
Automaton Meets Algebra: A Hybrid Paradigm
for Efficiently Processing XQuery over XML

Stream

by

Hong Su

A Dissertation

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

in

Computer Science

by

Dec 14, 2005

APPROVED:

Prof. Elke A. Rundensteiner
Advisor

Prof. George Heineman
Committee Member

Prof. Michael Gennert
Head of Department

Prof. Murali Mani
Committee Member

Prof. Mitch Cherniack
External Committee Memeber
Brandeis University

Dedicated to Mom, Dad and Wai-Po

ii

Contents

1 Introduction 5
1.1 Challenges of XML Stream Processing 5
1.2 State-of-the-Art of XML Stream Processing 7

1.2.1 Pure Automaton Paradigm 8
1.2.2 Loosely-Coupled Automaton and Algebra Paradigm . . . 9

1.3 Dissertation Research Focus . 12
1.3.1 Architecture of Tightly-Coupled Automaton-AlgebraParadigm 13
1.3.2 Automaton-in-or-out Optimization 15
1.3.3 Schema-based Optimization for Automaton Processing. . 20

1.4 Dissertation Outline . 24

2 Raindrop Architecture: Combining Automaton and Algebra Process-
ing Styles for XML Stream Processing 26
2.1 Three-level Algebraic Framework Overview 26
2.2 Semantics-Focused Plan . 27
2.3 Modeling Token-based Processing in Algebra 31

2.3.1 Token-Based Data Format 31
2.3.2 Token-Related Operators 32
2.3.3 Stream-Specific Plan Structures 39
2.3.4 Regular Tuple-based Operators 40

2.4 Rewrite Rules Involving Token-Related Operators 40
2.4.1 Default Mapping Rewrite Rule 41
2.4.2 Token-or-Node Mode Change Rule 42
2.4.3 Secondary Effect of Mode Change of Pattern Retrieval .. 45

2.5 Implementation Strategies for Token-Related Operators 48
2.5.1 Implementation of TokenNav 49
2.5.2 Implementation of ExtractUnnest 55
2.5.3 Implementation of ExtractNest 56
2.5.4 Implementation of StructuralJoin 57

CONTENTS iii

2.5.5 Implementations in Automata with Final-State Duplicates 59
2.5.6 Comparison between In-time and Identifier-based Struc-

turalJoins . 60
2.6 Programming Model for Synchronizing the Execution of Operators 62

2.6.1 AncestorUpstreamDriven Mode 62
2.6.2 DownstreamDriven Mode 64
2.6.3 ImmediateUpStreamDriven 67
2.6.4 Summary . 68

2.7 Experiments . 69
2.7.1 Testing Queries Having Alternative Plans with Same Buffer-

ing Cost . 70
2.7.2 Testing Queries Having Alternative Plans with Different

Buffering Costs . 74

3 Runtime Plan Optimization: Switching between Automaton and Alge-
bra Processing Styles 80
3.1 Solution Space . 80

3.1.1 Token-or-Node Mode Change Rules 81
3.1.2 Operator Commuting Rules 85
3.1.3 Input Subplan Reordering Rule 86
3.1.4 Relationships among Rewrite Rules 92

3.2 Cost Model . 92
3.2.1 Unit Costs of Automaton-Outside Operators 93
3.2.2 Costs of Input Subplans of StructuralJoin 97
3.2.3 Costs of Automaton-Inside Operators 101
3.2.4 Cost Model Summary 105
3.2.5 Discussion on Extension of Cost Models 105

3.3 Combining Heuristics and Costs for Operator Commuting 107
3.3.1 Using both Heuristics and Costs for Operator Commuting 109
3.3.2 Heuristics for Commuting Select/NodeNav with StructuralJoin111
3.3.3 Operator Commuting Algorithm 113

3.4 Using Rank Functions for Input Subplan Reordering 115
3.5 Enumerative Search for One-time Optimization 116
3.6 Greedy Search for One-time Optimization121

3.6.1 Baseline Greedy Search 121
3.6.2 Expediting Cost Estimate 122

3.7 Greedy Search with Pruning for Continuous Optimization. 129
3.7.1 Basic Ideas of Pruning 131
3.7.2 Pruning Plans Derived from Mode Change of TokenNav

Operators . 132

CONTENTS iv

3.7.3 Discussion on Pruning Other Pattern Retrieval Operators . 134
3.7.4 Summary . 135

3.8 Embedding Statistics Collection into Plan Execution 135
3.9 Run-time Plan Migration . 138

3.9.1 Incremental Change of Automaton 139
3.9.2 Choosing Right Moment to Migrate 141

3.10 Experimental Evaluation . 144
3.10.1 Getting Constant Values 145
3.10.2 Experiment Design for Comparing ExhaustOpt and Greedy-

Opt Search Strategies . 146
3.10.3 Comparing ExhaustOpt and GreedyOpt on Wide-and-Simple

Pattern Trees . 149
3.10.4 Comparing ExhaustOpt and GreedyOpt on Wide-and-Complex

Pattern Trees . 155
3.10.5 Comparing ExhaustOpt and GreedyOpt on Deep-and-Simple

Pattern Trees . 157
3.10.6 Comparing ExhaustOpt and GreedyOpt on Deep-and-Complex

Pattern Trees . 159
3.10.7 Study on when GreedyOpt Fails to Find Optimal Plan . . 160
3.10.8 Comparison of GreedyOpt and GreedyPruneOpt 167
3.10.9 Overhead of One-time Optimization: From StatisticsCol-

lection to Plan Migration 168
3.10.10 Performance of Continuous Optimization170

4 Schema-based Optimization in Automaton Processing Style 173
4.1 Introduction . 173
4.2 Type Inference on Query Trees 175

4.2.1 Query Tree . 176
4.2.2 Type Inference . 178

4.3 Guidelines for Stream XML SQO 180
4.3.1 Automata-based Implementation 181
4.3.2 Necessity of Physical Implementation Analysis 182
4.3.3 Design Guidelines for XML Stream SQO 183

4.4 Stream-Specific XML SQO . 184
4.4.1 SQO Rules . 185
4.4.2 Desired Properties of Rule Application 187
4.4.3 Rule Application Algorithm 190

4.5 Execution of Optimized Queries 194
4.5.1 Encoding Event-Condition-Actions 195
4.5.2 Execution Strategy . 196

CONTENTS v

4.6 Experimentation . 198
4.6.1 Practicability of SQO Techniques 199
4.6.2 Synergic Effect of Combining Type Inference and Stream

SQO . 200
4.6.3 Necessity of “Usefulness” Criteria 201
4.6.4 Factors on Performance Gains 202
4.6.5 Overhead of SQO . 203
4.6.6 Summary of Experiments 204

5 Related Work 212
5.1 Related Work on XML Query Processing Paradigms 212
5.2 Related Work on Run-time Plan Optimization215

5.2.1 Cost-based Optimization 215
5.2.2 XML Statistics Collection 218
5.2.3 Run-time Re-optimization 219

5.3 Related Work on Schema-based Optimization220

6 Conclusions and Future Directions 224
6.1 Conclusion . 224
6.2 Future Work . 226

6.2.1 Supporting XQueries with Window Joins/Aggregations. . 227
6.2.2 Query over Indexed XML Streams 227
6.2.3 XML Load Shedding . 228
6.2.4 Adaptive Query Approximation 229
6.2.5 Query over Compressed XML Streams 229

A Proof of Final State Duplicate Free Property 230

B Computing P6⇒∅(plan) for Cost Model 233

C Proof of Optimality of Subplan Evaluation Order 235

D Combination Containing Operators with Pattern Dependency Rela-
tionship being Invalid 237

E Order Insensitive 239

F Proof of Same Cost Changes 245

vi

List of Figures

1.1 Example XML Document and XQuery 7
1.2 A Tree Representation of XML Document in Figure 1.1 (a) 7
1.3 XSM Automaton for Encoding an XPath expression “/a” 9
1.4 Tukwila Query Plan for Query in Figure 1.1 (b)11
1.5 Alternative Tukwila Query Plan 12
1.6 Comparisons of Two Automaton-Algebra Paradigms 12

2.1 Example XAT Tuples . 28
2.2 Semantics-Focused Plan (annotated with intermediate results) for

querying data in Figure 1.1 (a)) 30
2.3 Stream Logical Plan for the Semantics-focused Plan in Figure 2.2 40
2.4 Default Mapping Rewrite Rule 41
2.5 Plan Rewritten from Figure 2.2: Default Mapping RewriteRule

Applied onNavUnnest$s,/open auctions/open auction$a 42
2.6 Mode Change with Introducing/Eliminating StructuralJoin 43
2.7 Mode Change without Introducing/Eliminating StructuralJoin . . 44
2.8 EliminateExtract$col0$col1 when no Regular Tuple-based Oper-

ator Consumes$col1 . 45
2.9 Plan Rewritten from Figure 2.5: Pattern Retrieval on Token-or-

Node Mode Change Rule Applied onNavNest$a,/seller$b 47
2.10 Plan Rewritten from Figure 2.9: Pattern Retrieval on Token-or-

Node Mode Change Rule Applied onNavNest$b,/phone$e 47
2.11 Implementation ofStreamSource/TokenNav 49
2.12 Automaton Encoding for Paths Involving “//” 54
2.13 final state duplicates . 55
2.14 InvokingExtractNest Operator 58
2.15 Comparing In-time Structural Join and Identifier-based Structural

Join . 61
2.16 Query with Filters . 70

LIST OF FIGURES vii

2.17 Performance of Alternative Plans for Queries with 20 Filters of
Average Length 1 . 71

2.18 Ratio of Execution Time of Maximal Pushdown with Execution
Time of Zero Filter Pushdown for Queries with Different Numbers
of Filters . 72

2.19 Performance of Alternative Plans for Queries with 10 Filters of
Average Length 5 . 73

2.20 Performance of Alternative Plans for Queries with 2 Filters (One
Filter has “//”) . 74

2.21 Query with Multiple Bindings in For Clause 75
2.22 One Navigation Pushdown . 75
2.23 Three Navigation Pushdown . 76
2.24 Maximal Navigation Pushdown 76
2.25 Performance on Data Set 1 . 78
2.26 Performance on Data Set 2 . 78
2.27 Performance on Data Set 3 . 79

3.1 Example Query for Automaton-in-or-out Optimization 81
3.2 Raindrop Plan for Query in Figure 3.1 82
3.3 Mode Change with Introducing/Eliminating StructuralJoin 83
3.4 Mode Change without Introducing/Eliminating StructuralJoin . . 83
3.5 EliminateExtract$col0$col1 when no Regular Tuple-based Oper-

ator Consumes$col1 . 84
3.6 Plan Derived from the Pull-out ofTokenNav$a,/seller$b from Plan

in Figure 3.2 . 85
3.7 CommutingNodeNav$col2,path2$col3 with Select$col1 87
3.8 CommutingNodeNav$col1,path2$col2 with StructuralJoin . . . 87
3.9 CommutingNodeNav$col1,path1$col2 with NodeNav$col3,path3$col4 88
3.10 Reordering Input Subplans of StructuralJoin 91
3.11 Automaton of Plan in Figure 3.2 and Stack Snapshots 102
3.12 Greedy-based Search . 122
3.13 Detection of Same Cost Change: IsCost(P4)−Cost(P3) = Cost(P2)

− Cost(P1)? . 126
3.14 Reuse Cost Estimate for Mode Changes of Patterns in Figure 3.14 (a)128
3.15 Incremental Change of Automaton for Migrating from Plan in Fig-

ure 3.2 to Plan in Figure 3.6 . 140
3.16 Pattern Tree Templates: (a) wide and simple; (b) wide and com-

plex; (c) deep and simple; (d) deep and complex 147
3.17 Extract-Same and Extract-Different Queries Sharing Wide-and-Simple

Pattern Tree in Figure 3.16 (a) 150

LIST OF FIGURES viii

3.18 Wide-and-Complex Query on Ebay Data: requiring to return alist-
ing whose$a/seller info, $a/bid history, $a/auction info,
and$a/item info satisfy 2, 2, 12,and 5 Filters Respectively . . . 156

3.19 Queries Conforming to Wide-and-Deep Pattern Tree in Figure 3.16
(c) . 157

3.20 Queries Conforming to Wide-and-Complex Pattern Tree in Figure
3.16 (d) . 159

3.21 Extract-Same and Extract-Different Queries Conforming to Wide-
and-Complex Pattern Tree in Figure 3.16 (b) 161

3.22 ExhaustOpt and GreedyOpt for Environment Settings in Figure
3.10 Illustrating “Missing Synergy Benefits”. Initial PlanUsed:
All Patterns butp11 andp12 Retrieved in Automaton. 164

3.23 ExhaustOpt andGreedyOpt Comparison for Settings in Figure
3.10 illustrating “Wrong Accounting of Cost Cut”. Initial Plan
Used: All Patterns Retrieved in Automaton. 166

3.24 GreedyOpt and GreedyPruneOpt for Buffer-Same Queriesin Fig-
ure 3.17 (1) . 168

3.25 Cost Ingredients of Query Processing in One-time Optimization . 170
3.26 Processing Rate of Wide and Complex Query in ContinuousOpti-

mization Scenario . 172

4.1 Grammar of Supported XQuery Subset 176
4.2 XQuery and Query Tree . 177
4.3 XML Schema and Schema Graph 179
4.4 Query Tree after Type Inference 180
4.5 Automaton Implementation . 181
4.6 Filtering Propagation . 184
4.7 SQO Design Guidelines . 185
4.8 Traverser on Context Node with Multiple Types 192
4.9 Encoding SQO into Algebraic Plan 206
4.10 “Conflict-free” Property of Automata206
4.11 Query Template . 207
4.12 Effect of SQO on Queries Using a 800M PSD Dataset207
4.13 Effect of Combining Type Inference and SQO on a 800M PSD

Dataset . 207
4.14 Comparing Plans Only Adopting Necessary Ending Marks Satis-

fying with Plans Adopting All Ending Marks 208
4.15 Effect of Pattern Selectivity/Unit Gain on Saving PathLocation Cost208
4.16 Effect of Pattern Selectivity/Unit Gain on Saving Buffering Cost . 209

LIST OF FIGURES ix

4.17 Effect of Pattern Selectivity/Unit Gain on Saving Selection Evalu-
ation Cost . 210

4.18 Overhead of Applying Occurrence Rule 210
4.19 Overhead of Applying Exclusive Rule 211
4.20 Overhead of Applying Order Rule in Worst Case211

5.1 Operator Re-ordering inEddy 220

A.1 Stack Containing Duplicate Final States 231

F.1 Cost(P4) − Cost(P3) = Cost(P2) − Cost(P1) 245

1

Abstract

XML stream applications bring the challenge of efficiently processing queries on

sequentially accessible token-based data streams. The automaton paradigm is nat-

urally suited for pattern retrieval on tokenized XML streams, but requires patches

for implementing the filtering or restructuring functionalities common for the XML

query languages. In contrast, the algebraic paradigm is well-established for pro-

cessing self-contained tuples. However, it does not traditionally support token in-

puts. This dissertation proposes a framework calledRaindrop, which accommo-

dates both the automaton and algebra paradigms to take advantage of both.

First, we propose an architecture forRaindrop. Raindrop is an algebra frame-

work that models queries at different abstraction levels. We represent the token-

based automaton computations as an algebraic subplan at thehigh level while ex-

posing the automaton details at the low level. The algebraicsubplan modeling au-

tomaton computations can thus be integrated with the algebraic subplan modeling

the non-automaton computations.

Second, we explore a novel optimization opportunity. OtherXML stream pro-

cessing systems always retrieve all the patterns in a query in the automaton. In

contrast, Raindrop allows a plan to retrieve some of the pattern retrieval in the au-

LIST OF FIGURES 2

tomaton and some out of the automaton. This opens up anautomaton-in-or-out

optimization opportunity. We study this optimization in two types of run-time en-

vironments, one with stable data characteristics and one with fluctuating data char-

acteristics. We provide search strategies catering to eachenvironment. We also

describe how to migrate from a currently running plan to a newplan at run-time.

Third, we optimize the automaton computations using the schema knowledge.

A set of criteria are established to decide what schema constraints are useful to

a given query. Optimization rules utilizing different types of schema constraints

are proposed based on the criteria. We design a rule application algorithm which

ensures both completeness (i.e., no optimization is missed) and minimality (i.e.,

no redundant optimization is introduced). The experimentations on both real and

synthetic data illustrate that these techniques bring significant performance im-

provement with little overhead.

In conclusion, Raindrop accommodates the advantages of both automaton and

algebra to efficiently process XQueries over tokenized XML streams. The pro-

posed automaton-in-or-out and schema-based optimizationtechniques can be also

applied to several well-known XML stream processing systems such as Tukwila

and YFilter.

3

Acknowledgments

Rumor has it that every PhD thinks his/her PhD career is the toughest one. Well,

definitely I think mine is tough. But without the patience, guidance and help from

my advisor, Prof. Elke A. Rundensteiner, it could have been much tougher. My

sincere thanks go to her, for everything she has done for making this dissertation

possible.

I would like to thank my other committee members, Prof. Murali Mani, Prof.

George Heineman and Prof. Mitch Cherniack, for their help and encouragement. I

would especially like to thank Prof. Mani, who has collaborated on my dissertation

work. Prof. Mani has spent enormous amount of time discussing with me and

giving feedback on my papers in the past two years. My gratitude also goes to

Prof. Carolina Ruiz who has provided tremendous help to me onmy PhD research

qualification exam and comprehensive exam.

I would like to thank Jinhui Jian, a former Raindrop team member who imple-

mented part of the Raindrop system. My thanks also go to the Rainbow team and

Cape team at DSRG lab, especially Xin Zhang, Song Wang, Ling Wang, Bradford

Pielech and Luping Ding, who provided related code support.

My internships at IBM T.J. Watson Lab and HP software lab are eye opening

LIST OF FIGURES 4

experiences for me. It was great pleasure to work with my mentors, Dr. Ming-ling

Lo (IBM), Dr. Sriram Padmanabhan (IBM) and Dr. Harumi Kuno (HP).

I feel honored to have been supported by IBM Cooperative Fellowship for three

years. I thank IBM for giving me this great opportunity and offering me the sum-

mer internships at IBM Toronto lab. I deeply appreciate the warm-hearted welcome

and help from my mentors there, Dr. Kelly Lyons, Mr. John Keenleyside and Mr.

Calisto Zuzarte.

It is always glad to see I am not alone on this long journey. I cherish the

friendship with DSRG members. The memory of the time we spenttogether will

never fade away.

My fiance J.Wei is also my best friend and best technical support for software

engineering related issues. I owe him a big, big “thank you”.My Mom and Dad

have always been there for me through all the highs and lows. Their endless love

and support is the best thing a daughter can ever ask for. My dearest “wai-po”

(grandma at mother’s side) passed away last year. No word canexpress how much

I miss her. I dedicate this dissertation to her.

5

Chapter 1

Introduction

1.1 Challenges of XML Stream Processing

There is a growing interest in data stream applications suchas monitoring systems

for stock, traffic and network activities [14]. Recently various research projects

have targeted stream applications, such as Aurora [9], Borealis [23], STREAM

[15], Niagara [22], TelegraphCQ [21], Cougar [28] and CAPE [67]. Many current

research works (including all the works mentioned above) focus on relational or

object applications, that is, they assume a tuple-like datamodel (a tuple can contain

flat values and objects as in a relational or object database respectively).

Due to the proliferation of XML data in web services [54], there is also a

surge in XML stream applications [18, 25, 30, 33, 32, 35, 52, 65]. The major

task of a message broker is to route the XML messages to the interested parties

[35]. In addition, the message brokers can also perform message restructuring or

backups. For example, in an on-line order handling system [54], suppliers can

register their available products at the broker. The brokerwill then match each

1.1. CHALLENGES OF XML STREAM PROCESSING 6

incoming purchase order with the subscription and forward it to the corresponding

suppliers, possibly in a restructured format at the requestof the suppliers. Other

typical applications include XML packet routing [8], selective dissemination of

information [10], and notification systems [59].

A challenge that these XML stream applications pose is that the notion of a

“tuple” no longer completely fits as a processing unit. In theXML context, we

use the term “tuple” to mean a list of cells with each cell containing a set of XML

element trees. This is because the XML query semantics [76] are defined as XML

tree outputs computed on the given XML tree inputs. In other words, an XML tree

(just like a flat value or an object in the relational or objectmodel) is the natural

granularity for processing. We use the the XML document (based on the XML

benchmark XMark [7]) in Figure 1.1 (a) as an example. Each token in the XML

document is annotated with a number in italic font serving asthe identifier for ease

of reference. This document is modeled as a tree as shown in Figure 1.2. A node

in the tree represents an element, an attribute, or a PCDATA text fragment. The

semantics of an expression, say,$s/open auctions/open auction in the query in

Figure 1.1 (b), are defined as returning theauctionelement trees in the document,

i.e., the trees rooted at the highlighted nodes in Figure 1.2.

However, XML streams are often handled as a sequence of primitive tokens,

such as a start tag, an end tag or a PCDATA item. That is to say, aprocessing unit

of XML streams has to be a token, which is at a lower granularity than an XML

node. Such a processing style, i.e., a processing unit beingat a lower granularity

than the data model, has not been studied thoroughly by the database community as

of now. This granularity difference is a specific challenge that has to be addressed

for XML stream processing.

1.2. STATE-OF-THE-ART OF XML STREAM PROCESSING 7

1<open_auctions>
2<open_auction>
3<seller>

4<sellerid> 5 0016</sellerid>

7<phone>8508-1234567 9</phone>

10<phone>11508-0004567 12</phone>

13</seller>

14<bid>

15 <bidder> 16<bidderid> 17 03218</bidderid>19</bidder>

20 <bidder> 21<bidderid> 22 14523</bidderid>24</bidder>

25</bid>

26<initial> 2715.00 28</initial>

29</open_auction>
…

(a) Open_auctions Stream

for $a in stream(“open_auctions”)
/open_auctions/open_auction[initial],

$b in $a/seller,
$c in $a/bid/bidder

Where
$b/phone/text() = “508-1234567”

return
<auction>

{$b, $c}
</auction>

(b) XQuery on Open_auctions Stream

Figure 1.1: Example XML Document and XQuery

open_auction

open_auctions

seller bidder bidder

sellerid
phone phone

“508-
1234567”

“508-
0004567”

bidderid bidderid

“032” “145”

…

Figure 1.2: A Tree Representation of XML Document in Figure 1.1 (a)

1.2 State-of-the-Art of XML Stream Processing

Two camps of solutions have been proposed for modeling XML stream process-

ing. The first camp of solutions uses tokens as the processingunit throughout the

whole evaluation process. In contrast, the second camp of solutions uses different

processing units in different stages of the evaluation. In the first stage, it con-

sumes token inputs but generates tuple outputs. Tuple processing units are then

used throughout the second stage. These two camps are further introduced below

1.2. STATE-OF-THE-ART OF XML STREAM PROCESSING 8

in Sections 1.2.1 and 1.2.2 respectively.

1.2.1 Pure Automaton Paradigm

The concept of an automaton was originally designed for fulfilling the functional-

ity of matching expressions over strings. This functionality is very similar to one

major XML query functionality, i.e., matching path expressions over tokens. Such

close resemblance has inspired several recent projects [52, 80, 65, 35] to exclu-

sively use automaton for the complete task of XML stream query processing. Such

a pure automaton paradigmhas to strike a balance between the expressive power

of the query it can handle and the manageability of its constructs.

For example, XPush [35], using a push-down automaton, supports rather lim-

ited query capabilities. Since the push-down automaton hasno output buffers,

it cannot return the destination elements reachable via an XPath, not to mention

restructure the destination elements. It only returns a boolean result indicating

whether or not an XPath is contained in the input stream.

Some projects adopt more powerful automata in order to provide more query

capabilities. Typical examples are XSM [52] and XSQ [65] supporting the XQuery

and XPath languages respectively. However the support of such increased expres-

sive power of the queries is not gained without sacrifice. TheTuring-machine-like

model they adopt describes the computations at a rather low level. Such a query

model is somewhat similar to a procedural language that presents all internal de-

tails of the computations. Figure 1.3 gives an example of howa path expression

“/a” is modeled in XSM. The automaton reads a token from the input buffer one at

a time. The state transition indicates that if a certain token has been read (expressed

as the part before “|”), then the corresponding actions (expressed as the part after

1.2. STATE-OF-THE-ART OF XML STREAM PROCESSING 9

“ |”) will be taken. For instance, the transition from state 1 tostate 2 indicates that

if a token<a> has been read, it should be copied to a certain output buffer.

Figure 1.3: XSM Automaton for Encoding an XPath expression “/a”

Such a pure automaton paradigm has not been thoroughly studied as a query

processing paradigm before by the database community. Manyproblems that have

been well studied in tuple-based algebraic frameworks remain unexplored in this

new paradigm. These include how to optimize the queries in a modular fashion,

how to rewrite the queries, how to cost alternative processing plans, and how to

derive efficient implementation strategies.

1.2.2 Loosely-Coupled Automaton and Algebra Paradigm

On the other hand, the tuple-based algebraic query processing paradigm1 has been

widely adopted by the database community at large for query optimization. Its suc-

cess is rooted at (1) its modularity of composing a query fromindividual operators;

(2) its support for iterative and thus manageable optimization decisions at different

abstraction levels (i.e., logical and physical levels); and (3) efficient set-oriented

processing capability.

It is thus not surprising that numerous tuple-based algebras (and optimization

techniques based on it) for processing static XML have been proposed [78, 46, 62]

1In this paper, the term “algebra” specifically refers to the tuple-based algebra.

1.2. STATE-OF-THE-ART OF XML STREAM PROCESSING 10

in recent years. Naturally it is expected that such an algebraic paradigm could

also be utilized for XML stream processing so that existing techniques can be bor-

rowed. However, as we have mentioned before, such an algebraic paradigm does

not handle the token input data model.

Recent work, such as Tukwila [42] and YFilter [30], aims to bridge the token

inputs and the tuple inputs typically assumed by the algebraparadigm. They pro-

cess an XQuery in two stages. In the first stage, they use automata to handleall

structural pattern retrieval. XML nodes are built from tokens and organized into

tuples. These output tuples are then filtered or restructured in the second stage by

a more conventional tuple-based algebraic engine.

We now give an example for this approach. Figure 1.1 shows an XQuery on the

stream in Figure 1.1. This query pairs sellers with bidders of a certain open auc-

tion. Figure 1.4 shows the corresponding Tukwila query plan[42]. The portions

underneath and above the line describe the computations in the first (i.e., automa-

ton) and second stage (i.e., algebra) respectively. While the algebra processing is

expressed as a query tree of algebra operators (skipped in the figure), the automa-

ton processing is modeled as a single operator calledX-Scan (YFilter also has a

similar module called “path matching engine”). Tukwila assumes that retrieving a

pattern in an automaton is rather cheap. Therefore they assume that all the patterns

should be retrieved in the automaton. As a result, theX-Scanoperator exposes a

fixed interface to its downstream operators, namely, the bindings to all the XPath

expressions in the query as annotated beside theX-Scanoperator in Figure 1.1.

However, in our work we will illustrate that this assumptionmade by Tukwila

does not necessarily always hold. For example, consider an alternative plan which

only pushes the pattern retrievalopenauctions/openauctionand$a/initial into the

1.2. STATE-OF-THE-ART OF XML STREAM PROCESSING 11

Source “open_auctions” $s

X-Scan $a = open_auctions/open_auction

$b = $a/seller

$c = $a/bid/bidder

$d = $a/initial

$e = $b/phone/text()

Sel $e = “508-1234567”

…

automata processing

tuple processing

Figure 1.4: Tukwila Query Plan for Query in Figure 1.1 (b)

X-Scanoperator. Only thoseopenauctionelements that haveinitial child elements

are extracted and XML nodes are formed out of them. They are further navigated

into to locate the remaining patterns as we do when processing static XML data.

Intuitively, patterns$a/initial, $a/seller and$a/bid/bidder are retrieved in par-

allel in Tukwila while they are retrieved in a serialized manner in our alternative

plan. The alternative plan is shown in Figure 1.5. When only avery small number

of openauctionelements hasinitial child elements, this alternative plan saves most

of the pattern retrieval including$a/seller, $b/phone/text() and$a/bid/bidder.

It thus may perform better than the original Tukwila plan2.

In summary, automaton processing, though accommodated in an algebraic frame-

work as an operator, is not considered by the query processorto be rewritten with

any other operators. Such a paradigm does not benefit from theopportunities

that an algebraic framework is supposed to provide. We thus call this approach a

loosely-coupled automaton-algebraparadigm due to the strict separation between

the token-based automaton processing and the tuple-based algebraic processing.

2Although Tukwila provides afollow operator which retrieves patterns in XML nodes, it is ex-
plicitly mentioned in [42] thatfollow will be only used for retrieving XLinks instead of XPaths. It
appears that Tukwila does not consider moving pattern retrieval out of theX-Scanoperator.

1.3. DISSERTATION RESEARCH FOCUS 12

Source“open_auctions”$s

X-Scan’ $a = open_auctions/open_auction
$d = $a/initial

Sel$e = “508-1234567”

automata processing

tuple processing NodeNav$a/seller$b

NodeNav$b/phone/text()$e

NodeNav$a/bid/bidder$c

…

Figure 1.5: Alternative Tukwila Query Plan

1.3 Dissertation Research Focus

We instead propose a paradigm that overcomes the limitations in both the pure

automaton and the loosely-coupled automaton-algebra paradigms. This paradigm

tightly couples automaton and algebra style of query processing. Figure 1.6 shows

an abstract comparison between the loosely-coupled and tightly-coupled approaches.

Automata Mega-Operator

Tuple-based plan

Tuple stream
…

Token-related
operators

Tuple-based
operators

(a) Loosely Coupled
Automata and Algebra

(b) Tight Coupled
Automata and Algebra

Figure 1.6: Comparisons of Two Automaton-Algebra Paradigms

1.3. DISSERTATION RESEARCH FOCUS 13

In the loosely-coupled paradigm, the pattern matching typeof computation

on tokens (the one captured most naturally by automaton computation) and the

remainder of the tuple-based computations (e.g., filteringand restructuring) com-

municate through a fixed interface. We express this relationship as a query plan

divided into two separate boxes in Figure 1.6 (a). Instead, in the tightly-coupled

paradigm, even token-based computation is modeled as a component of the query

plan. This query plan is composed of multiple operators. Each such operator is at a

“proper” granularity, i.e., smaller than the mega-operator X-Scanbut still abstract

enough for easy specification of the pattern retrieval semantics. In Raindrop model,

these operators modeling the automaton are uniformly treated alongside with the

tuple-based operators. In Figure 1.6 (b), we use one box containing all operators in

the plan to express such uniformity. Rewriting rules can be applied to for example

switch computations into or out of the automaton. Thereforepattern retrieval is

no more restricted to be only performed in the automaton part. We now list the

research issues that are addressed in this dissertation.

1.3.1 Architecture of Tightly-Coupled Automaton-Algebra Paradigm

We instead propose a paradigm that overcomes the limitations in both the pure au-

tomaton and the loosely-coupled automaton-algebra paradigms. We also model the

pattern matching type of computation (the one captured mostnaturally by automa-

ton processing) as a query plan composed of operators at a finer granularity than

X-Scan[42]. Such a model offers several benefits. First, the portion of the plan

modeling automaton processing can be reasoned over in a modular fashion. That

is, optimization techniques can be studied for each operator separately rather than

only for the automaton as a whole. Second, since the automaton processing is ex-

1.3. DISSERTATION RESEARCH FOCUS 14

pressed as an algebraic plan just like the other computations, rewriting rules can be

applied to, for example, switch computations into or out of the automaton. We have

implemented a prototype system based on thistightly-coupled automaton-algebra

paradigm [38].

The contributions of our system, calledRaindrop, include:

• We accommodate both token-based processing and tuple-based processing

within oneuniform algebraic model. To model the token-based processing

also as algebraic plans, we propose a data model for tokens aswell as a set of

algebra operators and plan structures that manipulate tokens. (Section 2.3)

• We present a three-level algebraic framework, i.e.,semantics-focused plan,

stream logical planand stream physical plan. Each levels adds more de-

tails to the plan at the adjacent higher level. Such a layeredframework en-

ables us to reason at different abstraction levels, thus rendering optimizations

tractable and practical. (Section 2.1)

• We offer a set of rewriting rules that pushes or pulls patternretrieval into

or out of the automaton. This unique optimization opportunity is not found

in either pure-automaton or loosely-coupled automaton-algebra paradigms.

(Section 2.4)

• We develop efficient implementations for operators modeling automaton pro-

cessing. These implementations take full advantage of automaton behavior

and thus are in many cases more efficient than the other implementations in

the literature. (Section 2.5)

• The implementations of operators modeling automaton processing impose

1.3. DISSERTATION RESEARCH FOCUS 15

certain synchronization modes, i.e., certain operators must be invoked at a

certain time to ensure both the correctness and efficiency ofthe execution of

the plan. We propose a programming model to accommodate suchmodes.

(Section 2.6)

• We perform extensive experiments illustrating that under different character-

istics of the input sources, no single strategy that pushes computations into

the automaton can ensure plan optimality. This confirms the necessity of

reasoning about computation push-in or pull-out of the automaton. (Section

2.7)

1.3.2 Automaton-in-or-out Optimization

As mentioned in Section 1.2.2, the XML stream processing systems in the loosely

coupled paradigm always retrieve all the patterns in a queryin the automaton. In

contrast, Raindrop allows a plan to retrieve some of the pattern retrieval in the

automaton and some out of the automaton. This opens up a new optimization

opportunity, calledautomaton-in-out, i.e., given a query, which pattern retrieval

should be performed in the automaton and which should be performed out of the

automaton.

Cost-based optimization is the mainstream optimization technique used in the

database community [63]. Therefore we also use a cost-basedapproach to explore

the automaton-in-or-out opportunity. There are three key components in a cost-

based approach [69]: (1) a solution space of alternative plans, (2) a cost model for

comparison of alternative plans, and (3) a search strategy for selection of a plan

from the solution space. We now analyze the challenges in providing the above

1.3. DISSERTATION RESEARCH FOCUS 16

components that are specific to our scenario.

• Solution space can be delimited by a set of rewrite rules. Given an arbitrary

initial plan of a query, the solution space is composed of allthe alternative

plans that can be rewritten from the initial plan by the rewrite rules. The

rule that pushes or pulls pattern retrieval into or out of theautomaton is the

key rule we use to delimit the solution space. However, this rule alone is not

enough. When we compare the costs of two plans before and after a pattern

retrieval is pulled out of the automaton, in order for the comparison to be fair,

we must place the pulled out pattern retrieval in an optimal position among

the other automaton-outside operators. We therefore need to design more

rewrite rules to move the automaton-outside operators around.

• For cost estimate, most previous research [63, 57] is on costing the tuple-

based operators. For a Raindrop plan, in addition to costingthe tuple-based

operators, we also need to cost the token-based operators which has not been

studied before. The costs of token-based and tuple-based operators must be

consistently defined so that the costs of a pattern retrievalbefore and after it

is pulled out are comparable.

• The search space in the automaton-in-or-out optimization can be exponen-

tial. Assume there aren patterns in the query, we can choose to pull zero

patterns out of the automaton (C0
n possibility), or to pull one pattern out (C1

n

possibilities) and so on. Even just considering pattern retrieval push-in or

pull-out, we can haveC0
n + C1

n + C2
n + ... + Cn

n = 2n alternative plans, not

to mention that more alternative plans can be brought by other rewrite rules.

How to efficiently find a “good” plan within such an exponential search space

1.3. DISSERTATION RESEARCH FOCUS 17

is a major challenge.

To complicate matters further, stream sources are often autonomous from the

stream processors. It is very likely that the statistics about the stream source are

unknown before the stream arrives. Ideally, we do not want todedicate time solely

for the statistics collection. The reason is that this wouldrequire buffering all the

data that arrive during the statistics collection only period so that these data can be

processed later. It not only puts strain on the system memorybut also increases the

query response time. Therefore, we instead target at run-time optimization, i.e., we

run an initial plan on the stream, collect statistics and then optimize the initial plan

using the statistics.

Compared to the compile time optimization, i.e., deciding aplan before any

data are processed, run-time optimization faces an additional challenge, that is,

plan migration [85]. In the compile time optimization, oncean optimal plan is

found, we simply start to run it on the data. In the run-time scenario, we how-

ever have to consider how to migrate from a currently runningplan to a new plan

found by the optimizer. We impose two requirements on the plan migration strat-

egy. First, it must be correct, meaning the process with the plan migration should

generate exactly the same result as that without the plan migration. Second, it

should also be efficient. Otherwise the benefits of run-time optimization may be

outweighed by its overhead.

When we process a query, two scenarios regarding the stream environment may

arise. In the first scenario, the stream environment has stable data characteristics,

i.e., the costs and selectivities of all operators in the query do not change over time.

This means that we can start off with a plan, collect statistics for a moment, and

1.3. DISSERTATION RESEARCH FOCUS 18

then optimize the plan. After this optimization, we do not have to collect statistics

or perform optimization any more since the current plan remains optimal for the

rest of the execution.

In the second scenario, the data statistics change over time. Such variation

commonly arises due to the correlation between the selection predicates and the

order of data delivery [13]. Suppose a stream source about employees is clustered

on age. A selectionsalary > 100,000 can have higher selectivity when the data

of elder employees are processed (elder employees usually have higher salary).

In such a scenario, we need to constantly monitor these statistics and constantly

optimize the plan. Compared to the first scenario where the optimization only

needs to take place once, the second scenario poses strictertime requirement on

finding a new plan quickly.

Targeting the above challenges, we have developed a set of techniques as be-

low:

1). We design two types of rewrite rules to optimize the automaton-outside pro-

cessing. One type of rules commutes the automaton-outside operators. The

other type of rules changes the evaluation order of the inputoperators of

structural joins. Structural joins are special joins in Raindrop that take ad-

vantage of the automaton computations to efficiently “glue”linear patterns

into tree patterns. Correspondingly, we propose both heuristics and rank

functions (a cost-based technique) to optimize the plan using these rewrite

rules. (Sections 3.1, 3.3 and 3.4)

2). We design a cost-model for both the token-based and tuple-based computa-

tions. In particular, we observe that in the automaton computations, some

1.3. DISSERTATION RESEARCH FOCUS 19

cost is amortized across multiple pattern retrieval. That is to say, the cost of

retrieving multiple patterns is not a simple summation of the cost of retriev-

ing each individual pattern. We take this feature into account when develop-

ing the cost-model for the automaton computations. (Section 3.2)

3). For the stream environment with stable data characteristics, we propose an

enumerative and a greedy algorithm to search through the solution space.

We propose to expedite the search by reducing the time spent on costing

each alternative plan. This is achieved by two techniques, incremental cost

estimate and detection of same cost change. (Sections 3.5 and 3.6)

4). For the stream environment with fluctuating characteristics, we drop one

type of rewrite rules which usually is less likely to affect the plan perfor-

mance compared to other rewrite rules. This reduces the number of alterna-

tive plans in the search space. More importantly, within this search space,

we are able to provide a greedy algorithm with pruning rules.The pruning

rules exclude some alternative plans that are guaranteed not to be optimal.

(Section 3.7)

5). We analyze the cost model and derive a minimal set of statistics that need

to be collected at run-time. We enhance the Raindrop operators so that they

can collect statistics at the same time when they are executed. (Section 3.8)

6). We design an incremental plan migration strategy that reuses the automaton

of the currently running plan. We also propose amigration window, which is

a period of time in which the migration can safely start without crashing the

system nor generating incorrect results. We further show that this migration

1.3. DISSERTATION RESEARCH FOCUS 20

window is already “widest”. In other words, we cannot define another mi-

gration window that contains the proposed one but still guarantees that any

plan migration within it is safe. (Section 3.9)

1.3.3 Schema-based Optimization for Automaton Processing

If the schema of the XML stream is known, we can use it to further optimize a

Raindrop plan. Among the three major functionalities of an XML query language,

namely, pattern retrieval, filtering (e.g., join) and restructuring (e.g., group-by),

we can borrow existing techniques for the latter two functionalities. For example,

semantic query optimization (SQO) has been well studied in relational databases.

Classical techniques include join elimination, filter elimination, empty result de-

tection etc. They utilize schema knowledge such as key/foreign key and domain

constraints. As long as the counterpart schema knowledge isoffered for the XML

stream, these techniques can be equally applied.

In contrast, pattern retrieval is specific to the XML data model. Therefore, re-

cent work on XML SQO techniques [11, 26, 30, 35, 53] focuses onpattern retrieval

optimization. Most of them fall into one of the following twocategories:

1. Techniques in the first category are applicable to both persistent and stream-

ing XML. For example,query tree minimization[11, 83] would simplify a query

asking for “all auctions with an initial price” to one askingfor “all auctions”, if it

is known from the schema that each auction must have an initial price. The pruned

query is typically more efficient to evaluate than the original one, regardless of the

nature of the data source.

2. Techniques in the second category are only applicable to persistent XML.

For example, “query rewriting using state extents” [53] exploits the fact that an

1.3. DISSERTATION RESEARCH FOCUS 21

index may have been built on element types. Given an element type, all the XML

element nodes of this type (called “extents”) can be directly accessed using the

index. With the schema, the element types of the query results can be inferred. The

extents of these inferred element types can then be returnedas query results. Since

in persistent XML applications, the data is available before the query processing,

it is practical to preprocess the data to build indices. Thisoften is not the case for

XML stream applications since data arrives on the fly and usually no indices are

provided in the data.

We instead focus on SQO specific to XML stream processing. Thedistinguish-

ing feature of pattern retrieval on XML streams is that it solely relies on the token-

by-token sequential traversal . There is no way to jump to a certain portion of the

stream (similar to the sequential access manner on magnetictapes). We however

can use schema constraints to expedite such traversal by skipping computations

that do not contribute to the final result, as illustrated in Example 1.

Example 1 Given a query/news[source] [//keyword contains “ipod”], without

schema, whether a news element satisfies the two filters is only known when an

end tag of news has been seen. Four computations have to be performed all the

time, namely, (1) buffering the news element, (2) retrieving pattern “/source”,

(3) retrieving pattern “//keyword” and (4) evaluating whether a located keyword

contains “ipod”. Suppose instead a DTD<!ELEMENT news (title, source?, date,

keyword+, ...)> is given. The pattern “/date” can be located even though it is not

specified in the query. If a start tag of date is encountered but no source has been

located yet, we know the currentnews will not appear in the final result. We can

then skip all remaining computations within the currentnews element. This can

1.3. DISSERTATION RESEARCH FOCUS 22

lead to significant performance improvement when the size ofthe XML fragment

fromdate to the end ofnews is large (saving the cost of computation (1)) or there

are a large number ofkeyword elements (saving the cost of computations (3) and

(4)).

Only a limited number of XML stream processing engines [17, 18, 30, 35, 52]

have looked at the SQO opportunity. Among them, SQO in [30, 52] is not stream-

specific (further discussed in Section 5.3) while SQO in [17,35] is stream-specific

but has the drawbacks listed below.

Limited Support for Queries. First, [17, 35] address queries with limited expres-

sive power, i.e., boolean XPath matching that only returns boolean values indicat-

ing whether an XPath is matched by the XML stream. In other words, boolean

XPath matching does not differentiate /news[source]from /news/source. As for

XSM [52], even though it supports XQuery, its SQO essentially optimizes only

those parts of XQuery that are equivalent to boolean XPath matching. A more

powerful language, like XPath or XQuery, raises new challenges in SQO as listed

below.

1. How to decide whether a schema constraint is useful. We first use XPath as

an example. Given a querynews/source, knowing that “sourcemust occur before

date” is not helpful. Early detection of the absence ofsourcewill not lead to any

cost savings in buffering, since nothing besides thesourceneeds to be buffered

(this constraint however would be useful to the querynews[source]). The above

constraint will not help the querynews[source]/title either, becausetitle has al-

ready been retrieved by the time when the absence ofsourcewould be detected

as<date> is encountered. When it comes to XQuery, more subtleties, such as

1.3. DISSERTATION RESEARCH FOCUS 23

variable bindings and nested queries, have to be considered.

2. How to execute the optimized query. XML stream-specific SQO may take

place at a lower level than the other SQO. Typically, SQO techniques rewrite a

query into a more efficient format at the syntactic level (e.g., with less predicates

[66], less patterns [11] or smaller extents [53]). However,no XQuery can capture

the optimization in Example 1 at the syntactic level. Specific physical implemen-

tations must be devised for these optimization techniques.With more powerful

queries supported, the physical implementations become more complex. For ex-

ample, for an XQuery that buffers data, temporary data must be cleaned carefully

when computations are skipped. In Example 1, whensourceis found not to ap-

pear, the partially storednewsmust be cleaned. Or for an XQuery that has nested

subqueries, a failed pattern in the inner query should not affect the computations in

the outer query (discussed more in Section 4.2.1).

Overlooking Synergy of General and Stream Specific Optimizations. Even

within the scope of the queries and the constraints these SQOs address [26, 18,

52, 35], some optimization opportunities are overlooked. These opportunities arise

from the synergy of general and stream-specific XML SQO. For example, type

inference, which infers the types of the nondeterministic navigation steps such as

“*” or “//”, can be combined with the stream specific XML SQO toenable more

optimization opportunities.

Lack of Strategies for Applying Possibly Overlapping Optimization Techniques.

[17, 35] both consider a single optimization technique using one type of schema

constraint. Their proposed technique can be independentlyapplied on different

parts of the query. If more types of constraints are explored, multiple techniques

must be considered. We have observed that when applying these different tech-

1.4. DISSERTATION OUTLINE 24

niques or even one complex technique on different parts of the query, they may

“overlap”, i.e., unnecessarily optimizing the same part ofthe query which causes

additional overhead. Strategies are needed to avoid such redundant optimization.

In this dissertation, we propose XML stream specific SQO techniques that

overcome the above drawbacks. Our techniques have the belowfeatures:

• Our techniques target at XQuery, a query language that is more powerful and

a super set of the boolean XPath matching and XPath query languages.

• We utilize type inference techniques in our SQO which enables more parts

of a query (i.e., the parts containing “//” or “*”) can be optimized.

• We design a set of optimization rules. Each rule utilizes a different schema

type. We also design a rule application algorithm that ensures: no benefi-

cial optimization is missed (completeness); and no redundant optimization

is introduced (minimality).

• We incorporate these SQO techniques into our XML stream processing en-

gine. We propose strategies for correctly and efficiently evaluating the Rain-

drop query plans optimized with SQO.

1.4 Dissertation Outline

We present the three research problems, namely, an automaton-algebra combined

architecture, run-time optimization, and schema-based optimization, in Chapters

2, 3 and 4 respectively. Related work is described in Chapter5. We conclude and

discuss possible future directions in Chapter 6.

1.4. DISSERTATION OUTLINE 25

The materials in some chapters have been published as journal and conference

papers. The materials in Chapter 2 have been presented in [47, 39, 40]. The mate-

rials in Chapter 4 have been presented in [38, 41].

