
BiRRTOpt: A COMBINED SOFTWARE FRAMEWORK
FOR MOTION PLANNING APPLIED ON ATLAS

ROBOT

by

Lening Li

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

by

May 2016

APPROVED:

Professor Michael Gennert, Major Thesis Advisor

Professor Dmitry Berenson, Reader

Abstract

The rise of robots is becoming unstoppable judging by how much effort and

money has been invested in this Robotics field so far just these years. Carl Frey and

Michael Osbourne in Oxford University released a paper in 2013 and claimed that

around 47 percent of current jobs would be automated in the next two decades[9].

But planning robot motion still remains a major problem in Robotics regardless of

countless approaches proposed in multiple aspects trying to solve it. TrajOpt(Trajectory

Optimizer)[23] is a state-of-art optimization-based software framework for planning

robot motions. TrajOpt generates trajectory through constrained sequential convex

optimization given several initial guesses, meaning TrajOpt would focus on finding

the local minimum guided by an initial guess. However, depending on the com-

plex environment and robot mechanical structure, it sometimes would suffer from

being stuck in the local minimum which is not a feasible trajectory. However,

BiRRT(Bidirectional Rapidly exploring random tree)[16] is probabilistic complete.

BiRRT is a sampling-based method. It has been widely used due to its property,

probabilistic completeness. But without using any smoothing techniques, the tra-

jectory generated by BiRRT mostly is inexecutable on the real robot. The objective

of proposing this work is to use the sample-based method to enable the TrajOpt

become probabilistic complete, which guarantees that considering the solution be-

ing present the planner has the capability of acquiring the optimized trajectory. I

also intend to experimentally evaluate the performance of this improved method in

the simulation called Gazebo[7] and on the real Atlas robot[5] over a wide range of

environmental settings.

Acknowledgements

Firstly I would like to express my sincere gratitude to my advisor Professor

Michael Gennert for his patient guidance and constructive ideas from the beginning

of my experience at WPI(Worcester Polytechnic Institute). Without his help, I

could never have finished this thesis work and learned so much during this process.

Discussing with him about my confusion which I met during my research and imple-

mentation was always a treasurable and extraordinary experience for me. I consider

it was an honor to work with him in DRC(Darpa Robotics Challenge) Laboratory

and WPI Humanoid Robotics Laboratory.

Secondly besides my advisor, my thanks also goes to Professor Dmitry Berenson

who has taught a fabulous motion planning class and provided valuable advices and

insightful comments on my work.

Thirdly I am grateful for my teammates in the DRC lab who provided me with

an incredible opportunity to join the team, which started my robotics journey. Being

friends with them was the luckiest thing that happened to me during my life here.

Their encouragement motivated me to carry on my study and research. And they

were always helping clarify my thoughts when I got trapped throughout the project.

Furthermore, I especially thank Xianchao Long for his great help and knowledge

on TrajOpt. Thank him for sharing some ides with me and his patience during my

learning phase.

In the end, I would like to thanks my parents, Guang Li and Minli Lu. I could

never had the chance to start my study and research journey at WPI without their

support and encouragement that was required for make this tough decision.

i

Contents

1 Introduction 1

1.1 Problem Overview . 2

1.2 Literature Review . 3

1.2.1 Notable Search Algorithms . 4

1.2.2 Sampling-Based Approaches 5

1.2.3 Optimization-Based Approaches 7

1.3 Structure of Thesis . 7

2 Theory 9

2.1 BiRRT: Initial Guess Generator . 10

2.2 TrajOpt: Trajectory Optimizer . 13

2.2.1 Sequential Convex Optimization 13

2.2.2 Discrete-time Collisions Checking 15

2.2.3 Continuous-times Collision Free 17

3 Implementation 19

3.1 Initial Guess Phase . 19

3.1.1 IK(Inverse Kinematics) computed by TrajOpt 20

3.1.2 BiRRT Planning . 21

3.1.3 Reconstruction of Whole Body’s Configuration 21

ii

3.2 Optimize Phase . 23

4 Experiments 27

4.1 Setting Up . 27

4.2 One Table and One Bar . 28

4.2.1 Environment Description . 28

4.2.2 Reasons . 30

4.3 Two-bars Experiment . 30

4.3.1 Environment Description . 30

4.3.2 Reasons . 31

4.3.3 Perception Issue . 32

4.4 Three-Bars Experiment . 33

4.4.1 Environment Description . 33

4.4.2 Reasons . 34

5 Analysis 35

5.1 One Table and One Bar . 35

5.1.1 Right Hand . 35

5.1.2 Left Hand . 39

5.2 Two Bars . 42

5.3 Three Bars . 45

6 Conclusion and Future Work 49

6.0.1 Conclusion . 49

6.0.2 Future Work . 50

6.1 Other Thoughts . 50

iii

A More to say 52

A.1 Setting TrajOpt Constraints . 52

A.2 Experiments Results . 54

iv

List of Figures

1.1 TrajOpt Gets Stucked in Infeasible Local minimum 3

1.2 BiRRT Searching in Configuration [26] 4

1.3 Trajectory Generated by BiRRT on Atals Robot 5

1.4 The Atals full Body Model . 6

2.1 Framework of BiRRT . 9

2.2 Pseudocode for This Software Framework 10

2.3 Pseudocode for BiRRT [16] . 12

2.4 Pseudocode for TrajOpt [23] . 15

2.5 Initial Guess Guides Optimization . 16

2.6 Swept-out Volume . 17

3.1 Atlas Abstraction Model . 20

3.2 Big Changes in Pose Results in Being Trapped 23

4.1 The Setting Up of One Table and One Bar Experiment 29

4.2 The Setting Up of Two-bars Experiment 31

4.3 The Part of Left Bar is Missing . 33

5.1 Percentage of Steps Occupying in Experiment One(Right Hand) . . . 36

5.2 Computational Time of BiRRT, TrajOpt and BiRRT in Experiment

One(Right Hand) . 37

v

5.3 Percentage of Steps Occupying in Experiment One(Left Hand) 40

5.4 Computational Time of BiRRT, TrajOpt and BiRRT in Experiment

One(Left Hand) . 41

5.5 Percentage of Steps Occupying in Experiment Two 43

5.6 Computational Time of BiRRT, TrajOpt and BiRRT in Experiment

Two . 44

5.7 Percentage of Steps Occupying in Experiment Three 46

5.8 Computational Time of BiRRT, TrajOpt and BiRRT in Experiment

Three . 48

vi

List of Tables

A.1 One Table and One Bar(BiRRT+TrajOpt), First Movement with

Right Hand . 55

A.2 One Table and One Bar(BiRRT+TrajOpt), Second Movement with

Right Hand . 55

A.3 One Table and One Bar(BiRRT+TrajOpt), First Movement with Left

Hand . 55

A.4 One Table and One Bar(BiRRT+TrajOpt), Second Movement with

Left Hand . 56

A.5 One Table and One Bar(BiRRT), First Movement with Right Hand . 56

A.6 One Table and One Bar(BiRRT), Second Movement with Right Hand 56

A.7 One Table and One Bar(TrajOpt), First Movement with Right Hand 56

A.8 One Table and One Bar(TrajOpt), Second Movement with Right Hand 56

A.9 One Table and One Bar(BiRRT), First Movement with Left Hand . . 57

A.10 One Table and One Bar(BiRRT), Second Movement with Left Hand . 57

A.11 One Table and One Bar(TrajOpt), First Movement with Left Hand . 57

A.12 One Table and One Bar(TrajOpt), Second Movement with Left Hand 57

A.13 Two Bars(BiRRT+TrajOpt), First Movement with Left Hand 57

A.14 Two Bars(BiRRT+TrajOpt), Second Movement with Left Hand . . . 58

A.15 Two Bars(BiRRT), First Movement with Left Hand 58

vii

A.16 Two Bars(BiRRT), Second Movement with Left Hand 58

A.17 Two Bars(TrajOpt), First Movement with Left Hand 58

A.18 Two Bars(TrajOpt), Second Movement with Left Hand 58

A.19 Three Bars(BiRRT+TrajOpt), First Movement with Left Hand . . . 59

A.20 Three Bars(BiRRT+TrajOpt), Second Movement with Left Hand . . 59

A.21 Three Bars(BiRRT), First Movement with Left Hand 59

A.22 Three Bars(BiRRT), First Movement with Left Hand 59

A.23 Three Bars(TrajOpt), First Movement with Left Hand 60

A.24 Three Bars(TrajOpt), Second Movement with Left Hand 60

viii

Chapter 1

Introduction

According to a report[19] published in 2014 by JM Ortman, right now the United

States is experiencing a dramatic growth in its older population. Additionally, in

this report it says that in 2050 there will be around 83.7 million individuals aged 65

and over throughout the whole country. At that time the older population would

occupy the most percentage of the age structure. Supporting them would be a very

heavy burden on the youths and middle ages’ shoulders. In this reason, people are

urgently looking for some intelligent agents to replace labor forces which have the

capability of taking care of the elders especially in most developed countries.

Among those intelligent agents the robot is the most representative one out of

those agents. Even though, just recently the AlphaGo defeated a legendary GO

champion Lee, there is still a very long journey for human beings to be totally re-

placed by the robot and making robots highly intelligent. Presently an extremely

active field in Robotics is motion planning. The motion planning problem known

as navigation problem whose main purpose is to navigate or control one or multi-

ple robots to move in an environment while satisfying some movement constraints

including avoiding collisions, joint limits and full body balance for humanoid robot.

