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Abstract

Experts in information theory have long been interested in the maximal size A(n, d)

of a binary error-correcting code of length n and distance d, The problem of deter-

mining A(n, d) involves both the construction of good codes and the search for good

upper bounds. It has been a long time that Delsarte’s linear programming approach

has been the dominant approach to obtain the strongest general purpose bound on

the efficiency of error-correcting codes.

From 1973 to 2003, the linear programming bound found many applications, but

there were few significant theoretical advances until Schrijver proposed a new code

upper bound via semidefinite programming. Using the Terwilliger algebra, a re-

cently introduced extension of the Bose-Mesner algebra, Schrijver formulated a new

SDP strengthening of the LP approach.

In this project we look at the dual solutions of the semidefinite program bound,

and explore the combinatorial meaning of these variables for small n and d, such as

n = 4 and d = 2. To obtain information like this, we wrote a program with both

MATLAB and CVX modules to get solution of our primal SDP formulation. Our

program efficiently generates the primal solutions with corresponding constraints for

any n and d. We also wrote a program in C++ to parse the output of the primal

SDP problem, and another MATLAB script to generate the dual SDP problem,

which could be used to examining combinatorial meaning of the difference between

the dual solution of the dual SDP problem and the primal solution of the primal

SDP problem. These values are very useful for later study of the combinatorial

meaning of such solutions.
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Chapter 1

Background and introduction

1.1 Problem introduction

Let F = {0, 1} be the binary field. Then F n is the set of all binary string with n bits.

Define A binary error-correcting code C of length n and distance d is a collection

of elements from F n where ∂(x, y) ≥ d, for all x 6= y ∈ C, in which ∂(x, y) is the

Hamming distance between codewords x and y. Two n-tuples x, y are at Hamming

distance k if xi 6= yi for exactly k values of i.

In real world, our communication systems are built based on error-correcting codes.

To make the systems reliable and efficient, we always seek large codes with large

minimum distance to fulfill this role. Hence our work is inspired by this requirement.

We aim at finding the maximum size A(n, d) of an error-correcting code C of length

n and distance d. More specifically, in this project we study the upper bounds on

A(n, d).

Since Shannon, coding theorists have wondered what the optimal efficiency might be

for codes of each given finite block length. The best known general purpose upper

bound on the efficiency of a code is Delsarte’s linear programming bound from 1973.
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Delsarte used algebraic methods to study association schemes and applied these to

coding theory. He formulated a linear programming model based on the Hamming

scheme and the optimal solution gives the upper bound of A(n, d).

Without solving the problem to optimality, but using some generating functions,

McEliece, Rodemich, Rumsey and Welch at JPL found an asymptotic linear pro-

gramming bound, which is a feasible solution that is valid for arbitrarily large n.

This is called the “MRRW bound”. As it is discussed in [6]:

Theorem 1.1. For any (n,M, d) code,

R ≤ H2

(
1

2
−

√
d

n

(
1− d

n

))
(1.1)

Gilbert and Varshamov gave an analytical function for the code size lower bound.

As the following theorem mentioned in [6]:

Theorem 1.2. Suppose 0 ≤ δ < 1
2
. Then there exists an infinite sequence of [n, k, d]

binary linear codes with d/n ≥ δ and rate R = k/n satisfying

R ≥ 1−H2

(
d

n

)
(1.2)

In the above theorems H2(x) = −x log2(x) − (1 − x) log2(1 − x) is the binary

entropy function.

The two asymptotic bounds are shown in Figure 1.1. It is well-known that all codes

lie on or below the McEliece-Rodemich-Rumsy-Welch upper bound, while the best

codes lie on or above the Gilbert-Varshamov lower bound. For more information,
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we refer [6]. For the proof of this theorem we also refer to [6].

Around 2000, Alex Samorodnitsky proved in [7] that Delsarte’s LP was not power-

ful enough to answer the question: there would always be a gap between the best

random construction (asymptotically) and the best upper bound obtained via this

method. Meanwhile, in the 1990s, two developments occurred in very different areas.

Polynomial time algorithms for semidefinite programming were obtained and many

applications of SDP emerged. Around the same time the (commutative) matrix

algebra that Delsarte used to formulate his LP bound was extended by Terwilliger

to a non-commutative semi-simple algebra for the n-cube which captures more de-

tailed information about binary codes. These two ideas came togther in 2003, when

Schrijver obtained a semidefinite programming bound for binary codes using the

Terwilliger algebra [8]. Computationally, this was less than spectacular: computers

can only handle SDPs for codes of length roughly 40 or less, and for these values, the

improvements in the bounds were minor. Motivated by a problem in quantum infor-

mation theory, de Klerk and Pasechnik applied the Schrijver technique to bound the

size of a code in which every pair of codewords is at Hamming distance exactly n/2,

encoded as the orthogonality graph. While they, too, could push the computer only

to n = 32, their data suggests that the SDP bound might be exponentially better

than the linear programming bound for this specific type of binary code. So the

challenge is to find a “MRRW-style” bound for this problem using the Terwilliger

algebra. Our work is mainly based on the work of Schrijver in [8] and of de Klerk

and Pasechnik in [5].

Schrijver regards the Hamming scheme as another algebra’s basis and uses another

modeling technique to formulate the mathematical model of this problem and got a

tighter upper bound than Delsarte’s work. He applies the Terwilliger algebra of the

Hamming scheme, and then uses the C*-algebra structure to transform the problem
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size from exponential to polynomial. He formulated the semidefinite programming

model for A(n, d) and obtained a better upper bound than the linear programming

bound.

MCELIECE-RODEMICH-RUMSEY-WELCH

UPPER BOUND

GILBERT-VARSHAMOV

LOWER BOUND

0.1 0.2 0.3 0.4 0.5

d

n

0.2

0.4

0.6

0.8

1.0

R

Figure 1.1: Asymptotic bounds on the best binary codes

1.2 Hamming graph and its adjacency matrix

Definition 1.1. A Hamming graph has the vertex set F n and two vertices are

adjacent if they differ in exactly one coordinate.

Our problem is restricted to binary codes so we will always look at binary codes

in this paper. Recall that F n is the set of all binary strings of length n where n is

a positive integer. The Hamming graph H(n, 2) has vertex set X = F n. The dth

adjacency matrix of it is defined by

(Ad)xy =

 1 if ∂(x, y) = d

0 o.w.
, (1.3)

Figure 1.2 shows three Hamming graphs. Their corresponding adjacency matrices
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00 01

10 11

R0

00 01

10 11

R1

00 01

10 11

R2

Figure 1.2: Hamming graph for n = 2 and d = 0, 1, 2

are shown in (1.4).

A0 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


A1 =



0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0


A2 =



0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


(1.4)

1.3 Association schemes

In this section, we introduce some basic ideas of association schemes. For more

information, we recommend the elaboration in [6]. The definition of an association

scheme is given as the following:

Definition 1.2. An association scheme with n classes (or relations) consists of a

finite set X of together with n + 1 relations R0, R1, . . . , Rn defined on X which

satisfy:

1. Each Ri is symmetric: (x, y) ∈ Ri ⇒ (y, x) ∈ Ri.

2. For every x, y ∈ X, (x, y) ∈ Ri for exactly one i.

3. R0 = {(x, x) : x ∈ X} is the identity relation.

4. If (x, y) ∈ Rk, the number of z ∈ X such that (x, z) ∈ Ri and (y, z) ∈ Rj is a

constant pkij depending on i, j, k but not on the particular choice of x and y.
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For simplicity, we often describe the relations by their adjacency matrices. Let

Ai be the adjacency matrix of Ri (for i = 0, . . . , n). Then it is a v × v matrix with

rows and columns labeled by the points of X, defined by

(Ai)x,y =

 1 if (x, y) ∈ Ri

0 o.w.
. (1.5)

Then the 4 requirements of the definition of an association scheme can be rephrased

as an Ai with v × v (0, 1)-entries satisfying:

1) Ai = Aᵀ
i , in which Aᵀ

i denotes the transpose of Ai. (1.6)

2)
n∑
i=0

Ai = J , in which J denotes the all-ones matrix. (1.7)

3) A0 = I, in which I denotes the identity matrix. (1.8)

4) AiAj =
n∑
k=0

pkijAk = AjAi, i, j = 0, . . . , n (1.9)

Now let’s look at a simple example of an association scheme. Assume we have an

association scheme with 3 classes, and our finite set X consists of 6 vertices. There

relations are described as the “relation matrix”
∑3

i=0 iAi below:

1 2 3 4 5 6

1 0 1 1 2 3 3

2 1 0 1 3 2 3

3 1 1 0 3 3 2

4 2 3 3 0 1 1

5 3 2 3 1 0 1

6 3 3 2 1 1 0

(1.10)
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in which each color represents a relation, the 1 entries of Di corresponding to relation

Ri for i = 0, . . . , 3, and the relations satisfy (1.6) - (1.9).

1.3.1 The Hamming schemes

After introducing the general association schemes, let us look at the Hamming

schemes. Substituting the adjacency matrices Ai of relation Ri in the general defini-

tion of the association scheme with the adjacency matrices of the Hamming graphs,

we will obtain the linear algebra representation of the Hamming schemes.

Let Ri be the set of ordered pairs (a, b) ∈ X×X with ∂(a, b) = i. Then (X, {Rd}nd=0)

is a symmetric association scheme and its Bose-Mesner algebra is the vector space

span(A0, A1, . . . , An) where Ai is the adjacency matrix of the graph (X,Ri).

1.4 The Bose-Mesner algebra

Once we have obtained the linear algebra representation of the Hamming schemes,

we can examine the algebraic properties of it which will be introduced in the follow-

ing sections. In this chapter we will introduce the algebraic properties we will use to

get the upper bound on the code size, which is used to formulate the linear program

by Delsarte. First, let us introduce some notation. For two nonempty finite set X1

and X2, we denote C(X1, X2) as the set of matrices M with dimension |X1| × |X2|

over the complex field C. We will denote by M(x1, x2) the entry (x1, x2) of matrix

M , in which x1 ∈ X1 and x2 ∈ X2.

Essentially due to Bose and Mesner, the following theorem is given to express an

association scheme in an algebraic aspect.

Theorem 1.3. (Bose & Mesner [1])Let R = {R0, R1, . . . , Rn} be a set of n + 1

relations on a finite set X, satisfying (1.8). Define A to be a linear subspace of
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C(X,X) generated by the adjacency matrix Di of Ri, i = 0, 1, . . . , n. Then (X,R)

is an association scheme, with n classes, if and only if A is a commutative (n+ 1)-

dimensional subalgebra of C(X,X), all of whose elements are normal matrices.

Formally the linear algebra

A =

{
n∑
t=0

αtDt|αt ∈ C

}
(1.11)

is called the Bose-Mesner algebra of the association scheme (X,R), where Dt rep-

resents the relation matrix of relation Rt. Figure 1.2 shows the usual basis of the

Hamming scheme for n = 2 in graph form, which is easier for people to study

and (1.4) is a representation in matrix form, which is easier to process by comput-

ers.

