
Major Qualifying Project

RSS-Based 3D Drone Localization and
Performance Evaluation

Zilu Tian

ztian@wpi.edu

Submitted to:

Professor Kaveh Pahlavan(ECE)

Professor Suzanne Weekes (MA)

Aug. 25, 2016 - May 2, 2017

Acknowledgment

The four-term project RSS-Based 3D Drone Localization and Performance Evaluation has three team mem-
bers: Chen Li, Yu Li, and Zilu Tian. Chen Li and Yu Li are graduate students who undertook this topic as
their direct research project in A and B terms. We would like to express our sincere gratitude to our advi-
sors, Professor Kaveh Pahlavan from ECE department and Professor Suzanne Weekes from MA department,
for their thoughtful insight and patient guidance. We would also like to extend our gratitude to the ECE
department at Worcester Polytechnic Institute (WPI) for funding our project.

2

Abstract

This project is motivated by identifying the location of a trespassing drone. A drone is often equipped with a
wireless camera which makes it vulnerable to the misuse of harassment, stalking, and other illegal activities.
To mitigate this issue, we are interested in determining the location of a drone based on channel modeling,
which studies the characteristics of signal propagation between transmitters (e.g. APs) and receivers (base
stations). We implemented three localization algorithms: maximum likelihood estimation (MLE), weighted
centroid, and recursive least square method (RLS). We also compared these algorithms with Cramer-Rao
lower bound (CRLB), a theoretical lower bound for an unbiased estimator.

3

Contents

1 Introduction 6
1.1 Project Description . 6
1.2 Report Outline . 6

2 Background 8
2.1 Introduction to Path-loss Model . 8
2.2 Design of Algorithms . 8

2.2.1 Maximum Likelihood Estimation . 8
2.2.2 Weighted Centroid . 8
2.2.3 Recursive Least Square Method . 9

2.3 Introduction to Cramer-Rao Lower Bound . 9

3 Methodology 10
3.1 Scenario Analysis and Path-loss Model . 10
3.2 Implementation of Algorithms . 14

3.2.1 Maximum Likelihood Estimation . 15
3.2.2 Weighted Centroid . 16
3.2.3 Recursive Least Square Method . 19

3.3 Calculation of Cramer-Rao Lower Bound . 23

4 Results and Discussions 27
4.1 Presence of Significant Measurement Error . 27
4.2 Performance Comparison in 3D . 28

5 Conclusions and Future Work 30

A Federal Regulations of Unmanned Aircraft Systems 31

B Data Collection 32

C Text Parsing in Python 33

D MATLAB Implementation of 2D MLE 35

E MATLAB Implementation of 2D Weighted Centroid 37

F MATLAB Implementation of 2D RLS 38

G MATLAB Implementation of 3D RLS 40

H MATLAB Implementation of 2D CRLB 43

I MATLAB Implementation of 3D CRLB 44

4

J GPS Conversion to NE coordinate 45

K Motion Detection 46

L MATLAB Implementation of Fourier Transform of Received Signals 48

5

List of Figures

3.1 Experiment for LoS measurements . 10
3.2 Experiment for NLoS measurements . 11
3.3 Measurement locations on campus . 11
3.4 Design of Example for LoS Measurement . 12
3.5 Path-loss Model (Track) . 12
3.6 Path-loss Model (Quad) . 13
3.7 Path-loss Model (Stratton Hall) . 13
3.8 Path-loss Model (3D,LoS) . 14
3.9 Path-loss Model (3D,NLoS) . 14
3.10 Maximum Likelihood Estimation - 4 Base Stations . 15
3.11 Maximum Likelihood Estimation in 3D . 16
3.12 Centroid Method Illustrated . 17
3.13 Circles with Radius di Centered at Each Base Station . 18
3.14 Weighted Centroid Estimation with Weight Factor 1

d . 18
3.15 Weighted Centroid Estimation with Weight Factor 1

d2 . 19
3.16 Cramer-Rao Lower Bound of 8 Base Stations . 25
3.17 Cramer-Rao Lower Bound in 3D, H=12 . 26
4.1 Significant Measurement Error . 27
4.2 Significant Measurement Error - Weighted Centroid Method 28
4.3 Significant Measurement Error - Recursive Least Square . 28
4.4 Evaluate MLE and RLS using CRLB . 29
B.1 A screen copy of WirelessMon in action . 32
J.1 Outdoor Scenario for GPS Measurement . 45
K.1 FFT of RSS with upwards motion . 46
K.2 FFT of RSS with downwards motion . 46
K.3 FFT of RSS with no motion . 47

6

1 Introduction

Our project is motivated by localizing a trespassing drone. A commercial drone is often equipped with a
wireless camera which makes it vulnerable to the misuse of harassment, stalking, wiretapping, and other
illegal activities [3]. Multiple incidents had happened in the recent years involving regulations of private
drones [2]. To alleviate this issue, we are interested in determining the location of an undesirable drone
based on our knowledge of channel modeling, which studies the characteristics of signal propagation between
transmitters and receivers.

To transmit back images, most drones have a wireless module which serves as an access point (AP) to
transmit Wi-Fi signal that can be measured using software such as WirelessMon. The design of experiment
for data collection includes four or more base stations. At each base station, more than 100 readings are
gathered. Three localization algorithms are used to process data: maximum likelihood estimation, weighted
centroid method, and recursive least square algorithm. For 2D measurement, a phone in the hot-spot mode
served as an AP was put on the ground. Four base stations were connected to the AP and measured the
signal strength of the AP from predefined distances. In 3D, phone is bundled with a drone hovering steadily
at various height. The actual location of the AP is recorded in both GPS reading and north east coordinate.
Path-loss model is constructed by finding the least square fit of the scatter plot of received signal strength
(RSS) vs distances in the log scale. The distance between the AP and each base station is calculated based
on RSS readings using path loss model.

1.1 Project Description

The goal of our project is to localize an undesirable drone based on RSS readings at different base stations.
We purchased a DJI Phantom 3 Basic for our experiment but realized that the AP was built in the remote
controller rather than the drone. Though there was still signal transmitting back to the controller from the
wireless camera, we were unable to detect such signals using WirelessMon, which could only read the RSS of
an AP. An alternative to WirelessMon was Savvius Omnipeek, a commercial network analysis software that
could detect signals from such transmitters, which was available for $1194 at the time of writing. Due to
the budget limitation, we did not pursue further and bundled a phone with the drone to study the localiza-
tion problem when signals were transmitted from the drone. Please note that drones are subject to federal
regulations, as detailed in Appendix A.

The first part of the project is largely consisted of experiment design and data collection, which is detailed
in Appendix B and C. After analyzing RSS readings, we apply three localization algorithms to approximate
the position of the AP. The estimation error is defined as the distance between the estimated location of the
AP and the actual location. The algorithms are evaluated based on the estimation error and comparison
with Cramer-Rao lower bound.

1.2 Report Outline

This report is organized as following. Chapter 2 Background provides an overview of concepts such as path-
loss model, localization algorithms, and Cramer-Rao lower bound. The implementations of these concepts

7

are detailed in Chapter 3 Methodology. In Chapter 4 Results and Discussions, we will show the performance
evaluation among the algorithms. Finally, we will summarize the conclusion of this project and future works
in Chapter 5.

The appendices include all the codes implemented for this project. Apart from localization, we also tested
for motion detection using RSS readings, which is documented in Appendix K and L.