1

All videos corresponding to the results described in this work are available in my

YouTube channel[18].

1.1 Problem Overview

If the DOF(degrees of freedom) are less than or equal to 6, as long as we know the

trajectory composed by a series of points, an inverse kinematics approach could be

easily implemented to calculate the joint configurations. However, if the DOF are

larger than 6, motion planning would become necessary. There would not be an

unique solution for a reachable pose of the end effector, which indicates that there

are some redundancies among all joints. That is the main reason why we would

need motion planning.

During the DRC, WPI-CMU team used TrajOpt as their major tool to manipu-

late the Atlas robot. Allowing individuals to set constrains for the robot and planing

a collision-free path in an uncertain environment are huge advantages compared to

other planning methods. However, there are still some shortcomings of TrajOpt ex-

isting. The main problem is that this optimization method highly depends on given

sampled trajectories. That indicates that if the given trajectories are not feasible

there is a high possibility that the TrajOpt is not able to find the solution, meaning

TrajOpt gets stuck in a infeasible local minimum, even though a very obvious solu-

tion exists as shown in Figure 1.1. In such an environment, the robot could lift the

left arm over the bar, which would prevent the left arm from hitting the bar, and

then move the left arm forward.

BiRRT as an extension of RRT(Rapidly-exploring Random Tree) has been widely

used in motion planning. Past applications has revealed that this sampling-based

method has comparatively better performance in searching the high dimensional

2

Figure 1.1: TrajOpt Gets Stucked in Infeasible Local minimum

space as shown in Figure 1.1. The search tree can efficiently explore the configu-

ration space to find the solution. The major reason why sampling-based methods

are very popular is the property of probabilistic completeness, meaning given un-

limited time it would definitely find the solution as long as solutions exist. However,

because BiRRT generates trajectories without considering stability and balance con-

straints applying this approach on bipedal robots becomes very difficult. That is, it

may return a trajectory as shown in Figure 1.1 that satisfies the robot’s kinematic

constrains, but which, if executed, would result in the robot toppling over.

In order to fix those problems motioned above, the main goal of this thesis work is

to combine the TrajOpt with BiRRT to generate the trajectory and perform some

experiments on the real Atlas robot as shown in Figure 1.1. Additionally, I will

also experimentally evaluate and compare with only using TrajOpt and only using

BiRRT in several complicated environments.

1.2 Literature Review

It has been a long time that people have concentrated their attention on motion

planning problems. Multiple aspects of algorithms to solve it has been proposed so

3

Figure 1.2: BiRRT Searching in Configuration [26]

far, including several notable search algorithms, Sampling-Based approaches, and

Optimization-Based approaches.

1.2.1 Notable Search Algorithms

In 1959, there was a breakthrough in the search field. Dijkstra proposed a method

called Dijkstra’s algorithm[4] to find the shortest path between the start point and

other points in the discrete space. Only after 9 years, in 1968 Perter Hart Nils Nilsson

and Bertram Raphael presented another algorithm called A* search algorithm[11]

which is an extension of Dijkstra’s algorithm. In this algorithm instead of only

storing the cost from the start to the current node, A* uses heuristics to guide its

search, which achieves better performance. Additionally, the original D*[24] was

introduced by Anthony Stentz in 1994. Actually D* is improved based on A*,

4

Figure 1.3: Trajectory Generated by BiRRT on Atals Robot

all the behaviours of both algorithms are the same except that the costs would

dynamically change as the D* algorithm runs. Even now the original D* and its

variants[25][15] have a very wide application in Robotics field for searching. All these

search algorithms have comparatively good performances in the lower dimensional

space which has no more than 3 dimensions. However, with the increasing the

dimensions the performances of those methods would decrease dramatically. For

planning in the configuration space which normally is a high-dimensional space,

those classic search approaches is not adoptive.

1.2.2 Sampling-Based Approaches

Considering efficiently searching an accessing path in the configuration space, Steven

LaValle in 1998 introduced a novel method called RRT[17] which would build a

search tree to explore the high dimensional space. Just 2 years later a bidirec-

tional version of RRT called BiRRT[16] was developed as described by Kuffner.

This method would have comparatively good performance by exploring the space

5

Figure 1.4: The Atals full Body Model

from the start and goal bidirectionally. Another new extension of RRT called

pRRT(particle Rapidly-exploring Random Tree) was presented by Melchior in 2007.

This work incorporates the uncertainty in its domain similar to how a particle fil-

ter works. In stead of extending along a straight line if we randomly increase the

search tree, this extending step would be regarded as a stochastic procedure. Be-

sides, combining stochastic optimization with sampling-based method, Jaillet in-

troduced T-RRT(Transition-based Rapidly-exploring Random Tree)[12]. A high-

quality trajectory will be generated use this approach comparing to other RRT

invariants. Moreover, in 2009 Dmitry Berenson came up with a state-of-art ap-

proach called CBiRRT(Constrained Bi-directional Rapidly-Exploring Random Tree

)[1]. This algorithm could handle multiple constraints while bidirectionally explor-

ing the configuration space. Furthermore, in 2010 Karaman presented a distin-

guished approach called RRT*[14] which will generate optimal trajectory by using

incremental sampling-based algorithm. Although those methods have a very nice

property which probabilistic completeness, those approaches hardly can calculate

the solutions while satisfy additional constraints including full body balance which

6

is essential for humanoid robot.

1.2.3 Optimization-Based Approaches

In another aspect, instead of searching in the configuration space, there are several

optimization-based approaches proposed. In 2009, Ratliff introduced a novel method

called CHOMP(Covariant Hamiltonian Optimization for Motion Planning)[21]. He

used covariant gradient techniques to optimize some given initial guesses. In his

work, it used pre-computed signed distance to check collisions. Also a new method

called STMOP(Stochastic Trajectory Optimization for Motion Planning)[13]which

claims that due to the stochastic nature of the algorithm the planner would not get

stuck in the local minimum proposed by M. Kalakrishnan. Besides, ITMOP(Incremental

trajectory optimization for real-time replanning in dynamic environments)[20] in-

troduced by Chonhyon Park also use a stochastic trajectory optimization frame-

work. However, it would avoid the collision of the changing environment and satisfy

dynamic constraints. Furthermore, just 3 years ago John Schulman presents a se-

quential convex optimization approach while incorporating collision avoidance to

optimize sampled initial guesses. But the performances of all those methods highly

depends on the given initial guesses. Even though in some cases, those frameworks

behave intelligently, in some complicated environments those cannot find the very

obvious and existing solutions.

1.3 Structure of Thesis

This thesis is organized as follows:

Chapter 2 would introduce the theory behind this framework. This chapter

would mainly focus on the reason why the TrajOpt would be stuck in the infeasible

7

local minimum and how we could use the BiRRT to prevent the TrajOpt from being

trapped.

Chapter 3 would describe how I implement this new software framework, specif-

ically for Atlas robot in details, including how we set costs and plan motions to

maintain the full-body balance while satisfying constraints.

We have conducted several experiments over a wide range of environment set-

tings. The details of each experiment’s setting up would be revealed in Chapter 4.

And in order to show the better performance, we will explain reasons why we set

up those environments.

After acquiring data collected from the experiments described in Chapter 4, we

evaluate and compare different performances among several methods in Chapter 5.

But we mainly concentrate on the performance of the new software framework.

In Chapter 6 we come to a conclusion and summarize some advantages and

disadvantages of this framework.

8

Chapter 2

Theory

This new software framework consists of two major parts as shown in the Figure 2.

BiRRT in this framework serves as an initial guess generator which outputs a very

jerky but feasible trajectory. And in the next phase the TrajOpt would optimize

it into a smoothed and optimized trajectory. The pseudo code of this software

framework is shown Figure 2.2.

Figure 2.1: Framework of BiRRT

9

Software Framework (pgoal,manip)
(1) while ture do
(2) Prepare Environment()
(2) qgoal ← Inverse Kinematics(pgoal)
(3) qinit ← Get Current State()
(4) configsarm ← BiRRT PLANNER (qinit, qgoal)
(5) configsfullbody ← Full Body Traj (configsarm,manip)
(6) trajfullbody ← Optimize Trajectory(configsfullbody)
(7) if accept = TRUE then
(8) Send To Controller(trajfullbody)
(9) else
(10) Continue

Figure 2.2: Pseudocode for This Software Framework

2.1 BiRRT: Initial Guess Generator

Admittedly, there are several sampling-based search algorithms widely applied in

planning robot motion. The biggest advantage of a sampling-based search algorithm

is its intrinsic property, probabilistic completeness. Considering that the TrajOpt

would be trapped in the local minimum which still does not satisfy all constraints,

meaning TrajOpt is not probabilistic complete, BiRRT is suitable to generate a

feasible initial guess to promote TrajOpt to become probabilistic complete. The

reasons why we adopt BiRRT instead of using other variants of RRT would be

described in the following.

RRT is rapidly exploring toward one direction. But the BiRRT is bidirectional

from the start point to the goal point, which means it is more efficient in exploring

the configuration space. Even though the bias of picking up the goal point in RRT

can be set very high, which sometimes would accelerate the speed of RRT’s planning

procedure in some simple environments, in some complex setting up the performance

still cannot be compared to the BiRRT and the high bias would greatly help to get

itself trapped. So in order to improve the performance of generating the initial

10

guess, we choose the BiRRT over the RRT. In spite of RRT* generating a very

nice and optimized trajectory, there is a consideration that we would use TajOpt to

optimize it in the next phase, no extra computational-power should be wasted on

optimizing it in each iteration like RRT* does. CBiRRT gives individuals capabilities

of setting constraints while planning. It is very useful when there is some certain

rules needed to be satisfied in the environment. However, TrajOpt also provides

this functionality while optimizing. And the time cost of CBiRRT cold not be less

than BiRRT’s, because every time a random point in the configuration space needs

to be project on the constraints manifolds, which requires extra time.