1.5 The graph coloring problem

1.5.1 Orthogonality graph

Observe that (±)1-vectors, u, v in Rn are orthogonal iff the corresponding binary

vectors are at Hamming distance n/2. For example, for the following vectors u =

[1 1 1 − 1 − 1 − 1] and v = [1 1 − 1 − 1 1 1], their corresponding binary vectors

are w = [1 1 1 1 1 1] and û = [0 0 0 1 1 1]. The graph with all 01-tuples as vertices

is called the orthogonality graph if x ∼ y iff ∂(x, y) = n
2
. We denote this by Ω(n).

We note that Ω(n) is k-regular for k =
(
n
n/2

)
. A k-regular graph is a graph with

each vertex has the same number of neighbors, say k neighbors. In this definition

we know that k =
(
n
n/2

)
. For example a 3-regular graph is shown as Figure 1.3:
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Figure 1.3: A 3-regular graph

1.5.2 A quantum information game

The orthogonality graph coloring problem is inspired from a quantum information

game, expanding to classical bits.

Two players A and B are asked questions xA and xB, coded as n-bit rings satisfying

∂(xA, xB) ∈ {0, n/2}. A and B win the game if they give answers yA and yB, coded

as binary string of length r such that yA = yB ⇔ xA = xB. Galliard et al. pointed

out that whether or not the game can always be won is equivalent to the question

χ(Ω(n)) ≤ r?

where χ(Ω(n)) means the number of colors needed to color Ω(n).

1.5.3 The graph coloring problem

We want to find the minimum number of colors required to color Ω(n) a priori, so

that the two questions xA and xB are viewed as two vertices of Ω(n) and A and

B answer their respective questions by giving the colors of the vertices xA and xB

respectively, coded as binary string of length log2(n) = r. If the two vertices have

the same color, then they win.
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1.6 Framework of this report

In this chapter we have introduced some basic background which will be used in the

following chapters. In chapter 2, we will introduce the linear programming bound for

code size. In chapter 3, we will introduce the basic idea of semidefinite programming

and the following chapter gives the introduction of semidefinite programming bound

by Schrijver and our implementation of the semidefinite programming formulation.

In chapter 4, we also introduced the SDP bound applying to the graph coloring

problem. Finally, chapter 5 will cover our studying of the dual SDP problem for the

graph coloring problem.
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Chapter 2

Linear programming bound for

codes

In the previous chapter we have introduced the basic idea of the Bose-Mesner algebra

of an association schemes. In this chapter, we will introduce the idea of using this

algebra to obtain the linear programming bound for A(n, d).

2.1 The characteristic vector

Recall that X = F n represents the collection of all binary strings with length n.

If C ⊆ X is a binary code, define xC as the characteristic vector of C has one

entry for each codeword c ∈ F n, xc = 1 if c ∈ C; xc = 0 otherwise. For example,

for F 2 = {00, 01, 10, 11}, a code C = {00, 01} will have the characteristic vector

xC = [1, 1, 0, 0]ᵀ. Given a Bose-Mesner algebra of a Hamming scheme

A =

{
n∑
i=0

αiAi | αi ∈ C

}
,
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define

ai :=
1

|C|
xᵀCAixC

as the average number of codewords of distance i from c ∈ C. To see this, let’s look

at an example.

Let n = 2 and then we can obtain our basis of the Bose-Mesner algebra as

A0 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


A1 =



0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0


A2 =



0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


. (2.1)

For C = {00, 01}, the characteristic vector is xC = [1, 1, 0, 0]ᵀ. Let Bi = xᵀCAi.

Then B0 = [1, 1, 0, 0], B1 = [1, 1, 1, 1], B2 = [0, 0, 1, 1]. Let di = xᵀCAixC . Then

d0 = 2, d1 = 2 and d2 = 0, which gives the number of pairs of codewords at distance

i. So ai = 1
|C|x

ᵀ
CAixC gives the average number of codewords of distance i from

c ∈ C, and the summation of ai gives the code size A(n, d). This holds because∑
Ai = J , the all ones matrix and xᵀCJxC = |C|2.

2.2 Basis of orthogonal idempotents

An n× n complex matrix is Hermitian if E† = E where † denotes conjugate trans-

pose. A Hermitian matrix is positive semidefinite (PSD) if xᵀEx ≥ 0 for all x. It is

known that the Bose-Mesner algebra admits a basis of positive semidefinite matrices

12



E0, E1, . . . , Ed satisfying

EjEj = Ej

EiEj = 0 (2.2)

which are known as the Orthogonal Idempotents. The following lemma and fact also

holds for the orthogonal idempotents:

Lemma 2.1. The summation of all the primitive idempotents is identity matrix, say,∑
Ei = I

Fact 2.1. The rank of the jth idempotent is rank(Ej) =
(
n
j

)
, and the eigenvalues are

0, 1. Each Ej is positive semidefinite, Ej � 0.

Geometrically, Ej represents orthogonal projection onto a maximal common

eigenspace of A0, A1, . . . , An. The orthogonal projection is unique. To see this,

let’s look at an example shown in Figure 2.1. V = {V1, V2, V3} is a vector space,

and U, PU ∈ V . P ∈ {V1, V2} which is a subspace of V . The orthogonal projec-

tion from U onto space {V1, V2} of U is PU , which is unique. And then we have

Ej = UjUj
ᵀ where columns of Uj form an orthonormal basis for the jth eigenspace

Vj. The change-of-basis matrix Q from the Ai to the Ei is unique and known as the

second eigenmatrix given by Qij = Kj(i) where Kk is the Krawtchouk polynomial

Kk(x) :=
k∑
j=0

(−1)j(q − 1)k−j
(
x

j

)(
n− x
k − j

)
(2.3)

where q = 2 in our binary case.

13



U

U
P

1
V

2
V

3
V

Figure 2.1: Orthogonal projection

Let’s look at an example. For n = 2, define

A =





a b b c

b a c b

b c a b

c b b a


: a, b, c ∈ C


(2.4)

as the Bose-Mesner algebra of the Hamming scheme. A is a 3-dimensional linear

space with the 01-basis indicated by a, b, c elements. Its corresponding basis of

primitive idempotents is

E0 =
1

4



1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1


E1 =

1

2



1 0 0 −1

0 1 −1 0

0 −1 1 0

−1 0 0 1


E2 =

1

4



1 −1 −1 1

−1 1 1 −1

−1 1 1 −1

1 −1 −1 1


(2.5)
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from Lemma 2.1 and Fact 2.1. Observe that E0 represents orthogonal projection

onto span {[1 1 1 1]}, E1 represents orthogonal projection onto span{[1 1 −1 −1],

[1 −1 1 −1]}, and E2 onto span {[1 −1 −1 1]}.

Lemma 2.2. For any v ∈ RN , N = 2n, vᵀEjv ≥ 0

Proof.

vᵀEjv = vᵀ(UjUj
ᵀ)v

= (Uj
ᵀv)ᵀ(Uj

ᵀ)v

= ||Ujᵀv||2 ≥ 0

A linear character of a finite abelian group G is a group homomorphism from

G to the multiplicative group of nonzero complex numbers. In our case, consider

χ : F n → C, as a character, satisfying χ(a+ b) = χ(a)χ(b). Then the following fact

holds:

Fact 2.2. There is one character for each binary n-tuple a defined as

χa(b) = (−1)a·b(mod 2) (2.6)

Fact 2.3. The characters χ of F n give us an orthogonal basis of eigenvectors.

Define wt(c) as the Hamming weight of codeword c which gives the Hamming

distance between codeword c and the zero vector. Then the following lemma holds:

Lemma 2.3. Ajχc = Qijχc for all j and c, where i = wt(c) and Qij = Kj(i).
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Proof. From (2.6) we can obtain that entry a of Ajχc is

∑
∂(a,b)=j

χc(b) =
∑

∂(a,b)=j

(−1)b·c

let b = a
⊕

b′, then

∑
∂(a,b)=j

χc(b) =
∑

wt(b′)=j

(−1)(a+b′)·c

= (−1)a·c

 ∑
wt(b′)=j

(−1)b
′·c


∑

wt(b′)=j

(−1)b
′·c =

∑
J⊆[n],|J |=j

∏
h∈J

(−1)ch (2.7a)

where ch = 1 iff h ∈ J , and J is the set of positions of bits if the bit is 1. By

summing over h from 0 to i, we can change (2.7a) into

∑
wt(b′)=j

(−1)b
′·c =

i∑
h=0

(−1)h
(
i

h

)(
n− i
j − h

)
(2.8)

We know that AiUj = QijUj, so AiEj = (Qij)Ej, since

AiI = Ai(E0 + E1 + · · ·+ En)

Ai = Qi0E0 +Qi1E1 + · · ·+QinEn

As a fact Q2 = 2nI, Q−1 = 1
2n
Q. Then we can get

Ej =
1

2n

n∑
i=0

QijAi (2.9)
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2.3 The linear programming formulation

Now let’s derive the linear program formulation for finding the upper bound on the

size of a binary code. Consider a binary code C ⊆ F n of length n. Recall that we

have defined ai as the average number of elements of C at distance i from b. More

formally,

ai =
1

|C|
· card{(a, b) ∈ C × C | ∂(a, b) = i}

and

bj =
2n

|C|
xC

ᵀEjxC (2.10)

b is very similar with a, so we can check the properties of bj by observing the above

formulation, and get that

(I) b0 = |C|

(II) bj ≥ 0 for all j since Ej � 0

(III) bj =
∑n

i=0Qijai(≥ 0)

(2.11)

Now let us prove (III) of (2.11):

Proof. From the definition of bj we can get the following derivation:

bj =
2n

|C|
xC

ᵀ

(
1

2n

∑
QijAi

)
xC

=
1

|C|

n∑
i=0

Qij (xC
ᵀAixC)

=
n∑
i=0

Qij

(
1

|C|
xC

ᵀAixC

)
=

n∑
i=0

aiQij
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So for any code C, the characteristic vector of C satisfies not only the condi-

tion on xᵀAix imposed by its combinatorial properties but also xᵀEjx ≥ 0 for all

j = 0, . . . , n. The substitution ai = 1
|C|x

ᵀAix gives rise to a linear programming

formulation

max
∑n

i=0ai

s.t. aQ≥ 0

a ≥ 0

a0 = 1

a1 = · · · = ad−1 = 0

(2.12)

for the max size of a binary codes of minimum distance d. This was discovered by

Delsarte in 1973 [2]. And the LP bound has been the strongest general purpose

bound on the efficiency of error-correcting codes.

Let’s look at a simple example for n = 4 and forbidding Hamming distance d = 3

using that formulation. For n = 4, we could obtain the second eigenmatrix Q

using (2.3) as

Q =



1 4 6 4 1

1 2 0 −1 −1

1 0 −2 0 1

1 −2 0 2 −1

1 −4 6 −4 1


(2.13)
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from (2.12) we can obtain our linear programming formulation:

max a0 + a1 + a2 + a3 + a4

s.t. 4a0 + 2a1 − 2a3 − 4a4≥ 0

6a0 − 2a2 + 6a4≥ 0

4a0 − 2a1 + 2a3 − 4a4≥ 0

a0 − a1 + a2 − a3 + a4≥ 0

a1, a2, a3, a4≥ 0

a0 = 1

(2.14)

by substituting a0 = 1 and a3 = 0 we will get a simplified linear program:

max 1 + a1 + a2 + a4

s.t. 2a1 − 4a4≥ −4

−2a2 + 6a4≥ −6

−2a1 − 4a4≥ −4

−a1 + a2 + a4≥ −1

a1, a2, a3, a4≥ 0

(2.15)

Delsarte showed that the optimal objective value of this LP is 8 for n = 4 and

d = 3 forbidden. And the code C = {0000, 0011, 0101, 1001, 0110, 1010, 1100, 1111}

achieves this bound.