8

2 Background

In this chapter, we first explain the concept of path-loss model. Next, we present an introduction to three
algorithms that we considered for localization: maximum likelihood estimation, weighted centroid, and
recursive least square method. Finally, we describe what Cramer-Rao lower bound is and how to calculate
it.

2.1 Introduction to Path-loss Model

A path loss model is a statistical propagation model that describes received signal strength Pr of a transmitter
at distance d, as defined in [5].

Pr = P0 − 10α log d+X (1)

where Pr is the received signal power, or received signal strength (RSS), expressed in the unit dBm. Power
x[mW] can be converted to dBm by

x[mW] = 10 log10
x

1mW[dBm].

α is the distance power gradient of the environment characterizing how fast a signal decays as the distance
increases. X ∼ N(0, σ2) is a random variable describing the effects of shadow fading.

In our project, we measured Pr and the standard deviation of the noise σ at each base station and
calculated α using least square best fit line of the scatter plot of Pr and log d.

2.2 Design of Algorithms

We considered three localization algorithms: maximum likelihood estimation, weighted centroid, and recur-
sive least square method.

2.2.1 Maximum Likelihood Estimation

Maximum likelihood estimation of a parameter θ is the value of θ̂ that maximizes a given likelihood function.
From the path loss model, we have

d(pr) = 10
pr−(p0+X)

10α .

Based on this equation, we can draw an annulus centered at each base station with inner radius

rinner = d(pavg + 2σ)

and outer radius is defined as
router = d(pavg − 2σ).

The location of the AP is the center of the most densely overlapped region.

2.2.2 Weighted Centroid

Weighted centroid method is a modification of centroid method, which can be summarized mathematically
in the equation below for the estimated AP location (x, y):

x =
n∑
i=1

wixi y =
n∑
i=1

wiyi

9

where (xi, yi) is the location of the ith base station. wi is the weight factor which is not unique. We explored
two choices, as described in the section Methodology:

w1i =
1
d2
i

n∑
j=1

1
d2
j

w2i =
1
di
n∑
j=1

1
dj

.

2.2.3 Recursive Least Square Method

Recursive least square method estimates the position of AP (x, y) as the minimizer of the sum of error
functions

E =
n∑
i=1

f2
i

where (xi, yi) is the location of the ith base station and fi is the error function for each base station. The
choice of fi can also be vary. We considered 2 options, as described in the section Methodology:

f1i(x, y) =
√

(xi − x)2 + (yi − y)2 − d2
i

f2i(x, y) = (xi − x)2 + (yi − y)2 − d2
i .

Solving the minimization problem requires an iterative approach, and we compared both Newton’s method
and Gauss-Newton’s method.

2.3 Introduction to Cramer-Rao Lower Bound

The Cramer-Rao Lower Bound (CRLB) is a theoretical lower bound with the property that

var(θ̂(Y)) ≥ CRLB = 1
I(θ)

for any unbiased estimator θ̂(Y) of parameter θ with observation variable Y . An estimator θ̂(Y) of Y is
unbiased if

E[θ̂(Y)] = θ(Y).

I(θ) is the Fisher matrix that measures the amount of information an observable random variable Y carries
about parameter θ, which is defined as the expectation of the square of relative steepness of the likelihood
function

I(θ) = E

(∂
∂θp(y; θ)
p(y; θ)

)2
 = E

[(
∂ ln p(y; θ)

∂θ

)2
]

= −E
[
∂2 ln p(y; θ)

∂θ2

]
.

In our case, observable random variable Y = Pr, θ = P0 − 10α log d. Since X ∼ N (0, σ), the likelihood
function is

p(y; θ) = 1√
2πσ

e−
(y−θ)2

2σ2 .

10

3 Methodology

In this chapter, we first define two scenarios tested in our project, line-of-sight (LoS) and non-line-of-sight
(NLoS). Measurements were taken at various locations on campus. The path-loss model calculated at each
location is also shown. Then we describe the implementation of localization algorithms as well as CRLB.

3.1 Scenario Analysis and Path-loss Model

LoS refers to the situation when an AP and a base station align in a line without any obstacle in between
them. When a transmitter is separated from the receiver by an object, we call the setting NLoS. The
following two drawings illustrate the experiment design for both scenarios.

Figure 3.1: Experiment for LoS measurements

Figure 3.1 depicts the experiment design for LoS measurement. Each base station is a laptop and the
AP is the drone. The ground is shown as x-y plane in light blue, and the base station(s) can be placed at
various locations on the ground, as indicated in the red dots.

11

Figure 3.2: Experiment for NLoS measurements

Figure 3.2 illustrates the design for NLoS measurement. The obstacle (wall) is drawn in light blue with
the base station and AP placed on different side of the wall. The drone is controlled at different heights, as
indicated in dark blue line, and a base station is placed along designated red line.

For 2D experiment when the AP is on the ground, we measured RSS readings in LoS scenario at different
locations on campus, including outside Stratton Hall, on the quad, and on the track, as shown in Figure 3.3.
Measurement locations are highlighted in black rectangle.

Figure 3.3: Measurement locations on campus

The experiment for LoS measurement is shown in Figure 3.4. Base stations are marked in yellow pins,
labeled as reference points. The position of the AP is marked as H on this map. To collect data for channel
modeling, the AP is fixed and the base station is placed along marked distances. For localization experiment,
base stations are fixed and AP is placed at different positions.

12

Figure 3.4: Design of Example for LoS Measurement

After acquiring data from different locations on campus, namely on the track, on the quad, and outside
Stratton Hall, we noticed that distance power gradient α calculated using measurements from different
locations differ significantly, as illustrate in following examples.

The measurements shown in Figure 3.5 were taken on the track. The path-loss model was

Pr = −63− 26 log10 d α = 2.6.

Figure 3.5: Path-loss Model (Track)

The measurements shown in Figure 3.6 were taken on the quad. The path-loss model was

Pr = −47− 36 log10 d α = 3.6.

13

Figure 3.6: Path-loss Model (Quad)

The measurements shown in Figure 3.7 were taken in front of the Stratton Hall. The path-loss model
was

Pr = −48− 29 log10 d α = 2.9.

Figure 3.7: Path-loss Model (Stratton Hall)

Note that hardware equipment can also introduce measurement errors. Readings using different network
interface card may not be the same.

Measurements in 3D LoS scenario exhibited less variations comparing with measurements in 2D LoS.
From Figure 3.8, the path-loss model was

Pr = −38− 20 log10 d α = 2

which matches the standard for free space specified in 802.11b. The distance d is calculated using Euclidean
norm for 3D.

14

Figure 3.8: Path-loss Model (3D,LoS)

For 3D NLoS scenario, measurements in Figure 3.9 were taken when the AP was 3.5m above the ground.
The path-loss model was

Pr = −27− 32 log10 d α = 3.2

which was close to the standard α = 3.5 as in 802.11b for urban area. d is calculated using Euclidean norm
for 3D.

Figure 3.9: Path-loss Model (3D,NLoS)

3.2 Implementation of Algorithms

Once we have path-loss model and RSS readings, we applied three localization algorithms to estimate the lo-
cation of AP: Maximum Likelihood Estimation, Weighted Centroid, and Recursive Least Square Estimation.
All algorithms were implemented in MATLAB as attached in Appendix D through Appendix G.

