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Abstract 
The Slovenian Public Opinion survey (SPOS), which carried out in 1990, was used by the 

government of Slovenia as a benchmark to prepare for an upcoming plebiscite, which asked the 

respondents whether they support independence from Yugoslavia. However, the sample size 

was large and it is quite likely that the respondents and nonrespondents had divergent 

viewpoints. We first develop an ignorable nonresponse model which is an extension of a 

bivariate binomial model. In order to accommodate the nonrespondents, we then develop a 

nonignorable nonresponse model which is an extension of the ignorable model. Our 

methodology uses an EM algorithm to fit both the ignorable and nonignorable nonresponse 

models, and estimation is carried out using the bootstrap mechanism. We also perform 

sensitivity analysis to study different degrees of departures of the nonignorable nonresponse 

model from the ignorable nonresponse model. We found that the nonignorable nonresponse 

model is mildly sensitive to departures from the ignorable nonresponse model. In fact, our 

finding based on the nonignorable model is better than an earlier conclusion about another 

nonignorable nonresponse model fitted to these data. 

Keywords: Bivariate binomial distribution; Bootstrap; EM algorithm; Missing not at random; 

Multinomial model; 2X2 categorical tables. 
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Chapter 1. Introduction 

1.1 Brief Review of Dataset 

The Republic of Slovenia is a country in Central Europe and its capital is Ljubljana. In 1991, 

Slovenians voted for independence from former Yugoslavia in a plebiscite. To prepare for this 

plebiscite, the Slovenian Government collected data through the Slovenian Public Opinion 

survey (SPOS), a month before the plebiscite.  

The three main questions that were asked in the plebiscite are as follows: 

(a) Will you attend the plebiscite? 

(b) Are you in favor of Slovenia’s secession from Yugoslavia? 

(c) Are you in favor of Slovenian independence? 

The answers were recorded as Yes, No, or Don’t Know (DK). The results of the survey relating to 

these three questions are recorded in Table 1. The plebiscite counts as “Yes voters” only those 

voters who will attend the plebiscite and vote for independence (A subject is not counted as an 

independence supporter if he or she does not attend the plebiscite). “Don’t Know” responses 

can be thought of as missing data – the true intention of the voter is unknown but must be 

either “Yes” or “No” for that response.  

Table 1. Data from SPOS 

    Independence 

Secession Attendance Yes No DK 

Yes 

Yes 1191 8 21 

No 8 0 4 

DK 107 3 9 

No 

Yes 158 68 29 

No 7 14 3 

DK 18 43 31 

DK 

Yes 90 2 109 

No 1 2 25 

DK 19 8 96 

 

http://en.wikipedia.org/wiki/Country
http://en.wikipedia.org/wiki/Central_Europe
http://en.wikipedia.org/wiki/Europe
http://en.wikipedia.org/wiki/Ljubljana


6 
 

According to Table 1, there are 1191 people who will attend the plebiscite and vote for 

independence and secession. And another 248 people (158+90) will attend the plebiscite and 

vote for independence, regardless of the secession response. From this sample, we have a 

rough idea that most of voters would be in favor of the country’s independence. 

1.2 Missing Data Mechanism 

Rubin (1976) performed one of the first systematic studies of nonresponse mechanisms. His 

terminology has since become a standard for classifying different types of situations that give 

rise to missing values. Broadly, there are three types of missing data mechanisms: 

1) Missing completely at random (MCAR) 

2) Missing at random (MAR) 

3) Missing not at random (MNAR) 

1.2.1 Missing Completely At Random (MCAR) 

A missing data mechanism is MCAR if the probability of an observation being missing (r) does 

not depend on unobserved (ym) and observed responses (yo). Mathematically, it is expressed as 

  ( |     )   ( ) (1)  

For a MCAR set up, the analysis using the complete data gives valid inferences. For example, if a 

participant's data were missing because he was stopped for a car accident and missed the SPOS 

data collection session, his data would presumably be missing completely at random. Another 

way to think of MCAR is to note that any piece of data is just as likely to be missing as any other 

piece of data. 

1.2.2 Missing At Random (MAR) 

Usually, data are not missing completely at random. A missing data mechanism is considered 

missing at random (MAR) if, given the observed data, the missing mechanism does not depend 

on the unobserved data. This can be expressed as 

  ( |     )   ( |  ) (2)  

Note that under MAR the probability of a value being missing will generally depend on 

observed values, so it does not correspond to the intuitive notion of 'random'. The important 
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idea is that the missing data mechanism can be expressed solely in terms of observed data. For 

example, people with prior conviction might be less inclined to report their income, and thus 

the reported income would be related to crime record. In general, people who had criminal 

record might have a lower income, so when we have a high rate of missing data among those 

people with criminal record, the mean income might be different from the one without missing 

data. However, if the probability of reported income being missing is independent of prior 

conviction for persons with prior criminal record, then the data could be considered as MAR. 

1.2.3 Missing Not At Random (MNAR) 

If a process is neither MCAR nor MAR, it is termed as missing not at random (MNAR). In 

practice, it is very common that the reason for observations being missing still depends on 

some unobserved data, even after accounting for the observed information. For example, 

people with low income are less likely to report their income on a data collection form. Clearly, 

the mean income for the available data will be a biased estimate of the mean income that we 

would have obtained with complete data. When missing data mechanism is MNAR, the only 

way to obtain an unbiased estimate of parameters is to model missingness. In other words, we 

would need to develop a modeling framework that accounts for the missing data. That model 

could then be incorporated into a more complex model for estimating missing values. 

Meanwhile, it is also difficult to give the appropriate model for the missing data mechanism. 

Generally, it is hard to tell from the data at hand whether the missing data mechanism is MCAR, 

MAR or MNAR. Sometimes, a research design provides the justification (Murray and Findlay, 

1988), but typically this is not so and the incomplete data under analysis can never alone 

answer the question of whether or not a missing data mechanism is MNAR. We need to explore 

how our inferences vary under assumptions of MAR, MNAR, and under various models. Kenward et al 

(2000) performed sensitivity analysis for the Slovenian plebiscite case. This paper develops an 

ignorable nonresponse model based on bivariate binomial distribution to calculate the 

parameter of interest under MAR assumption. Under MNAR assumption, we consider a 

plausible and much specified nonignorable nonresponse model. In this framework we introduce 

an additional centering model which assigns some common characteristic to the parameters. 

The nonignorable model’s statistical result is as good as that of the ignorable model. Sensitivity 
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analysis proves that model selection is essential for the MNAR case and it is fairly robust, 

regardless of the variability of the parameters. 