2.4 Implementation of LP bound

To write a software suite capable of obtaining the LP bound for different values of

codeword length n and minimum Hamming distance d, we used C++ to generate the

eigenmatrix Q and then connect to IBM CPLEX to formulate the objective function
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and constraints iteratively. Our program is based on the following flowchart shown

in Figure 2.2.

As the flowchart shows, the program starts by giving initial values of n and d.

FormulateStart Solve

Initial CPLEX 
enviroment

Generate 
eigenmatrix Q 
based on the 

following 
equation

Formulate 
based on 

eigenmatrix


























k

j

j

k
jk

xn

j

x
xK

0

)1(:)(

Get results

)(iKQ jij 

Extract model 
to solverInitial n and d

Figure 2.2: Flowchart of LP bound program

Based on the initial values, the formulate subprocess is invoked. Within the formu-

late subprocess, we first setup the CPLEX environment, which includes declaring

the environment variables, initializing model variables, etc. Once the CPLEX en-

vironment is ready, we generate the eigenmatrix Q based on Qij = Kj(i) where

Kk(x) :=
∑k

j=0(−1)j
(
x
j

)(
n−x
k−j

)
. Once the eigenmatrix is generated, we can build up

the constraints with respect to the eigenmatrix column by column, since the fact

that the entries of the first column of the eigenmatrix are all 1s and our problem is
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basically

max aQ0 � 0

s.t. aQj ∀j 6= 0

a0 = 1

aj ≥ 0 ∀j 6= 0

(2.16)

where Qj means the jth column of the eigenmatrix Q. After we finish building

up our formulation, we export the model to the CPLEX solver and get the results

of our model. Due to the limitation of the computability of today’s computers

and algorithmic packages, we only can get the accurate solution for relatively small

values of n and d. It will overflow starting from n = 32 and d = 2. Some results are

shown in the following table:

n d A(n, d)

19 2 262, 144

19 3 26, 214

19 4 13, 107

19 13 3

20 2 524, 287

20 3 47, 662

20 4 26, 214

20 13 3

Table 2.1: Some results for LP bound

As the results shown, A(n, d) = 2n−1 when d = 2, A(n, d) ≈ 2n−1

n+1
when d = 3 and

A(n, d) ≤ 3 when d > 2n/3. This can all be verified without the use of a computer

by applying Delsarte’s method.
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Chapter 3

Semidefinite programming

Semidefinite programming is a new branch of conic programming, and our project

is mainly based on a formulation using semidefinite programming. It searches for

solutions on a section of a positive semidefinite cone. Because the semidefinite cone

is convex, this is a convex optimization problem. A cone is a set C that for every

x ∈ C and θ ≥ 0 we have θx ∈ C and for every x, y ∈ C, x + y ∈ C also. A

set C is a convex if for every x1, x2 ∈ C and θ1, θ2 ≥ 0 with θ1 + θ2 = 1, we have

θ1x1 + θ2x2 ∈ C. Conic programming works in a Euclidean space, which is any

vector space E, over R with positive definite inner product. An inner product 〈·, ·〉

is positive definite if for all x ∈ E, 〈x, x〉 ≥ 0 and only equals 0 when x is a zero

vector.

First let us look at two special cases of conic programming. A polyhedral cone is

one with finitely many facets: C = {x : Bx ≥ 0} for some matrix B. The first one

is linear programming where the vector space E is Rn. Let C be a polyhedral cone

and a general linear programming (LP) is:

min Cᵀx

s.t. Ax = b x ∈ C,
(3.1)
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and the dual problem of it is

max bᵀy

s.t. Aᵀy + s = c s ∈ C∗,
(3.2)

where C∗ denotes the dual cone of C.

The second one refers to our main tool used in this project, semidefinite program-

ming. The basic form of a semidefinite programming problem is as the following:

max 〈C, χ〉

s.t. 〈Ai, χ〉 = bi(1 ≤ i ≤ m)

〈Bj, χ〉 ≤ dj(1 ≤ j ≤ k)

χ � 0 ,

(3.3)

where χ represents the semidefinite variable and χ � 0 represents the semidefi-

nite cone constraint. 〈C, χ〉 means the inner product of matrix C and matrix χ,

which equals to the trace of the product of Cᵀ and χ, say, tr(Cᵀχ). In semidefinite

programming, the cone we are using requires matrices to be positive semidefinite.

3.1 Background for semidefinite programming

Definition 3.1. A real symmetric matrix A is positive semidefinite if for all v ∈ Rn,

vᵀAv ≥ 0, and it is positive definite if ∀v ∈ Rn, when v 6= 0 then vᵀBv > 0.
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To see this, let’s look at some examples. Given three matrices A1, A2 and A3 for

A1 =


1 0 0

0 2 0

0 0 3

 A2 =


1 0 0

0 2 0

0 0 0

 A3 =


1 0 0

0 2 0

0 0 −3


Let’s look at the positive definite properties of them. It is obvious that Ai are all

real symmetric matrices. Define vector v ∈ Rn. From definition 3.1 we need to

check when v 6= 0, vᵀAiv. Let v = [v1 v2 v3]ᵀ, and then

r1 = vᵀA1v = v2
1 + 2v2

2 + 3v2
3

r2 = vᵀA2v = v2
1 + 2v2

2 + 0v2
3

r3 = vᵀA3v = v2
1 + 2v2

2 − 3v2
3

It is obvious that for any v 6= 0, r1 > 0, and for any v 6= 0, r2 ≥ 0. But r3 could be

any value for v 6= 0. Hence A1 is positive definite. A2 is positive semidefinite and A3

is non-positive semidefinite. To introduce semidefinite programming, we need some

background which could lead us to defining semidefinite matrices and understanding

their properties.

Let A be a n by n symmetric matrix, if for some non-zero real number λ, and non-

zero vector v, Av = λv holds, then λ is known as the eigenvalue associated with the

eigenvector v.

If M is a n by n matrix over complex field, then define M † as the conjugate transpose
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of matrix M . For example:

if M =

1− i i

2 3


then M † =

1 + i 2

−i 3


(3.4)

M is called Hermitean if and only if M = M †. So intuitively we can imagine that

when M is over real field, it is Hermitean if and only if M is symmetric.

Lemma 3.1. Every eigenvalue of any Hermitean matrix is real.

Proof. For Hermitean matrix M , assume there exists an eigenvalue λ associated

with some non-zero vector v, then we have Mv = λv.

Then we will have

λ〈v, v〉 = λ(vᵀv)

since λ is a scalar, we have

λ〈v, v〉 = vᵀ(λv)

λ〈v, v〉 = vᵀ(Mv)
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since M is Hermitean, we have

λ〈v, v〉 = (vᵀM †)v

λ〈v, v〉 = (vM)ᵀv

λ〈v, v〉 = 〈Mv, v〉

λ〈v, v〉 = 〈λv, v〉

λ〈v, v〉 = λ̄〈v, v〉

where λ̄ means the complex conjugate of λ. So λ = λ̄, which means every λ is

real.

Lemma 3.2. Assume we have A � 0 and B � 0, then A+B � 0

Proof. Let C = A+B and let v ∈ Cn then we have

C = A+B

v†Cv = v†Av + v†Bv ≥ 0

3.2 Comparison between LP and SDP

Let’s take a quick look at the relation between LP and SDP. A LP can be always

transformed into a SDP by making the semidefinite variable a diagonal matrix. If

we don’t add constraints to force any entry of the semidefinite variable equals to

0, the SDP will be a relaxation to the LP problem. The general form of the two
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problems are like the following:

min/max Cᵀx

s.t. Ax = b

Bx ≥ d

x ≥ 0

min/max 〈C, χ〉

s.t. 〈Ai, χ〉 = bi (1 ≤ i ≤ m)

〈Bj, χ〉 ≤ dj (1 ≤ j ≤ k)

χ � 0

(3.5)

Let’s look at a very simple LP problem and its corresponding SDP problem. e.g.

max 3x1 − x2 + 2x3

s.t. 4x1 + x2 + x3 = 8

2x2 − x3 ≤ 9

x1, x2, x3 ≥ 0

max 〈C, χ〉

s.t. 〈A,χ〉 = 8

〈B,χ〉 ≤ 9

〈E12, χ〉 = 〈E13, χ〉 = 〈E23, χ〉 = 0 ,

(3.6)

where

χ =


x11 x12 x13

x12 x22 x23

x13 x23 x33

 � 0

C =


3 0 0

0 −1 0

0 0 2

A =


4 0 0

0 1 0

0 0 1

B =


0 0 0

0 2 0

0 0 −1



E12 =


0 1 0

0 0 0

0 0 0

E13 =


0 0 1

0 0 0

0 0 0

E23 =


0 0 0

0 0 1

0 0 0

 .

(3.7)
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In the above example, the left side is the formulation of LP problem and the right

side is its corresponding SDP formulation. To force the semidefinite variable be a

diagonal matrix, we introduce three linear constraints 〈Eij, χ〉 = 0 for i 6= j.

Because all the eigenvalues are real, we let x11 = x1, x22 = x2, x33 = x3, and xij = 0,

∀i 6= j

then we have

χ =


x1 0 0

0 x2 0

0 0 x3

 . (3.8)

This example indicates how any LP can be formulated as an SDP, but the class of

SDPs is much larger.

There is a fact in semidefinite matrices that every principal submatrix of a positive

semidefinite matrix is positive semidefinite. To see the application of this fact, let’s

look at another example. Given a matrix

χ =



x1 0 0 0

0 x2 0 0

0 0 α β

0 0 β γ


� 0 (3.9)

from the fact, we have to make every principal submatrix of matrix χ semidefinite.

Choose subset S of rows and the same subset of columns, when S = {1, 4}, we can

get the submatrix

χ|S =

x 0

0 γ

 � 0
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then we will have a constraint that xγ ≥ 0.

When S = {3, 4}, we can get the submatrix

χ|S =

α β

β γ

 � 0

then we will have a constraint that det (χ|S) = αγ − β2 ≥ 0 to force β2 − αγ ≤ 0.

Let’s look at a more specific example. Given the following semidefinite program:

max

〈


2 0 0 0

0 5 0 0

0 0 1 −1

0 0 −1 4


, χ

〉

s.t.

〈


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1


, χ

〉
= 10

〈Eij, χ〉 = 0

χ � 0

It is equivalent to the following non-linear program:

max 2x1 + 5x2 + α− 2β + 4γ

s.t. x1 + x2 + α + 2β + γ = 10

x1 ≥ 0, x2 ≥ 0, α ≥ 0, γ ≥ 0

β2 ≤ αγ

(3.10)
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3.3 General form of dual semidefinite program

In this project we aim at the dual solutions of a semidefinite program. So let us look

at the general form of a semidefinite program and its corresponding dual program.

