
 1 

Statistical Modelling and Performance Evaluation of TOA 
for Localization inside the Human Body using 

Computational Techniques 
 

 

A Thesis submitted to the Faculty of 

WORCESTER POLYTECHNIC INSTITUTE 

in partial fulfillment of the requirements for the degree of 

Doctorate of Philosophy 

in 

Electrical and Computer Engineering 

By 

 



 2 

Abstract 

Localization inside the human body using radio frequency (RF) transmission is gaining 

importance in a number of applications such as Wireless Video Capsule Endoscopy.   

The accuracy of RF localization depends on the technology adopted for this purpose.  

The two most common RF localization technologies use received signal strength (RSS) 

and time-of-arrival (TOA).  This research presents a comparison of the accuracy of TOA 

and RSS based localization inside human tissue using computational techniques for 

simulation of radio propagation inside human tissues. Computer simulation of the 

propagation of radio waves inside the human body is extremely challenging and 

computationally intensive.  We designed a basic, MATLAB coded, finite difference time-

domain (FDTD) for the radio propagation in and around the human body and compared 

the results obtained from this software with the commonly used and commercially 

available Finite Element Method (FEM) modeling in ANSYS HFSS. We first show that 

the FDTD analysis yields comparable results. Then we use the software to simulate the 

RSS and TOA of the wideband signals propagated inside the human body for RF 

localization to compare the accuracies of the two methods.  We then develop a statistical 

TOA model using empirical data gathered from these simulations; and, in conjunction 

with pre-established mathematical models for RSS, we compare the accuracy of each 

technique with the Cramer-Rao Lower Bound (CRLB) commonly used for calculation of 

bounds for the performance of localization techniques and the effects of human body 

movements. 
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Chapter 1: Introduction 

 
 

The effective design, assessment, and installation of a radio network require accurate 

characterization of the channel. The channel characteristics vary from one environment to 

another, and the particular characteristics determine the feasibility of using a proposed 

communication technique in a given operating environment [1]. Having an accurate 

channel characterization for each frequency band, including key parameters and a 

detailed mathematical model of the channel, enables the designer or user of a wireless 

system to predict signal coverage, achievable data rate, accuracy of localization 

techniques and the specific performance attributes of alternative signaling and reception 

schemes from wireless access and localization. Channel models are also used to 

determine the optimum location for installation of antennas and to analyze interference 

between different systems.  

 

1.1 Background of Research  
 

Body Area Networks (BAN) are defined to consist of a set of portable sensors that 

communicate wirelessly with each other. These sensors are either worn on, or implanted 

in, the human body to monitor essential parameters or movements of the body. Since the 

human body is non-homogenous in nature, there will be a lot of reflection, refraction and 

diffraction of rays traveling through it. This is will cause the waveform to take many 

different paths from the transmitter to the receiver, a scenario already observed in indoor 

localization. The unpredictability of existing paths between transmitter and receiver in an 
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indoor environment is very similar to the situation with outdoor channels, and in fact the 

work that has been done in characterization of mobile radio channels offers a useful 

guideline for modeling indoor channels. In an indoor environment, the multipath is 

caused by reflection from the walls, ceiling, floor, and objects within an office; in 

outdoor radio channels, multipath is caused by reflections from the ground as well as the 

buildings and vehicles in the vicinity of the mobile terminal.  

 

There are two basic approaches to simulating wideband radio propagation characteristics: 

(1) measurement-based statistical modeling and (2) direct analytical solution of the radio 

propagation equations (computational techniques). Measurement-based statistical models 

are based on a mathematical description using several parameters. The parameter values 

are evaluated for each individual measurement of the wideband channel characteristics, 

and the statistics of the parameters over a large database are used to complete the model 

for a given coverage area. Statistics gathered from measurements in typical areas are 

extended to develop a more generalized model for all coverage areas. Statistical models 

generally do not incorporate details of the buildings in an outdoor coverage area or the 

layout of rooms within a building. Instead they classify all areas into a limited number of 

broadly designated environments and all buildings into a few classes of buildings. 

 

In modem performance evaluations, the system designer is usually concerned with the 

overall performance over typical areas or typical buildings, and statistical models usually 

serve the purpose reasonably well. In other applications such as microcellular or indoor 

installations, where proper sitting of antennas is an important issue, building-specific 
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radio propagation models offer a more precise tool for determining optimum antenna 

locations. Building-specific radio propagation models are based on direct solution of the 

radio propagation equations with boundaries defined by a map of a coverage area or the 

layout plan of a building. The technique known as ray tracing provides a simple 

approximation for analysis of radio wave propagation. Another approach is numerical 

solution of the Maxwell equations using the finite-difference time-domain (FDTD) 

technique.  Ray tracing algorithms are also very useful for analysis of the angle of arrival 

of the paths for MIMO applications and the Time of Arrival (TOA) of the direct Line of 

Sight (LOS) path needed for the popular TOA based geolocation systems.   

 

To compare the results of various computer simulation techniques, several approaches 

might be adopted. The most obvious approach is to compare the measured and simulated 

channel responses in typical locations. This method is not well suited for the evaluation 

of statistical models, because statistical models do not relate the channel response to a 

specific location. However, for assessing building-specific radio propagation models, this 

method is very useful. Another approach to evaluating the results of a simulation method 

is to compare empirical data with the cumulative distribution functions (CDFs) of the rms 

delay spread and multipath power produced by the simulation. Yet another approach for 

comparing radio propagation models is to evaluate the performance of a particular 

modem over the measured and modeled channels. Standard modulation techniques such 

as Binary Phase Shift Keying (BPSK) and wideband techniques such as direct-sequence 

spread-spectrum or non-spread signaling with adaptive equalization can be used as 

benchmarks in these evaluation approaches [2], [3], [4]. 
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The 2D ray tracing simulation technique was originally developed to analyze the 

behavior of wireless channels in small indoor areas using the two dimensional reflection 

and transmission model to trace rays by means of the ray shooting technique [1], [5]. This 

model offered a low-cost means of propagation analysis for small indoor areas used for 

wireless local area network (WLAN) applications. Diffraction did not play a major role in 

most indoor radio propagation scenarios since the diffraction effect would influence 

propagation significantly only in locations such as corridors when the LOS path is 

blocked and the received signal involves multiple reflections and transmissions. 

However, this is not a likely situation for indoor WLAN applications, where terminals are 

typically used in reasonably open work areas. 

 

Later, a 3D ray tracing simulation based on a typical residential area was developed to 

again analyze the behavior of wireless channel in macrocellular high-rise urban canyons 

with antennas installed above roof level [6]. This simulation was based on the model that 

reflections and sharp edge diffraction were the main mechanism for simulation of signal 

propagation. 

 

Although ray-tracing models can efficiently predict radio propagation characteristics for 

indoor and outdoor applications, these techniques are only approximations to the direct 

solution of electromagnetic wave propagation equations. The ideal method of simulating 

radio propagation is to solve Maxwell’s equations numerically. The numerical solution of 
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these differential equations over a designated area requires selection of a number of 

points at which the solution is to be determined iteratively.  

 

The FDTD method is probably the most straightforward and widely used method for 

numerical solution of Maxwell’s equations. With this method, Maxwell’s equations are 

approximated by a set of finite-difference equations. By placing the electric and magnetic 

fields on a staggered grid and defining appropriate initial conditions, the FDTD algorithm 

employs the central differences to approximate both spatial and temporal derivatives, and 

it solves Maxwell’s equations directly. The distribution of electric and magnetic fields 

over the whole grid is calculated incrementally in time; and when the simulation is 

finished, the propagation characteristics are known at every location in the area under 

study.  

 

A more computationally efficient form of traditional FDTD method (for communication 

applications) has also been applied previously to indoor areas, showing significant 

improvement in accuracy over the rectangular FDTD algorithm. The computational time 

needed for this method was comparable to that of a three-dimensional ray-tracing 

algorithm. A point-to-point comparison between predicted and measured power in all 

locations for two-dimensional and three-dimensional ray-tracing and for the FDTD 

models showed that both ray-tracing models and the FDTD model were all in good 

agreement with the measurements. However, ray-tracing provides a more accurate 

estimate of the power based on the standard deviation calculated against the 

measurements [1].  
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In general, the indoor localization problem is considered a challenging and difficult 

problem to formulate and model due mainly to the ever-changing characteristics of the 

wireless channel [1]. Results of a multitude of research studies have reported that time-

of-arrival (TOA)-based techniques exhibit superior performance in line-of-sight (LOS) 

conditions when compared with received signal strength (RSS) and Direction-of-arrival 

(DOA) techniques 000. This is due to the fact that location bearing metrics obtained from 

LOS measurement are more accurate than RSS and DOA metrics. The TOA of the direct 

path can then be related to the separation of the antenna pair. In 2-D scenarios three 

accurate distance measurements from known reference points (RPs) are enough to 

precisely determine the location of the mobile terminal. 

 

However, the accuracy of the TOA-based technique degrades drastically when LOS 

conditions are not met 00, as confirmed in various measurement campaigns 0000. In such 

scenarios, mitigation of the ranging error plays a vital role in improving the accuracy of 

the system. This necessitates the use of modeling and estimation of ranging error in non-

line-of-sight (NLOS) conditions. The first natural solution is the use of existing multipath 

models developed for telecommunication applications. However, these multipath models 

are based mainly on the delay spread of the channel and have not paid specific attention 

to the arrival time of the direct path. In all these models the first path is assumed to be the 

direct path. This assumption neglects the existence of the Undetected Direct Path 

conditions, which are one of the major causes of unpredicted large errors in TOA-based 

positioning systems; we will discuss this in greater detail in the next section.  
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1.2 Motivation of the Research 

 

Measurement and modeling of radio propagation for high speed wireless communications 

and localization is a challenging field of science and engineering. This is due to the fact 

that the radio channel suffers from temporal, spatial and direction of arrival fading caused 

by very complex random variations of the multipath components carrying radio signal 

from one location to another.  

The human body channel suffers from severe multipath propagation and heavy shadow 

fading conditions so that measurements for localization are far from accurate in many 

instances. Previous literature on BAN like [14] have mainly concentrated on narrowband 

measurements and simulations for RSS for communication applications that can also be 

used for localization applications; hence there was a need to explore the possibility to use 

TOA ranging techniques for the human body channel. TOA and RSS estimation are 

therefore susceptible to large errors due to undesirable multipath conditions. To 

accurately estimate TOA in indoor areas, we need to resort to different frequencies of 

operation and more complex signaling formats and signal processing techniques that can 

resolve the problems. The behavior of a TOA sensor in human body multipath 

propagation is highly sensitive to the bandwidth of the sensor [15].  

In practice, bandwidth is limited, and the received signal comprise a number of peaks 

whose amplitudes and arrival times are the same as pulses but they look more like a 

continuous waveform. The superposition of all these pulse shapes forms the received 

signal, which we refer to as the channel profile. A common practice is to estimate the 
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location of the direct path (DP) as the location of the peak of the first path that is the 

estimated TOA. In a single path environment, the actual expected and the estimated 

direct paths are the same.  In multipath conditions, however, the peak of the channel 

profile gets shifted from the expected TOA, resulting in a TOA estimation error caused 

by the multipath condition. We refer to the distance error caused by erroneous estimate of 

the TOA as the distance measurement error. For a given multipath condition we expect 

that as we increase the bandwidth the distance measurement error becomes smaller. [16] 

Lately, wireless capsule endoscopy (WCE) has garnered plenty of interest owing to its 

non-intrusive characteristic. Assessment of the gastro-intestinal (GI) region is essential to 

recognize any colorectal cancer inside the digestive system tract. It has been discovered 

that colorectal cancer is the second foremost source of cancer associated fatalities in the 

United States. Additionally, WCE permits the doctor to depict the whole GI region 

exclusive of scope trauma and air insufflations. Conventional practices like gastroscopy 

and colonoscopy can barely get to the first couple of or final few feet of the GI region. 

The WCE obtained its endorsement from the U.S. Food and Drug Administration (FDA) 

in 2001, and in excess of 200,000 patients have taken advantage of the benefits of this 

innovative skill. WCE begins with the subject ingesting the pill. The normal motion of 

muscles transports the pill effortlessly and simply all through the GI tract, which is 

sending out color picture taken by the camera in the pill as it goes through. The process is 

mobile, permitting the subjects to carry on with their everyday activity all through the 

endoscopic assessment. In spite of the benefits WCE has, it is reported that a doctor takes 

a couple hours to review the snapshots taken through every WCE assessment, given that 

roughly fifty thousand pictures are taken throughout the eight hour timeframe of the test 
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[65], [66]. This reduces the speed of this method of assessment and makes the process 

considerably more expensive. Besides, after the assessment by WCE, the doctor might 

have a desire to re-examine a location of concern for additional analysis or management. 

Precise position data of the pill can assist in both quickening up the review of the 

snapshots and supporting the doctor for eventual treatment. 

