
Stabilizing GANs Under Limited Resources via Dynamic Machine Ordering

by

Joshua Caseiro DeOliveira

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Data Science

September 2023

APPROVED:

Professor Elke A. Rundensteiner, Thesis Advisor

Professor Oren Mangoubi, Thesis Reader

ABSTRACT

Generative Adversarial Networks (GANs) are a generative framework with a

notorious reputation for instability. Despite significant work in attempting to

improve stability, training remains extremely difficult in practice. Nearly all GAN

optimization methods are built on either simultaneous (Sim-GDA) or alternating

(Alt-GDA) gradient descent-ascent, where the generator and discriminator are

updated either at the same time iteratively or in a fixed pattern. In this paper,

we prove for simple GANs, for which training had been proven non-convergent

under Sim-GDA and Alt-GDA, that our newly introduced training method is

Lyapunov-stable. We then design a novel oracle-guided GDA training strategy

called Dynamic-GDA that leverages generalized analogs of the properties exhibited

in the simple case. We also prove that in contrast to Sim/Alt-GDA, GANs with

Dynamic-GDA achieve Lyapunov-stable training with non-infinitesimal learning

rates. Empirically, we show Dynamic-GDA improves convergence orthogonally to

common stabilizing techniques on 8 classes of GAN models and 7 different data

sets.

1 INTRODUCTION

Generative Adversarial Networks (GANs) Goodfellow et al. (2014), a class of deep generative models,

have been adopted for numerous applications in domains such as image augmentation Zhao et al.

(2020), cyber-security Arora & Shantanu (2022), and imitation learning Ho & Ermon (2016). GANs

pose the learning of the data distribution as a min-max problem, in which the generator aims to

synthesize samples that the discriminator cannot distinguish from real data. However, due to the

challenging nature of min-max problems Nagarajan & Kolter (2017), GANs are notoriously difficult

to train and often do not converge close to the ideal distribution Kodali et al. (2017). To tackle

this, many strategies have been explored to stabilize training Gui et al. (2021), including different

architectures for specific data modalities Radford et al. (2015), different loss functions Arjovsky

et al. (2017), or new regularizations Miyato et al. (2018). However, we suggest that one of the most

overlooked aspects of GAN training is the method of optimization itself. Specifically, we pose that

the order in which the generator and discriminator are updated during training is a promising yet

understudied facet of GAN optimization.

Nearly all GAN optimization methods are built on simultaneous gradient descent-ascent (Sim-

GDA) Nowozin et al. (2016) or alternating gradient descent-ascent (Alt-GDA) Goodfellow et al.

2

Figure 1: Most GAN optimization relies on Sim-GDA or Alt-GDA for when to update the generator
(V1) and the discriminator (V2). We propose a new class of optimization that utilizes a dynamic series
of updates that can be shown to improve guaranteed stability.

(2014), which update the generator and discriminator either at the same time or in a fixed pattern.

Unfortunately, Alt-GDA and Sim-GDA only have proven convergence guarantees under impractical

assumptions such as unconstrained training time or infinitesimally small learning rates Mescheder

et al. (2017); Nagarajan & Kolter (2017); Kodali et al. (2017). Consequently, stabilizing GANs in

practice remains an open problem Saxena & Cao (2021).

We tackle this important problem by posing a novel generalization of GAN training for adaptive

optimization. Using this generalization, we show theoretically and empirically that for simple GANs

equipped with loss functions that were proven non-convergent under Sim-GDA or Alt-GDA, we

can construct a novel GDA method that demonstrates highly stable behavior. Further, we prove

that simple GANs with this construction have strong Lyapunov stability. We expand upon these

insights in order for them to be generally beneficial for pragmatic training. In doing so, we propose a

novel optimization method called Dynamic-GDA that can stabilize GANs in general under practical

training assumptions. Lastly, we prove Dynamic-GDA is Lyapunov stable.

Dynamic-GDA works by adaptively choosing whether to update the parameters of the generator or

discriminator in each iteration of training based on the dynamics of the relationship between the real

and synthetic data distributions in the discriminator’s projection. This adaptive optimization realizes

a dynamic update order - in place of the previous fixed patterns. (See Figure 1).

To show that Dynamic-GDA is a practical method, we conduct a comprehensive study across 7

datasets and 8 classes of GANs to show that it is statistically significant that GANs equipped with

Dynamic-GDA stabilize convergence across a wide range of datasets and GAN evaluation metrics.

3

In summary, the contributions of this work include:

• We theoretically show that state-of-the-art GAN methods equipped with adaptive updating

patterns boast stronger stability than when equipped with classical training like Alt-GDA or

Sim-GDA.

• We propose a novel optimization algorithm for GAN training called Dynamic-GDA. We

theoretically show that Dynamic-GDA guarantees Lyapunov stability.

• We conduct an empirical study to demonstrate state-of-the-art GAN stabilization methods

equipped with Dynamic-GDA stabilize convergence better than Alt-GDA and Sim-GDA in

a statistically significant way.

We refer the reader to the appendix for all proofs discussed throughout the paper.

2 GAN TRAINING GENERALIZED WITH ORACLES

2.1 CLASSICAL GAN TRAINING WITH ALT/SIM-GDA

GANs are a generative model in which two continuous, differentiable, and parametric operators,

namely a generator g(·; θ) and discriminator d(·;ψ), utilize the parameters θ ∈ Rn and ψ ∈ Rm to

optimize a min-max function L:

min
θ

max
ψ
L(θ, ψ) (1)

Here, d is tasked with separating real samples from a target distribution Pr from fake samples from a

synthetic distribution Pθ, while g adversely aims to produce a synthetic distribution Pθ that fools d.

An equilibrium is reached, once (θ, ψ) lies on a saddle-point of L, namely, ∇θL = ∇ψL = 0 and

∇2
ψL < 0 < ∇2

θL. Conceptually, the above implies that the synthetic distribution matches the target

distribution, Pθ = Pr, and d can no longer reasonably distinguish Pθ from Pr Goodfellow et al.

(2014). The original L used for GAN training Goodfellow et al. (2014) is shown in Equation 2.

L = Ex∼Pr log[d(x;ψ)] + Ex̂∼Pθ
log[1− d(x̂;ψ)] (2)

To achieve an equilibrium, conventional GAN optimization utilizes either Sim-GDA Nowozin et al.

(2016), where θ and ψ are updated simultaneously each iteration (Alg. 3 in Appendix), or Alt-GDA

Goodfellow et al. (2014), where either θ or ψ is updated depending on a fixed schedule (Alg. 4 in

Appendix). Nearly all GAN optimization uses either Sim-GDA, Alt-GDA, or their derivatives.

4

2.2 FORMULATING GAN TRAINING USING DECISION ORACLES

When we train a GAN for a single iteration, we optimize the parameters θ and ψ according to

some update field V (θ, ψ). Given this, we define a set of update fields V = {V1, V2, V3} that can

encapsulate the optimizations by Alt-GDA and Sim-GDA Mescheder et al. (2018).

V =

V1 −→ (−∇θL(θ, ψ), 0)

V2 −→ (0,∇ψL(θ, ψ))

V3 −→ (−∇θL(θ, ψ),∇ψL(θ, ψ))

(3)

The elements V1, V2 and V3 of V in Equation 3 are functional representations of a gradient update

applied to the parameters of either solely the generator g (V1), solely the discriminator d (V2), or both

(V3) for a single iteration.

In this work, we demonstrate both theoretically and experimentally that adapting the order in which

these fields are applied during training improves and in some cases stabilizes GAN optimization. For

this, we now generalize training by introducing the notion of a decision oracle ζ that determines the

update field V for each iteration. Algorithm 1 formulates GAN training according to a prescribed

decision oracle. We now can redefine Sim-GDA and Alt-GDA as decision oracles as shown in

Equations 4 and 5, where nd is the number of discriminator updates per generator update.

ζSim(i) = V3 (4)

ζAlt(i) =

V1 : i ≡ nd mod (nd + 1)

V2 : otherwise
(5)

Sim-GDA and Alt-GDA choose V using the current iteration count i, while in contrast decision

oracles can be any method as long as ζ produces a field V : (θ,ψ)→ (θ,ψ).