Considering the following general form of a semidefinite program:

max 〈C, χ〉

s.t. 〈Ai, χ〉 = bi (1 ≤ i ≤ m)

〈Bj, χ〉 ≤ dj (1 ≤ j ≤ k)

χ � 0

(3.11)

Then the general form of its corresponding dual problem is defined as the following

form:

min bᵀy + dᵀt

s.t. Aᵀ(y) +Bᵀ(t) � C

t ≥ 0

where Aᵀ(y) =
∑m

i=1 yiAi

and Bᵀ(t) =
∑k

j=1 tjBj

(3.12)

The transformation between the primal semidefinite program and its corresponding

dual problem is very similar to the relationship between the linear program and its

corresponding dual problem.

Now let’s look at a special semidefinite program and its dual problem. Consider

the following optimization problem. To adapt the general definition of semidefinite

programming and its dual problem to our special case, we define the special case of

30



P-SDP and D-SDP as following:

max
∑

α uαxα

s.t.
∑

α xαBα � C

xα ≥ 0

(3.13)

Then its corresponding dual problem is in the following form:

min 〈C, χ〉

〈Bα, χ〉 ≤ −uα

χ � 0

(3.14)

In general, we always have the following theorems for a semidefinite program:

Theorem 3.1. (Weak Duality Theorem) If X is feasible for the SDP and (y, t, Z)

is feasible for the D-SDP, then 〈C,X〉 ≤ yᵀa+ tᵀb.

Proof. First it is easy to check that for X and (y, t, Z) that are feasible, then X � 0

and Z � 0 means that 〈Z,X〉 ≥ 0.

By substituting C with the constraint in D-SDP in 〈C,X〉

〈C,X〉 = 〈
k∑
i=1

yiAi +
l∑

i=1

tibi − Z,X〉 =
k∑
i=1

yi〈Ai, X〉+
l∑

i=1

ti〈Bi, X〉 − 〈Z,X〉

Since X and (y, t, Z) are both feasible, then the constraints hold, which means

〈Ai, X〉 = a and 〈Bi, X〉 ≤ b
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So we have

〈C,X〉 =
k∑
i=1

yi〈Ai, X〉+
l∑

i=1

ti〈Bi, X〉 − 〈Z,X〉 ≤
k∑
i=1

yiai +
l∑

i=1

tibi − 〈Z,X〉

Additionally, we have 〈Z,X〉 ≥ 0, so we can conclude that:

k∑
i=1

yiai +
l∑

i=1

tibi − 〈Z,X〉 ≤
k∑
i=1

yiai +
l∑

i=1

tibi = yᵀa+ tᵀb

hence the theorem holds.

Theorem 3.2. (Complementary Slackness Theorem) If X is optimal for SDP,

(y, t, Z) is optimal for D-SDP and 〈C,X〉 = yᵀa+ tᵀb then

1. Tr(ZX) = 0

2. For every i, 1 ≤ i ≤ l, ti = 0 or 〈Bi, X〉 = bi

Proof. By substituting C with the constraint in D-SDP in 〈C,X〉

〈C,X〉 =
k∑
i=1

yi〈Ai, X,+〉
l∑

i=1

ti〈Bi, X〉 − 〈Z,X〉

after some rearrangement, we can get

〈Z,X〉 =
k∑
i=1

yi〈Ai, X,+〉
l∑

i=1

ti〈Bi, X〉 − 〈C,X〉

Since 〈Ai, X〉 = ai and 〈Bi, X〉 ≤ bi, then we can get

〈Z,X〉 ≤
k∑
i=1

yiai +
l∑

i=1

tibi − 〈C,X〉 = yᵀa+ tᵀb− 〈C,X〉.

Since the assumption that X and (y, t, Z) are optimal and 〈C,X〉 = yᵀa+ tᵀb, then
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〈Z,X〉 ≤ yᵀa+ tᵀb− 〈C,X〉 = 0, which means that 〈Z,X〉 ≤ 0.

Since Z � 0 and X � 0, then 〈Z,X〉 ≥ 0.

So 〈Z,X〉 = Tr(ZX) = 0 holds.

Next since 〈Z,X〉 = 0, we will have

〈C,X〉 =
k∑
i=1

yi〈Ai, X〉+
l∑

i=1

ti〈Bi, X〉

Since B(X) ≤ b, then

〈C,X〉 =
k∑
i=1

yi〈Ai, X〉+
l∑

i=1

ti〈Bi, X〉 ≤
k∑
i=1

yiai +
l∑

i=1

tibi = yᵀa+ tᵀb,

which means the following equation must hold:

k∑
i=1

yi〈Ai, X〉+
l∑

i=1

ti〈Bi, X〉 =
k∑
i=1

yiai +
l∑

i=1

tibi

Since 〈Ai, X〉 = ai, it is obvious that

k∑
i=1

yi〈Ai, X〉 =
k∑
i=1

yiai,

which gives us
l∑

i=1

ti〈Bi, X〉 =
l∑

i=1

tibi,

from the constraints, we have 〈Bi, X〉 ≤ bi, which gives us two cases:

1. if 〈Bi, X〉 < bi, then we must have ti = 0 for all i to make the equality hold.

2. if 〈Bi, X〉 = bi, then the equality holds.

So the claim holds.
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Theorem 3.3. If both primal P-SDP and dual D-SDP have nonempty interiors,

we also have Strong Duality: there exist feasible solutions to P-SDP and D-SDP

satisfying equality in Theorem 3.1.
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Chapter 4

Semidefinite programming bound

for codes

4.1 Basis for Terwilliger algebra T

Recall that we define the Hamming weight of codeword x as the Hamming dis-

tance between x and the zero vector, represented by wt(x). Let α be a 4-tuple

(α0, α1, α2, α3) and Lα be a F n × F n matrix with

(Lα)x,y =

 1 if wt(x) = α2 + α3, wt(y) = α1 + α3, ∂(x, y) = α1 + α2

0 o.w.
(4.1)

for x, y ∈ F n and α ` n, where a F n × F n matrix means the rows and columns of

this matrix are both indexed by the elements of F n, and α ` n means
∑3

i=0 αi = n

as well as αi ≥ 0. More generally, a U × V matrix means the rows and columns of

this matrix are indexed by the elements of U and V . α is isomorphic to a 3-tuple

(i, j, t), where wt(x) = i, wt(y) = j and wt(x⊕y) = t. Obviously ∂(x, y) = i+j−2t

and there will always exists an α in the triangle constituted by x, y and the zero
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x

y0

α
i+ j − 2ti

j

α2

α3 α1

Figure 4.1: Relation between (i, j, t) and α

vector, satisfying the relationship shown in Figure 4.1. It is also obvious that Lα is

a Hermitian matrix. Let Tn be the set of matrices:

∑
α

xαLα, ∀α ` n (4.2)

then Tn is a C*-algebra because it is closed under addition, scalar and matrix mul-

tiplication, and taking the adjoint. Then linear space (4.2) is called the Terwilliger

algebra of the Hamming scheme. The dimension of Tn is

dim(Tn) =

(
n+ 3

3

)
(4.3)

since we need to make (Lα)x,y = 1, and then we must have α ` n. It equals to

the number of ways we split an integer n into 4 integers, which is isomorphic to we

change 3 balls into bars from n+ 3 balls.

4.2 Block diagonalization

As Tn is a C∗-algebra, and contains the identity matrix, there exists a unitary

F n × F n matrix U and positive integers p0, q0, . . . pm, qm such that UᵀTnU is equal
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to the collection of all block diagonal matrices



C0 0 · · · 0

0 C1 · · · 0

...
...

. . .
...

0 0 · · · Cm


(4.4)

in which Ck is a block-diagonal matrix with qk repeated, identical blocks of order

pk that

Ck =



Bk 0 · · · 0

0 Bk · · · 0

...
...

. . .
...

0 0 · · · Bk


(4.5)

in which Bk is a pk×pk matrix. As Tn ∼= Cp0×p0⊕· · ·⊕Cpm×pm , we define a mapping

ϕ : Tn → ⊕
k
CPk×Pk where Pk = {x ∈ F n : wt(x) = k}. Finally, by deleting repetitive

of the block matrices, we will obtain an

ϕ(Tn) 7→



B0 0 · · · 0

0 B1 · · · 0

...
...

. . .
...

0 0 · · · Bm


(4.6)

By giving the unitary matrix U required properties, we can obtain the specified

values of the parameters for pk = n + 1 − 2k, and qk =
(
n
j

)
−
(
n
k−1

)
.
∑m

j=0 p
2
j =

dim(Tn) =
(
n+3

3

)
. To see the entries of the isomorphic block diagonal matrix to
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(4.1), define

βkα =
n∑
u=0

(−1)u−α3

(
u

α3

)(
n− 2k

u− k

)(
n− k − u
α2 + α3 − u

)(
n− k − u
α1 + α3 − u

)
. (4.7)

then we will get the kth block matrix Bk in the image of matrix (4.6) is a (n− 2k+

1)× (n− 2k + 1) matrix: (4.1) is a (n− 2k + 1)× (n− 2k + 1) matrix:

(∑
α`n

(
n− 2k

α2 + α3 − k

)− 1
2
(

n− 2k

α1 + α3 − k

)− 1
2

βkαxα

)n−k

α2+α3=k,α1+α3=k

(4.8)

4.3 Application to code size bound

First, let us define some mappings. Let α = (α0, α1, α2, α3), then define:

α̌(α) = (α0 + α2, 0, α1 + α3, 0)

ά(α) = (α0 + α1, 0, α2 + α3, 0)

α̂(α) = (α0 + α3, 0, α1 + α2, 0) (4.9)

Let Π be the set of all the automorphisms of F n, Π0 be the set of automorphisms π

of F n with ∅ ∈ π(C) and Π1 be the set of automorphisms π of F n with ∅ /∈ π(C),

where C is any code with C ⊆ F n. Then we will have

Π0 = {π ∈ Π : 0 ∈ π(C)}

Π1 = {π ∈ Π : 0 /∈ π(C)}

R =
1

|Π0|
∑
π∈Π0

χπ(C)χ
ᵀ
π(C)

R′ =
1

|Π1|
∑
π∈Π1

χπ(C)χ
ᵀ
π(C)
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where for all π ∈ Π, π(C) = {π(c) : c ∈ C}.

For all R and R′ the following properties hold:

1. R and R′ are positive semidefinite matrices;

2. R,R′ ∈ Tn where Tn = {M ∈ C2n×2n|∀π ∈ Sn(MPπ = PπM)}.

following proposition holds:

Proposition 4.1. Let λα be the number of triples (x, y, z) ∈ C3, where ∂(x, y) =

α2 + α3, ∂(x, z) = α1 + α3, and ∂(y, z) = α1 + α2, define:

xα =
1

|C|
(

n
α0,α1,α2,α3

)λα, (4.10)

and xα = 0 when
(

n
α0,α1,α2,α3

)
= 0,

R =
∑

xαLα (4.11)

and

R′ =
|C|

2n − |C|
∑
α

(xα̂ − xα)Lα (4.12)

Now we have got enough background to formulate the semidefinite program

for obtaining the upper bound on the binary codes of code length n. Let α(0) =

(n, 0, 0, 0). Then our objective function is

max |C| =
∑
α

(
n

i

)
xά, (4.13)
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since |C|2 =
∑

α`n λά, ∀α ` n. From (4.8) and the above equations (4.11) and (4.12)

we can get the equivalent matrices:

(∑
α`n

βαxα

)n−m

α2+α3=m,α1+α3=m

and(∑
α`n

βα(xα̂ − xα)

)n−m

α2+α3=m,α1+α3=m

(4.14)

are positive semidefinite, and along with the following constraints:

I xα(0) = 1

II 0 ≤ xα ≤ xά,∀α ∈ T and xά + xα̌ ≤ 1 + xα,∀α ∈ T

III xα = xα′ if (α1, α2, α3) is a permutation of (α′1, α
′
2, α

′
3)

IV xα = 0 if {α1 + α2, α2 + α3, α1 + α3} ∩ {1, . . . , d− 1} 6= ∅ (4.15)

4.4 Implementating for the semidefinite program-

ming bound

So far we have obtained all the information we need to formulate our semidefinite

programming to obtain the upper bound for binary codes with length n. In this

chapter let us introduce our implementation of the primal problem.