26

Chapter 2

Raindrop Architecture:

Combining Automaton and

Algebra Processing Styles for

XML Stream Processing

2.1 Three-level Algebraic Framework Overview

The Raindrop algebraic framework is composed of plans at three levels. A lower

level plan adds more details to its adjacent higher level. AnXQuery will be first

compiled into the plan at the highest level. Step by step, it will be finally refined

into the plan at the lowest level.

1. Semantics-focused plan:The plan at this level focuses on expressing the

semantics of an XQuery. The nature of the input source, i.e.,whether it is stored

2.2. SEMANTICS-FOCUSED PLAN 27

data or tokenized stream data, is not exposed yet. General XQuery optimization

techniques that are not specific to either stored or streaming data, such as XQuery

decorrelation that removes nested subqueries [29, 71], andquery tree minimization

that removes redundant pattern retrieval [11], can be applied on this query plan.

2. Stream logical plan: The plan at this level is specialized to account for

the input being XML token streams, instead of assuming random access to the

complete XML data. For this, the data model accommodates tokenized inputs.

Correspondingly, new operators and new plan structures arealso introduced to

model the automata processing. Moreover, rewriting rules are defined to rewrite

the plans involving these new constructs.

3. Stream physical plan: This level provides implementation details for each

operator in the stream logical plan. In particular, the implementations of the op-

erators that model automata processing have an important feature. That is, they

require certain synchronization with other operators to ensure their correctness.

The semantics-focused plan is described in Section 2.2. Sections 2.3 and 2.4

discuss the stream data model and rewriting rules in the stream logical plan. The

stream physical plan is presented in Section 2.5. Section 2.6 then presents a pro-

gramming model for synchronizing the execution of physicaloperators. Experi-

mental results are reported in Section 2.7.

2.2 Semantics-Focused Plan

Our semantics-focused planis based on an XML algebra called the XML Algebra

Tree (XAT) [78, 79, 77]. The algebra defines a set of operatorsincluding (1) XML-

specific operators, e.g., operators for navigating into thenested XML structures,

2.2. SEMANTICS-FOCUSED PLAN 28

and operators for XML result construction, and (2) SQL-likeoperators such as

Select, Join, Groupby, Orderby, Union, DifferenceandIntersect.

The input and output of the operators are a collection ofXAT tuples. An XAT

tuple is composed of cells. A cell in an XAT tuple can be one of the following

types: (1) an atomic value, (2) an XML element node or (3) an unordered or or-

dered collection of XML element nodes1. Each cell is bound to a variable that is

explicitly or implicitly specified in the query. Figure 2.1 depicts some example

XAT tuples. $s, $a and$b are explicitly defined variables. The cells bound to$s,

$a and $b contain one XML element node respectively. Results of$a/initial

and $b/phone are not explicitly bound to a variable in the query. The query

compiler assigns random variable names to their result, namely, $d and$e. The

cells bound to$d and$e contain a collection of XML nodes: the collection for

$d ($d = $a/initial) contains one element node while the collection for$e ($e

= $b/phone/text()) contains two text nodes. We use the notation “||” to separate

items in a collection.

$s
<open_auctions> …

</open_auctions

$a
<open_auction> …
<open_auction>

$d
<initial>15.00

</initial> ||

$b
<seller>…
</seller>

$e
508-1234567 ||
508-0004567

Figure 2.1: Example XAT Tuples

Table 2.1 gives the semantics of the XAT operators that will be used in this

paper. The full set of XAT operators can be found in [77]. Eachoperator in Ta-

ble 2.1 is defined in terms of the output expected when an inputXAT tuple u is

consumed. Some operators generate new columns. For example, a NavUnnestor

NavNestoperator (generally referred asNavigateoperator when the difference be-

1XQuery supports both unordered and ordered expressions.

2.2. SEMANTICS-FOCUSED PLAN 29

tween them is not critical) navigates into a context node andfinds the destination

element nodes. Such a navigate operator generates new columns containing the

destination element nodes. For example, in Table 2.1,NavUnnestor NavNesthas

one output variable$col2.

Operator Description

SourcesourceName$col Bind data source specified bysourceName to column$col.

Taggerp$col(u) Tag an input tupleu according to patternp. Output a new tuple which
is the concatenation ofu and taggered data. The taggered data is bound
to new column$col.

NavUnnest$col1,path$col2(u) Navigate into element node in column$col1 of input tupleu. For each
destination noden reachable viapath, output a new tuple which is the
concatenation of input tuple andn. n is bound to new column$col2.

NavNest$col1,path$col2(u) Navigate into element node in column$col1 of input tupleu. All des-
tination nodes reachable viapath are aggregated into a collectionN .
Output a new tuple which is the concatenation ofu and the collection.
N is bound to new column$col2.

Selectc(u) If input tupleu satisfies conditionc, output it.

Joinc(u, v) If two input tuplesu andv, each from a different input source, satisfy
conditionc, output a tuple which is the concatenation ofu andv.

Table 2.1: Semantics of XAT Operators

Figure 2.2 shows the semantics-focused plan for the query inFigure 1.1 (b). It

also shows the output XAT tuples of some operators. We now highlight the differ-

ence of two types of navigate operators, namely,NavUnnestandNavNest. A vari-

able binding in a “for” clause is modeled as aNavUnnestoperator. For example,

“ for $a in Stream(“openauctions”)/openauctions/openauction” is expressed as

NavUnnest$s,/open auctions/open auction$a where$s represents the input stream.

The “for” clause iterates over the items in the expression results and binds the

variable to each item in turn. Therefore$a of an output tuple contains onlyone

element node(refer to the output ofNavUnnest$s,/open auctions/open auction$a in

Figure 2.2).

In contrast, a binding in a “let”, “where” or “return” clauseis expressed as a

2.2. SEMANTICS-FOCUSED PLAN 30

Tagger<auction>$b, $c</auction>$f

NavUnnest$s, /open_auctions/open_auction$a

NavUnnest$a, /seller$b

NavNest$a, /initial$d

NavUnnest$a, /bid/bidder $c

Source“Open_auctions”$s

Select$e= “508-1234567”

NavNest$b, /phone/text() $e

$s
<open_auctions>…

</open_auctions

$s
<open_auctions>…

</open_auctions

$s
<open_auctions>…
</open_auctions>

$a
<open_auction>…
<open_auction>

$d
<initial>15.00

<initial> ||

$s
<open_auctions>…

</open_auctions

$a
<open_auction>…
<open_auction>

$d
<initial>15.00

<initial> ||

$b
<seller>…
</seller>

$e
508-1234567 ||
508-0004567

$s
<open_auctions>…
</open_auctions>

$a
<open_auction>…
<open_auction>

Join$a

$s
<open_auctions>…

</open_auctions

$a
<open_auction>…
<open_auction>

<initial>15.00
<initial> ||

$b
<seller>…
</seller>

$d

Figure 2.2: Semantics-Focused Plan (annotated with intermediate results) for
querying data in Figure 1.1 (a))

NavNestoperator. Each such clause binds a variable to the expression results with-

out iteration. The nameNavNestindicates that the output variable of an output tu-

ple containsa collection of element nodes(refer to the outputs ofNavNest$b,/phone/text()$e

in Figure 2.2).

At this top level of the framework, we apply general optimization heuristics

for query rewriting [78, 79]. For example, the operator cancel-out rule removes

redundant construction of intermediate results. As another example, the navigation

merge rule merges two path expressions into a longer path expression. Since these

algebra rewriting heuristics are not stream specific, they are omitted here. See

[78, 79] for complete details.

2.3. MODELING TOKEN-BASED PROCESSING IN ALGEBRA 31

2.3 Modeling Token-based Processing in Algebra

The second level in the framework, i.e., the stream logical level, is targeted at pro-

cessing the query on a tokenized input stream. In order to maintain the “closure”

property of the algebra, i.e., use one data model throughoutthe algebraic frame-

work, the XAT data model is extended at this level to accommodate data inputs.

That is to say, besides the three data formats allowed in an XAT tuple cell as de-

scribed in Section 2.2, a new data format calledcontextualized tokenis additionally

supported. New operators and query plan structures are alsointroduced to manip-

ulate this new data format.

2.3.1 Token-Based Data Format

The new data format, calledcontextualized token, consists of two parts:token

valuedescribes the local characteristics of the token; andtoken contextdescribes

the relationship between this token and the other tokens in the stream.

Token Value. A token value essentially is the information represented bya SAX

event, namely, (1) the token’s type (i.e., a start tag, end tag or PCDATA item), (2)

the token’s name (for a start or end tag) or the token’s content (for a PCDATA item)

and (3) the token’s attributes if any (for a start tag).

Token Context. We support context regarding the forward ancestor-descendant

relationships between tokens. These relationships are most commonly queried in

XPath expressions usingchild anddescendantaxis specifications.

Definition 1 A tokent is associated withan elemente if t is e’s start tag, end tag

or direct PCDATA content. Each token is associated with exactly one element.

2.3. MODELING TOKEN-BASED PROCESSING IN ALGEBRA 32

Definition 2 A tokent is acomponent tokenof an elemente if the element associ-

ated witht is e’s descendant element ore itself.

Example 2 In Figure 1.1 (a), token 2 is associated with anopenauctionelement.

Tokens 2 to 29 are all component tokens of thisopenauctionelement.

Three boolean functions are supported on the contextualized token types:

1. Reachable(t1, t2, p) compares the accessibility relationship between tokens

t1 andt2: if t1 andt2 are both start tags, the function returns whether the element

associated witht2 is reachable viap from the element associated witht1.

2. Within(t1, t2) compares the component relationship between tokenst1 and

t2: if t1 is a start tag, this function returns whethert2 is a component token of the

element associated witht1.

3. t1 = t2 compares whethert1 andt2 are associated with the same element in

terms of element identity (not only the same element content).

2.3.2 Token-Related Operators

Operator Description

StreamSourcestreamName$col Bind stream source specified bystreamName to column$col.

TokenNav$col1,path$col2 Locate tokens that are components of the element which is accessible viapath
from $col1.

ExtractUnnest$col1$col2 Compose tokens located by TokenNav$col1,path$col2 into XML nodes. For each
destination noden reachable viapath, output a new tuple which is the concate-
nation of input tuple andn. n is bound to new column$col2.

ExtractNest$col1$col2 Compose tokens located by TokenNav$col1,path$col2 into XML nodes. All des-
tination nodes reachable viapath are aggregated into a collectionN . Output a
new tuple which is the concatenation of input tuple andN . N is bound to new
column$col2.

StructuralJoin$e Given two input tuplesu andv, if u.$e = v.$e, output a tuple which is the con-
catenation ofu andv.

Table 2.2: Semantics of Token-Related Operators

2.3. MODELING TOKEN-BASED PROCESSING IN ALGEBRA 33

We now introduce new operators that either generate or consume tuples con-

taining contextualized tokens, as listed in Table 2.2. We denote the semantics of

an operator byOpparamsoutvar(Un), whereOp is the operator’s name,params

is a list of input parameters,outvar is the output variable andUn is a collection of

the firstn input tuples. We use the monoid comprehension calculus [31]to express

Opparamsoutvar(Un), i.e., the output ofOp on Un. Informally, a monoid com-

prehension is in the form ofmergeFunc{f(a, b, ...)| a ← A, b ← B, ...,pred1,

pred2, ...}. In the part after “|”, A (resp. B) is a collection on which variablea

(resp.b) iterates.pred1 (or pred2) is a predicate defined over variables such asa

andb. The functionf(a, b, ...) constructs a collection that contains only one tuple.

This single tuple in the collection is composed ofa, b and so on. In the part be-

fore “|”, the functionmergeFunc merges multiple collections into one collection.

In summary, a monoid comprehension returns a collection, which is generated as

follows:

result : = an empty collection;

for eacha in A, b in B, ...,

if pred1 ∧ pred2 ∧ ...

result : = result mergeFunc f (a, b, ...)

returnresult.

For example, a monoid comprehension∪{(a, b)|a ← {1, 2}, b ← {4}} first

creates two collections{(1, 4)} and{(2, 4)}, then merges them using the function

∪ and returns a collection{(1, 4), (2, 4)}.

The notations used for defining the semantics of operators are listed in Table

2.3. We illustrate each operator using the example in Figure1.1. Each token in the

2.3. MODELING TOKEN-BASED PROCESSING IN ALGEBRA 34

Notation Explanation

u.$c get binding of cell$c from tupleu

< c1 = v1, c2 = v2, ... > construct a tuple with cellc1 assigned the valuev1, cell c2 assigned the value
v2...

u1 ◦ u2 construct a tuple by concatenating tuplesu1 andu2. If u1 andu2 contain cells
that are bound to the same variable, remove one of the redundant cells.

++ merge operator for list (a list is represented as [])

⊕ compose tokens into XML nodes

Table 2.3: Notations Used for Defining Token-Related Operators

input or output is annotated with its identifier.

StreamSource

This operator binds the sequence of the tokens from the stream specified bystrName

to the output variable.

Example 3 For StreamSource“open auctions”$s, its first 4 output tuples are:

$s $s̃

<openauctions>1 <openauctions>1

<openauctions>1 <openauction>2

<openauctions>1 <seller>3

<openauctions>1 <sellerid>4

Suppose the operator now consumes the firstn tokens, denoted asTn, in the

stream.n output tuples are constructed. Each output tuple contains$s, the explic-

itly specified output variable ofStreamSource operator.$s is bound to the start

tag of the root element in the stream, denoted ast0. t0 identifies the root element

and thus also identifies the stream (in the rest of this section, we always use a start

tag to identify its associated element). Simply identifying an element is not good

enough. We are also interested in the element content. Therefore each output tuple

2.3. MODELING TOKEN-BASED PROCESSING IN ALGEBRA 35

also contains an implicit variable$s̃ for $s. $s̃ is bound to a component token

of the element associated with$s. In short, an output tuple ofStreamSource

contains an identifier of the stream and a component token of the stream.

StreamSourcestrName$s(Tn) =

++ {< $s = t0, $s̃ = t> |t← Tn}

Token Navigate Operator TokenNav

TokenNav$col1,path$col2 operator recognizes patterns over the token stream. It

returns the component tokens of the destination element$col2 accessible viapath

from the context element$col1. Each output tuple contains such a component

token and the token identifying the destination element.

Example 4 If TokenNav$s,/open auctions/open auction$a takes the first 4 output tu-

ples fromStreamSource“open auctions”$s in Example 3 as input, its output is:

$s $a $ã

<openauctions>1 <openauction>2 <openauction>2

<openauctions>1 <openauction>2 <seller>3

<openauctions>1 <openauction>2 <sellerid>4

For example, the second output tuple represents that token 2, i.e.,<openauction>,

is reachable via/open auctions /open auction from token 1. It also represents

that token 3, i.e.,<seller>, is a component of the element associated with token 2.

TokenNav$col1,path$col2(Un) =

++{u1◦ < $col2 = u1.$c̃ol1, $c̃ol2 = u2.$c̃ol1 > |

u1 ← Un, u2 ← Un, Reachable(u1.$col1, u1.$c̃ol1, path),

Within(u1.$c̃ol1, u2.$c̃ol1)}

2.3. MODELING TOKEN-BASED PROCESSING IN ALGEBRA 36

An input tupleu1 ∈ Un to TokenNav$col1,path$col2 contains bindings of vari-

able$col1 and the explicit variable$c̃ol1. If Reachable(u1.$col1, u1.$c̃ol1, path)

is true, thenu1.$c̃ol1 is the start tag of a destination element. For each component

token of this destination element, i.e., for eachu2.$c̃ol1 that hasu2 ∈ Un and

Within(u1.$c̃ol1, u2.$c̃ol1) is true, an output tuple is constructed. The output

tuple is the concatenation ofu1, the start tag of the destination element ($col2 =

u1.$c̃ol1), and the component token (i.e.,$c̃ol2 = u2.$c̃ol1).

Composition Operator ExtractUnnest

Sections 2.3.2 and 2.3.2 present two extract operators,ExtractUnnest$col1$col2

andExtractNest$col1$col2 (generally referred asExtractoperator). Both of them

must have an input operator in the form ofTokenNav$col1,path$col2. The input

TokenNav$col1,path$col2 locates the component tokens of$col2 while the extract

operators composes these component tokens into XML nodes.

Example 5 SupposeExtractUnnestsa consumes the first 3 output tuples of

TokenNav$s,/open auctions/open auction$a in Example 4. It generates the below

tuple.

$s $a $ã

<openauctions>1 <openauction>2 <openauction>2<seller>3 <sellerid>4

The cell$ã contains a yet-to-be-completed element node. It is composed of

tokens 2, 3 and 4. This tuple is a partial output for the input seen so far. Eventually,

$ã would contain a complete element node composed from token 2 to token 29.

ExtractUnnest$col1$col2(Un) =

Group
{$col2},⊕($̃col2)

Un

2.3. MODELING TOKEN-BASED PROCESSING IN ALGEBRA 37

Group
{$col2},⊕($̃col2)

Un is a function that groups input tuples on destination

node$col2 so that the component tokens (i.e.,$c̃ol2) of the same destination node

are all collapsed into one group. The component tokens within one group are then

composed (represented as⊕) into one element node.

Composition Operator ExtractNest

The difference betweenExtractNest andExtractUnnest is analogous to the

difference betweenNavNest andNavUnnest mentioned in Section 2.2. The

destinations found within the same context are aggregated into one single collec-

tion.

Example 6 SupposeExtractNestbe consumes the first 2 tuples generated by

TokenNav$b,/phone/text()$e which are,

$s $a $b $e $ẽ

<open auctions>1 <open auction>2 <seller>3 <phone>7 508-12345678

<open auctions>1 <open auction>2 <seller>3 <phone>10 508-000456711

the output tuple below is generated:

$s $a $b $e

<open auctions>1 <open auction>2 <seller>3 508− 1234567||508 − 0004567

The output tuple represents that within anopenauctionelement with a start

tag 2 (bound to$a), there is asellerchild element with a start tag 3 (bound to$b).

So far, twophonesubelements of thissellerhave been formed and aggregated into

one collection (bound to$e).

ExtractNest$col1,path$col2(Un) =

Group
{$col1},++($c̃ol2)

(Group
{$col2},⊕($c̃ol2)

Un)

2.3. MODELING TOKEN-BASED PROCESSING IN ALGEBRA 38

From the definitions ofExtractNest andExtractUnnest, we can seeExtractNest

has a further grouping on the output ofExtractUnnest by the context node$col1.

In this way, all the destinations found within the same context are grouped together

and aggregated (represented as++) into one collection.

Structural Join

In Figure 1.1 (b), path expressions$a/seller and$a/bid/bidder share the same con-

text variable$a. To capture this relationship,StructuralJointakes outputs of two

Extractoperators as inputs and “glues” bindings of individual pathexpressions.

Example 7 Suppose output tuples ofExtractNestab and ExtractNestac

are joined on$a. Assume the left input is one XAT tuple:

$s $a $b

<openauctions>1 <openauction>2 <seller><sellerid>001 ...</seller>

and the right input corresponds to two XAT tuples:

$s $a $c

<openauctions>1 <openauction>2 <bidder><bidderid><032> ...</bidder>

<openauctions>1 <openauction>2 <bidder><bidderid><145> ...</bidder>

Then two output tuples are constructed as below:

$s $a $b $c

<open auctions>1 <open auction>2 <seller><sellerid> 001

...</seller>

<bidder><bidderid>

032...</bidder>

<open auctions>1 <open auction>2 <seller><sellerid> 001

...</seller>

<bidder><bidderid>

145...</bidder>

2.3. MODELING TOKEN-BASED PROCESSING IN ALGEBRA 39

The output tuples represent that within anopenauctionelement with start tag

2 (bound to$a), there is asellerelement (bound to$b) and twobidderelements

(bound to$c).

Below, we useULn1 andURn2 to denote the firstn1 andn2 input tuples from

the left and right upstream operators respectively.

StructuralJoin$e(ULn1, URn2) =

++ {ul ◦ ur|ul← ULn1, ur ← URn2, ul.$e = ur.$e}

2.3.3 Stream-Specific Plan Structures

XML streams arrive on the fly so that unless a token is explicitly stored, it can be

accessed only once. The token-related operators must be connected in a way which

ensures that no repetitive token access occurs. An automaton can read data once

and concurrently recognize multiple patterns. We therefore propose a special plan

structure that models the automata behavior.

Each pattern is defined as a sequence of states in the automaton. The input

drives the transition between these states. Figure 2.3 depicts a stream logical plan

adopting this processing style.TokenNav$a,/seller$b andTokenNav$a,/bid/bidder$c

share the same upstream operatorTokenNav$s,/open auctions/open auction$a. This

sharing indicates that, for every token read from the commonupstream operator,

we try to match either$a/seller or $a/bid/bidder. The two downstream extract

operatorsExtractUnnestab andExtractUnnestac compose theseller and

bidder element nodes respectively. Later on,StructuralJoin$a glues theseller

2.4. REWRITE RULES INVOLVING TOKEN-RELATED OPERATORS 40

andbidderelements which are subelements of the sameopenauctionelement into

one output tuple.

Figure 2.3: Stream Logical Plan for the Semantics-focused Plan in Figure 2.2

2.3.4 Regular Tuple-based Operators

Apart from the token-based operators, the rest of the operators in a Raindrop plan

consume or generate the “regular” cells of tuples, i.e., they do not consume or

generate tokens.NavUnnest, NavNest, Select andTagger defined in Table

2.1 are examples of such operators.

2.4 Rewrite Rules Involving Token-Related Operators

We now present two rewrite rules that involve token-relatedoperators. The first

rewrite rule maps the semantics-focused plan to a default stream logical plan while

the second rewrite rule provides alternative stream logical plans other than the de-

fault one.

2.4. REWRITE RULES INVOLVING TOKEN-RELATED OPERATORS 41

2.4.1 Default Mapping Rewrite Rule

The default mapping rewrite rule, shown in Figure 2.4, provides a default map-

ping from a semantics-focused plan (left in Figure 2.4) to a stream logical plan

(right in Figure 2.4). First, the generalSourceelement is replaced by a more

specificStreamSourceelement. Second, the bottommostNavUnnest operator

(resp. NavNest) is mapped to aTokenNav and anExtractUnnest (resp.

ExtractNest) pair. The purpose of this rewriting is to avoid the extraction of

the complete incoming stream. Extracting the complete incoming stream not only

increases the response time but also may be impossible when the input is infinite.

Therefore by default, we push the bottommost node navigate operator into the au-

tomata.

Figure 2.4: Default Mapping Rewrite Rule

For example, this rule can be applied on Figure 2.2 to derive adefault stream

logical plan as shown in Figure 2.5. In the default stream logical plan, all the

openauctionelements are extracted. The composed element nodes will be navi-

gated by later operators.

2.4. REWRITE RULES INVOLVING TOKEN-RELATED OPERATORS 42

Figure 2.5: Plan Rewritten from Figure 2.2: Default MappingRewrite Rule Ap-
plied onNavUnnest$s,/open auctions/open auction$a

2.4.2 Token-or-Node Mode Change Rule

We providetoken-or-node mode change rulewhich rewrites an operator that re-

trieves pattern on XML nodes (i.e.,NodeNav) to an operator that retrieves pattern

on tokens (i.e.,TokenNav). There are two circumstances for applying this rule.

Figure 2.6 shows the rule in the first circumstance. In this circumstance, the top

plan does not contain aStructuralJoin$col1. When rewrite rule is applied on

NavUnnest(NavNest)$col1,path1$col2, the top plan is rewritten to the bottom

plan in which aStructuraljoin$col1 is introduced. We call this rewrite rule a

mode change with introducing/eliminating StructuralJoinrule.

We now explain why this rewriting results in an equivalent plan. The in-

ternal logic ofNavUnnest(NavNest)$col1,path1$col2 can be divided into two

parts. First, it locates the destination element nodes $col2. This is achieved by

TokenNav andExtractUnnest(ExtractNest) in the rewritten plan. Second, it

2.4. REWRITE RULES INVOLVING TOKEN-RELATED OPERATORS 43

TokenNav$col0, path0$col1

ExtractOp$col0$col1

TokenNav$col0, path0$col1

ExtractOp$col0$col1

NavUnnest(NavNest)$col1, path1$col2

TokenNav$col1, path1$col2

ExtractUnnest(ExtractNest)$col1$col2

StructuralJoin$col1

Figure 2.6: Mode Change with Introducing/Eliminating StructuralJoin

generates an output tuple for each destination element node. Each output tuple is a

concatenation of the input tuple and the destination element node. This is equiva-

lent to the cartesian product of the input tuples and the set of destination element

nodes.StructuralJoin in the rewritten plan captures this part. In summary, the

rewritten plan has the same logics as the original plan.

Figure 2.7 shows the rewrite in the second circumstance. Thetop plan is

the bottom plan in Figure 2.6 which contains aStructuralJoin$col1. When the

rewrite rule is applied onNavUnnest(NavNest)$col1,path1$col2, it will not in-

troduce anotherStructuralJoin$col1. The resultedTokenNav$col1,path1$col2

andExtractUnnest(ExtractNest)$col1$col2 will be placed under the existing

StructuralJoin$a. We call this amode change without introducing/eliminating

StructuralJoinrule.

Figure 2.8 shows anExtract Eliminationrule. In the top plan, no regular tuple-

based operators consume$col1. That is to say,$col1 need not appear in the output

tuples ofStructuralJoin$col1. We can then eliminateExtract$col0$col1 which

2.4. REWRITE RULES INVOLVING TOKEN-RELATED OPERATORS 44

TokenNav$col0, path0$col1

ExtractOp$col0$col1 TokenNav$col1, path1$col2

ExtractUnnest(ExtractNest)$col1$col2

StructuralJoin$col1

NavUnnest(NavNest)$col1, path2$col3

TokenNav$col0, path0$col1

ExtractOp$col0$col1 TokenNav$col1, path1$col2

ExtractUnnest(ExtractNest)$col1$col2

StructuralJoin$col1

TokenNav$col1, path2$col3

ExtractUnnest(ExtractNest)$col1 $col3

Figure 2.7: Mode Change without Introducing/Eliminating StructuralJoin

2.4. REWRITE RULES INVOLVING TOKEN-RELATED OPERATORS 45

extracts component tokens of bindings of$col1 into XML element nodes. For

example, we can apply this rule on the plan in Figure 2.3 and eliminate the op-

eratorExtractUnnestsa since no operator aboveStructuralJoin$a needs to

consume bindings of$a.

TokenNav$col0, path0$col1

TokenNav$col1, path1$col2

ExtractUnnest(ExtractNest)$col1$col2

StructuralJoin$col1

ExtractOp$col0$col1 TokenNav$col1, path2$col3

ExtractUnnest(ExtractNest)$col1$col3

TokenNav$col0, path0$col1

TokenNav$col1, path1$col2

ExtractUnnest(ExtractNest)$col1$col2

StructuralJoin$col1

TokenNav$col1, path2$col3

ExtractUnnest(ExtractNest)$col1$col3

… no operator consuming $col1

Figure 2.8: EliminateExtract$col0$col1 when no Regular Tuple-based Operator
Consumes$col1

2.4.3 Secondary Effect of Mode Change of Pattern Retrieval

Changing the mode of a pattern retrieval operatorsop may force the other operators

which havepattern dependencyrelationships withop to have mode changes as

well.

2.4. REWRITE RULES INVOLVING TOKEN-RELATED OPERATORS 46

Definition 3 Suppose we have two pattern retrieval operatorsnavOp1 andnavOp2

which retrieve$v = $u/p1 and$y = $x/p2 respectively.navOp1 andnavOp2 can

be either aTokenNav type orNodeNav type and they two do not have to be the

same types. If$x = $v/p3, we say$u/p1 is theancestor patternof $x/p2; $x/p2

is thedescendant patternof $u/p1 of $v). We also saynavOp1 andnavOp2 have

a pattern dependencyrelationship.

When we retrieve a pattern in the automaton, its ancestor patterns have to re-

trieved in the automaton. When we retrieve a pattern out of the automaton, its

descendant patterns have to be retrieved out of the automaton. We therefore have

Property 1.

Property 1 Secondary effect of Mode Change of Pattern Retrieval: When the

mode of a token pattern retrieval is changed, the mode of all token pattern re-

trieval on the descendant patterns will be also changed; when the mode of a node

pattern retrieval is changed, the modes of all node pattern retrieval on the ancestor

patterns will be also changed.

For example, if “StructuralJoin introduced” rewrite rule in Figure 2.6 is applied

to change the mode ofNavNest$b,/phone$e in Figure 2.5, all ancestor patterns of

$b/phone, namely,$a/seller and$s/open auctions/open auction, must all be

performed on tokens.$s/open auctions/open auction is already performed on

tokens. Therefore we only need to push in$a/seller before we push in$b/phone.

Figure 2.9 shows the plan after the mode change rule is applied onNavUnnest$a,/seller$b

in Figure 2.5. We then apply “StructuralJoin introduced” rule onNavNest$b,/phone$e

in Figure 2.9 and get a plan shown in Figure 2.10.

2.4. REWRITE RULES INVOLVING TOKEN-RELATED OPERATORS 47

Tagger<auction>$b, $c</auction> $f

TokenNav$s, /open_auctions/open_auction$a

NavUnnest$a, /bid/bidder$c

TokenNav$a, /seller $b

StreamSource“Open_auctions”$s

Select $e = “508-1234567”

NavNest$b, /phone $e

NavNest$a, /initial$d

StructuralJoin$a

ExtractUnnestsa

ExtractUnnest$a $b

Figure 2.9: Plan Rewritten from Figure 2.5: Pattern Retrieval on Token-or-Node
Mode Change Rule Applied onNavNest$a,/seller$b

Tagger<auction>$b, $c</auction> $f

TokenNav$s, /open_auctions/open_auction$a

NavUnnest$a, /bid/bidder$c

TokenNav$a, /seller $b

StreamSource“Open_auctions”$s

Select $e = “508-1234567”

ExtractNest$b, /phone $e

NavNest$a, /initial$d

Join $a

ExtractUnnestsa

ExtractUnnest$a $b TokenNav$b, /phone $e

StructuralJoin$b

Figure 2.10: Plan Rewritten from Figure 2.9: Pattern Retrieval on Token-or-Node
Mode Change Rule Applied onNavNest$b,/phone$e

2.5. IMPLEMENTATION STRATEGIES FOR TOKEN-RELATED OPERATO RS48

If we continue to apply the mode change rewrite rules on everyNodeNav op-

erators in Figure 2.10, we will finally get a plan shown in Figure 2.3. In this plan,

the only regular tuple-based operator isTagger<auction>$b,$c</auction>. This op-

erator does not consume$a. Therefore we can apply the “extract elimination” rule

onExtractUnnestsa to eliminate it.

We can see that by applying different rewrite rules, we can end up with plans

with different amounts of pattern retrieval performed on the tokens. For example,

in the plan depicted in Figure 2.5, only one pattern, i.e.,$s/open auctions/open auction,

is retrieved on the tokens. In the plan depicted in Figure 2.10, two more pattern,

i.e.,$a/seller and$b/phonel, are retrieved on the tokens. We show later that the

different amount of computations in the automata can have a major impact on the

performance.

2.5 Implementation Strategies for Token-Related Opera-

tors

In this section, we present the stream physical level, i.e.,the implementation for

the stream logical operators. Since the implementation forthe regular tuple-based

operators can reuse the one developed for the static contextin a pipelining style

(i.e., operate on each input tuple rather than the whole input), we omit their discus-

sion here. Instead, we focus on the implementation for the token-related operators

which have no counterpart in the static context. A logical operator may have sev-

eral physical implementations. Our purpose here is not to enumerate every possible

alternative, but instead to show one solid base implementation for each of the op-

erators. Clearly, there is room in the future to refine the proposed techniques or

2.5. IMPLEMENTATION STRATEGIES FOR TOKEN-RELATED OPERATO RS49

introduce other alternatives.

2.5.1 Implementation of TokenNav

A StreamSourceoperator can be viewed as a specialTokenNavoperator which

locates the root element in the stream. Therefore we discussStreamSourcetogether

with theTokenNavoperator.

Using Automata for Path Recognition.

We use automata to recognize the path expressions on token streams. Figure 2.11

(a) shows such an automaton for the plan in Figure 2.3. The automaton is composed

of several smaller automata, each corresponding to a different TokenNavoperator

in the plan. Each final state (shown as a state with double circles) corresponds to

the end of a path in aTokenNavoperator.

q0q0

(a) Finite Automaton

(b) Stack Content

q0
q1

q2

q0
q1

<open_auctions><open_auction>

q2
q4

q0
q1

<seller>

q2
q4

q0
q1

<sellerid>

q2
q4

q0
q1

</sellerid>

q2
q4

q0
q1

001

q2
open_auction

q1

initial q3
q4seller

q5phone

q7bid
q0
open_auctions

q6 bidder

Figure 2.11: Implementation ofStreamSource/TokenNav

2.5. IMPLEMENTATION STRATEGIES FOR TOKEN-RELATED OPERATO RS50

A stack [80, 42] stores the history of the state transitions.Figure 2.11 (b) shows

the snapshot of the stack after each token has been processed. The stack contains

instances of the states. Initially, the stack contains onlythe instance of the start

stateq0. Each incoming start tag is looked up in the transition entries of each state

instance at the stack top. For any state that is transitionedto, we push its instance

onto the stack. If no transition is found, we push an empty set. In our example, this

would be the case when<sellerid> is processed. When an end tag is encountered,

the state instances at the stack top are popped off; thus the stack is restored to the

status before its matching start tag had been processed. Fora PCDATA item, no

change is made to the stack.

Synchronization of Automaton with Token-Related Operators

The output tuples ofTokenNavdescribed in Section 2.3 are only logical concepts.

At the physical level, no XAT tuples are actually output byTokenNav. Output

of TokenNav$col1,path$col2 includes (1) token value, (2) information needed for

grouping the tokens that are the components of the same XML node (i.e., identifiers

of $col2), and (3) information needed for grouping XML nodes that aresubele-

ments of the same node (i.e., identifiers of$col1). The semantics ofTokenNav’s

output expected by its downstream token-related operatorsare captured by trig-

gering the corresponding downstream operators when certain automaton events

happen.

Algorithm 1 illustrates the automaton behavior.storeMgr in automaton stores

the data extracted from the stream.storingCountermaintains the number of extract

operators that request to store the token currently being processed. A token may be

requested by multiple extract operators to be stored. For example, suppose a query

2.5. IMPLEMENTATION STRATEGIES FOR TOKEN-RELATED OPERATO RS51

Algorithm 1 Pseudocode of Automaton
public class Automaton{

1: int storingCounter;
2: StorageManager storeMgr;
3: void handleStartTag(Token startTag){
4: for each state on top of stackdo
5: state.transit(startTag);
6: end for
7: for each state pushed onto stackdo
8: if state is associated with extract operatorthen
9: storingCounter++;

10: end if
11: end for
12: if (storingCounter> 0) then
13: storeMgr.store(startTag);
14: end if
15: for each state on top of stackdo
16: trigger corresponding operators;
17: end for
18: }

19: void handleEndTag(Token endTag){
20: pop out all states at stack top;
21: if (storingCounter> 0) then
22: storeMgr.store(endTag);
23: end if
24: for each state popped offdo
25: if state is associated with extract operatorthen
26: storingCounter− −;
27: end if
28: end for
29: for each state popped offdo
30: trigger corresponding operators;
31: end for
32: }

33: void handlePCData(Token pcdata){
34: if (storingCounter> 0) then
35: storeMgr.store(pcdata);
36: end if
37: }

...

}

2.5. IMPLEMENTATION STRATEGIES FOR TOKEN-RELATED OPERATO RS52

Automaton Event Operators Triggered

Instance ofqn pushed onto stack ExtractUnnest$col1$col2, ExtractNest$col1$col2

Instance ofqn popped off stack ExtractUnnest$col1$col2, ExtractNest$col1$col2,
ExtractNest$col2$col3, StructuralJoin$col2

Table 2.4: Association between Automaton Events and Operators Triggered (qn is a
final state of$col2 where$col2 is an output variable ofTokenNav$col1,path$col2)

asks for returning bothopenauction and itsseller elements, then a component

token ofseller is requested to be stored by two extract operators, one for extracting

openauctionand one for extractingseller.

The three methods, namely,handleStartTag, handleEndTagand handlePC-

Data, describe the process of handling a start tag, an end tag and aPCDATA item

respectively. For example, inhandleStartTag, the processing takes three steps.

First, the automaton performs the state transitions and pushes state instances onto

the stack (lines 4 - 6). Second, the automaton computes whether the current token

needs to be stored: if yes, the token is put into the storage manager (lines 12 to 14).

Third, the operators associated with the state instances onthe stack top are invoked

(lines 15 - 17).

In handleEndTag, the processing takes similar three steps. First, the automaton

backtracks its stack (line 20). Second, the token is stored if needed (lines 21 - 22)

and thestoringCounteris maintained (lines 24 - 27). Third, the automaton invokes

the operators associated with the states that are just popped off (lines 29 - 31).

The methodhandlePCDatais straightforward. The automaton does not trigger

any stack transitions nor operators. It simply stores the token if needed (lines 34 -

36).

In the rest of this section, we first review the properties of our automata. We

2.5. IMPLEMENTATION STRATEGIES FOR TOKEN-RELATED OPERATO RS53

then describe the implementations of theExtract andStructuralJoinoperators to

illustrate that indeed the association between automaton events and the execution

of these operators achieves the expected semantics.

Property of Automaton Implementation.

Our automata are designed to satisfy the “exclusive reach” property whenever pos-

sible. This property is important for two reasons. First, itensures the correctness

of synchronizing the automaton events and the token-related operators (i.e., line

16 in handleStartTagand line 30 inhandleEndTagin Algorithm 1). Second, it

enables us to implement the structural join operator more efficiently than previous

literature. This will be illustrated when we describe the implementation strategies

of token-related operators in Sections 2.5.2 to 2.5.4.

Property 2 Final State Reached by Destination Node Only (Exclusive-Reach).

Given aTokenNav$col1,path$col2 operator, the instance of a final state ofpath

can be only pushed onto the stack (resp. popped off the stack)when a start tag

(resp. end tag) of the destination node$col2 is encountered.

An automaton must be carefully constructed in order to satisfy the “exclusive

reach” property. For example, for the XQuery “for $v in /a return$v//b”, we will

construct the automaton in Figure 2.12 (a) instead of the onein Figure 2.12 (b).

In both figures,q1 is the final state of path/a. The bottom parts of Figures 2.12

(a) and (b) show the stack contents as tokens<a><c>... are processed. In

Figure 2.12 (a),q1 is pushed onto the stack only by the token<a>. In Figure 2.12

(b), besides<a>, q1 can also be pushed onto the stack by<c> and which

are not bindings of$v.

2.5. IMPLEMENTATION STRATEGIES FOR TOKEN-RELATED OPERATO RS54

q1
a

q0
b

q2

*

q1
a

q0
b

q2

*

q1
a b

q2q0 q3

*

q1
a b

q2q0q0 q3

*

q0 q0

q1,q2 1

q2

q0

q1, q2

<a> <c>

q2
q2,q3

q0

q1,q2

(a) Correct Automaton Encoding (b) Incorrect Automaton Encoding

q0 q0

q1

q1

q0

q1

<a> <c>

q1

q1, q2

q0

q1

Figure 2.12: Automaton Encoding for Paths Involving “//”

An XPath can be seen as a sequence of items where an item can be “/”, “//” or

a navigation step. If we divide the sequence into two parts, we call the second part

apostfixof the path.

Theorem 1 If the “exclusive-reach” property holds, a final state can have at most

one instance in the stack (we say the automaton is “final stateduplicate free”) ex-

cept in two circumstances: (1) if there is aTokenNav$col1,path$col2 wherepath

contains a “//” and the data is recursive; and (2) if there is aTokenNav$col1,path$col2

where a postfix ofpath is a “//” followed by zero or more “*”.

The proof of the theorem can be found in Appendix A. Figures 2.13 (a) and

(b) illustrate circumstances (1) and (2) in Theorem 4 respectively. In Figure 2.13

(a), the automaton encodes$v//a. Given a recursive XML token stream, e.g.,

<a><a>..., two instances of final stateq2 appear in the stack when

the second<a> is processed. In Figure 2.13 (b), the automaton encodes$v/a//.

Even if the XML stream is not recursive, there can still be twoinstances of final

stateq1 in the stack since the start tags of any descendant of$v/a pushq1 into the

stack.

2.5. IMPLEMENTATION STRATEGIES FOR TOKEN-RELATED OPERATO RS55

q0 q1

*

b

q1

q0

q1

q0

q1

<c>

q0

(b)

$v/b//

q0 q1

*

b

q1

q0

q1

q0

q1

<c>

q0

(b)

$v/b//

q1q0 q2

*

q0, q1

q1, q2

<a>

q0, q1

q1, q2

<a>

q0, q1

q1, q2

(a)

$v//a

a

Figure 2.13: final state duplicates

When the automaton is ensured to be “final state duplicate free”, we can ef-

ficiently implement the operators necessary to apply theWithin(t1, t2) and t1

= t2 boolean functions introduced in Section 2.3, i.e., functions for testing com-

ponent or equivalence relationships between tokens. When final state duplicates

may exist, our implementations of these two functions are similar to existing tech-

niques in [42, 80]. Therefore in the following sections, i.e., Sections 2.5.2, 2.5.3

and 2.5.4, we focus on the circumstances where the automata are final state dupli-

cate free because the corresponding implementations are distinguished from (and

more efficient than) those in the other systems [42, 80]. We briefly describe our

implementation when automata are not final state duplicate free in Section 2.5.5.

2.5.2 Implementation of ExtractUnnest

At the logical level, anExtractUnnest$col1$col2 operator consumes outputs from

aTokenNav$col1,path$col2 operator. This producer-consumer relationship is cap-

tured by the association of the final stateqn of path with ExtractUnnest. ExtractUnnest

is invoked twice, both whenqn is pushed onto (line 8 inhandleStartTagin Algo-

2.5. IMPLEMENTATION STRATEGIES FOR TOKEN-RELATED OPERATO RS56

rithm 1) and later when it is popped off (line 7 inhandleEndTagin Algorithm 1)

the stack. The two invocation processes are described below:

1). When an instance ofqn is pushed onto the stack,ExtractUnnest$col1$col2

is invoked (line 16 in Algorithm 1). From the “exclusive-reach” property

we know a start tag of$col2 has been encountered. ThisExtractUnnest

prepares a new XAT tuple. This tuple contains only one cell which is a

placeholder of bindings of$col2.

2). When an instance ofqn is popped off the stack, an end tag of$col2 has been

encountered.ExtractUnnest$col1$col2 is invoked again (line 31 in Algo-

rithm 1). A complete element node of$col2 is added into the corresponding

placeholder. The XAT tuple is then complete and can be output.

2.5.3 Implementation of ExtractNest

ExtractNest$col1$col2 is associated withqn andq0 whereqn andq0 correspond

to the end and the beginning ofpath in TokenNav$col1,path$col2:

1). When an instance ofqn is pushed onto the stack: if this is the first time an

instance ofqn is pushed within a binding of$col1, ExtractNest creates a

tuple with a placeholder. All the destination nodes locatedwithin the same

$col1 would be put into this placeholder.

2). When an instance ofqn is popped off,ExtractNest adds the newly com-

pleted destination node to the placeholder.

3). When an instance ofq0 is popped off the stack, by Theorem 4 we know

there cannot be another instance ofq0 in the stack. Therefore the placeholder

2.5. IMPLEMENTATION STRATEGIES FOR TOKEN-RELATED OPERATO RS57

contains only those destination nodes located within this binding of $col1.

Since$col1 has been completely processed,ExtractNest outputs the tuple.

Example 8 Figure 2.14 depicts the stream physical plan in Figure 2.3 with Token-

Nav operators replaced by an automaton. Figure 2.14 (b) shows the processing of

token 7, i.e.,<phone>. First, q5 is pushed onto the stack.ExtractNestbe is

invoked. It creates a tuple with one cell which will store thebinding of$e. Next,

the storing counter is increased by 1. This non-zero storingcounter indicates that

token 7, namely,<phone> needs to be buffered (refer tohandleStartTagmethod in

Algorithm 1). Note, token 7 is not necessarily physically stored as a token. It can

also be stored as a structure that is more convenient for later manipulation, such

as a DOM-like tree structure if later on a node navigate operator is performed on

$e.

Figure 2.14 (c) shows the processing of token 9, i.e.,</phone>. q5 is popped

off. This leads to the decrease of the storing counter to 0.ExtractNestbe

is again invoked. The reference to thephone element in the storage manager is

passed to the placeholder. The dashed line in the placeholder indicates that the

placeholder is “open”, in other words, there may be morephone elements that

could still be located within the sameseller.

The cell is “closed” in Figure 2.14 (d) when token 13 is processed.ExtractNestbe

is informed that the binding of$e is now complete and the tuple is ready for output.

2.5.4 Implementation of StructuralJoin

A StructuralJoin$col1 operator must have an upstream operator in the form of

TokenNav$col0,path$col1. This StructuralJoin is invoked when an instance of

2.5. IMPLEMENTATION STRATEGIES FOR TOKEN-RELATED OPERATO RS58

q2
open_auction

q1

initial
q3

q0
open_auctions

ExtractNestbe ExtractUnnestab

StructuralJoin$b

StructuralJoin$a

Sel$ej=“508-1234567”

Tagger<auction>$b,$c</auction>$f

(a) Query Plan with Automata

$e

q2
q4

q0
q1

9</phone>

(c) Processing Token 9

storingCounter= 0

q2
q4

q0
q1

7 <phone>

q5

(b) Processing Token 7

ExtractNest$b $e

storingCounter= 1

(d) Processing Token 13

13</seller>

<phone>

<phone>508-1234567</phone>

ExtractNest$b $e

<phone>508-1234567</phone>

<phone>508-0004567</phone>

$e

storingCounter= 0

Storage Manager

Storage Manager

Storage Manager

q4seller

q5phone

q7bid q6 bidder

ExtractUnnestac

ExtractNestad

$e

ExtractNest$b $e

q2

q0
q1

Figure 2.14: InvokingExtractNest Operator

2.5. IMPLEMENTATION STRATEGIES FOR TOKEN-RELATED OPERATO RS59

qn, the state that corresponds to the end ofpath, is popped off the stack. The

input tuples toStructuralJoin contain only elements located within this binding

of $col1. ThereforeStructuralJoincan simply perform a Cartesian product on its

input tuples. The input tuples are purged after the Cartesian product so that they

would not participate in the next Cartesian product for a different binding of$col1.

Since our structural join must be invoked when a certain automaton event happens,

we call it anin-time structural join.

2.5.5 Implementations in Automata with Final-State Duplicates

In the two circumstances when automata have final-state duplicates as described

in Theorem 4, there can be more than one final state in the stack. We describe the

modification to the above implementations forExtractandStructuralJoinrespec-

tively.