1.3 Preliminary Analysis 

Rubin et al (1987) indicated there are two methods, “complete cases” and “available cases”, 

probably among the most common ad hoc methods for dealing with missing data. We treat the 

DK’s as missing data because eventually every Slovenian would vote “Yes” or “No”. The left 

column in Table 2 is based on the 1,454 survey participants who answered all three questions 

“Yes” or “No” - they are the "complete" cases. The right column is based on the 1,549 

participants who answered the independence and attendance questions “Yes” or “No” – they 

are the "available" cases.  

Let θ be the population proportion of voters who plan to attend and vote for independence. 

Because only “Yes” votes for attendance count in the plebiscite, a “Yes” response to 

independence coupled with a “No” response to attendance effectively counts as a “No” vote in 

the plebiscite. 

The estimate of θ based on the complete cases is 1,349/1,454 = .928, and the corresponding 

estimate based on the available cases is 1,439/1,549 = .929. Based on the confidence interval 

formula ( ̂      √ ̂(   ̂)  ⁄ ), the 95% confidence intervals for complete cases and 

available cases are (.9147, .9413) and (.9162, .9418) respectively. Generally, a conservative 

estimate of θ is based on the assumption that by giving DK responses, subjects avoid revealing 

an unpopular opinion - a No response. The corresponding estimate is the proportion answering 

Yes to questions 1 and 3 among the original respondents (i.e., all DK responses are treated as 

“No”); this proportion is 1,439/2,074 = .694. This is the most pessimistic scenario. On the 

contrary, we can calculate the most optimistic estimate of θ by treating the DK responses for 

either independence or attendance questions as “Yes”. This estimate is 

(1439+21+29+109+107+18+19+9+31+96)/2074 = .905 

We should notice that both complete and available case estimates fall outside the pessimistic – 

optimistic interval (.694, .905) and thus should be discarded. This is because, these two 
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estimators do not incorporate missing data as No votes and thus disregard the available 

information. 

Table 2. Survey Results for Attendance and Independence Questions 

Attendance 

Complete Cases (n = 1454) Available Cases (n = 1549) 

Independence Independence 

Yes No Yes No 

Yes 1349 76 1439 78 

No 15 14 16 16 

 

Another method which is also practical is to estimate θ under a non – parametric framework. 

Accordingly, we construct Table 3 and consider all the responses which contain DK’s as missing 

values. Our purpose is to assign all the missing data to each blank cell based on Table 3-1 since 

it is a complete table. 

Table 3. Four patterns in Slovenian Plebiscite case 

 

 

 

 

 

 

 

After filling in the blank cells, we can easily obtain the non – parametric estimate of θ as   

 ̂  (                )           

In this non – parametric method, we actually use the MAR assumption. All the estimates for 

missingness are based on the proportion of the observed data in Table 3-1. This method is easy 

to perform and it shows that MAR is a good assumption as a starting point of our research. 

 Yes No 
 Yes 1439  78 
 No  16 16  

 3-1 

    

 Yes No DK 

Yes     159 

No     32 

3-2 

    
 Yes No 

 Yes 

 
  

 No     
 DK 144 54 

 3-3 

 Yes No DK 

Yes     
 No     
 DK 

  
136 

3-4 
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Table 4. Non – parametric estimation 

 

 

 

 

 

 

The official proportion of eligible Slovenian residents who attended the plebiscite and voted in 

favor of independence was 0.885. We notice that it is close to the non – parametric estimate 

given above. It also lies within the pessimistic – optimistic interval. Although the true value of θ 

is not too far from the estimates obtained using the complete and available cases, it is outside 

their 95% confidence limits. 

 These findings motivate us to develop more precise methods to estimate θ. The remaining 

sections are organized as follows: we will discuss the MAR assumption in section 2 and perform 

estimation using EM algorithm and bootstrap. MNAR will be introduced in section 3. Sensitivity 

analysis will be carried out in both sections 2 and 3 to check how sample size and missingness 

rate affect the estimate of θ. Additional sensitivity analysis for checking robustness of the 

nonignorable model is shown in section 3. 

  

 Yes No 
 Yes 1439  78 
 No  16 16  

 4-1 

    

 Yes No DK 

Yes  151 8  159 

No  16 16  32 

4-2 

    
 Yes No 

 Yes 142  50 
 No  2  4 
 DK 144 54 

 4-3 

 Yes No DK 

Yes  126  7 
 No  1.5 1.5  
 DK 

  
136 

4-4 
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Chapter 2. Ignorable Nonresponse Model 
We assume that responses on the attendance and independence questions can be thought of 

as data that are missing at random (MAR). Responses are said to be MAR if the occurrence of 

DK is conditionally independent of the actual answer that would have been observed given the 

observed responses to one or both of the other questions; that is, the probability of the 

occurrence of DK can depend on the observed answers to other questions, but given these, it is 

independent of the missing value itself. If the data are MAR and the parameters of the 

probability model for the missingness are different from the parameters of the probability 

model for the data, then the missingness model is called ignorable (Rubin 1976), because it 

does not affect likelihood-based inferences, such as MLE’s. 

2.1 Theoretical Framework 

We consider a 2X2 table with cell counts {z, x – z, y – z, n – x – y + z} and corresponding 

probabilities {θ, p – θ, q – θ, 1 – p – q + θ}. The table below shows all the cells and the 

respective probabilities (in brackets). We will develop a new model based on a bivariate 

binomial distribution. 

 Yes No Margin 

Yes z (θ) x – z (p – θ) x (p) 

No y – z (q – θ) n – x – y + z (1 – p – q + θ) n – x (1 - p) 

Margin y (q) n – y (1 - q) n 

 

The joint probability mass function of x, y, z is given by 

 (     )  
    (   )   (   )   (       )       

  (   ) (   ) (       ) 
 , 0 ≤ x ≤ n, 0 ≤ y≤ n, 0 ≤ z ≤ min{x, y}, 0 ≤ θ ≤ p, q ≤ 1. 

Thus we do not use a standard multinomial model for modeling (x, y, z). This is because of the 

fact that we want to model the random margins. And this setting has additional constraints for 

the variables and parameters – this will prove to be useful for the sensitivity analysis to be done 

later. 
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Hamdan (1969) and Kocherlakota (1989) discuss a bivariate binomial probability mass function 

(PMF) for the same situation. We have generalized their PMF by including three variables. They 

integrated out z since their variables of interest were x and y. Moreover, it is very difficult to 

integrate out each parameter from the mass function. However, our model is based on a three-

parameter PMF with three variables and it gives us more flexibility during calculation 

(Hamdan’s model had three parameters with two variables). 

First, we obtain the marginal probability mass function of x, y, and z. Then, we get the 

conditional PMF of (y, z | x) and (x, z | y). The calculations are shown below. 