We use CVX, (please find [4] and [3]), connecting with MATLAB to formulate our

semidefinite program. We will first introduce some basic idea of the CVX package

and show you a simple demo which takes advantage of CVX package to model and

solve a semidefinite programming problem. We also use the duality theorem of

semidefinite programming to model the dual problem of our simple demo, which
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will show you the geometrical meaning of the dual solution from the dual variable,

which is corresponding to the semidefinite cone of the primal problem.

4.4.1 Environment setup

First, we need to download the CVX package which is available from the official

website (http://cvxr.com/cvx/download). We use Windows 64-bit operat-

ing system, so we choose the “cvx-w64.zip”. Installation of the CVX package is

fairly easy: after unzipping “cvx-w64.zip” to any directory of the file system, open

MATLAB, and navigate to that directory. Type “cvx setup” command to finish the

setup process. The built-in default solver of CVX package is SDPT3, while it also

supports some commercial solvers like Gurobi and MOSEK, which requires a profes-

sional license of CVX. In our experiments, we only use the default solver SDPT3. To

change the solver being used, one can type the command “cvx solver solver name”

in the MATLAB command line window. For example, if one has the professional

license for CVX, by typing the command “cvx solver mosek” could make the solver

being used change to MOSEK.

4.4.2 Demo using MATLAB and CVX

Before introducing our implementation of the SDP bound, we would like to first give

a demo of using MATLAB and CVX to model and solve a semidefinite programming

problem, which could make the structure of a program solving SDP problem very

clear.
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Consider the following quadratic programming problem:

max 2x1 + x2

s.t. x1 + x2≤ 10

x1≤ 9

x2
1 + x2≤ 16

x1, x2≥ 0

(4.16)

This can be transformed into a semidefinite programming problem taking the fol-

lowing form:

max 〈C,X〉

s.t. 〈Ai, X〉≤ ai, i = 1, 2, 3, 4

〈Bi, X〉= bj, j = 1, 2, 3, 4

X � 0

(4.17)

where

A1 =


0 0 1

2

0 1 0

1
2

0 0

 A2 =


0 0 1

2

0 0 0

1
2

0 0

 A3 =


0 0 −1

2

0 0 0

−1
2

0 0

 A4 =


0 0 0

0 −1 0

0 0 0



B1 =


1 0 0

0 0 0

0 0 0

 B2 =


0 1 0

0 0 0

0 0 0

 B3 =


0 0 0

0 0 1

0 0 0

 B4 =


0 0 0

0 1 0

0 0 1



C =


0 0 1

0 1 0

1 0 0

 X =


1 0 x1

0 x2 0

x1 0 16− x2


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and

a = (10, 9, 0, 0)

b = (1, 0, 0, 16).

(4.18)

In MATLAB we first define the above matrices and vectors, and then begin to model

the SDP problem by using the cvx begin sdp keyword. To finish modeling we use

the cvx end keyword. Once the script hits the cvx end keyword, the solver will be

intrigued to solve the model. If the problem has feasible solution, it will output the

optimal value and the dual optimal value. We can check the optimal solution in the

MATLAB workspace environment. For example, our demo problem is formulated

with the following MATLAB code:

cvx_begin sdp

variable X(3,3) hermitian;

maximize(trace(C’*X));

dual variable Q;

for i = 1:size(a,2)

trace(A(:,:,i)’*X) <= a(i);

end

for j = 1:size(b,2)

trace(B(:,:,j)’*X) == b(j);

end

X >= 0 : Q;

cvx_end

where A and B are the matrices defined as above, and X is the semidefinite cone.

Q is the dual variable which could be obtained once the formulation is solved with

a feasible solution. From the workspace of MATLAB, we can obtain the solution
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for X which is

X =


1 0 3

0 7 0

3 0 9

 .
Hence we can conclude that our solution is x1 = 3 and x2 = 7. To check the ence

we can conclude that our solution is x1 = 3 and x2 = 7. To check the shown in

Figure 4.2. It is pretty clear that point (3, 7) is our optimal solution for this problem.

0 2 4 6 8 10

0

2

4

6

8

10

Figure 4.2: Feasible region of SDP demo

Now let us model the dual problem to check the correctness of the primal solution

obtained as X from the primal problem. From (3.11) and (3.12) we can get the dual

problem of our demo SDP as the following:

min bᵀt+ aᵀy

s.t.
∑4

i=1 Aiyi +
∑4

j=1Bjtj − C � 0

yi, tj ≥ 0 for all 1 ≤ i, j ≤ 4

(4.19)

where A, B, C, a and b are the same as the primal problem. Using the following

MATLAB code we can model the dual semideifinite problem of our demo problem:

cvx_begin sdp
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variables y(4) t(4);

expression obj;

dual variable Q;

for i = 1:size(a,2)

obj = obj + a(i)*y(i);

end

for j = 1:size(b,2)

obj = obj + b(j)*t(j);

end

minimize(obj);

expression Z(3,3);

subject to

for i = 1:size(a,2)

Z = Z+A(:,:,i)*y(i);

end

for j = 1:size(b,2)

Z = Z+B(:,:,j)*t(j);

end

Z-C >= 0 : Q;

Z == Z’;

y >= 0;

t >= 0;

cvx_end

What differs from our code for primal SDP problem is that we use the keyword

expression to represent the objective function and our semidefinite cone, since they

are constituted iteratively by general variables. By solving the D-SDP, we can get

the optimal solution which is 8, satisfying the weak duality theorem stating that the

value of primal SDP is at least the value of the dual SDP. We can simply get the
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dual variable Q from the MATLAB workspace, which gives us that

Q =


1 0 4

0 0 0

4 0 0

 .

Comparing the dual variable of dual solution which gives us x1 = 4 and x2 = 0 with

our primal solution where

X =


1 0 3

0 7 0

3 0 9

 .
which gives us the solution as x1 = 3 and x2 = 7, and check the region in Figure 4.2.

We can know that the dual variable of our dual problem found the optimal solution

as point (4, 0). By substituting the (x1, x2) with (4, 0) in the objective function

of the primal problem, we can get our optimal value 8 of the dual problem. From

Figure 4.2 we can know that there is some geometrical meaning in the dual solution,

that is where we will look at the dual solution of the semidefinite programming for

code size bound problem.

So far we have learned the tools we need to study the dual solutions of the semidef-

inite program of the code theory problem. Let us first study the primal solutions of

this semidefinite program, which is obtained from (4.13) to (4.15). For full MAT-

LAB implemetation please find Appendix B, while we will introduce the basic ideas

behind it.

To simplify our semidefinite programming model, we only declare the distinct vari-

bles and nonzero variables. So the constraint III and IV of (4.15) are evaluated

during the modeling process. We will obtain the number of different variables, nvar.

We assign all the variables xα = 0 the same index 1, and xα(0) index nvar. So in our
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implementation, there are two equality constraints which are

x1 = 0

xnvar = 1 (4.20)

All the other constraints with respect to II in (4.15) are generated iteratively.

Figure 4.3 shows our implementation of the SDP bound in MATLAB. Now let us

Start

Generate all alphas

Generate index 
matrix for alphas

i=1, N=# of alphas

i < N

Alpha valid & not a 
permutation of 
previous alpha

Yes

Set current alpha to 
corresponding index

no i++

Go through each 
alpha and bind with 
their corresponding 
permutation index

Model based on the 
valid alphas

Solve and get results

End

Figure 4.3: Flowchart of SDP bound program
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go through the process of implementing the SDP bound with MATLAB and CVX

more in detail. As we can see in Figure 4.3, we start by generating all the possible

αs. By using α1, α2, α3 and α4 as the index we build up a index table for all the

αs, and the entry refers to the name of the corresponding variable, say xα. Next,

we check each α to get rid of those that are not allowed due to IV in (4.15) as well

as combine the αs according to the permutation constraint III in (4.15). Once we

get all the valid αs, we can start building up our constraints and objective function

following (4.13) and II in (4.15) iteratively. Our program takes two parameters as

the initial state, n and d representing the length of codewords and the minimum

Hamming distance. Now let us examine a small instance of the above semidefinite

program, for n = 4 and minimum distance d = 2. The solution give us the optimal

value is 8 and there are 5 xs equals to 1 and all the other variables equals to 0. For

all the xs equals to 1 the corresponding λαs are shown below:

αs xα λα

(0, 0, 0, 4) 1 8

(0, 0, 2, 2) 1 48

(1, 1, 1, 1) 1 192

(2, 0, 0, 2) 1 48

(4, 0, 0, 0) 1 8

Table 4.1: Result of SDP bound for n = 4 and d = 2

Since |C|2 =
∑

α`n λά, we can use this table to simply check that, |C|2 = λ(0,4,0,0) +

λ(4,0,0,0) + λ(2,2,0,0), which equals to 64. Hence our optimal value for the code upper

bound is 8.
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4.5 Applying SDP to the orthogonality graph col-

oring problem

In de Klerk and Pasechnik’s work [5], Schrijver’s semidefinite programming was ap-

plied to the orthogonality graph coloring problem; they obtained a very impressive

bounds for that problem. By little modification of the MATLAB code of Schri-

jver’s semidefinite programming for the code bound problem, we can obtain the

formulation for the orthogonality graph coloring problem.

4.6 Reformulation

As they showed, the formulation only differed with the constraints of (4.15) in IV.