Algorithm 1 Generalized GAN Training

Require: (θ0, ψ0) initial parameters. ζ, decision oracle. η, learning rate.
while (θ, ψ) not converged do

Get ω, the input required by ζ each iteration
V ← ζ(ω)
(θ, ψ)← (θ, ψ) + ηV (θ, ψ)

end while

5

3 BUILDING OUR SOLUTION FOR DIRAC-GANS

We first illustrate our proposed strategy using Dirac-GAN Mescheder et al. (2018), while in Section

4, we generalize this to a wide range of GANs. For Dirac-GAN, we propose a simple yet surprisingly

effective decision oracle that boasts much greater stability than using Sim-GDA or Alt-GDA. We

prove that for Dirac-GANs, our dynamic dirac-oracle introduced in Equation 7 achieves remarkably

tight upper-bounds on the distance that (θ, ψ) will ever be from the saddlepoint when using non-

infinitesimally small learning rates: something not possible for Sim-GDA nor Alt-GDA.

3.1 DIRAC-GANS

First studied by Mescheder et al. Mescheder et al. (2018), the Dirac-GAN is one of the simplest

GAN formulation. In this setting, dim(θ) = dim(ψ) = 1, the target distribution is a univariate delta

distribution fixed at 0, and the generator samples from a univariate dirac-delta distribution fixed at 1.

d(x;ψ) = xψ, x ∼ δ(0)

g(z; θ) = zθ, z ∼ δ(1)
(6)

Equation 6 illustrates the architectures of the generator and discriminator as well as real and synthetic

distributions. Based on this formulation, exactly one saddle-point (θ∗, ψ∗) exists located at the

parameter pair (0, 0).

3.2 DYNAMIC DECISION ORACLE FOR DIRAC-GANS

We show that we achieve superlinear convergence during Dirac-GAN training by using the decision

oracle ζDirac in Equation 7. ζDirac requires the current parameters of the generator and discriminator,

(θ, ψ), as input in each iteration.

ζDirac(θ, ψ) =

V1 : if ψθ < 0

V2 : if ψθ > 0

(7)

Figure 2 empirically shows the difference in stability and convergent behavior when using our ζDirac

for training a Dirac-GAN with a learning rate of η = 0.1 and Wasserstein loss, versus Sim-GDA or

Alt-GDA (the later with many alternate parameter settings nd).

Dirac-GANs with non-infinitesimal learning rates and Wasserstein loss are provably not convergent

in general when using Sim-GDA or Alt-GDA Mescheder et al. (2018). Remarkably, ζDirac approaches

6

Figure 2: Distance of Dirac-GANs from the saddle point (0, 0) using Wasserstein loss, a loss proven
by Mescheder et al. (2018) to be generally not convergent when using Sim-GDA or Alt-GDA. Despite
this fact, the Dirac-GAN trained with ζDirac (darkblue) approaches the saddle point over 20 orders of
magnitude closer than Sim-GDA or any Alt-GDA variation (other lines) tested.

the saddle point to an incredible distance of 10−21. Additionally, ζDirac achieves greater stability in

its oscillations when close: a phenomenon both Mescheder et al. (2017) and Kodali et al. (2017)

showed to be remarkably difficult for non-infinitesimal learning rates.

The success of ζDirac lies in the insight to use the relationship between θ and ψ to determine what

direction the synthetic distribution would shift if we were to update the generator’s parameter. In

scenarios in which sign(θ) ̸= sign(ψ), updating θ will shift the synthetic closer to the real distribution,

whereas when sign(θ) = sign(ψ), updating θ would have the synthetic distribution begin to diverge

away. Consequently, ζDirac prevents Pθ from having divergent behavior.

Theorem 3.1. Dirac-GANs trained with Wasserstein or BCE loss via ζDirac are both Lyapunov stable

for both infinitesimal and non-infinitesimal learning rates, and have a tighter bound on stability

around saddle-points than Alt-GDA or Sim-GDA for non-infinitesimal learning rates.

While seemingly no more sophisticated than Sim-GDA or Alt-GDA, the ζDirac decision oracle is

surprisingly more effective. Where ζDirac operates based on training dynamics, Sim-GDA and Alt-

GDA instead operate with rigid time-based decisions. Theorem 3.1 shows that ζDirac approaches

the saddle point stably, and oscillates in a smaller radius around the saddle point than Alt-GDA or

Sim-GDA. The proof of Theorem 3.1 can be found in Section D of the supplement. For more details,

see Section C in appendix.

7

4 GENERALIZING OUR DIRAC-GAN SOLUTION

While the capabilities of the dynamic dirac-oracle proposed in Section 3 are impressive in Dirac-GAN

settings, we now extend this notion of decision oracles to make them applicable for complex GANs

used in practice. GANs generally learn more difficult real distributions, use neural net architectures

for the generator and discriminator, and employ mini-batched training. To extend the success of the

Dirac-Oracle to practical settings, we show that there are several critical properties of ζDirac that can

be generalized to construct a successful decision oracle for general GAN optimization. Also, see the

supplement for more details.

4.1 EXTENDING TO DEEP NEURAL NET ARCHITECTURES

When dealing with much larger deep neural models for the generator and discriminator, using the

simple heuristics like comparing the values of two learned parameters (ie. θ < ψ) becomes a

somewhat meaningless and non-interpretable signal. However, in the Dirac-GAN scenario, the

relationship between θ and ψ in the parameter-space revealed information about the relationship

between the real and synthetic distributions in the feature-space.

By taking this idea of having an interpretable understanding of the relation of distributions in

the feature-space via a relationship in the parameter-space, we can show that peering into the

discriminator’s projection space accomplishes this goal for an arbitrary g and d. As convention,

discriminators follow the form of being a non-linear 1-dimensional projection of the feature-space:

d : Ωx → 1. Also, the goal of GAN loss functions is to encourage a θ such that the synthetic

distribution is maximized in the projection of d.

Theorem 4.1. For a discriminator d, and real/synthetic data x̂ ∼ Pθ, x ∼ Pr, if ∀x̂, x : d(x̂;ψ) >

d(x;ψ) then the divergence between Pθ and Pr will generally not decrease if θ updates according to

gradient descent.

Theorem 4.1 shows that there is a clear link between the relationship real and synthetic distributions

have in the discriminator’s projection-space and their relationship in the feature-space. Moreover,

in the Dirac-GAN case, ζDirac chooses only to update ψ when ψθ > 0. We can see trivially that

ψθ > 0 =⇒ d(x̂;ψ) > d(x;ψ), ensuring the assumptions for Theorem 4.1 do not hold, and the

divergence between Pθ and Pr decreases when updating θ.

4.2 EXTENDING TO DISTRIBUTIONS WITH NON-ZERO SUPPORT

When dealing with more complicated real distributions than a simple dirac-delta, we need to extend

the reasoning of the dynamic dirac-oracle when the real and synthetic distributions have non-zero

8

supports. As we showed in the previous section Sec 4.1, in situations where the real and synthetic

distributions are disjoint, Pθ ∩Pr = ∅, then we can confidently update the parameters of the generator

θ so long as ∀x̂ ∼ Pθ, x ∼ Pr : d(x̂;ψ) < d(x;ψ). However, we must additionally consider when

Pθ and Pr are not disjoint.

Lemma 4.2. If the real and synthetic distributions are not disjoint in the feature-space, then the

projections of these distributions in an optimal discriminator space will also be not disjoint: Pθ∩Pr ̸=

∅ =⇒ d(Pθ;ψ∗) ∩ d(Pr;ψ
∗) ̸= ∅.

Lemma 4.3. If a discriminator is optimal with respect to a fixed generator, and the real and synthetic

distributions remain not disjoint in the discriminator’s projection-space, then these distributions are

not disjoint in the feature-space.

Lemma 4.2 shows that overlapping distributions in the feature space will remain overlapping in the

discriminator’s projection-space. However, if we aim to utilize the discriminator’s projection-space

alone, this will not be sufficient. Lemma 4.3 proves that we can only ensure the distributions overlap

in the feature-space so long as the distributions overlap in the discriminator’s projection-space and

we ensure the discriminator remains locally optimal.

Theorem 4.4. If a discriminator is optimal with respect to a fixed generator, and that Pf and Pr

are not disjoint in the discriminator’s projection-space, and when θ updates according to gradient

descent, the divergence between Pf and Pr decreases in the discriminator’s projection-space, then

the divergence between Pf and Pr will decrease in the feature-space.

Using the insights from Lemma 4.3 and Theorem 4.4 to determine under what conditions we can

train the generator when the distributions overlap in the discriminator’s projection-space, we can

ensure Pθ’s approach towards Pr is more stable for complicated distributions of Pr.

We can see a special case of Theorem 4.4 in the Dirac-GAN, as the Wasserstein divergence in the

feature-space is exactly (θ − ψ). ζDirac ensures θ is never updated once ψθ > 0, as the divergence

would increase; namely, (θ − η∇θL)− ψ > θ − ψ for any learning rate η > 0.