 

A variety of methods for positioning of the pill have been researched in viability 

analyses. The initial plan was to employ a spatial examining scheme to establish the 

position of the points with the highest received signal strength (RSS). This method is 

unmarketable and unmanageable. Frisch et al. [67],[68] examined a wireless triangulation 

scheme by means of an exterior antenna arrangement that gauges the signal power of the 

pill’s communications at several positions and applies this data to approximate the space 

between the pill and external sensors. The mean investigational inaccuracy is described to 

be 37.7 mm [69], [90]. A technique put forth by Kuth et al. [70], [91] to estimate the 

location and direction of the pill using X-ray emission photography. The method results 

in the pill to be be seen explicitly because it possesses a number of energy impervious 

features that are typically made of metal or synthetic material and exhibit a an extremely 

distinct photograph. Hence, it is conceivable to function with a very little amount of 

energy helping in decreasing medical hazards on the subjects. Another process was 

suggested by Kawasaki [71] to pinpoint the position of biological implants by means of 

TOA established waveform recovery technique. Initially, the transmission velocity of the 

waveform propagating in the patient’s body is approximated by collecting the 

photographs from CAT or MRI machines. After that, a dynamic pattern fusion technique 
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is used to compute the transmission period established by the result of the comparator in 

the middle of the Tx and the Rx. Additional methods established for the positioning of 

camera pills comprise magnetic field detection [72], [92]. A tiny permanent magnet is 

encased into the pill. With the detection information of a magnetic antenna arrangement 

on the exterior the subject’s body, the 3D positioning and 2D direction of the pill are 

approximated. Accelerometer based techniques have also been employed in camera pill 

positioning [73], [93]. In this research, a 39 3 mm electronic inertial meter with three 

axes, operating at 20 Hz, was inserted inside the pill and information was propagated 

using Zigbee protocol to an outside workstation. Because the inertia is quantitatively 

obtained, velocity can be calculated more precisely than location as it needs only one 

integral solution. Therefore, classifying the actual position of each image obtained from 

the pill is important in both analytic and remedial purposes of pill based endoscopy. 

Out of these methodologies, RSS based positioning techniques have the benefit of 

versatility and a comparatively small price of execution. Consequently, it has been 

selected to be employed for the Smartpill device [74], [94] in USA and the M2A device 

[75], [95] in Israel. Usually, wireless positioning methods use results obtained from TOA, 

angle of arrival (AOA) or RSS experiments. Even though, the RSS method is less 

sensitive to a restricted frequency spectrum and inhospitable wireless channels, a 

commonly acknowledged advantage of the TOA method is better precision relative to the 

RSS and AOA methods. Nonetheless, the high refractive index of the body results in 

sizable inaccuracies in TOA approximation and the restricted frequency band (402–405 

MHz) of Medical Implant Communication Services (MICS) makes it difficult to perform 

precise TOA measurements. This issue is worsened by the motion of the GI tract, and the 
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drainage and replenishing sequence, resultant in irregular errors in distance 

measurements [76], [96]. Hence, the location data from TOA approximation is not 

optimal in the existing literature; and this paper attempts to remedy this problem. 

 

There are essentially two methods to employ TOA data for positioning, triangulation and 

waveform identification. In this study, we limit our focus on the problems concerned with 

TOA triangulation methods. The TOA Triangulation method is derived from the impulse 

response model from organs containing the devices to the exterior of the body. The 

technique is employed to compute the space between every surface antenna and the pill. 

After that, at least four of the measured distances are employed to compute the position 

of the pill in 3D space.  

 

The most difficult issue in the positioning of the pill arises from the complicated nature 

of the surroundings of the pill as it goes down the human body. Because the GI tract is of 

an extended cylindrical formation that doubles up on its own at multiple instances and 

has the freedom to shift inside the abdomen, it is very challenging to precisely determine 

the position of the pill. Adding to that, because of the subject moving about and resting 

activities like breathing, the actual position of the antennas on the exterior of the patient 

and their comparative location to the pill within the GI tract keeps changing, deeming the 

meaning of positioning dissimilar from conventional definitions. At present, the majority 

of studies have concentrated on coming up with algorithms and mathematical models to 

find the solution of the triangulation issue [3.11]. In this paper, we take a separate route. 

Basing our approach on the statistical medical device impulse response model derived in 
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[77] and [97], we concentrate on the precision of pills traveling inside the body using 

TOA based triangulation methods; Ye et al. have derived the positioning bound 

computation for a solitary capsule scenario in [60],[100]. The Cramer-Rao bounds (CRB) 

developed in this study measure the restrictions of positioning precision with multiple 

external sensor protocol, medical device impulse response method and multiple capsules 

inside the body. Our end goal is to investigate the precision attainable at different tissues 

and decide whether this precision is sufficient for WCE. Related papers have been 

published for indoor personnel localization [79], [100] and robot positioning [80], [101]. 

 

1.3 Contributions of the Thesis 

 

The two most common RF localization technologies use received signal strength (RSS) 

and time-of-arrival (TOA).  This research presents a comparison of the accuracy of TOA 

and RSS based localization inside human tissue using computational techniques for 

simulation of radio propagation inside human tissues. Computer simulation of the 

propagation of radio waves inside the human body is extremely challenging and 

computationally intensive.  We designed a basic, MATLAB coded, finite difference time-

domain (FDTD) [59] for the radio propagation in and around the human body and 

compared the results obtained from this software with the commonly used and 

commercially available Finite Element Method (FEM) modeling in ANSYS HFSS. We 

first show that the FDTD analysis yields comparable results. Then we use the software to 

simulate the RSS and TOA of the wideband signals (shown in Figure 20) [60] propagated 

inside the human body for RF localization to compare the accuracies of the two methods.   

The accuracy of each technique is compared with the Cramer-Rao Lower Bound (CRLB) 
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[61] commonly used for calculation of bounds for the performance of localization 

techniques and the effects of human body movements. 

 

1.4 Summary of Chapters in this Thesis: 

 

In Chapter 2, we first present reasons why localization can be challenging and what 

solutions have been used in the past to counter these challenges. We also discuss previous 

work done on BAN modeling and analysis. In Chapter 3, we introduce computational 

techniques used to simulate wireless channels and present simulations and results used 

for path-loss modeling in and around the human body. In Chapter 4, we use the software 

to simulate the RSS and TOA of the wideband signals propagated inside the human body 

for RF localization to compare the accuracies of the two methods.   The accuracy of each 

technique is compared with the Cramer-Rao Lower Bound (CRLB).  The last chapter 

presents the conclusions of this research. 
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Chapter 2: Body Area Networks and Localization 

 

Body Area Networks (BAN) are defined to consist of a set of portable sensors that 

communicate wirelessly with each other. These sensors are either worn on, or implanted 

in, the human body to monitor essential parameters or movements of the body.  

 

Localization is defined to be the process of accurately pin-pointing the position of an 

electronic object in a given area. Since conventional methods used in outdoor positioning 

cannot be used for indoor geo-location or localization in the human body, they are treated 

as separate areas of interest.  

2.1 Challenges in localization techniques 

 

Real-time locating is affected by a variety of errors. The major reasons physical and may 

not be reduced by improving the technical equipment. The only solution is for the 

mathematical intelligence to improve.   

Despite advertisement with several vendors, RTLS has a very mundane requirement: 

RTLS requires direct and clear wireless visibility. Where there is no visibility on the path 

from mobile tags to resident nodes there will be no result or a non valid result from 

locating engine. This applies to satellite locating as to terrestrial locating. RTLS was 

invented, to provide an escape, when roofs do not allow the passage of satellite signals. 

The quality of wireless visibility, however, is much more tolerant than optical visibility, 

but it still remains a direct viewing quality. All measured, but deviated paths deliver false 

distances.   
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The measured location may appear entirely faulty. This is a generally result of simple 

operational models to compensate for the plurality of error sources. It proves impossible 

to serve proper location after ignoring the errors. 

 Real time is no registered branding and has no inherent quality. A variety of offers sails 

under this term. As motion causes location changes, inevitably the latency time to 

compute a new location may be dominant with regard to motion. Either an RTLS system 

that requires waiting for new results is not worth the money or the operational concept 

that asks for faster location updates does not comply with the chosen systems approach.   

Location will never be reported exactly, as the term real-time and the term precision 

directly contradict in aspects of measurement theory as well as the term precision and the 

term cost contradict in aspects of economy. That is no exclusion of precision, but the 

limitations with higher speed are inevitable.   

Recognizing a reported location steadily apart from physical presence generally indicates 

the problem of insufficient over-determination and missing of visibility along at least one 

link from resident anchors to mobile transponders. Such effect is caused also by 

insufficient concepts to compensate for calibration needs.   

Noise from various sources has an erratic influence on stability of results. The aim to 

provide a steady appearance increases the latency contradicting to real time requirements.   

As objects containing mass have limitations to jump, such effects are mostly beyond 

physical reality. Jumps of reported location not visible with the object itself generally 
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indicate improper modeling with the location engine. Such effect is caused by changing 

dominance of various secondary responses.   

Location of residing objects gets reported moving, as soon as the measures taken are 

biased by secondary path reflections with increasing weight over time. Such effect is 

caused by simple averaging and the effect indicates insufficient discrimination of first 

echoes.   

In statistical measurement and modeling of the radio propagation, the radio channel 

between a wireless transmitter and receiver can be described by 
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where ( , , , , , )h d t      is the overall channel impulse response at time t between the 

transmitter and receiver, which are at distance d from one another; and , , ,  and     are 

the amplitude, phase, delay of arrival, and angle of arrival of multiple arrivals paths of the 

transmitted signal. Since in wireless applications either terminal can be mobile or people 

may move around or between transmitter and receiver, these paths and the channel 

impulse response are also function of time and space. Using (1.1), the average received 

power for a given distance between the transmitter and the receiver corresponds to [1]: 
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Here, the received signal power is the sum of squares of all path amplitudes. In the case 

of narrowband signaling [1],  
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                   (2.3) 

where the amplitudes added vectorially and the overall power was the square of the 

resulting vector. As a result, the normalized received power of a narrowband signal is less 

than or equal to that of a wideband signal. 

To calculate the distance between the transmitter and the receiver, we use the average 

RSS and a distance-power relationship to determine d’. If we define the distance 

measurement error as the difference between the measured and actual values of distance, 

εd = d’ - d, this error in RSS systems would be independent of the bandwidth of the 

system. The power is calculated by a common principle behind all statistical models for 

the calculation of RSS that corresponds to:  

10 10 1010log 10log 10 logd r tRSS P P d X         (2.4) 

In this model, called the lognormal model,  
tP  is the transmitted power, d is the distance 

between the transmitter and the receiver, and  is the distance-power gradient of the 

environment. The random variable X is a lognormal distributed random variable 

representing shadowing effects.  

In the case of propagation around a human body, environmental variations and body 

movements will cause path loss to be different from the mean value for a given distance. 
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This phenomenon is called shadowing, and it represents the path loss variation around the 

mean. 

In TOA systems, TOA measurement requires more complex receivers, and measurement 

accuracy depends on system bandwidth. A TOA sensor estimates the distance from       

d’w = cτ1,w, where c  is the speed of light and 
1,w  is an estimate of the TOA of the direct 

path. Estimates of TOA are obtained by detecting the first peak of the received signal, 

and this value is a function of bandwidth and the occurrence of UDP conditions. The 

distance error is defined as 

   εd,w = d’w - d                                        (2.5) 

where d is the actual distance between the sensor and target object. This model uses the 

results of measurement-calibrated ray-tracing software to develop a statistical model for 

the distance measurement error and to relate that to the bandwidth of the sensor.  

For communication applications, we need a convenient numerical measure of the time 

dispersion or multipath delay spread of the channel. A popular measure of delay spread is 

the root mean square (rms) delay spread,
rms , which is the second central moment of the 

channel impulse response. It is given mathematically by 

2 2( )rms                            (2.6) 

 

where, given L propagation paths, 
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These equations are the basis of delay spread calculations for the current 2D and 3D RT 

applications, discussed in later sections. 

In 1966 Yee [31] proposed a technique to solve Maxwell's curl equations using the finite-

difference time-domain (FDTD) technique. Yee's method has been used to solve 

numerous scattering problems for microwave circuits, dielectrics, and electromagnetic 

absorption in biological tissue at microwave frequencies. Since it is a time-domain 

method, solutions can cover a wide frequency range with a single simulation run. The 

FDTD method belongs to the general class of grid-based differential time-domain 

numerical modeling methods.  The time-dependent Maxwell’s equations are discretized 

using central-difference approximations to the space and time partial derivatives. The 

resulting finite-difference equations are solved in either software or hardware in a 

leapfrog manner: the electric field vector components in a volume of space are solved at a 

given instant in time; then the magnetic field vector components in the same spatial 

volume are solved at the next instant in time; and the process is repeated over and over 

again until the desired transient or steady-state electromagnetic field behavior is fully 

evolved. 