De Klerk and Pasechnik change IV into

xα = 0 if {α1 + α3, α2 + α3, α1 + α2} ∩ {
1

2
n} 6= ∅

Hence the constraints of the orthogonality graph problem would be

I xα(0) = 1

II 0 ≤ xα ≤ xά,∀α ∈ T and xά + xα̌ ≤ 1 + xα,∀α ∈ T

III xα = xα′ if (α1, α2, α3) is a permutation of (α′1, α
′
2, α

′
3)

IV xα = 0 if {α1 + α2, α2 + α3, α1 + α3} ∩ {
1

2
n} 6= ∅. (4.21)

The MATLAB code for modeling the orthogonality graph coloring problem is very

similar to that for modeling the code size problem. Now let us go through the process

of the MATLAB code for this problem. Same as the MATLAB code to solve the

code size problem, we still start from creating the index matrix for all the αs. What
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differs from with before is that, after building up the index matrix, we don’t check the

minimum Hamming distance as an evaluation for the permission of an α. Instead we

check IV in (4.21), which means we check whether the Hamming distance is exactly

equal to 1
2
n. Then the permutation checking is same as before. After the index

matrix is built up, we use the same process to formulate the constraints iteratively

as we did in the code size problem. Table 4.2 shows some computational results

produced by our program, which matches de Klerk and Pasechnik’s results shown

in [5]. Because of the computational limitation of MATLAB and CVX, we cannot

get results for some relatively large n, say n > 20. But our purpose is to produce

results for relatively small instances and try finding the pattern behind them. Let’s

see some results as shown in following table, in which α(n) denotes the upper bound

of the size of set of orthogonality graphs:

n α(n)
8 32
12 268
16 2304
20 20167

Table 4.2: Result of SDP bound for Ω(16) and Ω(20)
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Chapter 5

Dual SDP for the graph coloring

problem

What we are really interested is finding the difference between the optimal solution

of the primal SDP formulation and the its dual problem the for this graph coloring

problem. Now we have introduced everything we need to formulate the dual SDP

formulation for the problem. Let’s start with looking at a small instance for the

coloring problem say coloring Ω(4). Then we will go into generate the dual SDP

problem from the primal SDP problem automatically, since to study the pattern

of the difference between the optimal solution for the primal problem and its dual,

we need to look at some larger scale problems. Since the complextiy of this SDP

formulation, it is necessary to generate the dual problem automatically to avoid any

possible errors to produce correct solutions.
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5.1 Dual problem of coloring Ω(4)

Recall that we have seen the P-SDP and D-SDP formulations in chapter 3 and a

special form to our special case. THe P-SDP of the graph coloring problem is shown

as follows:

max
∑

α uαxα

s.t.
∑

α xαBα � C

xα ≥ 0.

Then its corresponding dual problem is in the following form:

min 〈C, χ〉

〈Bα, χ〉 ≤ −uα

χ � 0.

To simplify the work, we need to change our formulation into a single positive

semidefinite constraint. In our case, we have a positive semidefinite constraint as

well as some linear constraints, so we append the linear constraints to the end

of the semidefinite matrix as a single element block matrix. After obtaining our

semidefinite constraints, by splitting the matrix into the sum of variables multiplied

by their corresponding coefficient matrices, we can get all the elements we need to

build up the dual. First let’s formulate the semidefinite condition. From (4.14), we
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can get the block diagonal matrices B and B′ for Ω(4). The blocks are

B1 =



x6 4x5 6x1 4x4 x2

4x5 12x1 + 4x5 24x1 4x3 + 12x1 4x3

6x1 24x1 36x1 24x1 6x1

4x4 4x3 + 12x1 24x1 12x1 + 4x4 4x3

x2 4x3 6x1 4x3 x2



B2 =


−x1 + x5 0 −x3 + x1

0 0 0

−x3 + x1 0 −x1 + x4


B3 =

[
0

]

B′1 =



0 0 0 0 0

0 4x6 − 4x5 12x4 + 12x5 − 24x1 4x2 − 4x3 4x4 − 4x3

0 12x4 + 12x5 − 24x1 6x2 + 6x6 − 12x1 12x4 + 12x5 − 24x1 0

0 4x2 − 4x3 12x4 + 12x5 − 24x1 4x6 − 4x4 4x5 − 4x3

0 4x4 − 4x3 0 4x5 − 4x3 x6 − x2



B′2 =


x6 − x5 2x5 − 2x4 x3 − x2

2x5 − 2x4 2x6 − 2x2 2x5 − 2x4

x3 − x2 2x5 − 2x4 x6 − x4


B′3 =

[
x2 + x6 − 2x1

]
.

(5.1)

From (4.13) we can obtain our objective function:

max x6 + 4x5 + 6x1 + 4x4 + x2 (5.2)
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where x2 = x(0,0,0,4), x3 = x(0,0,1,3), x4 = x(1,0,0,3), x5 = x(3,0,0,1), x6 = x(4,0,0,0) and x1

represents all the other xαs, which are all equal to zero. From x2 to x6, they also

represents the xαs if the α has the permutation on α1, α2 and α3 to the corresponding

α. From II of (4.21), we can obtain a bunch of linear constraints, each of which we

append to our semidefinite cone as a diagonal matrix . There are 13 different linear

constraints in total, so together with B and B′, they constitute a semidefinite cone

of dimension 31× 31.

By substituting x6 = 1 and x1 = 0 into our semidefinite cone, we can get our block
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diagonal matrices B and B′ as

B1 =



1 4x5 0 4x4 x2

4x5 4x5 0 4x3 4x3

0 0 0 0 0

4x4 4x3 0 4x4 4x3

x2 4x3 0 4x3 x2



B2 =


−x5 0 −x3

0 0 0

−x3 0 −x4


B3 =

[
0

]

B′1 =



0 0 0 0 0

0 4− 4x5 12x4 + 12x5 4x2 − 4x3 4x4 − 4x3

0 12x4 + 12x5 6x2 + 6 12x4 + 12x5 0

0 4x2 − 4x3 12x4 + 12x5 4− 4x4 4x5 − 4x3

0 4x4 − 4x3 0 4x5 − 4x3 1− x2



B′2 =


1− x5 2x5 − 2x4 x3 − x2

2x5 − 2x4 2− 2x2 2x5 − 2x4

x3 − x2 2x5 − 2x4 1− x4


B′3 =

[
x2 + 1

]

. (5.3)
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Ld =



x2

1− x2

x3

x2 − x3

1 + x3 − x2 − x4

1 + x3 − x2 − x5

x4 − x3

1 + x3 − x4 − x5

x5 − x3

x4

1− x4

x5

1− x5



(5.4)

Now it is fairly easy to split the semidefinite cone into summation of several matrices

with the variables as the coefficients. By (3.13) and (3.14) we formulated the dual

semidefinite programming formulation of this Ω(4) coloring problem, which is shown

as the following MATLAB code:

cvx_begin sdp

variable X(31,31) hermitian;

minimize(trace(C’*X));

dual variable Q;

for i = 1:size(u,2)

trace(A(:,:,i)’*X) <= -u(i);

end

X >= 0 : Q;

cvx_end

Here A is a 4-dimensional 31 × 31 matrix vector, and each of the elements is the

coefficient of an xi, where i = {2, 3, 4, 5}. By solving this dual problem of the Ω(4)

coloring problem, we can get the dual optimal solution which is 3, since we hard

coded the variable x6 as x6 = 1, this means we obtained the same optimal value as

the primal SDP problem. By examining the dual variable Q in the above code, we

can obtain the same solution as shown in the solution of the primal SDP problem.
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5.2 Generate the dual SDP automatically

After examine the small instance of the graph coloring problem, we are very inter-

ested in some larger scale problems, such as Ω(8). But as we have seen, generating

the dual SDP problem by hand is very difficult and it is very easy to make errors, so

we wrote a program to parse the outputs of the primal SDP problem and generate

the dual SDP problem with MATLAB script.

We wrote the parser in C++, which parses the text files representing the objective

function, semidefinite cone and the linear constraints respectively. Our output files

are written in the format defined by ourselves which could be easily recognized by

our parser. During the process of building the primal SDP formulations we output

the information needed and then the parser collect all the information needed for

the dual SDP formulation and output it to files. Finally a simple MATLAB script

parses the files outputed from the C++ parser and build the SDP problem. Please

find Appendix C and D for the C++ parser and the dual SDP builder.
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Chapter 6

Summary and future work

From our software suite, we can obtain the optimal solution for both the primal

SDP and its dual problem for the graph coloring problem correctly. This results

could be useful for future study on the difference of the optimal solution between

the primal and dual problem. In future study, we will focus on finding the pattern

of difference between the optimal solution of the primal SDP and its dual. Once we

make an assumption based on our observation, we will try to prove it for infinite

large n analytically. This could probably tighten the gap between the upper bound

of and the lower bound of code size.
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Appendix A

C++ source code for LP bound

// DesarteLPBound.h

#pragma once

#include <ilcplex/cplex.h>

#include <ilcplex/ilocplex.h>

#include <cmath>

#include <vector>

#include <iostream>

using namespace std;

class DelsarteLPBound

{

public:

DelsarteLPBound(int nn, int d);

˜DelsarteLPBound(void);

void Formulate();

void GenerateEigenmatrix();

void Solve();

void Process();

private:

int nchoosek(int n, int k);

int KrawtchoukPolynomial(int i, int j);
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int nn;

int dd;

vector<vector<int> > Q;

IloEnv env;

IloModel model;

IloNumVarArray var_x;

IloObjective obj;

IloCplex cplex;

};

// DelsarteLPBound.cpp

#include "DelsarteLPBound.h"

DelsarteLPBound::DelsarteLPBound(int n, int d):

nn(n),

dd(d),

Q(nn+1)

{

for (int i = 0; i < Q.size(); i++)

{

Q[i] = vector<int>(nn+1, 0);

}

}

DelsarteLPBound::˜DelsarteLPBound(void)

{

}

int DelsarteLPBound::nchoosek(int n, int k)

{
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if (n < 0)

{

return 1;

}

if (k < 0)

{

return 0;

}

if (k > n)

{

return 0;

}

vector<vector<int> > pt(n+1);

for (int i = 0; i < pt.size(); i++)

{

pt[i] = vector<int>(i+1,1);

}

for (int i = 2; i < pt.size(); i++)

{

for (int j = 1; j < pt[i].size()-1; j++)

{

pt[i][j] = pt[i-1][j-1]+pt[i-1][j];

}

}

return pt[n][k];

}

inline int DelsarteLPBound::KrawtchoukPolynomial(int i, int j)

{

int result = 0;

for (int k = 0; k <= j; k++)
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{

result += pow(-1,k)*nchoosek(i,k)*nchoosek(nn-i,j-k);

}

return result;

}

void DelsarteLPBound::GenerateEigenmatrix()

{

for (int i = 0; i < Q.size(); i++)

{

for (int j = 0; j < Q[i].size(); j++)

{

Q[i][j] = KrawtchoukPolynomial(i,j);

}

}

}

void DelsarteLPBound::Formulate()

{

env = IloEnv();

model = IloModel(env);

var_x = IloNumVarArray(env);

for (int i = 0; i <= nn; i++)

{

string name("a");

name.append(std::to_string(i));

IloNumVar r(env, 0, IloInfinity, IloNumVar::Float, name.c_str());

var_x.add(r);

}

obj = IloMaximize(env, IloSum(var_x));

model.add(obj);
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GenerateEigenmatrix();

for (int j = 1; j <= nn; j++)

{

IloExpr expr(env);

for (int i = 0; i <= nn; i++)

{

expr += var_x[i]*Q[i][j];

}

model.add(expr >= 0);

}

model.add(var_x[0] == 1);

for (int i = 1; i < dd; i++)

{

model.add(var_x[i] == 0);

}

}

void DelsarteLPBound::Solve()

{

cplex = IloCplex(env);

cplex.extract(model);

//cplex.exportModel("model.lp");

cplex.setOut(env.getNullStream());

if (cplex.solve())

{

int optval = cplex.getObjValue();

printf("Optimal value for n=%d, d=%d is %d.\n", nn, dd, optval);

printf("Variables of optimal solutions are \n");

for (int i = 0; i <= nn; i++)

{

float a_i = cplex.getValue(var_x[i]);
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printf("a[%d] = %e\t", i, a_i);

}

cout << endl;

}

}

void DelsarteLPBound::Process()

{

Formulate();

Solve();

}

int binomial(int n, int k)

{

if (n < 0 || k < 0)

{

return 0;

}

if (k > n)

{

return 0;

}

vector<vector<int> > pt(n+1);

for (int i = 0; i < pt.size(); i++)

{

pt[i] = vector<int>(i+1,1);

}

for (int i = 2; i < pt.size(); i++)

{

for (int j = 1; j < pt[i].size()-1; j++)

{
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pt[i][j] = pt[i-1][j-1]+pt[i-1][j];

}

}

return pt[n][k];

}

int main(int argc, char* argv[])

{

if (argc != 2)

{

printf("Usage:\n");

printf("lpbound.exe n\n");

printf("where n is an integer.");

return -1;

}

int MAX_N = atoi(argv[1]);

for (int n = 4; n <= MAX_N; n++)

{

for (int d = 2; d <= n; d++)

{

DelsarteLPBound del(n,d);

del.Process();

}

}

return 0;

}
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Appendix B

MATLAB source code for SDP

bound

function b=active(alpha,d,n)

% active: Answer "1" (yes) if this is a shape for length n which is allowed to

% be non-zero. Otherwise answer "0" (no).

if ( (alpha(1)+alpha(2)+alpha(3)+alpha(4) < n) ) ||...