15

3.2.1 Maximum Likelihood Estimation

Maximum likelihood estimation of a parameter θ is the value of θ̂ that maximizes a given likelihood function.
From the path loss model, we have

d(pr) = 10
pr−(p0+X)

10α .

Based on this equation, we can draw an annulus centered at each base station with inner radius

rinner = d(pavg + 2σ)

and outer radius
router = d(pavg − 2σ).

Based on different situations, one can adjust the multiples of σ to other constant values to achieve a reasonable
overlapping region (e.g. search space). The location of the AP is the center of the most densely overlapped
region, as illustrated in Figure 3.10.

Figure 3.10: Maximum Likelihood Estimation - 4 Base Stations

In Figure 3.10, the AP location is highlighted in red star and the estimated AP position is labeled in
green cross. The estimation error is 0.47m.

The computation time for MLE in 3D increases dramatically comparing to 2D. Figure 3.11 illustrates
the application of MLE in 3D with 4 base stations. The algorithm for MLE 3D is an expansion based on 2D
MLE and is not provided in Appendix due to inefficient computation speed.

16

Figure 3.11: Maximum Likelihood Estimation in 3D

3.2.2 Weighted Centroid

Weighted Centroid is another commonly used algorithm in localization. We first consider a simpler case, the
centroid estimation, which can be summarized as

(x, y) = 1
n

n∑
i=1

(xi, yi)

where (x, y) is the estimated AP position, n is the number of base stations, and (xi, yi) is the location of the
ith base station. The equation can also be derived from minimizing a cost function J defined as the sum of
distances from the AP to the center of each circle,

J =
n∑
i=1

√
(xi − x)2 + (yi − y)2

as illustrated in Figure 3.12:

17

Figure 3.12: Centroid Method Illustrated

To minimize J , set ∂J
∂x = 0, ∂J∂y = 0. We have

∂J

∂x
= 0 =⇒

n∑
i=1

((xi − x)2 + (yi − y)2)− 1
2 (x− xi) = 0

∂J

∂y
= 0 =⇒

n∑
i=1

((xi − x)2 + (yi − y)2)− 1
2 (y − yi) = 0

((xi − x)2 + (yi − y)2)− 1
2 ≥ 0 =⇒ x = 1

n

n∑
i=1

xi, y = 1
n

n∑
i=1

yi

Centroid method is easy to implement but less accurate. One improvement is to assign a weight factor to
each base station representing the inverse relationship between the RSS and distance. The modified centroid
method including the weight factor wi can be expressed as:

x =
n∑
i=1

wixi y =
n∑
i=1

wiyi

where weight factor wi can take on different values

w1i =
1
di
n∑
j=1

1
dj

w2i =
1
d2
i

n∑
j=1

1
d2
j

.

As shown in the following example, w2i has a slightly lower estimation error than w1i and is implemented
for weighted centroid algorithm.

18

In this experiment, base stations were located at(0,0), (0,14), (14, 0), and (14, 14) respectively. RSS
readings collected at each base station in the order as presented were [-55, -54, -59, -62][dBm]. Figure
3.13 shows the location of each base station and the radius of each circle calculated using path-loss model
described before in (3.2.1) with Pr=Pavg. Figure 3.14 contains the estimation result using w1i and Figure
3.15 contains the estimation result using w2i.

Figure 3.13: Circles with Radius di Centered at Each Base Station

Figure 3.14 shows the estimation result using w1i. The error is 4.2273m.

Figure 3.14: Weighted Centroid Estimation with Weight Factor 1
d

Figure 3.15 shows the estimation result using w2i. The error is 4.1485m. w2i results in a slight better
approximation comparing with w1i and is adopted for this project.

19

Figure 3.15: Weighted Centroid Estimation with Weight Factor 1
d2

3.2.3 Recursive Least Square Method

We also applied an iterative method, Recursive Least Square (RLS), to find (x, y) that is closest to all n base
stations. This technique requires us to first define an error function fi for each base station that describes
the distance between the estimated AP (AP) location and circles centered at each base station, which is ex-
plained below. The total error which is the sum of error functions for all base stations is of form E =

n∑
i=1

f2
i .

To find minimizer (x, y), we need to solve ∇E = 0. In addition to Gauss-Newton’s method, we also ap-
plied Newton’s method for comparison. Newton’s method has a higher computational cost comparing with
Gauss-Newton’s method, but with similar estimation errors and the number of iterations for convergence.
To increase the speed of the algorithm, we also tested different stopping criteria for the iterative algorithm:
the difference between successive steps and the scaled difference between successive steps. For the same
tolerance 10−4, condition 2 the scaled difference takes less steps to converge, with identical estimation error
as condition 1. Therefore we used Gauss-Newton’s method with scaled difference error as stopping criteria
for our RLS method.

We considered two options for fi. The first error function f1i is defined as the Euclidean distance from
the AP to each circle,

f1i(x, y) = |
√

(xi − x)2 + (yi − y)2 − di|

where (x, y) is the estimated location of the AP, (xi, yi) are coordinates of the center of the ith circle and
di is the radius of each circle calculated using path loss equation described in the previous section Scenarios
and Channel Models. The total error function for n base stations is

n∑
i=1

f1i. However, absolute value function
is not differentiable and we can not applying standard technique of taking derivative to optimize. Thus we
use an alternative error function that simplifies the calculation

E1(x, y) =
n∑
i=1

f2
1i =

n∑
i=1

(
√

(xi − x)2 + (yi − y)2 − di)2. (2)

The second error function f2i is defined as the absolute value of difference between the square of the

20

distances, which is commonly used in localization

f2i(x, y) = |(xi − x)2 + (yi − y)2 − d2
i |.

The total error for n base stations is
n∑
i=1

f2i which suffers from similar indifferentiable problem due to the
absolute value involved and is replaced with following

E2(x, y) =
n∑
i=1

f2
2i =

n∑
i=1

((xi − x)2 + (yi − y)2 − d2
i)2. (3)

To minimize (2) and (3), we want to solve for ∇E1 =
[
∂E1
∂x

∂E1
∂y

]
= ~0 and ∇E1 =

[
∂E2
∂x

∂E2
∂y

]
= ~0.

The partial derivatives of E1 and E2 are calculated as

∂E1

∂x
=

n∑
i=1

2
(

((xi − x)2 + (yi − y)2)1/2 − di
)

((xi − x)2 + (yi − y)2)−1/2(x− xi)

=
n∑
i=1

2
(

1− di√
(xi − x)2 + (yi − y)2

)
(x− xi)

∂E1

∂y
=

n∑
i=1

2
(

((xi − x)2 + (yi − y)2)1/2 − di
)

((xi − x)2 + (yi − y)2)−1/2(y − yi)

=
n∑
i=1

2
(

1− di√
(xi − x)2 + (yi − y)2

)
(y − yi)

∂E2

∂x
=

n∑
i=1

4
(
(xi − x)2 + (yi − y)2 − d2

i

)
(x− xi)

∂E2

∂y
=

n∑
i=1

4
(
(xi − x)2 + (yi − y)2 − d2

i

)
(y − yi).

Both ∇E1 = ~0 and ∇E2 = ~0 are nonlinear systems of equations that can not be solved analytically. Thus
we turn to an iterative approach to solve the system, such as Newton’s method.