 

Let us consider a two-dimensional transverse magnetic (TM)-to-z field (Electric and 

Magnetic fields are perpendicular to the Z-axis) as depicted in Figure 1. This figure 

presents a classic scattering/radiation problem where both the radiating and receiving 
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antennas (dipole or monopole) are vertical. The TM to z field can be illustrated by 

Maxwell's equations, (2.8-2.10): 
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Figure 1: Two-dimensional traverse magnetic to Z-field 
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Here E and H are electric and magnetic fields, respectively;  and * are the electric and 

magnetic conductivities (losses), real or artificial. The standard Yee 2-2 FDTD scheme 

represented in (2.11) can be implemented  [31] to operate on a staggered grid that is shown in 

Figure 2. In (2.11), E and H are discretized in time and space as the initial excitation travels 

through the computational area. 
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In  (2.11) , n represents the imaginary layer number that is calculated in the time domain 

and shown in Figure 5.9 as layer 0 and 1 (layers of electrical fields separated by ∆t). The 

middle layer is represented as imaginary layer (n = 0.5). On the other hand, m and k 

represent the position of electrical or magnetic fields along the x or y axis of any of 
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imaginary time domain layers. For example, (k = 1) represents the position of the second 

electrical field on (n = 0) layer from the t axis and (k = 0.5) represents the position of the 

first magnetic field on the (n = 0.5) layer from the  t axis.  Substitution of  (2.11) into the 

fundamental Maxwell equations that are shown in  (2.8-2.10) results in discrete formulas 

of  (2.12-2.14). 

 

 

Figure 2: Scatter grids for TM to Z mode
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Formulas given in (2.12-2.14) are basically the core engine of any FDTD simulation 

software. Once we initialize the emanating electric and magnetic fields with the 

appropriate excitation values, a recursive call to these formulas, in time-domain, will 

predict electric and magnetic fields at any point within our computation space. From 

(2.12-2.14) we can clearly see that a 2D version of such a simulation would only 

calculate electric and magnetic fields for two specific dimensions. To better understand a 

2D FDTD simulation, one can visualize the simulation space as an imaginary plane. We 

can calculate fields, in time-domain, for any points located on this plane from the time an 

excitation emanates form the transmitter until it impinges upon the edges of the plane and 

the receiver point.    

 

The indoor radio channel suffers from severe multipath propagation and heavy shadow 

fading conditions so that measurements for localization are far from accurate in many 

instances. In general, measurements of Phase of Arrival (POA) and DOA in large indoor 

and urban areas provide very unreliable measurements. TOA and RSS estimation are also 

susceptible to large errors due to undesirable multipath conditions. To accurately estimate 

TOA in indoor areas, we need to resort to different frequencies of operation and more 

complex signaling formats and signal processing techniques that can resolve the 

problems. The behavior of a TOA sensor in indoor multipath propagation is highly 

sensitive to the bandwidth of the sensor. The UWB systems, which exploit bandwidths in 

excess of 1GHz, have attracted considerable attentions as a means of measuring accurate 

TOA for indoor geolocation applications. However, as in other TOA systems, UWB 
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systems cannot completely avoid UDP problems. Figure 3 shows the basic concepts 

involved in wideband TOA measurements using the arrival time of the first path in a 

typical indoor multipath environment. In this figure, the direct path (DP) is represented 

by the first path, which is also the strongest path. Location of this path is the expected 

value of the TOA. Other paths with a number of reflections and transitions arrive after the 

DP with lower amplitudes. These paths would have been observed at the receiver if the 

bandwidth of the system were infinite. In practice, bandwidth is limited, and the received 

signal comprise a number of pulses whose amplitudes and arrival times are the same as 

impulses but they are shaped pulse. The superposition of all these pulse shapes forms the 

received signal, which we refer to as the channel profile. A common practice is to 

estimate the location of the DP as the location of the peak of the first path that, is the 

estimated TOA. In a single path environment, the actual expected and the estimated 

direct paths are the same.  In multipath conditions, however, as shown in Figure 3, the 

peak of the channel profile gets shifted from the expected TOA, resulting in a TOA 

estimation error caused by the multipath condition. We refer to the distance error caused 

by erroneous estimate of the TOA as the distance measurement error, which can be 

calculated using ,d w wd d  
)

. For a given multipath condition we expect that as we 

increase the bandwidth the distance measurement error becomes smaller. 
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Figure 3: Parameters involved in wideband TOA measurement using arrival of the first 

path directly connecting the transmitter and the receiver. 

 

As a mobile terminal moves away from a base station the strength of the DP and the total 

received signal power decay exponentially. In an OLOS environment when the DP falls 

below the threshold while other paths are still detectable, the receiver assumes the first 

path in the profile to be the DP. This mis-identification causes a substantial error in 

wideband TOA measurements. We refer to this situation the UDP condition 0.  Figure 4 

depicts the occurrence of the UDP scenario using the results of ray-tracing for a 

transmitted pulse with a bandwidth of 1.2 GHz.  Since the difference between the 

strength of the strongest path and the first path is more than the dynamic range (the range 

of detectable signal level below the strongest path) of the receiver, we have a clear UDP 

condition in which the first path is detected and declared as the DP resulting in a 3 cm 

distance measurement error.  With the release of UWB bands, the main challenge for the 

implementation of accurate wideband TOA systems is to find a remedy for UDP 

conditions.   
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Figure 4: The UDP multipath condition from results of Ray tracing simulation and a 

channel profile with 200MHz 

 

2.2 Earlier work in Body Area Network channel modeling 

Body Area Networks (BAN) are defined to consist of a set of portable sensors that 

communicate wirelessly with each other. These sensors are either worn on, or implanted 

in, the human body to monitor essential parameters or movements of the body.  

There are several channel models available for BAN communication. This research 

would work mostly on the ideas put forward by Kamya Yazandoost and Kamran 

Sayrafian-Pour in their paper [39]. This paper presented a detailed evaluation of all the 

factors that might affect communication between the BAN nodes. Some of them are 

described below: 
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2.2.1 Antenna Effect 

An antenna placed on the surface or inside a body will be heavily influenced by its 

surroundings. The consequent changes in antenna pattern and other characteristics need 

to be understood and accounted for during any propagation measurement campaign. The 

form factor of an antenna will be highly dependent on the requirements of the 

application. For Medical Implant Communication Service (MICS) applications, for 

example, a circular antenna may be suitable for a pacemaker implant, while a helix 

antenna may be required for a stent or urinary implant. The form factor will affect the 

performance of the antenna and, the antenna performance will be very important to the 

overall system performance. Therefore, an antenna which has been designed with respect 

to the body tissues (or considered the effect of human body) shall be used for the channel 

model measurements. [39] 

The BAN antennas may be classified into two main groups: 

 Electrical antennas, such as dipole: Electrical antenna typically generates large   

               components of E-field normal to the tissue interface, which overheat the fat tissue. This  

               is because boundary conditions require the normal E-field at the interface to be  

               discontinuous by the ratio of the permittivities, and since fat has a lower permittivity  

               than muscle, the E-field in the fat tissue is higher.  

 Magnetic antennas, such as loop: Magnetic antenna produces an E-field mostly   

               tangential to the tissue interface, which seem not to couple as strongly to the body as  

               electrical antennas. Therefore, it does not overheat the fat.  
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There are antennas same as helical-coil, which is similar to a magnetic antenna in some 

respect, but its heating characteristics appear to be more like an electrical antenna. The 

strong E-field generated between the turns of coil is mainly responsible for tissue heating.  

 

It should be noted that the specific absorption rate (SAR) in the near field of the 

transmitting antenna depends mainly on the H-field; however, SAR in the far field of the 

transmitting antenna depends mainly on the E-field.  

2.2.2 Electrical Properties of Body Tissues 

The human body is not an ideal medium for radio frequency wave transmission. It is 

partially conductive and consists of materials of different dielectric constants, thickness, 

and characteristic impedance. Therefore depending on the frequency of operation, the 

human body can lead to high losses caused by power absorption, central frequency shift, 

and radiation pattern destruction. The absorption effects vary in magnitude with both 

frequency of applied field and the characteristics of the tissue.  

2.2.3 Shadowing 

Due to the variation in the environment surrounding of body or even movement of the 

body parts, path loss will be different from the mean value for a given distance. This 

phenomenon is called shadowing, and it reflects the path loss variation around the mean. 

The shadowing should be considered for stationary and non-stationary position of body.  

2.2.4 Power Delay Profile 

Because of multipath reflections, the channel response of a BAN channel looks likes a 

series of pulses. In practice the number of pulses that can be distinguished is very large, 
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and depends on the time resolution of the measurement system. The power delay profile 

of the channel is an average power of the signal as a function of the delay with respect to 

the first arrival path.  

 

There are several channel models available for body area networks, but the most popular 

one is also described in Yazandoost and Sayrafian-Pour’s paper. The following is a brief 

summary of their modeling procedures. Note that their paper used Ultra Wideband 

(UWB) as their air interface while this research will use ZigBee for the same purpose. 

2.2.5 Model Summary 

 

Due to the extreme close range and the fact that the antennas are worn on the body, the 

BAN channel model has different path loss, amplitude distribution, clustering, and inter-

arrival time characteristics compared with the other application scenarios within the 

802.15.4a context. Analysis of the electromagnetic field near the body using a finite 

difference time domain (FDTD) simulator indicated that in the 2-6 GHz range, no energy 

is penetrating through the body. Rather, pulses transmitted from an antenna diffract 

around the body and can reflect off of arms and shoulders. Thus, distances between the 

transmitter and receiver in our path loss model are defined as the distance around the 

perimeter of the body, rather than the straight-line distance through the body. In addition, 

the path loss mechanisms near the body are probably dominated by energy absorption 

from human tissue which results in an exponential decay of power versus distance. The 

amplitude distributions measured near the body are also different from traditional 

communication environments. Since there were only a small number of multipath 

components that we could not resolve in our measurement, traditional Rayleigh and 
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Ricean models are not justified and showed a very poor fit. Rather, the lognormal 

distribution was clearly superior. While the Nakagami-distribution proposed for 

802.15.4a can well-approximate lognormal distributions under some limited  

circumstances, this was not the case for the lognormal distributions observed near the 

body. In addition, the uncorrelated scattering assumption assumed in other models is 

violated for systems where both the transmitter and receiver are placed on the same body. 

This is not at all surprising since the multi-path components have overlapping path 

trajectories especially in the vicinity of the transmitter and receiver, all multipath 

component path lengths are very short, and there is a natural symmetry of the body. Their 

measurements indicate that there are always two clusters of multi path components due to 

the initial wave diffracting around the body, and a reflection off of the ground. Thus, the 

number of clusters is always two and does not need to be defined as a stochastic process 

as in the other scenarios. Furthermore, the inter-cluster arrival time is also deterministic 

and depending on the exact position of the transmitters on the body. To simplify this, we 

have assumed a fixed average inter-cluster arrival time depending on the specified 

scenario. The very short transmission distances result in small inter-ray arrival times 

within a cluster which are difficult to estimate without a very fine measurement 

resolution. Furthermore, we could not confirm if the Poisson model proposed here is 

valid for use around the body. Thus, these parameters are not included in our model. 

Finally, the extracted channel parameters depended on the position of the receiver on the 

body. To incorporate this effect easily without having to perform a large number of 

simulations, only three scenarios are defined corresponding to a receiver placed on the 

‘front’, ‘side’, and ‘back’ of the body. In conclusion, the recommended a body area 
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channel model for comparing system performance for BAN scenarios consisting of the 

following features: 

• Exponential path loss around the body 

• Correlated log normal amplitude distributions 

• A fixed two-cluster model 

• Fixed inter-cluster arrival time 

• Fixed inter-ray arrival time 

•Three scenarios corresponding to the front, side and back of the body [39] 

2.2.6 Channel Implementation 

Implementing this model on a computer involves generating N correlated lognormal 

variables representing the N different bins, and then applying an appropriate path loss 

based on the distance between the antennas around the body. This can be accomplished 

by generating N correlated normal variables, adding the pathloss, and then converting 

from a dB to linear scale as follows: 

YdB = X ∙ chol(C) – M – PdB/2     (2.15) 

X is a vector of N uncorrelated unit mean, unit variance, normal variables that can be 

generated easily in MATLAB. To introduce the appropriate variances and cross-

correlation coefficients, this vector is multiplied by the upper triangular Cholesky 

factorization of the desired covariance matrix C. Cholesky factorization functions are 

provided by MATLAB and most mathematical software packages. The means (a vector 

M) of each different bin and the large scale path loss (PdB) are subtracted. The resulting 

vector YdB now consists of N correlated normal variables. This can be converted into the 
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desired N correlated lognormal variables easily by transforming YdB into the linear 

domain. The path loss can be calculated according to the following formula: 

PdB = γ(d − d0) + P0,dB     (2.16) 

γ is in units of dB/meter, d is the distance between antennas, d0 is the reference distance, 

and P0 is the power at the reference distance.  