(1) f(x) 

 ( )  ∑ ∑
    (   )   (   )   (       )       

  (   ) (   ) (       ) 

     

   

 

   

 

           ∑
    (   )   

  (   ) 

 

   

∑
(   )   (       )       

(   ) (       ) 

   

     

 

                  
    (   )   

  (   ) 
∑

  (
 

 
)
 
(  

 

 
)
   

  (   ) 

 
   ∑

(   ) (
   

   
)
   

(  
   

   
)
       

(   ) (       ) 

   
     . 

Thus, 

  ( )  
    (   )   

  (   ) 
 (3)  

ie           (   ) 

(2) f(y) 

 ( )  ∑ ∑
    (   )   (   )   (       )       

  (   ) (   ) (       ) 

     

   

 

   

 

           ∑
    (   )   

  (   ) 

 

   

∑
(   )   (       )       

(   ) (       ) 

   

     

 

                  
    (   )   

  (   ) 
∑

  (
 

 
)
 
(  

 

 
)
   

  (   ) 

 
   ∑

(   ) (
   

   
)
   

(  
   

   
)
       

(   ) (       ) 

   
     . 

Thus, 

  ( )  
    (   )   

  (   ) 
 (4)  

ie           (   ) 

(3) f(z) 
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 ( )  ∑ ∑
    (   )   (   )   (       )       

  (   ) (   ) (       ) 

     

   

     

   

 

              
    

  
∑ ∑

(   )   (   )   (       )       

(   ) (   ) (       ) 

   

     

   

     

 

 

                                          
    (   )   

  (   ) 
∑ ∑ [

(      ) (
   

      
)
   

(
   

      
)
   

(   ) (   ) 
]

   

     

   

     

 

[
(   ) (

      
   

)      (
       

   
)       

(      ) (       ) 
] 

Thus, 

  ( )  
    (   )   

  (   ) 
 (5)  

ie           (   ) 

 

(4) f(y, z|x) 

 (   | )  
 (     )

 ( )
 
  (   )   (   )   (   )   (       )       

  (   ) (   ) (       )   (   )   
 

 
  
 
 

 

(
   
 
)
   

  (   ) 

(   ) (
   
   

)
   

(
       

   
)
       

(   ) (       ) 
 

Thus, 

  (   | )   ( | ) (   |   ) (6)  

       ( | )          (    ⁄ )  (   |   )          (    (   ) (   )⁄ ) 

(5) f(x, z|y) 

 (   | )  
 (     )

 ( )
  
  (   )   (   )   (   )   (       )       

  (   ) (   ) (       )   (   )   
 

 
  
 
 

 

(
   
 
)
   

  (   ) 

(   ) (
   
   

)
   

(
       

   
)
       

(   ) (       ) 
 

Thus, 

  (   | )   ( | ) (   |   ) (7)  

       ( | )          (    ⁄ )  (   |   )

         (    (   ) (   )⁄ ) 
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2.2 EM algorithm 

Under the ignorability assumption, the expectation-maximization (EM) algorithm (Dempster, 

Laird, and Rubin 1977) can be used to obtain the MLE's of θ and the other response 

probabilities from the incomplete contingency table (as in Fuchs 1982). EM algorithm is a 

method for finding maximum likelihood estimates of parameters in statistical models, where 

the model depends on unobserved latent variables. EM is an iterative method which alternates 

between performing an expectation (E) step, which computes the expectation of the log-

likelihood function evaluated using the current estimate for the latent variables, and the 

maximization (M) step, which computes parameters maximizing the expected log-likelihood 

function evaluated in the E step. These parameter estimates are then used to determine the 

distribution of the latent variables in the next E step. This process in repeated until the 

estimates convergence. The resulting estimates are the optimal ones. 

Mathematically, we can write the log likelihood function as  (     | )      (     | ). For 

the “E step”, we replace the missing values with their expectations. As for the “M step”, we 

need to obtain      ( (     | ). We use   
(   )   (  |    

( )) (yo and ym are observed 

and missing data. They can be numbers or vectors, θ(r) being the parameter value at the rth 

step) at the rth step of the EM algorithm. We would maximize the log likelihood when θ reaches 

convergence. The EM algorithm progresses monotonically to the maximum likelihood estimate.  

For the plebiscite case, we initially consider drawing inferences using only the results of 

questions 1 and 3, which are directly relevant to θ, and make the MAR assumption for this two-

variable data set. The relevant two-way margin of the data set is given below in Table 5. 

Table 5. Analysis for Attendance and Independence Questions 

Attendance 
Independence 

Yes No DK 

Yes 1439 78 159 

No 16 16 32 

DK 144 54 136 

 

http://en.wikipedia.org/wiki/Iterative_method
http://en.wikipedia.org/wiki/Maximum_likelihood
http://en.wikipedia.org/wiki/Parameter
http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Latent_variable
http://en.wikipedia.org/wiki/Iterative_method
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The purpose of missing data analysis is to get the best (or optimal) parameter estimate based 

on the data. Missing data can have four patterns which are shown in Table 6. The (Yes, Yes) cell 

is z, (Yes, +) is x and (+, Yes) is y. The corresponding proportions are θ, p and q, respectively. In 

this case, we can obtain nine counts in Table 6 which are based on the cells in Table 5. In Table 

6 we have four patterns: for the first one we have all the data; we have the vertical and 

horizontal margins in the second and third patterns; only the total is known in the last pattern. 

Table 6. Observed Cells for the SPOS 

 

 

 

 

 

 

 

It is clear that each cell in the 2X2 table follow the multinomial distribution with four possible 

outcomes ((Yes, Yes), (Yes, No), (No, Yes) and (No, No)).  

2.2.1 Implementation 

Here we show the details of the EM algorithm. 

The log likelihood function is given by: 

 (     |        )     ∏
   

   (     ) (     ) (           ) 
 
        ∑   

 
       (  

 )∑ (     )
 
       (   )∑ (     )

 
        (       )∑ (           )

 
   ,  

0 ≤ xt ≤ nt, 0 ≤ yt≤ nt, 0 ≤ zt ≤ min {xt, yt}. 

E step: 

z1=1439   x1 = 1517 

    
 y1=1455 

 
n1 = 1549 

 

    x2=159 

    
 

  
n2=191 

 

 
  

     
 y3=144 

 
n3 = 198 

 

    
     
 

  
n4=136 
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                     |                ( )  ( )  ( )( (     |        ))  

                       |       ( )  ( )  ( )(   ∏
   

   (     ) (     ) (           ) 
 
        ( ) ∑   

 
    

   ( ( )   ( ))∑ (     )
 
       ( ( )   ( ))∑ (     )

 
       (   ( )   ( )  

 ( ))∑ (           )
 
   ), 0 ≤ xt ≤ nt, 0 ≤ yt≤ nt, 0 ≤ zt ≤ min {xt, yt}. 