Newton’s root-finding method starts with an approximation of a general function using Taylor’s expan-
sion. Taylor’s first order expansion of a univariate function f : R→ R at point x[k] is

f(x) ≈ f(x[k]) + f ′(x[k])(x− x[k]) (4)

Let f(x) = 0, we get

f(x[k]) + f ′(x[k])(x− x[k]) = 0 =⇒ x = x[k] − f(x[k])
f ′(x[k]) .

Given a guess x[k], we hope to get a better solution to f(x) = 0 by solving the approximated linear
equation (4) to get x[k+1] that solves f(x[k+1]) = 0. Starting with an initial guess x[0], Newton’s method
gives successive iterates x[1], x[2] . . . x[n] which hopefully converges to a solution x for f(x) = 0:

x[k+1] = x[k] − f(x[k])
f ′(x[k]) . (5)

21

The iteration is well defined if f ′(x[k]) 6= 0 at each step.

For F : Rn → Rm, F (x) = [f1(x), f2(x), . . . fm(x)]T , Taylor’s first order expansion of f at the point x[k]

is
F (x) ≈ F (x[k]) +∇F (x[k])(x− x[k]) (6)

where the Jacobian matrix ∇F is

∇F =


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
...

...
...

∂fm
∂x1

∂fm
∂x2

. . . ∂fm
∂xn


In the same manner as before for f(x) = 0, we get Newton’s method for solving a system of equations, which
is well defined if the Jacobian matrix is invertible

x[k+1] = x[k] − (∇F (x[k]))−1F (x[k]). (7)

Since equation (7) requires Jacobian matrix to be invertible, n = m i.e F : Rn → Rn,

F (x) =
[
f1(x) f2(x) . . . fn(x)

]T
with ~x =

[
x1 x2 . . . xn

]
.

For our work, we aim to minimize error function E : Rn → R defined in (2) and (3). As stated earlier,
this requires to solve ∇E = ~0 using an iterative approach. So we use an iterative method and replace F
with ∇E in (7):

x[k+1] = x[k] − (∇2E(x[k]))−1∇E(x[k]) (8)

which is well-defined if ∇2f is invertible. In particular,

E(~x) =
n∑
i=1

fi(~x)2 = ~FT ~F

where fi : Rn → R, ~F =
[
f1 f2 . . . fn

]T
. The Jacobian matrix of E is calculated as

∇E =
(
∂E

∂xj

)
j

=
(

2∇(~F)T ~F
)

and the Hessian matrix of E is calculated as

∇2E =
(

∂2E

∂xj∂xi

)
j,k

=
(

∂

∂xj

(
m∑
i=1

fi(~x) ∂fi
∂xk

))

=
m∑
i=1

(
∂fi
∂xj

∂fi
∂xk

+ fi
∂2fi

∂xk∂xj

)
.

When the value of fi is small or fi is close to linear, the second order derivative term is close to 0 and
we get the following approximation for Hessian matrix:

∇2E = (∂2E

∂xj∂xi
)j,k ≈

m∑
i=1

∂fi
∂xj

∂fi
∂xk

= ∇~FT∇~F .

22

Substitute the approximation of Hessian matrix (3.2.3) and (3.2.3) into the Newton’s method stated in (8)
and we get a variation of Newton’s method, Gauss-Newton’s method:

x[k+1] = x[k] − (∇~FT∇~F)−1(∇(~F)T ~F).

To choose between Newton’s method and Gauss-Newton’s method, we compared the estimation error as
well as the number of iterations required to converge for both methods. Estimation error is defined as the
Euclidean distance between the estimated AP location and the actual AP location. The estimation error
of applying both algorithms is identical, as can be seen from Table 1. Though the number of iterations
until convergence is similar for both techniques, Newton’s method has a slightly higher computational cost
comparing to Gauss-Newton’s method, which does not require the calculation of Hessian matrices. In the
rest of the discussion, we consider only Gauss-Newton’s algorithm.

The base stations are at (0, 0), (0, 14), (14, 0), (14, 14). The actual location of AP is (3, 3). The initial
estimation of the AP location is the output of the Weighted Centroid algorithm, (2.929, 4.3). In the following
two tables, we recorded 10 sets of experiments with RSS readings at each base station randomly generated
between -70dBm and -50dBm, as shown in Table 2. In Table 1, columns 2 to 5 contain the distance di
between the estimated AP location and each base station calculated using RSS in Table 1 and path-loss
model described in section Scenarios and Channel Models. Columns 6 to 9 in Table 1 are the estimation
error using Gauss-Newton’s method, the number of iterations to converge using Gauss-Newton’s method,
estimation error using Newton’s method, and the number of iterations to converge using Newton’s method.

Table 1: Distance Between Estimated Location to Each Base Station and Iteration Numbers and Error

Distance (0,0) (0,14) (14,0) (14,14) error gn iter gn error n iter n
set 1 10.42 4.74 8.05 6.37 6.91 11 6.91 11
set 2 23.95 3.29 30.03 6.31 21.56 16 21.56 10
set 3 8.14 5.89 11.88 7.27 6.27 9 6.27 9
set 4 18.79 14.33 15.39 29.27 11.40 9 11.40 11
set 5 13.04 8.24 21.80 26.99 12.29 6 12.29 10
set 6 8.26 24.67 20.95 15.15 10.48 18 10.48 9
set 7 17.71 3.92 11.94 9.31 11.78 6 11.78 6
set 8 16.20 4.17 25.45 7.01 15.91 11 15.91 65
set 9 7.64 4.81 7.97 12.37 3.87 8 3.87 9
set 10 17.17 17.35 10.69 4.79 13.93 7 13.93 7

23

Table 2: Random RSS Readings Within (-70, -50) at Each Base Station

RSS Reading (0,0) (0,14) (14,0) (14,14)
set 1 -60.36 -53.51 -58.11 -56.08
set 2 -67.59 -50.35 -69.55 -56.00
set 3 -58.21 -55.40 -61.49 -57.23
set 4 -65.48 -63.12 -63.75 -69.33
set 5 -62.31 -58.32 -66.77 -68.62
set 6 -58.34 -67.84 -66.42 -63.61
set 7 -64.96 -51.87 -61.54 -59.38
set 8 -64.19 -52.41 -68.12 -56.91
set 9 -57.66 -53.64 -58.03 -61.85
set 10 -64.69 -64.79 -60.58 -53.60

For the stopping criteria, we considered two alternative conditions for terminating the iterative algorithm.
The tolerance is 10−4. Condition 1 is |xn − xn+1| < tol and condition 2 is |xn−xn+1

xn+1 | < tol. We tested the
two stopping conditions on 10 sets of randomly generated RSS readings and compared the estimation error
as well as the number of iterations until convergence for both conditions, using Gauss-Newton’s method,
for each set. The results are presented in the following Table 3. Column 1 and 2 contain the number of
iterations until convergence for condition 1 and condition 2 respectively. As can be seen, condition 2 requires
less iterations comparing to condition 1. Therefore we used condition 2 as stopping criteria for RLS in our
project.

Table 3: The Number of Iterations Required for Two Stopping Conditions

cond1 iter cond2 iter
31 25
20 17
45 37
23 19
21 17
31 26
26 22
17 14
26 22
21 18

3.3 Calculation of Cramer-Rao Lower Bound

The general form of an observation function is y = θ + η, where η is Gaussian noise with zero mean and
variance σ2. The observation function for our project is:

Pr = P0 − 10α log d+X

24

So we have
θ(d) = P0 − 10α log d

and Gaussian noise η corresponds with shadow fading X ∼ N (0, σ2). The distribution function of an
observation function y given θ is

p(y; θ) = 1√
2πσ

e−
[y−θ(d)]2

2σ2

From [4], Fisher information matrix is defined as

F = E

[
∂ ln p(y; θ)

∂θ

]2
= −E

[
∂2 ln p(y; θ)

∂θ2

]
.