BiRRT builds two search trees to search the solution in the configuration space.

The pseudo code is shown in the Figure 2.3. We are able to see in the pseudo

code a K which is the time of iterations would be set. However, if we consider K

is infinite, meaning the algorithm would explore the whole space. This algorithm

would definitely return a solution as long as the solution exits. During the exploring,

a random point would be sampled in the configuration space, which prevents this

method from getting trapped. Randomness is the most favorable major property

of those sampling-based methods. In the original RRT algorithm, there is only

one step called EXTEND to build the tree. However, in BiRRT we try to search

from start and goal point. So not only EXTEND but also CONNECT is necessary for

constructing an access. Every time we finish increasing the size of one tree by one,

we swap those two trees and repeat the above operations. That is how this method

search bidirectionally, which would dramatically improve the performance. EXTEND

operation means we need to repeatedly sample new points along the line form the

qnear to the qnew in the configuration space and add them into the exploring tree.

The resolution of extending steps is very essential. Because if the resolution of joints

in this procedure are too aggressive, the relative step sizes in the task space could

11

be huge, even though it could be small due to the different weights of joints along

the arm. If the changing of the Euclidean distance, of the end effector, is larger than

minimum radius of objects in the environment, which we cannot treat the trajectory

continuous but discrete, it could result in being trapped again. The way in practice

we avoid this situation to happen would be described in the next chapter in details.

So overall, we decide to use BiRRT to generate our initial guess.

EXTEND (τ, q)
(1) qnear ← NEAREST NEIGHBOR (q, τ)
(2) if NEW CONFIG (q, qnear, qnew) then
(3) τ .add vertex (qnew)
(4) τ . add edge (qnear, qnew)
(5) if qnew = q then
(6) return Reached
(7) else
(8) return Advanced
(9) return Trapped

CONNECT (τ, q)
(1) repeat
(2) S ← EXTEND (τ, q)
(3) until not (S = Advanced)
(4) return S

BiRRT PLANNER (qinit, qgoal)
(1) τa .init (qinit) τb .init (qgoal)
(2) for k = 1 to K do
(3) qrand ← RANDOM CONFIG()
(4) if not (EXTEND (τa, qrand) = Trapped) then
(5) if CONNECT(τb, qnew) = Reached then
(6) return PATH(τa, τb)
(7) SWAP(τa, τb)
(8) return Failure

Figure 2.3: Pseudocode for BiRRT [16]

12

2.2 TrajOpt: Trajectory Optimizer

In the beginning, we need to make an assumption that TrajOpt applied in this work

only considers kinematics problems, which does not involve any dynamic constraints.

But in the wider aspect, this optimization-based method can be easily extended to

find collision-free solutions while satisfying dynamics constraints. And in this phase,

the TrajOpt would take the result of the initial guess generator as the guidance to

find the local minimum.

2.2.1 Sequential Convex Optimization

TrajOpt is presented to show how to formulate the objective in robot motion and

perform the numerical optimization. Normally robot motion planning problems can

only be formulated as the following equations,

minimize f(x) (2.1)

subject to (2.2)

gi(x) ≤ 0, i = 1, 2, ..., nineq (2.3)

hi(x) = 0, i = 1, 2, ..., neq (2.4)

where:

f, gi, hiscalarfunctions.

which are non-convex optimization problem. But currently there is no specific

algorithm existing to solve the non-convex optimization problem. So TrajOpt tries

to transform this non-convex problem into the convex problem and use existing

13

solver called Gurobi[10] to solve it. But this transform cannot be done in one it-

eration. In this reason, it repeatedly construct a convex sub-problem and ensure

every time it is getting closer to the original problem. By doing so, TrajOpt would

eventually find the local minimum. But there are two important ingredients of Tra-

jOpt described as the following: (1) In each iteration, the progress cannot be made

too aggressively, meaning if the step size is too big sometimes the approximation

between the sub-problem and original problem cannot stay valid. (2) A method

to transform constraints into cost, but in the end try to decrease the cost to zero,

which meas all constrains are satisfied.

The pseudo code of TrajOpt would be shown in Figure 2.4. In the PenaltyIteration

loop, each iteration of TrajOpt tries to increase penalty coefficient µ, if all con-

straints are satisfied, the solutions would be figured out. Otherwise, this progress

would keep going on until the time of iterations reach the maximum times. The loop

inside the PenalytyIteration loop is the ConvexifyIteration loop. In this loop

we repeatedly formulate a convex sub-problem which is an improved approximation

to the original problem and try to optimize it. The next loop(TrustRegionIteration)

is to decide whether to increase the trust region or shrink the region depend on

whether if it really makes some progress or not. Ideally, each time it would make

some improvement on solving our non-convex problem.

Now we have introduced how the TrajOpt optimize and find the local minimum.

The following part would explain the reason why if the TrajOpt has been given a

feasible initial guess, it has the capability to generate a high-quality trajectory while

satisfying all constraints. Initial guess phase would output an collision-free path as

long as the solutions exist. And in the TrajOpt, the most significant constraints are

self-collision and environment collisions, which exactly have been solved by BiRRT.

That jerky trajectory should looks like a point on the curve where all points along

14

TrajOpt penalty method for sequential convex opti-
mization
(1) for PenaltyIteration = 1, 2, ... do
(2) for ConvexifyIteration = 1, 2, ... do
(3) f̃ , g̃, h̃ = ConvexifyProblem(f, g, h)
(4) for TrustRegionIteration = 1, 2, ... do

(5) x← argxminf̃(x) + µ
∑ninq

i=1 |g̃i(x)|+ + µ
∑neq

i=1

∣∣∣h̃i(x)
∣∣∣

subject to trust region and linear constraints
(6) if TrueImprove/ModelImprove > c then
(7) s← τ+ ∗ s � Expand trust region
(8) break
(9) else
(10) s← τ− ∗ s � Shrink trust region
(11) if s < xtol then
(12) goto 15
(13) if converged according to tolerances xtol or ftol then
(14) break
(15) if converged satisfied to tolerance ctol then
(16) break
(17) break
(18) µ← k ∗ µ

Figure 2.4: Pseudocode for TrajOpt [23]

this part of curve should meet constraints as shown in Figure 2.2.1. Because the

TrajOpt approximates the original problem to a convex problem, so along the curve,

we are able to find the local minimum which is a smoothed trajectory optimized

based on length of the path.

2.2.2 Discrete-time Collisions Checking

TrajOpt provides a very efficient way to check collisions in discrete-time. The col-

lision penalty defined which needs to be satisfied in the TrajOpt is based on the

translation Euclidean distance. TrajOpt uses a set of points to represent one ob-

ject. So we could define the distance between two sets A,B which do not share the

15

Figure 2.5: Initial Guess Guides Optimization

collision as:

dist(A,B) = inf‖T‖ |(T + A) ∩B 6= φ (2.5)

And the distance of those two objects which are intersecting with each other is

defined as:

penetration(A,B) = inf‖T‖ |(T + A) ∩B = φ (2.6)

So The signed distance is represented as follows:

sd(A,B) = dist(A,B)− penetration(A,B) (2.7)

where:

A ⊂ R3

B ⊂ R3

T = the length of the smallest translation that force two object in contact

As long as the signed distance is positive those two objects are non-colliding.

16

So if we go through all links of the robot and all obstacles in the environment, the

collision constraints can be represented as that all signed distances should be larger

than zero. But TrajOpt does some tricks on relaxing and representing self-collision

and environment collisions. But those tricks would not be revealed here. Since the

main idea of representing collision constraints has been introduced, if you are very

interested in those tricks, you can look into [23].

2.2.3 Continuous-times Collision Free

In the last section, we have introduced the approach to formulation collision con-

straints, which makes sure that the the discrete movement generated for robot is

collision-free. But trajectory is a serious of continuous movements, meaning it is

not enough that in some certain states along the trajectory the robot is collision

free. So another collision checking approach specifically for continuous-trajectory

has been described here.

Figure 2.6: Swept-out Volume

Now we only consider two objects including a moving(only translation, not rota-

tion) A and a stationary object B. And we define the volumes of A and B occupying

the space are A(t) and B(t) at time t. By the definition, we can describe the volume

occupied by object A is A(t+1) at time t+1. Then the swept-out volume of moving

object A can be treated as a bigger convex hull as shown in Figure 2.2.3. By doing

that, we successfully transform the continuous movements into discrete states again.

17

The same method mentioned in the last section can be applied again here. We use

the following equation to define the swept-out volume:

sd(convhull(A(t), A(t+ 1)), B) > dsafe + darc (2.8)

where:

convhull(A(t), A(t+ 1)) = swept out volume occupied

by A at continuous time from t to t+1

darc = correction(in practice we normally ignore that)

dsafe = the safe distance

So far we only have considered translation. However, the robot’s links also

undergo rotation, which result in expending the swept-out volume. Even though

it is hard to estimate the exact number of the volume, we can easily calculate an

upper-bound to that swept-out volume. By doing so, the method we described above

is still applicable in orientation.