Here, C is the observed data which represent constant values. 

Now, 

 (  |  )    
 

 
,  (  |  )    

 

 
 (     )

   

   
, 

E(  |  )    
 

 
,  (  |  )    

 

 
 (     )

   

   
, 

 (  )     ,  (  )     ,  (  )      

Let us show how we obtain the expectations of all the missing data. 

When t = 1, it is a complete table (observed data) and we can get  ̂,  ̂ and  ̂ easily as 

 ̂  
    

    
       

 ̂  
    

    
       

 ̂  
    

    
       

When t = 2, x2 is known. We need to find out the distribution of x2 first and then deduce the 

distribution of y2, z2 given x2. In 2.1 we have already shown that x2 follow Binomial distribution. 

Then we can deduce the distribution of y2, z2 given x2. 

From section 2.1, 

  |           (   
 

 
) 

     |              (      
   

   
) 
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Now we know the distributions of z2 given x2 and y2 – z2 given z2 and x2. Hence we can easily 

develop the expectations of z2 and y2 given x2 as follows: 

 (  |  )    
 

 
 
    

 
  (     |     )  (     )

   

   
   

   

   
 

 (     |     )     ( (  |     ))     ( (  |     ))   (  |  )   (  |  ) 

 (  |  )   (  |  )   (     |     )  
    

 
   

   

   
 

Now, we can fill up the missing cells in “t = 2” part in Table 6 by using their expected values. 

Same method is used in the situation when t = 3 (y3 is known).  

           (    ) 

  |           (   
 

 
) 

     |              (      
   

   
) 

 (  |  )  
    

 
 

 (  |  )  
    

 
   

   

   
 

As for t = 4, only n4 is known. The expectations of multinomial distribution should be filled in 

the table as: 

 (  )      

 (  )      

 (  )      

All of the results are shown in Table 7.  

M step: 
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Now we have the new MLE’s of the multinomial cell probabilities in the 2X2 table based on the 

current values of the expected complete – data sufficient statistics and we can 

maximize  ( (     |        )) by using the expectations of all the missing values.  

 
 (   )  

     
 ( )

 ( )
   

 ( )

 ( )
    

( )

 
 

(8)  

 
 (   )  

        
 ( )

 ( )
 (     )

 ( )   ( )

   ( )
    

( )

 
 

(9)  

 
 (   )  

     
 ( )

 ( )
 (     )

 ( )   ( )

   ( )
       

( )

 
 

(10)  

After convergence, the MLE of θ = 0.892 and its 95% confidence interval is (0.8768, 0.9080). 

Corresponding results for p and q are obtained in the same way. Detailed calculation and 

program outputs are given below: 

Table 7. Missing Cells are filled with Expected Values 

 

 

  

 

 

 

 

 

 ̂  
∑    

∑    
  ̂  

∑    

∑    
  ̂  

∑    

∑    
 

Using the values of    ̂   ̂      ̂ (when t = 1) as initial values for p, q and θ, we run EM algorithm 

in R and we attain quick convergence of all the parameters.  

z1=1439   x1 = 1517 

    
 y1=1455 

 
n1 = 1549 

t = 1 

 z2=
 59𝜃

𝑝
   x2=159 

    
 y2=

 59𝜃

𝑝
   

𝑞 𝜃

  𝑝
 

 
n2=191 

t = 2 

  z3=
   𝜃

𝑞
   X3 = 

   𝜃

𝑞
   

𝑝 𝜃

  𝑞
 

    
 y3=144 

 
n3 = 198 

t = 3 

 z4=136θ   X4=136p 

    
 y4=136q 

 
n4=136 

t = 4 
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Table 8. R Output for EM Algorithm 

iteration θ p q 

1 0.896186 0.96233 0.912643 

2 0.892535 0.943979 0.921041 

3 0.892293 0.947393 0.917218 

4 0.892313 0.945974 0.917948 

5 0.892356 0.946141 0.917618 

6 0.892381 0.945969 0.917642 

7 0.892396 0.945944 0.917597 

8 0.892405 0.94591 0.917588 

9 0.89241 0.945896 0.917577 

10 0.892413 0.945886 0.917573 

11 0.892415 0.945881 0.91757 

12 0.892416 0.945877 0.917568 

13 0.892416 0.945876 0.917567 

14 0.892416 0.945875 0.917567 

15 0.892417 0.945874 0.917567 

16 0.892417 0.945874 0.917566 

17 0.892417 0.945874 0.917566 

18 0.892417 0.945873 0.917566 

19 0.892417 0.945873 0.917566 

20 0.892417 0.945873 0.917566 

 

In order to get the 95% confidence interval of θ, we need to calculate the Hessian Matrix given 

by: 
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Plugging into the EM result of θ, p and q (.892, .946, .918) and calculate the Hessian Matrix: 

  [
                       
                        
                       

] 

 

The negative inverse of the Hessian Matrix is given by: 

     [
                                 

                                 

                                

] 

The (1, 1) element of this matrix is the variance of  ̂. Thus, using normal approximation, we can 

easily obtain the 95% confidence interval for θ, p and q as: 

θ ϵ (0.8768, 0.9080) 

p ϵ (0.9374, 0.9544)  

q ϵ (0.9025, 0.9327) 

Here we recall that the true value of θ is 0.885 which is included in the above interval.   
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2.3 Bootstrap distributions for θ, p and q 

Bootstrapping is a resampling technique used to obtain estimates of sampling distributions of 

statistics. Bootstrapping is the practice of estimating properties of an estimator by sampling 

from an approximating distribution. One standard choice for an approximating distribution is 

the empirical distribution of the observed data. In the case where a set of observations can be 

assumed to be from an independent and identically distributed population, this can be 

implemented by constructing a number of resamples of the observed dataset (and of equal size 

to the observed dataset), each of which is obtained by random sampling with replacement from 

the original dataset. 

The advantage of bootstrapping over analytical methods is its simplicity - it is straightforward to 

apply the bootstrap to derive estimates of standard errors and confidence intervals for 

estimators of complex parameters of a distribution, such as percentile points, proportions, odds 

ratio, and correlation coefficients. For instance, we have 10 values of weights. It would not be 

precise for us to estimate the population mean weight and its confidence interval based on 

normality assumption. For bootstrap, first of all, we draw a sample of size 10 with replacement 

and obtain the average weight. Then we repeat this procedure 100 times and we can get a new 

sample of 100 average weights. Now we can obtain a more precise estimate and a better 

distribution of the average weight. 