Extract

Given aExtract$col1$col2, supposeq0 and qn are the final states of$col1 and

$col2 respectively. When the automaton are not final state duplicate free, two

modifications have to be made to the above implementations ofExtract. The

first modification addresses the situation that multiple instances ofqn may exist in

the stack. When an instance ofqn is popped off, we now have to identify which

element node has been completed. For example, in Figure 2.13(a), when aq2 is

popped off due to a, we need to know whether this matches the first

<a> or the second<a>. This can be achieved by simply maintaining the number

of final states pushed onto or popped off the stack. Once we know which element

node is completed, we then know in which placeholder in the XAT tuples to add

2.5. IMPLEMENTATION STRATEGIES FOR TOKEN-RELATED OPERATO RS60

this element node.

The second modification addresses the possibility that multiple instances of

q0 may exist in the stack. For an instance ofqn in the stack, we have to identify

it is transitioned from which instance ofq0. This information is necessary since

we may perform aStructuralJoin$col1 later on the output ofExtract$col1$col2.

Each output tuple ofExtract$col1$col2 not only contains an element node of$col2

but also an identifier of$col1.

StructuralJoin

Given aStructuralJoin$col1, since its input tuples now carry the identifiers of

$col1, it will perform joins over$col1. Such aStructuralJoin is similar to that

developed in Tukwila [42] and YFilter [80]. We call it anidentifier-basedstructural

join.

2.5.6 Comparison between In-time and Identifier-based StructuralJoins

Raindrop only chooses an identifier-based physical implementation for a structural

join in the “final state duplicate existing” circumstances in Theorem 4. In all other

circumstances, an in-time physical implementation is chosen. In contrast, both

Tukwila and YFilter provide only the identifier-based structural join implementa-

tions. We now compare the in-time and identifier-based implementations in the

final state duplicate free environment.

In Figure 2.15 (a) which depicts an in-time structural join,each input tuple has

only one cell, containingselleror bidder. In contrast, in Figure 2.15 (b) which de-

picts an identifier-based structural join, an input tuple toStructuralJoin$a
2 must

2[42] does not have an explicit, separate structural join operator since automaton computations are

2.5. IMPLEMENTATION STRATEGIES FOR TOKEN-RELATED OPERATO RS61

contain an identifier for$a, i.e., theopenauctionelement3. StructuralJoin$a in

Figure 2.15 (b) joins the input tuples on the identifiers ofopenauction.

Clearly, the in-time structural join is more efficient than identifier-based struc-

tural join. First, in-time structural join takes less memory since the size of an input

tuple is smaller than that in the identifier-based structural join. Second, in-time

structural join does not perform any value comparison.

q0
q1

27 </open_auction>

ExtractUnnest$a $b ExtractUnnest$a $c

StructuralJoin$a

(a) In Time Structural Join

(b) Identifier-based Structural Join

<seller>…</seller><seller>…</seller>

$b

TokenNav$a, /seller $b TokenNav$a, /bid/bidder $c

<seller>…</seller><seller>…</seller>

$b

ExtractUnnest$a $b ExtractUnnest$a $c

StructuralJoin$a

<seller>…</seller><seller>…</seller>

$b

TokenNav$a, /seller $b TokenNav$a, /bid/bidder $c

22

$a

<bidder>…032…</bidder><bidder>…032…</bidder>

$c

<bidder>…145…</bidder>

<bidder>…032…</bidder><bidder>…032…</bidder>

$c

<seller>…</seller> <bidder>…145…</bidder>

<bidder>…032…</bidder><bidder>…032…</bidder>

$c

<bidder>…145…</bidder>

$a

2

2

<seller>…</seller><seller>…</seller>

$b

<bidder>…032…</bidder><bidder>…032…</bidder>

$c

<seller>…</seller> <bidder>…145…</bidder>

$a

2

2

Figure 2.15: Comparing In-time Structural Join and Identifier-based Structural Join

expressed in one mega operator as mentioned in Section 1.1. However structural joins are performed
within this mega operator.

3The structural join in [80] would even contain an identifier for each navigation step on the path,
for example, a right input tuple in Figure 2.15 (b) would alsocontain an identifier for thebid element.

2.6. PROGRAMMING MODEL FOR SYNCHRONIZING THE EXECUTION OF
OPERATORS 62

2.6 Programming Model for Synchronizing the Execution

of Operators

In a traditional query plan, synchronization among operators is usually achieved

by theiterator mode [35], namely, an operator is always invoked by its immediate

downstream operator. However, only using this model does not meet the needs of a

Raindropplan. First, execution ofTokenNav operators, i.e., the automaton, must

be data-driven. Given twoTokenNav operators such asTokenNav$a,/seller$b

andTokenNav$a,/bid/bidder$c, whether the bindings of$b or the bindings of$c

will be retrieved first is completely decided by the data. Second, to ensure the

correctness,Extract andStructualJoin operators have to be invoked at a certain

time. For example, theStructuralJoin$a operator must be invoked by its ancestor

upstream operatorTokenNav$s,/open auctions/open acution$a when an end tag of a

binding of$a is encountered.

We propose to support three invocation modes inRaindrop. For each mode, we

describe (1) what operators can be invoked in this mode; (2) when these operators

are invoked in this mode; and (3) why the operators are invoked in this mode.

2.6.1 AncestorUpstreamDriven Mode

If an operator is invoked by its ancestor upstream operator,we say this operator is

invoked in theAncestorUpStreamDrivenmode.

Operators that can be invoked in this mode: An operator in the format of

ExtractNest$col1$col2 or StructuralJoin$col1 can by invoked by its ancestor

upstream operator in the format ofTokenNav$col0,p$col1.

When invoked in this mode: an end tag of a binding of$col1 is encountered.

2.6. PROGRAMMING MODEL FOR SYNCHRONIZING THE EXECUTION OF
OPERATORS 63

Why invoked in this mode: BothExtractNest$col1$col2 andStructuralJoin$col1

must be informed right at the point when an end tag of a bindingof $col1 is

encountered.ExtractNest$col1$col2 can then output a newly-formed tuple and

StructuralJoin$col1 can perform cartesian products on its input. Assume$col1

= $col0/p, thenExtractNest$col1$col2 and StructuralJoin$col1 must be in-

voked byTokenNav$col0,p$col1 whenTokenNav$col0,p$col1 detects the finish

of a binding of$col1.

Example 9 Algorithm 2 shows the pseudocode of anExtractNest operator. The

ExtractNest operator implements anancestorUpstreamDrivenmethod. In this

method,ExtractNest outputs the tuple that is newly formed.

Algorithm 2 Programming Model for ExtractNest
public class ExtractNest{

1: BooleanisImmediateUpstreamDriven;
2: List[] inputQueues;
3: List outputQueue;

...

4: public void ancestorUpstreamDriven(){
//perform process (3) in Section 2.5.3;

5: enqueue a tuple that is just completely formed intooutputQueue;
6: }

7: public List downstreamDriven(){
8: returnoutputQueue.dequeueAll();
9: }

}

2.6. PROGRAMMING MODEL FOR SYNCHRONIZING THE EXECUTION OF
OPERATORS 64

2.6.2 DownstreamDriven Mode

This DownstreamDrivenmode is similar to the traditional iterator mode, namely,

an operator is invoked by its immediate downstream operator.

Operators that can be invoked in this mode: any operator that is neither a

StreamSourcenor aTokenNavcan be invoked by its downstreamStructuralJoin

operator (if any).

When invoked in this mode: When aStructuralJoin$col1 is invoked in anAn-

cestorUpstreamDrivenmode,StructuralJoin$col1 invokes its upstream operators

to generate output for it to consume. Each upstream operator, when invoked, recur-

sively invokes its own upstream operators. From the perspective of the immediate

and ancestor upstream operators of thisStructuralJoin, they are invoked by their

downstream operators.

Why invoked in this mode: When an end tag of a binding of$col1 is finished,

StructuralJoin$col1 is invoked. StructuralJoin$col1 must invoke its upstream

operator to ensure they have all processed the current binding of$col1. Otherwise,

StructuralJoin$col1 does not have input to consume.

For example, in Figure 2.3, when an</seller> is encountered,StructuralJoin$b

is invoked.ExtractNestbe has finished the processing of the currentseller el-

ement, i.e., it has extractedphone/text() within this seller. Now, the operator

Sel$e=“508−1234567” must be invoked to consume the output ofExtractNestbe

to generate the input toStructuralJoin$b.

Example 10 Algorithm 3 shows the pseudocode ofStructuralJoin. StructuralJoin

implements bothancestorUpstreamDrivenanddownstreamDrivenmethods. Each

time when a</seller> is encountered, line 30 inhandleEndTagin Figure 1 will call

2.6. PROGRAMMING MODEL FOR SYNCHRONIZING THE EXECUTION OF
OPERATORS 65

theancestorUpstreamDrivenmethod ofStructuralJoin$b. This method then calls

thedownstreamDrivenmethods of bothSel$e=“508−1234567” andExtractUnnestab

(lines 8 - 11 in Algorithm 3).Sel$e=“508−1234567” again invokes thedownstream-

Driven method ofExtractNestbe. At this time,ExtractNestbe simply re-

turns all tuples generated within this just-finishedseller element (see line 8 in

Algorithm 2). Eventually,StructuralJoin consumes the output tuples of its up-

stream operators (line 12 in Algorithm 3).

Synchronization of Operators Invoked in AncestorUpstreamDriven and Down-

streamDriven Modes

When an end tag of a binding of$col1 is encountered, bothExtractNest$col1$col2

andStructuralJoin$col1 must be invoked in theAncestorUpstreamDrivenmode.

HoweverExtractNest$col1$col2 must be invoked inAncesetorUpstreamDriven

mode beforeStructuralJoin$col1 is invoked inAncesetorUpstreamDrivenmode.

Only in this way, the operators invoked in theAncestorUpstreamDrivenmode can

work correctly with the operators invoked in theDownStreamDrivenmode.

For example, when a</seller> is encountered, line 30 in Algorithm 1 calls the

ancestorUpstreamDrivenmethod ofExtractNestbe first and theancestorUp-

streamDrivenmethod ofStructuralJoin$b next. When theancestorUpstream-

Driven method ofExtractNestbe is called,ExtractNestbe puts the tuple

that is generated within the currentseller element into its output queue. Next,

theancestorUpstreamDrivenmethod ofStructuralJoin$b is called. Thisances-

torUpstreamDrivenmethod calls thedownstreamDrivenmethod ofExtractNestbe

(line 10 in Algorithm 3). ThisdownstreamDrivenmethod (lines 7 - 9 in Algorithm

2) then returns the tuple that is generated by theancestorUpstreamDrivenmethod

2.6. PROGRAMMING MODEL FOR SYNCHRONIZING THE EXECUTION OF
OPERATORS 66

Algorithm 3 Programming Model for In-Time Structural Join
public class StructuralJoin{

1: BooleanisImmediateUpstreamDriven;
2: List[] inputQueues;
3: List outputQueue;

...

//when the operator is invoked by its ancestor upstream operator
4: public ancestorUpstreamDriven(){
5: List outputTuples;
6: List[] inputTuples;
7: n = number of upstream operator of thisStructuralJoin.
8: for int i = 1; i ≤ n; i++ do
9: let upstreamOp denotes theith upstream operator;

10: inputTuples[i] = upstreamOp.downstreamDrive();
11: end for
12: outputTuples= join inpuTuples[1], inputTuples[1], ..., andinputTuples[n];
13: if outTuplesare not emptythen
14: for each downstream operatordownStreamOpof this StructuralJoindo
15: if downStreamOp.isImmediateUpstreamDriventhen
16: downStreamOp.immediateUpstreamDrive(outputTuples);
17: else
18: outputQueue.enqueue(outputTuples);
19: end if
20: end for
21: end if
22: }

//when the operator is required by its downstream operator to run
23: public List downstreamDriven(){
24: returnoutputQueue.dequeueAll();
25: }

}

2.6. PROGRAMMING MODEL FOR SYNCHRONIZING THE EXECUTION OF
OPERATORS 67

of ExtractNestbe.

2.6.3 ImmediateUpStreamDriven

The ImmediateUpStreamDrivenmode is also calleddata driven. An operator is

said to be invoked in theImmediateUpStreamDrivenmode if it is invoked by its

immediate upstream operator.

Operators that can be invoked in this mode: regular tuple-based operators that

do not have aStructuralJoin in its downstream.

When invoked in this mode: As the namedata drivensuggests, the operator is

invoked once its immediate upstream operator generates output.

Why invoked in this mode: If an operator does not have aStructuralJoin in its

downstream, e.g.,Tagger<auction>$b,$c</auction>$f in Figure 2.3, it will not be

invoked in a downstream driven method. We thus design theImmdidateUpStream-

Driven mode so that such an operatorop is invoked by its immediate upstream

operatorupstreamOp onceupstreamOp has generated output forop to consume.

Example 11 Algorithm 4 shows the pseudocode ofSelect. Select implements

an immediateUpstreamDrivenmethod. TheSelect operator first consumes in-

put tuples from its upstream operator (line 5). If thisSelect operator does not

have downstreamStructuralJoin, then its downstream operators must not have

downstreamStructuralJoin as well. That is to say, the downstream operators

of Select must also be invoked in theimmediateUpstreamDrivenmode. There-

fore, when thisSelect has generated output, it invokes its downstream operator to

consume its output (lines 6 - 9).

2.6. PROGRAMMING MODEL FOR SYNCHRONIZING THE EXECUTION OF
OPERATORS 68

Algorithm 4 Programming Model forSelect
public class Select{

1: BooleanisImmediateUpstreamDriven;
2: List[] inputQueues;
3: List outputQueue;

...

4: public void immediateUpstreamDriven(List inputTuples){
5: List outputTuples= selection predicate evaluation oninputTuples;
6: if outputTuplesare not emptythen
7: let downstreamOp denotes the downstream operator of thisSelect;
8: downstreamOp.immediateUpstreamDriven(outputTuples);
9: end if

10: }

}

Operator Invocation Modes Operator Supports

ExtractUnnest DownstreamDriven

ExtractNest DownstreamDriven, AncestorUpstreamDriven

StructuralJoin DownstreamDriven, AncestorUpstreamDriven

Regular tuple-based Operators DownstreamDriven, ImmediateUpstreamDriven

Table 2.5: Operators and the Invocation Modes They Support

2.6.4 Summary

We define a programming model which supports multiple invocation modes. Dif-

ferent operators can be invoked in different modes. Even onesingle operator can be

invoked in different modes. Table 2.5 summarizes what operators can be invoked

in which modes.

All modes are defined in a modular manner. This can be a significant advantage

when a flexible configuration of the synchronization among operators is needed.

For example, in Figure 2.14 (a), suppose a rewrite rule switchesSelect$e=“508−1234567”

2.7. EXPERIMENTS 69

with StructuralJoin$b and StructuralJoin$a so thatSelect$e=“508−1234567”

ends up as a downstream operator ofStructuralJoin$a. SinceSelect$e=“508−1234567”

now has no downstreamStrcuturalJoin operator, it has to be invoked in anIm-

mediateUpstreamDrivenmanner instead of theDownStreamDrivenmanner as be-

fore. This can be simply achieved by setting the Boolean value of “isImmedia-

teUpstreamDriven” (see line 1 in Figure 4) to true. Therefore any output from

StructuralJoin$a will be immediately sent toSelect$e=“508−1234567” for con-

sumption (see lines 15 - 16 in Algorithm 3).

2.7 Experiments

We have implemented a prototype ofRaindrop[38] with Java 1.4.1. We use ToX-

Gene [24], an XML data generator, to generate the XML documents. We ran ex-

periments on two Pentium III 800 Mhz machines with 512MB memory each. One

machine sends XML token streams via sockets to another machine which would

then process the received data. The execution time we reportdoes not include

the network transmission time. The experiments reported inthis section focus on

showing the performance differences among the plans with different amounts of

computation pushed into the automata.

The cost of query execution consists of two parts: one for buffering the data,

and the other for manipulating (e.g., filtering or restructuring) the buffered data.

The queries we test can be divided into two categories. For a query in the first

category, all of its candidate plans buffer the same amount of data. Therefore the

performance differences among candidate plans only resultfrom the differences in

the data manipulation costs. For a query in the second category, some candidate

2.7. EXPERIMENTS 70

plans trade buffering costs for manipulation costs, i.e., buffering more data in the

hopes that later manipulation may be accelerated. The performance differences

among the candidate plans then show the tradeoff between thetwo costs.

2.7.1 Testing Queries Having Alternative Plans with Same Buffering

Cost

Figure 2.16 shows an example query template from an XML benchmark, XMark

[7]. This query asks to return anybidderelement that satisfies a set of filters where

each filter is a linear XPath, i.e., XPath with no filters. Notein any alternative

plan, abidderelement always has to be buffered because it may appear in thefinal

answer. Therefore all plans have the same buffering costs.

for $a in stream(“open_auctions”)/open_auctions/
open_auction/bidder[filter1][filter2]...[filtern]

return
<auction>{$a}</auction>

Figure 2.16: Query with Filters

We now analyze which factors may lead to performance differences among

candidate plans. Supposefilter1 has a low selectivity, i.e., it is rarely satisfied,

then we should evaluate this filter before the other filters. This follows the classical

“push down operators of low selectivity” optimization technique. However, in the

automata, all filter patterns are retrieved in parallel. In order to assure that the other

filters are evaluated afterfilter1 is evaluated, we must leave the other filters out of

the automata.

Let us consider the opposite case where all filters are frequently satisfied. A

plan that pushes all filters into the automata (calledmaximal-navigation-pushdown

2.7. EXPERIMENTS 71

plan) can evaluate all filters in one single access of the tokens. The other plans,

however, have to access thebidder elementsn times if there aren filters to be

evaluated out of the automata. Therefore a maximal-navigation-pushdown plan

should outperform the other plans.

Testing on Cheap Filters

We perform a series of experiments to confirm our analysis. Inthe first experimen-

tation, we vary the selectivity offilter1 in the data set. The selectivity of all the

other filters is 100%. The length of each filter is 1, i.e., eachfilter has only one de-

terministic navigation step and does not have any descendant axis (e.g., /bidderid).

The cost of evaluating such a filter is rather cheap. The average width ofbidder,

i.e., the number of its children elements, is set to 30.

Data Size = 84M, Filter Number = 20,

Average Filter Pattern Length = 1

0

10000

20000

30000

40000

0% 13% 25% 50% 75% 100%

Pattern Selectivity

E
x
e

c
u

ti
o

n
T

im
e

(m
s
)

Zero Filter
Pushdown

One Filter
Pushdown

Maximal
Navigation
Pushdown

Figure 2.17: Performance of Alternative Plans for Queries with 20 Filters of Aver-
age Length 1

We test three plans. In the zero-filter-pushdown plan, all filters are evaluated

out of the automata butfilter1 is evaluated before any other filters. In the one-

filter-pushdown plan, onlyfilter1 is evaluated in the automata. The evaluation or-

2.7. EXPERIMENTS 72

Pattern Selectivity 0% 12% 25% 50% 100%

Query with 5 filters 1.06 1.02 1.03 0.95 0.90

Query with 10 filters 1.23 1.07 0.85 0.98 0.75

Query with 20 filters 1.47 1.18 1.00 0.85 0.65

Figure 2.18: Ratio of Execution Time of Maximal Pushdown with Execution Time
of Zero Filter Pushdown for Queries with Different Numbers of Filters

der of the other filters does not matter here since they have the same selectivity. The

third plan we test is the maximal-navigation-pushdown plan. It is seen from Figure

2.17 that at the lower end of selectivity (0% - 25%), the zero-filter-pushdown plan

performs better than the maximal-navigation-pushdown plan. At the higher end of

selectivity (25% - 100%), the maximal-navigation-pushdown plan performs better

than the zero-filter-pushdown plan. At all times, the zero-filter-pushdown plan be-

haves similarly to the one-filter-pushdown plan. That is to say, evaluating a single

pattern on tokens has a similar performance as evaluating the pattern on element

nodes. Therefore in the following experimentations, we only illustrate one of these

two plans.

Figure 2.18 further compares the performance of different queries. All queries

conform to the query template in Figure 2.16 but differ in thenumber of filters.

The ratio of the execution time of maximal-navigation-pushdown with that of the

zero-filter-pushdown plan is reported.

The purpose of Figure 2.18 is to show that measures are neededto judge

whether it is worthwhile to consider alternative plans. Fora simple query, such

as the one with 5 filters, both the zero-filter-pushdown and maximal-navigation-

pushdown plans always perform similarly (the ratio is closeto 1) when the selec-

tivity of filter1 varies. As the query gets more complicated, i.e., the numberof

2.7. EXPERIMENTS 73

filters increases, the differences among alternative plansget more significant.

Testing on Expensive Filters

We now test two queries with more expensive filters. In the first query,filter1

still has a length of 1 but all other filters are longer. Correspondingly, savings from

the evaluation on afilteri (i 6= 1) are larger than those in Figure 2.17. Figure

2.19 gives the experimental result. When the selectivity offilter1 is 0%, the ratio

of the execution time of a maximal-navigation-pushdown plan with that of zero-

filter-pushdown plan can reach 1.46. This is the same as that in a query with 20

shorter filter patterns (refer to the first cell in third row inFigure 2.18). Also, the

crossover between the two plans shifts from 25% in Figure 2.17 to 50% in Figure

2.19. In other words, the zero-filter-pushdown plan is more likely to win over the

maximal-navigation-push down plan compared to the scenarios in Section 2.7.1.

Data Size = 56M, Filter Number = 10,

Average Filter Pattern Depth = 5

0

5000

10000

15000

20000

25000

0 25% 50% 75% 100%

Pattern Selectivity

E
x
e

c
u

ti
o

n
T

im
e

(m
s
)

Zero Filter
Pushdown

Maximal
Navigation
Pushdown

Figure 2.19: Performance of Alternative Plans for Queries with 10 Filters of Aver-
age Length 5

The second query we test has only two filters.filter1 still has a length of

1 but filter2 starts with a “//”. In the automata, “//” is encoded as a self-cycle

2.7. EXPERIMENTS 74

on a state (refer to Figure 2.12). Any component token ofbidder will lead to an

automata state transition. Computing such a filter is more expensive than a filter

with only deterministic navigation steps, because to evaluate a filter withn deter-

ministic navigation steps, component tokens ofbidder that are more thann levels

deep withinbidder would not induce any transitions. Figure 2.20 confirms that the

performance difference among alternative plans of this query can be significant.

Data Size = 56M, Filter Number = 2 (with // in one Filter)

0

5000

10000

15000

20000

25000

30000

0% 25% 50% 75% 100%

Pattern Selectivity

E
x
e

c
u

ti
o

n
T

im
e

(m
s
) Zero Filter

Pushdown

Maximal
Navigation
Pushdown

Figure 2.20: Performance of Alternative Plans for Queries with 2 Filters (One Filter
has “//”)

2.7.2 Testing Queries Having Alternative Plans with Different Buffer-

ing Costs

We now study a set of queries which conform to the template shown in Fig-

ure 2.21. This query pairsseller and certainbidder subelements that are located

within the sameopenauction. Figures 2.22, 2.23 and 2.24 show three alterna-

tive plans for this query, namely, pushing one, three, or allnavigation operators

down to the automata respectively. In the one-navigation-pushdown plan in Fig-

ure 2.22, eachopenauctionelement has to be buffered since it will be navigated

2.7. EXPERIMENTS 75

into later to find theinitial, seller and bidder subelements. In contrast, both

the three-navigation-pushdown and maximal-navigation-pushdown plans in Fig-

ures 2.23 and 2.24 buffer only a minimal amount of data, i.e.,thebidderandseller,

for later navigation or result construction.

for $a in stream(“open_auctions”)/open_auctions/
open_auction/auction[initial],
$b in $a/seller,
$c in $a/bid/bidder[filter1][filter2]…[filtern]

return
<auction>{$b, $c}</auction>

Figure 2.21: Query with Multiple Bindings in For Clause

ExtractUnnest$s $a

NavNest$a, initial $d

...

NavUnnest$a, /seller $b NavUnnest$a, /bid/bidder $c

NavNest$c, filter1 $e

Join $a

...

TokenNav$s, /open_auctions/open_auction$a

Figure 2.22: One Navigation Pushdown

We vary three factors in the data set. First, we vary the selectivity of the filter

/initial but keep the selectivity of all the other filters at 100%. Second, we vary the

size of the data that are subelements ofopenauctionother thanselleror bidder. We

2.7. EXPERIMENTS 76

Figure 2.23: Three Navigation Pushdown

ExtractNest$a $d

ExtractUnnest$a $b

ExtractUnnest$a $c

StructuralJoin$a

...
...

...

ExtractNest$c $e

StructuralJoin$c

...

TokenNav$a, /initial $d

TokenNav$a, /seller $b

TokenNav$a, /bid/bidder $c

TokenNav$c, filter1 $e

...

Figure 2.24: Maximal Navigation Pushdown

2.7. EXPERIMENTS 77

Data Set extra buffering ratio% average number ofseller’s
within anopenauction

Data Set 1 0% 1

Data Set 2 50% 1

Data Set 3 0% 10

Table 2.6: Data Characteristics of Three Data Sets

call the ratioK = (the size of the above data) / (the overall size ofsellerandbidder)

an extra buffering ratio. Third, we vary the number ofseller elements in each

openauction. We fix the average number ofbidderelements in anopenauctionto

20. We generated three data sets whose data characteristicsare shown in Table 2.6.

Figures 2.25 and 2.26 show the results on the first two data sets. The X-axis

shows the selectivity offilter1. We make two observations from these two figures.

1). The three-navigation-pushdown plan is always better than the one-navigation-

pushdown plan due to two reasons. First, three-navigation-pushdown plan

never buffers more data than one-navigation-pushdown plan. In data set 2

where the extra buffering ratio is 50%, it buffers much less data. Second, the

Join$a operator in Figure 2.22 is an identifier-based join. It is more costly

than theStructuralJoin$a operator in Figure 2.23.

2). The crossover point of one-navigation-pushdown and maximal-navigation-

pushdown plans occurs at a lower selectivity in Figure 2.26 than that in Fig-

ure 2.25. This is because in Figure 2.26, the cost that the one-navigation-

pushdown plan saves in pattern retrieval is offset by the cost that the one-

navigation-pushdown plan spends in buffering extra data.

Figure 2.27 reports the results on the third data set. The trend of the per-

formance differences between one-navigation-pushdown and maximal-navigation-

2.7. EXPERIMENTS 78

Data Size = 48M, Seller Number=1,

Extra Buffering Ratio = 0%

0

5000

10000

15000

20000

25000

30000

35000

0% 25% 50% 75% 100%
Pattern Selectivity

E
x
e

c
u

ti
o

n
T

im
e

(m
s
) 1 Nav

Pushdown

3 Nav
Pushdown

Maximal Nav
Pushdown

Figure 2.25: Performance on Data Set 1

Data Size = 92M, Seller Number =1,

Extra Buffering Ratio = 50%

0

10000

20000

30000

40000

50000

60000

0% 25% 50% 75% 100%

Pattern Selectivity

E
x
e

c
u

ti
o

n
T

im
e

(m
s
)

1 Nav
Pushdown

3 Nav
Pushdown

Maximal
Nav
Pushdown

Figure 2.26: Performance on Data Set 2

2.7. EXPERIMENTS 79

pushdown plans remains similar to that in Figure 2.25. However three-navigation-

pushdown performs extremely badly (its performance when the selectivity is larger

than 25% is not shown due to extremely high cost). This is because in Figure

2.23, abidder is paired with eachseller by StructuralJoin$a. Therefore each

bidder is duplicated 10 times since there are 10seller elements within the same

openauction. Correspondingly, any downstream computation on abidderelement

will be duplicated. For example, a singlebidder element will be navigated into

10 times byNavNest$c,filter1
$e in Figure 2.23 to evaluatefilter1. In the other

two plans, eitherJoin$o in Figure 2.22 orStructuralJoin$a in Figure 2.24 is

performed after locating all the patterns withinbidder so that no navigation com-

putation is duplicated.

Data Size = 56M, Seller Number = 10,

Extra Buffering Ratio = 0%

0

10000

20000

30000

40000

50000

60000

70000

80000

0% 25% 50% 75% 100%

Pattern Selectivity

E
x
e

c
u

ti
o

n
T

im
e

(m
s
)

1 Nav
Pushdown

3 Nav
Pushdown

Maximal
Nav
Pushdown

Figure 2.27: Performance on Data Set 3

80

Chapter 3

Runtime Plan Optimization:

Switching between Automaton

and Algebra Processing Styles

In the previous chapter, we have illustrated that the decisions regarding which pat-

terns to be retrieved in the automaton or out of the automatoncan have significant

impact on the performance of query evaluation. In this chapter, we explore how to

get a good plan taking advantage of this optimization opportunity.

3.1 Solution Space

We provide a set of rewrite rules in Raindrop. From an initialplan, by repeatedly

applying the rewrite rules, we can get a batch of alternativeplans that compose

the search space. We now describe these rewrite rules. In this chapter, we use the

query shown in Figure 3.1 as the running example. Figure 3.2 shows a plan, which

3.1. SOLUTION SPACE 81

retrieves all pattern in the automaton, for this query.

for $a in stream(“open_auctions”)/auctions/auction[reserve]
$b in $a/seller, $c in $a/bidder

Where $b//profile contains “frequent”and $c//zipcode= “01609”
return

<auction> {$b, $c} </auction>

Figure 3.1: Example Query for Automaton-in-or-out Optimization

3.1.1 Token-or-Node Mode Change Rules

The token-or-node mode change rules, as described in Section 2.4, change the

modes (i.e., on tokens or on nodes) of pattern retrieval. This is the key rewrite rule

for generating alternative plans in our solution space. Since a pattern retrieval on

tokens (resp. on nodes) is performed in the automaton (resp.out of the automaton),

we also say this rule pulls pattern retrieval out of the automaton or pushes patterns

retrieval into the automaton. For ease of reading, we recap these rules briefly.

Figures 3.3 and 3.4 show the token-or-node mode change rulesin two cir-

cumstances. In Figure 3.3, noStructuralJoin$col1 exists in the top plan so

that aStructuralJoin$col1 is introduced when$col2 = $col1/path1 is pushed

down. In Figure 3.4, aStructuralJoin$col1 exists in the top plan so that no new

StrucutralJoin is introduced when$col3 = $col1/path2 is pushed down. Figure

3.5 further shows a rule that eliminates an unnecessaryExtract$col0$col1 operator

when$col1 is not consumed by any non-automaton operators.

An interesting feature of the mode change rules is that when we push a pattern

retrieval, say$col2 = $col1/path, into the automaton, the resultantTokenNav$col1,path$col2

can only be placed in one unique position, i.e., right on top of a TokenNav that re-

3.1. SOLUTION SPACE 82

ExtractNestad ExtractUnnestac

StructuralJoin$a

ExtractNestcf

StructuralJoin$c

TokenNav$a, /reserve$d

TokenNav$a, /seller$b

TokenNav$a, /bidder $c

TokenNav$c, //zipcode$f

Select$f = “01609”

StructuralJoin$b

TokenNav$b, //profile $eExtractUnnest$a$b

ExtractNestbe

Select$e contains “frequent”

TokenNav$s, /auctions/auction$a

StreamSource“open_auction”$s

Tagger<auction>$b,$c</auction>

q2
auction

q1

reserve
q3

seller
q6

profile

q5

q9bidder
q0

auctions

zipcode

*

q8

*

q4

q7

Figure 3.2: Raindrop Plan for Query in Figure 3.1

trieves$col1 (e.g., in Figure 3.4,TokenNav$col1,path2$col3 has to be placed above

TokenNav$col0,path0$col1). In other words,TokenNav$col1,path$col2 cannot be

commuted with any other operators. This is because of the on-the-fly access nature

of stream processing. Tokens cannot be accessed twice1, TokenNav$col1,path$col2

must be immediately evaluated on the tokens that compose bindings of$col1.

In contrast, when we pull$col2 = $col1/path out of the automaton, the resul-

tant NodeNav$col1,path$col2 may be placed in multiple positions. For example,

Figure 3.6 shows a plan after we pullTokenNav$a,/seller$b out of the plan in Fig-

1Tokens can however be stored as XML element nodes which can berepeatedly accessed.

3.1. SOLUTION SPACE 83

TokenNav$col0, path0$col1

ExtractOp$col0$col1

TokenNav$col0, path0$col1

ExtractOp$col0$col1

NavUnnest(NavNest)$col1, path1$col2

TokenNav$col1, path1$col2

ExtractUnnest(ExtractNest)$col1$col2

StructuralJoin$col1

Figure 3.3: Mode Change with Introducing/Eliminating StructuralJoin

TokenNav$col0, path0$col1

ExtractOp$col0$col1 TokenNav$col1, path1$col2

ExtractUnnest(ExtractNest)$col1$col2

StructuralJoin$col1

NavUnnest(NavNest)$col1, path2$col3

TokenNav$col0, path0$col1

ExtractOp$col0$col1 TokenNav$col1, path1$col2

ExtractUnnest(ExtractNest)$col1$col2

StructuralJoin$col1

TokenNav$col1, path2$col3

ExtractUnnest(ExtractNest)$col1 $col3

Figure 3.4: Mode Change without Introducing/Eliminating StructuralJoin

3.1. SOLUTION SPACE 84

TokenNav$col0, path0$col1

TokenNav$col1, path1$col2

ExtractUnnest(ExtractNest)$col1$col2

StructuralJoin$col1

ExtractOp$col0$col1 TokenNav$col1, path2$col3

ExtractUnnest(ExtractNest)$col1$col3

TokenNav$col0, path0$col1

TokenNav$col1, path1$col2

ExtractUnnest(ExtractNest)$col1$col2

StructuralJoin$col1

TokenNav$col1, path2$col3

ExtractUnnest(ExtractNest)$col1$col3

… no operator consuming $col1

Figure 3.5: EliminateExtract$col0$col1 when no Regular Tuple-based Operator
Consumes$col1

3.1. SOLUTION SPACE 85

ure 3.2. If later we pull out$d = $a/reserve, the resultantNavNest$a,/reserve$d

is placed by default betweenExtractUnnestsa and NavUnnest$a,/seller$b.

However it can also be placed for example betweenNavUnnest$a,/seller$b and

NavNest$b,//profile$e, becauseNavNest$a,/seller$b still outputs tuples carrying

cells bound to$a.

ExtractNestad

ExtractUnnestac

StructuralJoin$a

ExtractNestcf

StructuralJoin$c

TokenNav$a, /reserve$d ExtractUnnestsa TokenNav$a, /bidder$c

TokenNav$c, //zipcode$f

Select$f = “01609”

NavNest$b, //profile $e

Select$e contains “frequent”

TokenNav$s, /auctions/auction$a

StreamSource“open_auction”$s

Tagger<auction>$b,$c</auction>

NavUnnest$a, /seller $b

1

2

3

Figure 3.6: Plan Derived from the Pull-out ofTokenNav$a,/seller$b from Plan in
Figure 3.2

Operator commuting has been long studied as an important optimization op-

portunity [19, 45]. This motivates us to introduce a second kind of rewrite rules in

the next section to explore this opportunity.

3.1.2 Operator Commuting Rules

We now list the commuting rules. We useOpc to represent aSelect or aNodeNav

operator. c represents the selection predicate ifOp is a Select operator, or the

3.1. SOLUTION SPACE 86

path expression ifOp is aNodeNav operator.P , P1, andP2 in the rewrite rules

represent subplans. We also use��SJ to represent aStructuralJoin operator.

Commuting Opc1 with Opc2:

Opc1(Opc2(P)) = Opc2(Opc1(P)) when bothc1 and c2 involve only

columns output generated by a subplanP .

Commuting Opc with StruturalJoin:

Opc(P1 ��SJ P2) =

(Opc(P1)) ��SJ P2 whenc involves only columns output byP1.

Figures 3.7 , 3.8 and 3.9 show the examples of commuting aNodeNav op-

erator with aSelect, anotherNodeNav and aStructuralJoin operator respec-

tively. A NodeNav$col1,path1$col2 can commute with any automaton-outside op-

erator as long as theExtract operator that extracts$col1 is still placed under

NodeNav$col1,path1$col2 after the commuting.

3.1.3 Input Subplan Reordering Rule

After we have determined where to place aNodeNavoperator, we can have fur-

ther optimization decisions to make. For example, in Figure3.6, according the

execution style ofStructuralJoin operators as described in Section 2.5.4, when

StructuralJoin$a is invoked as a</auction> is encountered, only the three high-

lighted operators can have data in their output queues (notethat the output of

any descendant operator ofStructuralJoin$c must have all been consumed when

</bidder> was encountered).

For each of the three operators, denoted asop, the intermediate operators be-

3.1. SOLUTION SPACE 87

Select $col1 …

NodeNav$col2, path2$col3

Select $col1 …

NodeNav$col2, path2$col3

NodeNav$col0, path0 $col1

NodeNav$col0, path0 $col1

Figure 3.7: CommutingNodeNav$col2,path2$col3 with Select$col1

Extract$col0$col1

op

StructuralJoin

NodeNav$col1, path1$col2

Extract$col0$col1 op

StructuralJoin

NodeNav$col1, path1$col2

TokenNav$col0, path0$col1

TokenNav$col0, path0$col1

Figure 3.8: CommutingNodeNav$col1,path2$col2 with StructuralJoin

3.1. SOLUTION SPACE 88

NodeNav$col1, path1 $col2

NodeNav$col3, path3$col4

NodeNav$col0, path0 $col1

…

NodeNav$col1, path1 $col2

NodeNav$col3, path3$col4

NodeNav$col0, path0 $col1

…

Figure 3.9: CommutingNodeNav$col1,path1$col2 with NodeNav$col3,path3$col4

tweenop andStructuralJoin$a must be evaluated whenStructuralJoin$a is

invoked. We call the intermediate operators betweenop andStructuralJoin$a an

input subplan ofStructuralJoin$a andop the entry operator of this input subplan.

For example, the three dashed boxes in Figure 3.6 contain three input subplans of

StructuralJoin$a with entry operatorsExtractNestad, ExtractUnnestsa

andStructuralJoin$c respectively. Even though there is no intermediate oper-

ator betweenExtractNestad andStructuralJoin$a, for uniformity, we say

Extractnestad is the entry operator of an empty input subplan ofStructuralJoin$a.

The methodancestorUpstreamDrivenin Algorithm 3 in Section 2.6 describes

the process of evaluating these input subplans. When an</auction> is encoun-

tered,StructuralJoin$a is invoked. It then in turn invokes its input operators

(lines 7 - 9 in Algorithm 3). Each such input operator again invokes its input op-

3.1. SOLUTION SPACE 89

erator. Finally, the entry operator is invoked by its parentoperator. Therefore the

data in the output queue of the entry operator are consumed all the way through

the input subplan. In this way, an input subplan is thoroughly evaluated. After all

three input subplans have been evaluated,StructuralJoin$a performs Cartesian

products on the output of these input subplans (line 10 in Algorithm 3).

We now propose to further optimize to this process. Algorithm 5 improves

Algorithm 3 in two ways.

Precheck of Output of Entry Operators. The first improvement is that when

StructuralJoin$a is invoked, it checks whether all entry operators have gener-

ated some output during the processing of the current binding of $a (lines 7 - 12

in Algorithm 5). Only if yes,StructuralJoin$a goes on to evaluate the input

subplans. For example, supposeExtractNestad does not have output when

checked, i.e., the currentauction element does not have areserve child element,

then we can save the evaluation of the input subplans contained in the two dashed

boxes.

Immediate Stop at Empty Output of Input Subplans. The second improvement

is that when we evaluate the input subplans one by one, if a subplan does not

generate output, we immediately stop evaluating the rest subplans (lines 17 - 19)

since it is guaranteed that theStructuralJoin would not output anything. We

however need to assure that all unconsumed data are cleaned up. First, for those

input subplans that have already generated output before westop the evaluation,

we clean up their output (lines 28 - 30 in Algorithm 5). Second, for those input

subplans that have not been evaluated yet, we clean up their input, i.e., the data

generated by their entry operators (lines 31 - 33 in Algorithm 5). This assures

correctness as no old data will be mixed with the new data thatwill be generated

3.1. SOLUTION SPACE 90

Algorithm 5 Optimized In-Time Structural Join (Compared to Algorithm 3)
public class StructuralJoin{

1: public ancestorUpstreamDriven(){
2: booleanallEntryHaveResults = TRUE;
3: booleanallSubplanHaveResults = TRUE;
4: int i;
5: List inputTuples[];
6: int n = number of input operators of thisStructuralJoin;

//Precheck of Output of Entry Operators
7: for each entry operatorentryOp of input subplansdo
8: if entryOp has no data in its output queuethen
9: allEntryHaveResults = FALSE;

10: break;
11: end if
12: end for
13: if allEntryHaveResultsthen
14: for (i = 1; i ≤ n; i++) do
15: Let inputOp denotes theith input operator;
16: List curInputTuples = output generated wheninputOp is evaluated;

//Immediate Stop at Empty Output of Input Subplans
17: if curInputTuples are emptythen
18: allSubplanHaveResults= FALSE;
19: break;
20: else
21: inputTuples[i] = curInputTuples;
22: end if
23: end for
24: end if
25: if allSubplanHaveResultsthen
26: outputTuples = join inputTuples[1], inputTuples[1], ..., and

inputTuples[n];
27: else
28: for (int j = 1; j ≤ i; j++) do
29: clean up output queue of thejth input operator.
30: end for
31: for (int j = i + 1; j ≤ n; j++) do
32: clean up output queue of the entry operator of thejth input subplan.
33: end for
34: end if

... //lines 13 - 21 in Algorithm 3 in Section 2.6 in Chapter 2
35: }

}

3.1. SOLUTION SPACE 91

Op2

StructuralJoin

Op1

Op1

StructuralJoin

Op2

Figure 3.10: Reordering Input Subplans of StructuralJoin

within the nextauctionelement.

The order in which we evaluate the input subplans is important for the effi-

ciency. For example, in Figure 3.6, suppose asellerseldom has aprofile, then the

second input plan should be evaluated before the third inputplan. Therefore if we

find that the second input plan does not generate any output within a binding of$a,

we do not need to evaluate the third input plan. This can lead to significant cost sav-

ings when there is a large number ofbidderelements in anauction. We therefore

offer a third rewrite rule calledinput subplan reordering. This rule switches the

order of the input subplans whose topmost operators areop1 andop2 respectively.

Reordering Input Plans:

op1 ��SJ op2 = op2 ��SJ op1.

This rule is graphically shown in Figure 3.10. In Figure 3.10, we assume the

input subplans are evaluated from left to right. We change the order of the input

subplans in the top plan and get the bottom plan.

3.2. COST MODEL 92

3.1.4 Relationships among Rewrite Rules

Theoperator-commutingandinput-subplan-reorderingrules are designed to com-

plement thetoken-or-node mode changerules. The comparison of the performance

when a pattern is retrieved in or out of the automaton should be fair. That means

both the automaton processing and non-automaton processing should be optimized.

Given a set of patterns to be retrieved in the automaton, the automaton part of the

plan is uniquely determined. There are however alternatives for the non-automaton

part of the plan. Theoperator-commutingand input-subplan-reorderingrules are

then applied to optimize the non-automaton part of the plan.

3.2 Cost Model

In order to be able to compare two alternative Raindrop plans, we now propose a

cost model. In traditional databases, the cost of a plan is defined as the processing

time on the whole input data. Since the input stream can possibly be infinite, we

need to define the cost of the plan as the processing time on a finite input unit.

Because we never allow pulling out the bottommostTokenNavoperator in order

not to buffer the complete incoming stream (refer to Section2.4.1), all alternatives

have the same bottommostTokenNavoperator. We therefore define the cost of a

plan (resp. an operator) as the average processing time on processing the data that

originate from one destination element located by the bottommostTokenNavoper-

ator. For example, the cost of the plan in Figure 3.2 is the average time spent on

processing oneauctionelement; the cost ofTokenNav$b,//profile$e is the average

3.2. COST MODEL 93

time for locating allprofile elements within oneauctionelement2. For simplic-

ity, in the rest of this chapter, we refer to the destination element located by the

bottommostTokenNavas abottom input element.

We propose our cost model for a scenario with the following features: (1) the

statistics are unavailable before the stream comes in; and (2) the query however is

known beforehand, i.e., users preregister their queries before the stream arrives. In

this scenario, we can run an initial plan of the query on the incoming stream and

collect the statistics needed for this particular query. Wewill further discuss for

other scenarios, which parts in our proposed cost model fit and which parts need to

be extended in Section 3.2.5.

As described in Section 2.2, besides XML specific operators such as naviga-

tion, Raindrop also supports SQL-like operators such asSelect, Join, Groupby,

Orderby, Union, DifferenceandIntersect. In the first step of cost-based optimiza-

tion for Raindrop plans, we consider onlySelect operator among the SQL-like

operators. We can however extend to support the other SQL-like operators in fu-

ture work. Note that the cost model for the SQL-like operators is not a major

challenge since it has been widely studied in relational databases. The novel aspect

of Raindrop cost model lies more in costing the automaton, which is little studied

before.

3.2.1 Unit Costs of Automaton-Outside Operators

In Raindrop implementation, the cost of a unary automaton-outside operator is

linear in the number of its input tuples. Also, the cost of themulti-way oper-

2Strictly speaking, the cost of a plan in our definition excludes theStreamSourceand the bottom-
mostTokenNavoperators. Since these two operators are common in all alternative plans, we are not
interested in their costs when comparing two alternative plans.

3.2. COST MODEL 94

ator, i.e.,StructuralJoin, is linear in the product of the number of input tuples

from each of its child operators. In other words, in current Raindrop implementa-

tion, given an automaton-outside operatorop that hasn child operatorschildOp1,

childOp2, ...,childOpn, its cost can be expressed as|childOp1| × |childOp2| ×

... × |childOpn| × UnitCost(op) where|childOpi| (1 < i < n) denotes the car-

dinality of the input originated fromchildOpi during the processing of a bottom

input element; andUnitCost(op) is the processing time on each input tuple.

We further assume that the unit cost of an operator is not affected by how many

number of input tuples the operator processes each time. Aurora [20] observes

“intra-operator non-linearity” of tuple processing by an operator. That is, the unit

cost of tuple processing may decrease as the number of tuplesfor processing in-

creases. According to [20], this reduction in unit cost may arise due to two reasons.

First, an operator may optimize its execution better with larger number of tuples

available for processing. For example, merge joins can be used instead of nested

loop joins for larger number of input tuples. Second, the total number of calls to the

operator code decreases, cutting down the overhead of function calling. In Rain-

drop plans, operators do not have different evaluation strategies to cater to larger

number or smaller number of tuples. Therefore, “intra-operator non-linearity” can-

not arise because of the first reason mentioned above. Most cost models, relational

[63?] or XML [6, 57], ignore such “non-linearity” arising because of the second

reason. This is because it is hard to quantify the overhead ofoperator code which

is very low level. We assume the same in Raindrop.

An important question to ask is, given an operatorop, is it possible to observe

its UnitCost(op) during the execution of an arbitrary plan? If yes, we can directly

use thisUnitCost(op) observed during the execution of an initial plan. If not, we

3.2. COST MODEL 95

then have to analyze what factors contribute toUnitCost(op), i.e., cost models for

such operators have to be defined at a lower granularity thanUnitCost(op). For

different operators, the answer is analyzed below:

1). A Selectoperator, when appearing in one plan, must appear in all other

equivalent alternative plans because we do not provide any rewrite rule to

eliminate aSelectoperator. Therefore, no matter what the currently running

plan is,UnitCostof aSelectoperator is always observable. Since we assume

that theUnitCost(op) is not affected by how many number of input tuples

are processed each time the operator code is called,UnitCost(op) observed

in a currently running plan is the same as that in any other plans.