4.3 EXTENDING TO MINI-BATCHED TRAINING SCHEMES

In practice, it is prohibitively expensive to calculate the loss function with respect to the entire dataset

in each iteration. Thus, conventional GAN training — and most deep learning — uses mini-batched

training Gui et al. (2021).

Mini-batched training comes with a particularly challenging task for generalizing beyond the Dirac-

Oracle, as mini-batching removes the ability to observe the entirety of the real and synthetic distri-

butions each iteration. To overcome this, we first notice that when the parameters of the generator

9

are updated, the projection of the real distribution in the discriminator space remains unchanged. In

contrast, when the parameters of the discriminator are updated, the projection of both the real and

synthetic distributions may be altered. To leverage this insight in mini-batched training, when taking

a batch of real data, we can re-use the projections from the previous batch of real data so long as the

previous update only affected θ.

Additionally, when using mini-batches, it can be challenging to efficiently determine when we have

reached a locally optimal discriminator for Theorem 4.4. To circumvent this, we inspect the rate at

which the divergence between the real and synthetic is growing or shrinking along with the previously

chosen update field according to a threshold. By having the discriminator threshold be slightly larger

than 1, and the generator threshold be slightly smaller than 1, we can tune these values to have an

optimization that balances general stability and aggressiveness to reach equilibria.

5 OUR COMPLETE SOLUTION: DYNAMIC-GDA

In this section, we present our complete solution, Dynamic-GDA, and demonstrate theoretically that

Dynamic-GDA boasts strong stability guarantees. Building off the dynamic dirac-oracle described in

Section 3, and using the generalizations of each of its components in Section 4, we distill these key

ideas to propose Dynamic-GDA, a new method for GAN optimization, as a decision oracle. (Algo.

2).

In every iteration of training, Dynamic-GDA takes in the discriminator projections of a real and

synthetic mini-batch. If these two sampled distributions are disjoint in the discriminator-space and

the supremum of the synthetic projections is less than the infimum of the real projections, then we

update the parameters of the generator (V1). Likewise, if these two sampled distributions are disjoint

in the discriminator-space and the infimum of the synthetic projections is greater than the supremum

of the real projections, then we update the discriminator’s parameters (V2).

In scenarios where the two sampled distributions are not disjoint in the discriminator-space, we

look at the divergence between their discriminator projections. First, we look to our prior decision

last iteration. If the parameters of the discriminator (V2) were previously updated, we continue this

decision until the rate of growth of divergence falls below c1. However, if the parameters of the

generator (V1) were previously updated, we update the parameters of the generator (V1) we continue

this decision until the divergence between the projections no longer shrinks by a rate of c2. In practice,

we observe c1 = 1.2, c2 = 0.8 works best.

10

Algorithm 2 Dynamic-GDA (Dyn-GDA) Decision Oracle

Require: Real batch, x ∼ Pr. Synthetic batch, x̂ ∼ Pθ. Previous divergence, wLAST. Previous
choice, VLAST. Discriminator threshold, c1. Generator Threshold, c2.

1: w ←W(d(x;ψ)||d(x̂;ψ)) \\Wasserstein Divergence
2: if VLAST is Null then
3: Return V2 \\ Only occurs if its the first iteration
4: else if sup{d(x;ψ)} < inf{d(x̂;ψ))} then
5: Return V2
6: else if sup{d(x̂;ψ)} < inf{d(x;ψ)} then
7: Return V1
8: else if VLAST = V1 then
9: if w/wLAST < c2 then

10: Return V1
11: else
12: Return V2
13: end if
14: else if VLAST = V2 then
15: if w/wLAST > c1 then
16: Return V2
17: else
18: Return V1
19: end if
20: end if

Similar to the no-regret regularization strategy proposed by Kodali et al. (2017), we instead aim to

minimize the regret of decision-making based on the impacts the chosen optimization has on samples

in the discriminator’s projection.

5.1 LYAPUNOV STABILITY OF DYNAMIC-GDA

Theorem 5.1. GANs trained via Dynamic-GDA are Lyapunov stable. Also, in conditions where

Sim-GDA and Alt-GDA are locally convergent, Dyn-GDA is too.

Theorem 5.1 shows that Dynamic-GDA prevents GAN training from completely diverging during

training. Conceptually, the key reason lies in Dynamic-GDA taking advantage of an update field for a

period of training iterations until it no longer serves to promote beneficial dynamics.

This in turn attempts to implicitly increase the frequency of updating θ to update the synthetic

distribution towards the target distribution quickly. Notably, Alt-GDA is unable to do this stably

without running into the discriminator problem Goodfellow et al. (2014) identified in the seminal work

that proposed GANs, where the discriminator effectively provides detrimental gradient information

to the parameters of the generator by having been no longer near a local optimality with respect to

the current generator.

Further, Dynamic-GDA doesn’t ever update the generator and discriminator at the same iteration

(V3) to prevent the existence of non-real eigenvalues in the Jacobian of V3. This property can slow

11

down the rate of convergence and potentially require extremely small learning rates to remain locally

convergent Mescheder et al. (2017).

6 EXPERIMENTAL FINDINGS

In this section, we empirically demonstrate that our Dynamic-GDA solution has high impact in

practice, i.e., it improves training when using mini-batched training, non-infinitesimal learning rates,

and reasonable iteration counts.

To compare the performance of the Dynamic-GDA decision oracle compared to other methods such

as Sim-GDA and Alt-GDA, the only aspect varied in all experiments is the training optimization

method itself. That is, we train all GANs from scratch with the same exact parameter initialization;

all generators sample the latent sample according to an identical random seed; and all discriminators

receive mini-batches of real data according to the same seed. We experimented with a rich variety of

GAN stabilization methods, namely, unsaturated BCE loss Goodfellow et al. (2014), Wasserstein

loss Arjovsky et al. (2017), WGAN+GP Arjovsky & Bottou (2017), R2-GP Mescheder et al. (2018),

0-center gradient penalties Roth et al. (2017), spectral regularizations Miyato et al. (2018), instance

noise Sønderby et al. (2016), and Piecewise-GP Bhaskara et al. (2022).

We show that when ranking each optimization method’s convergence based on different fitness scores,

such as Wasserstein distance or FID Heusel et al. (2017) in Tables 1 and 2, that across each (GAN,

Dataset) pair, Dynamic-GDA is the best optimization method in aggregate. This result is statistically

significant with p < .02 according to a Friedman Test. See supplement for all experimental details.

6.1 COMPARATIVE EVALUATION ON 2D DATA SETS

Quantifying the precise distance (θ, ψ) from saddlepoints can be challenging even on low-dimensional

datasets. Thus, as a precise measure of how well the synthetic distribution matches the real distribution,

we utilize the Wasserstein distance between the real and synthetic distributions directly in the feature-

space for a variety of popular 2D-datasets:

Gaussian Ring: A 2D ring composed of 8 Gaussians each with centers 0.5 away from the origin

and a variance of 0.05. Circle: A circle with a radius of 0.5 centered at the origin. Spiral: A

2D projection of a swiss roll Marsland (2011). Line Segment: A line spanning (−0.5,−0.5) to

(0.5, 0.5).

For each GAN, two feed-forward networks are used for the generator and discriminator, each with 5

hidden layers of 16 neurons, and train with a learning rate of 2 · 10−4 for 30,000 iterations.

12

Figure 3: Distributions generated by GANs at (from left to right) 5k, 10k, 15k, 20k, 25k, and 30k
iterations when tasked with learning the target distribution (marked red) when equipped with either
(from top to bottom) Sim-GDA, Alt-GDAnd=1, Alt-GDAnd=5, or Dyn-GDA. Top block is Spiral,
bottom block is Circle.

Table 1 shows the Wasserstein distance at the end of training for GANs trained with each optimization

method tested. Dynamic-GDA alone makes up exactly half of all best-ranked optimization methods

for the 32 (GAN, 2D-dataset) pairs. More importantly, the bottom-most row shows the average rank

of each optimization method per (GAN, Dataset) pair. Across 3 of the 4 2D-datasets, Dynamic-GDA

is the most convergent method in aggregate. In the only 2D-dataset where Dynamic-GDA is not the

best ranked in aggregate, it is second best.

Figure 3 shows a visualization of the generated distributions for GANs trained with BCE loss on the

Spiral and Circle datasets. See Section G for more visualizations.

13

6.2 COMPARATIVE EVALUATION ON IMAGE DATA SETS

To demonstrate Dynamic-GDA’s ability on real-world datasets, we trained a variety of GANs with

state-of-the-art stabilization methods on MNIST Deng (2012), CIFAR-10 Krizhevsky et al., and

celebA Liu et al. (2015) datasets. Figure 5 shows samples of generated images from GANs with each

of the optimization methods and BCE loss.