In section 2, we have already implemented EM algorithm for the SPOS data. If all the counts 

except (n1, n2, n3 and n4) in Table 6 are random numbers, it would be difficult for us to obtain 

the distribution of θ. A bootstrapping procedure will be very useful here. Moreover bootstrap is 

a good method to test the normality assumption which we use in previous section, although 

the sample size of the SPOS data is fairly large. 

In the plebiscite case, based on section 2.1’s proof, we can set the following random cells: 

When t = 1, (z11, z12, z13, z14) ~ Multinomial (n1, θ, p-θ, q-θ, 1-p-q+θ) with x1 = z11+z12, y1=z11+z13. 

When t = 2, x2 ~ Binomial (n2, p) 

When t = 3, y3 ~ Binomial (n3, q) 

http://en.wikipedia.org/wiki/Estimator
http://en.wikipedia.org/wiki/Independent_and_identically_distributed
http://en.wikipedia.org/wiki/Resampling_(statistics)
http://en.wikipedia.org/wiki/Random_sampling_with_replacement
http://en.wikipedia.org/wiki/Standard_error_(statistics)
http://en.wikipedia.org/wiki/Confidence_intervals
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Following section 2.2’s procedure, we can know all the random numbers and fill up all the 

missing cells by using their expected values. 

Table 9. Missing Cells are filled with Expected Values under random variables 

 

 

  

 

 

 

 

 

Now, each time we obtain a sample of z11, x2 and y3 and perform EM algorithm to get the 

estimates of θ, p and q (using the EM algorithm results as starting values for θ, p, and q). After 

repeating 1,000 times, we can get the bootstrap confidence intervals for them. Based on 1,000 

repetitions, we find that 1,000 of the 1,000 bootstrapping confidence intervals contain the 

“true” value of p, q and θ (p = 0.946, q = 0.918 and θ = 0.892, which are the results of section 2. 

2). 

Here is one set of bootstrap confidence limits for θ, p, and q: 

θ ϵ (0.8774068, 0.9059108)  

p ϵ 0.9351495, 0.9559075) 

q ϵ (0.903989, 0.9294458)  

Smoothing the data distribution with a kernel density estimate can be more effective than using 

a histogram to identify features. A kernel density estimate can also be more effective than a 

parametric curve fit when the process distribution is multi-modal. In Figure 1, we obtain both 

kernel curve and normal approximating curve to identify θ, p, and q. 

z11~Multinomial z12 ~Multinomial x1 = z11+z12 

z13 ~Multinomial  z14~Multinomial 
 y1= z11+z13 

 
n1 = 1549 

t = 1 

 z2   x2~Binomial 

    
 y2 

 
n2=191 

t = 2 

  z3   X3 

    
 y3=Binomial 

 
n3 = 198 

t = 3 

 z4   X4 

    
 y4 

 
n4=136 

t = 4 
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The general form of the kernel density estimator is given as: 

 ̂ ( )  
 

  
∑  (

    
 

)

 

   

 

Where, 

K0 is the kernel function; 

ρ is the bandwidth; 

n is the sample size;  

xi is the ith observation;  

Usually, there are three kernel functions: normal, quadratic, and triangular. We use a normal 

kernel here, which has the form  

  ( )  
 

√  
   ( 

 

 
  ) 

Figure 1 shows the SAS output of the bootstrap density estimates of θ, p and q. 
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Figure 1. Bootstrap Densities of θ, p and q (MAR) 

 

 

 

Red = Normal 

Green = Kernel 

Red = Normal 

Green = Kernel 

Red = Normal 

Green = Kernel 
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From Figure 1 we can see that the two curves are close and the kernel curves are more precise 

than the normal approximate curves. Moreover, the bootstrap confidence intervals for θ, p and 

q are also close to the 95% confidence intervals based on the normality assumption. 

2.4 Sensitivity Analysis 

Sensitivity analysis is a technique used to determine how different values of an 

independent variable will impact a particular dependent variable under a given set of scenarios. 

This technique is used within specific boundaries that will depend on one or more input 

variables, such as the effect that changes in interest rates will have on a bond's price. 

The main goal of sensitivity analysis is to gain insight into which assumptions are critical, i.e., 

which assumptions affect decision. The process involves various ways of changing input values 

of the model to see the effect on the output value. In some decision situations you can use a 

single model to investigate several alternatives. In other cases, you may use different model for 

each alternative. 

In the SPOS data, the sample size is 2074 which is fairly large and most of participants answered 

both attendance and independence questions. In order to test how the parameter changes with 

different settings of the ignorable model, we can perform a sensitivity analysis for θ, which is 

our parameter of interest. 

Table 10. Sensitivity Analysis for Bootstrap θ 

 n Completeness 95% Lower Band for θ 95% Upper Band for θ 

1  
2,000 

75% 0.8778373 0.9060658 

2 50% 0.8743162 0.9070934 

3 25% 0.8663464 0.9189638 

4  75% 0.8716063 0.913232 

5 1,000 50% 0.8687155 0.912698 

6  25% 0.8641333 0.9189125 

7  75% 0.8609234 0.9196522 

8 500 50% 0.8603767 0.9240693 

9  25% 0.856592 0.9317466 

10  75% 0.8253963 0.9538733 

11 100 50% 0.8144843 0.9552296 

12  25% 0.8048008 0.9602226 
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According to Table 10, we can find out that a wider bootstrapping confidence limit would be 

obtained if the completeness (proportion of non-DK answers) or the sample size decreases. 

When we have large sample (n = 2,000 or 1,000), the parameter is not changed much. 

However, if we do not collect enough sample (say n = 100), the bootstrap confidence limits 

would be much wider for large samples. Hence, we can conclude that under MAR assumption, 

the surveyor needs to collect a large enough sample and try to get the respondents’ complete 

questionnaires. 
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Chapter 3. Nonignorable Nonresponse Model 

When data are missing not at random (MNAR), the results in section 2 does not hold anymore 

and maximum likelihood estimation of the model parameters based only on the observed 

likelihood will be biased. To obtain the correct maximum likelihood estimates of the model 

parameters, we need to extend the model in section 2, since we have different θ’s, p’s and q’s 

under different patterns (each pattern has different reason to be complete / missing). 

Moreover, we allow them to have a common effect by assigning a distribution, or we cannot 

estimate those parameters. Thus we have a nonignorable nonresponse model. In most cases 

the parameters of the centering model will also be unknown. Fortunately, the parameters of 

the combined data and centering model can be estimated simultaneously by maximizing the 

full data log likelihood using the standard EM algorithm. 

3.1 EM Algorithm 

The data follow a multinomial distribution, which is same as what we used in section 2. The 

data distribution is given by: 

 (        |        )  
     

  (     )
     (     )

     (          )
           

   (     ) (     ) (           ) 
, 0 ≤ xt ≤ nt, 0 ≤ yt ≤ nt, 

and 0 ≤ zt ≤ min{xt, yt}, t = 1 to 4. 