After calculation, we get

F = (θ′(d))2

σ2

and
CRLB = F−1 = (ln 10)2σ2

100α2 d2

The square root of the CRLB is the ranging error σp [5]. For example, in one of our path-loss models,
distance power gradient α = 2.1 from the best fit line, and σ = 2.5 calculated from the measurement result
one location. The ranging error in this case is σp ≥ ln 10σ

10α d = 0.184d. So our estimation result using RSS for
this model at the location has an uncertainty of 0.184 times the distance.

For multiple observations, yi = θi(x, y)+ηi, i = 1 . . .K [5], where (x, y) is the coordinate of a given point.
For this project,

yi = P (ri) = P0 − 10αi log di +X i = 1, . . . ,K

θi(x, y) = P0 − 10αi log di

di =
√

(x− xi)2 + (y − yi)2

We can express them in a vector form:

G(x, y) = [θ1(x, y) θ2(x, y) . . . θN (x, y)]T

N = [η1 η2 . . . ηK]T

Then y = G(x, y) + N . Σ = E[ηT η] is a diagonal covariance matrix for variance of the noise σi, the
distribution function of the observation is

p(θ;x, y) = 1√
(2π)K |Σ|

e−
1
2 |y−G(x,y)|TΣ−1|y−G(x,y)|

Define H = ∇xG(x, y). Fisher information matrix becomes [5]

F = E[{∇x,y[y −G(x, y)]T }Σ−1{∇x,y[y −G(x, y)]}] = HTΣ−1H

where

H = ∇x,y[y −G(x, y)] = −∇x, y[G(x, y)] = − 10
ln 10 [α1α2 . . . αK]IN


x−x1
r2

1

y−y1
d2

1
x−x2
r2

2

y−y2
d2

2

.
x−xK
r2
K

y−yK
d2
K


25

The CRLB is then given by

CRLB = Trace||F−1|| = Trace{HTΣ−1H}.

If we assume zero-mean white Gaussian noise,

Σ =

σ2
p, i = j

0, i 6= j
i, j = 1, 2, . . . ,K

CRLB is calculated as

CRLB = Trace[σ2
p(HTH)−1] = Trace

[
σ2
x σ2

xy

σ2
xy σ2

y

]
=⇒ σp =

√
σ2
x + σ2

y.

In the following example, we have 8 base stations, K = 8. The relationship between location of points
and ranging error σp is shown by plotting the contour of (x, y,CRLB).

Figure 3.16: Cramer-Rao Lower Bound of 8 Base Stations

Each base station in Figure 3.16 is marked as a red dot. We can see the stability of estimated result;
larger variance leads to lower stability. If AP is close to any base station, the contour plot is denser in that
region. The MATLAB implementation for computing CRLB in 2D is attached in Appendix H.

The CRLB for 3D localization when AP is 12m above the ground is shown below in Figure 3.17. Base
stations are indicated by red rectangles in the figure.The MATLAB implementation for computing CRLB in
2D is attached in Appendix I.

26

Figure 3.17: Cramer-Rao Lower Bound in 3D, H=12

27

4 Results and Discussions

In this chapter, we cross examine the performance of three algorithms under different assumptions. Weighted
centroid is relative robust in the presence of significant measurement error when the ratios among distances
are preserved. In 3D measurement, MLE has better performance than RLS.

4.1 Presence of Significant Measurement Error

As shown in the following figure, the measurement error can be quite significant due to multi-path inter-
ference. AP is located at (3,3) and the location of base stations are (0,0), (0,14), and (14,0). The RSS
reading at each base station is -73.3dBm, -78.52dBm and -78.88dBm respectively. Upon converting these
measurements into distances, we get the following figure. The radius of each circle is much larger than
expected. When the ratio among the actual distances is relatively the same as the ratio among the RSS
readings, despite the variance caused by noise, the weighted centroid algorithm is a very robust method to
estimate the location of AP in 2D.

Figure 4.1: Significant Measurement Error

Weighted centroid offers a good estimation in this case, as shown in the following graph. The estimation
error is 0.89m.

28

Figure 4.2: Significant Measurement Error - Weighted Centroid Method

Other two methods both failed in this case. As shown below, the estimation error using RLS is 73m.
The MLE has similar poor performance.

Figure 4.3: Significant Measurement Error - Recursive Least Square

4.2 Performance Comparison in 3D

Since all base stations are placed on the ground, weighted centroid method does not generalize to 3D with
the current measurement data. In 3D, MLE has lower estimation error than RLS in 3D, as can be seen in
the following table.

29

Method No.Rx Error(m) ErrorX(m) ErrorY(m) ErrorZ(m)

MLE
4 6.8573 4.1729 4.3572 3.2594
6 5.2 3.2339 3.3185 2.3818
8 4.9312 3.0885 3.1011 2.2716

RLS
4 8.1162 4.6312 5.1023 4.2886
6 7.3471 4.2809 4.2536 4.1907
8 6.3955 3.7510 4.0034 3.2872

Table 4: Maximum Likelihood Estimation vs Recursive Least Square: estimation error

This observation is also supported by computing CRLB of the two algorithms in 3D. MLE shown in
green in figure below has lower variance comparing to RLS in blue and is closer to CRLB, as shown in red.

Figure 4.4: Evaluate MLE and RLS using CRLB

30

5 Conclusions and Future Work

In this project, we designed and implemented three localization algorithms based on RSS readings from
different base stations. Our results showed that 3D RSS-based drone localization is achievable with reasonable
error under certain condition. In 2D, weighted centroid is relatively robust to the fluctuation of measurement
errors. In 3D, MLE has lower estimation error and is closer to CRLB comparing with RLS.

For future projects, here are some suggestions that can be improved:

• Intercept the actual signal transmitted from the drone instead of using a phone.

• WiFi password of the drone is currently assumed to be known, which is not quite realistic.

• We used laptops as base stations. Can explore the possibility of using Raspberry Pi, Arduino, or other
embedded system.

• Improve the algorithm of MLE in 3D to reduce run time.

• Weighted centroid method is limited to 2D due to the location of base stations. Can experiment with
different positions of base stations and to include information of height.

• Localization techniques that do not based on RSS can also be explored: angle of arrival, time of arrival,
and etc.

• Apply machine learning to train the data and get better prediction.

31

A Federal Regulations of Unmanned Aircraft Systems

A drone as a type of Unmanned Aircraft Systems(UAS) is subject to federal regulations. At the beginning
of our project, we went through the rules and followed them closely. Below is a summary of the requirements
for a non-commercial light-weight UAS, according to the Federal Aviation Association at the time of writing
[1].

• Register your UAS if it weighs more than 0.55 pounds and less than 55 pounds

• Label your UAS with your registration number

• Fly at or below 400 feet

• Keep your UAS within sight

• Never fly near other aircraft, especially near airports

• Never fly over groups of people

• Never fly over stadiums or sports events

• Never fly near emergency response efforts such as fires

• Never fly under the influence

• Be aware of airspace requirements

32

B Data Collection

To measure the received signal strength (RSS) of a Wi-Fi signal, we used software WirelessMon, which is
available for Windows and Android devices.