For evaluating the quality of convergence, we use FID score Heusel et al. (2017) to measure the

similarity between the real dataset and an equally-sized generated dataset. We use InceptionV3 to

calculate FID for CIFAR-10 and celebA, and a pretrained CNN to calculate FID for MNIST.

For the MNIST experiments, we use a feed-forward generator and discriminator architecture each with

5 hidden layers of 1024 neurons. For the CIFAR-10 and celebA experiments, we use an architecture

similar to DCGAN Radford et al. (2015) for the generator and discriminator. All GANs were trained

for 30,000 iterations with a learning rate of 2 · 10−4. For instance noise, we use N (0, 0.02I); for

Piecewise-GP K = 0.83, for other regularizations, we use a gradient penalty of 3.

Table 2 shows the FID scores of 8 different GANs stabilization methods at the end of training when

equipped with either Sim-GDA, Alt-GDAnd=1, Alt-GDAnd=5, or Dynamic-GDA for each image

dataset mentioned. The bottom-most row shows the average rank of each optimization method per

(GAN, Dataset) pair. Dynamic-GDA ranks first and second best in aggregate on the MNIST and

CIFAR-10 datasets respectively. When considering the rankings across all 56 (GAN, Dataset) pairs,

including 2D and image together, Dynamic-GDA’s rank is statistically significant with p = .0192

according to a Friedman Test, further demonstrating Dynamic-GDA’s utility for widespread GAN

training.

Furthermore, Figure 4 demonstrates’s Dyn-GDA strong stability to prevent GANs from undergoing

common training pitfalls like mode collapse, unlike Alt-GDAnd=5.

7 RELATED WORK

To our best knowledge, this is the first work to introduce a principled notion of GAN optimization

determining the order of the generator and discriminator updates dynamically.

Parameterized Alt-GDA. Goodfellow et al. (2014) first utilized a parameterized Alt-GDA for

deciding the specific discriminator-to-generator updating ratio for GAN training. Anecdotal evidence

for a 5-1 update ratio is commonly followed in practice Arjovsky et al. (2017).

Architecture-Based Stability. Architecture-specific techniques to improve training stability are for

specific domains or data modalities have been explored. DCGAN Radford et al. (2015) has aided in

14

Table 1: The best optimization method per GAN/dataset pair is bolded, second best is underlined.
Bottom-most row provides the average rank of each optimization method per dataset.

Wasserstein Distance W(Pr||Pf) ↓
GAN Method Ring Circle Spiral Line

Sim-GDA .3979 .0110 .1089 .0431
Unsat. BCE Alt-GDAnd=1 .4740 .0092 .2191 .0808
(NeurIPS 2014) Alt-GDAnd=5 .0403 .1394 .4959 .0198

Dyn-GDA (ours) .0332 .0120 .0887 .0482
Sim-GDA .0404 .0125 .0797 .1187

Instance Noise Alt-GDAnd=1 .0504 .0116 .1052 .0692
(ICLR 2016) Alt-GDAnd=5 .0266 .0413 .3338 .0320

Dyn-GDA (ours) .0328 .0075 .0829 .0133
Sim-GDA .0341 .0204 .0782 .0854

WGAN Alt-GDAnd=1 .0553 .0384 .0559 .0417
(ICML 2017) Alt-GDAnd=5 .0433 .0210 .0811 .0393

Dyn-GDA (ours) .0620 .0289 .0750 .0204
Sim-GDA .2498 .3566 .4989 .4033

WGAN+GP Alt-GDAnd=1 .2711 .3018 .3536 .4719
(ICLR 2017) Alt-GDAnd=5 .3486 .3156 .6602 .1634

Dyn-GDA (ours) .2276 .2702 .6271 .0827
Sim-GDA .4024 .0223 .0439 .1219

Reg. JS-GAN Alt-GDAnd=1 .0459 .0143 .0501 .1277
(NeurIPS 2017) Alt-GDAnd=5 .0351 .0124 .0777 .0204

Dyn-GDA (ours) .0334 .0167 .0348 .0199
Sim-GDA .0546 .0309 .0908 .1847

SN-GAN Alt-GDAnd=1 .3377 .0235 .0502 .0383
(ICLR 2017) Alt-GDAnd=5 .0450 .0108 .0693 .0369

Dyn-GDA (ours) .0447 .0168 .0418 .0212
Sim-GDA .0730 .0186 .0398 .1359

R2-GP Alt-GDAnd=1 .0389 .0177 .0401 .1031
(ICML 2018) Alt-GDAnd=5 .0361 .0100 .0853 .0137

Dyn-GDA (ours) .0386 .0192 .0374 .0229
Sim-GDA .7670 .0146 .1292 .1441

Piecewise-GP Alt-GDAnd=1 .5262 .0124 .1603 .2241
(WACV 2022) Alt-GDAnd=5 .0419 .0321 .3191 .0825

Dyn-GDA (ours) .0350 .0126 .1909 .1527

Sim-GDA 3.125 3.125 2.125 3.375
Average Rank Alt-GDAnd=1 3.375 2.250 2.250 3.500

Alt-GDAnd=5 1.875 2.250 3.750 1.625
Dyn-GDA (ours) 1.625 2.375 1.875 1.500

image-based GAN training, RNNs in time-series generation Esteban et al. (2017), and GANS Li et al.

(2018) for point-cloud generation.

Regularizers for Stability. A variety of regularization techniques has been proposed for improving

GAN stability: by adding penalties on discriminator projections of real or synthetic data Roth et al.

(2017), adding penalties on the interpolated points between real and synthetic data in the feature-space

Arjovsky & Bottou (2017), randomly perturbing real samples Sønderby et al. (2016), or modifying

the loss landscape according to the locally observed curvature Mescheder et al. (2017), to name a few.

Rigorous analysis of these methods by Mescheder et al. (2018) has shown that certain regularizers

can make Sim-GDA and Alt-GDA convergent when initializing (θ0, ψ0) near saddle-points.

Support and Mass Alignment. Previous work has proposed techniques to align the supports of the

synthetic and real distributions in the feature space Tong et al. (2022). Other works have discussed

the impact of gradient saturation affecting convergence Arjovsky & Bottou (2017); Nowozin et al.

(2016). They have also demonstrated counterfactual examples to show how divergence minimization

15

Table 2: The best optmization method per GAN/dataset pair is bolded, second best is underlined.
Bottom-most row provides the average rank of each optimization method per dataset.

FID Score ↓
GAN Method celebA CIFAR-10 MNIST

Unsat. BCE
Sim-GDA 38.477 24.809 142.079
Alt-GDAnd=1 36.138 21.550 149.703
Alt-GDAnd=5 32.144 44.264 1533.967
Dyn-GDA (ours) 36.911 21.798 112.754

Instance Noise
Sim-GDA 22.000 28.709 98.306
Alt-GDAnd=1 25.434 23.407 175.462
Alt-GDAnd=5 39.131 47.738 1535.456
Dyn-GDA (ours) 24.976 24.271 166.755

WGAN
Sim-GDA 65.729 81.072 2058.749
Alt-GDAnd=1 31.590 39.257 1839.769
Alt-GDAnd=5 46.115 53.435 138.309
Dyn-GDA (ours) 34.594 50.276 1828.968

WGAN+GP
Sim-GDA 151.046 135.677 1227.334
Alt-GDAnd=1 148.783 121.167 1203.989
Alt-GDAnd=5 145.873 103.615 1968.711
Dyn-GDA (ours) 379.210 355.324 1979.317

Reg. JS-GAN
Sim-GDA 35.380 23.482 90.157
Alt-GDAnd=1 33.388 23.047 102.466
Alt-GDAnd=5 34.637 50.230 1737.525
Dyn-GDA (ours) 34.427 23.373 95.491

SN GAN
Sim-GDA 54.934 67.036 771.838
Alt-GDAnd=1 37.038 45.970 188.814
Alt-GDAnd=5 324.535 138.181 222.352
Dyn-GDA (ours) 50.838 44.641 163.709

R2-GP
Sim-GDA 38.022 21.591 141.140
Alt-GDAnd=1 33.671 21.108 117.389
Alt-GDAnd=5 32.845 42.108 1882.465
Dyn-GDA (ours) 34.427 25.421 111.385

Piecewise-GP
Sim-GDA 362.825 27.607 2477.560
Alt-GDAnd=1 357.894 33.988 2314.778
Alt-GDAnd=5 159.481 129.076 2250.221
Dyn-GDA (ours) 470.384 29.477 2259.416

Sim-GDA 3.25 2.750 2.625
Average Rank Alt-GDAnd=1 1.750 1.500 2.500

Alt-GDAnd=5 2.125 3.500 3.000
Dyn-GDA (ours) 2.875 2.250 1.875

in the feature-space alone can lead to spurious optimizations that do not result in finding equilibria

Fedus et al. (2017).