18

Chapter 3

Implementation

This new software framework mainly consists of two phases: Initial Guess and Op-

timization. Because the initial guess of our work is guaranteed to be feasible, so

unlike the normal TrajOpt way we did in the DRC final, using multiple threads to

optimize different initial guesses, we only use TrajOpt to optimize our initial guess

in the Optimization phase.

3.1 Initial Guess Phase

In order to prevent the robot from toppling over by executing the trajectory gen-

erated by BiRRT, some assumptions need to be made. We assume that as long as

the upper torso of the robot only moves up and down along the Z axis, meaning

the center of mass usually would remain over the polygon of support, the robot is

able to maintain the balance without losing too many DOF. In this case, we replace

two legs of the robot with a rigid body, which forbids two legs moves along the X

and Y axes. And We define the new joint called base pelvis as a prismatic joint.

This abstraction version of Atlas as shown in Figure 3.1 is load by OpenRAVE[2]

to compute the initial guess.

19

Figure 3.1: Atlas Abstraction Model

3.1.1 IK(Inverse Kinematics) computed by TrajOpt

Normally the input of this phase would be a pose including position and orientation

instead of configurations at the start state. However, the BiRRT would only search

the solutions in configuration space. In this reason, we map the pose into the

configuration space by applying IK solver to compute all joints’ values when the

robot moves the end-effector to that pose. We considered to use IKFast to solve the

IK solutions. However, it hardly can compute the solution when the DOF is larger

than 8. In this case, there are 11 joints involved. On the other side,‘ TrajOpt can

be treated as a very powerful tool to compute the IK solutions. In this procedure,

we would compose a request for this problem. We set the number of step as 2, only

including start state and goal state. And some constraints of pelvis and utorso

and costs are added into the request. Also a series of random configurations are set

for the joints as start state. We only use a naive initial guess which is a straight line

to help find the IK solutions. More details of the composition of the request would

20

be introduced in optimization phase.

3.1.2 BiRRT Planning

After acquiring the start configuration from TrajOpt, we are able to use BiRRT to

search the initial guess in the configuration space. But so far the environment has

not loaded anything expect the abstraction robot, implying there is no collision at

all but the robot self-collision. Thanks to the previous perception work of the WPI-

CMU team, they have achieved transforming point clouds collected by MultiSense

SL[22] produced by Carnegie Robotics into some polygon meshes and loading them

into the environment. By doing so, we now have the capability of check collisions,

which meaning the path found in the high dimensional space would be collision-free.

Then we call our BiRRT planner to calculate the path for the robot.

3.1.3 Reconstruction of Whole Body’s Configuration

If the solution exists, the BiRRT will definitely return a feasible solution. However,

this solution is partial, which only contains the upper body’s configurations. But

whole body’s configurations are necessary for TrajOpt’s optimization and smoothing

of the robot full body movement. So the next step is to reconstruct the full body’s

configuration. The strategy adopted here is to compute two leg’s configurations

while knowing the pelvis position. In spite of that we wanted to used the same

procedure to compute the IK solutions, we also want to accelerate the speed of

computing the IK solution. In this reason, a module called IKFast[3] is adopted

here. Even though this method has some open issues including handling big decimal

numbers and a limitation of DOF, it saves time on computing IK solutions. Since

it create the database file and store it in the computer. Every time we do not need

to spend our computational power on solving IK solutions, but just look into the

21

created table given end effector’s pose(we define the pelvis is the end effect and the

left leg is a manipulator) and find solutions. Thanks to the symmetry of two legs,

we are not required to do the same to the other leg. In the end, only changing

symbols of some special joints will return us the two legs’ configurations. And now

we have the full body’s configurations by combining upper body configurations and

lower body configurations together.

But note that TrajOpt has the difficulty in optimizing a trajectory which contains

so many way-points. With the increasing of the way-points’ scale, the time of

optimization would grow exponentially. The size of way-points on the trajectory

returned by BiRRT is normally over 100. But this far exceeds the ability of TrajOpt.

So we have to eliminate some points. In the beginning, we just go through the

trajectory and take one point every five points. However, soon we realize that

by cause of different weights of each joint along the manipulator the distance in

Cartesian space between every two points fluctuates a lot. In this case, sometime

the TrajOpt would still get stuck in the local minimum as shown in Figure 3.1.3

even though the BiRRT return a feasible solution. We are able to see that the

trajectory optimized by TrajOpt goes across the bar. For the sake of avoiding the

TrajOpt from being trapped again, the step-size not in configuration space but

in Cartesian space between two way-points should be small enough, which would

lead the whole framework to become probabilistic complete. But here we need to

apply the FK(Forward Kinematics) solver again to gain the each pose along the

trajectory. Then we accumulate the distance from the start pose to the goal pose

like the following equation:

Distsum =

Posegoal∑
Posestart

EuclideanDist(Posenew, Poseold) (3.1)

22

And we assume this accumulated distance asymptotically approximates the arc of

the trajectory. Since the default num step has been set when the TrajOpt initialized,

the step size in Cartesian space can be computed by the next equation:

step sizeaverage =
Distsum

num stepdefault
(3.2)

As long as we can guarantee that the step size is always smaller than the

smallest radius among objects, the new software framework is definite probabilistic

complete. By now, we have finished our initial guess phase.

Figure 3.2: Big Changes in Pose Results in Being Trapped

3.2 Optimize Phase

In order to maintain the consistency of the environment, we choose the same envi-

ronment which is adopted in the last phase. And this environment would be saved

for future work. The reason will be disclosed in the experiments chapter.

First we need to construct a request. One request along with the environment

would construct normally a non-convex problem which could be solved by TrajOpt

algorithm. There are several aspects of information included in a request, including

basic info, costs, constraints and init info. The basic info describes some

default settings including how many times we run the optimizations. In this work,

23

we set the iteration times as 30. The performance or the time cost of the TrajOpt

would highly depend on the iteration times, which goes exponentially as the time of

iterations increases. Usually this number is under 100. And the manip also should

be defined in basic info. Since we currently are trying to optimize the whole body

trajectory, then we just define the whole robot as one manipulation.

The values in costs are set based on personal experience. We reveal our param-

eters in Equations (3.3) (3.4) (3.5) (3.6). And those vectors should be added into

the request for helping construct the non-convex problem.

vel cost = {10, 10, 10, 10,

4, 4, 1, 1, 1, 4,

4, 4, 1, 1, 1, 4,

1, 1, 1, 1, 1, 1, 0.1,

1, 1, 1, 1, 1, 1, 0.1}

(3.3)

taucost = {0, 0, 0, 0,

0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0,

0, 0.5, 0, 0, 0, 0,

0, 0.5, 0, 0, 0, 0}

(3.4)

24

poscost = {100.0, 1000.0, 10.0, 0.0,

0.0, 0.0, 0.0, 1.5, 0.0, 0.0,

0.0, 0.0, 0.0, 1.5, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}

(3.5)

posvals = {100.0, 1000.0, 10.0, 0.0,

0.0, 0.0, 0.0, 1.5, 0.0, 0.0,

0.0, 0.0, 0.0, 1.5, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}

(3.6)

There are so many different constraints can be added in the TrajOpt, including

the target configuration or the target pose of the end effector. Note that in this

work, we only consider the translation but not orientation by LoadGains(1, 1, 1, 0, 0, 0, 0, 0, 0).

The first vector indicates the position where robot need to reach. And the second

vector is for rotation, all 0’s shows we do not constrain the robot to reach that

orientation. The third vector is the offset to the end-effector, which now is zero.

But this work can be straightforwardly extended to be applicable in constraining

rotations. The example of setting the constraints is attached in the appendixA.1.

The last step is to add the initial guess into the request. In this procedure, instead

of trying multiple initial guesses, we only add the initial guess which generated by

BiRRT. Now we eventually combine our sampling-based method with optimization-

25

based method, and let the former method to guide the optimization of the latter one.

Then we have composed a very complete request for this robot motion problem.

We are required to transform this request into json-formatted string. As long

as the problem has been constructed, we call a function named OptimizeProblem

which would calculate our results. In practice, we need to have an exam mechanism

to check if quality of the trajectory output by this phase is good or not, which

prevents the robot from behaving weirdly. Adding the human being into the control

loop would dramatically decrease the percentage of failing. But usually if we let the

initial guess generated by BiRRT to guild the optimization, the trajectory always

looks good.

26

Chapter 4

Experiments

4.1 Setting Up

• Software:

In order to run the proposed software framework, ROS(Robot Operation

System)[6], OpenRAVE 0.9, TrajOpt, Python 2.7.3 [8] and Gurobi 6.0.* are

required to be installed on the OCU(Operator Control Unit). There are also

several necessary dependencies. We have a script to set up the environment

of the computer, but due to the whole project is not public. You will need to

ask for the permission to view the code.

• Operation System:

OCU is running the Ubuntu 12.04. There are three on-board computers on the

robot running 14.04. The OCU would run one ROS master, and all three on-

board computers would run another ROS master and sharing it. The different

operating systems running separately on the OCU and on-board computers

would effect nothing in my experiments.

27

• Code:

And also the code used by WPI-CMU team in the DRC final is recommended.

But in the interface code between the robot and field computer, we’ve helped

to integrate several features specially for this software framework into it.

• Robot:

All the experiments are conducted in the Gazebo simulation and on the real

second generation Atlas Robot which produced by Boston Dynamics. This

robot is hydraulic with 32 DOF. In each experiments, the robot would not

make steps at all. And it will just be placed in front of the experimental

environment.