2). A NodeNavoperator does not appear in all plans due to thetoken-or-node

mode change rule. Also, aStructuralJoinoperator may not necessarily ap-

pear in every plan, e.g.,StructuralJoin$col1 appears in the bottom plan

but not the top plan in Figure 2.6 in Section 2.4.2 in Chapter 2. Therefore,

UnitCost’s of these two operators are not always observable in a currently

running plan.

In summary, we may have to estimate the unit cost of aNodeNavor aStruc-

turalJoin for costing a plan other than the currently running plan but this is not

necessary for aSelectoperator. Therefore in the rest of this section, we analyze

how to estimate theUnitCostfor theNodeNavandStructuralJoinoperators only.

Table 3.1 gives the notations used for estimating theseUnitCost.

UnitCost of NodeNav. UnitCost(NodeNavu,pv) is the timeNodeNav spends

on navigating into the tree rooted at a node which is a bindingof $u to find all

3.2. COST MODEL 96

Notation Explanation

np[i] for NodeNavu,pv, we usep[i] to denote theith navigation step on pathp. p[0]
denotes the binding of$u. np[i] denotes average number of children of a binding ofp[i]
within a binding of$u

wp[i] for NodeNavu,pv, wp[i] denotes average number of a binding ofp[i] within a binding
of $u

Cvisit time for visiting one node in an XML element tree

Cbicartesian cost of performing a binary cartesian product, one input tuple from either side

Table 3.1: Notations Used in DefiningUnitCost’s for NodeNav and
StructureJoin

the nodes that are bindings of$v. Supposep = p[1]/p[2]/.../p[n] wherep[i]

(1 ≤ i ≤ n) is either a navigation step or a descendant axis “//” (for uniformity,

we also view “//” as a special navigation step). To match theith navigation step,

every child of bindings of thei − 1th navigation step is visited. The number of

these child nodes within a binding of$u is np[i−1]wp[i−1]. Thus the time spent on

finding p[i] is np[i−1]wp[i−1]Cvisit. We then have the below equation.

Equation 1 UnitCost(NodeNav$u,p[1]/p[2]/.../p[n]$v) =
∑n

i=1 np[i−1]wp[i−1]Cvisit.

UnitCost of StructuralJoin. Suppose aStructuralJoin hasn child operators

childOp1, childOp2, ..., childOpn. TheUnitCostof StructuralJoin is defined

as the time spent on cartesian producting a tuple output bychildOp1, a tuple output

by childOp2, ..., with a tuple output bychildOpn. This time spent on the cartesian

product may differ whenn differs. The values ofn for a StructuralJoin$v op-

erator in different alternative plans can be different.n can increase after the mode

change of aNodeNav operator (see Figure 2.6 in Section 3.1.1). We ignore this

difference to avoid an overcomplicated cost model. We therefore use the unit cost

of performing a binary Cartesian product (i.e.,n = 2) as the general unit cost of a

StructuralJoin. We then have the below equation.

3.2. COST MODEL 97

Equation 2 UnitCost(StructuralJoin) = Cbicartesian.

3.2.2 Costs of Input Subplans of StructuralJoin

We have studied how to getUnitCost(op) for an automaton-outside operatorop.

Now we consider how to compute the cost ofop, denoted asCost(op). As men-

tioned in Section 3.2.1,Cost(op) = |childOp1| × |childOp2| × ... × |childOpn|

× UnitCost(op). |childOp1| × |childOp2| × ... × |childOpn| is the amount

of input to op during the processing of a bottom input element. In a traditional

plan, the amount of data that needs to be processed by an operator is only affected

by how much data is filtered by its descendant operators (i.e., the selectivity of its

descendant operators). However, when aStructuralJoinis invoked, an input sub-

plan is executed only when its left sibling subplans have allgenerated some output.

Therefore the amount of data that needs to be processed by an input subplan is

also affected by the likelihood of the left sibling subplanshaving generated some

output.

We now define two concepts,selectivityandnon-empty-output probability, of

operators. We also define a third conceptentry planfor entry operators. These

concepts are used to compute the cost of an input subplan.

Selectivity: The selectivity of an operatorop, denoted asσ(op) is defined as below:

1). If op is aTokenNavu,pv or Extractuv, σ(op) is the average number

of bindings of$v generated within a binding of$u.

2). If op is aSelect, NodeNav or StructuralJoin, σ(op) is defined as in the

traditional databases. Supposeop hasn child operators,σ(op) is defined as

cardinality of op′s output∏
n
i=1 cardinality of input from ith child operator of op

.

3.2. COST MODEL 98

Non-empty-result Probability: The non-empty-result probability of an operator

op is denoted asP6⇒∅(op). “ 6⇒ ∅” in the notation means “not generating an empty

result”, i.e., generating some result. It is defined as below:

1). If op is aTokenNavu,pv, P6⇒∅(op) is the probability of a binding of$u

containing at least one binding of$v.

2). If op is aSelect or NodeNav, P6⇒∅(op) is the probability ofop generating

some output during the processing of one input tuple.

Entry Plan : As described in Section 3.1.3, aStructuralJoin$v has several en-

try operators. For example, in Figure 3.6, the three highlighted operators are the

entry operators ofStructuralJoin$a. There are intermediate operators between

an entry operator and theTokenNav operator that retrieves$v. We call the plan

consisting of these intermediate operators (including theentry operator) anentry

plan. In Figure 3.6, there are five intermediate operators between the entry operator

StructuralJoin$c andTokenNav$s,/auctions/auction$a, i.e.,StructuralJoin$c,

ExtractUnnestac, ExtractNestcf , TokenNav$c,//zipcode$f , andTokenNav$a,/bidder$c.

We say the plan composed of these five operators an entry plan of the entry oper-

atorStructuralJoin$c. We use the functionentryP lan(op) to denote the entry

plan of an entry operatorop.

Assume the input subplans ofStructuralJoin$v from left to right aresubplan1,

subplan2, ..., subplann with entry operatorsentry1, entry2, ..., entryn respec-

tively. Equation 3 computes the cost ofsubplani (1≤ i ≤ n).

Equation 3 Cost(subplani of StructuralJoin$v)

= number of bindings of$v within one bottom input element (1)

3.2. COST MODEL 99

× evaluation time ofsubplani on input generated within a binding of$v (2)

=
∏

op ∈ operator set between bottommost TokenNav and TokenNav that retrieves $v σ(op)

(3)

× probability ofsubplani being evaluated (4)

× amount of input tuples tosubplani within a binding of$v(5)

× evaluation time ofsubplani on one input tuple (6)

=
∏

op ∈ operator set between bottommost TokenNav and TokenNav that retrieves $v σ(op)

(7)

× P6⇒∅(entry1)P6⇒∅(entry2)...P6⇒∅(entryn) (8.a)

× P6⇒∅(subplan1)...P6⇒∅(subplani−1) (8.b)

× σ(entryP lan(entryi)) (9)

× UnitCost(subplani) (10)

In Equation 3, Expression (1) is expanded into Expression (3). When we

say “operator set between bottommostTokenNav and theTokenNav that re-

trieves$v”, the set does not include bottommostTokenNav but it includes the

TokenNav that retrieves$v. Any operator in the set is aTokenNav that re-

trieves an ancestor pattern of$v or $v itself. For example, suppose we want to cost

an input subplan ofStructuralJoin$c in Figure 3.6. To compute the number of

bindings of$c in the bottom input element, the operators set between the bottom-

mostTokenNav (i.e.,TokenNav$s,/auctions/auction$a) and theTokenNav that

retrieves$b (i.e., TokenNav$a,/seller$c) is {TokenNav$a,/seller$c}. Expression

(3) is then expanded asσ(TokenNav$a,/seller$c), i.e., the number of bindings of

$c within a binding of$a.

Expression (2) is expanded into Expressions (4) (5) and (6).Expression (4)

3.2. COST MODEL 100

later is expanded into Expressions (8.a) and (8.b). Expression (8.a) gives the prob-

ability of all entry operators generating output while Expression (8.b) gives the

possibility of all left sibling input plans ofsubplani generating output.

Finally, Expressions (5) and (6) are expanded into Expressions (9) and (10)

respectively. The average number of tuples generated byentryi within a binding

of $v is the selectivity of the entry plan ofentryi, i.e., σ(entryP lan(entryi))

in Expression (9). The unit cost of processing one input tuple of subplani is

UnitCost(subplani) in Expression (10).

σ(entryP lan(entryi)) andUnitCost(subplani) require us to compute the

selectivity and the cost of a plan respectively. This can be computed exactly as in

traditional databases. We compute the selectivity of a planas below.

1). For a planP = PA(PB) which means subplanPA consumes output of sub-

planPB , σ(P) = σ(PB) × σ(PA); andCost(P) = n × UnitCost(PB) + n

× σ(PB) × UnitCost(PA) wheren is the number of input toPB .

2). For a planP = PA JoinOp PB which means subplanPA is joined with sub-

planPB by JoinOp, σ(P) = σ(PA) × σ(PB) × σ(JoinOp); andCost(P)

= nA × UnitCost(PA) + nB × UnitCost(PB) + nA × nB × σ(JoinOp)

× UnitCost(JoinOp) wherenA andnB are the number of input tuples to

PA andPB respectively.

By breaking a bigger plan into smaller subplans, we can eventually compute

the selectivity/cost of a plan from the selectivity/cost ofits operators.

3.2. COST MODEL 101

3.2.3 Costs of Automaton-Inside Operators

In the previous section we have discussed how to compute costs for automaton-

outside operators. We now describe how to compute the costs for the automaton-

inside operators. We first briefly recap how an automaton is used to retrieve pat-

terns while more details can be found in Section 2.5. An automaton behaves as

below:

1). When an incoming token is a start tag:

a. If the stack top is not empty, the incoming token is looked up in the

transition entries of every state at the stack top. The automaton pushes

the states that are transitioned to onto the stack. If no states are tran-

sitioned to, the automaton pushes an empty set (denoted as∅) onto the

stack.

b. When the stack top contains an empty set, the automaton directly pushes

another empty set onto the stack without any lookup.

2). When an incoming token is an end tag: the automaton pops the states at the

stack top off the stack.

3). When an incoming token is a PCDATA token, the automaton makes no

change to the stack.

4). An incoming token (start tag, end tag or PCDATA token) is stored if required

by anExtract operator.

When costing a pattern retrieval, we need to be careful with “amortized” com-

putations. For example, in Figure 3.11, when a stack top contains instances of

3.2. COST MODEL 102

q2

q0
q1

<auction>

q2

q0
q1

<id>

q2

q0
q1

</id>

q2

q0
q1

001

q0
q1

q0
<auctions> <seller>

q2

q0
q1

q4, q5

q2
auction

q1

reserve
q3

seller
q6

profile

q5

q9bidder
q0

auctions

zipcode

*

q8

*

q4

q7q2
auction

q1

reserve
q3

seller
q6

profile

q5

q9bidder
q0

auctions

zipcode

*

q8

*

q4

q7

Figure 3.11: Automaton of Plan in Figure 3.2 and Stack Snapshots

q4 andq5 (see the rightmost stack), an incoming</seller> will lead to a stack

backtrack. However we cannot solely assign this backtracking cost to the pattern

retrieval$a/seller. This is for two reasons. First, even if the query does not askfor

$a/seller, backtracking is still needed when</seller> is encountered in order to

restore the stack to the status before the matching<seller> has been encountered.

Second, the backtracking cost is a constant, i.e., it is not affected by which states

are popped or the number of states popped. For example, in Java implementation,

we can simply move the reference to the stack top one level down to accomplish

the state pop-off.

To avoid repeatedly costing the same amortized computations, we analyze the

cost of retrieving a patternp by comparing the cost of running a stream on an

automatonAwith and the cost of running the same stream on another automaton

Awithout. Awith denotes an automaton that encodes$v/p and all the ancestor pat-

terns of$v/p (e.g., the ancestor patterns of$b//profile are$a = auctions/auction

and$b = $a/bidder). Awithout encodes only the ancestor patterns of$v/p. Since

3.2. COST MODEL 103

Notation Explanation

Q(A) states in an automatonA

Qextract(A) states associated with extraction operators, e.g., statesq4 andq7 in Figure 3.11

CnonEmp cost of processing a start token when stack top is not empty

Cemp cost of processing a start token when stack top is empty

Cbacktrack cost of popping off states at the stack top

Cextract(q) cost of buffering elements, whose start tags activates state q, in a bottom input element

nactive(q) the number of times that stack top contains a stateq when a start tag arrives in a bottom
input element. Each such tag is the start tag of a child of an element that activatesq

nstart, nend number of start or end tags in a bottom input element.n(start) = n(end).

Table 3.2: Notations Used in Cost of Automaton-Inside Operators

Awith andAwithout only differs in thatAwith retrieves an additional patternp, the

cost difference of running a stream onAwith andAwithout is then the cost of re-

trieving p in the stream.

We first study how to compute the cost of running a stream on an automaton.

Given an automatonA with a start state which is activated by a start tag of the

bottom input element (i.e.,q2 in Figure 3.11), the cost of running a stream on the

automatonA is:

Equation 4 Cost(A) =

state transiting cost for processing start tags (1)

+ stack backtracking cost for processing end tags (2)

+ extracting cost for processing tokens (3)

Using the notations in Table 3.2, we can refine Equation 4 to Equation 5.

Equation 5 Cost(A) =
∑

q∈Q(A)nactive(q) CnonEmp (1.a)

+ [nstart - Σq∈Q(A)nactive(q)] Cemp (1.b)

3.2. COST MODEL 104

+ nend Cbacktrack (2)

+
∑

q∈Qextract(A) nactive(q) Cextract(q) (3)

=
∑

q∈Q(A)nactive(q) (CnonEmp − Cemp) + nstart(Cemp+CbackTrack) (4)

+
∑

q∈Qextract(A)nactive(q) Cextract(q) (5)

Expression (1) in Equation 4 is expanded into Expressions (1.a) and (1.b) in

Equation 5. A start tag activates more than one state only when “//” occurs in

the query, namely, there areλ transitions and self transitions. For example, in

Figure 3.11, ifq4 is at the stack top,q5 must be at the stack top as well. Sinceλ

transitions and self transitions usually is only a small portion of the transitions in

an automaton,
∑

q∈Q(A) nactive(q) is approximately equal to the number of start

tokens that are processed with a non-empty stack top. Therefore Expression (1.a)

is the cost of processing start tags with a non-empty stack top.

The number of start tags that are processed with an empty stack top is (nstart

- number of start tags that are processed with an non-empty stack top) = (nstart -

Σq∈Q(A)nactive(q)). Expression (1.b) of Equation 5 thus is the cost of processing

start tags with an empty stack top.

The cost of processing an end tag is equal to the cost of popping out the states

at the stack top, namely,Cbacktrack. Since there arenend end tags in a bottom input

element, Expressions (2) in Equation 5 is the cost of processing end tags.

In Expression (3) in Equation 5,q ∈ Qextract(A) is a state associated with

an Extract operator. nactive(q)Cextract(q) then denotes the cost of storing the

elements whose start tags activateq. Therefore Expression (3) in Equation 5 is the

total extraction cost.

3.2. COST MODEL 105

We now know how to compute the cost of running a stream on a given automa-

ton. We can then compute the cost of aTokenNavu,pv operator by computing

Cost(Awith) - Cost(Awithout), as shown in Equation 6.Ap in the equation denotes

the sub-automaton that encodes$v/p only.

Equation 6 Cost(TokenNavu,pv)

= Cost(Awith) − Cost(Awithout)

=
∑

q∈Q(Awith)−Q(Awithout)
nactive(q) (CostnonEmp − Costemp)

+
∑

q∈Qextract(Awith)−Qextract(Awithout)
nactive(q) Costextract(q)

=
∑

q∈Q(Ap)nactive(q) (CostnonEmp − Costemp)

+
∑

q∈Qextract(Ap) nactive(q) Costextract(q)

3.2.4 Cost Model Summary

The cost of a plan consists of two parts. The first part is the cost of all pattern

retrieval performed in the automaton. We use Equation 6 to compute the cost of

each pattern retrieval. The second part is the cost of automaton-outside operators.

The automaton-outside operators can be divided into several disjunct groups, each

group composed of aStructuralJoinand its input subplans. We can use Equation 3

to compute the cost of each such group.

3.2.5 Discussion on Extension of Cost Models

In the beginning of Section 3.2, we mentioned that we assume the user query is

known beforehand. With this assumption, we can then run an initial plan of the

query and collect the statistics needed for this particularquery. The impact of this

query specific statistics collection mechanism is that for those operators that appear

3.2. COST MODEL 106

in all alternative plans, we do not need to further analyze what factors contribute to

their UnitCost because theirUnitCost can be directly observed in the currently

running plan.

There are two scenarios in which the above statistics collection mechanism

does not fit. The first scenario is that the stream query enginehas to process a

large number of queries so that it cannot afford to collect specific statistics for

each query. Statistics summary techniques [2, 84] are needed to achieve good

scalability. The second scenario is that the user adds a new query after the stream

starts to arrive. Of course we can still run an initial plan ofthis new query and

collect statistics for it if scalability is not a concern here. Another solution is that

we always summarize the statistics as the stream runs so thatonce a new query is

added, we can immediately provide cost estimates and choosea plan for this query.

This solution is essentially static optimization, i.e., getting the statistics, choosing

a plan and running the chosen plan.

In summary, in both scenarios, we can estimate the cost of a plan from general

statistics instead of specific statistics for this particular plan. A summary statis-

tics collection mechanism may not observe theUnitCostof all Select operators

in the plans. For example, operators that involve a “contain” function such as

Select$e contains “frequent” are quite common in queries on text-centered XML

document [7]. The query-specific statistics collection mechanism ensures that we

can directly observe theUnitCostof such operators. In the summary statistics col-

lection mechanism however, we need to enhance our cost modelby analyzing what

factors contribute to evaluating, for example, a “contain”function. Except such en-

hancement on analyzing theUnitCost’s of the functions used inSelect operators,

all the other parts of our cost model still fit in the summary statistics collection

3.3. COMBINING HEURISTICS AND COSTS FOR OPERATOR COMMUTING107

mechanism.

3.3 Combining Heuristics and Costs for Operator Com-

muting

The operator-commuting and input-subplan-reordering rules optimize the non-automaton

part of a plan. The operator-commuting rule reorders two operators that have a

parent-child relationship while the input-subplan-reordering rule reorders subplans

that have a sibling relationship. We sometimes refer to these two rules as parent-

child operator reordering and sibling operator reorderingrespectively. These two

rules are not independent of each other. That means, optimizing a plan using one

rule first and then optimizing the plan using the second rule does not ensure the

resultant plan is overall optimal. We now give an example to illustrate the depen-

dency relationship between the two rules.

Example 12 Without the input-subplan-reordering rule, the likelihood of an oper-

ator being executed is only decided by the selectivity of itsdescendant operators.

For example, in Figure 3.2, if we push downSelect$f=“01609” underStructuralJoin$c,

Select$f=“01609” will be placed betweenExtractNestcf andStructuralJoin$c.

Select$f=“01609” was aboveExtractUnnestac before the push-down.ExtractUnnestac

simply wraps tokens that are components of bindings of$c into tuples. In other

words, ExtractUnnestac does not filter the input so that whether it is exe-

cuted beforeSelect$f=“01609” or in parallel with Select$f=“01609” does not af-

fect the cost ofSelect$f=“01609” . Therefore, pushing downSelect$f=“01609” un-

der StructuralJoin$c does not change the cost ofSelect$f=“01609”. However

3.3. COMBINING HEURISTICS AND COSTS FOR OPERATOR COMMUTING108

pushing downSelect$f=“01609” underStructuralJoin$c can decrease the cost of

StructuralJoin$c sinceSelect$f=“01609” can filter input toStructuralJoin$c.

In summary,Select$f=“01609” would be pushed down underStructuralJoin$c

when only the operator-commuting rule is considered. However if we in addi-

tion consider the input-subplan-reordering rule, leavingSelect$f=“01609” above

the StructuralJoin$c operator as in Figure 3.2 may be better than pushing it

down because we may be able to save the evaluation ofSelect$f=“01609” when

its left sibling subplans, for example,Select$e contains “frequent”, are very selec-

tive. Therefore, the parent-child operator relationshipsin a plan optimized without

input-subplan-reordering rule are not necessarily the same as those in a plan opti-

mized with the input-subplan-reordering rule.

Since the search space generated by only the token-or-node mode change rules

can be already very large (a query withn patterns can have up to2n alternative

plans), we prefer to optimize the non-automaton part of a plan in a short time.

We therefore use a search strategy that basically considersthe operator-commuting

and input-subplan-reordering rules independently, i.e.,optimize in two phases. In

the first phase, we optimize using only the operator-commuting rule on the initial

plan and get a new plan.. In the second phase, we then optimizethe plan derived

in the first phase using the input-subplan-reordering rule only. Such a strategy

prevents a search space explosion compared to considering all combinations of

applying both types of rules. It however is not exactly an independent search,

since some operator-commuting decisions we make in the firstphase target leaving

opportunities for the later input-subplan-reordering optimization. For example, in

Example 12, we may choose to placeSelect$f=“01609” aboveStructuralJoin$c.

3.3. COMBINING HEURISTICS AND COSTS FOR OPERATOR COMMUTING109

We present how to make the operator commuting decisions in this section while

we present how to make the input-subplan-reordering decisions in Section 3.4.

3.3.1 Using both Heuristics and Costs for Operator Commuting

The operator commuting in Raindrop plans can be divided intotwo types. One is

commutingSelect-like operators with each other. BesidesSelectoperators,Node-

Navoperators are specialSelectoperators because aNodeNavu,pv has only one

child operator and filters out input tuples whose bindings of$u do not contain a

pathp. The second type is commutingSelect-like operators withStructuralJoinop-

erators. Note that in a Raindrop plan,StructuralJoinoperators cannot be commuted

with each other. Suppose we haveStructuralJoin$u and StructuralJoin$v

where$v is a descendant element within a$u (i.e., $v can be expressed as$v =

$u/p). Because of the sequential manner of accessing token streams, a binding of

$v must be completely accessed before the corresponding binding of $u has been

completely accessed. That dictates thatStructuralJoin$v is always performed

beforeStructuralJoin$u on the data that are located within the same binding of

$u. That is to say, the order among ancestor and descendantStructuralJoin op-

erators is fixed by the query semantics. ThereforeStructuralJoin can only be

commuted withSelectandNodeNavoperators.

For the first type of commuting, i.e., commutingSelect-like operators with each

other, we can utilize some existing techniques. [19] proposed a cost-based tech-

nique for determining the order ofSelect-like operators. The basic idea is to define

a rank function on the operators. The operators are then evaluated in the ascending

order of their rank functions. This order is guaranteed to beoptimal. The rank

function on aSelect-like operatorop is defined asrank(op) = σ(op)−1
UnitCost(op) where

3.3. COMBINING HEURISTICS AND COSTS FOR OPERATOR COMMUTING110

σ(op) is the selectivity ofop (i.e., number of output tuples
number of input tuples) andUnitCost(op) is the

cost of processing one input tuple inop. Intuitively, this rank function indicates that

if the operator has a low unit cost (i.e., processes one inputtuple quickly) and a low

selectivity (i.e., filter many of its input tuples), it should be executed early. Such

a rank function based technique can also be used to commuteSelector NodeNav

operators in Raindrop.

For the second type of commuting, i.e., commutingNodeNavor Selectwith

StructuralJoin, the above cost-based technique no longer applies. [45] extends the

rank function based technique in [19] to reorderSelectandJoin operators. [45]

assumes certain properties of theSelectandJoin operators. Suppose aJoin oper-

ator has two child operatorsSel1 andSel2. [45] assumes that commuting either

Select operator withJoin only affects the costs of these two operators commuted.

For example, commutingSel1 with Join does not change the cost ofSel2. Sup-

pose aStructuralJoinalso has two childSelectoperatorsSel1 andSel2 from left

to right. Since we only evaluateSel2 after Sel1 has generated output, the cost

of Sel2 is affected by the non-empty-probability ofSel1. CommutingSel1 with

Join can increase the cost ofSel2. The assumption that only the costs of the op-

erators involved in the commuting are changed is violated. Therefore, the rank

function based technique does not work for commutingSelector NodeNavwith

StructuralJoin. We instead propose heuristics for making decisions for such type

of commuting.

In summary, we use the existing rank function based technique [19, 45] to

commuteSelector NodeNavoperators in Raindrop while we propose heuristics

to commuteNodeNavor Selectwith StructuralJoin. We have discussed how to

computeσ(op) andUnitCost(op) in Section 3.2. We now describe our heuristics

3.3. COMBINING HEURISTICS AND COSTS FOR OPERATOR COMMUTING111

for commutingNodeNavor Selectwith StructuralJoin.

3.3.2 Heuristics for Commuting Select/NodeNav with StructuralJoin

We categorizeStructuralJoin$v into three cases and propose heuristics for each

case.

Case 1:StructuralJoin$v with Duplicate $v Output

Heuristic 1: Given aSelector NodeNavoperatorop and aStructuralJoin, we place

op beneath theStructuralJoinif an ExtractUnnestvw or NavUnnestv,pw

(NavUnnestv,pw 6= op) exists in the plan.

For example, in Figure 3.6,NavUnnest$a,/seller$b would be placed beneath

StructuralJoin$a since there exists aTokenNav$a,/bidder$c in the plan. Sup-

pose we instead placeNavUnnest$a,/seller$b aboveStructuralJoin$a, if one

auctionhas 10bidder’s, StructuralJoin$a will output 10 tuples for thisauction,

one tuple for one differentbidder. Then the sameauctionwill be navigated into 10

times byNavUnnest$a,/seller$b to locate theseller.

Our experiment in Figure 2.27 in Section 2.7.2 in Chapter 2 has illustrated that

such duplicate computations seriously degrade the plan performance. We therefore

propose such a heuristic to avoid any duplicate computations.

Case 2: IntermediateStructuralJoin$v without Duplicate $v Output

Heuristic 2: We place aSelector NodeNavoperatorop above aStructuralJoin$v

if (1) exceptop, no ExtractUnnestv,pw nor NavUnnestv,pw exists in the

plan and (2) otherStructuralJoin operators exist aboveStructuralJoin$v.

3.3. COMBINING HEURISTICS AND COSTS FOR OPERATOR COMMUTING112

This heuristic is designed to provide more opportunities for structural join

related optimization. Two operators that belong to the input plans of different

StructuralJoinshave no impact on each other’s execution. For example, in Fig-

ure 3.2, suppose we placeSelect$e contains “frequent” and Select$f=“01609” be-

neathStructuralJoin$b and StructuralJoin$c respectively. Each time when

a </seller> is encountered andprofile elements are located within thisseller

(resp. When a</bidder> is encountered andzicode elements are located),Select$e contains “frequent”

(resp.Select$f=“01609”) would have to be performed. Instead, consider the case in

which we placeSelect$e contains “frequent” andSelect$f=“01609” aboveStructuralJoin$b

and StructuralJoin$c as in Figure 3.2. When a</auction> is encountered,

bidder elements would have to be found within thisauction beforeSelect$e contains “frequent”

could possibly be performed. This is becauseStrucutralJoinonly evaluates its in-

put subplans when all entry operators have generated output(see “precheck of out-

put of entry operators” in Algorithm 3). Moreover, The evaluation ofSelect$f=“01609”

will not be performed ifSelect$e contains “frequent” does not generate any output

(see ‘immediate stop at empty output of input subplans” in Algorithm 3). There-

fore, bothSelect$e contains “frequent” andSelect$f=“01609” are more likely to be

avoided after the commuting.

Generally speaking, before this commuting rewriting, theSelectand Node-

Navoperators were scattered in the input plans of differentStructuralJoins. After

the rewriting, these operators are “concentrated” into thesubplans of lessStruc-

turalJoin operators. For example, allSelectoperators occur in the input subplans

of StructuralJoin$a in Figure 3.2. Such operators are then less likely to be eval-

uated because of the optimization techniques inStructuralJoin.

3.3. COMBINING HEURISTICS AND COSTS FOR OPERATOR COMMUTING113

Case 3: TopmostStructuralJoin$v

Heuristic 3: We place aSelectorNodeNavoperatorop underneath aStructuralJoin

if no otherStructuralJoin operators exist aboveStructuralJoin$v.

Placingop aboveStructuralJoin$v does not open up any optimization oppor-

tunity for input subplan reordering as in the second case. Itmay even increase the

cost ofStructuralJoin$v because more data that could otherwise be filtered out

by Select or NodeNav are now input toStructuralJoin$v. Therefore for such a

topmostStructuralJoin, Select or NodeNav operators should be placed under-

neath it. For example, in Figure 3.2, we keep bothSelect$e contains “frequent” and

Select$f = “01609” underneathStructuralJoin$a, since it is the topmostStructuralJoin

in the plan.

3.3.3 Operator Commuting Algorithm

We now describe the algorithm that commutes the operators ina Raindrop plan.

Lemma 1 shows an important property that is utilized in the algorithm.

Lemma 1 Order of Applying Commuting Rules Being Insensitive: Given two

operatorsop1 andop2 (op1 or op2 can be either aSelector a NodeNav), whether

we commuteop1 withStructuralJoin or commuteop2 withStructuralJoin first

does not affect the final outcome.

Proof 1 We decide which category aStructuralJoinbelongs to by checking whether

thisStructuralJoincan output duplicates and whether it is the topmostStructuralJoin.

Commuting two operators would not eliminate anExtractUnnestvw or NavUnnestv,pw.

It therefore does not change the property of aStructuralJoin$v outputting dupli-

3.3. COMBINING HEURISTICS AND COSTS FOR OPERATOR COMMUTING114

cates or not. Also, the commuting would not eliminate anyStructuralJoinso that it

does not change the property of aStructuralJoin$v being topmost or not. That is

to say, no matter how we commute operators, the category thata StructuralJoin

belongs to does not change. Since whether an operator shouldbe commuted with a

StrucutralJoin is completely decided by the category of theStrucutralJoin, which

is unchanged, the order in which we commute operators with aStrucutralJoindoes

not affect the final outcome.

Algorithm 6 Commuting Operators Using both Heuristics and Costs
1: for eachStructuralJoin in the plando
2: if StructuralJoin falls in the first or third categorythen
3: while its parent is aSelector NodeNavoperatordo
4: commute thisStructuralJoin with its parent
5: end while
6: else
7: while it hasSelector NodeNavchild operatorsdo
8: commuteStructuralJoin$v with each child operator
9: end while

10: end if
11: end for
12: for eachStructuralJoin in the plando
13: for each input subplan ofStructuralJoin do
14: commute operators within the input subplan according to their rank func-

tions
15: end for
16: end for

Algorithm 6 shows the optimization using the operator-commuting rules. We

perform the commuting in two steps. In the first step, we use the heuristics to com-

muteStructuralJoin with Select or NodeNav operators (lines 1 -11). Lemma

1 shows that the order in which we commute aSelector a NodeNavwith Struc-

turalJoin does not matter. We therefore traverse eachStructuralJoinand commute

3.4. USING RANK FUNCTIONS FOR INPUT SUBPLAN REORDERING 115

theSelector NodeNavoperators with it. Since In the second step, we visit each in-

put subplan ofStructuralJoin operators. For each input subplan, we use the rank

functions [19, 45] to commute between theSelectandNodeNavoperators (lines 12

- 16).

3.4 Using Rank Functions for Input Subplan Reordering

The problem of reordering input subplans ofStructuralJoin bears some resem-

blance to the problem of ordering select and join operators [19, 45]. However, the

operators [19, 45] considered to be reordered must have a consuming-producing re-

lationship, i.e., the output of one select operator will be the input to another select

operator. In contrast, the subplans in our scenario do not have such relationships.

For example, in Figure 3.2, the output of the subplan containing Select$f=“01609”

is not sent to the subplan containingSelect$e contains “frequent”. We therefore ex-

tend the techniques in [19, 45] and derive a criterion, shownin Theorem 2, for

deciding the optimal evaluation order of input subplans.

Theorem 2 The cost of input subplans is minimal when they are evaluatedin the

ascending order of their rank functions as defined below:

rank(subplan) = σ(entryP lan(entryOp))UnitCost(subplan)
1−P 6⇒∅(subplan) .

The proof can be found in Appendix C. Intuitively, this criterion says, a subplan

should be evaluated early if (1) its entry operator filters many of its input tuples, i.e.,

smallσ(entryP lan(entryOp)), (2) it costs little, i.e., smallUnitCost(subplan),

and (3) it often does not generate any output each time when the StructuralJoinis

invoked, i.e., smallP6⇒∅(subplan).

3.5. ENUMERATIVE SEARCH FOR ONE-TIME OPTIMIZATION 116

3.5 Enumerative Search for One-time Optimization

In the previous two sections, we studied how to optimize the non-automaton part of

a plan. We now address whether a pattern should be retrieved in the automaton or

out of the automaton. In this section, we present an enumerative search algorithm

which ensures: (1) all possible alternative plans are explored so that it guarantees

to find the optimal plan and (2) an alternative is never explored twice.

Suppose the initial plan hasn pattern retrieval operators. Our exhaustive search

algorithm enumerates the combinations (i.e., subsets) of then pattern retrieval op-

erators. For each combination of operators, we change the modes of the operators

in the initial plan and get an alternative plan. However, as stated in Lemma 2,

certain combinations can lead to the generation of plans that are redundant. Such

combinations are not explored by our exhaustive search algorithm.

Lemma 2 Combinations Containing Operators with Pattern Dependency Rela-

tionship being Redundant: SupposenavOp1 and navOp2 have pattern depen-

dency relationship. They retrieve two patterns$v = $u/p1 and$y = $x/p2 where

$x is an element within$v. navOp1 andnavOp2 can be either aTokenNav or

a NodeNav type. They are not necessarily the same types. A combinationcon-

taining bothnavOp1 andnavOp2 produces the same plan as another combination

that contains no operators with pattern dependency relationship.

Proof 2 We distinguish between three cases: first,$u/p1 and$x/p2 are both re-

trieved in the automaton; second,$u/p1 and$x/p2 are both retrieved out of the

automaton; third,$u/p1 is retrieved in the automaton while$x/p2 is retrieved out

of the automaton. The fourth case, i.e.,$u/p1 is retrieved out of the automaton

3.5. ENUMERATIVE SEARCH FOR ONE-TIME OPTIMIZATION 117

while $x/p2 is retrieved in the automaton, is not supported in Raindrop.Because

as mentioned in Section 2.4.3, if$u/p1 is retrieved out of the automaton, then its

descendant pattern$u/p1 must be retrieved out of the automaton as well. We now

prove that the combination in the first case is redundant. Theproofs of the two

other cases are similar and can be found in Appendix D.

Case 1: Suppose a plan contains aTokenNav$u,p1$v and aTokenNav$x,p2$y

where$u/p1 is the ancestor pattern of$x/p2. Changing the modes of both means

we pull out both$u/p1 and$x/p2. However, pulling out$u/p1 alone will make

$x/p2 to be pulled out as a second effect. For example, in Figure 3.2, pulling out

$a/seller requires$b//profile to be also pulled out. Therefore, this combination

generates the same plan as the combination that containsTokenNav$u,p1$v but

notTokenNav$x,p2$y.

If a combination contains no pattern retrieval operators that have pattern depen-

dency relationship with each other, we say this is avalid combination. Changing

the modes in a valid combination must uniquely lead to a plan,regardless of the

order in which we change the modes of the operators in it. Lemma 3 states this

order insensitiveproperty of a valid combination.

Lemma 3 Combinations being Order Insensitive: If two pattern retrieval opera-

tors navOp1 andnavOp2 have no pattern-dependency relationship, then regard-

less of the order in which we change the modes ofnavOp1 andnavOp2, the two

plans derived contain the same operators.

Proof 3 We distinguish between three cases the same as those used forproving

Lemma 2. We prove the first case, i.e., given two operatorsTokenNav1 and

3.5. ENUMERATIVE SEARCH FOR ONE-TIME OPTIMIZATION 118

TokenNav2, no matter in what order we change their modes, we get the same

plans. The proof for the other two cases can be found in Appendix E.

Case 1: SupposeTokenNav1 = TokenNavu,pv. Pulling out $u/p can

eliminate the operators or introduce new operators into theplan in four ways.

First, TokenNavu,pv and Extractuv are rewritten intoNodeNavu,pv.

Second, if before the rewriting there exists noExtract operator that extracts$u,

then anExtract operator that extracts$u will be introduced to the plan after the

rewriting. Third, the descendant patters of$u/p that are retrieved in the automa-

ton will be pulled out. Fourth, if there exists no other operator in the format of

TokenNav1. TokenNav$u,p′$v
′ but there exists aStructuralJoin$u before the

rewriting, thisStructuralJoin$u is eliminated after the rewriting.

Later, if we change the mode ofTokenNav2, we have the below observations:

1). Mode change ofTokenNav2 will introduce neither aTokenNavu,pv nor

a Extractuv. It will not elimiate anExtract. Neither will it introduce a

StructuralJoin operator. Therefore it will not cancel out the first, second

and fourth changes resulted from the mode change ofTokenNav1.

2). SinceTokenNav2 does not have a pattern dependency relationship with

TokenNav1, mode change ofTokenNav2 will not affect those operators

whose modes have been changed as a secondary effect of the pull-out of

$u/p. That is to say, it will not cancel out the third change resulted from the

mode change ofTokenNav1.

In summary, a mode change ofTokenNav2 that occurs after the mode change

of TokenNav1 does not cancel any change that has been made. Therefore the

3.5. ENUMERATIVE SEARCH FOR ONE-TIME OPTIMIZATION 119

order in which we change the modes ofTokenNav1 and TokenNav2 does not

matter.

Algorithm 7 Exhaustive Search
ExhaustOpt(curP lan, navsToBeTried)
Input: curP lan - a current plan, will be set to the initial plan when the algorithm
is first called;

navsToBeTried - a list of pattern retrieval operators eligible for mode
changes;
Output: the best plan in the search space

1: PlanbestP lan = curP lan.
2: int n = number of pattern retrieval operators innavsToBeTried;
3: for (int i = 1; i ≤ n; i++) do
4: NavOpcurNavOp = ith operator innavsToBeTried;
5: PlannewPlan = copy ofcurP lan;
6: Change mode ofcurNavOp in newPlan;
7: OptimizenewPlan using operator-commuting rules (see Algorithm 6);
8: OptimizenewPlan using input-subplan-reordering rules;
9: List newNavsToBeTried;

10: for (int j = i + 1; j≤n; j++) do
11: NavOpnewNavOp = jth operator innavsToBeTried;
12: if newNavOp andcurNavOp have no pattern dependency relationship

then
13: addnewNavOp into newNavsToBeTried;
14: end if
15: end for
16: curBestP lan = ExhaustOpt(newPlan, newNavsToBeTried);
17: if curBestP lan costs less thanbestP lan then
18: bestP lan = curBestP lan.
19: end if
20: end for
21: returnbestP lan.

Algorithm 7 utilizes Lemmas 2 and 3 to search through the solution space.

The algorithmExhaustOpttakes two input parameters, namely, a plan and a list

of pattern retrieval operators. The first timeExhaustOpt is called,curP lan is

3.5. ENUMERATIVE SEARCH FOR ONE-TIME OPTIMIZATION 120

the initial plan andnavsToBeTried contains all the pattern retrieval operators

in the initial plan. Suppose there aren operators innavsToBeTried. For each

operatornavOpi (1 ≤ i ≤ n) in the navsToBeTried list, we make a copy of

curP lan, change the mode ofnavOp in the plan copy and then get a new plan

(lines 4 - 6). We will getn new plans. We recursively applyexhaustiveSearch

with the input parametersnewPlan and newNavsToBeTried (line 16). For

a plannewPlan that results from the mode change ofnavOpi, we make sure

that newNavsToBeTried does not contain any operators that have dependency

relationship withnavOpi (lines 12 - 13), because changing the modes of such an

operator andnavOpi is forbidden by theinvalid combination lemma.

We now illustrate this algorithm ensures that no alternative plan is missed.

Given an arbitrary planPany that can be derive by changing modes of a sublist of

thenavsToBeTried in the initial plan, it must be explored byExhaustOpt. We

denoted the sublist asS. AssumeS = {navOpk, navOpk+1, ...} (1≤ k < number

of pattern retrieval operators innavsToBeTried). WhenExhaustOpt is called

the first time, amongn new plans, one results from the mode change ofnavOpk.

WhenExhaustOpt is recursively called on this new plan, it will change the mode

of navOpk+1. The process continues. WhenExhaustOpt is called the|S|th time

(|S| denotes the number of operators inS), Pany must be generated.

Also, the process mentioned above is the only way thatExhaustOpt can gen-

eratePany. Whenever we change the mode of anavOpi in the current plan and get

a new plan, only operators occurring afternavOpi in thenavsToBeTried list are

added into thenewNavsToBeTried list (see line 10 wherej starts fromi + 1).

Pany can be only generated when the exhaustive applies token-or-node rewrite rule

in the order ofnavOpk, navOpk+1 and so on. ThereforePany is never explored

3.6. GREEDY SEARCH FOR ONE-TIME OPTIMIZATION 121

twice.

3.6 Greedy Search for One-time Optimization

For a query withn patterns, the search space can have up toΣn
i=0C

i
n = 2n al-

ternative plans. We say “up to” because some combinations are invalid and thus

excluded. Finding an optimal plan obviously will be time-consuming. In this sec-

tion, we present a greedy search algorithm that aims to quickly find a good but not

necessarily optimal plan.

3.6.1 Baseline Greedy Search

Figure 3.12 intuitively depicts how Greedy search works. The initial plan shown

asP in Figure 3.12 has a set of pattern retrieval operators denoted asS0. For each

pattern retrieval operator inS0, we change its mode and get a new plan, denoted as

P1, ...,Pn respectively. We use operator-commuting and input-subplan-reordering

rules to further optimize the new plans (the circles onP1, ..., Pn in Figure 3.12

denote such optimization). If the cheapest plan among then new plans is also

cheaper than the initial plan, we then select this cheapest plan as the new current

plan. For example, in Figure 3.12,P1, which results from the mode change of

navOp1, is selected after the first iteration (the highlighted noderepresents a new

current plan).

With the newly selected plan, we begin the next iteration. Inthis iteration,

we again change the mode of a set of operators, denoted asS1, whereS1 = S0

− navOp1 − operators that have pattern dependency relationship withnavOp1.

Similar to the first iteration, we optimize, cost and comparethe new plans. We

3.6. GREEDY SEARCH FOR ONE-TIME OPTIMIZATION 122

then get a new current planP12 in Figure 3.12. The iterations continue until no

new plan is found to be cheaper than the current plan, i.e., the best plan found

so far. Algorithm 8 shows the pseudocode for this search process. We call this

algorithmGreedyOpt.

P
initial plan

Change NavOp1

P12

ChangeNavOp2

P1n

Change NavOpn

100

P1 P2 Pn
…50 80 110

30 65
…

Change NavOp2
Change NavOpn

…

Figure 3.12: Greedy-based Search

We now compute the upper bound on the number of alternative plans explored

by the GreedyOpt algorithm. In the first iteration, GreedyOpt exploren alternatives

plans. In the second iteration, GreedyOpt explore at mostn − 1 alternative plans.

After at mostn iterations, the process terminates. Therefore GreedyOpt explore at

most
∑n

i=1 i = n(n + 1)/2 alternative plans.

3.6.2 Expediting Cost Estimate

In the section, we propose techniques to expedite the GreedyOpt algorithm. These

techniques reduce the time spent on processing an alternative plan, more specifi-

cally, costing an alternative plan. When we apply a mode change and get a new

plan, we need to cost this new plan. In a naive approach, we recompute the cost

from scratch. In contrast, we can analyze what parts of plan are affected by the

3.6. GREEDY SEARCH FOR ONE-TIME OPTIMIZATION 123

Algorithm 8 Greedy Search in an One-time Optimization Scenario
GreedyOpt(curP lan, navsToBeTried)
Input: curP lan - a current plan, will be set to the initial plan when the algorithm
is first called;

navsToBeTried - a list of pattern retrieval operators eligible for mode
changes;
Output: the best plan among the plans explored

1: PlanbestP lan = curP lan;
2: for each operatornavOp in navsToBeTried do
3: PlannewPlan = copy ofcurP lan;
4: Change mode ofnavOp in newPlan;
5: OptimizenewPlan using operator-commuting rules;
6: OptimizenewPlan using input-subplan-reordering rules;
7: if newPlan costs less thanbestP lan then
8: bestP lan = newPlan
9: end if

10: end for
11: if bestP lan != curP lan then
12: let navOpi denotes the operator whose mode change leads tobestP lan;
13: navsToBeTried = navsToBeTried − navOpi − all operators that have

pattern dependency relationship withnavOpi;
14: returnGreedyOpt(bestP lan, navsToBeTried);
15: else
16: returncurP lan.
17: end if

3.6. GREEDY SEARCH FOR ONE-TIME OPTIMIZATION 124

mode change and avoid recomputing. We propose two techniques, i.e.,incremen-

tal cost estimateanddetection of same cost change.

Incremental Cost Estimate.

We first define several concepts needed in our analysis.

Definition 4 For a NavOpu,pv, we call StructuralJoin$u its context Struc-

turalJoinbecauseStructuralJoin$u joins on the context element$u ofNavOp$u,p$v.

Definition 5 The heuristics in Section 3.1 impose thatNodeNavu,pv cannot

be moved above aStructuralJoin$v that can output duplicates of bindings of

$v or is the topmostStructuralJoin. We call thisStructuralJoin a confining

StructuralJoinof NavOpu,pv.

The confiningStructuralJoin confines how far theNavOpu,pv operator

itself (whenNavOpu,pv is aNodeNav) or theTokenNav operator rewritten

from NavOpu,pv (whenNavOpu,pv is aTokenNav) can be moved up.

Definition 6 We define a functionmoveScope(navOp) to denote a set ofStructuralJoins.

The set consists of all theStructuralJoins between the context and confining

StructuralJoins ofnavOp, including the context and confiningStructuralJoins.

Example 13 In Figure 3.2, forTokenNav$a,/seller$b, StructuralJoin$a is its

contextStructuralJoin. If we change the mode ofTokenNav$a,/seller$b, the re-

sultingNodeNav$a,/seller$b cannot be moved aboveStructuralJoin$a because

there exists anExtractUnnestac in the plan. StructuralJoin$a is then also

TokenNav$a,/seller$b’s confiningStructuralJoin. moveScope(TokenNav$a,/seller$b)

thus is{StructuralJoin$a}.

3.6. GREEDY SEARCH FOR ONE-TIME OPTIMIZATION 125

Suppose we change the mode of aTokenNavu,pv operator in the current

plan Pcurrent and getPnew. We use a boolean valueisIntroduced to denote

whether an operator in the form ofExtracttu is introduced intoPnew because

of this change. We then have Equation 7.