8 CONCLUSION

We have demonstrated that altering the order in which the generator and discriminator are updated can

have a significant impact on convergence in GAN training. Previous strategies for improving training

stability, that had previously been proven non-convergent when built upon Alt-GDA or Sim-GDA, are

now proven to be stable when equipped with an adaptive update ordering. Our proposed optimization

method Dynamic-GDA not only improves GAN training in isolation but also bolsters additional

GAN stabilization strategies when used in tandem. This points at future work into developing better

decision oracles with the potential to benefit the body of GAN research and generative modeling as a

whole.

16

9 IMPACT STATEMENT

This paper presents work whose goal is to advance the field of Machine Learning. There are many

potential societal consequences of our work, none which we feel must be specifically highlighted

here.

REFERENCES

Guy Ackerson and K Fu. On state estimation in switching environments. IEEE transactions on

automatic control, 15(1):10–17, 1970.

Martin Arjovsky and Léon Bottou. Towards principled methods for training generative adversarial

networks. arXiv preprint arXiv:1701.04862, 2017.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.

In International conference on machine learning, pp. 214–223, 2017.

Aayush Arora and Shantanu. A review on application of gans in cybersecurity domain. IETE

Technical Review, pp. 433–441, 2022.

Vineeth S Bhaskara, Tristan Aumentado-Armstrong, Allan D Jepson, and Alex Levinshtein. Gran-

gan: Piecewise gradient normalization for generative adversarial networks. In Proceedings of the

IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3821–3830, 2022.

Figure 4: Synthetic samples generated from GANs at 5k (top) and 30k (bottom) iterations when
equipped with (from left to right) Sim-GDA, Alt-GDAnd=1, Alt-GDAnd=5, or Dyn-GDA on the
MNIST dataset. Where Dyn-GDA and Alt-GDAnd=5 learn the 1’s classes earlier than Sim-GDA
and Alt-GDAnd=1, Dyn-GDA uniquely does this without undergoing mode collapse, and ultimately
generates highly diverse samples by the end of training.

17

Figure 5: Synthetic samples generated after 30k iterations from GANs equipped with (from left
to right) Sim-GDA, Alt-GDAnd=1, Alt-GDAnd=5, or Dyn-GDA during training to learn either the
CIFAR-10 (top row) or celebA (bottom row) datasets.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE Signal

Processing Magazine, 29(6):141–142, 2012.

Cristóbal Esteban, Stephanie L Hyland, and Gunnar Rätsch. Real-valued (medical) time series

generation with recurrent conditional gans. arXiv preprint arXiv:1706.02633, 2017.

William Fedus, Mihaela Rosca, Balaji Lakshminarayanan, Andrew M Dai, Shakir Mohamed, and Ian

Goodfellow. Many paths to equilibrium: Gans do not need to decrease a divergence at every step.

arXiv preprint arXiv:1710.08446, 2017.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,

Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information

processing systems, 2014.

Jie Gui, Zhenan Sun, Yonggang Wen, Dacheng Tao, and Jieping Ye. A review on generative

adversarial networks: Algorithms, theory, and applications. IEEE transactions on knowledge and

data engineering, pp. 3313–3332, 2021.

Wolfgang Hahn et al. Stability of motion, volume 138. Springer, 1967.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans

trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural

information processing systems, 30, 2017.

18

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural

information processing systems, 2016.

Naveen Kodali, Jacob Abernethy, James Hays, and Zsolt Kira. On convergence and stability of gans.

arXiv preprint arXiv:1705.07215, 2017.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced

research).

Chun-Liang Li, Manzil Zaheer, Yang Zhang, Barnabas Poczos, and Ruslan Salakhutdinov. Point

cloud gan. arXiv preprint arXiv:1810.05795, 2018.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In

Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Stephen Marsland. Machine learning: an algorithmic perspective. Chapman and Hall/CRC, 2011.

Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. The numerics of gans. Advances in neural

information processing systems, 2017.

Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods for gans do

actually converge? In International conference on machine learning, pp. 3481–3490, 2018.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for

generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

Vaishnavh Nagarajan and J. Zico Kolter. Gradient descent gan optimization is locally stable. In

I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett

(eds.), Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,

2017.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers

using variational divergence minimization. Advances in neural information processing systems,

2016.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,

Zeming Lin, Alban Desmaison, Luca Antiga, Adam Lerer, et al. Pytorch: An imperative style,

high-performance deep learning library. Advances in Neural Information Processing Systems, 32:

8024–8035, 2019.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep

convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

19

Kevin Roth, Aurelien Lucchi, Sebastian Nowozin, and Thomas Hofmann. Stabilizing training of

generative adversarial networks through regularization. Advances in neural information processing

systems, 2017.

Divya Saxena and Jiannong Cao. Generative adversarial networks (gans) challenges, solutions, and

future directions. ACM Computing Surveys (CSUR), pp. 1–42, 2021.

Casper Kaae Sønderby, Jose Caballero, Lucas Theis, Wenzhe Shi, and Ferenc Huszár. Amortised

map inference for image super-resolution. arXiv preprint arXiv:1610.04490, 2016.

Shangyuan Tong, Timur Garipov, Yang Zhang, Shiyu Chang, and Tommi S Jaakkola. Adversarial

support alignment. arXiv preprint arXiv:2203.08908, 2022.

Zhengli Zhao, Zizhao Zhang, Ting Chen, Sameer Singh, and Han Zhang. Image augmentations for

gan training. arXiv preprint arXiv:2006.02595, 2020.

20

A EXTENSION OF PRELIMINARIES

In this section, we will describe previous theoretical contributions by Mescheder et al. (2018) to prove

under what assumption can GANs exhibit convergence or at the least stability under a discretized

dynamical system.

A.1 CONVERGENCE THEORY FROM PRIOR WORK

As described by Nagarajan & Kolter (2017), the vector field of GAN training at any point (θ, ψ) can

be described by the gradient vector field v(θ, ψ):

v(θ, ψ) =

−∇θL(θ, ψ)
∇ψL(θ, ψ)

 (8)

Given that an update operator F follows the form

F (θ, ψ) = I + ηV (θ, ψ)

for some arbitrary field V , Mescheder et al. (2017) showed that if the Jacobian of an update operator

F has eigenvalues with absolute values greater than 1 at the saddle-point, then GAN training will

generally not converge. Additionally, if the Jacobian of an update operator F has eigenvalues with

absolute values less than 1 at the saddle-point, then GAN training will converge linearly with a rate

of O(|λMAX|k), where λMAX is the eigenvalue with the greatest magnitude from F
′
. Similarly, when

all eigenvalues lie on the unit circle, convergence is at best sub-linear.

Mescheder et al. (2017) notably also showed that it is a necessity, but not necessarily sufficient,

that the Jacobian of v(θ∗, ψ∗) has eigenvalues all with a negative real part for there to be linear

convergence when training with either Alt-GDA or Sim-GDA.

Mescheder et al. (2018) then showed for GANs trained with a non-infinitesimal learning rate η via

Sim-GDA, that training will converge at best sub-linearly if and only if the Jacobian of the update

operator

F3(θ, ψ) =

 θ − η∇θL(θ, ψ)

ψ + η∇ψL(θ, ψ)

has eigenvalues that all have a negative real part at the saddle-point (θ∗, ψ∗), and η must be within

the bound seen in Eq. 9 for all eigenvalues λ.

21

ηSIM <
1

|Re(λ)|
2

1 +
(

Im(λ)
Re(λ)

)2 (9)

Similarly, Mescheder et al. (2018) also showed for GANs trained according to Alt-GDA, that

v(θ∗, ψ∗) must have eigenvalues all with a negative real part, and η must be infinitesimally small to

ensure the eigenvalues of the Jacobian of the Alt-GDA update operator lie on the unit circle. In terms

of update operators F1 and F2, the update operator of Alt-GDA is F2 ◦ F1, where

F1(θ, ψ) =

θ − η∇θL(θ, ψ)
ψ

F2(θ, ψ) =

 θ

ψ + η∇ψL(θ, ψ)

B LYAPUNOV STABILITY

Lyapunov stability of a dynamic system is a form of stability that ensures a notion of hovering around

equilibria. While not as strong as asymptotic stability, where every initial condition approaches

an equilibrium point as t → ∞, systems with Lyapunov stability prevent initial conditions from

diverging infinitely far away from equilibria.