2.2.7 Evaluation Procedure: 

      To minimize the amount of simulations that need to be performed in comparing 

system proposals, a simplified BAN evaluation procedure was agreed upon by the 

channel sub-group.  

     Rather than evaluating the system at all of the different distances, typical transmission 

distances corresponding to the ‘front’, ‘side’, and ‘back’ scenarios are generated using a 

uniform distribution. These distances were extracted from the body used in the simulator 

and are summarized below: 

• Front: 0.04 – 0.17 m 

• Side: 0.17 – 0.38 m 

• Back: 0.38 – 0.64 m 

Analysis of the cluster due to the ground reflection indicated that its amplitude depended 

on the type of floor material. Rather than simulating for each material individually, 

typical floor materials (corresponding to metal, concrete, and average ground) are 

generated at random with equal probability in evaluating systems. 
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2.3 Analytical Techniques used in literature 

 

The Center for Wireless Information Network Studies (CWINS) at Worcester 

Polytechnic Institute (WPI) has written a paper on the performance bounds for RF 

positioning of Endoscopy Camera Capsules. In their paper, they evaluated the factors 

affecting the accuracy achievable in localization of a wireless endoscopy capsule as it 

passes through the digestive system of the human body. Using a three-dimension full 

electromagnetic wave simulation model, we obtain bounds on the capsule location 

estimation errors when the capsule is in each of three individual organs: stomach, small 

intestine and large intestine. The simulations assume two different external sensor arrays 

topologies. They compared these performance bounds and draw the conclusion that 

location-estimation errors are different for different organs and for various topologies of 

the external sensor arrays. In this section we talk about the details of performance bounds 

for RF localization. 

 

2.3.1 Applications for Analytical Techniques 

 

Recently, Wireless Capsule Endoscopy (WCE) has become the preferred method for 

diagnosis of the human gastrointestin (GI) tract. The technique is non-invasive and more 

precise, portable and personal as compared with traditional scope-based endoscopy [1]. 

The Given Imaging company (first commercial producer of camera pills) announced in 

May 2009 that over 1 million of their PillCam capsules have been used clinically.  

Capsule Localization plays a crucial role in the process of diagnosis and follow up 
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interventions since doctors need to know the position and orientation of the capsule when 

images are collected. Various technologies for localization of the capsule have been 

explored in feasibility studies, including ultrasound [31], magnetic tracking [32], RF 

signal triangulation or fingerprinting [33], [34] and computer vision [35]. Among these 

technologies, RF signal based localization systems have the advantage of application-

non-specific, relatively inexpensive hardware implementation. Therefore, it has been 

chosen for use with the Smartpill capsule [36] in the USA and the M2A capsule [37] in 

Israel as the technique for localization. RF capsule localization systems usually use an 

external sensor array (which can be fixed on a special jacket) that measures the RF signal 

metrics of capsule transmissions at multiple points and uses this information to estimate 

the distance or uses fingerprinting algorithms to estimate the location of the capsule [38]. 

The RF localization technique based on time or angle measurement methods, i.e., Time 

of Arrival (TOA), Time Difference of Arrival (TDOA) and Angle of Arrival (AOA) are 

not feasible. The strong absorption of human tissue causes large ranging errors and the 

limited bandwidth (402-405MHz) of the Medical Implant Communication Services 

(MICS) band make high resolution TOA estimation difficult. The problem is made even 

worse by the gastrointestinal movement, and the filling and emptying cycle, resulting in 

unpredictable ranging error [39]. Thus the Received Signal Strength (RSS) based method 

is more suitable for capsule localization. The RSS based method is less sensitive to the 

bandwidth limitation and performs consistently when a line of sight transmission path is 

not available. There are basically two ways to use the RSS information at an external 

sensor array for localization, triangulation and fingerprinting. Triangulation is based on 

the path loss model from body surface to the implant-site tissues. The model is used to 
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calculate the distance between each reference point (external sensor) and the capsule, 

then to triangulate the location of the capsule. 

 

The Fingerprinting method is based on the assumption that the strongest signal is 

received by the closest reference point and that approximately equal strength signals in 

two adjacent reference points result from capsule locations, which are between the 

adjacent reference points. This is similar to an algorithm used in indoor localization [40]. 

 

Currently, most of the researches on RSS based capsule localization has focused on 

developing the algorithms and mathematical models for solving the triangulation problem 

[33], [34]. However, in our investigations, we have not found research work in the 

literature on accuracy limits for RSS based capsule localization. In this paper, we take a 

different approach. Based on the statistical implant path loss model developed in [41], we 

focus on calculating the localization bounds for a capsule in the GI tract using the RF 

triangulation method. We evaluate the factors affecting localization accuracy, namely, 

reference-points topology and implant path loss model parameters in different organs and 

tissues throughout the digestive tract. Then we calculate the localization bounds in 

different organs with various topologies of the external sensor array. Our aim is to 

discover the localization accuracy achievable at various organs and how the topology of 

the external sensor array influences this accuracy. 
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2.3.2 Performance Evaluation Methodology 

 

In order to evaluate the localization bound for endoscopic wireless capsule as it travels 

through the human digestive system, as show in fig 1(a), we use the three dimensional 

full-wave electromagnetic field simulation system. The 3D human body model has a 

spatial resolution of 2 millimeters and includes frequency dependent dielectric properties 

of 300+ parts in a male human body. 

 

When a capsule is swallowed, it goes through the mouth, esophagus, stomach, small 

intestine, large intestine and anus. We can obtain the exact coordinates of these organs 

from this simulation system. Fig 1(b) shows the side view of the external sensor array. 

 

Figure 5: Human Body Model with (a) Map of Digestive System, and  (b) Side View of 

External Sensor Array 
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In order to investigate the limit for RSS based capsule localization, we need to know the 

path loss model for the body area network system. The path loss model is not simple for 

BAN because of the complexity of the human tissue structure and body shape. BAN for 

medical and nonmedical devices that could be placed inside or on the body surface are 

considered in [42]. Some studies of the channel between the sensor nodes in the human 

body are based on FDTD numerical analysis methods, which have been used often in the 

investigation of the UWB channel close to the human body [43]. 

If the signal propagates in free space, the path loss model in dB between the transmitter 

and the receiver is related only to the distance d, and this relationship is given by [42],  

PL(d) = PL0 + 10nlog(d/d0)          (2.17) 

where PL0 is the path loss at a reference distance r0. The parameter, is the path loss 

exponent value, indicating the rate at which the path loss increases as distance d 

increases. The variation in the environment surrounding the body, or even movement of 

the body parts, will impact the received signal strength and this phenomenon is called 

shadowing. Thus, there is a random variable S to be added in Equation 1 and the resulting 

statistical implant path loss is given by [42], 

PL(d) = PL0 + 10nlog(d/d0) + S      (2.18) 

where S is the random variable around the mean and represents deviation caused by 

shadowing phenomenon. 

 

As noted earlier, the Federal Communication Commission (FCC) has allocated the 

frequencies in the 402-405MHz range to be used for MICS. At 402-405MH, there are 

two scenarios based on location of the communicating nodes, implant to implant, called 
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CM1, and implant to body surface, called CM2 [42]. Different models and scenarios in 

body area networks have different parameters. 

 

All parameters of the CM2 scenario are shown in Table I [42]. 

 

 

TABLE 2.1: MODEL OF IMPLANT TO BODY SURFACE CM2 FOR 402-405MHZ 

 

 
 

Because we assume the capsule travels in the digestive system of the human body, the 

parameters shown as Deep Tissue in this table correspond to our simulation. 

 

In order to investigate the achievable accuracy limits for RSS based capsule localization, 

we need to determine the relationship between the error in signal strength estimation and 

the error in estimating the capsule position using our localization method. This 

relationship in two dimensions has already been derived in [44]. Here we derive the 

relationship in three dimensions between the error in signal strength and error in capsule 

localization by extending the result obtained for two dimensions. 

 

If we assume that the signal strength estimation error has zero mean and variance σ p
 2, 

and these errors for different Access Points (APs) are independent of each other, the 

covariance matrix of the location error estimate is given by 
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where (xi; yi; zi) is the coordinate of the i-th sensor; αi is the exponent value of path loss 

for the signal coming from the i-th sensor;  ri =√(x - xi)2 + (y- yi)2 + (z- zi)2 is the distance 

between the capsule inside the body and the i-th sensor; and N is the number of sensors.  

The standard deviation of location error is estimated as 

 

Where, σx, σy, σz represent the standard deviation of location errors in X,Y,Z direction, 

respectively.  

2.3.3 Results and Discussions 

 

The simulations of deviation of location error are carried out in three main organs of 

digestive system, which are stomach, small intestine and large intestine, as shown in 

Figures 2(a), 2(b) and 2(c).  

 

Figure 6: Primary organs of the human digestive system 
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The ranges of stomach, small intestine and large intestine in x, y, z dimensions are 

109x106x80 millimeters, 70x170x231 millimeters, and 136x239x358 millimeters, 

respectively. We calculate the deviation of location error every 5 millimeters in these 

organs and the parameters in our simulation are as follows: α = 4.26 and σs(dB) = 7.85  

 

Figures 3(a) and 3(b) show the contours of σ r
 2of the stomach in three dimensions when 

one and two 4x4 sensor arrays are deployed, respectively. A line of a given color in the 

figure represents the same value in location error. The location error in the stomach is up 

to 65 millimeters when there is one 4x4 array and up to 42 millimeters when there are 

two 4x4 sensor arrays.  

 

Figures 7(a) and 7(b) show the contours of σ r
 2 of the small intestine in three dimensions  

when one and two 4x4 sensor arrays are deployed, respectively. The location error in the 

small intestine is up to 52 millimeters when there is one 4x4 sensor array available; 

however the error is about 40 millimeters when there are two 4x4 sensor arrays available. 
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Figure 7: Geometrical Distribution of Location Error in Stomach 



 50 

 

Figure 8: Geometrical Distribution of Location Error in Small Intestine 
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Figure 9: CDF of location error in stomach, small intestine and large intestine 

  

Figure 9 shows the CDF distribution of location error in the stomach, small intestine and 

large intestine when there are one and two sensor arrays. When there are one 4x4 sensor 

array, 90% location errors in the small intestine are below 48 millimeters and only 42% 

location error are lower than 48 millimeters in the large intestine. When two 4x4 sensor 

arrays are available, performance improves significantly especially in the large intestine; 

50% of location errors in the stomach, small intestine and large intestine are below 38 

millimeters.  

 

From the results of our simulations, they concluded: (1) The large intestine exhibits 

greater location error than the stomach and the small intestine when the same numbers of 

sensors are available. They conjectured that these differences in location error 
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performance are due to the fact that the stomach, the small intestine and the large 

intestine have different shapes and are at different positions in human body. Most of the 

sensors are at much closer distance to the small intestine than to the stomach and large 

intestine, so that the received signal strength from the capsule suffers less attenuation in 

the small intestine and thus has less signal strength error. (2) The location errors in the 

large intestine decrease faster than both in the stomach and the small intestine when more 

sensors are available. (3) The location accuracy is improved if more sensors are 

deployed. 
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Chapter 3: Computational Techniques for Radio 
Propagation Inside the Human Body 

 

Conducting physical measurements for localization can involve substantial effort to 

collect accurate databases for different environments of interest. This is more obvious in 

the case of the human body, where communication involving implants also has to be 

considered. In principle, employing computational methods does not require that any 

measurements be made; but some measurements are needed to check the accuracy of the 

computational methods and to determine the values of model parameters such as 

conductivity and permittivity of structural materials. The implementation of FDTD 

methods, however, always requires extensive computational resources.  

 

Computation time for the FDTD technique is proportional to the size of the area, and the 

addition of structural details does not affect the computation significantly. However, the 

number of nodes used for computation is related exponentially to the size of the area and 

the frequency of operation. The computational methods can provide the relationship 

between the layout of a building or an outdoor area and the detailed channel response in a 

specific location. Therefore, they can provide realistic estimates of the azimuthal 

distribution of rays received in a multipath environment. In this chapter we discuss FDTD 

as a possible computational method to analyze the different characteristics of a channel. 

 

3.1 Analysis of Path-Loss Models  

 

This section compares a basic, MATLAB coded, time-domain FDTD formulation for the 

path loss around the human body with accurate Finite Element Method (FEM) modeling 
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in ANSYS HFSS. We show that the time domain FDTD analysis yields comparable 

results even though it uses a homogeneous body model and simple boundary conditions. 

Reasons for this important observation are investigated. The present study only considers 

the exterior TX and RX antennas, which are located close to the body. A more detailed 

FDTD simulation of on-body antennas is currently underway.    