Here we choose a Dirichlet distribution as a centering model because it is conjugate to the 

multinomial distribution. So we will get the expanded distribution easily. If we do not use a 

centering model, it would be impossible for us to estimate the last three patterns (t = 2, 3, 4). 

The centering distribution is given by: 

 (        )  
  
     (     )

(     )   (     )
(     )   (          )

(          )   

 (    (     )  (     )  (          ) )
, 0 < μ1 < μ2, μ3 < 1 

and τ > 0. 

       (    (     )  (     )  (          ) )

 
 (   ) (      ) (      ) (           )

 ( )
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We define the parameters as τ, μ1, μ2 and μ3 because they are equivalent to n, θ, p and q in the 

data distribution. 

The expanded distribution is given by: 

 (                 )  
  
        (     )

      (     )   (     )
      (     )   (          )

            (          )   

 (             (     )        (     )              (          ) )
 , θ 

< p, q < 1. 

The likelihood function is given by: 

 (                 )

 ∏
  
        (     )

      (     )   (     )
      (     )   (          )

            (          )   

 (             (     )        (     )              (          ) )

 

   

( )  

In section 2, we have random samples of θ, p and q. We use them to fit the centering model by 

R program package “dirichlet ()” and obtain μ1, μ2, μ3, and τ. 

Let y = (θ, p – θ, q – θ, 1 – p – q + θ) and a = (μ1 τ, (μ2 – μ1) τ, (μ3 – μ1) τ, (1 - μ2 – μ3 + μ1) τ). In R 

program, one has E (yi) = ai/ τ (i = 1 to 4), which are returned as the fitted values. For this 

distribution, Fisher scoring corresponds to Newton-Raphson algorithm. After running the 

program, we have: 

μ1 = 0.892 

μ2 = 0.941 

μ3 = 0.921 

τ = 1950 

Those estimates are close to n, θ, p and q in the ignorable model because the estimates are 

based on the bootstrap samples in section 2. 
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E step: 

Unobserved parts contain x3, x4, y2, y4, z2, z3 and z4 and observed parts contain x1, x2, y1, y3 and 

z1 in formula (3). Let     (             (     )        (     )           

   (          ) ) and     (             (     )        (     )        

      (          ) ) (t, i = 1 to 4) 

Thus we have, 

 ( (        |        ))   (∑ (       )

 

   

)   (       ) 

 (  |  )    
 

 
,  (  |  )    

 

 
 (     )

   

   
,  

E(  |  )    
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 (     )

   

   
, 

 (  )     ,  (  )     ,  (  )      

A discussion on the four different tables is necessary to figure out the missing values. In this 

case, it would be very difficult and tedious for us to take the log likelihood function and 

calculate the MLE for the three parameters because they contain unobserved data and are not 

easy to obtain. However, the nonignorable model is an extension of the ignorable model in 

section 2. Moreover, because of the conjugacy of the data model and centering model, we can 

directly use the expectations of the missing values in the data model to estimate the 

parameters. In the data model we already know the MLE’s of the parameters. And we also 

know the expectations of all the unobserved values. Thus, we use the same method as in the 

expanded model: 

 ̂  
        

      
, t = 1 to 4. 

 ̂  
      (     )   

      
  ̂ , t = 1 to 4. 

 ̂  
      (     )   

      
   ̂ , t = 1 to 4. 
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When t = 1, it is a complete table and there is no unobserved data. Thus, we can directly 

calculate the estimates for the parameters.  When t = 2, y2 and z2 are unknown. But in section 

2, we have already deduced their expectations for them. The same idea is used when t = 3 and 

4.  

M step: 
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( )       
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( )  (     )   
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By performing EM algorithm, we can get convergence of the estimates for θi, pi and qi (i = 2 to 

4) as shown below: 

  



31 
 

Table 11. R Output for EM Algorithm 

Iteration θ2 p2 q2 θ 3 p3 q3 θ 4 p4 q4 

1 0.88598 0.93220 0.92226 0.87428 0.92998 0.90456 0.89337 0.94036 0.92413 

2 0.88432 0.93220 0.91886 0.87587 0.93461 0.90456 0.89346 0.94188 0.92270 

3 0.88419 0.93220 0.91835 0.87599 0.93553 0.90456 0.89346 0.94198 0.92260 

4 0.88418 0.93220 0.91825 0.87599 0.93575 0.90456 0.89346 0.94199 0.92260 

5 0.88418 0.93220 0.91823 0.87599 0.93581 0.90456 0.89347 0.94199 0.92260 

6 0.88418 0.93220 0.91823 0.87599 0.93582 0.90456 0.89347 0.94199 0.92260 

7 0.88418 0.93220 0.91823 0.87599 0.93582 0.90456 0.89347 0.94199 0.92260 

8 0.88418 0.93220 0.91823 0.87599 0.93583 0.90456 0.89347 0.94199 0.92260 

9 0.88418 0.93220 0.91823 0.87599 0.93583 0.90456 0.89347 0.94199 0.92260 

10 0.88418 0.93220 0.91823 0.87599 0.93583 0.90456 0.89347 0.94199 0.92260 

From the table above, we notice that p2 and q3 are fixed numbers. Since the only unobserved 

data for estimating p2 is z2, it is replaced by its expectation that only contain the observed data 

x2. Similar reasoning holds for q3.  

After completing EM algorithm, we can obtain all the three estimates under the assumption of 

MNAR. They are as follows,  

  
∑    

∑    
            

  
∑    

∑    
           

   
∑    

∑    
           

Clearly, the estimates are very close to the results obtained in section 2. Recall that the true 

value of θ is 0.885. The MNAR result is also close to the true value. 

3.2 Bootstrap Distributions of θ, p and q 

As in section 2, we perform bootstrapping to obtain the distribution of θ, p and q. 

We use the same settings as in Table 9, 

When t = 1, (z11, z12, z13, z14) ~ Multinomial (n1, θ, p-θ, q-θ, 1-p-q+θ) with x1 = z11+z12, y1=z11+z13. 

When t = 2, x2 ~ Binomial (n2, p) 
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When t = 3, x3 ~ Binomial (n3, q) 

By performing EM algorithm in section 3.1, we can calculate θ, p and q. After repeating 1,000 

times, we obtain the 95% bootstrap confidence intervals for θ, p and q as follows: 

θ ϵ (0.8807033, 0.904615)  

p ϵ (0.9431182, 0.9590651) 

q ϵ (0.903332, 0.9247622)  

The interval of θ contains the true value of θ and the length of the interval is almost same as 

that under MAR. Hence, the result from the nonignorable nonresponse model is similar to what 

we got based on the ignorable nonresponse model. 