For continuous-time systems, where f is a dynamic system such that f(x(t)) = ẋ, and f has an

equilibrium x∗ such that f(x∗) = 0, f is said to be Lyapunov stable, if, for every ϵ > 0, there

exists a δ > 0 such that if ||x(0) − ϵ|| < δ, then for every t > 0, ||x(t) − x∗|| < δ. To prove a

continuous-time system is Lyapunov stable, a Lyapunov potential function P is used. P can be any

potential function such that P is symmetric and positive definite. For a linear system that is defined

via the matrix A where ẋ = Ax, then A is Lyapunov stable if ATP + PA is negative semi-definite

Hahn et al. (1967) for all x ̸= 0. For nonlinear systems, one must show that there exists a P such

that ∇P (x) · f(x) is negative semi-definite. Continuous-time systems are effective for modeling

when training under an infinitesimally small learning rate. For non-infinitesimal learning rates, we

use discrete-time systems where a similar definition holds, where a linear system that is defined

via the matrix A where x(k + 1) = Ax(k), then A is Lyapunov stable if ATPA − P is negative

semi-definite for all x ̸= 0. For nonlinear systems, one must show that there exists a P such that

P (f(x(k + 1)))− P (x(k) is negative or non-increasing for all k.

22

Figure 6: Gradient fields (bottom row) and their norms (top row) of a Dirac GAN equipped with
(from left group to right group) a Vanilla, Wasserstein, and Wasserstein with gradient penalty loss,
respectively. x-axis is θ and y-axis is ψ. Brighter colors indicate a larger gradient magnitude. The
joint gradient space (left) illustrates the instability that can arise in the simplest of GAN formulations,
and optimizing both machines in each iteration subjects the GAN’s parameters to these undesired
unstable dynamics. However, a decomposition of the gradient field into its orthogonal components
w.r.t the generator (middle) and discriminator (right) can yield additional control over the joint
gradient field. Optimization regimes that utilize their own sequence of choosing one of these 3 fields
each iteration through the course of training can seek saddle points more efficiently.

C UTILIZING NON-STATIC UPDATE FUNCTIONS

One of the critical assumptions of these insights by Mescheder et al. (2017) and Mescheder et a.

(2018) is that the chosen update function F must be chosen unilaterally at all initial conditions of

(θ0, ψ0). Even more so, in the non-infinitesimal case were a learning rate η > 0 is utilized equipped

with the update operator F , η must be sufficiently small for the eigenvalues of F
′

η to be in the unit

ball for all iterates (θk, ψk).

An overlooked aspect of the optimization strategy is the use of constraining the min-max optimization

to a fixed, premeditated update operator F acting on a fixed field V (θ, ψ). We then show that when

we allow the selection of V to itself to be a function of an oracle ζ conditioned on (θ, ψ), then when

a non-infinitesimal learning rate is imposed, ζ(θ, ψ)→ V , the resulting update operator F (θ, ψ) can

ensure the absolute value of the eigenvalues lie in the unit circle. Figure 6 shows a decomposition of

the gradient field of v, and adaptively choosing which update field to use gives greater flexibility in

traversing the parameter-space of θ ×ψ.

D PROOFS AND REMARKS

ζDirac is an instantiation of a switching dynamic system Ackerson & Fu (1970), where ζDirac is

equipped with a set of systems V = {V1, V2, V3}, and has a conditional update operator, and

consequently optimizes along potentially different gradient vector fields each iteration. When we can

23

define the dynamic system formed by ζDirac under an infinitesimal and non-infinitesimal learning rate,

each found in Equations 10 and 11 respectively.

ζDirac(x) =

V1 if ψθ < 0

V2 if ψθ > 0

(10)

ζDirac(x; η) =

x− ηV1 if ψθ < 0

x+ ηV2 if ψθ > 0

(11)

For solving for saddle-points, we impose that we want to solve

∇2
θL(θ, ψ) < 0 < ∇2

ψL(θ, ψ),

∇θL(θ, ψ) = ∇ψL(θ, ψ) = 0.

So, the equilibrium point lies at v(0) = 0 using the gradient vector field in Equation 8.

For a variety of our proofs, we will use the Potential function H in Equation 12,

H(x) =

 1
2θ

2 0

0 1
2ψ

2

 (12)

Lemma D.1. Dirac-GANs trained via ζDirac are both Lyapunov stable for infinitesimal learning rates

when

0 ≥ −θ∇θL(θ, ψ) so long as ψθ < 0,

or when 0 ≥ ψ∇ψL(θ, ψ) so long as ψθ > 0.

Proof.

We utilize a Lyapunov potential function H in Equation 12.

Then

24

∇H · ζDirac =

−θL(θ, ψ) 0

0 0

 : ψθ < 0

0 0

0 ψL(θ, ψ)

 : ψθ > 0

Thus, we can see that for a given L,∇H(θ, ψ) · ζDirac(θ, ψ) is negative semi definite so long as

0 ≥ −θL(θ, ψ) when ψθ < 0

and

0 ≥ ψL(θ, ψ) when ψθ > 0

Lemma D.2. Dirac-GANs trained via ζDirac are both Lyapunov stable for non-infinitesimal learning

rates

η ≤ θ2 − 2θ

2∇θL(θ, ψ)
when 0 ≥ −ψ

2

2
and ψθ < 0

η ≤ ψ2 − 2ψ

2∇ψL(θ, ψ)
and 0 ≥ −θ

2

2
when ψθ > 0

Proof.

We utilize a Lyapunov potential function H in Equation 12.

Then to follow the form P (f(x(k + 1)))− P (x(k) =, then H(ζDirac(θk+1, ψk+1))−H(θ, ψ) =

θ − η∇θL(θ, ψ)− θ2

2 0

0 −ψ2

2

 : ψθ < 0

−θ2
2 0

0 ψ + η∇ψL(θ, ψ)− ψ2

2

 : ψθ > 0

Then we see

0 ≥ θ − η∇θL(θ, ψ)− θ2

2 and 0 ≥ −ψ2

2 when ψθ < 0

25

0 ≥ ψ + η∇ψL(θ, ψ)− ψ2

2 and 0 ≥ −θ2
2 when ψθ > 0

We can rewrite this in terms of η:

ψθ < 0 =⇒ η ≤ θ2 − 2θ

2∇θL(θ, ψ)
and 0 ≥ −ψ

2

2

ψθ > 0 =⇒ η ≤ ψ2 − 2ψ

2∇ψL(θ, ψ)
and 0 ≥ −θ

2

2

Lemma D.3. Dirac-GANs trained with Wasserstein loss via ζDirac are Lyapunov stable for an

infinitesimal learning rate.

Proof.

Wasserstein loss is defined by L(θ, ψ) = −ψθ and it follows that

∇θL(θ, ψ) = −ψ

∇ψL(θ, ψ) = −θ

Thus, when considering that for this L, ζDirac
V requires

ψθ < 0 =⇒ 0 ≥ −θ∇θL(θ, ψ)

ψθ > 0 =⇒ 0 ≥ ψ∇ψL(θ, ψ),

To maintain Lyapunov stability. We see that

ψθ < 0 =⇒ 0 ≥ θψ

ψθ > 0 =⇒ 0 ≥ −ψθ,

Holds trivially. Since Dirac-GANs with ζDirac are Lyapunov stable according to Lemma D.1, we have

demonstrated ζDirac will coerce Dirac-GANs trained with Wasserstein loss to be Lyapunov stable.

Lemma D.4. Dirac-GANs trained with BCE loss via ζDirac are Lyapunov stable for an infinitesimal

learning rate.

Proof.

BCE loss is defined for Dirac-GANs

L(θ, ψ) = log(σ(ψ · 0)) + log(1− σ(ψθ))

26

where σ is the sigmoid activation function with property σ
′
(x) = σ(x)(1− σ(x))x′

and it follows that

∇θL(θ, ψ) =
σ(ψθ)(1− σ(ψθ))ψ

1− σ(ψθ)

∇ψL(θ, ψ) =
σ(ψθ)(1− σ(ψθ))θ

1− σ(ψθ)

Thus, when considering that for this L, ζDirac
V requires

ψθ < 0 =⇒ 0 ≥ −θ∇θL(θ, ψ)

ψθ > 0 =⇒ 0 ≥ ψ∇ψL(θ, ψ),

To maintain Lyapunov stability per Lemma D.1. We see that

ψθ < 0 =⇒ 0 ≥ −θψσ(ψθ)

ψθ > 0 =⇒ 0 ≥ ψθσ(ψθ),

Holds trivially since σ(ψθ) is striclty bounded between the exclusive interval (0, 1). Since Dirac-

GANs with ζDirac are Lyapunov stable according to Lemma D.1, we have demonstrated ζDirac will

coerce Dirac-GANs trained with BCE loss to be Lyapunov stable.