Equation 7 Cost change from a pattern pull-out

= Cost(Pnew) − Cost(Pcurrent)

= automaton cost inPnew − automaton cost inPcurrent (1)

+ automaton-outside cost inPnew − automaton-outside cost inPcurrent (2)

= Cost(Extracttu) * isIntroduced−Cost(TokenNavu,pv) (3)

+
∑

sj∈moveScope(TokenNavu,pv)cost of input subplans of sj in Pnew

−
∑

sj∈moveScope(TokenNavu,pv)cost of input subplans of sj in Pcurrent (4)

According to Equation 6 in Section 3.2.3, aTokenNavu,pv operator costs

the same in every alternative plan where it appears. However, changingTokenNavu,pv

to NodeNavu,pv can introduce a newExtracttu operator if$u was not ex-

tracted in the current plan. Therefore, we expand Expression (1) into Expression

(3) in Equation 6. Also, sinceNodeNavu,pv cannot be placed above the con-

fining StructuralJoin, the mode change does not affect the operators beneath the

confining StructuralJoin. We thus expand Expression (2) into Expression (4) in

Equation 7. We can use Equation 7 to compute the cost change from Pcurrent to

Pnew when we pull out a pattern from the automaton.

Equation 8 gives the cost change that would result from a push-in of a pattern

into the automaton. Equation 8 is the reverse of Equation 7.isElimiated is a

boolean value that indicates whether an operator in the formof Extracttu is

eliminated fromPcurrent because of this change.

3.6. GREEDY SEARCH FOR ONE-TIME OPTIMIZATION 126

Equation 8 Cost change from a pattern push-in

= Cost(Pnew) − Cost(Pcurrent)

= Cost(TokenNavu,pv) − Cost(Extracttu) * isEliminated

+
∑

sj∈moveScope(TokenNavu,pv)cost of input subplans of sj in Pnew

−
∑

sj∈moveScope(TokenNavu,pv)cost of input subplans of sj in Pcurrent

Detection of Same Cost Change.

From Equations 7 and 8, we can derive Theorem 3.

Theorem 3 Given two pattern retrieval operatorsnavOp1 andnavOp2, if moveScope(navOp1)

∩moveScope(navOp2) = ∅, then the cost change resulted from the mode change

of navOp1 in a plan is independent from the mode change ofnavOp2 in this plan.

The proof of Theorem 3 can be found in Appendix F. Figure 3.13 shows how

to utilize Theorem 3. Given a planP1, we get two plansP2 andP3 by changing

the modes ofnavOp1 andnavOp2 in P1 respectively. Suppose we now change

the mode ofnavOp1 in P3 and get a new planP4. If moveScope(navOp1)

∩ moveScope(navOp2) = ∅, we then knowCost(P4) − Cost(P3) is the same

as Cost(P2) − Cost(P1). We can simply computeCost(P4) as Cost(P3) +

Cost(P2) − Cost(P1).

P1 P2

P3 P4

change mode of NodeNav1

change mode of TokenNav2

change mode of TokenNav1

Figure 3.13: Detection of Same Cost Change: IsCost(P4) − Cost(P3) =
Cost(P2) − Cost(P1)?

3.6. GREEDY SEARCH FOR ONE-TIME OPTIMIZATION 127

Example 14 Suppose we have a plan in Figure 3.14 (a). This plan corresponds

to P1 in Figure 3.13. We pull out each of the fourTokenNav operators respec-

tively and get four new plans. Assume we chose the plan after the pull-out of

TokenNav$b,p4$d, shown in Figure 3.14 (b), as the new current plan. This new

current plan corresponds toP3 in Figure 3.13. The part in Figure 3.14 (b) that

is different from Figure 3.14 (a) is highlighted. To make thenext move, we now

need to pull outTokenNav$a,p5$e andTokenNav$b,p3$c (we do not consider the

pull-out ofTokenNav$a,p2$b because it has pattern dependency relationship with

TokenNav$b,p4$d). Thereafter, we need to estimate the costs of the two new plans.

1). ForTokenNav$a,p5$e, moveScope(TokenNav$b,p4$d) ∩moveScope(TokenNav$a,p5$e)

= {StructuralJoinb} ∩ {StructuralJoin$a} = ∅. Therefore the two cost

changes that the pull-out ofTokenNav$a,p5$e in Figures 3.14 (a) and (b)

cause respectively are the same. We can reuse the estimate ofthe cost change

from the last time.

2). In contrast, for TokenNav$b,p3$c, moveScope(TokenNav$b,p4$d) ∩

moveScope(TokenNav$b,p3$c) = {StructuralJoinb}∩ {StructuralJoin$b,

StructuralJoin$a}= {StructuralJoin$b} 6= ∅. The two cost changes that

the pull-out ofTokenNav$b,p3$c in Figures 3.14 (a) and (b) cause respec-

tively are different. We cannot reuse the estimate of cost change from last

time.

Summary

When we get a new plan, we first apply the technique of “detection of same cost

change”. If we find out that the cost change is not the same as estimated last time,

3.6. GREEDY SEARCH FOR ONE-TIME OPTIMIZATION 128

ExtractUnnestbc ExtractNestbd

StructuralJoin$b

TokenNav$b, p3$c TokenNav$b, p4$d

TokenNav$a, p2$b

TokenNav$s, p1$a

TokenNav$a, p5$e

StructuralJoin$a

ExtractNestae

Sel$c = “…”

Sel$d = “…”

StreamSource$s

(a) Original Plan

ExtractUnnestbc NavNest$b, p4$d

StructuralJoin$b

TokenNav$b, p3$c ExtractUnnestab

TokenNav$a, p2$b

TokenNav$s, p1$a

TokenNav$a, p5$e

StructuralJoin$a

ExtractNestae

Sel$d = “…”

StreamSource$s

Sel$c = “…”

(b) Moving out TokenNav$b, p4 $d from (a)

ExtractUnnestbc NavNest$b, p4$d

StructuralJoin$b

TokenNav$b, p3$c ExtractUnnestab

TokenNav$a, p2$b

TokenNav$s, p1$a

TokenNav$a, p5$e

StructuralJoin$a

ExtractNestae

Sel$d = “…”

StreamSource$s

Sel$c = “…”

(b) Moving out TokenNav$b, p4 $d from (a)

Figure 3.14: Reuse Cost Estimate for Mode Changes of Patterns in Figure 3.14 (a)

we then apply the technique of “incremental cost estimate”.

3.7. GREEDY SEARCH WITH PRUNING FOR CONTINUOUS OPTIMIZATIO N129

3.7 Greedy Search with Pruning for Continuous Optimiza-

tion

If the environment fluctuates, we have to optimize more frequently than in the one-

time optimization scenario (see Section 1.3.2 in Section 1). Correspondingly, we

need to find a good plan even more quickly. The plan search timeis decided by

two factors, i.e., number of alternative plans explored andthe time spent on each

alternative plan. The GreedyOpt algorithm has reduced the plan search time of

the ExhaustOpt algorithm by reducing the two factors, i.e.,using a Greedy search

strategy and expediting costing of a plan respectively. Within the current search

space that is delimited by the three rewrite rules, it is hardto further reduce the

two factors in the GreedyOpt. We therefore consider dropping some rewrite rules

to shrink the search space.

Among the three types of rewrite rules introduced in Section3.1, token-or-

node mode change and operator-commuting rules are more likely to affect the

plan performance than the input-subplan-reordering rule.Token-or-node mode

change rules enable the plans to benefit from pulling out (resp. pushing in) pat-

tern retrieval with high (resp. low) selectivity. Operator-commuting rules enable

the plans to benefit from executing operators with high selectivity after others.

In contrast, plans benefit from input subplan reordering only if an input subplan

of a StructuralJoin$v does not generate output within a binding of$v, i.e.,

P6⇒∅(subplan) = 0. This is a rather strict requirement. Therefore, we drop the

input-subplan-reordering rule.

Dropping the input-subplan-reordering rule simply means we do not change the

left to right order of the input subplans of aStructuralJoin. The execution manner

3.7. GREEDY SEARCH WITH PRUNING FOR CONTINUOUS OPTIMIZATIO N130

of StrucutralJoin given in Algorithm 5 remains unchanged.StructuralJoin

still first checks whether all entry operators have generated output; if yes, it then

evaluates the input subplan from left to right and terminates if any input subplan

does not generate output. Therefore, the cost model of inputsubplans does not

change.

Among the three heuristics for operator commuting, one heuristic is proposed

in order to provide optimization opportunities for input subplan reordering. The

heuristic says that we should placeSelectorNodeNavoperators above aStructuralJoin$v

that is not a topmostStructuralJoinand does not output tuples with duplicate bind-

ings of $v. Even though we drop the input-subplan-reordering optimization, we

still keep the heuristics for two reasons.

First, aSelector NodeNavoperator is still less likely to be evaluated after being

commuted with its parentStructuralJoinoperator. Dropping the input-subplan-

reordering optimization only means the benefit we get from this commuting is

not maximal. Second, the side effect of placingSelector NodeNavaboveStruc-

turalJoin is small so that it would not offset the benefit of an even sub-optimal

input subplan order. When we commute aSelector NodeNavwith its parent

StructuralJoin$v, the cost ofStructuralJoin$v increases since theSelector

NodeNavcould otherwise filter out the input toStructuralJoin$v without the

commuting. However, we only place aSelectorNodeNavabove aStructuralJoin$v

that does not output duplicate bindings of$v. This means, no operator in the plan

is in the format ofExtractUnnestvw or NavNestv,pw. As a result, each

time when an end tag of a binding of$v is encountered,StructuralJoin$v has

at most one tuple from each input operator (e.g.,StructuralJoin$b consumes at

most one tuple fromExtractNest$b,//profile for each binding of$b). Therefore

3.7. GREEDY SEARCH WITH PRUNING FOR CONTINUOUS OPTIMIZATIO N131

there is not much space to further reduce the cost of thisStructuralJoin$v. In

summary, dropping the input-subplan-reordering optimization does not affect the

operator-commuting optimization.

For the greedy algorithm, we only need to make a slight changein order for it to

apply to our new scenario. We remove the input-subplan-ordering optimization on

a plan, i.e., remove line 5 in Algorithm 8. For the new greedy algorithm, we further

propose a technique for pruning the alternative plans, i.e., reducing the number

of alternative plans to explore. The greedy algorithm with the pruning technique

guarantees to find the same plan as the greedy algorithm without pruning.

3.7.1 Basic Ideas of Pruning

Suppose we can estimate a lower bound of the cost changes fromthe mode changes

of navOp in any plans that containnavOp and have been optimized by operator-

commuting rule, where cost change is defined as (cost of the plan after mode

change - cost of the plan). If this lower bound is larger than 0, it means that for

any plan, (cost of the plan after the mode change ofnavOp - cost of the plan)> 0.

In other words, mode change of thisnavOp in any plans always leads to a worse

plan. We can then safely exclude the mode change ofnavOp in any plans.

The challenge is then how to compute the lower bound. We want the computa-

tion to satisfy two properties. First, it should be quick; otherwise the computation

overhead may offset the benefits of saving time in exploring the alternative plans.

Second, the lower bound computed should be “tight”. For example, an extremely

relaxed lower bound “negative infinite” (cost of new plan - cost of current plan

must always be greater than negative infinite) will not exclude anything. Only a

lower bound that is greater than 0 can help pruning alternative plans. These two

3.7. GREEDY SEARCH WITH PRUNING FOR CONTINUOUS OPTIMIZATIO N132

properties usually have a negative correlation, i.e., we usually need to spend more

time to compute a tighter lower bound. We have to strike a balance between the

time spent on computing the lower bound and the quality of thelower bound.

3.7.2 Pruning Plans Derived from Mode Change of TokenNav Oper-

ators

We first consider the case in whichnavOp is a TokenNavu,pv whose$v is

not selected by anySelect or navigated into by anyNodeNav. When we pull

out such aTokenNavu,pv in a current planPcurrent and get a new planPnew,

then no other operator would have to be moved so that they are still placed above

TokenNavu,pv. This leads to Equation 9.

Equation 9 Cost change of changing mode of TokenNavu,pv with $v not be-

ing consumed by other operators:

Cost(Pnew) − Cost(Pcurrent):

= automaton cost inPnew − automaton cost inPcurrent (1)

+ automaton-outside cost inPnew − automaton-outside cost inPcurrent (2)

= Cost(Extracttu) * isIntroduced − Cost(TokenNavu,pv) (3)

+ Cost(NodeNavu,pv) (4)

− Cost(StructuralJoin$u in Pcurrent) * isEliminated (5)

+ cost of rest automaton-outside operators inPnew − cost of rest automaton-

outside operators inPcurrent (6)

Expressions (1), (2) and (3) are the same as Equation 7. Expression (1) is ex-

panded into Expression (3). Expression (2) is expanded intoExpressions (4) and

(5). For Expression (4), depending onNodeNavu,pv’s descendent operators,

3.7. GREEDY SEARCH WITH PRUNING FOR CONTINUOUS OPTIMIZATIO N133

Cost(NodeNavu,pv) can vary in different current plans.Cost(NodeNavu,pv)

is minimal whenNodeNavu,pv is executed as late as possible. In such cases it

consumes the least input and thus costs the least. We denote this minimal cost as

min(Cost(NodeNavu,pv)). Therefore Expression (4)> min(Cost(NodeNavu,pv)).

We now analyze the lower bound of Expression (5) in Equation 9. Changing

the mode ofTokenNavu,pv can lead to the elimination ofStructuralJoin$u.

This can happen in only one case. That is, whenStructuralJoin$u in the current

plan has only two input subplans according to themode change with introduc-

ing/eliminating StructuralJoinrewrite rule in Figure 2.6. Therefore Expression (5)

> − Cost(StructuralJoin$u).

Except the possibly eliminatedStructuralJoin$u, all the other automaton-

outside operators inPcurrent remain inPnew. Also, the rank of each such automaton-

outside operatorop, i.e., σ(op)−1
UnitCost(op) , is completely decided by theop itself. It is

not changed by the newly createdNodeNavu,pv. Therefore commuting these

automaton-outside operators with each other is not needed.However, rewriting

TokenNavu,pv to NodeNavu,pv can increase the cost of those automaton-

outside operators which are executed afterTokenNavu,pv in Pcurrent but are

executed beforeNodeNavu,pv in Pnew. Therefore, Expression (6)≥ 0.

Based on the above discussion, we have Equation 7>−Cost(TokenNavu,pv)

+ min(Cost(NodeNavu,pv)) − Cost(StructuralJoin$u). Correspondingly,

we have Pruning Rule 1.

Pruning Rule 1 Given a pattern$v = $u/p where$v is not further selected by

Select operators or navigated into byNodeNav operators, ifmin(Cost(NodeNavu,pv))

− Cost(TokenNavu,pv) − Cost(StructuralJoin$u) > 0, we do not consider

3.7. GREEDY SEARCH WITH PRUNING FOR CONTINUOUS OPTIMIZATIO N134

to change the mode ofTokenNav$u,p in any alternative plan.

3.7.3 Discussion on Pruning Other Pattern Retrieval Operators

We now discussTokenNavu,pv operators whose bindings of$v are further se-

lected on or navigated into. To get the lower bound of (cost ofPnew - cost of

Pcurrent) for TokenNavu,pv, we have to estimate the lower bound of those op-

erators that consume$v in Pnew by assuming they are executed as late as possible;

and the upper bound of these operators inPcurrent by assuming they are executed

as early as possible. Doing this can be quite time-consuming. We therefore do not

consider pruning by bounding the cost of the mode change ofTokenNavu,pv

whose$v is further consumed.

The cost change that results from the mode change ofNodeNavu,pv whose

bindings of$v are not consumed by other operators is the reverse of Equation 9.

Equation 10 Cost change of changing mode of NodeNavu,pv with $v not be-

ing consumed by other operators:

Cost(Pnew) − Cost(Pcurrent):

= Cost(TokenNavu,pv) - Cost(Extracttu) * isIntroduced (1)

− Cost(NodeNavu,pv) (2)

+ Cost(StructuralJoin$u) in Pcurrent * isEliminated (3)

− cost of rest automaton-outside operators inPnew + cost of rest automaton-

outside operators inPcurrent (4)

Since Expressions (3) and (6) in Equation 9 both are greater than some con-

stants, Expressions (1) and (4) in Equation 10 are then less than these constants. It

is difficult to get a lower bound for this cost change. We therefore do not develop

3.8. EMBEDDING STATISTICS COLLECTION INTO PLAN EXECUTION 1 35

a pruning rule for bounding the cost change caused by pushingin a node pattern

retrieval.

3.7.4 Summary

Algorithm 9, which is calledgreedyPruneOpt, shows the greedy search with

pruning for the continuous optimization scenario. Each time when we start the

optimization, we callgreedyPruneOpt with three parameters,curP lan which

is the currently running plan,navsToBeTried which is a list of pattern retrieval

operators incurP lan, and a boolean valueTRUE to indicate that this is the first

iteration of the optimization oncurP lan. During the first iteration of the optimiza-

tion, we apply the technique of “pruning by bounding cost change” (lines 1 - 8 in

Algorithm 9). We bound the cost change for eachTokenNav whose pattern is not

further consumed in the plan. Those operators whose lower bound is greater than 0

are excluded from mode changes. With the rest pattern retrieval operators, we then

apply greedy search as before (lines 9 - 16 in Algorithm 9).

3.8 Embedding Statistics Collection into Plan Execution

We now analyze what statistics need to be collected to estimate the costs of the

plans. Tables 3.1 and 3.2 in Section 3.2.3 contain the parameters needed for cost-

ing the automaton. Some of the parameters, such asCnonEmp, Cemp, Cvisit and

Cbicartesian
3 are constants. We can determine their values off-line, i.e., before the

data comes in. The other parameters, namely,Cextract(q), nactive(q), nstart, np[i]

andwp[i] vary in different data and need to be collected on-line, i.e., as the data

3The parameterCbacktrack in Table 3.2 is only used for analysis, but not needed in Equation 6
which computes the cost of aTokenNav operator. We therefore do not collect it.

3.8. EMBEDDING STATISTICS COLLECTION INTO PLAN EXECUTION 1 36

Algorithm 9 Greedy Search with Pruning in a Continuous Optimization Scenario
GreedyPruneOpt(curP lan, navsToBeTried, isInitial)
Input: curP lan - a current plan, will be set to the initial plan when the algorithm
is first called;

navsToBeTried - a list of pattern retrieval operators eligible for mode
changes;

isInitial - a boolean indicating whethercurP lan is the initial plan;
Output: the best plan among the plans explored

1: if isInitial then
2: for each operatornavOp in navsToBeTried that satisfies: (1)navOp is a

TokenNav and (2) the pattern retrieved bynavOp is not further consumed
do

3: double lowerBound = estimate lower bound of the cost cut of mode
change ontokenNavOp;

4: if lowerBound > 0 then
5: removetokenNavOp from navsToBeTried
6: end if
7: end for
8: end if
9: ... (same as lines 1 - 7 in Algorithm 8)

10: if bestNewPlan costs less thancurP lan then
11: letnavOpi denote the operator whose mode change leads tobestNewPlan;
12: navsToBeTried = navsToBeTried − navOpi − all operators that have

pattern dependency relationship withNavOpi;
13: returnGreedyPruneOpt(bestNewPlan, navsToBeTried, FALSE);
14: else
15: returncurP lan.
16: end if

3.8. EMBEDDING STATISTICS COLLECTION INTO PLAN EXECUTION 1 37

comes in. Also,σ(op), Pop 6⇒∅ andUnitCost(op) are required in Equation 3 in

Section 3.2.1 for costing the automaton-outside operators.

Some parameters can be derived from the others. For example,np[i] andwp[i]

are used to estimate the cost of aNodeNavu,pv while nactive(q) is used to esti-

mate the cost of aTokenNavu,pv. np[i] × wp[i] gives the number of children of

the bindings ofp[i] (i.e., theith navigation step onp) in a binding of$u. Suppose

statesq andq′ in the automaton are activated by bindings ofp[i] and binding of$u

respectively.nactive(q) is the number of children of bindings ofp[i] in a bottom in-

put element (see Table 3.2) . We then have, nactive(q)
number of bindings of $u in a bottom input element

= σp[i] × wp[i]. Therefore we need only collect eithernactive(q) when $u/p is

retrieved in the automaton; ornp[i] and wp[i] when $u/p is retrieved out of the

automaton.

We now briefly introduce how we collect each required parameter:

1. nactive(q): nactive(q) is the number of times that stack top contains a stateq

when a start tag arrives. For each stateq in the automaton, we maintain a counter

denoted asactiveCounter(q). Each time when a start tag arrives, this counter of

each state at the top of the stack is incremented by 1. Also, for a state that corre-

sponds to the start of a path (e.g.,q2 in the automaton in Figure 3.2), we associate it

with a second counter denoted asreachCounter(q). reachCounter(q) is incre-

mented by 1 each time whenq is pushed into the stack. For example, in Figure 3.2,

when a start tag of a descendant ofbidder elements arrives, the stack top always

contains aq8 so thatactiveCount(q8) is incremented. When a<auction> arrives,

it activatesq2 andreachCount(q2) is incremented.nactive(q8), i.e., the number of

descendants ofbidder in anauction, is then equivalent toactiveCount(q8)
reachCount(q2)

.

2. Cextract(q): To find out the cost of storing elements whose start tags activate

3.9. RUN-TIME PLAN MIGRATION 138

stateq, we maintain a storing cost counter denoted asstoreCount(q). Also, the

storage manager maintains a list. We can add a storing cost counter into the list or

remove one from the list. Each time whenq is activated, we addstoreCount(q)

into the list. Whenever the storage manager stores a token, it traverses this list.

For each storing cost counter in the list, the storage manager increments it by the

length of the token. Later, whenq is popped off the stack, we remove its storing

cost counter from the list. At this time, the value ofstoreCount(q) is the length

of the element that activatesq.

3. Pop 6⇒∅: AssumeStructuralJoin$v isop’s nearest ancestorStructuralJoin.

notEmptyCount(op) is the probability ofop generating some output within a

binding of$v. We associateop with a counter, denoted asnotEmptyCount(op).

Each time whenStructuralJoin$v invokesop as an end tag of a binding of$v

arrives,notEmptyCount(op) is incremented by 1 ifop generates some output.

Suppose bindings of$v activate automaton stateq, then at any time when a bind-

ing of $v has been finished processing,notEmptyCount(op)
activateCount(q) givesPop 6⇒∅.

The collection ofσ(op) (selectivity of an operator),UnitCost(op) (cost of

processing one input tuple) andnstart (number of start tags in a bottom input ele-

ment) is rather straightforward. We skip the discussion here.

3.9 Run-time Plan Migration

In the compile time optimization,plan migrationis not needed. We optimize, get

a plan and simply run it. In the run time optimization in our scenario, we optimize

a currently running plan, get a new plan (if any), and then have to migrate the

current plan to this new plan. Two problems arise. First, howto change the current

3.9. RUN-TIME PLAN MIGRATION 139

place to the new plan. This process must be efficient, especially in the continuous

optimization scenario since plan change happens from time to time. Second, we

need to determine when to change the current plan to the new plan. The migration

should take place as soon as possible so that we can benefit from the new plan as

early as possible. We now address these two aspects in Sections 3.9.1 and 3.9.2

respectively.

3.9.1 Incremental Change of Automaton

The search algorithm returns a new query plan. However this plan is not ready for

execution. We must traverse theTokenNavoperators in the new plan and construct

an automaton out of it. For example, the plan search algorithm may return the top

query plan in Figure 3.2 as the new plan found. We then need to construct the

bottom automaton in Figure 3.2 before the plan can be executed.

We actually do not have to reconstruct the automaton from scratch. We can

modify the automaton for the currently running plan and reuse it for the new plan.

Besides a new plan, the search algorithm returns a list ofNodeNavandTokenNav

operators in the current plan whose modes have been changed.For each operator

in the list, if the operator is aTokenNavu,pv, we remove the states that encode

p in the current automaton; if aNodeNavu,pv has been pushed in, we add states

to the current automaton to encodep.

For example, suppose we want to migrate the currently running plan in Fig-

ure 3.2 to the new plan in Figure 3.6. The mode ofTokenNav$a,/bidder$c in

the current plan is changed. Correspondingly, as shown in Figure 3.15, we re-

move the transition fromq2 to q4 in the automaton in Figure 3.2. We still maintain

the disconnected sub-automaton composed of statesq4, q5 andq6 which encodes

3.9. RUN-TIME PLAN MIGRATION 140

TokenNav$a,/seller$b. Next time, if the mode ofNodeNav$a,/seller$b in Figure

3.6 is changed, we can simply add the sub-automaton encodingTokenNav$a,/seller$b

in, namely, we add the transition fromq2 to q4 without creating any new states.

q2
auction

q1

reserve
q3

q6
profile

q5

q9bidder
q0

auctions

zipcode

*

q8

q4

q7

ExtractNestad

ExtractUnnestac

StructuralJoin$a

ExtractNestcf

StructuralJoin$c

TokenNav$a, /reserve$d ExtractUnnestsa TokenNav$a, /bidder$c

TokenNav$c, //zipcode$f

Select$f = “01609”

NavNest$b, //profile $e

Select$e contains “frequent”

TokenNav$s, /auctions/auction$a

StreamSource“open_auction”$s

Tagger<auction>$b,$c</auction>

NavUnnest$a, /seller $b

Figure 3.15: Incremental Change of Automaton for Migratingfrom Plan in Figure
3.2 to Plan in Figure 3.6

We now have the automaton for the new plan. The next thing to dois then to

associate the automaton with the operators in the new plan. Otherwise, after the

migration, when a state is activated, the operators in the current plan, instead of

the operators in the new plan, will be executed. Therefore, for an automaton state

that is associated with operators in the current plan, we redirect it to be associated

with the matching operators in the new plan. An operatorop in the current plan is

3.9. RUN-TIME PLAN MIGRATION 141

matched with another operatorop′ in the new plan ifop′ is a copy ofop. In Figure

3.15, four states in the automaton, i.e.,q2, q3, q7 andq9, are redirected to be asso-

ciated with the operators in the new plan. For example, the association betweenq2

andStructuralJoin$a means onceq2 is popped off the stack,StructuralJoin$a

will be invoked.

Note that recording the matching relationship, i.e., remembering an operator in

the new plan is copied from a certain operator in the current plan, is not an extra

burden in the plan search algorithm. Even if we do not incrementally change the

automaton, the plan search algorithm still has to record thematching relationship.

Otherwise, after we copy the current plan and rewrite the copy, we have no way

to cost the rewritten plan since the statistics are collected for the operators in the

current plan.

3.9.2 Choosing Right Moment to Migrate

A challenge in plan migration is that the migration cannot just start at a random

time, as this may corrupt the running system. The example below illustrates how

corruption may arise.

Example 15 Suppose we are running a plan in Figure 3.2. Figure 3.11 in Section

3.2.3 shows the snapshots of the stack content as the tokens are processed. Assume

we now pause this plan right after we have processed a<seller> token and start

to migrate to the new plan in Figure 3.6. The last stack in Figure 3.11 is the current

stack at this moment. Since in the new plan,$b = $a/seller is retrieved out of the

automaton, the corresponding automaton of the new plan willnot have statesq4,

q5 andq6 as the current automaton in Figure 3.2 does. After the migration, for the

3.9. RUN-TIME PLAN MIGRATION 142

next incoming start tag, the transition entry of the state atthe stack top, i.e.,q4 and

q5, would be looked up. Howeverq4 andq5 are no longer in the automaton. This

makes the system corrupt.

We now characterize the safe moment to start the migration. Suppose a new

plan is derived from the current plan by mode changes of a set of pattern retrieval

operators denoted asS. We define a setT as: T = {ConfiningStructuralJoin

of navOp | navOp ∈ S}, where confiningStructuralJoin of navOp is the

StrucutralJoin beyond whichnavOp cannot be moved as defined in Section

3.6.2. We callT boundary StructuralJoinsbecause only the subplans underneath

theseStructuralJoinsare changed. We call the time that the tokens under process-

ing are not components of any binding of$v that is joined on by any boundary

StructuralJoin (i.e.,$v satisfies: there exists aStructuralJoin$v in T) themi-

gration window. The migration can start within themigration window.

Example 16 In Example 15, the plan in Figure 3.6 is rewritten from the plan in

Figure 3.2 withS = {TokenNav$a,/seller}.Correspondinly,T={StructuralJoin$a}.

The migration can start whenever the current query plan is not in the middle of

processing any component tokens of a binding of$a (i.e., anauctionelement). For

example, the migration can start right after a</auction> has been processed.

We cannot start the migration any time earlier than the migration window. Oth-

erwise we can lose data. For example, suppose we start the migration in the middle

of processing component tokens of anauction element, say, right after we have

processed a</seller>. At this moment, the output buffer ofStructuralJoin$b in

Figure 3.2 contains tuples each of which has two cells, one for the binding of$b and

one for the binding of$e. However after the migration,StructuralJoin$b is gone.

3.9. RUN-TIME PLAN MIGRATION 143

Note that we cannot move the tuples in the output buffer ofStructuralJoin$b to

the output buffer ofNavNest$b,//profile$e in Figure 3.6, because semantically,

each output tuple ofNavNest$b,//profile$e should contain three cells, for bind-

ings of $a, $b and$e respectively. If we simply discard the tuples in the output

buffer ofStructuralJoin$b, we then lose data.

Allowing the migration to start anytime in the migration window has impact on

our migration strategy. Because the subplans that are not underneath any boundary

confining StructuralJoinoperators may have tuples in their output buffers, dur-

ing the migration, we must redirect these output buffers to be associated with the

operators in the new plan. This redirecting process is cheap. We simply set the

output buffers of these operators in the current plan to be the output buffers of the

matching operators in the new plan.

Why migrating within the migration window ensures the correctness is twofold.

First, no intermediate result that is not consumed yet when the migration starts will

be consumed by a different set of ancestor operators after the migration compared

to before the migration. Within the migration window, the query plan is not pro-

cessing any bindings of$v that a boundaryStructuralJoin joins on. The sub-

plans underneath a boundaryStructuralJoin in the format ofStructuralJoin$v

can generate output only when the token under processing is acomponent of a

binding of$v. Since the migration window excludes the time whenever the tokens

under processing are components of bindings of such$v, there must be no uncon-

sumed result in the subplans underneath these boundaryStructuralJoins when

the migration starts. In other words, any intermediate results unconsumed when the

plan migration starts must only stay in the output buffers ofthose subplans which

remain unchanged in the new plan. All unconsumed result generated before the

3.10. EXPERIMENTAL EVALUATION 144

plan migration will be consumed in the same manner as it is before the migration.

Second, suppose the mode of aTokenNav$v1,p$v2, whose confiningStruc-

turalJoin is StructuralJoin$v, is changed. We should only remove the sub-

automaton encoding the pathp when the states in the sub-automaton are not in

the stack. These states can only be in the stack when a bindingof $v1 is being pro-

cessed. A binding of$v1 must be part of a binding of$v. For example, in Example

16,StructuralJoin$a is the confiningStructuralJoinof TokenNav$b,//profile$e

andTokenNav$c,//zipcode$f . Bindings of$b and$c are both child elements of a

binding of$a. If we pause the automaton when the element under processingis not

a binding of$v, the element under processing cannot be a binding of$v1 either.

Therefore we can safely modify the automaton without worrying about whether

some states have been removed from the automaton during the migration would

still remain in the stack after the migration. The situationdescribed in Example 15

thus will not arise.

3.10 Experimental Evaluation

We have incorporated the run-time optimization techniquesinto theRaindropframe-

work. We run the experiments on two Pentium III 800 Mhz machines with 512MB

memory each. One machine sends XML token streams via socketsto the second

machine which would then process the received data. We countthe processing

time of a token from the arrival time of the token on the secondmachine to the

time the processing on the token has been finished. The execution time of a plan

on the stream is the summation of the time spent on each token in the stream.

3.10. EXPERIMENTAL EVALUATION 145

3.10.1 Getting Constant Values

As we have mentioned in Section 3.8, we need to get the values of the four con-

stantsCnonEmp, Cemp, Cbacktrack andCbicartesian. CnonEmp andCemp are used to

evaluate the cost of aTokenNav operator (see Equation 6).Cvisit andCbicartesian

are used to evaluate the cost of aNodeNav and aStructuralJoin operator re-

spectively (see Equations 1 and 2 Section 3.2.1).

In the first experiment, we design an XML document whose root element has

a tag name “root”. The root element containsn children with tag name “a”. Each

elementa does not have any child elements. This stream thus containsn + 1 start

tokens, i..e, one<root> andn <a>’s. We also design a query “/root/a”. We

construct a plan for this query which retrieves the pattern “/root/a” on the tokens.

During the processing of the stream, when the<root> is encountered, the stack

top must contain an initial state of the automaton.<root> matches the first nav-

igation step “/root” and pushes a state into the stack. Next,whenever a<a> is

encountered, the stack top must be non-empty. Therefore each time when a start

token is encountered, the stack top is always not empty. Later, we divide the exe-

cution time spent on start tokens in the stream byn + 1 and getCnonEmp.

In the second experiment, we use the same XML stream and same query. How-

ever, we construct a different plan which first extracts the stream into an XML el-

ement tree and then evaluates aNodeNav operator on the tree. ThisNodeNav

operator visits every node in the tree to retrieve the pattern “/root/a”. We divide the

execution time byn + 1 and getCvisit.

We also issue a query “/b” on the XML stream used in the first twoexper-

iments. During the processing of the stream,<root> does not match “/b” and

3.10. EXPERIMENTAL EVALUATION 146

Notation Explanation Value

CnonEmp average time of processing a start token when stack
top is not empty

1.361 *10−3 ms

Cemp average time of processing a start token when stack
top is empty

0.779 *10−3 ms

Cvisit average time of visiting one node in an XML element
tree

1.622 *10−3 ms

Cbicartesian average time of performing a binary cartesian prod-
uct on one input tuple from either side to generate an
output tuple

3.012 *10−3 ms

Table 3.3: Values of Constant Parameters in Cost Model

correspondingly an empty set is pushed onto the stack. Next,whenever any of the

n <a> tokens is encountered, the stack top is empty. We divide the execution time

spent on the start tokens in the stream byn and getCemp.

To evaluateCbicartesian, we simply run a query that involves a binaryStruc-

turalJoin operator. We divide the time spent on thisStructuralJoinby the number

of the cartesian product of its input tuples to getCbicartesian. Table 3.3 gives these

constant values.

3.10.2 Experiment Design for Comparing ExhaustOpt and Greedy-

Opt Search Strategies

Sections 3.5 and 3.6 propose an exhaustive and a greedy search algorithm, namely,

ExhaustOptand GreedyOpt. We now compare them in two aspects. First, we

compare the optimization time, i.e., the time the algorithms spend on finding plans.

Second, we compare the quality of the plans found by the algorithms, i.e., the

execution time of the plans.

We test various queries conforming to four classes of pattern trees shown in

Figure 3.16. Previous work on XQuery optimization has experimented with queries

of similar structures [36, 58, 82]. In our pattern tree, a node represents an XML

3.10. EXPERIMENTAL EVALUATION 147

p1 p2 pn…p1 p2 pn…

p11 p12 pn1 pn2

…

p1 pn

(a) (b)

p12

…

p22

pn2

p11

p21

pn1

(d)

…

p11

p21

pn1

(c)

…

…

…

Figure 3.16: Pattern Tree Templates: (a) wide and simple; (b) wide and complex;
(c) deep and simple; (d) deep and complex

3.10. EXPERIMENTAL EVALUATION 148

element. The top node in the pattern tree represents the bottom input element. The

label on the edge between a parent nodeu and a child nodev denotes an XPathp,

indicating there must exist descendent elements that are accessible viap from the

element represented byu. We now describe the characteristics of each pattern tree.

1). Figure 3.16 (a) depicts a wide pattern tree. The bottom input element in

the pattern tree contains pathsp1, p2, ..., pn. Each path is in the format of

n11/n12/.../n1i[filter?] wheren11, n12, ..., n1i are element node tests and

[filter?] denotes an optional filter such as “/text()> 100”. We also say this

tree is simple because only one node has more than one child node. In a

plan that retrieves all patterns in the automaton, to retrieve an element node

that has multiple child nodes, aStructuralJoin will be performed to check

whether an element contains all the required child elements. Therefore, a

plan for the query in Figure 3.16 (a) contains at most oneStructuralJoin.

2). Retrieving an XML element that has more than one child in the automaton

requires oneStructuralJoin. In contrast the wide pattern tree in Figure

3.16 (a) that requires only oneStructuralJoin, the wide pattern tree in Fig-

ure 3.16 (b) is more complex in the sense that it involves moreStructuralJoin

operators.

3). Figure 3.16 (c) depicts a deep tree. Small linear patterns are chained together

into one larger linear pattern.StructuralJoin, which glues linear patterns

into tree patterns, is not needed here. We therefore say thistree is simple.

4). In contrast to Figure 3.16 (c), Figure 3.16 (d) depicts a deep and complex

pattern tree.n nodes in the tree have multiple children and thus there can be

3.10. EXPERIMENTAL EVALUATION 149

at mostn StructuralJoins in a Raindrop plan.

3.10.3 Comparing ExhaustOpt and GreedyOpt on Wide-and-Simple

Pattern Trees

A pattern tree represents a class of queries. These queries locate the same patterns

but return different subsets of retrieved patterns as the query results. For example,

Figure 3.17 shows two query templates that both conform to the wide and simple

pattern tree in Figure 3.16 (a). Query template (1) asks to return the bottom input

element, i.e.,$v. All alternative plans of this query, no matter what patterns are

retrieved in or out of the automaton, have to extract the sameamount of data, i.e.,

bindings of$v. Query template (2) asks to return$v1 ($v1 = $v/p0). Different

plans can extract different amount of data. For example, a plan that retrievesp1

out of the automaton still has to extract the bindings of$v into element nodes.

In contrast, a plan that retrieves all the patterns in the automaton only needs to

extract the bindings of$v1. For easy reference, we call Figures 3.17 (1) and (2) the

extract-sameandextract-differentqueries respectively.

When comparing the alternative plans for extract-same queries, the accuracy of

costing ofExtract operators is not important. This is because all alternativeplans

extract the same amount of data and thus cost the same on theExtract operators

no matter how inaccuratelyExtract operators are costed. In contrast, the accuracy

of costing ofExtract operators is important for comparing the alternative plans

for extract-different queries. In order to test the accuracy of costing of every kind

of operator, we studyExhasutOpt and GreedyOpt on both extract-same and

extract-different queries.

3.10. EXPERIMENTAL EVALUATION 150

Figure 3.17: Extract-Same and Extract-Different Queries Sharing Wide-and-
Simple Pattern Tree in Figure 3.16 (a)

Testing Extract-Same Queries

Query Sets:We generate three queries that conform to the template in Figure 3.17

(1). These three queries differ in the number of patterns in the query, i.e., the value

of n in Figure 3.17 (a). The values ofn in the three queries are 5, 10 and 20

respectively.

Data Sets:We modify the DTD provided by the XML benchmark XMark [7]. We

add more child elements to some elements in the XMark DTD so that we are able to

issue queries that contain 20 patterns. We use ToXGene [24] to generate two XML

streams conforming to the modified DTD. The size of each stream is around 52M.

In XML stream 1, for any of the three queries, 4/5 of the patterns have a selectivity

of 10% while 1/5 of the patterns have a selectivity of 90%. In XML stream 2, 1/5

of the patterns have a selectivity of 10% while 4/5 of the patterns have a selectivity

of 90%.

The purpose of designing these two streams is to test theExhaustOptand

GreedyOptin the extreme cases. In XML stream 1, most pattern retrievaloper-

ators have a low selectivity. Pattern retrieval operators in the automaton are exe-

cuted before those out of the automaton. The pattern retrieval operators that have

low selectivities are favored to be retrieved in the automaton. Therefore, in stream

3.10. EXPERIMENTAL EVALUATION 151

1, the initial plan which retrieves all patterns in the automaton is close to the op-

timal plan. In contrast, in XML stream 2, most pattern retrieval operators have a

high selectivity so that they are more favorable to be pulledout from the automaton

in the initial plan. A lot of changes need to be made to the initial plan to get the

final plan.

We now useExhaustOptandGreedyOptto generate plans for the three queries

on both streams 1 and 2. We run an initial plan that retrieves all patterns in the

automaton on the stream, collect statistics from the streamand apply the search

algorithm to get a new plan. We then run the new plan on the samestream again

and measure its execution time. Table 3.4 reports the result.

The patternsp1, ...,pn in Figure 3.17 (1) are all siblings. Therefore any combi-

nations amongp1, ..., pn are valid (combinations of ancestor-descendant patterns

are invalid according to Lemma 2 in Section 3.5). The number of alternative plans

explored inExhaustOptis then2n. We can see that whenn = 10, the optimization

time already far exceeds the execution time on both XML streams 1 and 2 (Rows

2 and 5 in Table 3.4). Whenn = 20, the number of alternative plans explored by

ExhaustOptexplodes and makesExhaustOptobviously impractical. Hence we do

not report it here.

The number of plans explored byExhaustOptis fixed given a query. That is

why ExhaustOptexplores 32 and 1024 plans on both XML streams 1 and 2 when

n = 5 and 10 respectively. In contrast, the number of plans explored byGreedyOpt

can vary with different streams. For the same query,GreedyOpton XML stream 1

explores less plans than on XML stream 2. This is becauseGreedyOptterminates

when no mode change of a pattern retrieval in the current planyields a better plan.

Although GreedyOptexplores much less plans thanExhaustOpt, it generates

3.10.E
X

P
E

R
IM

E
N

TA
L

E
VA

LU
AT

IO
N

152

n
ExhaustOpt GreedyOpt Initial Plan Search Time of

ExhaustOpt +
Exec. Time of
Opt. Plan/

Search Time of
GreedyOpt +
Exec. Time of
Opt. Plan/

of plans
explored

Opt. Time
(ms.)

Plan Exec.
Time (ms.)

of plans
explored

Opt. Time
(ms.)

Exec. Time
(ms)

Exec. Time
(ms)

Exec. Time of
Initial Plan

Exec. Time of
Initial Plan

Stream 1
5 32 592 1543 9 225 1543 1821 117% 96%

10 1024 15921 5439 27 532 5439 6349 336% 94%

20 ∞ ∞ N/A 144 2072 9402 12468 N/A 92%

Stream 2
5 32 508 3987 15 245 3987 5340 84% 79%

10 1024 14982 9283 54 821 9283 14611 166% 69%

20 ∞ ∞ N/A 204 2978 22271 36841 N/A 68%

Table 3.4:ExhaustOptandGreedyOptfor Extra-Same Queries in Figure 3.17 (1)

3.10. EXPERIMENTAL EVALUATION 153

the same plan asExhaustOpt(compare the columns of “Plan Exec. Time” in

ExhaustOpt with that inGreedyOpt. GreedyOptsucceeds to final optimal plans

in all cases in this experiment setting.

The last two columns in Table 3.4 summarize the “effectiveness” of bothEx-

haustOptandGreedyOpt. We define “effectiveness” of a search strategy as (the

time spent on finding a plan + the time spent on executing the plan found)/(the

time spent on executing the initial plan). The less the number is (i.e., spent less

time on finding a plan that runs faster), the more effective the search algorithm is.

GreedyOptis more effective in stream 2 than in stream 1. This is becausein stream

1, the initial plan is close to the optimal plan while in stream 2, the initial plan is

significantly worse than the optimal plan.

Testing Extract-Different Queries

We now evaluate the extract-different queries conforming to the template (2) in

Figure 3.17 on the two XML streams. Alternative plans of an extract-different

query extract different amount of data. Table 3.5 shows the result. Again, for

the three queries on both streams,GreedyOptfinds the same plan asExhaustOpt

but in much less time thanExhaustOpt. In Stream 1, the initial plan itself is the

optimal plan. The plan search is a pure overhead. However, whenn = 10 or 20, the

overhead is ignorable, taking 4% or 3% of the overall execution time respectively.

In stream 2, the plan found byGreedyOptcuts down the execution time of the

initial plan by 20% to 40%.

3.10.E
X

P
E

R
IM

E
N

TA
L

E
VA

LU
AT

IO
N

154

n
ExhaustOpt GreedyOpt Initial Plan Search Time of

ExhaustOpt +
Exec. Time of
Opt. Plan/

Search Time of
GreedyOpt +
Exec. Time of
Opt. Plan/

of plans
explored

Opt. Time
(ms.)

Plan Exec.
Time (ms.)

of plans
explored

Opt. Time
(ms.)

Plan Exec.
Time (ms.)

Exec. Time
(ms.)

Exec. Time of
Initial Plan

Exec. Time of
Initial Plan

Stream 1
5 32 502 1248 5 152 1248 1248 140% 112%

10 1024 15306 5042 10 225 5042 5042 403% 104%

20 ∞ ∞ N/A 20 302 9021 9021 N/A 103%

Stream 2
5 32 516 3902 15 206 3907 5165 86% 79%

10 1024 14120 9123 54 811 9315 15059 154% 67%

20 ∞ ∞ N/A 204 3104 22197 35981 N/A 62%

Table 3.5:ExhaustOptandGreedyOpton Extract-Different Queries in Figure 3.17 (2)

3.10. EXPERIMENTAL EVALUATION 155

3.10.4 Comparing ExhaustOpt and GreedyOpt on Wide-and-Complex

Pattern Trees

We now compare theExhaustOptandGreedyOptfor wide-and-complex queries

conforming to the template in Figure 3.16 (b). Our experiments consist of two

parts. In the first part, we test on a set of data streams with varying data character-

istics. The purpose is to observe howGreedyOptbehaves on relatively “random”

data sets. In the second part, we focus on studying whenGreedyOptfails to find

the optimal plans.

We generate XML streams conforming to the DTD describing Ebay’s auction

data from University of Washington’s XML repository [60]. The root element con-

tains a sequence oflisting child elements. The DTD of alisting element is as fol-

lows: <!ELEMENT listing (seller info, payment types, shipping info,

buyer protection info, auction info, bid history, item info)>. Among the

seven child elements oflisting, four of them (e.g.,seller info andauction info)

have nested structures, i.e., they can have children again.We design a query, shown

in Figure 3.18, which navigates into each nested element. For each nested element,

we pose a filter on each of its child elements. More specifically, $b, $c, $d and$e

have 2, 2, 12 and 5 child elements and thus 2, 2, 12 and 5 filters respectively.

Table 3.6 shows the data characteristics of four XML streamsconforming to

the DTD. “Sel.” in the table denotes the abbreviation we use for selectivity.