3.1.1 Circuit Model of Path-loss 

 

When time-domain and frequency-domain models are to be compared with each other, 

adequate source modeling is a critical issue. Figure 10 shows the simple TX/RX model 

used in this study to estimate the path loss and antenna-to-antenna transfer function for 

FDTD and FEM models. The generator is an ideal voltage source, Vg, in series with a 

generator resistance, Rg, connected to a TX antenna. The receiver is an RX antenna 

connected to a load resistance, RL. All voltages and currents in Figure 10 are either real 

quantities (time domain FDTD) or complex phasors (frequency-domain FEM). Of 

primary interest is the received load voltage, VL, as a function of the generator voltage 

VG. This approach gives us the voltage transfer function TV in phasor form. 

 

        
g

L
V

V

V
T                             (3.1a) 

The voltage transfer function depends on the values of the series resistors, the antenna 

impedances, and the associated path loss. Alternatively, one may be interested in the 

power transfer function, PT  which in phasor form is given by   
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The transfer functions are determined using the simulation data as described below.  

 

Figure 10: Circuit model of antenna-to-antenna TX/RX link. 

 

3.1.2 Transfer Functions in Frequency Domain 

 

When using the FDTD simulations, both transfer functions in Equations (3.1) are found 

directly in the time domain using the proper excitation models. This method is explained 

in Section 3 below. For the FEM frequency-domain ANSYS HFSS analysis we use a 

lumped-circuit approach as shown in Figure 11. For a system with two lumped ports (TX 

and RX antennas), this approach employs the impedance matrix Ẑ  of size 2×2, which is 

readily available as “solution data” in HFSS for a particular frequency. The impedance 

matrix is invariant to specified port impedances. The TX-RX antenna network shown in 

Figure 10 can thus be replaced by an equivalent two-port microwave network described 

by the impedance matrix Ẑ  depicted in Figure 11b  

 









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ZZ

ZZ
Z                                                   (3.2) 
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Figure 11: Network transformations of the antenna-to-antenna link; a) original TX/RX 

network; b) microwave impedance matrix approach; and c) equivalent T-network of 

lumped impedances. 

 

The impedance approach is more appealing for this problem than the scattering S- matrix 

approach, since the S parameters always require an extra transmission line section at each 

port. Furthermore, the impedance approach explicitly relates the antenna link to the 

circuit parameters, and thus allows us to directly employ the well-known analytical 

results for small dipole and loop antennas. For reciprocal antennas, the mutual 

impedances are identical, i.e. Z12 = Z21. When the antennas are located far way from each 

other, the self-impedances Z11, Z22 are not affected by the presence of the second antenna 

as a scatterer, and are reduced exact antenna impedances in free space, i.e.   

 

RT ZZZZ  2211 ,                                (3.3) 
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Thus, the two-port network in Figure 11b, with the impedance matrix given by Equation 

(3.1), is replaced by an equivalent T-network (a -equivalent network is also possible, 

but it is not considered). The resulting circuit is depicted in Figure 11c. The solution for 

the receiver voltage then becomes a straight-forward circuit analysis with the final result 

)(
))((

)(
2121

21  g

gTLR

L
L V

ZZRZRZ

ZR
V


                           (3.4) 

for the voltage transfer function known as the forward voltage gain. An equation for the 

power transfer could be obtained in a similar way.   

3.1.3 Transfer Functions in Time Domain 

 

The lumped port model in FDTD follows reference and is shown in Figure 12. It occupies 

one unit cell. The generator circuit includes the open gap antenna feed with the electric 

field ),,,( eeez zyxtE , which is updated based on the Maxwell equations in free space. We 

apply Kirchhoff’s Voltage Law (KVL) to loop 1 as indicated in Figure 12. This yield:  

 

0),,,()()(  eeezggg zyxtzEtIRtV                     (3.5) 
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Figure 12: FDTD port model corresponding to the excitation source in Figure 10. 

 

Solving Equation (3.5) for the current results in 
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The FDTD version of Equation (3.6) becomes  

n

G

n

pmkz

g

n

pmkz V
R

E
R

z
I

1
2/1,,2/1,,





                          (3.7) 

where k, m, p are grid-related integers and n is discrete time. According to reference, this 

is the “semi-implicit formulation” for the conduction current in the sense that this current 

relies in part upon the updated electric field to be determined as a result of the time 

stepping; and it does not result in a system of simultaneous equations. This yields a 

numerically stable algorithm for arbitrary positive resistance values. Using Ampere's law 

with an impressed current source from Equation (3.7) one has the fully explicit 

formulation for the source 
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Where 
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with zyx   being the unit cell size. Equations (3.7) gives us the generator 

current in the time domain, see Figure 10. For the receiver in Figure 10, Equations (3.7) – 

(3.9) again apply, but with the voltage source set equal to zero. The receiver voltage is 

thus given by  

)()( tIRtV LLL                            (3.10) 

The transmitted and received powers are found in the same fashion.  

 

3.1.4 Comparison Between FDTD and FEM in Free Space 

 

We consider two electrically small dipole antennas at 402 MHz, shown in Figure 13. 

Both antennas have a total length of 11.25 cm, which is considerably less than the half 

wavelength of 37.3cm. Therefore, both of them have a large capacitive reactance and a 

small radiation resistance. The antennas are assumed to consist of thin metal strips with 

width of 1.25cm. The antenna separation distance (from center to center) is 41.3cm, 

which implies a near-field link. The FDTD method uses the Yee second- order 

differences on a staggered grid 
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Figure 13: Top:  FDTD simulations of the dipole-to-dipole link in free space; Bottom: 

corresponding ANSYS HFSS simulations with resulting impedance matrix.  The 

transition region of the FDTD solution is clearly seen; it averages about 4 ns 

 

For simplicity, we only use the first-order Mur’s ABCs augmented with the 

superabsorption update  for the magnetic field. The FDTD domain shown in Figure 13-

top is larger than required; it is set up for the prospective human body modeling. Figure 

13-top also shows the received voltage as a function of time versus the transmitted 

voltage. The entire FDTD algorithm is implemented in MATLAB. The total energy plot 
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in Figure 13 indicates a large reactive energy component that is typical for the near field 

of non-resonant antennas. The equivalent ANSYS HFSS simulation is performed using a 

perfectly matched layer (PML) absorbing boundary condition and a large number of 

tetrahedra in the FEM mesh (about 50,000). We calculate the receiver voltage in ANSYS 

using Equation (4) and the receiver voltage in FDTD using Equation (3.10). 

 

Table 3.1 provides the received voltage amplitude for different values of generator/load 

resistances. We assume Rg = RL. The source has the amplitude of 1V in all cases. One can 

see that the difference between the two approaches does not exceed 9%.  This is generally 

of sufficient accuracy for path loss modeling.  

 

TABLE 3.1. RECEIVED VOLTAGE AMPLITUDE FOR DIFFERENT VALUES OF Rg 

= RL. THE SOURCE HAS AN AMPLITUDE OF 1 V. 

 

Rg = RL ANSYS HFSS data for the 

received voltage 

amplitude 

FDTD data for the 

received voltage 

amplitude 

50 0.44mV 0.45mV 

1000 1.57mV 1.72mV 

 

3.1.5 Comparison between FDTD and FEM for Human Body Model 

 

The ANSYS human body model has frequently been used in FEM simulations. This 

highly accurate model includes more than 20 internal meshes separately modeling heart, 

kidney, liver, blood, etc. After six iteration passes, we ended up with meshes on the order 

of 1,000,000 tetrahedra with execution times on the order of 24 hours. The corresponding 

geometry is shown in Figure 14. We consider the same two electrically small dipole 

antennas at 402 MHz. The antenna shift in Figure 14 along the z-axis in local ANSYS 
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HFSS coordinates is -130.5mm, -190.5mm, and -390.5mm.  The antenna separation 

distance is the same as before.  

 

We have exported the identical human body volume from ANSYS to MATLAB’s FDTD 

mesh. In the FDTD model, we then assigned the average relative dielectric constant of 50 

and the average body conductivity of 0.5S/m to the body volume with any large 

conductivity. The lungs, however, remain as air. All antenna parameters stay the same. 

The execution times in MATLAB are about 7 minutes for a FDTD mesh of about 

800,000 individual bricks.  

 

Table 3.2 reports the received voltage amplitude obtained using the two methods for 

different values of Rg = RL, and different antenna positions. The source always has the 

amplitude of 1V. One can see that the agreement between the two data sets is excellent; 

the error does not exceed 12% in every case. Such an observation is important since it 

allows us to use the much faster (by the factor of ~100) FDTD model for obtaining 

accurate results.   

 

TABLE 3.2. RECEIVED VOLTAGE AMPLITUDE FOR DIFFERENT VALUES OF Rg 

= RL AND DIFFERENT ANTENNA POSITIONS. THE SOURCE HAS AN 

AMPLITUDE OF 1 V. 

 

Rg = RL Antenna shift in 

the vertical 

direction 

ANSYS HFSS data 

for the received 

voltage amplitude 

FDTD data for the 

received voltage 

amplitude 

1000 -130.5mm 0.37mV 0.38mV 

50 -130.5mm 0.10mV 0.12mV 

1000 -190.5mm 0.28mV 0.29mV 

50 -190.5mm 0.077mV 0.86mV 

1000 -390.5mm 0.025mV 0.024mV 

50 -390.5mm 0.007mV Noise floor 
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Figure 14: Antenna locations positioned around the human body. The antenna separation 

distance is fixed at 41.3cm. Top: FEM ANSYS mesh; Bottom: FDTD mesh; simulation 

results corresponding to the first case, and electric field distributions. The electric field is 

 

3.1.6 Preliminary Results 

 

Why does the coarse homogeneous body model in FDTD operate almost identically to 

the accurate FEM model? We believe that the major reason lies in the reflection of the RF 

signal directly from the body surface and its further diffraction around the body. When 
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the two antennas are located outside the body, the near-field diffraction path is the 

dominant path of the wireless link.  

 

Furthermore, the EM field that enters the body is very weak due to the large impedance 

difference. It undergoes path loss within the body and an additional reflection loss before   

it leaves the body. Consequently, its contribution is insignificant, at least in this present 

study. 

In this paper we have compared a basic time-domain FDTD simulation for the path loss 

around the human body in MATLAB with accurate FEM modeling of the human body in 

ANSYS HFSS. We have shown that the time domain FDTD analysis yields comparable 

results even when it uses a homogeneous body model and simple boundary conditions. 

The reason for this important observation is that the diffraction path around the human 

body is the major propagation path between transmitter and receiver. This study only 

considers the exterior TX and RX antennas, which are located close to the body. Two key 

questions need to be addressed as we continue this study: 

1. How close to the body surface can the antennas be positioned in order for this 

observation to remain true? 

2. What happens for two on-body antennas? Is the diffraction (surface wave) path still 

dominant?   
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Chapter 4: Wideband Characteristics of Radio 
Propagation Inside the Human Body 

 

 

Wideband measurements can be performed either in the time domain by direct 

measurement of the impulse response of the channel, or in the frequency domain by 

direct measurement of the frequency response of the channel. In theory, using Fourier 

transform techniques, the measured time and frequency responses should provide 

identical results. However there are some shortcomings in using the Fourier transform of 

the results of measurements, particularly if the measurement system does not provide 

both the magnitude and the phase of the measured characteristics.  

 

The most intuitive measurement analysis for the human body would be to use people with 

different weights between the same transmitter and receiver. Figure 15 shows the 

measurement setup with a sample human subject of weight 156 lbs, which will also be 

used for the FEM simulations in section 3.3. Figure 16 shows the impulse response of the 

channels with human subjects having different weights, each positioned between two 900 

MHz dipoles. The bandwidth for this setup is 100 MHz. From Figure 16 we can see that 

as the weight increases, the first path power diminishes. 
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Figure 15: Measurement setup (a) without body (b) with body 

 

 

Figure 16: Impulse response obtained from measurements with human subjects of 

different weights 
 

Channel measurement and modeling for body surface mounted sensors is divided into 

Body-to-Body and Body-to-External experiments, which are further divided into LOS 

and Non-LOS (NLOS) scenarios. In LOS scenarios there is a direct unobstructed path 
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between the transmitter and the receiver. In NLOS scenarios the body blocks the signal 

from direct connection path between the transmitter and the receiver. Figure 17 shows the 

results of two measurement experiments for body surface to body surface for LOS and 

body obstructed NLOS conditions, using Ultra Wideband (UWB) frequencies. In LOS 

experiments, we can clearly see the direct path which is also the strongest path. 

Considerable changes in multipath profiles suggest needs for separating LOS and NLOS 

channel models for these scenarios application. 

 

 
Figure 17: Channel impulse response in four different orientations of the body at Ultra 

Wideband (UWB) Frequencies – (a) LOS – Body-to-Body, (b) NLOS – Body-to-Body 
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4.1 Simulation of Wideband Characteristics using ANSYS 
HFSS 

 

 

Conducting physical measurements for localization can involve substantial effort to 

collect accurate databases for different environments of interest. This is more obvious in 

the case of the human body, where communication involving implants also has to be 

considered. In principle, employing computational methods does not require that any 

measurements be made; but some measurements are needed to check the accuracy of the 

computational methods and to determine the values of model parameters such as 

conductivity and permittivity of structural materials. The implementation of FEM 

methods, however, always requires extensive computational resources.  