Lemma D.5. Dirac-GANs trained with Wasserstein loss via ζDirac are Lyapunov stable for a non-

infinitesimal learning rate η where

η ≤ 1− θ

2
when ζDirac → V1

η ≤ 1− ψ

2
when ζDirac → V2

Proof.

Wasserstein loss is defined by L(θ, ψ) = −ψθ and it follows that

∇θL(θ, ψ) = −ψ

∇ψL(θ, ψ) = −θ

27

Thus, when considering that for this L, ζDirac
V requires η to satisfy the inequalities:

ψθ < 0 =⇒ η ≤ θ2 − 2θ

2∇θL(θ, ψ)
and 0 ≥ −ψ

2

2

ψθ > 0 =⇒ η ≤ ψ2 − 2ψ

2∇ψL(θ, ψ)
and 0 ≥ −θ

2

2

to maintain Lyapunov stability per Lemma D.2. We see that

ψθ < 0 =⇒ η ≤ 1− θ

2
, 0 ≥ −ψ

2

2

ψθ > 0 =⇒ η ≤ 1− ψ

2
, 0 ≥ −θ

2

2

Holds for relatively large η even when ||(θ, ψ)− (0, 0)|| is small. Since Dirac-GANs with ζDirac are

Lyapunov stable according to Lemma D.2, we have demonstrated ζDirac will coerce Dirac-GANs

trained with Wasserstein loss to be Lyapunov stable for sizeable, non-infinitesimal learning rates.

Lemma D.6. Dirac-GANs trained with BCE loss via ζDirac are Lyapunov stable for a non-infinitesimal

learning rate η where

Proof.

BCE loss is defined for Dirac-GANs

L(θ, ψ) = log(σ(ψ · 0)) + log(1− σ(ψθ))

where σ is the sigmoid activation function with property σ
′
(x) = σ(x)(1− σ(x))x′

and it follows that

∇θL(θ, ψ) =
σ(ψθ)(1− σ(ψθ))ψ

1− σ(ψθ)

∇ψL(θ, ψ) =
σ(ψθ)(1− σ(ψθ))θ

1− σ(ψθ)

Thus, when considering that for this L, ζDirac
V requires η to satisfy the inequalities:

28

ψθ < 0 =⇒ η ≤ θ2 − 2θ

2∇θL(θ, ψ)
and 0 ≥ −ψ

2

2

ψθ > 0 =⇒ η ≤ ψ2 − 2ψ

2∇ψL(θ, ψ)
and 0 ≥ −θ

2

2

to maintain Lyapunov stability per Lemma D.2. We see that

ψθ < 0 =⇒ η ≤ θ2 − 2θ

2σ(ψθ)ψ
and 0 ≥ −ψ

2

2

ψθ > 0 =⇒ η ≤ ψ2 − 2ψ

2σ(ψθ)θ
and 0 ≥ −θ

2

2

Holds for a relatively large η even when ||(θ, ψ)−(0, 0)|| is large, as the bound on σ(ψθ) will saturate

the denominator when ψθ < 0. Since Dirac-GANs with ζDirac are Lyapunov stable according to

Lemma D.2, we have demonstrated ζDirac will coerce Dirac-GANs trained with BCE loss to be

Lyapunov stable.

Theorem 3.1 Dirac-GANs trained with Wasserstein or BCE loss via ζDirac are both Lyapunov stable

for both infinitesimal and non-infinitesimal learning rates, and have a tighter bound on stability

around saddle-points than Alt-GDA or Sim-GDA for non-infinitesimal learning rates.

Proof.

We prove ζDirac is Lyapunov stable for Wasserstein GANs with infinitesimal learning rates in Lemma

D.3, and non-infinitesimal learning rates in Lemma D.5.

Similarly, we prove ζDirac is Lyapunov stable for BCE GANs with infinitesimal learning rates in

Lemma D.4, and non-infinitesimal learning rates in Lemma D.6.

Mescheder et al. (2018) proved that Sim-GDA is not stable near equilibria for Dirac-GANs even when

an infinitesimal learning rate is used. Worse, Sim-GDA diverge will all non-infinitesimal learning

rates.

Mescheder et al. (2018) also shows that for Dirac-GANs equipped with Alt-GDA can only achieve

non-divergent behavior when

η ≤ 2
√
ngnd∇L(θ, ψ)

(13)

29

where ng is the number of generator updates after performing nd discriminator updates. The

inequality of η in Equation 13 places tighter bounds on sufficient η′s than the bound place by ζDirac:

η ≤ θ2 − 2θ

2∇θL(θ, ψ)

when updating θ, and

η ≤ ψ2 − 2ψ

2∇ψL(θ, ψ)

when updating ψ.

Theorem 4.1. For a discriminator d, and real/synthetic data x̂ ∼ Pθ, x ∼ Pr, if ∀x̂, x : d(x̂;ψ) >

d(x;ψ) then the divergence between Pθ and Pr will generally not decrease if θ updates according to

gradient descent.

Proof.

If a given d is a Wasserstein critic, then, the locally optimal critic will asymptotically send d(x̂;ψ)

towards −∞ and send d(x;ψ) towards ∞ per the definition of Wasserstein loss. Thus, in the

asymptotics of optimizing ψ, in the hopes of ultimately approaching a locally optimal discriminator,

we expect

Ex̂∼Pθ
d(x̂;ψ)− Ex∼Prd(x;ψ)

to increase. Thus, if we were then to optimize θ, we would expect to observe θ iteratively maximize the

projection of Pθ. However, if Ex̂∼Pθ
d(x̂;ψ) > Ex̂∼Pθ

d(x̂;ψ) then there are erroneous regions in the

feature-space d projects to a greater degree outside the support of Pr. Therefore, if in extreme cases,

inf{d(x̂;ψ)} > sup{d(x;ψ)}, then θ will be optimized such that it travels towards erroneously

project regions. This has no guarantee on improving the divergence between Pθ and Pr, and may

even cause detrimental, divergent behavior of Pθ.

Furthermore, for bounded discriminators such as the discriminators employed for use with BCE

loss, it is well known that a locally optimal discriminator’s projection converges towards the real-to-

synthetic mass ratio at each point in the feature space. Thus, when Ex̂∼Pθ
d(x̂;ψ) > Ex∼Prd(x;ψ)

or in the extreme case, inf{d(x̂;ψ)} > sup{d(x;ψ)}, then the discriminator’s projection of the

real-to-synthetic mass ration cannot be faithful to the feature-space, and may cause Pθ to converge to

towards erroneous regions with zero density of Pr.

30

Lemma 4.2 If the real and synthetic distributions are not disjoint in the feature-space, then the

projections of these distributions in the discriminator space will also be not disjoint: Pθ ∩ Pr ̸=

∅ =⇒ d(Pθ;ψ) ∩ d(Pr;ψ) ̸= ∅.

Proof.

We prove this by contraction.

Let’s first assume the contradictory statement, where Pθ and Pr are non-disjoint in the feature-space,

but d(Pθ;ψ) and d(Pr;ψ) are disjoint. This implies there is a point p that lies in the support of Pr

and the support of Pθ simultaneously.

Since d(Pθ;ψ) and d(Pr;ψ) are disjoint, there does not exist a point q, where q lies in the support of

d(Pθ;ψ) and d(Pr;ψ) simultaneously.

However, since d is a continuous operator on the feature-space, infinitesimal perturbations in the

feature-space will be infinitesimally small in the image of d.

This is a contradiction since the lack of existence of q violates the continuity assumption of d.

Therefore, d(Pθ;ψ) and d(Pr;ψ) must not be disjoint.

Lemma 4.3 If a discriminator is optimal concerning a fixed generator, and the real and synthetic

distributions remain not disjoint in the discriminator’s projection-space, then these distributions are

not disjoint in the feature-space.

Proof.

We will prove this by contradiction.

Let’s first assume the contradictory statement, where Pθ and Pr are non-disjoint in the feature-space.

When we optimize ψ, the extremum that ψ reaches the projection of d such that d(Pθ;ψ) and d(Pr;ψ)

is maximally separated. If d(Pθ;ψ) and d(Pr;ψ) remain not disjoint at the locally extremum for a

fixed θ then there must exist a point p such that p lies in the support of d(Pr;ψ) and the support of

d(Pθ;ψ) simultaneously.

