Schulte. The case for gpgpu
spatial multitasking. In IEEE International Symposium on High-Performance
Comp Architecture, 2012.

[4] T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D. Smith. Gpu
scheduling on the nvidia tx2: Hidden details revealed. In 2017 IEEE Real-
Time Systems Symposium (RTSS), 2017.

[5] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Operating Systems:
Three Easy Pieces. Arpaci-Dusseau Books, 2018.

[6] R. Ausavarungnirun, J. Landgraf, V. Miller, S. Ghose, J. Gandhi, C. J. Ross-
bach, and O. Mutlu. Mosaic: A gpu memory manager with application-
transparent support for multiple page sizes. In 2017 50th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2017.

[7] M. Awatramani, J. Zambreno, and D. Rover. Increasing gpu throughput using
kernel interleaved thread block scheduling. In 2013 IEEE 31st International
Conference on Computer Design (ICCD), 2013.

[8] Mehmet E. Belviranli, Farzad Khorasani, Laxmi N. Bhuyan, and Rajiv Gupta.
Cumas: Data transfer aware multi-application scheduling for shared gpus. In
Proceedings of the 2016 International Conference on Supercomputing, ICS ’16,
2016.

[9] N. Capodieci, R. Cavicchioli, M. Bertogna, and A. Paramakuru. Deadline-
based scheduling for gpu with preemption support. In 2018 IEEE Real-Time
Systems Symposium (RTSS), pages 119–130, 2018.

68

[10] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and K. Skadron.
Rodinia: A benchmark suite for heterogeneous computing. In 2009 IEEE In-
ternational Symposium on Workload Characterization (IISWC), 2009.

[11] Debashis Ganguly, Ziyu Zhang, Jun Yang, and Rami Melhem. Interplay be-
tween hardware prefetcher and page eviction policy in cpu-gpu unified virtual
memory. In Proceedings of the 46th International Symposium on Computer
Architecture, ISCA ’19, 2019.

[12] Guin R. Gilman, Samuel S. Ogden, Tian Guo, and Robert J. Walls. Demysti-
fying the placement policies of the gpu thread block scheduler for concurrent
kernels. In 38th International Symposium on Computer Performance, Modeling,
Measurements and Evaluation 2020, 2020.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recogni-
tion. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016.

[14] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger.
Densely connected convolutional networks, 2018.

[15] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger.
Densely connected convolutional networks, 2018.

[16] Paras Jain, Xiangxi Mo, Ajay Jain, Harikaran Subbaraj, Rehan Sohail Dur-
rani, Alexey Tumanov, Joseph Gonzalez, and Ion Stoica. Dynamic space-time
scheduling for gpu inference, 2018.

[17] Zhe Jia, Marco Maggioni, Jeffrey Smith, and Daniele Paolo Scarpazza. Dis-
secting the nvidia turing t4 gpu via microbenchmarking, 2019.

[18] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele P. Scarpazza. Dis-
secting the nvidia volta gpu architecture via microbenchmarking, 2018.

[19] David B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel Proces-
sors: A Hands-on Approach. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2 edition, 2012.

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classifica-
tion with deep convolutional neural networks. Commun. ACM, 60(6):84–90,
June 2017.

[21] Woosuk Kwon, Gyeong-In Yu, Eunji Jeong, and Byung-Gon Chun. Nimble:
Lightweight and parallel gpu task scheduling for deep learning, 2020.

[22] Hao Li, Di Yu, Anand Kumar, and Yi-Cheng Tu. Performance modeling in cuda
streams - a means for high-throughput data processing. IEEE International
Conference on Big Data, 2014.

69

[23] Sparsh Mittal and Shraiysh Vaishay. A survey of techniques for optimizing
deep learning on gpus. Journal of Systems Architecture, 99:101635, 2019.

[24] Hoda Naghibijouybari, Khaled N. Khasawneh, and Nael Abu-Ghazaleh. Con-
structing and characterizing covert channels on gpgpus. In Proceedings of
the 50th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO-50 ’17, page 354–366, 2017.