 

Computation time for the FEM technique is proportional to the size of the area, and the 

addition of structural details does not affect the computation significantly. However, the 

number of nodes used for computation is related exponentially to the size of the area and 

the frequency of operation. The computational methods can provide the relationship 

between the layout of a building or an outdoor area and the detailed channel response in a 

specific location. Therefore, they can provide realistic estimates of the azimuthal 

distribution of rays received in a multipath environment. In this section we discuss FEM 

as a possible computational method to analyze the different characteristics of a channel. 
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4.1.1 An Overview of ANSYS HFSS 

 

 

HFSS is a high-performance full-wave electromagnetic (EM) field simulator for arbitrary 

3D volumetric passive device modeling that takes advantage of the familiar Microsoft 

Windows graphical user interface. It integrates simulation, visualization, solid modeling, 

and automation in an easy-to-learn environment where solutions to your 3D EM 

problems are quickly and accurately obtained. ANSYS HFSS basically employs the 

Finite Difference Time Domain (FEM) methodology, adaptive meshing, and brilliant 

graphics to give you unparalleled performance and insight to all of your 3D EM 

problems. ANSYS HFSS can be used to calculate parameters such as S-Parameters, 

Resonant Frequency, and Fields.  

 

HFSS is an interactive simulation system whose basic mesh element is a tetrahedron. 

This allows you to solve any arbitrary 3D geometry, especially those with complex 

curves and shapes, in a fraction of the time it would take using other techniques. The 

name HFSS stands for High Frequency Structure Simulator. ANSYS pioneered the use of 

the Finite Difference Time Domain (FDTD) for EM simulation by 

developing/implementing technologies such as tangential vector finite elements, adaptive 

meshing, and Adaptive Lanczos-Pade Sweep (ALPS).  

 

The human body model in HFSS has a millimeter level accuracy with 300+ objects 

including bones, muscle and organs. All frequency dependant material parameters are 
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included. The following sections will show that the use of this software is a valid 

technique to analyze the multipath characteristics of the human body channel for 

wideband communication and TOA-based localization. Moreover, as already established 

in existing literature, we can also use it to analyze Received Signal Strength (RSS) based 

communication and studying path-loss models. Figure 18 (b) shows the electric field plot 

obtained from an HFSS TM simulation that will also be used to analyze the wideband 

characteristics of a wireless channel with a human body. This plot shows how the electric 

field, and hence normalized power, decays from the transmitter to the receiver. 

4.1.2 Experimental Procedure using the ANSYS HFSS suite 

 

The research being carried out by the Center for Wireless Information Networks 

(CWINS) at WPI is based on the application of localization and hence, the results are 

more concentrated towards the multipath characteristics of the channels. At the moment, 

only surface to surface measurements have been taken and have been compared with the 

FDTD simulation using ANSYS HFSS TM.  

 

Both in the actual measurements and the software simulation, two dipoles in the 900 

MHz band were placed 50 cm apart (Figure 15 (a) represents a similar scenario with 

antennas further apart) and their S21 parameter was plotted over a bandwidth of 100 

MHz. This plot was then used to find the impulse response using the chirp z-transform 

function in MATLAB TM. After this a person with height 172 cm and weight 156 lbs was 

made to stand between the two antennas (Figure 15 (b) represents a similar scenario with 

antennas further apart) and a human body model with similar characteristics was placed 

in the HFSS TM simulation, between the two antennas (Figure 16). The impulse response 
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for this new channel was also plotted much in the same way as before and the 

comparative results are shown in Figure 19. The side faces of the radiation box in the 

HFSS simulations were assigned concrete as their material and the front and back faces 

were assigned the radiation boundary to imitate the environment of the lab. 

 

From the measurement taken without the body, the TOA of the first path was calculated 

to be 1.70 ns, which roughly translates to about 51 cm - an error of 1 cm from the actual 

distance. The same value from the HFSS TM simulation came out to be 1.95 ns, which 

roughly translates to 58 cm, indicating an error of about 7 cm from the measurement. The 

TOA of the first path from measurements taken with the body came out to be 2.00 ns, 

translating into 60 cm, which means the human body added an error of 9 cm in the 

measurements.  But the simulation with the body showed the TOA of the first path to be 

1.70 ns, again an error of 9 cm from the measurements but in the other direction. 
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Figure 18: ANSYS HFSS TM simulation setup (a) without body (b) with body and 

electric field plot. The two horizontal black lines represent the dipoles 

 

Figure 19: Impulse response obtained from the two simulated and measured channels 
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From Figure 19, the rms delay spread of the first three paths for the measurements 

without the body came out to be 4.12 ns and that of the simulation without the body came 

out to be 3.97 ns; a difference of just 0.15 ns. When the body was added to the 

measurement setup, the rms delay spread was calculated to be 3.79 ns, the same value for 

the simulation with the body came out to be 3.32 ns; an error of about 0.47 ns. Hence 

even the rms delay spread of the HFSS TM simulation was very close to that of the actual 

measurements, rendering little doubt that it is a valid mean to simulate the wideband 

profile of a channel.  

 

As promising as these results seem, there is a need to continue with more measurements 

with absorbing boundaries. Also with the addition of a phantom, implant to implant 

measurements can also be taken and compared to their respective simulation results. 

 

4.2 Comparison of TOA and RSS for Localization inside the 
Body 

 

The human body channel suffers from severe multipath propagation and heavy shadow 

fading conditions so that measurements for localization are far from accurate in many 

instances. TOA and received signal strength (RSS) estimation are therefore susceptible to 

large errors due to undesirable multipath conditions. To accurately estimate TOA in 

indoor areas, we need to resort to different frequencies of operation and more complex 

signaling formats and signal processing techniques that can resolve the problems. The 

behavior of a TOA sensor in human body multipath propagation is highly sensitive to the 

bandwidth of the sensor [45]. In practice, bandwidth is limited, and the received signal 
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comprise a number of pulses whose amplitudes and arrival times are the same as 

impulses but they are shaped pulse. The superposition of all these pulse shapes forms the 

received signal, which we refer to as the channel profile. A common practice is to 

estimate the location of the direct path (DP) as the location of the peak of the first path 

that is the estimated TOA. In a single path environment, the actual expected and the 

estimated direct paths are the same.  In multipath conditions, however, the peak of the 

channel profile gets shifted from the expected TOA, resulting in a TOA estimation error 

caused by the multipath condition. We refer to the distance error caused by erroneous 

estimate of the TOA as the distance measurement error. For a given multipath condition 

we expect that as we increase the bandwidth the distance measurement error becomes 

smaller. The UWB systems, which exploit bandwidths in excess of 1GHz, have attracted 

considerable attentions in indoor areas as a means of simulating accurate TOA for indoor 

geolocation applications cannot be used around the human body due to the FCC 

frequency limitations mentioned in the first section. However for the sake of research, we 

have used higher bandwidth pulses which may have higher frequency content.  This is 

just to check whether TOA can be used as a good measure for distances between two 

sensors in and around the human body. The input pulse used is a Hanning pulse to match 

it with the window used in the Inverse Fourier Transform of the data taken from the 

network analyzer being used in the lab for real measurements.  

 

Figure 20 shows an FDTD simulation in MATLAB. This figure shows electric field 

distribution around the human body model with the transmitter and receiver sensors at 

positions and a and b respectively, which are 5 cm apart. As shown in the figure (right 
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bottom), the TOA of the  “first path”  arrives at 0.2277 ns, which roughly translates to 

6.83 cm, i.e. a distance measurement error of 1.83 cm. Notice, also, on the right side that 

the actual sensors for the simulation are not visible. This is because we tried to model a 

point source (with one FDTD cell) instead of a dipole antenna to eliminate the effects that 

maybe caused by impedance matching. However, it is not possible to model a perfect 

point (soft) source in MATLAB using FDTD, and that is why we can see the dip after the 

pulse is received. But if we plot the normalized power received, the negative region of 

that plot will be eliminated when the voltage is squared. 

 

Figure 20: Left: Map of where the sensors were placed; Right: Transmitted (top) and 

received (bottom) voltages vs. time 
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4.2.1 Comparison between TOA Results and Published Path-Loss 
Models 

 

A number of such simulations were carried out with the transmitter kept at position a and 

the position of the receiver was varied from positions b to j. One such simulation was run 

where the position of the transmitter was at d and the receiver was kept at position e. The 

received pulse from this simulation is shown in Figure 21. This verifies the multipath 

effect due to the waves traveling in different media. This is because while the other 

simulations were performed with both the sensors inside the homogenous body model 

and the waves did not have to travel outside that body, there weren’t any detected second 

or third paths, but since in this simulation there was a change of mediums between the 

sensors, we can see more than one paths at the receiver. 

 
Figure 21: Received pulse (V) with transmitter and receiver sensors at positions d and e 

respectively 

 

All these simulations were then used to plot a distance vs. TOA plot to assess deviations 

of the plotted points from a straight line representing the ideal TOA for each distance. 

Figure 22 shows this plot. 
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Figure 22: Time of Arrival vs. distance for various sensor positions 

 

This plot was then compared to a plot of the same distance range obtained from the 

channel model described by the NIST in one of their papers that used FEM for path-loss 

modeling [57]. The model as shown in the paper is shown in Equation (2.24) and Table 

2.1, where σs is the variance of the normal random variable S. 

 

The plot obtained from this model is shown in Figure 23. 

 
Figure 23: Plot obtained from the path-loss model in [57] 

 

The standard deviation per dB of the Path-loss model came out to be 15.575/50 = 0.3115. 

While, the standard deviation per ns of the TOA model came out to be 0.361004/1.4 = 

0.25786. Hence, for now, the Path-loss model seems to be more accurate. More detailed 

simulations are underway to improve the accuracy of the TOA model. 



 78 

To estimate the distance from the TOA plot shown in Figure 22, we used Equation (4.1) 

[58]. 

     (4.1) 

 

From the slope of the TOA vs. distance line, the εr came out to be 1.336. This value was 

also used to estimate the measured value for a distance of 5 cm between the sensors, 

mentioned in section II.  Figure 24 shows the distance measurement error plot obtained 

from the simulations carried out. It can be seen that the distance measurement error 

(given in millimeters) increases linearly with distance. 

 

 
Figure 24: Distance Measurement Error from TOA for each sensor position 

 

4.2.1 CRLB and Ranging Accuracy of TOA vs. RSS 

 

Another metric to compare the accuracy of TOA and RSS based localization methods is 

their respective Cramer-Rao Lower Bounds (CRLB) [59]. The CRLB of a deterministic 

parameter expresses a lower bound on the variance of its estimators. The CRLB on the 

variance of the ranging error for TOA systems is given by: 
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where T is the observation time, SNR is the Signal-To-Noise-Ratio,  f0 is the center 

frequency of operation and W is the bandwidth of the system.  For the operating 

frequency, bandwidth and SNR used in  GPS systems this bound shows us that accuracies 

around several meters is achievable if we can wait for a few minutes.   If we want to 

extend this technology to the human body we have three challenges (1) we need more 

precision to identify objects  inside the body (2) we need to cope with the additional path 

loss to into the tissue within reasonable measurement times (3) we need algorithms to 

cope with possible multipath conditions. 

 

In the case of RSS, the CRLB of the ranging error, using Equation (7) to relate the 

distance to the power, is given by:  
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in which  sh is the standard deviation of the shadow fading.   The distance power 

gradient (α) would greatly vary for different parts of the human tissue as already shown 

in Figure 24. Also, using Equation 10, the distance measurement error for RSS comes to 

the order of the distance between the transmitter and receiver, which would not be 

acceptable for the millimeter level accuracy required inside the human body. 
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To check this claim, we plotted the RSS from our simulations for each of the sensor 

positions shown in Figure 21. This plot is shown in Figure 25, and the α obtained from 

this plot came out to be 4.59, which is comparable to the model in Table I. 

 

 
Figure 25: RSS vs. Distance plot for each sensor position 

 

The values plotted in Figure 25 were then plugged into Equation (2.24) and the distance 

measurement error for RSS was plotted. This plot is shown in Figure 26. Notice that the 

errors obtained from TOA, shown in Figure 24, are in the millimeter range and the 

highest value is 3.5 cm, while the ones shown in Figure 26 are in cm, with the highest 

value being 5.1 cm. This confirms that ranging using RSS has larger errors than its TOA 

counterpart. To further confirm this, if we plug in the values given in TABLE I into 

Equation (10), at a distance of 40 cm, we can find the CRLB of RSS for the variance was 

in the range of 0.0699 and 0.427 m; while the CRLB for TOA using Equation (9) came 

out to be 1.1388 x 10-12 m. 
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Figure 26: Distance Measurement Error from RSS for each sensor position 

 

4.2.3 Sources of Error in Localization 

 

The CRLB provides the ultimate measure of accuracy for ranging, but for digital systems 

inside the body, we get sampling and quantization errors. It may be of some interest as to 

why the standard deviation for TOA that was calculated experimentally in Section IV is 

about 1012 times larger than the CRLB calculated in Section V. One of the reasons for 

this could be that the multipath characteristics of the human body can only be truly 

modeled with a non-homogenous body model. Work is being done in order to import 

individual organs to the MATLAB FDTD solver developed by the research team. Once 

this is achieved and all the organs have been assigned different values of dielectric 

constants and conductivity, can we see the true multipath effects of the human body. 