4.2 One Table and One Bar

4.2.1 Environment Description

In this section, one table with several items on it and one bar are placed in this

environment as shown in Figure 4.2.1. Two small experiments are conducted here.

In the first experiment, we set the start position Pstart as [0.6,−0.3, 0.5] and the goal

position Pgoal as [0.4,−0.55,−0.2] for the right arm. Basically, the robot is going

to move the right arm form a point which in under the table to a point which is

over the table without colliding obstacles. After reaching the goal, the robot would

repeat the above movement inversely, meaning the arm would be moved under the

table again. And in the other experiment, the robot moves its left arm. The ini-

tial position Pstart is [0.6, 0.6, 0.6] which locates on the left side with the respect

of the robot. However, the goal position Pgoal as [0.6,−0.2, 0.6] which we set is on

the other side of the bar. This time the robot would have to avoid the bar and

28

the table. In those experiments, the BiRRT uses the following configuration reso-

lution: [0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001]. And

the length of the Atlas robot arm is around 1 meter, more specifically 94 cm. So

even though the robot moves that first joint along the arm form the shoulder to

the hand, the maximum changing distance of the end effector would not be more

than 1cm. And in the reconstruction of the whole body configurations part, the

unit step in the euclidean space is as 5cm. So we would get our initial guess one

point every 5cm when we go through the trajectory generated by BiRRT. Since

the width of the bar in the simulation is 5cm, the initial guess we acquire would

not be interrupted by that bar. We experimentally compare the performance of my

new software framework with applying TrajOpt alone and BiRRT separately. By

the way, the initial guess we adopt here is a straight line form the start position to

the goal position. Because the start line would be the most naive and reasonable

initial guess in every environment, but trying to use multiple initial guesses is dif-

ficult, which relates to environments very closely. The results acquired from those

experiments would be analyzed in details in the next chapter.

Figure 4.1: The Setting Up of One Table and One Bar Experiment

29

4.2.2 Reasons

The reasons why we present this experiment are described as the following. Human

beings meet a table in normal life basically everyday. Individuals eat their break-

fasts, lunches and dinners on tables. And they always love to play dishes on the

surface, which involve a lot of arm movements. So in order to make the humanoid

robot become more useful and applicable in the environment specially designed for

human beings, we need to deal with such an environment in our experiment. The

reason why we add a bar here is to increase the difficulty for arm manipulation. In

some cases in normal our lives, the surroundings are very crowded, but our frame-

work would give the capability to the robot of handling complex surroundings. And

we also want to prove that in such environment TrajOpt is not suitable. TrajOpt

might have the ability to deal with this environment except the bar. But the in-

trinsic property of the TrajOpt decides it is going to fail given a straight line from

the start to the goal point. During the arm being moved from one side of the bar

to another side of the bar, the penalty of obstacles would increase at the same time

the cost to reach the goal is decreasing. By this reason, the TrajOpt would get

sucked in the local minimum. The trajectory generated by TrajOpt alone would be

interrupted by the bar along the movement.

4.3 Two-bars Experiment

4.3.1 Environment Description

In this experiment, we put two standing bars in front of the robot. Those two bars

are separately placed in [0.65, 0.37, 0.50] and [0.67, 0.00, 0.50] in the world frame of

the Gazebo as shown in Figure 4.3.1. And the goal position is set to [0.70, 0.00, 0.50],

30

which means the robot is going to insert the left arm between those two bars. Once

the robot have inserted its left arm between two bars, the next step is to take it out

and lift the left arm up. We also use [0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001]

as our configuration resolution to ensure that the the trajectory generated by BiRRt

can be treated as a continuous path, which guarantee its feasibility. In this experi-

ment, the same unit step is adapted here.

Figure 4.2: The Setting Up of Two-bars Experiment

4.3.2 Reasons

The birth of the Atlas is in the wake of the Fukushima nuclear disaster. In some

unsuitable environments the robot would not face spacious surroundings to stretch

arms at will but a very crowded space. In those potential rescue actions, the robot

need to insert its arm into a gap and pass some food to people whose life is in danger.

So we set up a gap for robot simulation.

And in this experiment, moving the arm into a position which locates between

31

two bars is probably very difficult for TrajOpt, because the goal is between two

bars, but TrajOpt would treat those two bars as collisions which would push the

arm away, which probably would dramatically decrease the success rate. But in

the other side, an feasible initial guess would guild the optimization and find the

local minimum in a feasible range. This experiment would show that how well our

software framework can behave.

4.3.3 Perception Issue

Due to some constraints in our Atlas perception code, sometimes there are some

issues during the experiments. For example, in this two-bars experiment or three

-bars experiment after the robot moving the left arm between those two bars, the

robot cannot see the part of left bar even though it is not moved and exists as

shown in Figure 4.3.3. So in this case, when the BiRRT try to plan the trajectory,

it sometimes would escape from the miss part. And since TrajOpt also is not able to

see that, this initial guess would be considered as a feasible one and try to optimize

it, which would result in the robot being toppled over. In order to take care of

that, we choose to manually draw two bars which locates in the same positions

in the OpenRAVE, instead of loading the point cloud into the environment. By

doing that, the BiRRT is not able to escape through the missing part again. You

might notice that in the description part the goal position is almost the same as the

position where one bar locates. The reason is that there is always some shifting in

loading transformed point clouds. Where the two pieces of meshed transformed by

the point could is not the original coordinates anymore.

32

Figure 4.3: The Part of Left Bar is Missing

4.4 Three-Bars Experiment

4.4.1 Environment Description

Compared to the last experiment, the only difference between those two experiments

is that another standing bar is placed next to the left bar with the respect to the

robot. The third bar’s position is [0.65, 0.7, 0.79] in the world frame. The robot

would act the same two movements. In the beginning, the robot moves the left arm

from the initial position to [0.7, 0, 0.6] whose projection on Y axis locates between

two bars. Then the robot lift the arm to the same position. But in the experiment,

we change the step size to 15cm, which is around 3 times to the original one.

Because the bigger step size is, the less waypoints along the trajectory are taken

for initial, which would greatly accelerate the speed of optimization. But in the

environment, the minimum width of the object is the bar, which is 5cm.

33

4.4.2 Reasons

We have the following considerations to put another bar and pay attention to add

another bar here. Add one more bar into the environment would increase the diffi-

culty of finding the solution, basically your explorable configuration space is shrunk

by more constraints. But our work can handle this situation very well. We no-

tice that the step size is increased, and we know that the speed of optimization

highly depends on the size of the initial guess, we want to compare the performance

between last experiment and this experiment. We want to show that by adjust

some parameters of algorithm, our work behave really well while dealing with this

environment.

34

Chapter 5

Analysis

We repeat all movements in each environment by using our BiRRTOpt, BiRRT

and TrajOpt 10 times. Due the the page limitations, all details of results would be

attached in Appendix.

5.1 One Table and One Bar

In this experiment, we run two small experiments including left movements and

right movements. All the performances of BiRRTOpt, TrajOpt and BiRRT would

be separately evaluated in both two small experiments,

5.1.1 Right Hand

In this right-hand experiment, we collect our data from running 10 times of BiR-

RTOpt for each movement, and compute the average time of each step. How much

percentage of each sub-procedure occupying the whole time are shown in Figure5.1.1.

Comparing average computational time of solving IK with BiRRT, this Fig-

ure 5.1.1 indicates that it takes longer time to compute the IK solution, which is

35

Figure 5.1: Percentage of Steps Occupying in Experiment One(Right Hand)

understandable. Because we use TrajOpt in our BiRRTOpt to compute the IK so-

lution. Even though initially the number of steps has been set to 2, the straight line

between default start point and gaol point would go across some obstacles, which

means another random point needs to be sampled to construct the straight line for

computing the IK solution until that straight line does not go across some obstacles.

And also even in the simplest environment, the time of optimization normally would

be a little bit longer than BiRRT’s. So in this setting, it is ordinary that computing

IK solution would take more time. According to the Figure 5.1.1we are able to see

that BiRRT only occupies a small portion of the whole time to calculate the solution.

Since when we are trying to compute the initial guess by sampling a collision-free

random point in the configuration space, due to the simplicity of the environment,

there is a very high possibility that by applying sampled random configurations on

36

the robot, the right arm’s projection on Z axis with respect of the world frame is

higher than table’s height, which leads to that most of the time there is only two

iterations needed, which are sampling a random point and connecting with the goal

point. However, on the other side, the Figure 5.1.1 reveals that TrajOpt spends

most of time on optimizing the initial guess on this problem. The time cost of the

optimization procedure highly depends on the size of the problem, meaning also the

size of the initial guess. And since we set our step size as 5cm, which results in

that the size of the initial guess is around 30. So that is the major reason why this

procedure takes so long time.

Figure 5.2: Computational Time of BiRRT, TrajOpt and BiRRT in Experiment
One(Right Hand)

We compare the performance of BiRRt, TrajOpt and BiRRTOpt separately and

show the results in Figure 5.1.1. When we only use BiRRT to compute the trajec-

tory for both movements, thanks to the intrinsic probabilistic completeness, from

37

the resultsA.2A.2 this method is always able to find the solution as long as the

solution exists in the configuration space. Comparing to the line of the TrajOpt,

the line of BiRRT looks very flat. And also we are able to see that the average time

cost of BiRRT is much less then TrajOpt. Those two mean that applying BiRRT

alone can efficiently find the solutions in such naive environment with a very stable

performance. Thanks to the TrajOpt viewer, it gives us the visualization of how

the trajectory looks like if it is going to be executed on the robot since we draw

our transparent trajectory in the viewer. We define the unit step very small in

this case, so those discrete movements seems in the viewer would not result in robot

toppled over. However, when we are using TrajOpt alone to complete those two ac-

tions, the success rates change. In the first experiment in which the robot moves its

right arm to a point which is over the table, the 70% success rate is still acceptable.