Figure B.1: A screen copy of WirelessMon in action

Image B.1 is the user interface of WirelessMon. Service Set Identifier (SSID) shown in the image is
a case sensitive, unique identifier attached to the header of packets sent over a wireless local-area network,
which can be considered as the name for an access point. Signal shows the received signal strength in unit
dbm, which is the power ratio in decibels of the received power per one milliWatt. The measurement of
Signal is updated periodically, and the time interval can be specified in Configurations/General. For
our project, we need to log continuous readings and compute the average and variance of the signal strength
measurements. This can be achieved in Configurations/Logging Options which specifies output path for
Connected Node Log that contains received signal strength at different time instances at the same location.

Constructing a path-loss model requires 8 to 15 measurements, which will result in 8 to 15 files each time.
To automate the process of calculating the average and variance from each file repeatedly, we wrote a Python
script to loop through all the text files in a designated data folder with a naming convention xxyy.txt, where
xx is the access point coordinate and yy is the measurement location. Please refer to Appendix C for data
parsing script.

33

C Text Parsing in Python

A script to parse data input from WirelessMon

Sample input (0044.txt):

#

Index, Time, SSID, MAC, Channel, Percentage(%), Strength(dBm)

0, 16:44:58 7-Oct-2016, "Lee "de iphone (3), 22-3c-AE-48-B6-C0,6,63,-54

#

The length of the file is undetermined.

Want to keep the last element of the line, and calculate the average and std

the length of the file

num lines = sum(1 for line in f)

def meanList(numbers):

return float(sum(numbers)/len(numbers))

def stdList(numbers, avg):

sumSquare = sum((x - avg)**2 for x in numbers)

stdev = (sumSquare/len(numbers))**0.5

return stdev

import os

directory that contains all the data file

dataFiles = os.listdir('C:/Users/Zilu/Desktop/tmpData');

a summary file that all the results can write to

#summaryFile = open('C:\Users\Zilu\Google Drive\MQPLocalization\Test1007\1007Zilu\summary.txt');

for fileNames in dataFiles:

extract only data files that end with .txt

if fileNames.endswith('.txt'):

fname = fileNames

received signal strength reading

rss = [];

with open(fname,'r') as input file:

skip the header of the file

lines = input file.readlines()[2:]

for line in lines:

text parsing by comma

line = line.split(',')

check the mac address to make sure the measurement is LEE IPHONE

if line[-4]=='22-3C-AE-48-B6-C0':

rss.append(line[-1][:-1])

else:

print('ERROR: Wrong MAC Address!')

34

convert list of strings to int

rss = map(int, rss)

compute the mean of the list

meanRSS = meanList(rss)

AP center = [int(fname[-6:-5]),int(fname[-5:-4])]

obs point = fname[0:-6]

print ('AP', AP center,'at',obs point,'Average', meanRSS, 'Std', stdList(rss, meanRSS))

35

D MATLAB Implementation of 2D MLE

function [pointInRing] = ring(center, inner radius, outer radius)

xmin = center(1)-outer radius;

xmax = center(1)+outer radius;

ymin = center(2)-outer radius;

ymax = center(2)+outer radius;

% create a grid of points

X = [xmin:0.1:xmax];

Y = [ymin:0.1:ymax];

pointInRing = [];

for i=1:length(X)

x = X(i);

for j = 1:length(Y)

y = Y(j);

if ((x-center(1))ˆ2 + (y-center(2))ˆ2 ≤ (outer radiusˆ2)) && ((x-center(1))ˆ2 + ...

(y-center(2))ˆ2 ≥ (inner radiusˆ2))

pointInRing = [pointInRing; [x,y]];

end

end

end

return

end

function [est loc, error] = Maximum Likelihood 2D(refLoc, apLoc, rss, rssSig, alpha, c)

xval = refLoc(:,1);

yval = refLoc(:,2);

nodesNum = length(rss);

sigRange = 1;

rssUpper = rss + sigRange*rssSig;

rssLower = rss - sigRange*rssSig;

du = zeros(nodesNum,1);

dl = zeros(nodesNum,1);

for i=1:length(rss)

du(i) = 10ˆ((1/alpha)*(rssUpper(i) - c));

dl(i) = 10ˆ((1/alpha)*(rssLower(i) - c));

end

figure;

for i = 1:length(rss)

viscircles(refLoc(i,:),du(i));

36

hold on;

viscircles(refLoc(i,:),dl(i));

end

% interior regions, exterior regions, ring regions

Rings = cell(length(xval));

for i = 1:length(rss)

Rings{i} = round(ring([xval(i),yval(i)],du(i),dl(i))*10)/10;

end

C1 = intersect(Rings{1}, Rings{2},'rows');
C2 = intersect(C1, Rings{3},'rows');
C3 = intersect(C2, Rings{4},'rows');

edx = sum(C3(:,1))/length(C3);

edy = sum(C3(:,2))/length(C3);

error = ((edx-apLoc(1))ˆ2+(edy-apLoc(2))ˆ2)ˆ.2;

h1 = plot(edx, edy, 'kˆ');

hold on;

h2 = plot(apLoc(1), apLoc(2),'g+');

hold on;

h3 = plot(refLoc(:,1),refLoc(:,2),'ˆb');

titleStr = sprintf('ML Estimation\nError=%2f m', error);

title(titleStr);

legend([h1, h2, h3], {'Estimated Location', 'Actual Location', 'Base Stations'});
axis('square');

est loc = [edx, edy];

end

37

E MATLAB Implementation of 2D Weighted Centroid

function [est loc, error] = Weighted Centroid 2D(refLoc, apLoc, rss, alpha, c)

rss = rss';

% path loss model used for calculation

d=10.ˆ((rss-c)/alpha);

for j=1:1:size(rss,2)

% estimate the location based on different weighting factors

for i=1:1:size(rss,1)

w(i)=(1/d(i,j).ˆ2)/sum(1./d(:,j).ˆ2);

end

x=w*refLoc(:,1);

y=w*refLoc(:,2);

edx(j)=x;

edy(j)=y;

end

for y=1:1:size(rss,2)

error2(y)=(sum(([edx(y),edy(y)]-apLoc(y,:)).ˆ2))ˆ0.5;

end

figure;

h1 = plot(edx, edy, 'kˆ');

hold on;

h2 = plot(apLoc(1), apLoc(2),'g+');

hold on;

h3 = plot(refLoc(:,1),refLoc(:,2),'ˆb');

titleStr = sprintf('Weighted Centroid Estimation \nError=%2f', error2);

title(titleStr);

legend([h1, h2, h3], {'Estimated Location', 'Actual Location', 'Base Stations'});
axis('square');

error = error2;

est loc = [edx, edy];

end

38

F MATLAB Implementation of 2D RLS

function [est loc, error] = RLS 2D(refLoc, apLoc, rss, alpha, c, init loc)

distance = 10.ˆ((rss-c)/alpha);

figure;

for i = 1: length(rss)

viscircles(refLoc(i,:), distance(i));

hold on;

end

% calculate the RLS

base station num = size(refLoc,1);

temp location = init loc ;

estimated error = norm(sum((refLoc - (ones(base station num,1)*temp location)).ˆ2,2)-...

(distance.ˆ2)',1).ˆ2;

% estimated error = (sum((refLoc - ...