Since d is a continuous operator on the feature-space that has aimed to maximize the distance between

d(Pr;ψ) and d(Pθ;ψ), any infinitesimal perturbations in the feature-space will be infinitesimally

small in the image of d.

This is a contradiction since there must exist a point q that exists in the supports of Pθ and Pr

simultaneously. By assuming Pθ and Pr were disjoint, we have violated the continuity assumption of

d. Therefore, Pθ and Pr must not be disjoint.

31

Theorem 4.4. If a discriminator is optimal concerning a fixed generator, and that Pf and Pr are not

disjoint in the discriminator’s projection-space, and when θ updates according to gradient descent the

divergence between Pf and Pr decreases in the discriminator’s projection-space, then the divergence

between Pf and Pr will decrease in the feature-space.

Proof.

We will prove this by contradiction.

First consider the local optimality of the discriminator for a fixed generator. Once locally optimal,

the discriminator has achieved maximum separation between d(Pr;ψ
∗) and d(Pθ;ψ∗) in the discrim-

inator’s projection. If d(Pr;ψ
∗) and d(Pθ;ψ∗) are then disjoint, then we can point to Lemma 4.3

to show that the distributions must then be disjoint. Here, we instead consider when d(Pr;ψ
∗) and

d(Pθ;ψ∗) are still not disjoint. Then there exists a smooth path due to the continuity of d for θ to

update.

If we observe that for a single update iteration f θ according to an infinitesimally smaller learning

rate decreased the divergence between d(Pr;ψ
∗) and d(Pθ;ψ∗), but increase the divergence between

Pf and Pr in the feature space, then we should observe either less synthetic mass in the support of Pr,

or redistribution of mass in the support of Pr.

In the first case, this is a contradiction since θ is optimized to minimize the distance between d(Pr;ψ
∗)

and d(Pθ;ψ∗). If the divergence between Pf and Pr increased, then we wouldn’t observe a decrease

in the divergence of the projection. The second case is also a contradiction since a sole mass

redistribution of in the feature-space that increases divergence violates the assumption that a single

infinitesimal optimization of θ that decreases the separation of d(Pr;ψ
∗) and d(Pθ;ψ∗)

Theorem 5.1 GANs trained via Dynamic-GDA are Lyapunov stable. Also, in conditions where

Sim-GDA and Alt-GDA are locally convergent, Dyn-GDA is too.

Proof. (Sketch)

To prove GANs with Dynamic-GDA are Lyapunov stable, we need to show that for an arbitrary

learning rate η, there exist finite upper-bounds on the distance (θ, ψ) will ever be from equilibrium.

To show this, we consider when Dynamic-GDA c1 = 1+ and c2 = 0+, then Dynamic-GDA will

optimize ψ until a locally optimal discriminator ψ∗ is achieved, or sup{d(Pθ;ψ)} < inf{d(Pr;ψ)}

for a bounded discriminator. If the discriminator is unbounded, such as in a WGAN, we halt the

optimization of ψ once sup{d(Pθ;ψ)} < inf{d(Pr;ψ)}.

Importantly this logic is to help achieve GAN agnosticism, where Dyn-GDA can begin to optimize ψ

until a ”faithful” enough projection of the discriminator space is found in order to safely update θ

32

for at least 1 iteration without promoting diverging dynamics, nor needing to know if d is bounded or

not.

Furthermore, as Mescheder et al. (2018) points out, when using neural works in the place of g and d,

there exists a set of equilibria due to the set of reparameterizations that produce identical functions.

Thus, using assumptions I
′
, II, III

′
in Mescheder et al. (2018) to consider training according to

arbitrarily parameterized forms of neural networks g and d, so long as there exists (θ∗, ψ∗) in the

space θ ×ψ, we can show that Dyn-GDA is at least linearly convergent with infinitesimal learning

rates locally around equilibria due to using the same set of update fields as Alt-GDA.

E CONVENTIONAL GRADIENT DESCENT-ASCENT METHODS

Algorithm 3 Simultaneous Gradient Descent-Ascent

Require: (θ0, ψ0) initial parameters. L, loss function. η, learning rate.
while (θ, ψ) not converged do
ψ ← ψ + ηL(θ, ψ)
θ ← θ − ηL(θ, ψ)

end while

Algorithm 4 Alternating Gradient Descent-Ascent

Require: (θ0, ψ0) initial parameters. L, loss function. η, learning rate. nd, number of discriminator
updates per generator update.
while (θ, ψ) not converged do

for nd times do
ψ ← ψ + ηL(θ, ψ)

end for
θ ← θ − ηL(θ, ψ)

end while

F EXPERIMENTAL SETUP DETAILS

We conduct all experiments on an RTX 4090, and use the PyTorch Paszke et al. (2019) framework.

All experiments used the Adam optimizer for GANs with bounded discriminators, and RMSProp

for GANs with unbounded discriminators. For GANs with regulation strategies baked into the

architecture of the discriminator, Dynamic-GDA “turns off” these regularizations to decide the

optimization to be conducted, and the gradient calculation for the updating uses the discriminator’s

regularization.

For experiments done pertaining to celebA, CIFAR-10, and MNIST, we train for 30,000 iterations,

utilize a learning rate of 2 · 10−4, a batch size of 128, and employ a 100-dimensional latent space

sampled according toN (0, I). We normalize all images according to the distributionN (0.5, 0.5) for

each channel. For Dynamic-GDA, we use c1 = 1.2, c2 = 0.8 on all image datasets.

33

For all 2D-Datasets, we train for 30,000 iterations, utilize a learning rate of 2·10−4, a batch size of 128,

and employ a 10-dimensional latent space sampled according to N (0, I) as our c1 = 1.1, c2 = 0.75

for tuning Dynamic-GDA.

34

G ADDITIONAL VISUALIZATIONS

35

Figure 7: Distributions generated by BCE GANs at (from left to right) 5k, 10k, 15k, 20k, 25k, and 30k
iterations when tasked with learning the target distributions (marked red) when equipped with either
(from top to bottom) Sim-GDA, Alt-GDAnd=1, Alt-GDAnd=5, or Dyn-GDA. Grouped top-to-bottom
are the Gaussian Ring, Circle, Spiral, and Line Segment datasets.

36

Figure 8: Distributions generated by GANs with JS-Regularization at (from left to right) 5k, 10k, 15k,
20k, 25k, and 30k iterations when tasked with learning the target distributions (marked red) when
equipped with either (from top to bottom) Sim-GDA, Alt-GDAnd=1, Alt-GDAnd=5, or Dyn-GDA.
Grouped top-to-bottom are the Gaussian Ring, Circle, Spiral, and Line Segment datasets.

37

Figure 9: Synthetic samples generated after 30k iterations from Instance Noise GANs equipped with
(from left to right) Sim-GDA, Alt-GDAnd=1, Alt-GDAnd=5, or Dyn-GDA during training.

Figure 10: Synthetic samples generated after 30k iterations from WGANs equipped with (from left
to right) Sim-GDA, Alt-GDAnd=1, Alt-GDAnd=5, or Dyn-GDA during training.

Figure 11: Synthetic samples generated after 30k iterations from GANs with Spectral Norm regu-
larization equipped with (from left to right) Sim-GDA, Alt-GDAnd=1, Alt-GDAnd=5, or Dyn-GDA
during training.

Figure 12: Synthetic samples generated after 30k iterations from GANs with JS-Regularization
equipped with (from left to right) Sim-GDA, Alt-GDAnd=1, Alt-GDAnd=5, or Dyn-GDA during
training.

38

Figure 13: Synthetic samples generated after 30k iterations from Instance Noise GANs equipped
with (from left to right) Sim-GDA, Alt-GDAnd=1, Alt-GDAnd=5, or Dyn-GDA during training.

Figure 14: Synthetic samples generated after 30k iterations from WGANs equipped with (from left
to right) Sim-GDA, Alt-GDAnd=1, Alt-GDAnd=5, or Dyn-GDA during training.

Figure 15: Synthetic samples generated after 30k iterations from GANs with Spectral Norm regu-
larization equipped with (from left to right) Sim-GDA, Alt-GDAnd=1, Alt-GDAnd=5, or Dyn-GDA
during training.

Figure 16: Synthetic samples generated after 30k iterations from GANs with JS-Regularization
equipped with (from left to right) Sim-GDA, Alt-GDAnd=1, Alt-GDAnd=5, or Dyn-GDA during
training.

39

Figure 17: Synthetic samples generated after 30k iterations from GANs with R2-GP equipped with
(from left to right) Sim-GDA, Alt-GDAnd=1, Alt-GDAnd=5, or Dyn-GDA during training.

40