TrajOpt has the capability of twisting the initial guess which is given as a straight

line while avoiding the table and satisfying other constraints. So in the former ex-

periment, the TrajOpt most of time is able to find the solution. But in the latter

movement, the success rate drops dramatically. It only succeed once out 10 times,

which barely can claim that it can move the right arm to the gal point. Through

visualization of the optimization procedure, we find the reason why it cannot handle

this situation. This target point seems very close to the corner of the table. So in

this case, while TrajOpt making effort to reach the goal, the table seems would try

to push the arm toward the inverse direction. Even though TrajOpt has the ability

of twisting initial guess, which is the reason why it only succeeds once, but the

initial guess is not twisted enough to be feasible, which promotes that the rest of

experiments fail. The Figure 5.1.1 reveals that by using the default size of TrajOpt,

which is 30, in each movement would take comparatively longer time to calculate the

result, even though the time fluctuates a lot. The reason why in some experiments

38

it would take longer time than the rest is that in those experiments the TrajOpt

gets trapped and iterates the optimization procedure until it reaches the maximum

iteration times. But the on the other side, if it find the local minimum it would

exit the loop. That’s why the Figure 5.1.1 looks like this. Our work BiRRTOpt’s

line is between those two lines, but the cost time is further less than TrajOpt’s

and comparatively close to BiRRT’s. Also the line of BiRRTOpt seems very flat,

which means the performance is stable. And similar to the BiRRT, the success rate

is always 100% in each movement. Because the BiRRT has already provided the

optimizer with an infeasible initial guess which would help the optimization easily

find an accepted local minimum. By doing that, it would helpfully guarantee the

success rate and increase the performance.

Overall, our work successfully deals with this situation under an acceptable time,

and since add BiRRT into generating the initial guess phase only take a little, it is

reasonable to add it to make the whole work become probabilistic complete.

5.1.2 Left Hand

In the left-hand experiment, the robot would be required to move the left arm from

one side of the bar to another side, we fist analyse the data collected while using

the BiRRTOpt and compare it with other two methods. The average cost time of

finding the solution through our BiRRTOpt is shown in Figure 5.1.2.

The Figure 5.1.2 indicates that there is a obvious changing of percentage between

two movements while adopting BiRRTOpt. In the first movement, the percentage

of the average time spent on calculating the IK solution is higher than that of

BiRRT. However, in the second movement the situation is opposite. BiRRTOpt

spends more time on planning the initial guess than calculating the IK solution.

In both movements the IK solution is computed by TrajOpt. However, in the first

39

Figure 5.3: Percentage of Steps Occupying in Experiment One(Left Hand)

movement, BiRRT planner does not need to plan in such a naive environment, since

from the start point the planner is able to see the goal point, which means it can

directly connect the goal by extending small steps along the line between start and

goal point. Compared to the fist experiment, the straight line from start point

to the goal point in the second movement would traverse across the bar, then the

planner would have to try exploring the configuration space and building search

trees to find a access path, which takes time. Also the Figure 5.1.2 shows that the

TrajOpt occupies the most time of this computation while optimization the initial

guess, which is a very similar phenomenon happening in the last small experiment.

Moreover, the success rate of BiRRTOpt applied in this experiment is 100% as

shown in Table A.2A.2.

Now let’s change our focus from the percentage of our BiRRTOpt to time cost

40

Figure 5.4: Computational Time of BiRRT, TrajOpt and BiRRT in Experiment
One(Left Hand)

of those three approach, including BiRRT, TrajOpt and BiRRTOpt. In the Fig-

ure 5.1.2, we are able to see that in both charts the lowest line is always BiRRT,

which means it takes the least time to compute the trajectory. On the ohter side,

the TrajOpt would require much more time to compute the trajectory compared

to other two approaches. Moreover, a very interesting phenomenon happens during

this this experiment, which cannot be shown through those both chats. The robot

cannot move the left arm from one side of the standing bar to another side by only

using TrajOpt given a straight line initial guess. In such environment, the TrajOpt

fails 10 times out 10 running shown as Table A.2. The success rate of that move-

ment is 0%. Also form the Figure 5.1.2, the time spent on the TrajOpt normally

would be several times to the time of the BiRRT, and also that fluctuate a lot. In

this case, the TrajOpt not only requires much longer time but also fails every time

41

calculate the solution. We can claim that TrajOpt cannot handle it at all. On the

other hand, in same environment according to the Figure 5.1.2 the performance of

the BiRRTOpt in the first movement is faster than TrajOpt, and in the second ex-

periment it looks similar to the TrajOpt. Here the performance only are considered

as time cost. However, the reason why in this environment the BiRRTOpt over-

rides the TrajOpt is that compared to the TrajOpt the BiRRTOpt has much higher

success rate see Table A.2 A.2 A.2 A.2. The success rate of BiRRTOpt is 100%.

Additionally, while we compare BiRRT and BiRRTOpt, we separately draw both

trajectories in the viewer. Since the BiRRT needs to plan in the second movement,

the trajectory would become crazy. However, we would apply this trajectory on a

humanoid robot, so that jerky trajectory is not suitable.

In general, in this experiment BiRRTOpt needs equivalent time to compute

the trajectory compared to TrajOpt. But the it can deal with much complicated

environment. On the other side, even though BiRRT also has the ability of handling

hard problem, the trajectory of BiRRT is not as high-quality as that of BiRRTOpt.

In both computations, BiRRTOpt has a better performance than others in this

setting.

5.2 Two Bars

In this two-bar experiment, the left arm of the robot needs to be inserted into a

position which locates between two standing bars. The data as shown in Table A.2

A.2 A.2 A.2 A.2 A.2is collected from 10 times running of BiRRT, TrajOpt and

BiRRTOpt. We will analyze the processed data and compare those three methods

synthetically.

The Figure 5.2 shows that the each step in BiRRTOpt occupies the whole time.

42

Figure 5.5: Percentage of Steps Occupying in Experiment Two

We are able to see that the percentage of BiRRT increase a lot. The major reason

of that increasing of is that the environment used in this experiment compared to

the last experiment is more complicated. Not matter in the first movement or the

second the movement, we can image that the part of the trajectory which are still

between two standing bars are very deterministic. Because the arm needs to be

moves comparatively parallel to the bars, so robot either move from downside to

that position through minimum distance or draw a huge circle moving from upside

while avoiding the standing bars and insert the left into bars. That means leads

to that the BiRRT probably needs to plan through a narrow passage to find the

solution. And by sampling to go through a narrow passage in the configuration

space is very hard, which requires more iteration times to find that intial guess.

However, even though the time of planning the initial guess increases a lot, the time

43

cost compared to TrajOpt is still minor occupation. But according to the results of

Table A.2 A.2our BiRRTOpt can easily deal with this environment. It does not fail

at all in both 10 times running. Note that in the Figure 5.2, the 10th experiment of

the first movement takes much longer time than the time which it normally takes.

But this only happens once out of 10 times. In the analysis, we treat this time an

unusual case.

Figure 5.6: Computational Time of BiRRT, TrajOpt and BiRRT in Experiment
Two

For this environment, we focus on the first movement which compared to the

second one is more challenging. As shown in Figure 5.2 We are able see that in first

chats even though the lines of TrajOpt and BiRRTOpt fluctuate, however, generally

those two lines matches. This matching also means that TrajOpt and BiRRTOpt

would require equivalent time to compute the trajectory in such a complicated

environment. Also form that we know BiRRT servers as an initial guess generator

44

only take a little time to plan. But while TrjaOpt trying to optimize the initial

guess, with or without a nice initial guess in this environment it still require a lot of

time for optimization. Because, while optimizing the part trajectory which locates

between the bars, in spite of the new efficient way to do the collision checking, it is

still computational costly. However, in the second chart the time of BiRRTOpt and

TrajOpt differ. Even though in the beginning, the line of TrajOpt seems matching

the BiRRTOpt, which is because of it’s soon failing, in the latter runs the time

of TrajOpt becomes several times to BiRRTOpt. By the way, in the aspect of

the success rate, the 100% success rate of BiRRTOpt overwhelm the 60% success

rate of TrajOpt’. In this comparison, we claim BiRRTOpt is more competitive than

TrajOpt. The line of BiRRT also seems the lowest in both charts in this experiment.

However, in this experiment the trajectory becomes more crazy, which the trajectory

generated by BiRRT would definitely let the robot toppled over. And for planning

the robot motion, the balance needs to be place in the first priority, so BiRROpt in

this aspect is better than BiRRT.

So in this two-bar environment, the BiRRTOpt takes comparatively less time

but it guarantee the success rate for planning the robot motion.

5.3 Three Bars

Compared to the last two-bar experiment in which two bars are stranding in front

of the ground, in this three-bars experiment there are three bars. The robot needs

to insert its left arm into a gap which is between the rightmost bar and the middle

bar. We run BiRRT, TrajOpt and BiRRTOpt separately and collect all the data

which is processed and attached in Table A.2 A.2 A.2 A.2 A.2 A.2. Besides the

difference we have motioned above, there is another difference between experiment

45

and two-bar experiment. In this experiment, we set the step size as 15 cm which

is larger than the minimum width of bars there. But increase the step size would

result in decrease of the size of the intial guess, which would accelerate the speed of

the optimizaition.