( (alpha(1)+alpha(2)+alpha(3)+alpha(4) > n) ) ||...

( (0 < alpha(2)+alpha(3)) && (alpha(2)+alpha(3) < d) ) ||...

( (0 < alpha(2)+alpha(4)) && (alpha(2)+alpha(4) < d) ) ||...

( (0 < alpha(3)+alpha(4)) && (alpha(3)+alpha(4) < d) )

b = 0;

else

b = 1;

end

end

function b = beta(alpha, omega)

n = sum(alpha);

b = 0;

r = alpha(3) + alpha(4);
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s = alpha(2) + alpha(4);

for u = 0 : n

if (u >= alpha(4)) && ...

(r-u >= 0) && ...

(u-omega >= 0) && ...

(s-u >= 0)

b = b + (-1)ˆ(u-alpha(4))*nchoosek(u, (alpha(4)))*...

nchoosek((n-2*omega), (u-omega))*nchoosek((n-...

omega-u), (r-u))*nchoosek((n-omega-u), (s-u));

end

end

end

function beta=checkalpha(alpha)

% Matlab function for Schrijver SDP converts alpha to (alpha0+alpha3, 0 ,

% alpha1+alpha2 , 0) as in (19) and in Schrijver

beta=[alpha(1)+alpha(3) 0 alpha(2)+alpha(4) 0];

end

function beta=primealpha(alpha)

% Matlab function for Schrijver SDP converts alpha to (alpha0+alpha3, 0 ,

% alpha1+alpha2 , 0) as in (19) and in Schrijver

beta=[alpha(1)+alpha(2) 0 alpha(3)+alpha(4) 0];

end

function sh=repshape(alpha)

% map alpha to equivalent alpha’ with i>=j>=k

if (alpha(2) <= alpha(3)) && (alpha(3) <= alpha(4))

sh = [alpha(1) alpha(2) alpha(3) alpha(4)];

end

if (alpha(2) <= alpha(4)) && (alpha(4) <= alpha(3))

sh = [alpha(1) alpha(2) alpha(4) alpha(3)];

end

70



if (alpha(3) <= alpha(2)) && (alpha(2) <= alpha(4))

sh = [alpha(1) alpha(3) alpha(2) alpha(4)];

end

if (alpha(3) <= alpha(4)) && (alpha(4) <= alpha(2))

sh = [alpha(1) alpha(3) alpha(4) alpha(2)];

end

if (alpha(4) <= alpha(2)) && (alpha(2) <= alpha(3))

sh = [alpha(1) alpha(4) alpha(2) alpha(3)];

end

if (alpha(4) <= alpha(3)) && (alpha(3) <= alpha(2))

sh = [alpha(1) alpha(4) alpha(3) alpha(2)];

end

end

function beta=zalpha(alpha)

% Matlab function for Schrijver SDP converts alpha to (alpha0+alpha3, 0 ,

% alpha1+alpha2 , 0) as in (19) and in Schrijver

beta=[alpha(1)+alpha(4) 0 alpha(2)+alpha(3) 0];

end

%% initial arguments

n = 4; % length of code

d = 3; % minimum Hamming distance

m = floor(n/2); % total number of eigenspace

%% Generate all the alphas:

allalpha = {};

for alpha0 = 0 : n

for alpha1 = 0 : n-alpha0

for alpha2 = 0 : n-alpha0-alpha1

new_row = [alpha0 alpha1 alpha2 n-alpha0-alpha1-alpha2];

allalpha = [allalpha ; new_row];
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end

end

end

%for i = 1 : length(allalpha)

% disp(allalpha{i});

%end

N = length(allalpha);

% uint8 only allows 255 variables, which may be small.

indx = uint16(ones(n+1,n+1,n+1,n+1));

numvars = 1; % Need x(1)=0 for all inactive shapes.

for shape = 1 : N % Include trivial shape. But this variable is set to 1.

alpha = allalpha{shape};

if (active(alpha,d,n)) &&...

% Only consider if a1 <= a2 <= a3, i.e. i >= j >= k

isequal(alpha,repshape(alpha))

numvars = numvars+1; % One variable for each unordered triple (i,j,k)

indx(1+alpha(1), 1+alpha(2), 1+alpha(3),...

1+alpha(4))=numvars; %This will be the corr. variable name.

disp(sprintf(’x(%d)=[%d %d %d %d]’, numvars, alpha(1), alpha(2),...

alpha(3), alpha(4)));

end

end

for shape = 1 : N % Now go through and index each alpha to its variable.

alpha = allalpha{shape};

gamma = repshape(alpha); % Cf. (20)(iii)

indx(1+alpha(1),1+alpha(2),1+alpha(3),1+alpha(4))...

= indx(1+gamma(1),1+gamma(2),1+gamma(3),1+gamma(4));

end
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%% start modeling

cvx_begin sdp

variables x(numvars);

Bls = {};

disp(’Begin to generate B and B"...’);

for omega = 0 : m

expression Bl(n-omega+1,n-omega+1); % Matrix defined in (19) from R

expression Blp(n-omega+1,n-omega+1); % Matrix defined in (19) from R’

for i = omega : (n-omega)

for j = omega : (n-omega)

for t = 0 : min(i,j)

if (n+t-i-j >= 0)

gamma = [n+t-i-j,j-t,i-t,t]; % Here is the shape determined by i,j,t

delta = zalpha(gamma);

index = double(indx(1+gamma(1),1+gamma(2),1+gamma(3),1+gamma(4)));

b = double(beta(gamma, omega));

Bl(i+1,j+1) = Bl(i+1,j+1)+b*x(index);

%disp(sprintf(’Bl[%d,%d]+=%d*x(%d)’, i, j, b, index));

Blp(i+1,j+1) = Blp(i+1,j+1)+...

double(beta(gamma, omega))*...

(x(double(indx(1+delta(1),1+delta(2),1+delta(3),1+delta(4))))-...

x(double(indx(1+gamma(1),1+gamma(2),1+gamma(3),1+gamma(4)))));

%disp(sprintf(’Blp[%d,%d]+=%d*(x(%d)-x(%d))’, i, j, b, ...

%indx(1+delta(1),1+delta(2),1+delta(3),1+delta(4)),...

%indx(1+gamma(1),1+gamma(2),1+gamma(3),1+gamma(4))));

end

end

end

end
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Bl = Bl((omega+1):end,(omega+1):end);

Blp = Blp((omega+1):end,(omega+1):end);

Bls(end+1) = {Bl};

Bls(end+1) = {Blp};

if omega == 0

Bl(1,1) = 1;

end

end

expression B;

B = blkdiag(Bls{1:length(Bls)});

disp(’B and B" generating finished.’);

matrix_dim = size(B,1);

expression ObjFunc;

for i = 0 : n

alpha = [n-i 0 i 0];

ObjFunc=ObjFunc+double(mychoose(n,i))*...

x(indx(alpha(1)+1,alpha(2)+1,alpha(3)+1,alpha(4)+1));

%disp(sprintf(’ObjFun+=%d*x[%d]’,double(mychoose(n,i)), ...

%indx(alpha(1)+1,alpha(2)+1,alpha(3)+1,alpha(4)+1)));

end

dual variables y{3*(N-1)};

constraints = {};

disp(’Begin to add consstraints...’);

maximize(ObjFunc);

subject to

x(1) == 0; % This kills off all inactive shapes alpha

%x(numvars) == 1; % (20)(i)

nineqconstr = 0;
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for h = 1 : N-1 % Ignore trivial partition

alpha = allalpha{h};

if(active(alpha, d, n))

% We only created variables when they can be nonzero

l = indx(alpha(1)+1,alpha(2)+1,alpha(3)+1,alpha(4)+1);

% Variable subscript for alpha=(i,j,t)

zal = primealpha(alpha);

li = indx(zal(1)+1,zal(2)+1,zal(3)+1,zal(4)+1);

% Variable subscript for (i,0,0) Cf. (20)(ii)

zal = checkalpha(alpha);

lj = indx(zal(1)+1,zal(2)+1,zal(3)+1,zal(4)+1);

% same for (j,0,0) Cf. (20)(ii)

x(l) >= 0 : y{(h-1)*3+1}; % (20)(ii), ineq. 1

constraints{(h-1)*3+1} = sprintf(’x(%d) >= 0’, l);

nineqconstr = nineqconstr + 1;

x(l) - x( li ) <= 0 : y{(h-1)*3+2}; % (20)(ii), ineq. 2

constraints{(h-1)*3+2} = sprintf(’x(%d) - x(%d) <= 0’, l, li);

nineqconstr = nineqconstr + 1;

%disp(sprintf(’x(%d)<=x(%d)’, l, li));

x(li)+x(lj)-1-x(l) <= 0 : y{(h-1)*3+3}; % (20)(ii), ineq. 3

constraints{(h-1)*3+3} = sprintf(’x(%d)+x(%d)-1-x(%d) <= 0’, li, lj, l);

nineqconstr = nineqconstr + 1;

%disp(sprintf(’x(%d)+x(%d)<=1+x(%d)’,li,lj,l));

end

end

disp(sprintf(’Totally %d inequality constraints added...’,nineqconstr));

B == semidefinite(matrix_dim);

B == transpose(B);

disp(’All constraints has been added in to the model’);

cvx_end
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yy = {};

cc = {};

%% parsing dual solutions

for i = 1:size(y,1)

if ˜isempty(y{i})

if abs(y{i}(1)) > 0.0001

yy(end+1) = {y{i}};

cc(end+1) = {constraints{i}};

end

end

end

disp(’The primal variables are:’);

disp(x);

disp(’The dual variables are:’);

disp(yy);

yy = yy’;

cc = cc’;

out = cell(length(yy),2);

for i = 1:length(yy)

out{i,1} = yy{i};

out{i,2} = cc{i};

end

% Ty = cell2table(yy, ’VariableNames’, {’y’});

% Tc = cell2table(cc, ’VariableNames’, {’c’});

Tout = cell2table(out, ’VariableNames’, {’y’ ’c’});

% writetable(Ty, [’y’,num2str(n),’,’,num2str(d)]);

% writetable(Tc, [’c’,num2str(n),’,’,num2str(d)]);

filename = [’out’,num2str(n),’,’,num2str(d),’.csv’];

writetable(Tout, filename, ’Delimiter’, ’,’);
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Appendix C