[25] NVIDIA. Profiler user’s guide, 2007.

[26] NVIDIA. Multi-Process Service, June 2020.

[27] NVIDIA. Nsight systems user’s guide, 2020.

[28] NVIDIA. Nvidia tensorrt, 2020.

[29] Sreepathi Pai. How the fermi thread block scheduler works (illustrated), 2014.

[30] Sreepathi Pai, Matthew J. Thazhuthaveetil, and R. Govindarajan. Improving
gpgpu concurrency with elastic kernels. In Proceedings of the Eighteenth Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’13, 2013.

[31] Jason Jong Kyu Park, Yongjun Park, and Scott Mahlke. Chimera: Collabora-
tive preemption for multitasking on a shared gpu. SIGPLAN Not., 50(4), April
2015.

[32] Ignacio Sañudo, Nicola Capodieci, Jorge Martinez, Andrea Marongiu, and
Marko Bertogna. Dissecting the cuda scheduling hierarchy: a performance
and predictability perspective. 04 2020.

[33] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition, 2015.

[34] Ivan Tanasic, Isaac Gelado, Javier Cabezas, Alex Ramirez, Nacho Navarro, and
Mateo Valero. Enabling preemptive multiprogramming on gpus. SIGARCH
Comput. Archit. News, 42(3), June 2014.

[35] Bo Wu, Xu Liu, Xiaobo Zhou, and Changjun Jiang. Flep: Enabling flexible and
efficient preemption on gpus. ACM SIGARCH Computer Architecture News,
45:483–496, 04 2017.

[36] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang Hou, Zhi Li, Yi-
hui Feng, Wei Lin, and Yangqing Jia. Antman: Dynamic scaling on GPU
clusters for deep learning. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), pages 533–548. USENIX Association,
November 2020.

70

[37] Q. Xu, H. Jeon, K. Kim, W. W. Ro, and M. Annavaram. Warped-slicer:
Efficient intra-sm slicing through dynamic resource partitioning for gpu multi-
programming. In 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), 2016.

[38] Wei Zhang, Weihao Cui, Kaihua Fu, Quan Chen, Daniel Mawhirter, Bo Wu,
Chao Li, and Minyi Guo. Laius: Towards latency awareness and improved
utilization of spatial multitasking accelerators in datacenters. pages 58–68, 06
2019.

[39] T. Zheng, D. Nellans, A. Zulfiqar, M. Stephenson, and S. W. Keckler. To-
wards high performance paged memory for gpus. In 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2016.

71

	Introduction
	Background
	CUDA Programming Model
	NVIDIA Concurrency Mechanisms

	Related Work
	Reverse-Engineering NVIDIA Hardware
	Concurrent Scheduling Policies
	Temporal Multiplexing
	Spatial Multiplexing

	Kernel Concurrency
	Methodology
	Deriving the Most-Room Policy
	Measuring Workload Performance

	The Most-Room Policy
	A Demonstrative Experiment
	SM Resource Limits
	Tie-Breaking
	Further Details

	Performance Implications of the Most-Room Policy
	A Demonstrative Experiment
	L1-Cache-Dependent Kernels
	Compute-Intensive Kernels
	Memory-Intensive Kernels
	Transfer-Bandwidth-Dependent Kernels
	Performance Summary

	Summary

	Application Concurrency
	Measurement Methodology
	Characterizing Concurrency Mechanisms
	Performance Metrics
	Workload Characteristics
	Priority Streams
	Time-Slicing
	Multi-Process Service

	Summary

	Proposed Scheduling Policies
	Methodology
	Round-Robin Policy
	SM-Filling Policy
	SM-Division Policy

	Summary

	Conclusions
	Appendix
	Kernel Implementations
	Other GPU Kernel Concurrency Results
	Turing GPU Deep Learning Workload Results