(ones(base station num,1)*temp location)).ˆ2,2).ˆ0.5-(distance)').ˆ2;

while norm(estimated error) > 1e-4 %iterative process

jacobian matrix = -2*(refLoc - ones(base station num,1)*temp location);

f = sum((refLoc - (ones(base station num,1)*temp location)).ˆ2,2)-(distance.ˆ2)';

% jacobian matrix = sum((refLoc - ...

(ones(base station num,1)*temp location)).ˆ2,2).ˆ(-0.5).*(...

ones(base station num,1)*temp location(1)-refLoc(:,1));

% f = sum((refLoc - (ones(base statiThe distance between the estimated location and ...

the actual position of access point is 5.096m, which corresponds to a relative error of ...

25.74\%.
on num,1)*temp location)).ˆ2,2).ˆ0.5-(distance)';

estimated error = -inv(jacobian matrix' * jacobian matrix) *(jacobian matrix') * f ;

temp location = temp location + estimated error' ;

end

edx = temp location(1);

edy = temp location(2);

error = ((edx-apLoc(1))ˆ2+(edy-apLoc(2))ˆ2)ˆ0.5;

h1 = plot(edx, edy, 'kˆ');

hold on;

h2 = plot(apLoc(1), apLoc(2),'g+');

hold on;

h3 = plot(refLoc(:,1),refLoc(:,2),'ˆb');

titleStr = sprintf('RLS Estimation\nError=%2f m', error);

title(titleStr);

legend([h1, h2, h3], {'Estimated Location', 'Actual Location', 'Base Stations'});
axis('equal');

figure;

39

for i = 1: length(rss)

viscircles(refLoc(i,:), distance(i));

hold on;

end

hold on;

h4 = plot(refLoc(:,1),refLoc(:,2),'ˆb');

legend([h4],'Base Stations');

axis('equal');

est loc = [edx, edy];

end

40

G MATLAB Implementation of 3D RLS

% helper function

function [final x, final y,final z,estimated error,h3] = ...

RLS(known references,initial guess,distances)

if size(known references,2) 6= 3

error('location of known reference points should be entered as Nx3 matrix');

end

% figure(1);

hold on

grid on

i=1;

temp location(i,:) = initial guess ;

temp error = 0 ;

for j = 1 : size(known references,1)

temp error = temp error + abs((known references(j,1) -temp location(i,1))ˆ2 + ...

(known references(j,2) - temp location(i,2))ˆ2+(known references(j,3) - ...

temp location(i,3))ˆ2 -distances(j)ˆ2) ;

end

estimated error = temp error ;

% while norm(estimated error) > 2*(1e-2)%iterative process for LS algorithm

for j=1:1:1000

for j = 1 : size(known references,1) %Jacobian has been calculated inadvance

jacobian matrix(j,:) = -2*(known references(j,:) -temp location(i,:)) ; %partial ...

derivative is i.e. -2(x 1-x)

f(j) = (known references(j,1) - temp location(i,1))ˆ2 +(known references(j,2) - ...

temp location(i,2))ˆ2+(known references(j,3) - temp location(i,3))ˆ2 - ...

distances(j)ˆ2 ;

end

estimated error = -inv(jacobian matrix' * jacobian matrix) *(jacobian matrix') * f' ; ...

%update the U and E

temp location(i+1,:) = temp location(i,:) + estimated error' ;

i = i + 1;

end

final x = temp location(i,1) ;

final y = temp location(i,2) ;

final z = temp location(i,3) ;

h3=plot3(final x,final y,final z,'rx');% plot

% text(final x,final y,' estimated point using RLS-RSS')

title('coordinate')

xlabel('x(m)');

ylabel('y(m)');

end

41

reference1=[42.274768,-71.811306];

reference3=[42.274642,-71.811421];

reference2=[42.274835,-71.811453];

point1=[42.274748,-71.811417];

point2=[42.274715,-71.811361];

point3=[42.274807,-71.811378];

point4=[42.274733,-71.811551];

[reference3codx,reference3cody]=coordinateTrans(reference3(1),...

reference3(2),reference1(1),reference1(2));

[reference2codx,reference2cody]=coordinateTrans(reference2(1),...

reference2(2),reference1(1),reference1(2));

[point1codx,point1cody]=coordinateTrans(point1(1),point1(2),...

reference1(1),reference1(2));

[point2codx,point2cody]=coordinateTrans(point2(1),point2(2),...

reference1(1),reference1(2));

[point3codx,point3cody]=coordinateTrans(point3(1),point3(2),...

reference1(1),reference1(2));

[point4codx,point4cody]=coordinateTrans(point4(1),point4(2),...

reference1(1),reference1(2));

figure(1)

x=[0,reference3codx,reference2codx];

y=[0,reference3cody,reference2cody];

z=[0,0,0];

b=scatter3(x,y,z,'ok');

px=[point1codx,point2codx,point3codx,point4codx];

py=[point1cody,point2cody,point3cody,point4cody];

pz=[4.5,4.5,4.5,4.5];

hold on

d=scatter3(px,py,pz,'rd');

legend([b,d],'BS','actual point of drone')

xlabel('x(m)')

ylabel('y(m)')

zlabel('z(m)')

title('comparison of NE coordiante transformed by GPS and actual coordinate we set ')

text(x(1)+0.5,y(1),0,'r1')

text(x(2)+0.5,y(2),0,'r3')

text(x(3)+0.5,y(3),0,'r2')

text(px(1)+0.5,py(1),pz(1),'p1')

text(px(2)+0.5,py(2),pz(2),'p2')

text(px(3)+0.5,py(3),pz(3),'p3')

text(px(4)+0.5,py(4),pz(4),'p4')

rss=[-58.17,-58.13,-60;-55.84,-55.08,-62.82;-57.3,-62.88,-54.96;

-64.82,-62.97,-61.44];

for i=1:1:3

references(i,:)=[x(i),y(i),z(i)];

end

[xx, yy, zz]=sphere(50);

42

j=4;

r1=10.ˆ((rss(j,1)+38)/(-20));

r2=10.ˆ((rss(j,2)+38)/(-20));

r3=10.ˆ((rss(j,3)+38)/(-20));

figure(2)

mesh(r1*xx+x(1),r1*yy+y(1),r1*zz);

hold on

mesh(r2*xx+x(2),r2*yy+y(2),r2*zz);

mesh(r3*xx+x(3),r3*yy+y(3),r3*zz);

axis equal

alpha(0.3)

distances=[r1,r2,r3];

initial guess=[px(j), py(j) ,pz(j)];

[final x, final y,final z,estimatederror,h3] = RLS(references,initial guess,distances);

%

error(j)=((final x-px(j))ˆ2+(final y-py(j))ˆ2+(final z-pz(j))ˆ2)ˆ0.5;

43

H MATLAB Implementation of 2D CRLB

x = 0:0.2:16;

y = 0:0.2:16;

AP=[0,0;14,0;0,14];

e=2;

[X,Y] = meshgrid(x,y);

for j=1:1:81

for k=1:1:81

for i=1:1:3

r(i)=sqrt((X(j,k)-AP(i,1)).ˆ2+(Y(j,k)-AP(i,2)).ˆ2);

P(i)=-21/log(10)*((X(j,k)-AP(i,1))/(r(i).ˆ2));

q(i)=-21/log(10)*((Y(j,k)-AP(i,2))/(r(i).ˆ2));