Figure 5.7: Percentage of Steps Occupying in Experiment Three

From the Figure 5.3, we are able to see that the percentage of BiRRT occupying

the whole time increases again in both charts compared to the two-bar experiment.

In the two-bar experiment, the percentage is around 20%. However, in this exper-

iment this percentage increase to 30%. The reason is that a another standing has

has been placed next to the currently middle bar. By doing that, the collision-free

spaced has been further compressed. So in this case, the BiRRT would require more

time to plan an access and collision-free path in the configuration space. One thing

we need to notice is that in the first movement according to the result shown in

46

TableA.2 it fails twice out of 10 times. Theoretically, initial guess is generated by

BiRRT, which would guarantee the probabilistic complete. There are two major

reasons causing this phenomenon happening. In our 6th experiment of the first

movement, the initial guess looks like a huge circle. However, due to the too aggres-

sive step size we set, the initial guess cannot be treated as a continuous trajectory,

which would make the TrajOpt suffer from getting stuck between two left bars again.

Another reason causes the failure of 4th experiment. As we mentioned before in the

last chapter, we noticed that there is some issue with the Atlas perception, we places

three bars in the OpenRAVE instead of loading the point clouds. However, there is

some mismatching existing, which makes the 4th experiment fail. When the initial

guess generated by BiRRT, that is not strictly collision free if we optimize it load-

ing the point clouds. When the TrajOpt optimize it, it tries to twist the trajectory.

There is a possibility that the one point on the initial guess is pushed into the wrong

direction, which results in that point getting stuck. But overall the 80% success rate

of BiRRTOpt is much better than 0% of TrajOpt.

The Figure 5.3 shows that the time of 10 runs of each movement. In both charts

TrajOpt normally use the most time, and BiRRT used the least time, and line of the

BiRRTOpt is in the middle, even though there is one time BiRRTOpt spend more

time than TrajOpt. This information tells us that the by adding the BiRRT which

servers as initial guess generator would help the performance of the TrajOpt, since

TrajOpt has no chance to succeed in such complicated environment. That feasible

initial guess guides optimization and decrease the time to an acceptable one.

In this experiment, we are able to see that there is always a balance between

success rate and performance. If you increase the step size, the success rate would

decrease.

47

Figure 5.8: Computational Time of BiRRT, TrajOpt and BiRRT in Experiment
Three

48

Chapter 6

Conclusion and Future Work

6.0.1 Conclusion

While WPI-CMU team’s DRC code has been fully developed and TrajOpt has been

applied on the real Atlas robot, there is still a lot of effort to be made. We presented

a new software framework combing sampling-based method with optimization-based

method for planning the robot motion. The sampling-based methods are concisely

introduced and the optimization-based methods are covered with details. Then the

theory behind this software framework is thoroughly explained. In that section, we

described how the BiRRT explores and builds the tress in the configuration space.

And the reason why it would not get trapped is explained in details. Then we woud

show how the TrajOpt optimizes the trajectory given some environment information.

We revealed that introducing the BiRRT into the TrajOpt’s initial guess phase,

would result in this improved framework becoming probabilistic complete.

Several assumptions has been made in this thesis. But those assumptions would

not effect the performance of this framework, which just handles with some issues we

met during the implementation on the real robot. This framework was applied not

also in the Gazebo[7] simulation but also on the actual Atlas robot. According to

49

the data collected in the experiments, this method has the capability of generating a

smoothed, optimized, and executable trajectory compared with the original BiRRT

method. Also in the aspect of prevent from being stuck in the infeasible local

minimum, the improved framework overwhelms the original TrajOpt.

6.0.2 Future Work

The ultimate goal of this thesis work is to plan the robot motion in the cluttered

environments while satisfying some constraints, including self-constraints and other

environment constraints. However, the perception subscribed by the robot some-

times does not match the actual environment because of low-quality filtering. Better

perception would definitely help the performance of this framework.

Also currently this method cannot plan the motion in real time because it takes

time to figure out the solution. In the future, we hope to increase the efficiency of

the algorithm, which probably could lead it to plan real-time motion. Also in order

to accelerate the speed, we can try to run it on the cloud where we assume there

would be unlimited computational power.

This work lays some foundation to develop fully autonomous manipulation on

the real Atlas robot considering the constraint information.

6.1 Other Thoughts

In this section, we would introduce other thoughts while we are doing our research

and implementing our method.

There is a thought which has not been studied deeply and implemented in prac-

tice due to limited time. We are thinking about how instead of searching the solution

in the configuration space, we can search not a path but a feasible range in the Carte-

50

sian space. In this case, because the searching happens in the lower dimensional

space, we are able to use some notable search algorithms such as A* or D* to find

that range. Then we can use that range to guide the optimization of the TrajOpt.

51

Appendix A

More to say

A.1 Setting TrajOpt Constraints

AddRequestHead (r eque s t) ;

AddCostHead (request , v e l c o s t) ;

AddContinueCol l i s ionCost (request ,

c o l l i s i o n c o s t ,

d i s t pen ,

0 ,

num step −1);

AddDiscont inueCol l i s ionCost (request ,

c o l l i s i o n c o s t ,

d i s t pen ,

0 ,

num step−1);

AddPoseCostorConstraint (request ,

” utor so ” ,

{0 ,0 ,0} ,

l f o o t qua t ,

{0 ,0 ,0} ,

52

{500 ,500 ,0} ,

1 ,

num step−1,

{0 , 0 , 0}) ;

AddPoseCostorConstraint (request ,

” p e l v i s ” ,{0 , 0 , 0 . 75} ,

l f o o t qua t ,

{0 ,0 ,10} ,

{10 ,10 ,10} ,

1 , num step−1,

{0 , 0 , 0}) ;

AddJo intPos i t ionCostorConstra int (request ,

pos cos t ,

p o s va l s) ;

AddCostEnd(r eques t) ;

AddConstraintHead (r eque s t) ;

AddPoseCostorConstraint (request ,

” l f o o t ” ,

l f o o t x y z ,

l f o o t qua t ,

{10 ,10 ,10} ,

{10 ,10 ,10} ,

1 ,

num step−1,

{0 , 0 , 0}) ;

AddPoseCostorConstraint (request ,

” r f o o t ” ,

r f o o t xyz ,

r f o o t qua t ,

{10 ,10 ,10} ,

{10 ,10 ,10} ,

53

1 ,

num step−1,

{0 , 0 , 0}) ;

AddPoseCostorConstraint (request ,

hand str ,

xyz targe t ,

quat targe t ,

pos ga ins ,

r o t ga in s ,

num step−1,

num step−1,

hand o f f s e t) ;

AddPoseCostorConstraint (request ,

o ther hand s t r ,

o the r hand xyz targe t ,

o ther hand quat ta rge t ,

o ther hand pos ga ins ,

o the r hand ro t ga in s ,

1 ,

num step−1,

o t h e r h and o f f s e t) ;

AddConstraintEnd (request , r e q u e s t t r a j) ;

A.2 Experiments Results

54

Description Total Average
IK 12666227 1266622.7
BiRRT 10303629 1030362.9
TrajOpt 66784620 6678462
IK + BiRRT + TrajOpt 89754476 8975447.6
BiRRT inside(second) 7.475 0.7475
Initial Guess Size 245 24.5
Success 10 100%

Table A.1: One Table and One Bar(BiRRT+TrajOpt), First Movement with Right
Hand

Description Total Average
IK 6387688 638768.8
BiRRT 7603492 760349.2
TrajOpt 119268032 11926803.2
IK + BiRRT+TrajOpt 133259212 13325921.2
BiRRT inside(second) 4.388 0.4388
Initial Guess Size 330 33
Success 10 100%

Table A.2: One Table and One Bar(BiRRT+TrajOpt), Second Movement with
Right Hand

Description Total Average
IK 7922193 792219.3
BiRRT 3493162 349316.2
TrajOpt 70026172 7002617.2
IK + BiRRT + TrajOpt 81441527 8144152.7
BiRRT inside(second) 2.196 0.2196
Initial Guess Size 180 18
Success 10 100%

Table A.3: One Table and One Bar(BiRRT+TrajOpt), First Movement with Left
Hand

55

Description Total Average
IK 15944429 1594442.9
BiRRT 31039694 3103969.4
TrajOpt 225503947 22550394.7
IK + BiRRT + TrajOpt 272488070 272488070
BiRRT inside(second) 24.841001 2.4841001
Initial Guess Size 481 48.1
Success 10 100%

Table A.4: One Table and One Bar(BiRRT+TrajOpt), Second Movement with Left
Hand

Description Total Average
IK 12046212 1204621.2
BiRRT 9815625 981562.5
IK + BiRRT 21861837 2186183.7
BiRRT inside(second) 6.539 0.6539
Path Size 1556 155.6
Success 10 100%

Table A.5: One Table and One Bar(BiRRT), First Movement with Right Hand

BiRRT Totoal Average
IK 5662747 566274.7
BiRRT 6399158 639915.8
IK + BiRRT 12061905 1206190.5
BiRRT inside(second) 3.811 0.3811
Path Size 1258 125.8
Success 10 100%

Table A.6: One Table and One Bar(BiRRT), Second Movement with Right Hand

Description Totoal Average
TrajOpt time 355548849 35554884.9
Size 300 30
Success 7 70%

Table A.7: One Table and One Bar(TrajOpt), First Movement with Right Hand

Description Totoal Average
TrajOpt time 492454645 49245464.5
Size 300 30
Success 1 10%