The query in Figure 3.18 contains 25 patterns whose modes canbe changed

(i.e.,$b, $c, $d, $e and their 21 filters). The number of alternatives that will beex-

plored byExhaustOptis so large thatExhaustOptis clearly impractical. Therefore

we terminateExhaustOptafter it has explored 1000 plans and return the best plan

3.10. EXPERIMENTAL EVALUATION 156

for $a in /listing

let $b :=$a/seller info[seller rating > 4][seller name contains “SF”];

$c := $a/bid history[...]...[...];

$d := $a/auction info[...]...[...];

$e := $a/item info[...]...[...]

where$b and$c and$d and$e

return$a

Figure 3.18: Wide-and-Complex Query on Ebay Data: requiring to return alisting
whose$a/seller info, $a/bid history, $a/auction info, and$a/item info
satisfy 2, 2, 12,and 5 Filters Respectively

Stream Sel. of$b Sel. of$c Sel. of$d Sel. of$e

1 10% 50% 70% 90%

2 90% 10% 50% 70%

3 70% 90% 10% 50%

4 50% 70% 90% 10%

Table 3.6: Random Data Sets Conforming to Ebay’s DTD: Each Stream around
Size 55M

among these 1000 plans. Table 3.7 comparesExhaustOptandGreedyOptfor the

query in Figure 3.18 on the streams in Table 3.6.

ExhaustOpt GreedyOpt Initial Plan

Plan Exec.
Time (ms.)

Opt. Time
(ms)

of plans
explored

Opt. Time
(ms.)

Plan Exec.
Time (ms.)

Exec. Time
(ms)

Stream 1 30072 15043 57 852 23088 30072

Stream 2 25087 14893 59 825 22209 38690

Stream 3 24508 16012 76 1118 21924 25828

Stream 4 42301 15567 37 545 18590 42301

Table 3.7: ExhaustOpt and GreedyOpt for Query in Figure 3.18on XML Streams
in Figure 3.6 (ExhaustOpt Limited to Explore 1000 Plans)

In Streams 1 and 4,ExhaustOptfails to find any plan better than the initial

plan in the first 1000 plans it has explored. This is because selectivity of $b is

rather low so that the optimal plan retrieves$b in the automaton. When we call

3.10. EXPERIMENTAL EVALUATION 157

ExhaustOpt, we pass it a parameternavsToBeTried (see Algorithm 7), which

is a list of pattern retrieval operators whose modes would bechanged. The first

operator appearing in thenavsToBeTried list happens to be$b. ExhaustOpt

thus explores all alternative plans with$b retrieved out of the automaton first. These

plans are all worse than the initial plan so thatEnumSearch explores the first

1000 alternative plans to no avail.GreedyOpt instead makes steady progress to

finding a better plan during each iteration. On all four streams,GreedyOptexplores

a limited number of alternative plans yet in all cases it findsa plan that cuts the

initial execution time by 15% to 56%.

3.10.5 Comparing ExhaustOpt and GreedyOpt on Deep-and-Simple

Pattern Trees

We now compare theExhaustOptandGreedyOptfor deep-and-simple queries con-

forming to the template in Figure 3.19. According to a DTD survey [16], the depth

of an XML document is usually less than 8. Therefore we limit the numbern in

Figure 3.20 to be less than 8. We generate a XML stream in whichall patterns in

the queries have the same selectivity of 70%. Table 3.8 comparesExhaustOptand

GreedyOptfor the queries in Figure 3.19 on this stream.

for $v in p0, $v1 in $v/p11, $v2 in $v1/p21, …, $vn in $vn-1/pn1

return

<result> $v, $v1, … $vn </result>

Figure 3.19: Queries Conforming to Wide-and-Deep Pattern Tree in Figure 3.16
(c)

We observe two phenomena in Table 3.8 as follow.

3.10. EXPERIMENTAL EVALUATION 158

n ExhaustOpt GreedyOpt Initial Plan

of plans
explored

Opt. Time
(ms.)

Plan Exec.
Time (ms.)

of plans
explored

Opt. Time
(ms.)

Plan Exec.
Time (ms.)

Exec. Time
(ms)

3 3 125 3790 3 125 3790 3790

4 4 123 3892 4 123 3892 3892

5 5 150 4012 5 150 4012 4012

6 6 145 3991 6 145 3991 3991

Table 3.8: ExhaustOpt and GreedyOpt for Deep-and-Simple Pattern Trees on XML
Stream with Size of 51M

1). ExhaustOptandGreedyOptexplore exactly the same set of alternative plans.

This is because every pair of pattern retrieval in the plan has a pattern depen-

dency relationship. As long as one pattern retrieval has been moved out in

the initial plan, no other pattern retrieval can be further moved out in the

newly derived plan. Therefore after exploringn alternative plans each of

which corresponds to moving out one pattern retrieval in theinitial plan,

bothExhaustOptandGreedyOptterminate.

2). No matter what the value ofn is, the best plan is always the one which re-

trieves all patterns in the automaton. Due to the pattern dependency,p31

must be retrieved afterp21; p41 must be retrieved afterp31 and so on. Re-

gardless of whether these patterns are retrieved in or out, the execution order

is always serialized. Retrieving these patterns out of the automaton does not

provide any extra benefit. The plan in which all pattern retrieval is pushed

into the automaton ensures that the least amount of data is buffered.

3.10. EXPERIMENTAL EVALUATION 159

3.10.6 Comparing ExhaustOpt and GreedyOpt on Deep-and-Complex

Pattern Trees

It is interesting to observe that for queries conforming to the deep-and-complex

pattern tree in Figure 3.16 (d),GreedyOpt terminates very quickly. According to

Lemma 2 in Section 3.5, two operators that have a pattern dependency relationship

cannot both undergo mode changes. Suppose from a current plan, the mode change

onpi2 (1 < i < n) in Figure 3.16 is chosen, then the mode changes on its ancestor

and descendant patterns, includingp11, p21, ...,p(i−1)1, will no longer be consid-

ered. Suppose the mode change onpi1 is chosen, then even more mode changes

are disqualified for consideration, including mode changeson patternsp11, p21, ...,

andpn1.

To illustrate the property of quick termination ofGreedyOpt, we test the

queries conforming to the template in Figure 3.20. We then run these queries on

the same XML stream used in Section 3.10.5. Table 3.9 reportsthe results.

for $v in p0

let $v11 := $v/p11,

$v12 := $v/p12,

$v21 := $v1/p21,

$v22 := $v1/p22,

…,

$vn1 = $vn-1/pn1,

$vn2 = $vn-1/pn2

where $v11 and $v12 and … $vn1 and $vn2

return $v

Figure 3.20: Queries Conforming to Wide-and-Complex Pattern Tree in Figure
3.16 (d)

3.10. EXPERIMENTAL EVALUATION 160

n ExhaustOpt GreedyOpt Initial Plan

of plans
explored

Opt. Time
(ms.)

Plan Exec.
Time (ms.)

of plans
explored

Opt. Time
(ms.)

Plan Exec.
Time (ms.)

Exec. Time
(ms)

3 147 2296 7356 10 205 8059 9122

4 595 8674 10086 14 364 11202 13569

5 2387 38500 12176 17 487 12176 17045

6 9555 180078 13408 20 647 14280 20055

Table 3.9: ExhaustOpt and GreedyOpt for Deep-and-Complex Ternary Pattern
Trees on XML Stream with Size of 51M

Even for the queries involving a large number of patterns,GreedyOpt termi-

nates rather quickly. Let us use the last row in Table 3.9 as anexample. Whenn =

6, i.e., the depth of the pattern tree in Figure 3.16 (c) is 6. There are 18 patterns in

total in the tree.ExhaustOpt explores 9555 alternatives whileGreedyOpt only

explores 20 alternatives. Even thoughGreedyOpt fails to find the optimal plan,

the plan it finds still cuts down the execution time of the initial plan by 29%.

3.10.7 Study on when GreedyOpt Fails to Find Optimal Plan

We now investigate when GreedyOpt may fail to find the optimalplans. We study

extract-same and extract-different queries, shown in Figure 3.21, conforming to the

wide-and-complex pattern tree in Figure 3.16 (b) withn = 5. Since eachpi (1 < i

< n) has two child patternspi1 andpi2, there are 15 patterns in the query in total.

For each query, we perform extensive experiments on different data sets. We

also test with different initial plans. Note that in the one-time optimization sce-

nario, we always use an initial plan that retrieves all patterns in the automaton.

However, in the continuous optimization scenario, the initial plan of each opti-

mization is the plan found in the last optimization. Therefore the initial plan can

be any kind of plans. We find that in two cases GreedyOpt fails to find the optimal

3.10. EXPERIMENTAL EVALUATION 161

for $v in p0,

where $v/p1[p11] [p12]

and …

and $v/pn[pn1][pn2]

return $v

(1)

for $v in p0,

let $v1 := $v/p1

where $v/p1[p11] [p12]

and …

and $v/pn[pn1][pn2]

return $v1

(2)

Figure 3.21: Extract-Same and Extract-Different Queries Conforming to Wide-
and-Complex Pattern Tree in Figure 3.16 (b)

plans.

Case 1: Missing Synergy Benefits

In the first case,GreedyOpt fails to find the optimal plan of the extract-different

query in Figure 3.21 (b). The characteristics of this case are as below. The initial

plan retrieves all the patterns butp11 andp12 in the automaton. The optimal plan

found byExhaustOptretrieves all patterns in the automaton.GreedyOpt fails to

find the optimal plan. In the first iteration,GreedyOpt changes the mode of one

pattern retrieval at a time. No single mode change leads to a better plan in this

iteration.GreedyOpt then terminates.

HoweverExhaustOpt finds that if it pushes bothp11 andp12 into the automa-

ton,$v does not need to be extracted. Instead, only$v1 needs to be extracted. This

way we cut the extraction cost by (cost of extracting$v - cost of extracting$v1).

If the cost cut is large enough, then pushing inp11 andp12 can yield a better plan

than the initial plan. However this better plan is not considered by GreedyOpt.

GreedyOpt only considers a mode change on one single patternretrieval at each

3.10. EXPERIMENTAL EVALUATION 162

time. When all single mode changes fail, GreedyOpt would notfurther explore the

synergy that may result from the combination of two mode changes.

To experimentally illustrate this case, we design two XML streams as below.

1). In XML stream 1, children of bindings of$v1 in Figure 3.16 (b) are bound

to either$v11 or $v12. Therefore extracting the bindings of$v1 costs almost

the same as extracting the bindings of$v11 and$v12.

2). In XML stream 2, bindings of$v1 contain many children other than bindings

of $v11 and$v12. Therefore extracting bindings of$v1 costs significantly

more than extracting only bindings of$v11 and$v12.

For each stream, we design two queries as below.

1). In query 1,p11 andp12 have low costs and low selectivity. There is also a

costly filter in the format of “$vn1/text() contains ...”. Thereforep11 andp12

are favored to be retrieved in the automaton. Doing so reduces the cost of

the costly filter.

2). In query 2,p11 andp12 have high costs and high selectivity. All the other

patterns however have low costs and low selectivity. Thereforep11 andp12

are favored to be retrieved out of the automaton.

Combining the above two XML streams and two queries, we get the four set-

tings in Figure 3.10. For each setting, we test both the extract-same and extract-

different queries in Figure 3.21. Therefore there are eightsettings in total. For each

setting, we applyExhaustOpt andGreedyOpt on an initial plan that retrieves all

patterns butp11 andp12 in the automaton. The results are reported in Figure 3.22.

3.10. EXPERIMENTAL EVALUATION 163

setting
Data Characteristics Query Characteristics

Data
Size (M)

size of
$v1/(size of
$v11 + size
of $v12)

selectivity
of
p11/p12

selectivity
of other
patterns

complexity of
p11 andp12

complexity
of other
patterns

filters

1 52 100% 90% 10% complex (involv-
ing “//”)

simple

a complex filter
(i.e., involving a

2 52 100% 10% 10% simple (not in-
volving “//”,
length = 1)

costly “/text()
contains ...”) is
posed on $vn1

and

3 58 300% 90% 10% complex has a selectivity
of 90%

4 58 300% 10% 10% simple

Table 3.10: Environment Settings for Testing Case of “Missing Synergy Benefits”

We see thatGreedyOpt works well in most of these 8 cases. It only fails

to find the optimal plan in the setting 4 (see the highlighted row in Figure 3.22).

Note thatGreedyOpt for the extract-same query with the same setting (the row in

italics font) however yields the optimal result. The “extrasynergy benefits” save

the extraction cost of$v1 when all children of$v1 are retrieved in the automaton.

However if$v1 has to be extracted anyway, then this cost cannot be saved no matter

whether the patterns are retrieved in or out of the automaton.

Case 2: Accounting of Cost Cut from Secondary Effect

In the second case,GreedyOpt fails to find the optimal plans for both queries in

Figure 3.21. The characteristics of this case are as below. In the first iteration,

GreedyOpt finds that pulling outp11 alone and pulling outp12 alone generates

two better plans respectively. However pulling outp1 also causesp11 andp12 to be

pulled out. This is calledsecondary effectwhen a pattern with descendant patterns

is pulled out (see Section 2.4.3). Pulling outp1 can yield a plan that is even better

than the two previous ones.GreedyOpt then chooses to pull outp1. This new

3.10. EXPERIMENTAL EVALUATION 164

Setting ExhaustOpt GreedyOpt

Used # of plans
explored

Plan Chosen Plan
Exec.
Time
(ms.)

of plans
explored

Plan Chosen Plan
Exec.
Time
(ms.)

1 3124 no change on
initial plan

15502 15 no change on
initial plan

15502

Buffer- 2 3124 p11 & p12

pushed in
12309 40 p11 & p12

pushed in
12309

Same 3 3124 no change on
initial plan

18028 15 no change on
initial plan

18028

Query 4 3124 p11 & p12

pushed in
15127 40 p11 & p12

pushed in
15127

1 3124 no change on
initial plan

15578 15 no change on
initial plan

15778

Buffer- 2 3124 p11 & p12

pushed in
10321 40 p11 & p12

pushed in
10321

Different 3 3124 no change on
initial plan

19211 15 no change on
initial plan

19211

Query 4 3124 p11 & p12

pushed in
12695 15 no change on

initial plan
17644

Figure 3.22: ExhaustOpt and GreedyOpt for Environment Settings in Figure 3.10
Illustrating “Missing Synergy Benefits”. Initial Plan Used: All Patterns butp11 and
p12 Retrieved in Automaton.
.

3.10. EXPERIMENTAL EVALUATION 165

plan can actually lose to a plan resulted from pulling out both p11 and p12 but

not p1. The cost cut of pulling outp1 may come from its secondary effect. In

short,GreedyOpt accounts the cut cost to a mode change while the credits should

actually be given to the secondary effect.

We design three settings in Figure 3.11. In all settings,p11 andp12 are inclined

to be retrieved out of the automaton because of their high selectivities and high

costs.

setting
Data Characteristics Query Characteristics

size of
$v/size
of $v1

selectivity
of p1

selectivity
of p11

andp12

selectivity
of other
patterns

complexity
of p11 and
p12

complexity
of p1

complexity
of other
patterns

filters

1 100% 50%

90% 10% complex simple simple

a costly

2 150% 50% filter

3 150% 20% onvn1

Table 3.11: Environment Settings for Testing Case of “WrongAccounting of Cost
Cut”: Size of XML Stream 1, 2 and 3 is 42, 62, 59M Respectively

XML streams 1 and 2 differ in the ratio of the size of bindings of $v to the

size of bindings of$v1. The first two rows in Figure 3.23 show the results of

applying ExhaustOpt and GreedyOpt for the extract-different query. The initial

plan retrieves all patterns in the automaton. For XML stream1, the difference

between the non-optimal plan chosen by GreedyOpt and the optimal plan chosen

by ExhaustOpt is not significant because the cost of buffering the bindings of$v is

close to that of buffering the bindings of$v1. In contrast, for XML stream 2, the

cost difference of the two plans is more significant due to theincreased difference

in their buffering costs.

The XML streams 2 and 3 differ in the selectivity of$v. The last two rows

in Figure 3.23 show the results of applyingExhaustOpt andGreedyOpt for the

3.10. EXPERIMENTAL EVALUATION 166

extract-same query. The initial plan retrieves all patterns in the automaton. In

XML stream 3, selectivity ofp1 is rather low. Pulling outp1 is thus not chosen.

ThereforeGreedyOpt still finds the optimal plan. In XML stream 2, selectivity of

p2 is higher than in XML stream 1. This time pulling outp1 is chosen while actually

pulling outp11 andp12 only is even better.GreedyOpt fails to find optimal plan.

In summary,GreedyOpt on both buffer-different and buffer-same queries can fail

to find the optimal plans because of a wrong accounting of the cost cut.

Setting ExhaustOpt GreedyOpt Initial
Plan

Used # of plans
explored

Plan Chosen Plan
Exec.
Time
(ms.)

of plans
explored

Plan Chosen Plan
Exec.
Time
(ms.)

Exec.
Time
(ms.)

Buffer-
Different

1 3124 p11 & p12

pulled out
15502 27 p1 pulled out 16013 19036

Query 2 3124 p11 & p12

pulled out
18045 27 p1 pulled out 20549 21202

Buffer-
Same

2 3124 p11 & p12

pulled out
18507 40 p11 & p12

pulled out
18507 21155

Query 3 3124 p11 & p12

pulled out
16021 27 p1 pulled out 16972 18598

Figure 3.23: ExhaustOpt and GreedyOpt Comparison for Settings in Figure
3.10 illustrating “Wrong Accounting of Cost Cut”. Initial Plan Used: All Patterns
Retrieved in Automaton.

Conclusion

The case study in Section 3.10.7 sheds some lights on how we can further improve

GreedyOpt. In case 1, in order not to miss synergy benefits, we can improve the

termination criterion in theGreedyOptalgorithm. Currently,GreedyOptterminates

when no single mode change leads to a better plan than the current plan. Instead,

we could further check whether multiple mode changes can lead to a better plan.

3.10. EXPERIMENTAL EVALUATION 167

In other words, currentlyGreedyOpt chooses a next plan by 1-lookahead (i.e.,

one mode change on current plan) while the improvedGreedyOpt chooses a next

plan byk-lookahead wherek ¿ 1 (i.e., multiple mode changes on current plan).

In case 2, in order to correctly account the cost cut, we can improve the criterion

of which plan to adopt as the current plan in theGreedyOptalgorithm. Suppose

a best plan, denoted asP , in a search iteration results from a mode change that

has secondary effects. In other words, the current plan undergoes one target mode

change and several secondary mode changes to becomeP . Currently, we adopt

P as the current plan. Instead, we can also cost a planP ′ resulted from only the

secondary mode changes. IfP ′ is better thanP , we then adoptP ′ as the current

plan.

3.10.8 Comparison of GreedyOpt and GreedyPruneOpt

In continuous optimization scenarios, we now drop the optimization dimension of

reordering input subplans toStructuralJoin. The greedy algorithm can now be

made even more efficient with pruning rules. In the previous sections, the size of

XML streams we use vary between 40M - 60M. To study the continuous optimiza-

tion scenario, we now assume the statistics change for every20M - 30M of XML

stream. We then compareGreedyOpt andGreedyPruneOpt on an XML docu-

ment about 20M - 30M. We repeat the same queries with the XML streams of the

same data characteristics as in Figure 3.17. The only difference is that the size of

the XML stream is now 25M instead of 52M used in Figure 3.17.

From Figure 3.24 we can see that Greedy with pruning cuts downthe number

of plans explored in all six experiments. For wide and simplequeries, no patterns

have descendant patterns. Therefore the technique of “pruning by bounding cost

3.10. EXPERIMENTAL EVALUATION 168

Setting
n

Greedy Greedy with Pruning Initial Plan

of plans
explored

Opt. Time
(ms.)

Plan Exec.
Time (ms.)

of plans
explored

Opt. Time
(ms.)

Plan Exec.
Time (ms.)

Exec. Time
(ms.)

Stream 1
5 9 232 782 1 64 782 901

10 27 475 2865 3 106 2865 3165

20 144 2271 4821 10 242 4821 6821

Stream 2
5 15 381 2032 10 142 2032 2632

10 54 823 4742 36 294 4742 7353

20 204 3126 11405 136 1053 11405 18210

Figure 3.24: GreedyOpt and GreedyPruneOpt for Buffer-SameQueries in Figure
3.17 (1)

cut” described in Section 3.7 takes effect. This technique excludes the pull-out

of thoseTokenNav with selectivity of 10%. Moreover, it also cuts down the

unit time spent on processing each alternative plan since weno longer apply the

optimization using the input-subplan-reordering rule. Among all six experiments,

the pruning technique improves the optimization time most significantly for row

3 in Figure 3.24 since the initial plan has moreTokenNav operators that have a

selectivity of 10% than any of the other five initial plans.

3.10.9 Overhead of One-time Optimization: From StatisticsCollec-

tion to Plan Migration

The overhead of run-time optimization is composed of three components, i.e.,

statistics collection, plan search and plan migration (if any). We study the over-

head of each of the three components in the one-time optimization scenario. Since

we have already studied the overhead of the plan search time when comparing

ExhaustOpt and GreedyOpt in Section 3.10.2, we now focus on the overhead of

statistics collection and plan migration.

Query Sets: We design two queries both of which conform to the template in

3.10. EXPERIMENTAL EVALUATION 169

Figure 3.21 (a) but differ in the number of patterns in the query (n in Figure 3.21

is 5 and 10 respectively; each node has exactly two children). We can compare the

overhead of statistics collection in the execution of thesetwo queries, since a query

involving more patterns spends more time in statistics collection.

Data Sets: We also design two streams (the design principle is similar to that

for XML streams used in Section 3.10.3). In XML stream 1, for either queries

mentioned above, 4/5 ofp1, ..., andpn have a selectivity of 10% while the rest 1/5

have a selectivity of 90%. In XML stream 2, only 1/5 ofp1, ..., andpn have a

selectivity of 10% while the rest 4/5 have a selectivity of 90%. In both streams, all

child patterns ofp1, ..., andpn have the same selectivity as their parent patterns.

For a query runs on XML stream 1, the optimal plan is only slightly different from

the initial plan which retrieves all patterns in the automaton. In contrast, when the

same query is run on XML stream 2, its optimal plan undergoes more dramatic

changes from the initial plan. We therefore can compare the overhead of a simple

plan migration with a more complicated plan migration process.

Given the above two queries and two queries, we have four experiment settings.

Figure 3.25 reports the result in the four experiments. For each query, we illustrate

the four cost ingredients of query processing with run-timeoptimization, i.e., (1)

the plan execution time, i.e., the execution time of initialplan + the execution time

of the optimized plan, (2) the plan search time byGreedyOpt algorithm, (3) the

time for statistics collection and (4) the plan migration time. The costs of the latter

three is the overhead of the run-time optimization. We can see that in all four

experiments, the plan search time dominates the overhead. The time of statistics

collection ranges from 10ms - 20ms while that of plan migration ranges from 0ms

- 40ms (the statistics collection time and the plan search time are so small that

3.10. EXPERIMENTAL EVALUATION 170

they are almost unrecognizable in Figure 3.25). Table 3.12 further compares the

query processing time without the run-time optimization with that with the run-

time optimization. In all four experiments, the query processing with run-time

optimization has better performance than that without run-time optimization.

Run-time Plan Optimization Overhead (One-time Optimization
Scenario)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 2 3 4

T
im

e
(m

s)

Plan Execution (excluding
overhead)

Plan Migration

Plan Search

Statistics Collection

Figure 3.25: Cost Ingredients of Query Processing in One-time Optimization

Setting Query Processing Time without Run-time
Optimization (ms)

Query Processing Time with Run-time Opti-
mization (ms)

1 8690 7982

2 18828 16506

3 17331 9635

4 28415 18135

Table 3.12: Comparison of Query Processing Time with and without Run-time
Optimization

3.10.10 Performance of Continuous Optimization

We have studied the plan search performance in the continuous optimization sce-

nario by comparing Greedy and Greedy with pruning in Section3.10.8. We have

3.10. EXPERIMENTAL EVALUATION 171

also shown in Section 3.10.9 that both statistics collection and plan migration are

very cheap. In this section, we focus on the effect of continuous optimization on the

query processing rate, i.e., number of bottom input elements processed per second.

We use the buffer-same query that is also used for experiments in Figure 3.22.

We generate four XML fragments each of which contains 2500 auctions. The data

characteristics of these XML fragments are shown in Figure 3.10. We concatenate

these four XML fragments into one stream. If we denote a plan that retrieves all

the patterns in the automaton asP1, and a plan that pulls outp11 andp12 asP2.

According to Figure 3.22 (first four rows), the run-time optimization will lead to

the following plan changes (P1 → P2 denotesP1 is changed toP2): P1 → P2 →

P1 → P2 → P1. We start optimization every 500 auctions.

We compare the two plan execution processes, one with the run-time optimiza-

tion and one without run-time optimization. Figure 3.26 shows the processing rate

over time. For plan execution without run-optimization, there are four periods in

each of which the processing rate is rather consistent. For plan execution with

run-time optimization, there are two small time windows (around 18s and 28s)

in which the processing rates are significantly lower than those in its neighboring

time windows. These two windows indicate the time when optimization for XML

stream fragments 3 and 4 happens. Since the query engine spends time (0.2s and

0.6s respectively) on plan search without processing any input, the processing rates

decrease. The optimization for XML fragment 1 happens around the 3rd second

so that we can see the processing rate starts to increase fromthis point. The opti-

mization for XML fragment 2 happens around 8s. There is however not an obvious

processing rate decrease as that for XML fragments 3 and 4. This is because the

plan chosen for XML fragment 2 is faster than any plans chosenfor other XML

3.10. EXPERIMENTAL EVALUATION 172

fragments. The plan search for XML fragment 2 takes 0.6s, butin the rest of 1.6s

the processing rate is rather high. So on average the processing rate is not signifi-

cantly lower than before.

0

100

200

300

400

500

600

700

800

900

2 6 10 14 18 22 26 30 34 38

Time (s)

#
o

f
A

u
c
ti

o
n

s

P
ro

c
e
s
s
e
d

/S
e
c
o

n
d

without Run-
time
Optimization

with Run-time
Optimization

Figure 3.26: Processing Rate of Wide and Complex Query in Continuous Opti-
mization Scenario

173

Chapter 4

Schema-based Optimization in

Automaton Processing Style

4.1 Introduction

Using schema knowledge to optimize queries, known as semantic query optimiza-

tion (SQO), has generated promising results in deductive [74], relational [66] and

object databases [44]. Naturally, it is also expected to be an optimization di-

rection for XML stream query processing. In contrast, pattern retrieval is spe-

cific to the XML data model. Therefore, recent work on XML SQO techniques

[11, 26, 30, 35, 53] focuses on pattern retrieval optimization. Most of them fall

into two categories: techniques applicable to both persistent and streaming XML,

or techniques only applicable to persistent XML. We howeverfocus on SQO spe-

cific to XML stream processing.

In Section 1.3.3, we have listed a few drawbacks of the related work in XML

Stream SQO field. First, most of the work [17, 35] address queries with limited

4.1. INTRODUCTION 174

expressive power, i.e., boolean XPath matching that only returns boolean values

indicating whether an XPath is matched by the XML stream. Addressing a more

powerful query language such as XQuery will bring more complexities to issues

such as how to decide whether a schema constraint is useful and how to execute the

optimized query. Second, most of current work overlooks synergy of general and

stream specific optimizations. For example, type inference, which infers the types

of the nondeterministic navigation steps such as “*” or “//”, can be combined with

the stream specific XML SQO to enable more optimization opportunities. Third,

there lacks strategies for applying possibly overlapping optimization techniques.

[17, 35] both consider a single optimization technique using one type of schema

constraint. Their proposed technique can be independentlyapplied on different

parts of the query. If more types of constraints are explored, multiple techniques

must be considered. We have observed that when applying these different tech-

niques or even one complex technique on different parts of the query, they may

“overlap”, i.e., unnecessarily optimizing the same part ofthe query which causes

additional overhead.

To overcome the above drawbacks, we propose an optimizationprocess con-

sisting of the following steps. First, we use query trees to capture the structural

pattern retrieval in the given XQuery. Second, type inference is applied on the

query trees. The nondeterministic “*” or “//” navigation steps are replaced with

deterministic ones so that more SQO can be applied on the previously schema-less

patterns. Third, SQO rules are applied on the query trees. Finally, the query tree is

translated back into a query plan executable in our XQuery processing engine. Our

contributions include:

4.2. TYPE INFERENCE ON QUERY TREES 175

• We utilize type inference to aid with the stream-specific SQO. We handle

the complexities caused by type inference in SQO, namely, unions (e.g.,

$a/(b|c) resolved from$a/∗) and recursions (e.g.,$a/b+ resolved from

$a//b whenb is recursive).

• We assume a widely-adopted automata execution model for XMLstream

pattern retrieval. Based on the analysis of this model, we derive the criteria

regarding what constraints are useful for a given query.

• We design a set of optimization rules that utilizes the constraints satisfying

the “usefulness” criteria. We derive a rule application order that ensures:

no beneficial optimization is missed (completeness); and noredundant opti-

mization is introduced (minimality).

• We incorporate these SQO techniques into an algebraic framework for XML

stream processing. We propose strategies for correctly andefficiently evalu-

ating the query plans optimized with SQO.

• We perform a set of experiments on both real and synthetic data which il-

lustrates that our SQO techniques can significantly improvethe performance

with little overhead.

4.2 Type Inference on Query Trees

We first propose a query tree representation to capture the pattern retrieval in an

XQuery. We then describe how to apply existing type inference techniques [53, 72]

on the query trees when an XML Schema is given.

4.2. TYPE INFERENCE ON QUERY TREES 176

CoreExpr ::= ForClause WhereClause? ReturnClause
| PathExpr

PathExpr ::= PathExpr “/”|“//” TagName|“∗”
| varName
| streamName

ForClause ::= “for” “$”varName “in” PathExpr
(“,” “$”varName “in” PathExpr)∗

WhereClause :: = “where” BooleanExpr
BooleanExpr ::= PathExpr CompareExpr Constant

| BooleanExpr and BooleanExpr
| PathExpr

CompareExpr ::=“ >′′|“! =′′|“ <′′|“ <=′′|“ >′′|“ >=′′

ReturnClause = “return” CoreExpr
|<tagName>CoreExpr (“,” CoreExpr)∗ </tagName>

Figure 4.1: Grammar of Supported XQuery Subset

4.2.1 Query Tree

We support a subset of XQuery as shown in Figure 4.1. Basically, we allow “for...

where... return...” expressions (referred to as FWR) wherethe “return” clause can

further contain FWR expressions; and conjunctive predicates each of which is a

comparison between a variable and a constant. A large range of common XQueries

can be rewritten into this subset [56]. For example, a query with “let” clauses can

be rewritten into an XQuery without “let” clauses (by Rule NR1 in [56]). A query

with FWR expressions nested within a “for” clause can also berewritten to our

supported subset format (by RuleNR4 in [56]). The filter expression in an XPath

can be moved into the “where” clause (e.g., Figure 4.2 (a) maybe rewritten from

“for $a in /auctions/auction, $b in $a/seller[sameAddr] ...”). In short, syntax in

Figure 4.1 cover a large portion of commonly used XQuery expressions.

We proposequery treesto represent the structural patterns in an XQuery. Fig-

ure 4.2 (b) shows such a tree for the XQuery in Figure 4.2 (a). Each navigation

step in an XPath is mapped to a tree node. The descendant axis is also expressed as

4.2. TYPE INFERENCE ON QUERY TREES 177

a tree node labeled “//”. The blank node models the relationship between the inner

FWR and the outer FWR. We say the node mapped from the first (resp. last) step

on an XPath is thecontext(resp.destination) node of any node mapped from the

same XPath. For example, in Figure 4.2 (b), theauctionnode represents$a and is

the context node ofseller. Theseller node again represents$b and is the context

node of * andphone. We also sayauction is an ancestor context node of * and

phone.

for $a in /auctions/auction, $b in $a/seller[billTo]
where $b/*/phone=“508-123-4567”
return
<auction>

for $c in $a/item
where $c//keyword=“auto”
return

<iteminfo>
$a/category, $c

</iteminfo>
</auction>

(a) Example Query

auctions

auction

seller

*

phone
//

(b) Query Tree

billTo item

category

keyword

$a

$a
$b

$c

Figure 4.2: XQuery and Query Tree

There are two kinds of patterns in an XQuery. XPaths in “for” clauses describe

required patterns, e.g., in Figure 4.2 (a), both$a and$b in the outer “for” clause

must not evaluate to empty for the FWR expression to return any result. In con-

trast, XPaths in “return” clauses describe optional patterns, e.g., even if$a/category

evaluates to empty, aniteminfoelement will still be constructed. In the query tree,

a solid (resp. dashed) line indicates the child is required (resp. optional) in its

parent. For example, a dashed line connects the blank node with its parent, indi-

cating$a/category, $a/item and$c//keywordappear in the “return” clause of the

outer FWR. A solid line connects theitemand the blank node, indicating$a/item

4.2. TYPE INFERENCE ON QUERY TREES 178

appears in the “for” clause in the inner FWR.

4.2.2 Type Inference

We assume that an XML schema is given for each stream source. An XML schema

is modeled as a directed graph with ordered edges. A node in theschema graphrep-

resents an element type, a sequence group (labeled with “SEQ”), or a choice group

(labeled with “CHO”). Each edge from nodeu to nodev is labeled by (minOccur,

maxOccur), indicating the minimal and maximal occurrence ofv within u. The de-

fault edge label is (1, 1). Figures 4.3 (a) and (b) show the schema (for compactness,

we use an equivalent DTD) and its graph representation.

Figure 4.4 shows the query tree from Figure 4.2 (b) after typeinference [53,

72]. Each query tree node is now associated with a set of type nodes. Each type

node identifies one possible deterministic navigation stepthat the query tree node

represents. Type nodes are connected to capture the sequential relationship among

navigation steps. The blank node shares the type nodes with its parent. In the rest

of this paper, we refer to a type node by the name of the type. Todifferentiate

between the two type nodes that both representkeywordtype in Figure 4.4, we

refer to them askeyword1 andkeyword2 respectively.

A “*” is resolved to a union of types. In Figure 4.4, “*” is associated with type

nodes primary and secondary, indicating $b/*/phone = $b/(primary|

secondary)/phone. A “//” node is resolved to a union of sequences of types, e.g.,

$c//keyword is resolved to$c/desc/(∅|(emph+ /keyword∗)+| (keyword+/emph∗)+)/keyword,

wherep∗ (resp.p+) indicates repeating a pathp zero or more times (resp. one or

more times);∅ represents an empty navigation step. The nondeterministicnumber

of navigation steps in the expression (i.e.,p∗ or p+) results from the recursivekey-

4.2. TYPE INFERENCE ON QUERY TREES 179

(b) Schema Graph

auctions

auction

seller

CHOprimary

phone
SEQsameAddr

shipTo billTo

secondary

item category

desc

emph keyword

(0,)8(0,)8

(0,)

8(0,)

8

CHO

CHO CHO
(0,)8(0,)8

providedBy

<!ELEMENT auctions (auction+)>
<!ELEMENT auction (seller, item*, category+)>
<!ELEMENT seller (primary, secondary, sameAddr|(shipTo, billTo), profile)>
<!ELEMENT primary (phone)>
<!ELEMENT secondary (phone)>
<!ELEMENT item (desc, payment)>
<!ELEMENT desc((emph|keyword)*, providedBy+)>
<!ELEMENT emph(#PCDATA|emph|keyword)*>
<!ELEMENT keyword (#PCDATA|emph|keyword)*>
…

(a) Schema

profile

(1,)8(1,)8

(0,)8(0,)8

(1,)8(1,)8

(1,)8(1,)8

payment

Figure 4.3: XML Schema and Schema Graph

4.3. GUIDELINES FOR STREAM XML SQO 180

wordor emphelements (refer to Figure 4.3). The “//” node in Figure 4.2 (b) is now

expanded to adescnode and a “//” node in Figure 4.4.

auctions

auction

seller

*

phone

desc
billTo

item

category

auctions

auction

seller

primary

phone

secondary
item

desc

emphkeyword

keyword

billTo

category

keyword

// 1

2

Figure 4.4: Query Tree after Type Inference

4.3 Guidelines for Stream XML SQO

SQO in essence is a heuristics-based optimization. It however still has to be based

on some common beliefs in the characteristics of the physical implementations. For

example, the classical “selection pushdown under join” heuristics-based rewriting

rule is built on the assumption that a selection is usually cheaper than a join. We

therefore have to understand the processing style of pattern retrieval, in particu-

lar what contributes to its costs, to ensure the SQO techniques designed indeed

improve the performance. Therefore, we first review a widely-adopted automata

processing model and then generalize the guidelines for designing SQO techniques.

4.3. GUIDELINES FOR STREAM XML SQO 181

4.3.1 Automata-based Implementation

Automata are widely used [30, 34, 35, 42, 52, 65] for pattern retrieval over XML

token streams. We describe one basic automata model [30, 42]that is general and

serves as the core of most other automata [34, 35, 65]. The pattern retrieval in the

automaton consists of three tasks as below.

Locating Tokens. Figure 4.5 shows the automaton for retrieving the patterns in

Figure 4.4. Each tree node is mapped to transition edge(s) among states. Theλ

transition between states 2 and 3 is mapped from the blank node. Thisλ transition

is necessary for executing the optimized plan as we will showin Section 4.5.

0 1 2

9

5 6

11 12

auctions auction

billTo

item
desc

seller

primary,
secondary

phone

category

7

8

emph

keyword

emph

keyword

emph

keyword
4

1<auctions> 3<annotation> 5</reserve> 7<seller> 9<phone> 11</phone>

[12]
[11]
[9]
[2,3]
[1]
[0]

[12]
[11]
[9]
[2,3]
[1]
[0]

[11]
[9]
[2,3]
[1]
[0]

[11]
[9]
[2,3]
[1]
[0]

[9]
[2,3]
[1]
[0]

[2,3]
[1]
[0]

[]
[2,3]
[1]
[0]

[]
[]
[2,3]
[1]
[0]

[]
[2,3]
[1]
[0]

[2,3]
[1]
[0]

[1]
[0][0]

[12]
[11]
[9]
[2,3]
[1]
[0]

[12]
[11]
[9]
[2,3]
[1]
[0]

[11]
[9]
[2,3]
[1]
[0]

[11]
[9]
[2,3]
[1]
[0]

[9]
[2,3]
[1]
[0]

[2,3]
[1]
[0]

[]
[2,3]
[1]
[0]

[]
[]
[2,3]
[1]
[0]

[]
[2,3]
[1]
[0]

[2,3]
[1]
[0]

[1]
[0][0]

3

10

2<auction> 4 <reserve> 6</annotation> 8< primary> 10”508-123-4567”

Figure 4.5: Automaton Implementation

A stack is used to store the history of state transitions. Figure 4.5 shows

the snapshot of the stack after each token is processed. An incoming start tag

4.3. GUIDELINES FOR STREAM XML SQO 182

is looked up in the transition entries of every state at the stack top. The states

that are transitioned to are activated and pushed onto the stack. For example, when

<auction> is encountered,q1 is transitioned to fromq0 and pushed onto the stack.

If no states are transitioned to, an empty set is pushed onto the stack, e.g., when

<annotation> is processed. When an end tag is encountered, the states at the

stack top are popped out. The stack is therefore restored to the status before the

matching start tag had been processed. For a PCDATA token, nochange is made

to the stack.

Buffering Tokens. Tokens are buffered if they need to be either further filteredor

returned by the query. A state can be associated with an extraction operator. For

example, in Figure 4.5, state 4 is associated with an extraction operator. Once state

4 is activated, the extraction operator raises a flag. As longas the flag is raised, the

incoming tokens will be buffered. When a state 4 is popped outof the stack by a

</category>, its extraction operator revokes the flag to terminate the buffering of

thecategoryelement.

Manipulating Buffered Data. The buffered data are consumed by the data ma-

nipulation operators that perform selections or structural joins. More details are

discussed in Section 2.5.

4.3.2 Necessity of Physical Implementation Analysis

Without close analysis of the physical implementation, an apparently useful SQO

technique can be actually useless. In Figure 4.5, both$a/itemand$a/categoryneed

to be located. We know from the schema in Figure 4.3 thatcategoryonly occurs

after item in an auction. We might expect to save some time by postponing the

locating ofcategorytill item has been located, i.e., removing the transition from

4.3. GUIDELINES FOR STREAM XML SQO 183

state 3 to state 4 and only recovering it when state 5 is activated. This is similar to

the SQO technique in XSM [52] which removes transitions thatwill not happen.

Transition entries are usually implemented as a hash table [81, 42, 34] for

performance reasons. A transition lookup, i.e., a hash table lookup, costs constant

time [34]. Therefore cutting down the number of transitionsin the entries of state 3

does not affect the lookup cost. Therefore in the above example, the new automaton

does not save any cost. In XSM [52] however, the transition lookup at states is

implemented as a linear search on all possible transitions of s. It is worthwhile to

cut down the number of transitions in XSM.

4.3.3 Design Guidelines for XML Stream SQO

There are two major optimization opportunities. First, we should avoid transitions

whenever possible. This obviously reduces the cost of locating tokens. It may also

reduce the cost of buffering tokens when those transitions,if not avoided, could

otherwise activate states associated with extraction operators. It may even save

manipulation cost on the buffered data.

The second opportunity is that an extraction operator should be prompted to

revoke the buffering flag once the data it is extracting is known to be irrelevant to

the final results. This saves buffering cost.

We now describe how to take advantage of the two opportunities. A pattern

$v/p may “fail” if its p may not occur within$v, or it is involved in a selection,

or its required descendant patterns may fail. The failure ofa required$v/p filters

out $v. If within a $v, no result of XPathp can occur after any result of XPath

p′, we say a result ofp′ is anending mark of p. When an ending mark ofp is

encountered, we can test whetherp fails. This test is anearly filtering because

4.4. STREAM-SPECIFIC XML SQO 184

without the ending mark, we could have only concluded whether p fails when the

end tag of$v is encountered. Ifp fails, any transitions or active buffering flags can

be avoided or deactivated within this$v.

In some cases, even if early filtering ofp does not save within$v, it may save

within the ancestor context variables of$v. For example, in Figure 4.6, early detec-

tion of the absence ofbillTo within asellerwould not save any computation within

this seller. However, since anauctionhas only oneseller, the filtering out of this

seller leads to the filtering out of its parentauctionelement. The schema in Figure

4.3 indicatesitemoccurs aftersellerwithin anauction. The locating and buffering

$a/item is saved. Figure 4.7 summarizes the guidelines of designingXML SQO.

for $a in /auctions/auction,
$b in $a/seller[billTo]

return
<auction>

$b/@id, $a/item
</auction>

(a) Example Query (b) Query Tree

auctions

auction

seller

billTo

$a

item

$b

Figure 4.6: Filtering Propagation

4.4 Stream-Specific XML SQO

We now introduce three SQO rules (each utilizing a differenttype of constraint).

Note that our rule set is open-ended. New rules utilizing newconstraints could be

similarly developed following the guidelines and added into the rule set.

4.4. STREAM-SPECIFIC XML SQO 185

A SQO technique should find ending marks for a pattern$v/p that satisfies the
following criteria:

1). early filtering is possible.

(a)p is a required pattern in$v.

(b) p may possibly fail in a binding of$v.

2). early filtering is beneficial: after the ending marks within a binding of$v
or $u ($u is an ancestor context variable of$v), there exist raised buffering
flags or states that may be activated.

Figure 4.7: SQO Design Guidelines

4.4.1 SQO Rules

Each rule is defined with respect to a patten$v/p. A rule has a pre-condition, a

rule body and a post-condition. The precondition ensures thatp satisfies criterion 1

in Figure 4.7. When the precondition holds, the rule body is fired to find the ending

marks ofp. The post-condition keeps only those ending marks that satisfy criterion

2. The pre-condition and post-condition checking is similar across the rules. We

here only describe their different parts, the rule bodies.

Occurrence Rule.

This rule utilizes occurrence constraints. We usemaxOccur(t1, t2) to repre-

sent the maximal occurrence of type nodet1 within type nodet2. For each typet

of $v, we derive the maximal cardinality of the results ofp within a binding of$v

of typet. If the maximal cardinality is a bounded integeri, then the end tag of the

ith result ofp is an ending mark in$v of typet.

Example 17 In Figure 4.4,maxOccur(phone, seller) = 2. The end tag of the

2nd phone is an ending mark of/∗/phone within aseller.

4.4. STREAM-SPECIFIC XML SQO 186

Exclusive Rule.

This rule utilizes the the “CHO” node in the schema graph. Foreach typet of

$v, we find whether there is a pathp′ that never coexists withp within a binding of

$v of typet. If yes, the start tag of the result ofp′ is the ending mark ofp in $v of

typet. This rule may introduce new nodes forp′ into the query tree whenp′ is not

specified in the query.

Example 18 From Figure 4.3 we know/sameAddr is exclusive to/billT o in a

seller element.<sameAddr> is the ending mark of/billT o within aseller.

Order Rule.

This rule utilizes the order constraints. For each typet of $v, we find whether

there exists a pathp′ that must occur afterp within a binding of$v of typet. If yes,

the start tag of the first result ofp′ is an ending mark ofp in $v of type t. Similar

to Exclusive Rule, this rule may also introduce new nodes into the query tree.

Example 19 In Figure 4.4,keyword either occurs as a child element ofdesc, or

occurs within a child elementemph or keyword ofdesc. Withindesc, providedBy

occurs after bothemph andkeyword. Also,maxOccur(desc, item) = 1. There-

fore the start tag of the first result of/desc/providedBy within $c is an ending

mark for//keyword.

In the rest of the paper, instead of saying the start tag of thefirst result (Exclu-

sive and Order Rules) or the end tag of theith result (Occurrence Rule) of a path

is an ending mark, we simply say the path or theith occurrence of a path is the

ending mark.

4.4. STREAM-SPECIFIC XML SQO 187

4.4.2 Desired Properties of Rule Application

We now consider the order of applying the rules on the patterns, i.e., on the desti-

nation nodes in the query tree (each destination node identifies a pattern). The ap-

plication order should ensure two properties:completenessandminimality. Com-

pletenessmeans that no beneficial ending mark is missed whileminimalitymeans

no redundant ending mark is introduced.

Completeness

We now define theindependenceof two rules, which is an important property for

ensuring the completeness of our rule application algorithm.

Definition 7 We usedest(Q) to denote the destination nodes in a query treeQ.

We denote a new query tree after the application of ruler on a destination noden

inQ asapply(r,Q, n). dest(Q) - dest(Q′) denotes the destination nodes in query

treeQ but not inQ′. em(Q) denotes the set of ending marks already found for the

patterns inQ. Rulesr1 andr2 are independent of each other if:

em(apply(r2, apply(r1,Q, n), n′)) = em(apply(r1, apply(r2,Q, n′), n)), ∀n, n′ ∈ dest(Q)

(1)

em(apply(r2, apply(r1,Q, n), n′)) = em(apply(r1,Q, n)),

∀n ∈ Q, n′ ∈ dest(apply(r1,Q, n))− dest(Q) (2)

em(apply(r1, apply(r2,Q, n), n′)) = em(apply(r2,Q, n)),

∀n ∈ Q, n′ ∈ dest(apply(r2,Q, n))− dest(Q) (3)

Equation (1) saysr1 and r2 can be applied on the destination nodes in any

order and still find the same set of ending marks. Equations (2) and (3) (they are

symmetric) say that if the application of one rule introduces new destination nodes

4.4. STREAM-SPECIFIC XML SQO 188

into the query tree, the application of the other rule on these new nodes would not

result in new ending marks.