C++ code for parsing primal SDP

outputs

#pragma once

#include <string>

#include <iostream>

#include <cmath>

#include <algorithm>

#include <vector>

#include <fstream>

using namespace std;

typedef vector<vector<int> > MatInt;

typedef vector<vector<string> > MatStr;

class FileParser

{

public:

FileParser(int n, int nv);

˜FileParser();

void ReadFromFile();

void ParseInputs();
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void Process();

void PrintInputs();

void InitializeMatrices();

void PrintOutputs();

void OutputMatrices();

private:

int N;

int m;

int nVar;

int mdim;

vector<MatStr> inputs;

vector<MatInt> As;

MatInt C;

vector<int> offsets;

vector<int> coefs;

inline int get_x_index(string& x);

inline int get_coef(string& c);

inline bool isPlusorMinus(string& s);

void Tokenize(const string& str,

vector<string>& tokens,

const string& delimiters);

};

#include "FileParser.h"

void FileParser::Tokenize(const string& str,

vector<string>& tokens,

const string& delimiters = " ")

{

// Skip delimiters at beginning.

string::size_type lastPos = str.find_first_not_of(delimiters, 0);

// Find first "non-delimiter".
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string::size_type pos = str.find_first_of(delimiters, lastPos);

while (string::npos != pos || string::npos != lastPos)

{

// Found a token, add it to the vector.

tokens.push_back(str.substr(lastPos, pos - lastPos));

// Skip delimiters. Note the "not_of"

lastPos = str.find_first_not_of(delimiters, pos);

// Find next "non-delimiter"

pos = str.find_first_of(delimiters, lastPos);

}

}

FileParser::FileParser(int n, int nv):

N(n),

nVar(nv),

m(n/2),

As(nv),

inputs(n+3)

{

}

FileParser::˜FileParser()

{

}

void FileParser::ReadFromFile()

{

char buffer[500];
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vector<string> files;

for (auto i = 0; i <= m; i++)

{

sprintf_s(buffer,

"D:/Chao/Dropbox/Workspace/Matlab/deklerk_sdp_code/Bls%d.txt",

i + 1);

string filename(buffer);

files.push_back(filename);

sprintf_s(buffer,

"D:/Chao/Dropbox/Workspace/Matlab/deklerk_sdp_code/Blps%d.txt",

i + 1);

filename = string(buffer);

files.push_back(filename);

}

files.push_back(string(

"D:/Chao/Dropbox/Workspace/Matlab/deklerk_sdp_code/linear.txt"

));

for (auto i = 0; i < files.size(); i++)

{

ifstream fin(files[i]);

string line;

vector<string> dirs;

Tokenize(files[i], dirs, "/");

string filename = dirs[dirs.size() - 1];

getline(fin, line);

printf("%s\n", filename.c_str());

while (getline(fin, line))

{

vector<string> entries;

Tokenize(line, entries, ", ");

inputs[i].push_back(entries);
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}

}

offsets.push_back(0);

for (auto i = 0; i < inputs.size(); i++)

{

offsets.push_back(inputs[i].size()+offsets[i]);

}

PrintInputs();

ifstream fin("D:/Chao/Dropbox/Workspace/Matlab/deklerk_sdp_code/objcoef.txt");

string line;

getline(fin, line);

getline(fin, line);

vector<string> entries;

Tokenize(line, entries, ", ");

for (size_t i = 0; i < entries.size(); i++)

{

coefs.push_back(stoi(entries[i]));

}

}

bool FileParser::isPlusorMinus(string& s)

{

return s == "+" || s == "-" ? true : false;

}

int FileParser::get_x_index(string& x)

{

return stoi(x.substr(1, x.size() - 1));

}

int FileParser::get_coef(string& c)
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{

return stoi(c);

}

void FileParser::ParseInputs()

{

for (auto i = 0; i < inputs.size()-1; i++)

{

int offset = offsets[i];

for (auto j = 0; j < inputs[i].size(); j++)

{

for (auto k = 0; k < inputs[i][j].size(); k++)

{

string tmp = inputs[i][j][k];

// Skip delimiters at beginning.

string::size_type lastPos = tmp.find_first_not_of("*", 0);

// Find first "non-delimiter".

string::size_type pos = tmp.find_first_of("*", lastPos);

while (string::npos != pos)

{

string::size_type tmpPos = pos + 1;

if (tmp.substr(tmpPos, 1) == "x")

{

int xpos = tmpPos;

while (!isPlusorMinus(tmp.substr(tmpPos, 1))

&& tmpPos < tmp.size())

{

tmpPos++;

}

string x_ind(tmp.substr(xpos, tmpPos - xpos));
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int ind = get_x_index(x_ind)-2;

tmpPos = xpos - 2;

xpos--;

while (!isPlusorMinus(tmp.substr(tmpPos, 1))

&& tmpPos >= 0)

{

tmpPos--;

}

int num = get_coef(tmp.substr(tmpPos, xpos-tmpPos));

As[ind][offset + j][offset + k] += num;

}

else if (tmp.substr(tmpPos, 1) != "0")

{

int cpos = tmpPos;

while (!isPlusorMinus(tmp.substr(tmpPos, 1))

&& tmpPos < tmp.size())

{

tmpPos++;

}

int num1 = get_coef(tmp.substr(cpos, tmpPos - cpos));

tmpPos = cpos - 2;

cpos--;

while (!isPlusorMinus(tmp.substr(tmpPos, 1))

&& tmpPos >= 0)

{

tmpPos--;

}

int num = get_coef(tmp.substr(tmpPos, cpos - tmpPos));

C[offset + j][offset + k] += num*num1;

}

// Skip delimiters. Note the "not_of"
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lastPos = tmp.find_first_not_of("*", pos);

// Find next "non-delimiter"

pos = tmp.find_first_of("*", lastPos);

}

}

}

printf("Finished %d files!\n", i + 1);

}

auto i = inputs.size() - 1;

auto j = inputs[i].size()-1;

int offset = offsets[offsets.size() - 2];

for (auto k = 0; k < inputs[i][j].size(); k++)

{

string tmp = inputs[i][j][k];

// Skip delimiters at beginning.

string::size_type lastPos = tmp.find_first_not_of("/", 0);

// Find first "non-delimiter".

string::size_type pos = tmp.find_first_of("/", lastPos);

while (string::npos != pos)

{

int tmpPos = pos - 1;

if (tmpPos == 0 ||

(stoi(tmp.substr(tmpPos, 1)) == 1)

&& isPlusorMinus(tmp.substr(tmpPos-1, 1))

)

{

int num = stoi(tmp.substr(lastPos, pos - lastPos));

C[offset + k][offset + k] += num;

}

else
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{

while (tmp.substr(tmpPos, 1) != "x")

{

tmpPos--;

}

int xpos = tmpPos;

while (!isPlusorMinus(tmp.substr(tmpPos, 1))

&& tmpPos < tmp.size())

{

tmpPos++;

}

string x_ind(tmp.substr(xpos, tmpPos - xpos));

int ind = get_x_index(x_ind)-2;

do

{

tmpPos--;

} while (!isPlusorMinus(tmp.substr(tmpPos, 1)));

if (tmp.substr(tmpPos, 1) == "+")

{

As[ind][offset + k][offset + k] += 1;

}

else

{

As[ind][offset + k][offset + k] += -1;

}

}

// Skip delimiters. Note the "not_of"

lastPos = tmp.find_first_not_of("/", pos);

// Find next "non-delimiter"

pos = tmp.find_first_of("/", lastPos);

}
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printf("linear constraint %d finished.\n", k);

}

cout << "Finished linear constraints!" << endl;

}

void FileParser::InitializeMatrices()

{

mdim = 0;

for (int i = 0; i < inputs.size() - 1; i++)

{

mdim += inputs[i].size();

}

mdim += inputs[inputs.size() - 1][0].size();

printf("Matrices are initialized as %dx%d dimensions.\n", mdim, mdim);

C = MatInt(mdim);

for (auto i = 0; i < C.size(); i++)

{

C[i] = vector<int>(mdim, 0);

}

for (auto i = 0; i < As.size(); i++)

{

As[i] = MatInt(mdim);

for (auto j = 0; j < As[i].size(); j++)

{

As[i][j] = vector<int>(mdim, 0);

}

}

}

void FileParser::Process()
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{

ReadFromFile();

InitializeMatrices();

ParseInputs();

//PrintOutputs();

OutputMatrices();

printf("Matrices’ dimension is %dx%d", mdim, mdim);

}

void FileParser::OutputMatrices()

{

for (size_t i = 0; i < As.size(); i++)

{

char buffer[500];

sprintf_s(buffer, "A%d", i);

string file(buffer);

ofstream fout(file, std::ofstream::out);

for (size_t j = 0; j < As[i].size(); j++)

{

for (size_t k = 0; k < As[i][j].size(); k++)

{

fout << As[i][j][k] << "\t";

}

fout << endl;

}

fout.close();

}

char buffer[500];

sprintf_s(buffer, "Co");

string file(buffer);

ofstream fout(file, std::ofstream::out);
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for (size_t i = 0; i < C.size(); i++)

{

for (size_t j = 0; j < C[i].size(); j++)

{

fout << C[i][j] << "\t";

}

fout << endl;

}

fout.close();

file = string("Obj");

fout.open(file, std::ofstream::out);

for (size_t i = 0; i < coefs.size(); i++)

{

fout << coefs[i] << "\t";

}

fout.close();

}

void FileParser::PrintOutputs()

{

for (auto i = 0; i < As.size(); i++)

{

printf("Coefficient matrix %d.\n", i + 1);

for (auto j = 0; j < As[i].size(); j++)

{

for (auto k = 0; k < As[i][j].size(); k++)

{

cout << As[i][j][k] << "\t";

}

cout << endl;

}
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cout << endl << endl;

}

printf("Constant matrix.\n");

for (auto i = 0; i < C.size(); i++)

{

for (auto j = 0; j < C.size(); j++)

{

cout << C[i][j] << "\t";

}

cout << endl;

}

}

void FileParser::PrintInputs()

{

for (auto i = 0; i < inputs.size(); i++)

{

for (auto j = 0; j < inputs[i].size(); j++)

{

for (auto k = 0; k < inputs[i][j].size(); k++)

{

cout << inputs[i][j][k] << ’\t’;

}

cout << endl;

}

cout << endl << endl;

}

}

int main(void)
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{

//FileParser fp(8, 26);

FileParser fp(4, 4);

fp.Process();

return 0;

}
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Appendix D

MATLAB source code for

generate the dual SDP problem

%n = 26; dim = 230;

n = 4; dim=43;

A = zeros(dim, dim, n);

for i = 1:n

file = sprintf(’A%d’, i-1);

A(:, :, i) = importdata(file, ’\t’, 0);

end

file = sprintf(’Co’);

C = importdata(file, ’\t’, 0);

file = sprintf(’Obj’);

u = importdata(file, ’\t’, 0);

cvx_begin sdp

variable X(dim,dim) hermitian;

minimize(trace(C’*X));

dual variable Q;

for i = 2:size(u,2)-1

trace(A(:,:,i-1)’*X) <= -u(i);
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end

X >= 0 : Q;

cvx_end

OutQ = array2table(full(Q));

writetable(OutQ, ’OutQ’);
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