Figure 2-1 to 2-3 depicts the bootstrap distributions of θ, p and q.  
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Figure 2-1 the Bootstrap Density of θ (sizes of 2074, 500 and 100 respectively) 
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Figure 2-2 the Bootstrap Density of p (sizes of 2074, 500 and 100 respectively) 
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Figure 2-3 the Bootstrap Density of q (sizes of 2074, 500 and 100 respectively) 
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n = 100 
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Comparing with what we got previously, the difference between kernel curves and the 

approximate normal curves is a little more obvious than in section 2. Once the sample size 

decreases, the distributions of θ, p and q are apparently different from those corresponding to 

a large sample size. This shows that the normality assumption may not be true when the 

sample size is small. Based on our research, we can thus conclude that there is no obvious 

difference between the nonignorable nonresponse model and the ignorable nonresponse 

model. 

3.3 Sensitivity Analysis 

As before, we perform a sensitivity analysis for the nonignorable model. In doing so, we can 

have a decent understanding of how sample size and completeness rate influence our 

parameter of interest, θ. (Note: by varying sample size, the parameter τ in the combined model 

should be proportional to the sample size.) 

Table 12. Sensitivity Analysis for Bootstrap θ 

 n Completeness 95% Lower Band for θ 95% Upper Band for θ 

1  
2,000 

75% 0.879864 0.904512 

2 50% 0.882353 0.904638 

3 25% 0.882851 0.903648 

4  75% 0.874613 0.909539 

5 1,000 50% 0.875523 0.908961 

6  25% 0.87844 0.907566 

7  75% 0.8689893 0.9183479 

8 500 50% 0.8697652 0.9154328 

9  25% 0.8739867 0.913455 

10  75% 0.877563 0.94408 

11 100 50% 0.83997 0.939344 

12  25% 0.845835 0.933226 

 

According to the table above, it is clear that sample size can indeed influence the parameter 

estimates. When we have large sample (n = 2,000 or 1,000), the confidence limits does not 

change much (the confidence limits are wider when sample size change from 2,000 to 1,000). 

However, for small sample size (n = 100), the confidence limits are much wider. As for the 

completeness rate, it changes our estimate slightly. Thus, we can infer that under MNAR 
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assumption, sample size can significantly influence the precision of our estimate. No matter 

how many responders complete the survey, we can still obtain precise estimation if we have a 

big sample. 

Another sensitivity analysis focuses on how θ change under different values of τ, μ1, μ2, μ3. The 

parameters of the centering model are estimated by the samples from the ignorable model. 

The estimates of μ1, μ2, μ3 are close to the estimates of θ, p and q, and we need to vary them to 

test the sensitivity of the model. Based on the constraints 0 < μ1 < μ2, μ3 <1 and τ >0, let us set 

the lower band of μ1 as “a”. We assume: 

          (   ) 

          (    ) 

          (    ) 

Thus, we generate samples of θ and define τ is between 1560 and 2340 (  20% of 1950, recall τ 

is 1950 in section 3), “a” varies in the pessimistic – optimistic interval (.694, .905). The 

corresponding 3D surface plot can be developed in Figure 3. 
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Figure 3. 3D surface plot for θ 

 

According to Figure 3, θ has an increasing trend as τ and “a” increases. 
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Table 13. Sensitivity Analysis for θ 

a = 0.7 

  τ Mean Std θ lower θ upper Q1 Q2 Q3 Confidence Length  

1 5 0.9240 0.0102 0.9042 0.9425 0.9168 0.9242 0.9315 0.0383 

2 10 0.9126 0.0132 0.8858 0.9355 0.9039 0.9137 0.9230 0.0497 

3 20 0.8990 0.0165 0.8669 0.9272 0.8872 0.9004 0.9115 0.0603 

4 50 0.8904 0.0173 0.8547 0.9177 0.8781 0.8923 0.9041 0.0630 

5 100 0.8862 0.0163 0.8528 0.9140 0.8745 0.8875 0.8988 0.0612 

6 500 0.8836 0.0165 0.8500 0.9112 0.8718 0.8852 0.8963 0.0611 

7 1000 0.8825 0.0167 0.8476 0.9104 0.8698 0.8838 0.8958 0.0628 

8 2000 0.8830 0.0169 0.8497 0.9096 0.8712 0.8843 0.8962 0.0599 

a = 0.75 

  τ Mean Std θ lower θ upper Q1 Q2 Q3 Confidence Length  

1 5 0.9264 0.0089 0.9088 0.9426 0.9198 0.9271 0.9327 0.0338 

2 10 0.9152 0.0116 0.8918 0.9353 0.9071 0.9154 0.9239 0.0435 

3 20 0.9045 0.0127 0.8781 0.9274 0.8964 0.9050 0.9136 0.0493 

4 50 0.8942 0.0147 0.8659 0.9190 0.8836 0.8941 0.9057 0.0532 

5 100 0.8909 0.0146 0.8621 0.9156 0.8803 0.8914 0.9024 0.0536 

6 500 0.8888 0.0140 0.8590 0.9125 0.8790 0.8897 0.8996 0.0535 

7 1000 0.8878 0.0142 0.8585 0.9113 0.8787 0.8887 0.8981 0.0527 

8 2000 0.8866 0.0142 0.8575 0.9110 0.8765 0.8881 0.8979 0.0535 

a = 0.8 

  τ Mean Std θ lower θ upper Q1 Q2 Q3 Confidence Length  

1 5 0.9289 0.0080 0.9120 0.9436 0.9236 0.9293 0.9344 0.0316 

2 10 0.9187 0.0101 0.8996 0.9377 0.9118 0.9192 0.9258 0.0381 

3 20 0.9081 0.0116 0.8849 0.9278 0.9001 0.9088 0.9167 0.0429 

4 50 0.8985 0.0122 0.8740 0.9192 0.8895 0.8991 0.9075 0.0452 

5 100 0.8950 0.0119 0.8707 0.9157 0.8863 0.8957 0.9040 0.0450 

6 500 0.8920 0.0117 0.8670 0.9132 0.8844 0.8926 0.9002 0.0462 

7 1000 0.8915 0.0126 0.8672 0.9135 0.8825 0.8925 0.9006 0.0463 

8 2000 0.8910 0.0119 0.8674 0.9126 0.8828 0.8917 0.8995 0.0452 
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Table 14 (cont). Sensitivity Analysis for θ 