Lemma 4 If rules in a rule set are all independent of each other, then as long as

each SQO rule is applied on each destination node in the querytree once, this

application process ensures completeness.

Lemma 5 All possible pairs of rulesr1-r2 in our current rule set are independent

of each other.

We briefly explain Lemma 5. First, when a rule in Section 5.3 isapplied on a

node, it is not affected by the ending marks previously found. Equation (1) in

Definition 7 holds. Second, any newly introduced node represents an XPath that is

not specified in the query. Such a path is optional and not qualified to have ending

marks. Equations (2) and (3) in Definition 7 also hold. Lemmas4 and 5 will be

combined later to show our rule application algorithm achieves completeness.

Minimality

A plain node-by-node rule-by-rule application, though ensuring completeness (Lemma

4), may not ensureminimality. It may introduce redundant ending marks.

Example 20 (Rules Applied on Same Node) Exclusive and Order Rules, if applied

on nodebillT o in Figure 4.4, introduce/sameAddr and /profile respectively.

However the latter ending mark is redundant: ifbillT o does not appear, its absence

will be caught by ending mark/sameAddr first; if billT o does appear, ending

mark/profile then leads to unnecessary checking. In either case,/profile does

not help.

4.4. STREAM-SPECIFIC XML SQO 189

Example 21 (Rules Applied on Ancestor and Descendant Nodes) Suppose the

schema forauction in Figure 4.3 is changed to<!ELEMENT auction (...,

item, ...)>. The Order Rule on nodekeyword finds an ending mark:/desc/providedBy

(see Example 19) in anitem. Also, Order Rule on nodeitem finds an ending mark

/category in anauction sinceitem must occur beforecategory. The latter end-

ing mark is meant to detect whether any$c (item) that satisfies$c//keyword =

“Auto” exists in a $a (auction). This is equivalent to detecting whether the only

$c in $a satisfies the predicate (a$a has exactly one$c). However this will always

be first detected by ending mark/desc/providedBy in a $a. Therefore the ending

mark/category is redundant.

An ending mark of$v/p is said to besurely-workingif it is able to catch all fail-

ure of/p in a binding of$v. Not all ending marks are surely-working. For exam-

ple, if the DTD in Figure 4.3 is instead<!ELEMENT item (desc?, payment)>,

/desc/providedBy does not necessarily occur in anitem. The failure of//keyword

in $c thus is not ensured to be caught by this ending mark. There aretwo kinds of

surely-working ending marks, as illustrated below.

• If an ending mark that is found by Occurrence or Order Rule, itis surely-

working if it is guaranteed to appear in the stream. For example, the ending

mark/payment for $c//keyword (see Example 19) is not surely-working

since even thoughminOccur(payment,item)>0, minOccur(item,

auction)> 0. In contrast, the ending mark/category for $a/item is surely-

working sinceminOccur(category,auction) > 0 andminOccur(auction,auctions)>0.

• If an ending mark is found by Exclusive Rule, it is surely working if (1) it

is “alternative” top, i.e., eitherB or p must appear (this is stronger than

4.4. STREAM-SPECIFIC XML SQO 190

“exclusive” which only requires the ending mark andp do not coexist); and

(2)p cannot involve in a selection predicate because the absenceof B only

ensuresp appears but cannot ensurep satisfies the predicate.

Based on thesurely-workingconcept, we have Observations 1 and 2 which

generalize the cases illustrated in Examples 20 and 21 respectively.

Observation 1 For a $v/p, any ending marks after a surely-working one are re-

dundant.

Observation 2 Any ending marks of$v/p are redundant if (1) within$v′ where

$v′ = $v/p, any pattern$v′/p′ satisfying Criterion 1 (a) and (b) in Figure 4.7 has

a surely-working ending mark, and (2)$v′ occurs within$v exactly once.

4.4.3 Rule Application Algorithm

The rule application algorithm has two main components: thetraverserand the

rule applier. The traverser traverses the query tree and directsrule applier to

operate on every destination node. From Lemmas 4 and 5, we know the algorithm

achievescompleteness. The rule applier outputs a set of event-condition-action

constructs in the form of (an ending mark, a pattern, a type node of an ancestor

context node). When an ending mark is encountered (event happens), if the pattern

fails (condition holds), all computations within the ancestor context node will be

suspended (actions are taken). Therule applier follows Observations 1 and 2 and

thus achievesminimality.

The traverser algorithm (Algorithm 4.4.3) takes two inputs. The first input is a

type node of a context node$v. The traverser picks qualifying destination nodes

4.4. STREAM-SPECIFIC XML SQO 191

Algorithm 10 traverser(tn, atn)
-Input: tn - a type node of a context node$v

atn - a type node of$v’s farthest ancestor context node that has
maxOccur(tn, atn) = 1.
-Output: a set of event-condition-actions

1: Setecas;
2: for each destination node$v′ of $v do
3: ecas = ecas ∪ applyRule($v′ , tn, atn);
4: for each type nodetn′ of $v′ do
5: if maxOccur(tn′, tn)=1 and$v′ has only one type node that is a descen-

dant oftn then
6: ecas = ecas ∪ traverser(tn′, atn);
7: else
8: ecas = ecas ∪ traverser(tn′, tn).
9: end if

10: end for
11: end for
12: returnecas.

of $v for the rule applier. The second input is a type node of an ancestor context

node. This type node will appear as the action part of the event-condition-action

output of the rule applier.

Initially, the traverser is called withtn andatn both set to the only type node of

the query tree root (the root must have only one type node thatidentifies the type of

the root element in the stream). Starting from the root, the rule applier operates on

each destination node$v′ (lines 2-3). Next, the subtree rooted at$v′ is recursively

traversed (lines 4-8). The filtering out of a binding of$v′ leads to the filtering out

of the binding of an ancestor context variable$v (see Algorithm 4.6), if the binding

of $v′ is the only one occurring in the binding of$v (line 5). We now walk through

an example to show how this works, especially when a context node has multiple

type nodes.

4.4. STREAM-SPECIFIC XML SQO 192

Example 22 Figures 4.8 (a) and (b) show a query and a schema. The traverser

starts from the root node in Figure 4.8 (c) and finds its destination node$v. The

rule applier operates on/a/∗, namely,/a/(c|d) according to the type inference.

An ending mark/a/e is found. Next, the traverser navigates into the subtree rooted

at $v which has two type nodesc andd. With respect to$v of typec (resp. of type

d), an ending mark, i.e., the second occurrence of/b (resp. the first occurrence of

/b), is found for$v/b. Filtering of any binding of$v will not be propagated up to

the root. This is because even a binding of$v of typec does not contain element

b that satisfiestext() = “001”, another binding of$v of typed may still contain

suchb.

a

*
$v

b

c d
b

for $v in /a/*,
Where $v/b/text() = “001”
return $v

a

(a) Original query (b) Schema (c) Query Tree

<!ELEMENT a (c?, d?, e)>
<!ELEMENT c (b, b, …)>
<!ELEMENT d (b, …)>

Figure 4.8: Traverser on Context Node with Multiple Types

In Figure 4.4.3,applyRulealgorithm operates on a destination node with re-

spect to its context node of typetn. Following Observation 2, it first checks

whether ending marks for the pattern identified bydest will always be redundant

(lines 2 - 9). If not,localApplyRulealgorithm is applied ondest. localApplyRule

follows Observation 1, that is, if a surely-working ending mark is found, we termi-

nate the rule application.

In localApplyRulein Figure 4.4.3, the Occurrence, Exclusive and Order Rules

are applied in turn ondest. The ending marks will then be found in the order they

4.4. STREAM-SPECIFIC XML SQO 193

Algorithm 11 applyRule(dest, tn, atn)
Input: dest - a destination node;

tn - a type node of the context node ofdest;
atn - a type node of an ancestor node ofdest

Output: a set of event-condition-actions

1: Setecas;
2: T = type nodes ofdest that are descendants oftn
3: find t′ where

(i) t′∈T andt′ occurs after all other types inT
(ii) maxOccur(t′, tn) = 1

4: if t′ existsthen
5: for each destination nodedest′ of dest do
6: applyRule(dest′, t′, atn);
7: end for
8: if everydest′ has a surely-working ending markthen
9: return an empty set;

10: end if
11: end if
12: ecas = ecas ∪ localApplyRule(dest, tn, atn).
13: returnecas.

Algorithm 12 localApplyRule(dest, tn, atn)
Input and Output: same as applyRule algorithm

1: Setecas;
2: ecas = ecas ∪ localApplyOneRule(OccurrenceRule, dest, tn, atn);
3: if there is no surely-working ending markthen
4: ecas = ecas ∪ localApplyOneRule(ExclusiveRule, dest, tn, atn);
5: end if
6: if there is no surely-working ending markthen
7: ecas = ecas ∪ localApplyOneRule(OrderRule, dest, tn, atn).

07 returnecas.
8: end if

4.5. EXECUTION OF OPTIMIZED QUERIES 194

Algorithm 13 localApplyOneRule(r, dest, tn, atn)
Input: r - an SQO Rule;dest, tn, atn - same as those in applyRule
Output: a set of event-condition-actions

1: Setecas;
2: if precondition check ondest passesthen
3: while more ending mark is founddo
4: find the next earliest ending markA for dest within dest’s context node

of typetn;
5: if postcondition check ondest passesthen
6: ecas = ecas ∪ (A, n, atn).
7: end if
8: if A is surely-workingthen
9: break;

10: end if
11: end while
12: end if
13: return ecas.

appear in the stream. Following Observation 1, if a surely-working ending mark is

found, we terminate the rule application.

4.5 Execution of Optimized Queries

We have incorporated the proposed SQO techniques intoRaindrop. We describe

(1) how to encode the event-condition-actions derived in Section 4.4 in the query

plans and (2) how to execute such query plans. The described techniques for opti-

mized execution are general to any system that wants to applythe stream-specific

XML SQO in Section 4.4.

4.5. EXECUTION OF OPTIMIZED QUERIES 195

4.5.1 Encoding Event-Condition-Actions

We use our running example to illustrate how the event-condition-actions derived

by the rule application algorithm are encoded in an Raindropplan. The top part

in Figure 4.9 shows the plan for the XQuery in Figure 4.2 (a). For ease of illus-

tration, each operator is annotated with an identifier. For example, the inner FWR

expression in Figure 4.2 (a) is modeled as the subplan withinthe box in Figure

4.9. The patterns $a/item and$c//keyword are located byTokenNavoperators

4 and 8 respectively.item andkeyword elements are extracted by operators 7

and 11. Finally, anitem is coupled with thekeywordelements located within it by

StructuralJoin$c.

The bottom of Figure 4.9 also depicts the automaton for locating the patterns.

The automaton has encoded three event-condition-actions derived in Section 5.3.

Compared to the original automaton in Figure 4.5, new stateshave been added for

the newly introduced patterns, e.g., state 13 for$b/sameAddr (see Example 18).

The property below must hold in the automata in order for the event-condition-

actions to work correctly.

Property 3 Supposetn andtn′ are type nodes of$v and$v′ ($v′ = $v/p) respec-

tively. A set of automata statesS will be activated by bindings of$v′ of typetn′

within a binding of$v of typetn. We say the pair (tn, tn′) is mapped toS. In the

query tree, if for any two pairs of type nodes which are mappedto S andS ′, S ∩

S ′ = ∅, the “conflict-free” property holds in the automaton.

Figure 4.10 shows two alternative automata constructed forthe query tree in

Figure 4.8. Both the type node pairs (c, b) and (d, b) in Figure 4.8 are mapped to

state 4 in Figure 4.10 (a). The automaton in Figure 4.10 (a) does not satisfy the

4.5. EXECUTION OF OPTIMIZED QUERIES 196

“conflict-free” property and is incorrect. This is because when state 4 is activated,

we cannot infer whether the binding of$v is type c or d. We however need to

know this to decide which ending mark to use for$v/b. Figure 4.8 (b) shows a

correct automaton where the above type node pairs are mappedto states 4 and 5

respectively.

To encode the event-condition-actions, i.e., (ending mark, $v/p, type nodeatn

of an ancestor context node$u of $v), we first find a set of statesS that will be

activated or deactivated by the ending mark. For each stateq in S, we associate

a construct (i, tagType, checkOp, p) with it, wherei is the occurrence number

for the ending mark found by the Occurrence Rule;tagType is eitherstartTagor

endTag; checkOp is the operator which holds the results of$v/p; p is a state that

will be activated by bindings of$u of typeatn.

For example, in Figure 4.9, state 4 is associated with (1,startTag, Operator

15, state 3). It indicates when a start tag ofcategory is encountered, operator

15 is checked. If operator 15 does not have any output, i.e., no $c that satisfies

$c//keyword = “auto” exists, computations that would occur after state 3is acti-

vated are all suspended. The locating ofseller within the auction is not affected

due to the separation of state 2 from state 3. This captures the query semantics in

Figure 4.2. A binding of$a may still appear in the final results even if it does not

contain any qualifying bindings of$c.

4.5.2 Execution Strategy

We now present how a plan encoding event-condition-actionsis executed. A con-

struct (i, tagType, checkOp, p) associated with stateq indicates whenp is ac-

tivated (whentagType is start tag) or deactivated (whentagType is end tag)i

4.5. EXECUTION OF OPTIMIZED QUERIES 197

times, ifcheckOp does not have any output, we suspend any computations related

to the states afterp. p andq are activated by bindings of$u and$v respectively

where$u is an ancestor context variable of$v. Due to space limitations, we do not

discuss the event detection and condition checking. We focus on taking actions.

This process consists of three steps, namely,computation suspension, temporary

data cleanupandrecovery preparation.

In the first step, all computations within the current binding of $u identified by

p are suspended. In a naive implementation, we suspend statesincluding (1)p, (2)

any states reachable viaλ transitions fromp, and (3) intermediate states between

p and q. For example, to take action for the construct (2,endTag, operator 12,

state 2) associated with state 12 in Figure 4.9, we need to remove the transitions

from q2, q3 as well asq9, q11 andq12. We need not suspend states 4 to 8 since

suspension of state 3 has ensured no transition would ever start from them. In

contrast, the intermediate states betweenq2 andq12 such asq9, even thoughq2 has

been suspended, still need to be suspended. Otherwise, a subsequent token after

the ending mark (i.e., a</phone>) such as<billTo> still triggers the transition

from state 9 to state 10.

We actually can reduce the number of states to be suspended soas to reduce

the suspension overhead. For example, in an optimized implementation,q11 and

q12 do not have to be suspended. No transition would ever start from them after

the ending mark anyway.

In the second step, the temporary results originating from the current binding

of $u are cleaned. For example, in a naive implementation, we clean the output

buffers of operators 10 and 15 in casecategoryand qualifieditem (i.e., satisfy-

ing $c//keyword= “auto”) have been located within the currentauction. However,

4.6. EXPERIMENTATION 198

similar to the optimization in the first step, we actually only need to clean the

buffers which may have contained outputs generated within this$u before the end-

ing mark. Therefore in the above example, we need not clean any output buffers,

sinceitemandcategoryelements occur only after the ending mark within anauc-

tion (refer to Figure 4.3).

Third, since the suspended states need to be resumed later, we prepare for the

recovery. For example, when states 2, 3 and 9 are suspended, i.e., transitions from

them are removed, we set a “suspended” flag for these states and backup their

transitions. Later, when a start tag ofauction(resp.seller) activates states 2 and 3

(resp.seller), the “suspended” flag triggers the backup transitions to berecovered.

Computations start again.

4.6 Experimentation

We implemented the SQO techniques inRaindrop[39, 38] using Java 1.4. Exper-

iments are run on two Pentium III 800 Mhz machines with 768M memory. One

machine sends the XML stream to the second machine, i.e., thequery engine. We

implemented an XML parser which, assuming the incoming datais well-formed,

does not check the well-formedness. The parsing time in the overall execution

time thus is negligible. Also, we do not include the time spent on reading the

stream from the sockets in the query evaluation time so as to isolate the network

cost.

4.6. EXPERIMENTATION 199

4.6.1 Practicability of SQO Techniques

We now report the performance of our SQO techniques on a real dataset from the

Protein Sequence Database (PSD) [1]. From its DTD, we can seethat the data

can be highly irregular. This dataset contains a sequence ofProteinEntryelements.

A ProteinEntryelement has 13 subelements: 8 of them can be optional; and 4 of

the remaining 5 required subelements can again have optional subelements. Many

real-life queries access the optional subelements, according to a biologist we have

consulted.

We design a set of queries in the format in Figure 4.11. The notationsp11, ...,

p21, ...,p31, ... stand for XPath expressions andval21, val22, ... stand for constant

strings. Table 4.1 shows the features of each query.

Query # of Filters in
“for” clause

of Paths in “re-
turn” clause

of Selection
Predicates

Q1 1 1 0

Q2 1 5 0

Q3 6 5 0

Q4 1 8 0

Q5 1 8 0

Q6 0 8 10

Table 4.1: Query Characteristics

Figure 4.12 shows 5 bars for each query: one for the original plan; the other

three for plans applied on by the Occurrence, Exclusive or Order Rule respectively;

and the fifth for the plan applied on by all three rules.

Q1, Q2 andQ3 are common in that no ending marks can be found by the Oc-

currence or Exclusive Rule. Therefore, the plans after the Occurrence or Exclusive

Rule is applied are the same as the original plan. The only filter inQ1 has a selec-

tivity of 23%. Order Rule reduces the original execution time by 13%.Q2 has more

4.6. EXPERIMENTATION 200

paths within the “return” clause so that more savings can be gained with early fil-

tering. Order Rule reduces the original execution time by 36%. Q3 has more filters

thanQ1 andQ2. Order Rule reduces the execution time by 40%. The performance

gain difference betweenQ2 andQ3 is not major because the additional filters in

Q3 are not very selective.

BothQ4 andQ5 have a pattern for which Exclusive rule can find ending marks.

The selectivities of the patterns are 78% and 2% respectively. For both queries, the

plan optimized with the Exclusive Rule is better than the plan optimized with the

Order Rule because Exclusive Rule detects the failure of thepattern before Order

Rule. The performance gain inQ5 is more obvious due to the low selectivity of the

pattern.

Q6 contains 10 predicates. The Occurrence Rule is most useful when the oc-

currence number of elements is deterministic (i.e., minimal occurrence = maximal

occurrence). If an element occurs less than the maximal occurrence, the Order Rule

helps to catch the failure of the predicates. When these two rules are combined, the

performance is the best.

4.6.2 Synergic Effect of Combining Type Inference and Stream SQO

Figure 4.13 shows the synergic effect of combining type inference and stream SQO.

We useQ2, Q5 andQ6, each benefiting most from Order, Exclusive and Occur-

rence Rule respectively, for the study. For each queryQ, we pick a path expression

$v/n1/n2/.../ni that has the lowest selectivity. In the first testing, we modify the

expression to$v/*/*/.../ni and get a queryQ′. In the second testing, we modify the

expression to$v//ni and get a queryQ′′. We then runQ′ andQ′′ without SQO,

Q′ andQ′′ with SQO,Q with type inference andQ with both type inference and

4.6. EXPERIMENTATION 201

SQO.

In Q2, the path before modification has a length of 2. The plan with “//” takes

22% more time to finish than the plan with “*” because the previous plan has to

perform automata transitions for every element at any depth. The plans after SQO

is applied on all the path expressions except the modified one(i.e.,Q′ andQ′′ with

SQO) show obvious improvement while the plan combining bothtype inference

and SQO boosts even more performance gain.

In Q5, the path modified has a length of 5. Since the average depth ofPSD is

5.1, almost every element leads to automata transitions. Therefore the plan with “*”

costs almost the same as the plan with “//”. Only one path expression inQ5 offers

SQO opportunity. Therefore after we modify the expression,no SQO optimization

is possible (Q′ andQ′′ are the same asQ). The plan with both type inference and

SQO cuts down 50% of the execution time of the plan with type inference.

Finally, in Q6, the expression that has the lowest selectivity occurs rather later

in its context node. Early filtering leads to minor improvement. The plan com-

bining both type inference and SQO has performance similar to those with SQO

applied on the other path expressions.

4.6.3 Necessity of “Usefulness” Criteria

The data sets used in the rest of the paper are generated by an XML generator

ToXGene [24]. They conform to the schema used in XMark [7]. Wenow illustrate

the necessity of introducing only ending marks that satisfythe criteria in Figure

4.7.

For the query in Figure 4.2 (a), we turn off the criteria checking and adopt all

ending marks found for the required patterns (we do not allowending marks for op-

4.6. EXPERIMENTATION 202

tional patterns since they lead to incorrect results). Among 30 ending marks, only

one ending mark for the pattern$b/billT o satisfies the criteria. The result is shown

in Figure 4.14. When the selectivity of/billT o is low, the only necessary ending

mark of/billT o often suspends transitions, including those activating the unneces-

sary ending marks. However, as the selectivity of/billT o reaches above 30%, the

overhead of unnecessary ending marks makes the plan performeven worse than

the original plan.

4.6.4 Factors on Performance Gains

How useful an ending mark of a patternp is depends on two factors: how oftenp

occurs within its context node, i.e., the selectivity ofp; and how much computation

can be saved when an early filtering occurs, i.e., the unit gain. We now study the

influence of these factors on the effectiveness of the SQO techniques.

We design three sets of queries. Each query set is meant to test the effectiveness

of SQO on saving certain types of computations, i.e., path location, data buffering,

or selection evaluation. Each query set is composed of threequeries that differ

in the unit saving. For example, in the query set for testing the saving on path

recognition, the evaluation of 1, 9 and 18 path expressions can be saved when an

early filtering occurs in queries 1, 2 and 3 respectively. In other words, minor,

medium and major gains can happen in the three queries respectively.

Figures 16, 17 and 18 report the results on the three query sets. In each such

figure, (a), (b) and (c) correspond to queries with minor, medium and major gains

respectively while (d) gives a summary of the ratio of the execution time of the

plan without SQO to that of the plan with SQO. The higher the ratio is, the more

effective the SQO is. We can see that the lower the selectivity of the pattern with

4.6. EXPERIMENTATION 203

ending marks, or the bigger the unit saving is, the more effective the SQO is. In the

best case of three types of queries (i.e., selectivity is 0% and unit gain is major),

plans optimized with SQO reduce the execution time of original plan by 79%,

44% and 86% respectively. The optimization percentage may be even larger when

SQO is applied on a query with larger unit gain, say, SQO helpsavoiding the

computation of buffering, path recognition and selection evaluation all together.

4.6.5 Overhead of SQO

We now test the overhead of our SQO techniques. For a SQO technique, we design

a query and a schema so that the SQO technique can be applied ona patternp in

the query. This query is run on a data set in which the selectivity of p is 100%.

In other words, none of the ending marks ofp will ever lead to any computation

savings. The performance difference between such a plan andthe original plan is

then the overhead of SQO in worst case.

For testing the overhead of the SQO technique using Occurrence rule, we

run the query on three data sets. Each data set is composed of asequence of

openauctionelement. The ending mark will occur in eachbidder subelement of

anopenauctionelement. The three datasets differ in the average number ofbidder

subelements, i.e., 1, 10 and 20, in anopenauction. Therefore, ending marks occur

least frequently in data set 1 and most frequently in data set3. Figure 4.18 reports

the results on these data sets. The ratio of the optimized plan with the original plan

is 114%, 103% and 112% respectively.

The overhead of SQO technique using Exclusive Rule is reported in Figure

4.19. Note when the Occurrence Rule is applied on a pattern, at most derive one

ending mark since the maximal occurrence of a pattern is unique. Unlike the Oc-

4.6. EXPERIMENTATION 204

currence Rule, the Exclusive Rule, when applied a pattern, may lead to multiple

ending marks (refer to Example 18). We design three schema. When used to opti-

mize a patternp in the query, they lead to 1, 10, 20 ending marks forp respectively.

As explained in Example 18, different number of ending marksfor the same pat-

tern should not make much difference in the performance, assuming a hash table

lookup time is assumed not to be affected by the number of entries in the hash

table. Figure 18 confirms that plan with 1, 10, or 20 ending marks perform very

similarly on all three data sets. Overall, the ratio of the plan optimized with SQO

with the original plan is around 113%, 101% and 105% on three data sets.

Order Rule may introduce multiple ending marks for one pattern in the query.

For example, if we have a DTD<a (b?, c?, d?)>, bothc andd can serve as the

ending mark ofb within a. If all b, c andd always appear within ana, the existence

of b will be checked twice (equvalent to the number of its ending marks). The

overhead of the plan with a different number of ending marks on different data sets

is reported in Figure 4.20. We can see that when ending marks occur frequently

(refer to the third group of bars), the more ending marks are introduced, the more

expensive the query is to evaluate. However when ending marks frequently occur,

the ratio of the execution time of the plan with 20 ending marks to that of the

original plan is 108%, which indicates the overhead is stillsmall.

4.6.6 Summary of Experiments

Our experiments on real data reveal that our SQO is practicalin two senses. First,

the constraints the techniques rely on do occur frequently.Second, the savings

brought by the techniques can be significant.

Our experiments on synthetic data focus on three aspects. First, we show the

4.6. EXPERIMENTATION 205

necessity to follow the SQO design guidelines. Second, we study the impact of

various factors on the effectiveness of our techniques. These factors include the

kind of computation (i.e., pattern location, buffering, orselection evaluation), the

unit gain, and the frequency of the occurrence of optimization. Third, we test the

overhead of the SQO techniques which turns out to be rather low.

4.6. EXPERIMENTATION 206

TokenNav
$s, /auctions/auction

->$a

StructuralJoin
$b

ExtractNest
$b, $d

StructuralJoin
$c

ExtractNest
$a, $f

Tagger
“auction”, $f, $c

Sel
$d=“508-123-4567”

TokenNav
$b, /billTo

->$e

ExtractNest
$c, $g

1

2

5 8

Sel
$g=“auto”

11

14

Structural-LeftOuterJoin
$a

15

0 1 2

9

5 6

11 12

auctions auction

billTo

item desc

seller

category
7

8

emph

keyword

emph

keyword

emph

keyword
4

3

10

primary,
secondary phone

13
sameAddr

(1, startTag, null ,q2)

(2, endTag, Op12, q2)

10

TokenNav
$b, /*/phone

->$d

TokenNav
$a, /seller

-> $b

TokenNav
$a, /item

->$c

TokenNav
$c, //keyword

-> $gTokenNav
$a, /category

-> $f

6

StreamSource
$s

9

12 13

ExtractUnnest
$a, $c

3

4

7

16

(1, startTag, Op15, q3)

Figure 4.9: Encoding SQO into Algebraic Plan

0 1
2a c

3

4

d

b

b

(a) Incorrect Automaton (b) Correct Automaton

0 1

2a c

3

4

d 5

b

b

Figure 4.10: “Conflict-free” Property of Automata

4.6. EXPERIMENTATION 207

for $a in /ProteinDatabase/ProteinEntry[p11][p12]...

where$a/p21 = val21 and$a/p22 = val22 ...

return

<result> $a/p31, $a/p32, ...,</result>

Figure 4.11: Query Template

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

Q1 Q2 Q3 Q4 Q5 Q6

E
x
e
c
u
t
i
o
n

T
i
m
e

(
m
s
)

Original Plan

Applying

Occurrence Rule

Applying Exclusive

Rule

Applying Order Rule

Applying All Three

Rules

Figure 4.12: Effect of SQO on Queries Using a 800M PSD Dataset

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

Q2 Q5 Q6

E
x
e
c
u
tio

n
T

im
e

(m
s
)

Plan with "*"

Plan with "//"

Plan with "*" and SQO

Plan with "//" and SQO

Plan with Type Inference

Plan with Type Inference
and SQO

Figure 4.13: Effect of Combining Type Inference and SQO on a 800M PSD Dataset

4.6. EXPERIMENTATION 208

0

5000

10000

15000

20000

25000

0% 25% 50% 75% 100%

Pattern Selectivity

E
x
e

c
u

ti
o

n
T

im
e

(m
s
)

Plan without Order SQO

Plan with order SQO

Plan with Arbitrary SQO (Criteria not

Considered)
antyhing

anything

Figure 4.14: Comparing Plans Only Adopting Necessary Ending Marks Satisfying
with Plans Adopting All Ending Marks

Query with Major Gain

0

2000

4000

6000

8000

10000

0 0.25 0.5 0.5 1

Selectivity of the Pattern with Ending Marks

E
x
e
c
u
t
i
o
n

T
i
m
e
(
m
s
)

Plan without

SQO

Plan with

SQO

Query with Medium Gain

0

2000

4000

6000

8000

0% 25% 50% 75% 100%

Selectivity of the Pattern with Ending Marks

E
x
e
c
u
t
i
o
n

T
i
m
e
(
m
s
)

Plan

without

SQO

Plan with

SQO

Query with Minor Gain

0

1000

2000

3000

4000

0% 25% 50% 75% 100%

Selectivity of the Pattern with Ending Marks

E
x
e
c
u
t
i
o
n

T
i
m
e

(
m
s
)

Plan

without

SQO

Plan with

SQO

0

1

2

3

4

5

0% 25% 50% 75% 100%

Selectivity of the Pattern with Ending Marks

E
xe

cu
tio

n
T

im
e

R
at

io
:

w
ith

ou
t S

Q
O

 /
w

ith
 S

Q
O

Minor Unit

Gain

Medium

Unit Gain

Major Unit

Gain

(a) (b)

(c) (d)

Figure 4.15: Effect of Pattern Selectivity/Unit Gain on Saving Path Location Cost

4.6. EXPERIMENTATION 209

0

0.5

1

1.5

2

0% 25% 50% 75% 100%

Selectivity of the Pattern with Ending Marks

E
xe

cu
tio

n
T

im
e

R
at

io
:

w
ith

ou
t S

Q
O

 /
w

ith
 S

Q
O

Minor Unit

Gain

Medium

Unit Gain

Major Unit

Gain

(a)

(d)

Query with Medium Gain

0

1000

2000

3000

4000

0% 25% 50% 75% 100%

Selectivity of the Pattern with Ending Marks
E
x
e
c
u
t
i
o
n

T
i
m
e

(
m
s
)

Plan without

SQO

Plan with

SQO

Query with Major Gain

0

1000

2000

3000

4000

5000

0 0.25 0.5 0.75 1

Selectivity of the Pattern with Ending Marks

E
x
e
c
u
t
i
o
n

T
i
m
e

(
m
s
)

Plan

without

SQO

Plan with

SQO

(b)

(c)

Query with Minor Gain

0

500

1000

1500

2000

2500

0% 25% 50% 75% 100%

Selectivity of the Pattern with Ending Marks

E
x
e
c
u
t
i
o
n

T
i
m
e

(
m
s
)

Plan without

SQO

Plan with

SQO

Figure 4.16: Effect of Pattern Selectivity/Unit Gain on Saving Buffering Cost

4.6. EXPERIMENTATION 210

Query with Minor Gain

0

1000

2000

3000

4000

5000

0% 25% 50% 75% 100%

Selectivity of the Pattern with Ending Marks

E
x
e
c
u
t
i
o
n

T
i
m
e

(
m
s
)

Plan

without

SQO

Plan with

SQO

Query with Medium Gain

0

2000

4000

6000

8000

10000

0% 25% 50% 75% 100%

Selectivity of the Pattern with Ending Marks

E
x
e
c
u
t
i
o
n

T
i
m
e

(
m
s
)

Plan

without

SQO

Plan with

SQO

0

2

4

6

8

0% 25% 50% 75% 100%

Selectivity of the Pattern with Ending Marks

P
l
a
n

w
i
t
h
o
u
t

S
Q
O
/
P
l
a
n

w
i
t
h

S
Q
O

Minor Unit

Gain

Medium

Unit Gain

Major Unit

Gain

(a) (b)

(d)

Query with Major Gain

0

5000

10000

15000

20000

0% 25% 50% 75% 100%

Selectivity of the Pattern with Ending Marks

E
x
e
c
u
t
i
o
n

T
i
m
e

(
m
s
)

Plan

without

SQO

Plan with

SQO

(c)

Figure 4.17: Effect of Pattern Selectivity/Unit Gain on Saving Selection Evaluation
Cost

0

1000

2000

3000

4000

5000

least medium most

Frequency of Mattern with Ending Mark

E
x
e

c
u

ti
o

n
T

im
e

(m
s
)

Plan without
SQO

Plan with 1
Pattern/1
Ending Mark

Figure 4.18: Overhead of Applying Occurrence Rule

4.6. EXPERIMENTATION 211

0

1000

2000

3000

4000

5000

6000

7000

least medium most

Frequency of Pattern with Ending Marks

E
x
e

c
u

ti
o

n
T

im
e

(m
s
)

Plan without
SQO

Plan with 1
Pattern/1Endin
g Mark

Plan with 1
Pattern/10
Ending Marks

Plan with 1
Pattern/20
Ending Marks

Figure 4.19: Overhead of Applying Exclusive Rule

0

1000

2000

3000

4000

5000

6000

7000

least medium most
Frequency of Pattern with Ending Marks

E
x
e

c
u

ti
o

n
T

im
e

(m
s
)

Plan without
SQO

Plan with 1
Pattern/1 Ending
Mark
Plan with 1
Pattern/10
Ending Marks
Plan with 1
Pattern/20
Ending Marks

Figure 4.20: Overhead of Applying Order Rule in Worst Case

212

Chapter 5

Related Work

5.1 Related Work on XML Query Processing Paradigms

Stream processing has attracted a great deal of attention inthe networking and

mobile-computing communities. Typical stream applications include networking

traffic monitoring, sensor network management and web tracking and personal-

ization. Most projects likeFjord [55], Aurora [20], Cougar[28], CAPE[67] and

STREAM[14] address general issues of querying data streams, assuming a tuple-

like data model.

Research is also active in the field of querying XML streams. NiagaraCQ [43],

while using XML query syntax, mainly addresses on SQL-like filtering on tuple-

based inputs. It does not address pattern retrieval relatedissues. Moreover, Nia-

garaCQ [43] focuses on the optimization of multiple XML queries by sharing their

common expressions, rather than the optimization of one single query.

Several XML query engines [18, 25, 30, 42, 52, 65] focus on optimizing the

pattern retrieval in XML queries. XSM [52] and XSQ [65] use the transducer

5.1. RELATED WORK ON XML QUERY PROCESSING PARADIGMS 213

models for pattern retrieval. XSM and XSQ support XQuery andXPath respec-

tively. Basically, they define a template for each componentin XQuery or XPath,

and then compile the query into a network of such instantiated templates. Though

XSM supports queries with more expressive power than XSQ does, XSQ provides

more efficient memory management than XSM by promptly cleaning up interme-

diate buffers when they are no longer needed.

Lazy PDA [34] and XPush [35] are based on deterministic automata. They

handle a limited subset of XML query language features. Bothof them only return

a boolean value indicating whether an XPath expression evaluates to non-empty

results. Lazy PDA stands forlazy deterministic pushdown automata. It is called

“lazy” because it computes the automata states at run-time so that only the states

that would actually be transitioned to are computed. This could effectively reduce

the exponential blow-up of the number of states compared to when the “eager”

PDA would be computed at compile time. Lazy PDA supports onlyXPath expres-

sions without filters (i.e., linear patterns) while XPush allows XPath expressions

to have filters (i.e., tree patterns). XPush extends Lazy PDAby having additional

constructs for supporting tree patterns and predicate evaluation.

The above pure automaton approaches [52, 65, 34, 35] use tokens throughout

the query processing. They do not support converting tokensinto XML element

nodes. Therefore they are only able to express a Raindrop query plan that retrieves

all patterns on tokens in their constructs, but unable to express a Raindrop query

plan that retrieves some patterns on the XML element nodes.

YFilter [80, 30] and Tukwila [42] are closest to our work. They model the

whole automaton processing as one operator with fixed interface and coarse gran-

ularity. As mentioned in Section 1.2.2, we call their approaches aloosely-coupled

5.1. RELATED WORK ON XML QUERY PROCESSING PARADIGMS 214

automaton and algebra paradigm. Our work instead uniformly integrates the

token-based and tuple-based computations and thus naturally offers query rewrite

optimization opportunities. Meanwhile, our physical operators are efficiently im-

plemented by taking advantage of the automata properties.

Another camp of research [32, 33] builds systems using SAX handlers. They

define a set of handlers, each for handling certain computations such as evaluating

a navigation step, performing a selection and constructingan element. These han-

dlers are nested so that one handler can pass an event it receives to another handler.

Again, this is a new methodology not in synch with well-knownalgebraic opti-

mization techniques. Existing algebra optimization techniques cannot be directly

adopted.

The loosely-coupled automaton and algebra paradigm and theSAX handler

based paradigm support both tokens and XML element nodes in their query pro-

cessing. Therefore they are able to express a Raindrop plan that retrieves some

patterns on the XML element nodes in their constructs. However, the way they

model a query plan is not suitable for exploring the automaton-in-or-out optimiza-

tion opportunities. The loosely-coupled paradigm does notprovide rewrite rules to

pull out pattern retrieval from the operator that models theautomaton processing.

As for the SAX handler based paradigm, it is not clear how to apply cost estimate

and search algorithm for optimization.

BEA/XQRL [25] bears some resemblance to an XQuery stream processing

system. However, BEA/XQRL actually processes stored XML data. The data are

stored as a sequence of tokens. XQuery is compiled into a network of expressions.

An expression is equivalent in functionality with an algebraic operator. There are

two major differences between BEA/XQRL and Raindrop. First, in BEA/XQRL,

5.2. RELATED WORK ON RUN-TIME PLAN OPTIMIZATION 215

all the internal data passed among expressions are always token streams, in con-

trast to both tokens and tuples inRaindrop. Second, the tokens in BEA/XQRL

and the tokens in Raindrop are not equivalent concepts in terms of their accessi-

bility. In BEA/XQRL, the token stream is stored (either on disk or in memory)

so that the same data can be accessed by expressions multipletimes. In Raindrop,

tokens arrive on-the-fly. They cannot be accessed more than once unless they are

buffered, as explicitly specified by theExtract operators. The pull-based model

in BEA/XQRL, which assumes a look back on previous tokens is possible, does

not work here. It has to work with other execution models in a stream context. As

illustrated in Section 2.6, a data driven model (i.e., the push-based model) is a must

for buffering some data before a pull-based model can operate on buffered data.

5.2 Related Work on Run-time Plan Optimization

5.2.1 Cost-based Optimization

System R [63] first introduced cost-based optimization for relational databases.

Choosing a good join order [70] is the major focus of early cost-based optimization.

Later, cost-based optimization is extended to cover all aspects of a query plan,

including ordering expensive selection predicates [45, 75], placement of group by

[70] etc.

Cost-based optimization has also been actively studied forstatic XML pro-

cessing. Lorel [57], a static XML database engine, adopts cost-based optimization

techniques. Lorel proposes a set of indexes on XML. For example, a label in-

dexsupports finding all element nodes with a certain name, e.g.,finding all seller

elements. Lorel physical operators provide different waysfor finding a path in a

5.2. RELATED WORK ON RUN-TIME PLAN OPTIMIZATION 216

bottom-up, top-down or hybrid manner in the XML tree. For example, given a path

seller/phone/primary, either we find allseller elements first using the label in-

dexes (top-down), or allprimary element first (bottom-up) or allphone element

first (hybrid). Lorel provides a cost model and a plan enumeration algorithm to

choose among different path navigation alternatives. The major search space prun-

ing techniques Lorel uses are heuristics. For example, suppose there are two path

expressions starting from the same context variable, e.g.,$u/p1 and$u/p2, Lorel

does not attempt to reorder them.

Cost-based optimization in Timber [82], another static XMLdatabase engine,

focuses on choosing an optimal order for structural joins. Timber’s search algo-

rithm is based on the traditional dynamic programming algorithm for join ordering

[63, 27]. The basic idea of dynamic programming for join ordering is as follows.

First, all access paths to every table involved in the join are generated. Second, all

partial plans with two-way joins are generated. Partial plans with three-way joins

are next generated from the two-way joins and so on. Suppose in the two-way join

generating phase, we have found out that join order of (tableA, table B) (i.e., A

is at the left of the join while B is at the right of the join) is better than the join

order of (table B, table A), a three-way join in the order of (table B, table A, any

other table) will not be generated since it must be worse thanthe join in the order

of (table A, table B, any other table).

The contribution of Timber’s search algorithm is that it tries to eliminate those

partial query plans that are guaranteed to lead to suboptimal solutions. Timber calls

it dynamic programming with partial plan pruning. Timber can start constructing

n+1-way structural joins before it finishes constructing alln-way structural joins.

It ranks all partial plans. It then constructs the next plansfrom the partial plans

5.2. RELATED WORK ON RUN-TIME PLAN OPTIMIZATION 217

in the order of their ranks. The purpose of ranking is to create complete plans

that are possibly optimal as early as possible. Therefore, any partial plan that has

already costed more than a best complete plan found so far canbe excluded. This

is essentially a classical A* search strategy [61]. An important property that has

to hold for this pruning work is that the cost of a partial planis independent of

how it is joined with the rest of the relations (we say a partial plan has independent

cost). In other words, when a partial plan is expanded to a newpartial plan, i.e,

(i-way structural joins expanded toi+1-way structural joins), the new partial plan

must cost more than the old partial plan. This is calledautonomously increasing

costproperty in A* search. If this property does not hold, the pruning can exclude

partial plans that will lead to optimum.

The above idea may seem to bear some resemblance to our problem. A partial

plan in our problem can be one in which the token-or-node retrieval modes of

a subset of pattern retrieval have been determined. Can we also exclude certain

partial plans if they cost worse than a known complete plan? The answer is no.

This is because the pattern retrieval in the partial plan maynot be independent

from the pattern retrieval whose modes have not been determined yet. That is to

say, the cost of the partial plan may still decrease. Therefore, a partial plan that is

worse than a currently best complete plan is still be possible to be expanded to a

new better complete plan.

In summary, dynamic programming with partial plan pruning is not very suit-

able in our scenario for two reasons. First, it is enumerative which takes too long

for run-time optimization. Second, the property of autonomously increasing cost

does not necessarily hold here so that partial plan pruning may not always be ap-

plicable.

5.2. RELATED WORK ON RUN-TIME PLAN OPTIMIZATION 218

5.2.2 XML Statistics Collection

Statistics are indispensable information for cost-based optimization. Many stud-

ies for XML statistics focus on XML’s nested structures. Forexample, Lorel [57]

maintains statistics of all paths of length up tom wherem is a tunable parameter.

They use these statistics to infer selectivity of longer paths. Aboulnaga [2] pro-

poses techniques that can more aggressively summarize the paths by pruning and

aggregation to reduce the size of statistics. Their techniques do not maintain cor-

relations between paths. Such limitations are addressed in[84] which maintains

statistics for tree pattern query. These techniques all require scanning the whole

data.

Another kind of solution for XML statistics collection is touse query feedback

[51, 50]. The idea is to issue a query workload on the XML data and learn informa-

tion about the XML structure and PCDATA values from the queryfeedback (i.e.,

query results). Such solution is especially suited for the scenario where XML data

is either inaccessible or too large to be completely scanned.

As we have mentioned in Section 3.2.5, these techniques are best suitable in

two scenarios. The first scenario is that the stream query engine has to process a

large number of queries so that it cannot afford to collect specific statistics for each

query. Summary techniques are needed for the requirement ofscalability. The

second scenario is that user queries can be added after the stream starts to arrive.

We should be able to summarize the statistics as the stream runs so that once a

new query is added, we can immediately estimate its plan cost. In this way we can

better achieve quick response time for the newly added query.

5.2. RELATED WORK ON RUN-TIME PLAN OPTIMIZATION 219

5.2.3 Run-time Re-optimization

Due to the hardware and workload complexity, data complexity and user interface

complexity [13], a new query paradigm,adaptive query processing, emerges to

tackle these problems. Most of the work is in the relational context. Eddy[13] is

a representative work of this query paradigm. In this paradigm, the query plan is

no longer fixed. Instead, each tuple, driven by the processing cost/selectivity of

the operators and tuple arrival rate, can go through operators in a flexible order,

controlled by a special scheduling operator callededdy. In other words, the query

plan is reformulated on a tuple-by-tuple basis. The reformulation is based onlot-

tery scheduling. Each time an operator is given an input tuple, it is creditedone

“ticket”. The eddyoperator holds a lottery for each tuple. An operator’s chance

of winning the lottery (i.e., being assigned the tuple to) corresponds to the count

of ticket the operator holds. This lottery scheduling scheme enables a lightweight

plan formulation compared to other work on runtime plan reformulation [48].

Eddy’s plan reformulation is limited to changing the order of operators, such

as changing to execute a join operatorA before another join operatorB if A turns

out to have less selectivity thanB. It is not clear how it handles the other aspects

of plan re-optimization. For example, suppose there are twoalternative plans 1 and

2, composed of operator set{op1, op2, op5} and{op3, op4, op5} respectively. The

corresponding Eddy module is shown in Figure 5.1. The two groups of operators

within the dashed lines are exclusive, that is, if a tuple is routed to one group, it

cannot be routed to the other group later on. Now none of Eddy’s routing schemes

is applicable in this situation. When the plan re-optimization is limited to plan

reordering, a simple greedy algorithm can be used, i.e., finding the “best-behaving”

5.3. RELATED WORK ON SCHEMA-BASED OPTIMIZATION 220

Eddy

Op1

Op2 Op3

Op4

Op5S1 Sn

Figure 5.1: Operator Re-ordering inEddy

operator and routing tuples to it as many as possible. However, when two plans

share different set of operators, an overall plan performance measurement must be

adopted rather than a local operator performance comparison. For example, even if

op1 is the most efficient among the operators, the overall plan 2 may still perform

better than plan 1.

5.3 Related Work on Schema-based Optimization

Semantic query optimization has been long studied in deductive [74], relational

[66] and object databases [68, 44]. Due to the flat data modelsin deductive and

relational databases, their SQO techniques are usually foroptimizing the filtering

on flat values. The major techniques includejoin elimination, join introduction,

predicate elimination, predicate introductionand detection of the empty answer

set. These techniques can be similarly applied to the XML domainas long as the

XML counterpart of such schema knowledge is offered. For example, if a key and

foreign key constraint between two tables is provided in theXML schema, a semi-

join on the two tables (projecting on the table with the foreign key constraint) can

be eliminated using thejoin eliminationtechnique.

5.3. RELATED WORK ON SCHEMA-BASED OPTIMIZATION 221

Object data model, though nested, has a rigid structure in contrast to the irreg-

ular structures in XML data model. Therefore SQO research inobject databases

has not been motivated to optimize the detection of missing patterns. The SQO

on nested structure navigation in object databases, such asaccess scope reduction

[44], is oriented mainly to the OO-specific class/subclass constraints.