Another reason for an error in TOA in real measurements could be the movement in the 

human body. This can change the distance between the two sensors. Figure 27 shows 

that, if sensor a is located on the chest and sensor b on the belt, the simple movement of 

raising both hands can cause a change of 3.2 cm (from 31 cm to 34.2 cm) and in the 

distance between them. The change in distance between these same sensors when the 

body is in the running position is 2.1 cm (from 31 cm to 28.9 cm). So if the position of 
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the surface sensor changes with simple bodily movements, there will be much larger 

errors in measuring the distance between these sensors and an endoscopy capsule 

traveling inside the GI tract. Further results that may eliminate these problems will be 

presented at the conference. 

 
Figure 27: Change in distance of two sensors due to the movement of the body 
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Chapter 5: Precision of EM Simulation based Wireless 
Location Estimation in Multi-Sensor Capsule Endoscopy 

 
In this chapter, we compute and examine two-way localization limits for an RF 

endoscopy pill as it passes through an individual’s gastrointestinal (GI) tract. We obtain 

FDTD and FEM based simulation results position assessment employing time of arrival 

(TOA). By means of a three-dimension human body representation from a full wave 

simulation software and log-normal models for TOA propagation from implant organs to 

body   surface, we calculate bounds on location estimators in three digestive organs: 

stomach, small intestine and large intestine. We present an investigation of the causes 

influencing localization precision, consisting of a range of organ properties; peripheral 

sensor array arrangements, number of pills in cooperation and the random variations in 

transmit power of sensor nodes. We also perform a localization precision investigation 

for the scenario where the transmission signal of the antenna is arbitrary with a known 

probability distribution. The computational solver outcome shows that the number of 

receiver antennas on the exterior of the body has higher impact on the precision of the 

location than the amount of capsules in collaboration within the GI region. The large 

intestine is influenced the most by the transmitter power probability distribution. 

 

We start in Secion. 2 by detailing the computer aided FEM simulations describe the 

environment and the device to exterior impulse response model for the human body. 

After that, employing the exact position obtained form the CAD design and the 

mathematical model, we obtain the CRB for multiple pill positioning and the positioning 

bound with arbitrariness in the signal timing in Section. 3. In Section 4, we present 
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outcomes of the model that emphasize the sensor and tissue position factors that 

influence the precision of positioning. In the end, we offer our conclusions in Section 5. 

 

5.1 Functionality and Assessment Approach 

 

A human digestive system is made up of an intestines, a stomach and an esophagus, as 

illustrated in Figure 28. To effectively construct a model setup to compute the CRB of an 

RF endoscopy pill as it moves down the GI tract, we employ a three-dimensional body 

simulation from the 3D FEM based high-frequency solver (HFSS [81]). We establish the 

accuracy of this solver by comparing basic field measurements with their corresponding 

simulation models in HFSS. For research purposes we use a center frequency of 900MHz 

with a bandwidth of 100MHz. Each simulation run took about 4-6 hours to complete. 

Further details of these scenarios are presented in Section V. 

 

5.1.1 Functionality Assessment Setup 

 

This simulation has a 2mm 3-D resolution and comprises of radio-wave permeability 

characteristics of over 175 organs of a female human body. From this we obtain spatial 

positions of the GI tract, as shown in Figure 29.  
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Figure 28 An illustration of the human digestive system – the typical path of an 

endoscopy pill 

 

 For the positioning of the external antennas, we implemented the scenario in [67], with 

the assumption that these antennas are positioned on a vest worn by the subject for the 

duration of the investigation. Matching quantities of sensors are placed in the anterior and 

on the posterior of the vest. We computed the CRB for 8, 16, 32 and 64 external antennas 

with a spatial position of 268 9 323 9 312 mm, a representative arrangement for 32 

external antennas is demonstrated in Figure 30. 
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5.1.2 TOA Model for the Digestive System 

 

In this section, we outline the internal sensor to external sensor mathematical TOA model 

that is employed to compute the CRB of endoscopy pill positioning. This model makes 

use of the signal velocity model in different dielectric materials and described in [81], 

[102]. The key elements employed to establish this model comprise the FEM based 

simulation engine and human body model from ANSYS. 

 

In our simulations, we employ a 100 mm displacement between external and internal 

sensors as the limit for selecting the dielectric constant. If the displacement is lower than 

100 mm, we pick the near surface dielectric constant, in other cases deep tissue dielectric 

constants are used. An example of surface-to-surface communication can be seen in can 

be seen in Figure 31.  

 

Figure 29 Positions of  one internal and one external sensor as seen from (a) slightly 

turned outside the body (b) side of the stomach and intestines (c) slightly turned stomach 

and intestine 
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Figure 30 External Sensor Distribution (note: an equal number of sensors would be 

placed on the opposite side of the model) 

 

Figure 31 An example of surface-surface communication 
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5.1.3 Unpredictability of Impulse Time Arrival 

In real-life wireless system scenarios, the antennas cannot predict an accurate time of 

arrival of the pulse because of the price of the standard calibration of the apparatus. 

While, the measured time of arrival may be a particular nanosecond value, the arrival 

time fluctuates by a small number of nanoseconds around this mean [84], [105]. The 

chief elements that affect time of arrival deviation for networks in and around the human 

body are enumerated thus: (a) apparatus assembly disparity and differences in battery 

levels from one node to the other, (b) motion of the patient subject because of movements 

and variations in the directions of the sensors, (c) the node devices may not be located at 

the exact height above from the body exterior at the same time. Some sensors could be in 

contact with the exterior while some may be a little ways above the surface. As stated in 

[83] and [104], a sensor in contact with tissue will have a slower rise time than the sensor 

not in contact with human tissue. All these elements add to the uncertainty in the time of 

arrival of the pulse, which in turn has an impact on the precision of positioning. 

 

5.2 TOA Simulations and Observations 

 

Figure 2 shows an FEM simulation in HFSS and Figure 32 shows the waveform received 

at the sensor on the surface of the belly with the transmitter positioned inside the small 

intestine. The transmitter and receiver are about 11 cm apart. As shown in the time 

domain response (TDR) plot in Figure 32, the pulse is received at 0.48 ns, which roughly 

translates to 14.4 cm, i.e. a distance measurement error of 3.4 cm. Notice, also, in Figure 

2 that the dipoles are modeled to act as both the pill and surface sensors for the 

simulation. This is for simplicity of design, and to reduce simulation time and 
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computational resources needed.  The downside of using these dipoles to represent the 

sensors is the capacitive dip we see before and after the received pulse in the waveform. 

But if we plot the normalized power received, the negative region of that plot will be 

eliminated when the voltage is squared. 

 

A number of such simulations were carried out with the transmitter kept in the intestine 

and the position of the receiver was rotated around the body at 10 different positions at 

the same horizontal level, to account for different distances. One such simulation was run 

where the position of the transmitter was in the intestine and the receiver was kept at the 

same horizontal position but at the model’s back, to see what happens when the 

waveform travels through bones and other tissue on its way from one sensor to another. 

This verifies the shadow-fading effect due to the higher density of organs between the 

two sensors. Figure 33 illustrates what the waveform looks like after passing through 

these denser tissue.  
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Figure 32 Impulse response between pill inside intestine and sensor on the surface of the 

belly 

 

 
Figure 33 Impulse response between pill inside intestine and sensor on the back 
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All these simulations were then used to plot a distance vs. TOA plot to assess deviations 

of the plotted points from a straight line representing the ideal TOA for each distance. 

Figure 34 shows this plot. 

 

 
Figure 34 Time of Arrival vs. distance for various sensor positions 

 

The standard deviation per dB of the Path-loss model, from the PDF shown in Figure 12, 

came out to be 15.575/50 = 0.3115. While, the standard deviation per ns of the TOA 

model, form the PDF shown in Figure 36, came out to be 0.361004/1.4 = 0.25786. 

Hence, the TOA model seems to be more accurate. More detailed simulations are 

underway to improve the accuracy of the TOA model. To estimate the distance from the 

TOA plot shown in Figure 34, we used Equation (1). 

 

From the slope of the TOA vs. distance line, the εr came out to be 1.336. This value was 

also used to estimate the measured value for a distance of 5 cm between the sensors, 

mentioned in section IV.  Figure 35 shows the distance measurement error plot obtained 
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from the simulations carried out. It can be seen that the distance measurement error 

(given in millimeters) increases linearly with distance. 

 

 

Figure 35 Distance Measurement Error from TOA for each sensor position 

 

 
Figure 36 PDF of the Distance Measurement Error from TOA for each sensor position 
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5.3 CRB for TOA Based Spatial Endoscopy Pill Positioning 

 

    In this section, we develop the spatial CRB established on the TOA models described 

in the preceding section. We take into account both scenarios with multiple sensors are in 

working together and where there is variations in pulse arrival times. The CRB for 2D 

positioning limits has been discussed in [86]. Here, we describe the limits in all three 

spatial dimensions by working on the calculations done in two dimensions. 

 

5.3.1 CRB for Multi-sensor Collaborative Positioning 

 

    Extending on the TOA models in Sect. 2, we will perform derivations for the spatial 

CRB for collaborative positioning of an endoscopy pill. We study the following setup: N 

RF sensor nodes are positioned on the surface of the human body using the vest with the 

position of each represented by θc = [p1,…..,pN]. The path of these sensors from the 

capsule could be blocked but they can quantify the TOA their adjacent nodes and the 

most visible sensor can receive the TOA data from the capsule and perform additional 

computation in collaboration with the other sensors. M number of capsules could be 

swallowed by the patient subject with their positions represented by θr = [pN+1,…..,pN+M]. 

The vector of sensor factors is θ = [θc
 θr]. For this spatial scenario, pi=[xi,yi,zi]

T, where i ∈ 

[1,N+M] and T is the transpose action. The unidentified elements to be calculated may be 

denoted by a 3 X N matrix. 
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Take the sensors into consideration (sensors comprise the pill and surface antennas). i and 

j receive paired-up signals Xij. We make the assumption that all surface antennas can 

detect the TOA from the pill travelling through the GI tract, but the multi-path 

characteristics for the various transmission paths change as the number of different media 

between the surface antenna and the pill travelling down the GI tract varies. Hence, we 

take H(i) = {j; sensor j receives linked-up signals from sensor i}. H{i} = {1,..., i – 1, i + 

1,...N + M} for i ∈ [1, N] and H{i} = {1,…N} for i ∈ [N + 1, N + M] since a sensor is not 

able to receive a linked signal from itself and the surface antennas will not receive signals 

from other receivers either. Thus, the size of the received vector X is N x (N + M – 1) + M 

x N.  

 

Using mutuality, we make the assumption Xij = Xji, therefore, it is enough to study just the 

lower vertex of the receiver matrix X when expressing the combined probability function 

[86]. The CRB on the covariance matrix of any unbiased estimator θ̂ is given by [86]: 

 

where E[.] is the expectation operation and F is the Fisher information matrix (FIM) 

defined as: 
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where f(X|θ) is the joint PDF of the observation vector X conditioned on θ. For the RSS 

measurements case, the Xi,j are log-normal  random variables, and the density is given by 

[86] 

 

 

 

for i = 1,2,…,N + M and j ∈ H(i), d̃(i,j) is the MLE of range di,j given received power Xi,j. 

Then the logarithm of the joint condition pdf is: 

 

 

 

It is mentioned in [85], [106] that the second-order partial differential of (7) w.r.t θr and 

θs is going to be a total of terms if θr and θs are coordinates of the same sensor k, but will 

be only one term if θr and θs are coordinates of separate sensors k and l, k ≠ l. For 

example: 
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where IH(k) (l) = 1 if l ∈ H(k) and 0 otherwise. Since.  Thus, the elements of Fθ 

are: 

 

Let x̂i; ŷi; ẑi be the unbiased estimation of xi, yi, zi, the trace of the covariance of the ith 

location estimate is given by: 
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5.3.2 CRB for TOA Positioning with Sensor with Highest RSS (Path of 
Least Resistance) 

 

One metric to relate the precision of TOA and RSS established positioning approaches is 

their corresponding Cramer-Rao Lower Bounds (CRLB) [71]. The CRLB of a 

deterministic factor states a lower bound on the variance of its estimators. 