a = 0.85 

  τ Mean Std θ lower θ upper Q1 Q2 Q3 Confidence Length  

1 5 0.9303 0.0073 0.9148 0.9436 0.9257 0.9304 0.9351 0.0287 

2 10 0.9221 0.0086 0.9039 0.9369 0.9168 0.9225 0.9285 0.0331 

3 20 0.9127 0.0098 0.8930 0.9304 0.9059 0.9132 0.9198 0.0374 

4 50 0.9027 0.0097 0.8843 0.9202 0.8961 0.9030 0.9096 0.0360 

5 100 0.8990 0.0098 0.8796 0.9172 0.8922 0.8989 0.9059 0.0376 

6 500 0.8961 0.0098 0.8767 0.9141 0.8893 0.8963 0.9030 0.0374 

7 1000 0.8954 0.0097 0.8754 0.9126 0.8887 0.8958 0.9020 0.0372 

8 2000 0.8952 0.0099 0.8754 0.9129 0.8880 0.8956 0.9022 0.0375 

a = 0.9 

  τ Mean Std θ lower θ upper Q1 Q2 Q3 Confidence Length  

1 5 0.9323 0.0071 0.9182 0.9464 0.9277 0.9324 0.9369 0.0282 

2 10 0.9251 0.0075 0.9104 0.9390 0.9201 0.9253 0.9303 0.0287 

3 20 0.9158 0.0077 0.9009 0.9302 0.9104 0.9162 0.9209 0.0293 

4 50 0.9067 0.0083 0.8896 0.9223 0.9011 0.9069 0.9126 0.0327 

5 100 0.9027 0.0083 0.8859 0.9178 0.8969 0.9030 0.9087 0.0318 

6 500 0.8999 0.0080 0.8841 0.9145 0.8945 0.9003 0.9054 0.0304 

7 1000 0.8994 0.0077 0.8846 0.9135 0.8939 0.8997 0.9052 0.0288 

8 2000 0.8989 0.0078 0.8819 0.9130 0.8939 0.8990 0.9043 0.0311 

 

According to Table 13, we find 1) when “a” increases, the mean of θ slightly increases and the 

standard deviation decreases. When τ is small (less than 50), the mean and standard deviation 

of θ are sensible. 2) “a” can negatively influence the confidence length. However, τ does not 

influence θ much except for small values. Since the variability of μ1, μ2 and μ3 decreases as “a” 

increases, we will obtain more concentrated values of θ based on the combined model. 3) The 

quartiles of θ increase when “a” increases and τ decreases. 
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Figure 4. 2D plots for mean θ 
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In order to get a clear idea for how θ is influenced by τ and a, we make two – dimensional plots 

for θ. All the data points in Figure 4 are based on the mean of 1,000 bootstrap for θ under 

different sets of value for τ and a.  

According to the first plot in Figure 4, we can infer that 1) a can positively influence θ under a 

fix value of τ. 2) There is a negative relationship between τ and θ and θ is sensitive when τ is 

less than 100. 

According to the second plot in Figure 4, we can conclude that 1) τ can negatively influence θ 

under a fixed value of a. Also θ is very sensible when τ is small. 2) There is a positive 

relationship between θ and a. 3) θ is very sensitive when τ is small. 

The two plots in Figure 4 give same conclusion. By performing sensitivity analysis in Table 13 

and Figure4, we conclude that there is a positive relationship between a and θ and a negative 

relationship between τ and θ. Moreover, θ is fairly stable no matter how τ changes in large 

number. This means there is no difference between using τ = 500 and τ = 2,000. We can save 

cost of prior information. 
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Chapter 4. Discussion 
In this paper we have discussed the concepts of MAR and MNAR and applied them with the 

familiar idea of statistical imprecision, producing the measure for θ. As an extension of the 

concept of confidence, our measures are expressed as the intervals for scalar parameters (θ, p 

and q). These reduce to conventional confidence intervals when it is assumed that there is 

MNAR about the statistical model underlying the data. The construction of the intervals in the 

plebiscite case is seen to convey useful information about the problem concerned.  

We have introduced three paths to analyze this problem. The first is to look at the bounds 

produced by the most pessimistic and most optimistic scenarios. In the case of the Slovenian 

plebiscite, we learn that even the most pessimistic scenario translates into a clear majority in 

support of independence. Secondly, under MAR assumption we produce an innovative way to 

calculate our parameter of interest. We successfully model one cell and two margins rather 

than a standard multinomial model. Meanwhile, based on Hamdan (1969) and Kocherlakota 

(1989), we develop the model from a bivariate binomial which has three parameters and two 

variables to a more suitable model which has three parameters and three variables and we 

deduce its useful properties. EM algorithm and bootstrap prove that we obtain precise 

estimation which is close to the official result. Thirdly, the plausible and flexible nonignorable 

nonresponse model can be considered under MNAR assumption. We introduce an additional 

centering model based on ignorable model. The results are almost the same as MAR’s results. It 

is true that the final value will not be known and such a confirmatory check is not possible. 

However, the method presented here enables a consideration of model selection, and the 

amount of parsimony can be controlled. The sensitivity analysis proves that model selection is 

essential for MNAR case and it gives fairly robust results, regardless of the variability of the 

parameters. 

On the other hand, we cannot tell from the data at hand whether the missing observations are 

MCAR, NMAR or MAR (although sometimes we can distinguish between MCAR and MAR). In 

the MNAR setting it is very difficult to accurately pinpoint the appropriate model for the 

missingness mechanism. In this paper we have defined the concepts of missing data and use 

them in different models. Any of the three assumptions is difficult to verify in any situation, but 
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it is quite popular for statisticians to begin with simplifying assumptions and analyze whether 

inferences are likely to change substantially as the assumptions are modified. In fact, for large 

well–performed surveys, MAR is often considered a reasonable starting point for statistical 

analysis (Little, 1988).  

In our work, the added work involved the construction of a conjugate and plausible MNAR 

model which also gave accurate inferences. Moreover, because of the specified prior 

information and the robustness of the MNAR model, it can reduce the cost of collecting prior 

information and doing additional follow up. In many surveys the cost of additional field work 

can be enormous; in complex surveys the cost can be in millions.  

For example, if you plan to launch a marketing research project, the general procedure would 

be as follows: 

1) Define the business problem; 

2) Prior research such as key personnel interview and focus group; 

3) Questionnaire design and test; 

4) Data collection; 

5) Analysis; 

Before running the project, it is a good idea to develop a well–designed nonignorable model 

and you would have a clear idea about how much prior information you need before starting 

your survey. You may save a lot of cost in the first three steps above if the nonignorable model 

fit well. 

Of course, in many studies the true value will not be known and such a checking cannot be 

done. However, the strategies in this paper enable consideration of a general nonignorable 

nonresponse model and the variability of parameters, sample size and even completeness rate 

can be controlled.  
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