SQO for persistent XML may have some resemblance to the stream-specific

SQO. XQRL [26] stores the XML data as a sequence of tokens. To find children

of a certain type within a context element, the scan on tokenscan stop early if the

schema tells that no more children are relevant once a child of a particular type is

found. Since the token sequence can be repeatedly accessed,XQRL retrieves the

patterns one by one. The earlier one pattern retrieval stops, the smaller the overall

cost is. However, in the stream context, as shown in Section 1.3.3, not all early

detections of failed patterns lead to cost savings. It requires more discretion to

decide whether such detections are worthwhile. Moreover, in XQRL, when a pat-

tern is found to fail, the retrieval can simply terminate andanother pattern retrieval

can start. In the stream context, this process is more complicated. In Example 1,

when asourceis found not to exist, we cannot simply jump to the nextauctionto

skip the remaining computations in the currentauction. We have to suspend the

computations, clean up the intermediate results and resumeas appropriate.

YFilter [30] and XSM [52] discuss SQO in the XML stream context. They use

schema knowledge to decide whether results of a pattern are recursion-free and

what types of child elements can be encountered respectively. These in essence

type inference techniques belong to general XML SQO.

In the automata model XSM adopts, the transition lookup at states is not imple-

mented as a hash table lookup but as a linear search on all possible transitions ofs.

5.3. RELATED WORK ON SCHEMA-BASED OPTIMIZATION 222

XSM uses schema knowledge to reduce the possible transitions in order to reduce

the transition lookup time.For example, to find a path$v/a, an XSM transducer

state corresponding to$v will have two transitions with conditions “next token =

<a>” and “next token6= <a>” respectively. If it is known from the schema that

a binding of$v can have onlya subelements, then the second transition can be

eliminated. Such an optimization is not applicable to our automaton, since a hash

table lookup cost is not related to the number of entries (i.e., possible transitions)

in the table.

Both AT&T’s XML stream engine [17] and XPush [35] support boolean XPath

matching. Their SQO techniques are less complicated that those for supporting

XQueries. The reason has been illustrated in Section 1.3. Both of them consider

one case of using the order constraints, which is a subset of our SQO techniques,

i.e., the order rule in Section .

The goal of FluXQuery [18] is to minimize the buffer size while ours is to re-

duce unnecessary computations. These two goals sometimes come hand-in-hand:

when we reduce the buffering computation (like we do with computation (1) in

Example 1), we naturally reduce the buffer size. But in many other cases, our

techniques are complementary. Let us consider a query “for$a in /news[source]

return<news> {$a/source, $a//keyword} </news>”. If given the constraint

thatsourcemust occur beforekeyword, Flux will immediately output any located

keyword elements, instead of buffering them until the end of thenewsto en-

sure they are output after anysource. However Flux is unable to detect the non-

existence ofsource and skip the retrieval of$a//keyword as our techniques do.

A combination of their work and ours can boost the performance of both systems.

Finally, there is another class of XML stream query optimization which as-

5.3. RELATED WORK ON SCHEMA-BASED OPTIMIZATION 223

sumes indices are interleaved with XML streams [34, 5]. The stream index SIX

[34] gives the positions of the beginning and end of each element. If an element is

found to be irrelevant, the processor can move to its end without parsing anything

in the middle. XHints [5] extends SIX by supporting more metadata information.

How to combine such indices that arrive at run-time and the schema constraints

available at compile-time is an interesting direction to explore in the future.

224

Chapter 6

Conclusions and Future

Directions

6.1 Conclusion

Architecture: Raindropaccommodates a token-based automaton paradigm and a

tuple-based algebraic paradigm within one framework. Thisis a novel approach

compared to the other approaches in the literature [42, 30] which typically model

the two processing paradigms separately and thus optimize them separately as well.

Our approach instead allows the query optimization to be performed in a uniform

manner over all computations. With all the computations under the same um-

brella of an algebraic framework, we can apply existing algebraic optimization

techniques, such as separation of logical and physical plans, query rewriting and

costing etc.

Our algebraic framework consists of three abstraction levels. The highest level

is semantics-focused plan level. General optimization techniques that are neither

6.1. CONCLUSION 225

specific to stream nor specific to stored data can be applied. The next level is the

stream logical plan level. On this level, a set of rewriting rules are developed to

switch pattern retrieval into or out of the automaton. The lowest level is the stream

physical plan level. We offer efficient implementations of operators that take full

advantage of automata properties at the stream physical level. We also provide

multiple models to synchronize the execution of the operators.

Run-time Automaton-in-out Plan Optimization: We provide a unique optimiza-

tion opportunity that is not explored before. Previous literature considers only the

plans in which all pattern retrieval is pushed down into the automaton. Our ex-

perimentations in Section 2.7 however demonstrate that such plans do not ensure

the optimality. With different queries and data characteristics, different automaton

pushdown strategies are needed for generating optimal plans.

To explore this optimization opportunity, we use a cost-based approach. First,

we define a search space. Whether a pattern should be retrieved in or out of the

automaton is the core issue in the search space. The side issue that comes with the

core issue, namely, where to place the patterns that are pulled out, is also considered

by our techniques. Second, we develop a cost model for comparing the alternative

plans in the search space. Third, we propose three algorithms for searching for a

good plan in the search space. These three algorithms include exhaustive search,

greedy search and greedy search with pruning rules.

Moreover, we assume the whole process takes place at run-time. Therefore we

tackle two additional problems. First, we embed the statistics collection into the

operators so that we can collect statistics at the time of plan execution. Second,

we study how to correctly and efficiently migrate a currentlyrunning plan to a new

plan found by the plan search algorithms.

6.2. FUTURE WORK 226

Schema-based Optimization for Pattern Retrieval in Automaton: For the pat-

tern retrieval performed in the automaton, we provide schema-based optimization.

Limited work has been done in SQO techniques on structural pattern retrievals

on XML streams. Moreover, these limited work [17, 35] only supports XPath or

XPath boolean matching, which is a less powerful query language than XQuery.

Our work instead supports SQO on XQuery. We handle the complexities brought

by this more powerful query language in the below three aspects.

First, we derive a set of criteria for deciding what schema constraints are use-

ful for an XQuery. Correspondingly, we develop a set of SQO rules that are able

to utilize those useful constraints. Second, we propose a rule application order to

guarantee the quality of the optimized queries. Third, we present how to incor-

porate these techniques into Raindrop query plans and how toefficiently evaluate

such plans enhanced with SQO. Our experiments show that these SQOs can im-

prove the performance significantly while at the same time introducing negligible

overhead in most cases.

6.2 Future Work

Current Raindrop system targets baseline scenarios for XMLstream processing.

We process XML stream in plain text, which is the physical format of most existing

XML data sources. We assume that system resources are enoughfor handling the

query processing. There are many interesting future directions to look at if we

extend these baseline scenarios or break some assumptions.We list here a few of

them which all remain as open problems in the literature.

6.2. FUTURE WORK 227

6.2.1 Supporting XQueries with Window Joins/Aggregations

The XQueries we support in Raindrop system cover two commonly used func-

tionalities, pattern retrieval and simple predicates in the format ofvariable op

constant. We can enhance the Raindrop system to support other commonly used

functionalities such as joins and aggregations. In particular, since an stream can be

infinite, we need to support joins and aggregations with window semantics. That

is, only data that arrive in a certain window are joined [49] or aggregated [12].

There are two major challenges. First, we need to precisely define the se-

mantics of window joins and window aggregations in XQueries. Window joins

and window aggregations are proposed for relational streams [49, 12] but not for

XML streams yet to the best of our knowledge. Second, with well defined query

semantics of window joins and window aggregations, we then must develop new

techniques to efficiently evaluate them.

6.2.2 Query over Indexed XML Streams

The continuous nature of XML streams forces query engines toaccess every token

in sequence. This is very different from the situation of static data sets. Static data

sets are usually equipped with index structures that allow for the direct access of

the desired subset. As an initial step towards this direction, [34, 5] has proposed

the notion of indexed XML streams. For example, an index is coupled with a start

element tag, indicating the offset of the corresponding endtag from the start tag.

In our schema-based optimization work, we use schema knowledge to skip the

processing of certain chunks of XML streams that are irrelevant to the query result,

namely, we simply scan the chunks without performing any automaton transitions.

6.2. FUTURE WORK 228

We actually can do better if the indices proposed by [34, 5] are available. If we can

derive from the indices where is the next relevant chunk, we can directly access

this chunk without having to scan the irrelevant chunk before it.

There are plenty of research issues in this field. First, whatkind of stream

indices can we provide? Second, how do we represent such indices? Third, how

do we send out these indices? Do we interleave it with the stream or do we send

out an index-only stream along with the data stream? Fourth,how do we combine

existing schema knowledge, such as DTD or XML schema, with these new indices?

All these are interesting problems to explore.

6.2.3 XML Load Shedding

We can relax the assumption that the available system resources are sufficient

to cope with the volume of the incoming data streams and the query workload,

namely, we can consider scenarios when the incoming data overwhelms the avail-

able computing resources, such as CPU processing speed and memory [20]. When

the addition of new resources is not practical, an alternatesolution to this prob-

lem is dropping input tuples to reduce the system load, called load shedding. Two

dropping strategies have been proposed so far:random drop[73], where tuples

are dropped based on system performance, andsemantics drop[4], where tuples

are dropped to minimize the impact on application semantics. System resource

limitations is a practical consideration in XML stream processing context as well.

However, the main challenge with respect to XML stream processing is that a to-

ken, unlike a self-contained tuple, is not meaningful by itself, and arbitrarily drop-

ping tokens might result in not well-formed XML streams. Therefore to extend

load shedding techniques to XML stream processing, specialdropping strategies

6.2. FUTURE WORK 229

must be designed. This is an important open research problemthat needs to be

investigated.

6.2.4 Adaptive Query Approximation

An alternative approach to handle system resources under strain is to rewrite the

query itself (instead of affecting the actual input tuples). In other words, the orig-

inal query can be rewritten into an approximate one with a decreased accuracy,

but requiring less system resources. For example, an XPath expression involving

a descendant relationship (such as, //c) can be rewritten into one involving a child

relationship (e.g., from //c to /c). The automata implementation for recognizing

deterministic child navigation steps is cheaper than that for recognizing nondeter-

ministic descendant navigation steps. Moreover the latterwill most likely return

less results than the former, thus putting even a smaller burden on system resources.

6.2.5 Query over Compressed XML Streams

XML data can be compressed for the purpose of exchange and archiving. The

XMill project [37] compresses the structure (XML tags) separately from the PC-

DATA. The content is distributed to a set of semantically uniform “containers”.

For example, one container stores all text values ofseller elements while another

container stores all text values ofbidder elements. Another camp of compressing

techniques are more “query-friendly”. XGrind [64] does notseparate PCDATA

from structure. An XGrind-compressed document is still an XML document: tags

are dictionary-encoded; PCDATA data are compressed but still stay at their original

place in the document. Query processing on compressed XML data in both types

of compressed structures is an interesting direction for XML stream processing.

230

Appendix A

Proof of Final State Duplicate

Free Property

Theorem 4 If the “exclusive-reach” property holds, a final state can have at most

one instance in the stack (we say the automaton is “final stateduplicate free”) ex-

cept in two circumstances: (1) if there is aTokenNav$col1,path$col2 wherepath

contains a “//” and the data is recursive; and (2) if there is aTokenNav$col1,path$col2

where a postfix ofpath is a “//” followed by zero or more “*”.

Proof 4 We prove the theorem by induction.

Step 1. Given aTokenNavs,pd where$s represents the root element, we

encodep in an automaton where the start state isq0 and the final state isqn. Figure

A.1 shows the contents of a stack whereqn appears twice. Whenqn is pushed onto

the stack the first time, there must be anotherq′ that is pushed onto the stack at the

same time. Thisq′ can finally transit toqn so thatqn is pushed onto the stack the

second time. Sincep 6= (n∗)?//(n∗)?/(∗)?, i.e.,p cannot both have a “//” and a last

APPENDIX A. PROOF OF FINAL STATE DUPLICATE FREE PROPERTY 231

navigation step of “*”. there can be only two below cases forp. We will illustrate

that for neither case, the stack contents in Figure A.1 couldpossibly occur.

q1 q’q0 qn… …

qn, q’…

q0

..

.

..

.
qn …

Figure A.1: Stack Containing Duplicate Final States

1). In the first case, there is no navigation step “//” inp. Correspondingly, there

is no self-transition in the automaton. Therefore from any stack top state

qα, it cannot transit to bothqα and qβ. In other words, it cannot transit to

two states where one state is “closer” to the final stateqn (if two states are

connected byλ transition, they are the same close toqn). It is thus impossible

for a token to enable bothqn andq′ to be pushed onto the stack. Therefore

qn cannot appear twice in the stack.

2). In the second case, the navigation step “//” appears inp but the last navi-

gation step inp is a deterministic element type, saye, instead of a wildcard

navigation step “∗”. Only a token with tag namee can enableqn to be

pushed onto the stack. If the XML input does not have recursion, for an el-

ement node of typee in the input, none of its descendant element nodes has

typee. Therefore if one tokent1 has enabledqn to be pushed onto the stack,

there cannot be a component token of the element associated with t1 that

also enablesqn to be pushed onto the stack.

Step 2. Given aTokenNav$s′,p′$d
′ where$s′ represents a non-root element.

Supposeq′0 andq′n are the start and final states ofp′ in the automaton respectively.

APPENDIX A. PROOF OF FINAL STATE DUPLICATE FREE PROPERTY 232

From a stateq′0 in the stack, similar to Step 1, as long asp′ 6= (n∗)?//(n∗)?/(∗)?,

q′0 will not transit to multipleq′n. Since there will not be anotherq′0 in the stack, no

otherq′n can be transit to. Therefore at any time there will not be multiple q′n in the

stack. 2

233

Appendix B

Computing P6⇒∅(plan) for Cost

Model

P6⇒∅(plan) is used in cost model in Section 3.2.1.

1). If op is TokenNavu,pv, P6⇒∅(op) is the probability of a binding of$u

containing at least one bindings of$w.

2). If op is Select or NodeNav, P6⇒∅(op) is the probability of an operatorop

generating some output during the processing of one input tuple.

With knowing P6⇒∅(op) andσ(op) for each opeator in a plan, we can com-

puteP6⇒∅(plan) using probability computation technique. We use an exampleto

illustrate this:

Example 23 In Figure 3.2, we computeP6⇒∅(plan) whereplan is the one rooted

at the entry operatorStructuralJoin$b of StructuralJoin$a. P6⇒∅(plan) =

APPENDIX B. COMPUTING P6⇒∅(PLAN) FOR COST MODEL 234

probability of a binding of$a containing at least one binding of$b that passes

all operators betweenStructuralJoin$b andTokenNav$a,/seller$b

= 1 − probability of every bindings of$b failing to pass all operators

= 1− [1 - probability of a binding of$b passing all operators]number of bindings of$b in a binding of $a

= 1 − [1 - probability of a binding of$b passing all operators]σ(TokenNavab)

= 1 − [1 - P6⇒∅(TokenNav$b,/profile$e)]σ(TokenNavab).

235

Appendix C

Proof of Optimality of Subplan

Evaluation Order

Proof 5 We assume the contrary of the theorem. That is, given aStructuralJoin

that hasn input subplans, in an optimal ordering of input subplans, there are

two subplanssubplani andsubplani+1 (1≤ i < k) that haverank(subplani) >

rank(subplani+1). We now compute the costs ofsubplani andsubplani+1 using

Equation 3 in Section 3.2.2. For simplicity, we useK to denote Expression (7)×

Expression (8.a) in Equation 3. That is,K =
∏

op ∈ operator set between bottommost TokenNav and TokenNav that retrieves $v σ(op)×

P6⇒∅(entry1)P6⇒∅(entry2)...P6⇒∅(entryn) .

Therefore, we have the below equations.

Equation 11 Cost(subplani) = K × P6⇒∅(subplan1) × ...× P6⇒∅(subplani−1)

σ(entryP lan(entryi)) UnitCost(subplani)

APPENDIX C. PROOF OF OPTIMALITY OF SUBPLAN EVALUATION ORDER236

Equation 12 Cost(subplani+1) = K × P6⇒∅(subplan1) × ...× P6⇒∅(subplani)

σ(entryP lan(entryi+1)) UnitCost(subplani+1)

Suppose we switch the order ofsubplani andsubplani+1. We denote the costs

of evaluating asubplan in the new plan asCost′(subplan). We then have the

below equations.

Equation 13 Cost′(subplani) = K × P6⇒∅(subplan1)× ...× P6⇒∅(subplani−1)

σ(entryP lan(entryi+1)) UnitCost(subplani+1)

Equation 14 Cost′(subplani+1) = K ×P6⇒∅(subplan1)× ...× P6⇒∅(subplani)

σ(entryP lan(entryi)) UnitCost(subplani)

We can then derive the below equation.

Equation 15 Cost(subplani) + Cost(subplani+1)−Cost′(subplani)−Cost′(subplani+1)

= K × (P6⇒∅(subplan1) ... P6⇒∅(subplani−1)[(1−P6⇒∅(subplani+1) σ(entryP lan(entryi))

UnitCost(subplani)− [1−P6⇒∅(subplani)] σ(entryP lan(entryi+1)) UnitCost(subplani+1)])

Becauserank(subplani) > rank(subplani+1), namely,

σ(entryP lan(entryi))UnitCost(subplani)
1−P 6⇒∅(subplani)

>
σ(entryP lan(entryi+1))UnitCost(subplani+1)

1−P 6⇒∅(subplani+1)
,

we haveCost(subplani) + Cost(subplani+1)−Cost′(subplani)−Cost′(subplani+1)

>0. Correspondingly,Σn
k=1Cost(subplank) − Σn

k=1Cost′(subplank) > 0. This

is contrary to the assumption thatΣn
k=1Cost(subplank) is the cost of subplans in

the optimal order.

237

Appendix D

Combination Containing

Operators with Pattern

Dependency Relationship being

Invalid

SupposenavOp1 andnavOp2 retrieve two patterns$u/p1 and$x/p2 that have

ancestor-descendant relationship (we say the two operators havepattern depen-

dencyrelationship). We want to prove that a combination containing bothnavOp1

andnavOp2 is either redundant, i.e., it produces a same alternative plan as another

combination that contains no operators with pattern dependency relationship, or

semantics-disallowed, i.e., it produces an alternative plan that is not supported in

Raindrop.

We distinguish between three cases: first,$u/p1 and$x/p2 are both retrieved

APPENDIX D. COMBINATION CONTAINING OPERATORS WITH PATTERN
DEPENDENCY RELATIONSHIP BEING INVALID 238

in the automaton; second,$u/p1 and$x/p2 are both retrieved out of the automa-

ton; third,$u/p1 is retrieved in the automaton while$x/p2 is retrieved out of the

automaton. The fourth case, i.e.,$u/p1 is retrieved out of the automaton while

$x/p2 is retrieved in the automaton, is not supported by Raindrop algebra because

of the reasons presented in Section 2.4.3. The combination in the first case has

been proven to be redundant in Section 3.5. We now prove that the combinations

in the second and third cases are either redundant or unsupported in Raindrop.

Second Case: Suppose the combination contains aNodeNav$u,p1$v and aNodeNav$x,p2$y.

Changing the modes of both means we push in both$u/p1 and$x/p2. However,

pushing in$x/p2 has implied that$u/p1 has to be pushed in as well. For example,

in Figure 3.2, pulling out$a/seller requires$b//profile to be also pulled out.

Therefore, this combination generates the same alternative plan as the combination

that containsNodeNav$x,p2$y but notNodeNav$u,p1$v does.

Third Case: Suppose the combination contains aTokenNav$u,p1$v and aNodeNav$x,p2$y.

Changing the modes of both means we end up with a plan which contains aNodeNav$u,p1$v

and aTokenNav$x,p2$v. Raindrop does not support such a plan.

239

Appendix E

Order Insensitive

SupposenavOp1 andnavOp2 retrieve two patterns that have no ancestor-descendant

relationship. We want to prove that regardless of the order in which we change the

modes ofnavOp1 andnavOp2, the two plans derived contain the same operators.

We distinguish between three cases: first,navOp1 andnavOp2 are bothTokenNav

operators; second,navOp1 and navOp2 are bothNodeNav operators; third,

navOp1 is a TokenNav while navOp2 is a NodeNav. We have proven that

the order in which we change the modes does not matter in the first case in Proof 3

in Section 3.5. We now prove that order does matter in the second and third cases.

Proof 6 Second Case: Suppose we have twoNodeNav operators,NodeNav$u,p1$v

and NodeNav$x,p2$y. Pushing in$u/p1 can eliminate the operators or intro-

duce new operators into the plan in four ways. First,NodeNav$u,p1$v is rewrit-

ten into TokenNav$u,p1$v and Extractuv. Second, if before the rewriting

NodeNav$u,p1$v is the only operator that consumes$u, then theExtract op-

erator that extracts$u will be eliminated from the plan after the rewriting. Third,

APPENDIX E. ORDER INSENSITIVE 240

the ancestor patters of$u/p that are retrieved out of the automaton will be pushed

in. Fourth, if there exists another operator in the format ofTokenNav$u,p′$v
′ but

there does not exist aStructuralJoin$u before the rewriting, aStructuralJoin$u

is introduced after the rewriting.

Later, if we change the mode ofNodeNav2, we have the below observations:

1). Mode change ofNodeNav$x,p2$y can only eliminate theExtract operator

that extracts$x. It is impossible that$x = $v becauseNodeNav$u,p1$v

andNodeNav$x,p2$y have no pattern dependency relationship. The mode

change ofNodeNav$x,p2$y will not eliminate theExtract operator that

mode change ofNodeNav$u,p1$v has introduced, i.e., theExtract operator

that extracts$v. Hence it will not cancel out the first change resulted from

the mode change ofNodeNav$u,p1$v.

2). Mode change ofNodeNav$x,p2$y can only introduce anExtract operator

that extracts$y. It is impossible that$y = $u becauseNodeNav$u,p1$v

andNodeNav$x,p2$y have no pattern dependency relationship. The mode

change ofNodeNav$x,p2$y will not introduce theExtract operator that

mode change ofNodeNav$u,p1$v has eliminated, i.e., theExtract operator

that extracts$u. Hence it will not cancel out the second change resulted from

the mode change ofNodeNav$u,p1$v.

3). SinceNodeNav$u,p1$v andNodeNav$x,p2$y have no pattern dependency

relationship, mode change ofNodeNav$x,p2$y will not affect those opera-

tors whose modes have been changed as a secondary effect of the push-in of

$u/p. That is to say, it will not cancel out the third change resulted from the

mode change ofNodeNav$u,p1$v.

APPENDIX E. ORDER INSENSITIVE 241

4). Mode change ofNodeNav$x,p2$y cannot eliminate aStructuralJoin op-

erator so that it will not cancel out the fourth change resulted from the mode

change ofTokenNav$u,p1$v.

In summary, a mode change ofTokenNav2 that occurs after the mode change

of TokenNav1 does not cancel any change that has been made. Therefore the

order in which we change the modes ofTokenNav1 and TokenNav2 does not

matter.

Proof 7 Third Case: Suppose we have aTokenNav$u,p1$v and aNodeNav$x,p2$y.

We first prove that a mode change ofNodeNav$x,p2$y that occurs after the mode

change ofTokenNav$u,p1$v does not cancel any change that has been made.

Pulling out$u/p can eliminate the operators or introduce new operators intothe

plan in four ways. First,TokenNav$u,p1$v andExtractuv are rewritten into

NodeNav$u,p1$v. Second, if before the rewriting there exists noExtract opera-

tor that extracts$u, then anExtract operator that extracts$u will be introduced

to the plan after the rewriting. Third, the descendant patters of $u/p that are re-

trieved in the automaton will be pulled out. Fourth, if thereexists no other operator

in the format ofTokenNav$u,p1′$v
′ but there exists aStructuralJoin$u before

the rewriting, thisStructuralJoin$u is eliminated after the rewriting.

Later, if we change the mode ofNodeNav$x,p2$y, we have the below observa-

tions:

1). Mode change ofNodeNav$x,p2$y will not eliminate theNodeNav$u,p1$v

operator. Hence it will not cancel out the first change resulted from the mode

change ofTokenNav$u,p1$v.

APPENDIX E. ORDER INSENSITIVE 242

2). Mode change ofNodeNav$x,p2$y can only eliminate theExtract opera-

tor that extracts$x when there is no other operator that consumes$x. The

mode change ofTokenNav$u,p1$v may introduce an operator that extracts

$u. Even though it is possible that$x = $u, theExtract operator that ex-

tracts$u cannot be eliminated since there exists aNodeNav$u,p1$v opera-

tor that needs to consume$u. Hence the mode change ofNodeNav$x,p2$y

will not cancel out the second change resulted from the mode change of

TokenNav$u,p1$v.

3). SinceTokenNav$u,p1$v and NodeNav$x,p2$y does not have a pattern

dependency relationship, mode change ofNodeNav$x,p2$y will not affect

those operators whose modes have been changed as a secondaryeffect of

the pull-out of$u/p. That is to say, it will not cancel out the third change

resulted from the mode change ofTokenNav1.

4). If mode change ofTokenNav$u,p1$v eliminates aStructuralJoin, that

means there exists no other operator in the format ofTokenNav$u,p1′$v
′. If

$x = $u, mode change ofNodeNav$x,p2$y will not introduce aStructuralJoin$x

operator since there exists no operator in the format ofTokenNav$u,p1′$v
′.

Therefore, the mode change ofNodeNav$x,p2$y will not cancel out the

fourth change resulted from the mode change ofTokenNav1.

Next, we prove that a mode change ofTokenNav$x,p2$y that occurs after the

mode change ofNodeNav$u,p1$v does not cancel any change that has been made.

Pushing in$u/p1 can eliminate the operators or introduce new operators intothe

plan in four ways. First,NodeNav$u,p1$v is rewritten intoTokenNav$u,p1$v

and Extractuv. Second, if before the rewritingNodeNav$u,p1$v is the only

APPENDIX E. ORDER INSENSITIVE 243

operator that consumes$u, then theExtract operator that extracts$u will be

eliminated from the plan after the rewriting. Third, the ancestor patters of$u/p

that are retrieved out of the automaton will be pushed in. Fourth, if there exists

another operator in the format ofTokenNav$u,p′$v
′ but there does not exist a

StructuralJoin$u before the rewriting, aStructuralJoin$u is introduced after

the rewriting.

Later, if we change the mode ofTokenNav$x,p2$y, we have the below obser-

vations:

1). Mode change ofTokenNav$x,p2$y can eliminate neitherTokenNav$u,p1$v

nor Extractuv. Hence it will not cancel out the first change resulted from

the mode change ofNodeNav$u,p1$v.

2). Mode change ofTokenNav$x,p2$y can introduce an operator that extracts

$x. If $x 6= $u, then the mode change ofTokenNav$x,p2$y does not cancel

out the second change resulted from the mode change ofNodeNav$u,p1$v.

If $x = $u, then the mode change ofTokenNav$x,p2$y cancels out the sec-

ond change resulted from the mode change ofNodeNav$u,p1$v. That is,

there is anExtract operator that extracts$x in the final plan. However,

suppose we switch the order of mode change, namely, we changethe mode

of TokenNav$x,p2$y first and that ofNodeNav$u,p1$v next. The mode

change ofTokenNav$x,p2$y introduces anExtract operator that extracts

$x. This Extract operator will not be eliminated by the mode change of

NodeNav$u,p1$v sinceNodeNav$x,p2$y in the plan needs to consume$x.

Therefore theExtract operator that extracts$x appears in both plans re-

gardless of the order in which we change the modes.

APPENDIX E. ORDER INSENSITIVE 244

3). SinceNodeNav$u,p1$v andTokenNav$x,p2$y have no pattern dependency

relationship, mode change ofTokenNav$x,p2$y will not affect those opera-

tors whose modes have been changed as a secondary effect of the push-in of

$u/p. That is to say, it will not cancel out the third change resulted from the

mode change ofNodeNav$u,p1$v.

4). Mode change ofTokenNav$x,p2$y can eliminateStructuralJoin$x. If

$x 6= $u, then the mode change ofTokenNav$x,p2$y does not cancel out

the fourth change resulted from the mode change ofNodeNav$u,p1$v. If

$x = $u, then the mode change ofTokenNav$x,p2$y cancels out the fourth

change resulted from the mode change ofNodeNav$u,p1$v. That is,StructuralJoin$x

operator does not appear in the final plan. However, suppose we switch the

order of mode change, namely, we change the mode ofTokenNav$x,p2$y

first and that ofNodeNav$u,p1$v next. The mode change ofTokenNav$x,p2$y

eliminatesStructuralJoin$x. This Extract operator will not be intro-

duced back by the mode change ofNodeNav$u,p1$v since no other op-

erator exists in the format ofTokenNav$u,p1′$v
′ in the plan. Therefore

StructuralJoin$x operator appears in neither plan regardless of the order

in which we change the modes.

In summary, we prove that the order in which we change the modes of a

NodeNav and aTokenNav has no impact on the set of operators appearing

in the final plan.

245

Appendix F

Proof of Same Cost Changes

In Figure F.1, given a planP1, we get two plansP2 andP3 by changing the modes

of navOp1 andnavOp2 in P1 respectively. Suppose we now change the mode of

navOp1 in P3 and get a new planP4. We want to prove that ifmoveScope(navOp1)

∩moveScope(navOp2) = ∅, Cost(P4) − Cost(P3) = Cost(P2) − Cost(P1).

P1 P2

P3 P4

change mode of NodeNav1

change mode of TokenNav2

change mode of TokenNav1

Figure F.1:Cost(P4) − Cost(P3) = Cost(P2) − Cost(P1)

Proof 8 For simplicity, we useDestSJ and ConfineSJ to represent the desti-

nation and confiningStructuralJoin operators of anavOp. We now consider

the case whennavOp is in the format ofTokenNavu,pv. After the rewriting,

the input subplans of belowStructuralJoin operators can have changed costs.

First, theDestSJ of TokenNavu,pv, i.e.,StructuralJoin$v, is eliminated so

APPENDIX F. PROOF OF SAME COST CHANGES 246

that the costs of input subplans of thisDestSJ is now 0. For example, in Fig-

ure 3.2, theDestSJ of TokenNav$a,/seller$b, i.e., StructuralJoin$b, is elim-

inated in Figure 3.6 when$a/seller is pulled out. Second, since theDestSJ

was an entry operator of an input subplan ofStructuralJoin$u, its elimina-

tion changes the contents (and correspondingly the cost) ofinput subplans of

StructuralJoin$u. Third, the costs of input subplans of theConfineSJ are

changed as well since the newNodeNavu,pv operator is added into an input

subplan of theConfineSJ . Fourth, for an intermediateStructrualJoin between

theDestSJ andConfineSJ , although no operators are removed or added into

its input subplans, its costs are still changed. This is becauseTokenNav before is

a descendant but now an ancestor of an entry operator of one input subplan. The

selectivity of this entry operator may increase which affects the overall cost of the

input subplans to theseStructuralJoin operators. We therefore have,

Cost(P2)−Cost(P1) =
∑

sj∈moveScope(TokenNav1)
(cost of input subplans to sj in P2︸ ︷︷ ︸

(a)

− cost of input subplans to sj in P1︸ ︷︷ ︸
(b)

) − cost of TokenNav1 in P1︸ ︷︷ ︸
(c)

.

Similarly,Cost(P4)−Cost(P3) =
∑

sj∈moveScope(TokenNav1)
(cost of input subplans to sj inP4︸ ︷︷ ︸

(d)

− cost of input subplans to sj in P3︸ ︷︷ ︸
(e)

)− cost of executing TokenNav1 in P3︸ ︷︷ ︸
(f)

.

P4 can be derived by moving outTokenNav2 from the automata inP2. Since

moveScope(TokenNav1)∩moveScope(TokenNav2) = ∅, DestSJ ofTokenNav2

6∈moveScope(TokenNav1) in P2 and the newNodeNav rewritten fromTokenNav2

6∈moveScope(TokenNav1) in P4. Therefore for anysj ∈ moveScope(TokenNav1)

in P4, its input subplans are the same as the input subplans ofsj in P2. Moreover,

since it is impossible thatTokenNav2 is an descendant of anysj ∈ moveScope(TokenNav1)

APPENDIX F. PROOF OF SAME COST CHANGES 247

in P2 but the rewrittenNodeNav is an ancestor ofsj in P4 (otherwisemoveScopt(TokenNav1)

∩moveScope(TokenNav2) 6= ∅), the input subplans ofsj in bothP2 andP4 pro-

cess the same amount of input data. Therefore, the costs of input subplans of any

sj in P2 must equal to those inP4. In short, item (d) = item (a). Similarly, we

have item (e) = item (b). Also, item (f) = item (c). Finally, wehaveCost(P2) −

Cost(P1) = Cost(P4) − Cost(P3).

248

Bibliography

[1] Protein Sequence Database. http://pir.georgetown.edu/.

[2] A. Aboulnaga, A. R. Alameldeen and J. F. Naughton. Estimating the Selectiv-
ity of XML Path Expressions for Internet Scale Applications. In Proceedings
of VLDB, 2001.

[3] A. Aboulnaga and J. F. Naughton. Building XML Statisticsfor the Hidden
Web. InCIKM, pages 358–365, 2003.

[4] A. Das, J. Gehrke, M. Riedewald. Approximate Join Processing Over Data
Streams. InProceedings of VLDB, pages 40–51, 2003.

[5] A. Gupta and S. Chawathe. Skipping Streams with XHints. Technical Report
CS-TR-4566, University of Maryland, College Park, 2004.

[6] A. Halverson and J. Burger and L. Galanis et al. Mixed ModeXML Query
Processing. InProceedings of VLDB, 2003.

[7] A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu and R. Busse.
XMark: A Benchmark for XML Data Management. InProc. of the Int. Conf.
on Very Large Data Bases (VLDB), pages 974–985, 2002.

[8] A. Snoeren, K. Conkey and D. Gifford. Mesh-based ContentRouting using
XML. In 18th ACM Symposium on Operating System Principles (SOSP),
2001.

[9] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora: A new modeland archi-
tecture for data stream management.VLDB Journal, 12(2):120–139, August
2003.

[10] M. Altinel and M. Franklin. Efficient Filtering of XML Documents for Se-
lective Dissemination. InProceeding of VLDB, pages 53–64, 2000.

BIBLIOGRAPHY 249

[11] S. Amer-Yahia, S. Cho, L. V. Lakshmanan, and D. Srivastava. Minimization
of Tree Pattern Queries. InSIGMOD, pages 497–508, June 2001.

[12] A. Arasu and J. Widom. Resource sharing in continuous sliding-window
aggregates. InVLDB, pages 336–347, Aug/Sep 2004.

[13] R. Avnur and J. M. Hellerstein. Eddies: Continuously adaptive query pro-
cessing. InACM SIGMOD, pages 261–272, June 2000.

[14] B. Babcock, S. Babu, R. Motwani, and J. Widom. Models andissues in data
streams. InPODS, pages 1–16, June 2002.

[15] S. Babu and J. Widom. Continuous queries over data streams. InACM SIG-
MOD, Sep 2001.

[16] B.Choi. What are Real DTDs like, 2002.

[17] C. Chan, P. Felber and M. N. Garofalakis et al. Efficient Filtering of XML
Documents with XPath Expressions. InVLDB Journal 11(4), pages 354–379,
2002.

[18] C. Koch, S. Scherzinger, N. Scheweikardt and B. Stegmaier. FluxQuery: An
Optimizing XQuery Processor for Streaming XML Data. InVLDB, pages
228–239, 2004.

[19] C. L. Monma and J. B. Sidney. Sequencing with Series-Parallel Precedence
Constraints. InMathematics of Operations Research, pages 4: 215 – 224,
1979.

[20] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman,
M. Stonebraker, N. Tatbul, and S. Zdonik. Monitoring streams - a new class
of data management applications. InVLDB, pages 215–226, August 2002.

[21] S. Chandrasekaran, O. Cooper, A. Deshpande, M. Franklin, J. Hellerstein,
W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, andM. Shah.
TelegraphCQ: Continuous dataflow processing for an uncertain world. In
CIDR, pages 269–280, 2003.

[22] J. Chen, D.J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable continu-
ous query system for internet databases. InACM SIGMOD, pages 379–390,
June 2002.

[23] D. Abadi and Y. Ahmad and M. Balazinska and et. al. The design of the
borealis stream processing engine. InProceedings CIDR, page to appear,
2005.

BIBLIOGRAPHY 250

[24] D. Barbosa, A. Mendelzon, and J. Keenleyside et al. ToXgene: a Template-
Based Data Generator for XML. InProceedings of WEBDB, pages 49–54,
2002.

[25] D. Florescu, C. Hillery and D. Kossmann et al. The BEA streaming XQuery
processor. InVLDB Journal 13(3), pages 294–315, 2004.

[26] D. Florescu, C. Hillery, D. Kossmann et al. The BEA/XQRLStreaming
XQuery Processor. InVLDB, pages 997–1008, 2003.

[27] D. Kossmann and K. Stocker. Iterative Dynamic Programming: a New Class
of Query Optimization Algorithms. InACM Transaction on Database System
25 (1), pages 43 – 82, 2000.

[28] A. J. Demers, J. Gehrke, R. Rajaraman, A. Trigoni, and Yong Yao. The
Cougar Project: A Work-In-Progress Report. InSigmod Record 32 (4), pages
53–59, 2003.

[29] Alin Deutsch, Yannis Papakonstantinou, and Yu Xu. The NEXT Logical
Framework for XQuery. InProc. of the Int. Conf. on Very Large Data Bases
(VLDB), pages 29–41, 2004.

[30] Y. Diao and M. Franklin. Query Processing for High-Volume XML Message
Brokering. InVLDB, pages 261–272, 2003.

[31] L. Fegaras and D. Maier. Towards an Effective Calculus for Object Query
Languages. InProceedings of SIGMOD, pages 47–58, 1995.

[32] Leonidas Fegaras. The Joy of SAX. InFirst International Workshop on
XQuery Implementation, Experience and Perspectives (XIME-P), 2004.

[33] George Russell, Mathias Neumuller and Richard Connor.Stream-based XML
Processing with Tupe Filtering. 2003.

[34] T. J. Green, G. Miklau, M. Onizuka, and D. Suciu. Processing XML Streams
with Deterministic Automata. InICDT, pages 173–189, 2003.

[35] A. Gupta and D. Suciu. Stream Processing of XPath Queries with Predicates.
In Proceedings of SIGMOD, pages 419–430, 2003.

[36] H. Jiang, H. Lu and W. Wang. Holistic twig joins on indexed XML docu-
ments. InVLDB, 2003.

[37] H. Liefke and D. Suciu. XMILL: An Efficient Compressor for XML Data. In
SIGMOD, 2000.

BIBLIOGRAPHY 251

[38] H. Su, E. A. Rundensteiner and M. Mani. Raindrop: An XQuery Engine over
XML Streams - on Semantic Query Optimization (demonstration). In VLDB,
2004.

[39] H. Su, J. Jian and E. A. Rundensteiner. Raindrop: A Uniform and Layered
Algebraic Framework for XQueries on XML Streams. InCIKM, pages 279–
286, 2003.

[40] Hong Su and Elke A. Rundensteiner and Murali Mani. Automaton Meets
Algebra: A Hybrid Paradigm for XML Stream Processings.DKE Journal,
2006.

[41] Hong Su, Elke A. Rundensteiner, Murali Mani. Semantic Query Optimization
for XQuery over XML Streams. InVLDB Proceedings, 2005.

[42] Z. Ives, A. Halevy, and D. Weld. An XML Query Engine for Network-Bound
Data.VLDB Journal, 11 (4): 380–402, 2002.

[43] J. Chen, D. Dewitt, F. Tian et al. NiagaraCQ: A Scalable Continuous Query
System for Internet Databases. InSIGMOD, 2000.

[44] J. Grant, J. Gryz and J. Minker et al. Semantic Query Optimization for Object
Databases. InICDE, pages 444–453, 1997.

[45] J. M. Hellerstein and M. Stonebraker. Predicate Migration: Optimizing
Queries with Expensive Predicates. InSIGMOD, pages 267–276, 1993.

[46] H. V. Jagadish, Shurug Al-Khalifa, Adriane Chapman, Laks V. S. Laksh-
manan, Andrew Nierman, Stelios Paparizos, Jignesh M. Patel, Divesh Sri-
vastava, Nuwee Wiwatwattana, Y. Wu, and C. Yu. Timber: A native xml
database. InVLDB Journal Volume 11 Issue 4, pages 274–291, 2002.

[47] J. Jian, H. Su, and E. Rundensteiner. Automaton Meets Query Algebra: To-
wards A Unified Model for XQuery Evaluation over XML Data Streams. In
Proceedings of ER, 2003.

[48] N. Kabra and D. Dewitt. Efficient Mid-Query Re-Optimization of Sub-
Optimal Query Execution Plans. InSIGMOD, 1998.

[49] J. Kang, J. F. Naughton, and S. D. Viglas. Evaluating window joins over
unbounded streams. InICDE, pages 341–352, March 2003.

[50] L. Lim, M. Wang and J. Vitter. SASH: A Self-Adaptive Histograms Set for
Dynamically Changing Workloads. InVLDB, 2003.

BIBLIOGRAPHY 252

[51] L. Lim, M. Wang and S. Padmanabhan et. al. An On-line Self-Tuning Markov
Histogram for XML Path Selectivity Estimation. InVLDB, 2002.

[52] B. Ludascher, P. Mukhopadhyay, and Y. Papakonstantinou. A Transducer-
Based XML Query Processor. InProceedings of VLDB, pages 227–238,
2002.

[53] M. F. Fernandez, D. Suciu. Optimizing Regular Path Expressions Using
Graph Schemas. InICDE, pages 14–23, 1998.

[54] M. J. Carey, M. Blevins and P. Takacsi-Nagy. Integration, Web Services
Style. InIEEE Data Eng. Bull. 25 (4): 17-21, 2002.

[55] S. Madden and M. Franklin. Fjording the stream: An architecture for queries
over streaming sensor data. InICDE, pages 555–566, Feb 2002.

[56] I. Manolescu, D. Florescu, and D. Kossmann. Answering XML Queries on
Heterogeneous Data Sources. InProceedings of the 27th VLDB Conference,
Edinburgh, Scotland, pages 241–250, 2001.

[57] J. McHugh and J. Widom. Query Optimization for XML. InProceedings of
the Twenty-Fifth International Conference on Very Large Data Bases, Edin-
burgh, Scotland, pages 315–326, 1999.

[58] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: optimal XML
Pattern Matching. InSIGMOD, 2002.

[59] B. Nguyen, S. Abiteboul, G. Cobena, and M. Preda. Monitoring XML data
on the Web. InProceedings of the ACM SIGMOD International Conference
on Management of Data, Santa Barbara, CA, pages 437–448, May 2001.

[60] University of Washington. Xml data repository, 2002.

[61] P. Hart, N. Nilsson and B. Raphael. A Formal Bais for the Heuristic Deter-
mination of Minimum Cost Paths. InIEEE Transactions on Systems Science
and Cybernetics SSC4 (2), pages 100 – 107, 1968.

[62] P. Mukhopadhyay and Y. Papakonstantinou. Mixing querying and navigation
in mix. In Proceedings of ICDE 2002, 2002.

[63] P. Selinger, M. Astrahan and D. Chamberlin. Access PathSelection in a
Relational Database Management System. InIEEE COMPSAC, 1979.

[64] P. Tolani and J. Haritsa. XGRIND: A Query-Friendly XML Compressor. In
ICDE, pages 225 – 234, 2002.

BIBLIOGRAPHY 253

[65] F. Peng and S. Chawathe. XPath Queries on Streaming Data. In Proceedings
of SIGMOD, pages 431–442, 2003.

[66] Q. Cheng, J. Gryz and F. Koo et al. Implementation of Two Semantic Query
Optimization Techniques in DB2 Universal Database. InVLDB, pages 687–
698, 1999.

[67] E. A. Rundensteiner, L. Ding, T. Sutherland, Y. Zhu, B. Pielech, and
N. Mehta. Cape: Continuous query engine with heterogeneous-grained adap-
tivity. In VLDB Demo, pages 1353–1356, 2004.

[68] S. C. Yoon, I. Y. Song and E. K. Park. Semantic Query Processing in Object-
Oriented Database Using Deductive Aproach. InProceeding of CIKM, pages
150–157, 1995.

[69] S. Chaudhuri. An Overview of Query Optimization in Relational Systems. In
PODS, 1998.

[70] S. Chaudhuri and K. Shim. Including Group-By in Query Optimization. In
VLDB, 1994.

[71] S. Wang, E. A. Rundensteiner and M. Mani. Optimization of nested xquery
expressions with orderby clauses. InXML Schema and Data Management
(XSDM), Tokyo, Japan, April 2005.

[72] T. Milo and D. Suciu. Type Inference for Queries on Semistructured Data. In
PODS, 1999.

[73] Nesime Tatbul, Ugur etintemel, Stanley B. Zdonik, Mitch Cherniack, and
Michael Stonebraker. Load shedding in a data stream manager. In Proceed-
ings of 29th International Conference on Very Large Data Bases, pages 309–
320, 2003.

[74] U. S. Chakravarthy, J. Grant and J. Minker. Logic-BasedApproach to Se-
mantic Query Optimization. InACM TODS, Vol. 15, No. 2, pages 162–207,
1990.

[75] W. Scheufele and G. Moerkotte. Efficient Dynamic Programming Algorithms
for Ordering Expensive Joins and Selections. InEDBT, 1998.

[76] W3C. XML Query Data Model. http://www.w3.org/TR/query-datamodel,
2000.

BIBLIOGRAPHY 254

[77] X. Zhang and E. A. Rundensteiner. XAT: XML Algebra for the Rainbow Sys-
tem. Technical Report WPI-CS-TR-02-24, Worcester Polytechnic Institute,
July 2002.

[78] X. Zhang, B. Pielech and E. A. Rundensteiner. Honey, I Shrunk the XQuery!
— An XML Algebra Optimization Approach. InWIDM, pages 15–22, Nov.
2002.

[79] X. Zhang, B. Pielech and E. A. Rundensteiner. XAT Optimization. Technical
Report WPI-CS-TR-02-25, Worcester Polytechnic Institute, 2002.

[80] Y. Diao, M. Altinel and M. J. Franklin, H. Zhang and P. Fischer. Path sharing
and predicate evaluation for high-performance xml filtering. In TODS, pages
467–516, 2003.

[81] Y. Diao, P. Fischer, M. J. Franklin, R. To. YFilter: Efficient and scalable
filtering of XML documents. InProc. of ICDE, pages 341–344, 2002.

[82] Y. Wu, J. M. Patel and H. V. Jagadish. Structural Join Order Selection for
XML Query Optimization. InICDE, pages 443–454, 2003.

[83] Z. Chen, H. Jagadish and L.V.S. Lakshmanan et al. From Tree Patterns to
Generalized Tree Patterns; On Efficient Evaluation of XQuery. In VLDB,
2003.

[84] Z. Chen, H.V. Jagadish and F. Korn et al. Counting Twig Matches in a Tree.
In Proceedings of ICDE, 2001.

[85] Yali Zhu, Elke A. Rundensteiner, and George T. Heineman. Dynamic plan
migration for continuous queries over data streams. InACM SIGMOD, pages
431–442, June 2004.