H(i,1)=P(i);

H(i,2)=q(i);

end

C=eˆ2*inv(H'*H);

Z(j,k)=sqrt(C(1,1)+C(2,2));

end

figure

contour(X,Y,Z,'ShowText','on')

ylabel('y')

xlabel('x')

title('CRLB')

44

I MATLAB Implementation of 3D CRLB

x = -2:0.2:16;

y = -2:0.2:16;

AP=[0,0;7,0;14,0;0,7;14,7;0,14;7,14;14,14];

e=8;

[X,Y] = meshgrid(x,y);

for j=1:1:91

for k=1:1:91

for i=1:1:8

r(i)=sqrt((X(j,k)-AP(i,1)).ˆ2+(Y(j,k)-AP(i,2)).ˆ2+36);

P(i)=-20/log(10)*((X(j,k)-AP(i,1))/(r(i).ˆ2));

q(i)=-20/log(10)*((Y(j,k)-AP(i,2))/(r(i).ˆ2));

z(i)=-20/log(10)*(36)/(r(i).ˆ2);

H(i,1)=P(i);

H(i,2)=q(i);

H(i,3)=z(i);

end

C=eˆ2*inv(H'*H);

Z(j,k)=sqrt(C(1,1)+C(2,2)+C(3,3));

end

end

figure

contour(X,Y,Z,'ShowText','on')

ylabel('y(distance)')

xlabel('x(distance)')

title('contour of CRLB in 3D ')

hold on

known references=[0,0;7,0;14,0;0,7;14,7;0,14;7,14;14,14];

referencex=known references(:,1);

referencey=known references(:,2);

h1=plot(referencex,referencey,'rs');

legend(h1,'reference point')

45

J GPS Conversion to NE coordinate

The location of the drone at different time stamps can be retrieved from flight record. The following algorithm
converts the GPS readings to NE coordinate. The idea is similar to the conversion of a point from spherical
coordinate to Cartesian coordinate, as illustrated in following code snippet. The return values deltx and
delty are length in x and y directions respectively.

% lon: longitude, lat: latitude, both in radians; R is the radius of the earth: 6371000m

R = 6371000;

deltx=R*delt(lon)

detly=R*delt(lat)

The theoretical error of GPS measurement is about 10m. We decided to test for GPS errors in our
experiment. We started by defining the following experimental setup in Google Map, with reference points
and drone’s locations marked in yellow pins.

Figure J.1: Outdoor Scenario for GPS Measurement

We then measured the distance between the two reference points in Google Map and compared it with
the computed result from GPS to NE algorithm. The distance between reference1 and reference3 measured
in Google Map is 16.58m, and the calculated result of our algorithm is 16.91m, which is fairly accurate. We
repeated the calculation for different reference points and all results are within reasonable accuracy.

46

K Motion Detection

To abstract information about motion from the received signals, we applied Fourier Transform to convert
signals from time domain to frequency domain. In MATLAB, this can be done using command fft(). Fol-
lowing are figures of the FFT of signals with motions. Oscillations and noise make it hard to reach any
conclusion about motion detection.

Figure K.1: FFT of RSS with upwards motion

Figure K.2: FFT of RSS with downwards motion

47

Figure K.3: FFT of RSS with no motion

48

L MATLAB Implementation of Fourier Transform of Received
Signals

% fourier transform of the signals for motion detection

close all;

clear all;

clc;

% rss readings at 7,7 when AP is motionless

rss = [-52 -52 -52 -52 -52 -52 -52 -52 -52 -52 -52 -52 -52 -52 -57 -57 -57 -57 -57 -57 -57 ...

-57 -57 -57 -57 -57 -57 -57 -57 -57 -57 -57 -57 -57 -57 -57 -57 -57 -57 -57 -60 -60 -60 ...

-60 -60 -60 -60 -60 -60 -60 -60 -60 -59 -59 -59 -59 -59 -59 -59 -59 -59 -59 -59 -59 -59 ...

-58 -58 -58 -58 -58 -58 -58 -58 -58 -58 -58 -58 -54 -54 -54 -54 -54 -54 -54 -54 -54 -54 ...

-54 -54 -54 -54 -56 -56 -56 -56 -56 -56 -56 -56 -56 -56 -56 -56 -56 -56 -56 -56 -56 -56 ...

-56 -56 -56 -56 -56 -56 -56 -56 -56 -56 -49 -49 -49 -49 -49 -49 -49 -49 -49 -49 -49 -49 -49];

sigStr = 10.ˆ(-.1*rss);

rss cpy = rss';

time interval = 0.1;

len = 20;

f vec = (-len+1:len-1)*time interval;

f rss = fft(sigStr);

f rss = f rss(1:len);

% flip all the points to the right of the origin

f rss reverse = fliplr(f rss(1,2:end));

f rss = [f rss reverse,f rss];

% rss filtered = firpm(17, f rss,);

f rss m = abs(f rss);

f rss a = unwrap(angle(f rss));

figure;

plot(f vec, f rss m,'-');

xlabel('Frequency [Hz]');

ylabel('Frequency Magnitude');

title('Fourier Transform Magnitude');

grid on;

49

References

[1] Federal Aviation Administration. Unmanned aircraft systems. https://www.faa.gov/uas/. Accessed:
Sept. 1, 2016.

[2] Nick Bilton. When your neighbor’s drone pays an unwelcomed visit. https://www.nytimes.com/2016/

01/28/style/neighbors-drones-invade-privacy.html?_r=0, 2016. Accessed: Feb. 26, 2017.

[3] Alissa M. Dolan and Richard M. Thompson II. Integration of drones into domestic airspace: Selected
legal issues. Congressional Research Service, April 2013.

[4] Steven M Kay. Fundamentals of Statistical Signal Processing, Volume 1: Estimation Theory. Prentice
Hall Signal Processeing Series, 1993.

[5] Kaveh Pahlavan and Prashant Krishnamurthy. Principles of Wireless Access and Localization. Wiley,
2013.

50

https://www.faa.gov/uas/
https://www.nytimes.com/2016/01/28/style/neighbors-drones-invade-privacy.html?_r=0
https://www.nytimes.com/2016/01/28/style/neighbors-drones-invade-privacy.html?_r=0

	Introduction
	Project Description
	Report Outline

	Background
	Introduction to Path-loss Model
	Design of Algorithms
	Maximum Likelihood Estimation
	Weighted Centroid
	Recursive Least Square Method

	Introduction to Cramer-Rao Lower Bound

	Methodology
	Scenario Analysis and Path-loss Model
	Implementation of Algorithms
	Maximum Likelihood Estimation
	Weighted Centroid
	Recursive Least Square Method

	Calculation of Cramer-Rao Lower Bound

	Results and Discussions
	Presence of Significant Measurement Error
	Performance Comparison in 3D

	Conclusions and Future Work
	Federal Regulations of Unmanned Aircraft Systems
	Data Collection
	Text Parsing in Python
	MATLAB Implementation of 2D MLE
	MATLAB Implementation of 2D Weighted Centroid
	MATLAB Implementation of 2D RLS
	MATLAB Implementation of 3D RLS
	MATLAB Implementation of 2D CRLB
	MATLAB Implementation of 3D CRLB
	GPS Conversion to NE coordinate
	Motion Detection
	MATLAB Implementation of Fourier Transform of Received Signals