Table A.8: One Table and One Bar(TrajOpt), Second Movement with Right Hand

56

BiRRT Totoal Average
IK 6594427 659442.7
BiRRT 3303986 330398.6
IK + BiRRT 9898413 989841.3
BiRRT inside(second) 1.958 0.1958
Path Size 640 64
Success 10 100%

Table A.9: One Table and One Bar(BiRRT), First Movement with Left Hand

Description Totoal Average
IK 13089151 1308915.1
BiRRT 30222313 3022231.3
IK + BiRRT 43311464 4331146.4
BiRRT inside(second) 22.806 2.2806
Path Size 3274 327.4
Success 10 100%

Table A.10: One Table and One Bar(BiRRT), Second Movement with Left Hand

Description Totoal Average
TrajOpt time 187355853 18735585.3
Size 300 30
Success 10 100%

Table A.11: One Table and One Bar(TrajOpt), First Movement with Left Hand

Description Totoal Average
TrajOpt time 242264198 24226419.8
Size 300 30
Success 0 0%

Table A.12: One Table and One Bar(TrajOpt), Second Movement with Left Hand

Description Total Average
IK 15840645 1584064.5
BiRRT 119594324 11959432.4
TrajOpt 439228186 43922818.6
IK + BiRRT + TrajOpt 574663155 57466315.5
BiRRT inside(second) 111.903005 11.1903005
Initial Guess Size 494 49.4
Success 10 100.00%

Table A.13: Two Bars(BiRRT+TrajOpt), First Movement with Left Hand

57

Description Totoal Average
IK 14020009 1402000.9
BiRRT 55478479 5547847.9
TrajOpt 184055558 18405555.8
IK + BiRRT + TrajOpt 253554046 25355404.6
BiRRT inside(second) 47.706001 4.7706001
Initial Guess Size 414 41.4
Success 10 100%

Table A.14: Two Bars(BiRRT+TrajOpt), Second Movement with Left Hand

Description Totoal Average
IK 12871661 1287166.1
BiRRT 72873241 7287324.1
IK + BiRRT 85744902 8574490.2
BiRRT inside(second) 65.696003 6.5696003
Path Size 3153 315.3
Success 10 100%

Table A.15: Two Bars(BiRRT), First Movement with Left Hand

Description Totoal Average
IK 8106788 810678.8
BiRRT 48435952 4843595.2
IK+BIRRT 56542740 5654274
Path Size 3756 375.6
Success 10 100%
BiRRT inside(second) 39.431 3.9431

Table A.16: Two Bars(BiRRT), Second Movement with Left Hand

Description Totoal Average
TrajOpt time 443648889 44364888.9
Success 6 60%
Size 300 30

Table A.17: Two Bars(TrajOpt), First Movement with Left Hand

Description Totoal Average
TrajOpt time 514166005 51416600.5
Success 3 30%
Size 300 30

Table A.18: Two Bars(TrajOpt), Second Movement with Left Hand

58

First movement Totoal Average
IK 15251086 1525108.6
BiRRT 82882920 8288292
TrajOpt 124244704 12424470.4
IK + BiRRT + TrajOpt 222378710 22237871
BiRRT inside(second) 74.360001 7.4360001
Size 178 17.8
Success 8 80.00%

Table A.19: Three Bars(BiRRT+TrajOpt), First Movement with Left Hand

Description Totoal Average
IK 10047569 1004756.9
BiRRT 45923421 4592342.1
TrajOpt 70428418 7042841.8
IK + BiRRT + TrajOpt 126399408 12639940.8
BiRRT inside(second) 37.313 3.7313
Size 166 16.6
Success 10 100%

Table A.20: Three Bars(BiRRT+TrajOpt), Second Movement with Left Hand

Description Totoal Average
IK 12008106 1200810.6
BiRRT 75585301 7558530.1
IK + BiRRT 87593407 8759340.7
BiRRT inside(second) 67.668003 6.7668003
Path Size 3534 353.4
Success 10 100%

Table A.21: Three Bars(BiRRT), First Movement with Left Hand

Description Totoal Average
IK 9108350 910835
BiRRT 59621771 5962177.1
IK+BiRRT 68730121 6873012.1
BiRRT inside(second) 48.738 4.8738
Path Size 4599 459.9
Success 10 100%

Table A.22: Three Bars(BiRRT), First Movement with Left Hand

59

Description Totoal Average
TrajOpt time 416391792 41639179.2
Success 2 20%
Size 300 30

Table A.23: Three Bars(TrajOpt), First Movement with Left Hand

Description Totoal Average
TrajOpt time 284310210 28431021
Success 5 50%
Size 300 30

Table A.24: Three Bars(TrajOpt), Second Movement with Left Hand

60

Bibliography

[1] Dmitry Berenson, Siddhartha S Srinivasa, Dave Ferguson, and James J Kuffner.
Manipulation planning on constraint manifolds. In Robotics and Automation,
2009. ICRA’09. IEEE International Conference on, pages 625–632. IEEE, 2009.

[2] Rosen Diankov. Openrave. http://openrave.org, 2016(Online; accessed 01-
April-2016).

[3] Rosen Diankov. ikfast module. http://openrave.org/docs/0.6.6/

openravepy/ikfast/#ikfast-the-robot-kinematics-compiler, 2016(On-
line; accessed 26-March-2016).

[4] Edsger W Dijkstra. A note on two problems in connexion with graphs. Nu-
merische mathematik, 1(1):269–271, 1959.

[5] Boston Dynamics. Atlas robot. http://www.bostondynamics.com/robot_

Atlas.html, 2016(Online; accessed 27-March-2016).

[6] Open Source Robotics Foundation. Robot operation system. http://www.ros.
org/, 2016(Online; accessed 01-April-2016).

[7] Open Source Robotics Foundation. Gazebo simulator. http://gazebosim.

org/, 2016(Online; accessed 30-March-2016).

[8] Python Software Foundation. Python. https://www.python.org/, 2016(On-
line; accessed 01-April-2016).

[9] Carl Benedikt Frey and Michael A Osborne. The future of employment: how
susceptible are jobs to computerisation. Retrieved September, 7:2013, 2013.

[10] Gurobi. Gurobi optimizer. http://www.gurobi.com/, 2016(Online; accessed
01-April-2016).

[11] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the
heuristic determination of minimum cost paths. Systems Science and Cyber-
netics, IEEE Transactions on, 4(2):100–107, 1968.

61

[12] Léonard Jaillet, Juan Cortés, and Thierry Siméon. Transition-based rrt for
path planning in continuous cost spaces. In Intelligent Robots and Systems,
2008. IROS 2008. IEEE/RSJ International Conference on, pages 2145–2150.
IEEE, 2008.

[13] Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor, and
Stefan Schaal. Stomp: Stochastic trajectory optimization for motion planning.
In Robotics and Automation (ICRA), 2011 IEEE International Conference on,
pages 4569–4574. IEEE, 2011.

[14] Sertac Karaman and Emilio Frazzoli. Incremental sampling-based algorithms
for optimal motion planning. arXiv preprint arXiv:1005.0416, 2010.

[15] Sven Koenig and Maxim Likhachev. Fast replanning for navigation in unknown
terrain. Robotics, IEEE Transactions on, 21(3):354–363, 2005.

[16] J Kuffner and S LaValle RRT-Connect. An efficient approach to single-query
path planning ieee international conference on robotics and automation. San
Francisco, pages 473–479, 2000.

[17] Steven M LaValle. Rapidly-exploring random trees a ew tool for path planning.
1998.

[18] Lening Li. Birrtopt. https://www.youtube.com/channel/

UCd7BFnE5SDCUN01Ue3yOYCA, 2016(Online; accessed 30-March-2016).

[19] Jennifer M Ortman, Victoria A Velkoff, Howard Hogan, et al. An aging nation:
the older population in the united states. Washington, DC: US Census Bureau,
pages 25–1140, 2014.

[20] Chonhyon Park, Jia Pan, and Dinesh Manocha. Itomp: Incremental trajectory
optimization for real-time replanning in dynamic environments. In ICAPS,
2012.

[21] Nathan Ratliff, Matt Zucker, J Andrew Bagnell, and Siddhartha Srinivasa.
Chomp: Gradient optimization techniques for efficient motion planning. In
Robotics and Automation, 2009. ICRA’09. IEEE International Conference on,
pages 489–494. IEEE, 2009.

[22] Carnegie Robotics. Multisense sl. http://carnegierobotics.com/

multisense-sl, 2016(Online; accessed 26-March-2016).

[23] John Schulman, Jonathan Ho, Alex X Lee, Ibrahim Awwal, Henry Bradlow,
and Pieter Abbeel. Finding locally optimal, collision-free trajectories with se-
quential convex optimization. In Robotics: science and systems, volume 9,
pages 1–10. Citeseer, 2013.

62

[24] Anthony Stentz. Optimal and efficient path planning for partially-known envi-
ronments. In Robotics and Automation, 1994. Proceedings., 1994 IEEE Inter-
national Conference on, pages 3310–3317. IEEE, 1994.

[25] Anthony Stentz et al. The focussed d* algorithm for real-time replanning. In
IJCAI, volume 95, pages 1652–1659, 1995.

[26] Yu Yan, Emilie Poirson, and Fouad Bennis. Integrating user to minimize assem-
bly path planning time in plm. In Product Lifecycle Management for Society,
pages 471–480. Springer, 2013.

63