 

For the operational rate, bandwidth and SNR employed in GPS systems this limit 

demonstrates that precision of a few meters is attainable if we can wait for some minutes.   

If we want to expand this technology to include body area networks, we have three issues 

(1) we require more accuracy to pinpoint objects contained in the body (2) we need to 

handle the extra path loss suffered by the signal while traveling into the tissue within 

practical measurement periods (3) we require procedures to handle potential multipath 

environments. 

 

The distance power slope would significantly vary for different portions of the human 

flesh as presented in Figure 39. Also, the distance measurement error for RSS comes to 
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the order of the space between the transmitter and receiver, which would not be 

satisfactory for the millimeter level precision requisite inside the human body. 

 

To verify this statement, we plotted the RSS from our simulations for each of the surface 

antenna locations shown in Figure 20. This plot is shown in Figure 37, and the gradient 

obtained from this plot came out to be 4.59, which is analogous to the model in published 

by NIST [78],[98]. 

 

 
Figure 37 RSS vs. Distance plot for each sensor position 

 

The values plotted in Figure 37 were then plugged into the NIST model and the distance 

measurement error for RSS was plotted. This plot is shown in Figure 28. Notice that the 

errors obtained from TOA, shown in Figure 35, are in the millimeter range and the 

highest value is 3.5 cm, while the ones shown in Figure 38 are in cm, with the highest 

value being 5.1 cm. This confirms that ranging using RSS has larger errors than its TOA 

counterpart. To further establish this, if we plug in the values given in Figure 38 into the 
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path-loss model defined by Sarafyan et al. [78], [98], at a distance of 50 cm, we can 

evaluate the CRLB on the variance of path-loss was in the range of 0.0699 and 0.427 dB; 

while the CRLB on the variance of TOA using Equation (9) at the same distance came 

out to be 0.011388ns. 

 

 
Figure 38 Distance Measurement Error from RSS for each sensor position 
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Figure 39 PDF of the Absolute Values of Distance Measurement Error from RSS for each 

sensor position 

 

In this section, the variables to be calculated are the x, y and z positions of the pill, and a 

fresh array π = [π01,…,π0N] because not any of the N surface antennas have precise 

information of the time of arrival of the pulse it transmits. The Bayesian CRB [86], [87] 

also known as Van trees inequality says that any approximation θ̂ must have an 

inaccuracy association matrix R∈ given by 

 

R∈ > F-1 = [Fθ + FP]                                              (5.9) 

 

where R∈  = E[(θ̂  - θ) (θ̂  - θ)T], and Fθ and FP will be the FIM and the previous data 

matrix accordingly,  given by eq. 5.10 
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where pi,j would be the dual-directional impulse response array. The previous data matrix 

FP is given in eq. 5.10 

 

where 0n would be an n-length array of zeros and 1N represents an array of length N 

consisting of ones, while σπ
2 would be the variance of the random variable π0i (the time of 

arrival 1 cm away from the pill i) that is supposed to have an i.i.d Gaussian probability 

distribution for each surface antenna i. 

 

We represent the dual-directional measurements Pi,j and Pj,I by the array pi,j = [Pi,jPj,i] 

as a dual-variable Gaussian with an average of ui,j and a variance of Ci,j, where 

 

 

where α denotes the time of arrival exponent, and ρ would be the association constant 

among the dual-directional responses, 0 ≤ ρ ≤ 1. For the sake of simplicity we convert the 

dual-directional response array pi,j to an orthogonal matrix A using the following 

derivation: 
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Such a full rank transformation of measurement does not change the Fisher information. 

For simplicity of notation, we denote  where corresponds to the average of 

the two measurements and  corresponds to the difference between the two 

measurements. After some mathematical analysis, it is seen that  has a mean  and 

covariance C̅ and  has a mean and covariance  as given below: 

 

 

where I3n+N is 3n + N x 3n + N identity matrix and u̅ and  are the mean values of the 

sum and  difference of measurements respectively for all measurement pairs, 

 

 

where i1; j1;...; is; js corresponds to each unique pair. A pair makes measurement if they 

are in the measurement range of each other. Here we assume that the measurement range 

is infinite (i.e., every sensor can do measurements with every other sensor). The Fisher 

information matrix Fθ given by eq 5.10 can be split into two sub matrices  and  

corresponding to sum and difference measurements due to their independence. 
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The FIM of a vector of multivariate Gaussian measurements with mean l(h) and 

covariance C is given by [82], [103] 

 

 

From eq. 5.17, we have, 

 

 

 

The calculations of the discrete components of the matrix are comparable to eq. 5.7, and 

presented in [88] and [89]. 

 

In this chapter, we examined the prospective precision constraints for TOA and 

cooperation based on path-of least resistance (received signal strength after shadow 
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fading) positioning of an endoscopy pill traveling down the human digestive system. We 

confirmed the likelihood of accomplishing a mean positioning error of 50 mm in the 

gastrointestinal system. We also confirmed that no more than 10 receivers on the surface 

of the human body are required to accomplish sufficient positioning precision for pill-

based endoscopy. Software model results using Ansys HFSS revealed that accumulating 

the quantity of surface antennas on the body would have higher effect on the general 

positioning accuracy. This is also practical, as we only use one pill to perform capsule 

endoscopy, but we can put multiple sensors on the surface. We also studied the 

consequence of arbitrariness in impulse response on the positioning precision. In 

conclusion and keeping real-world concerns in consideration, we make the inference that 

cooperating surface sensors, using RSS to determine shadow fading, and then 

determining the location using time of arrival of a pulse transmitted from the capsule will 

give us the best chance of accurate localization. 
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Chapter 6: Conclusions and Future Work 

 

In this research we first compared a basic time-domain FDTD simulation for the path loss 

around the human body in MATLAB with accurate FEM modeling of the human body in 

ANSYS HFSS. We have shown that the time domain FDTD analysis yields comparable 

results even when it uses a homogeneous body model and simple boundary conditions. 

The reason for this important observation is that the diffraction path around the human 

body is the major propagation path between transmitter and receiver. This study only 

considers the exterior TX and RX antennas, which are located close to the body. Two key 

questions needed to be addressed as we continued this study. How close to the body 

surface can the antennas be positioned in order for this observation to remain true? What 

happens for two on-body antennas? Is the diffraction (surface wave) path still dominant? 

 

Having successfully verified the solver’s accuracy with the narrowband characteristics of 

the human body channel, we proceeded to check its validity for the wideband 

characteristics.  Hence, a few weeks were spent calibrating the simulation for a free space 

scenario so that it can be compared to actual measurements. The measurements are made 

on a network analyzer that makes frequency domain calculations, whose Inverse Fourier 

Transforms are used to plot the impulse response of the channel. Since the FDTD 

simulations are already in time domain, the transient effects of the antennas are reflected 

in the received signal (a problem not seen in the impulse response obtained from the 

network analyzer data). To try and get rid of these effects of the antenna, the current 

research involves trying to design a point source with perfect impedance matching so that 

the side-lobes are minimized. 
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This setup was used to run wideband simulations for the human body and the TOA 

results were compared with RSS results. The study conducted in this research verifies 

that Time of Arrival is a more accurate measure of distance between two sensors in a 

fading environment than the Received Signal Strength. We first demonstrated by 

comparing a plot obtained from a published RSS model with our TOA results gathered 

from simulations run on our proprietary FDTD algorithm, which requires less 

computational resources than commercially available FEM solvers used for similar 

simulations. We then verified this observation by using CRLB equations given in the 

literature and substituting the values obtained from the data of our own FDTD 

simulations for both RSS and TOA techniques. Finally we investigated possible reasons 

for the discrepancies between the simulated and calculated values of the variance for 

TOA and RSS techniques. As discussed in the last section of the previous chapter, the 

CRLB on the variance of RSS came out to be in the same range as that calculated from 

the simulations. However the CRLB on the variance TOA came out to be 10-12 times less 

than the standard deviation calculated from the simulations. Reasons for this and other 

possible causes of error have been examined.  

 

The multipath characteristics of the human body can only be truly modeled with a non-

homogenous body model. For future research purposes, work is being done in order to 

import individual organs to the MATLAB FDTD solver developed by the research team. 

Once this is achieved and all the organs have been assigned different values of dielectric 

constants and conductivity, can we see the true multipath effects of the human body.  
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Further work can be done in order to incorporate Direction of Arrival (DOA) techniques 

to the existing RSS and TOA algorithms to enhance the accuracy of the localization 

system. DOA denotes the direction from which usually a propagating wave arrives at a 

point, where usually a set of sensors are located. This set of sensors forms what is called 

a sensor array. Often there is the associated technique of beam-forming which estimates 

the signal from a given direction. 
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Appendix 1: MATLAB Code for FDTD in XZ Plane 
 
%   3D FDTD - ECE539 
%   First-order ABCs 
tic 
clear all; 
eps0      = 8.85418782e-012;               %  ANSYS HFSS value  
mu0       = 1.25663706e-006;               %  ANSYS HFSS value 
c0        = 1/sqrt(eps0*mu0);              %  ANSYS HFSS value 

  
scrsz               = get(0,'ScreenSize'); 
figure('Position',[0.05*scrsz(3) 0.05*scrsz(4) 0.8*scrsz(3) 

0.8*scrsz(4)]); 
colormap(jet(128));  
load body; 
load structure; 
%------------------------------------------------------------------ 
%------------------------------------------------------------------ 
% 3D geometry definitions and magic time step 
%------------------------------------------------------------------ 
%------------------------------------------------------------------ 
Nx   = length(x) - 1;   %   Nx 
Ny   = length(y) - 1;   %   Ny 
Nz   = length(z) - 1;   %   Ny 
dt   = 1/(c0*sqrt(1/d^2 + 1/d^2 +1/d^2));%   Magic time step 
%------------------------------------------------------------------ 
%------------------------------------------------------------------ 
% Excitation - voltage(s) 
%------------------------------------------------------------------ 
%------------------------------------------------------------------ 
f = 402e6;  
                                    %    (to travel from feed to the 

end) 
T        = 15e-9;                   %    observation time 
%   Number of time steps and time vector 
NT = round(T/dt); t = [0: dt: NT*dt]; 
%   Excitation (generator) voltage 
VG = sin(2*pi*f*t); 
IG = zeros(size(VG)); 
RG = 50; 
bound = 2*ones(1, NT+1);                      %   graphics scale 

  
%------------------------------------------------------------------ 
%------------------------------------------------------------------ 
% Allocate field matrices 
%------------------------------------------------------------------ 
%------------------------------------------------------------------ 
Ex = zeros(Nx  , Ny+1, Nz+1); 
Ey = zeros(Nx+1, Ny  , Nz+1); 
Ez = zeros(Nx+1, Ny+1, Nz  ); 
Hx = zeros(Nx+1, Ny  , Nz  ); 
Hy = zeros(Nx  , Ny+1, Nz  ); 
Hz = zeros(Nx  , Ny  , Nz+1); 
%   To distinguish between next and past updates (for BCs) 
temp1 = Ey(2, :,:);     temp2 = Ez(2, :,:); 



 118 

temp3 = Ey(Nx, :,:);    temp4 = Ez(Nx, :,:);  
temp5 = Ex(:, 2,:);     temp6 = Ez(:, 2,:); 
temp7 = Ex(:, Ny,:);    temp8 = Ez(:, Ny,:); 
temp9 = Ex(:, :,2);     temp10 = Ey(:, :,2); 
temp11 = Ex(:, :, Nz);  temp12 = Ey(:, :, Nz); 

  
%------------------------------------------------------------------ 
% Position of the excitation source 
%------------------------------------------------------------------ 

  
XE = -0.2; YE = 0; ZE = -0.2;   %   coordinates 
[dummy, k_e] = min(abs(x-XE));  %   index of the excitation node  (exp. 

with Nx/2)   
[dummy, m_e] = min(abs(y-YE));  %   index of the excitation node  (exp. 

with Nx/2)   
[dummy, p_e] = min(abs(z-ZE));  %   index of the excitation node  (exp. 

with Nx/2)   
%------------------------------------------------------------------ 
% Position of the receiver source 
%------------------------------------------------------------------ 
XR = +0.2; YR = 0; ZR = -0.2;   %   coordinates 
[dummy, k_e1] = min(abs(x-XR));  %   index of the excitation node  

(exp. with Nx/2)   
[dummy, m_e1] = min(abs(y-YR));  %   index of the excitation node  

(exp. with Nx/2)   
[dummy, p_e1] = min(abs(z-ZR));  %   index of the excitation node  

(exp. with Nx/2)  
%------------------------------------------------------------------ 

  
%------------------------------------------------------------------ 
%   Antenna metal boundaries 
%------------------------------------------------------------------ 
N = 4;          %   length of one wing (the length is N*d; the dipole 

length is (2*N+1)*d) 
%   TX 
MetalRectX      = k_e*ones(1,2*N);                  %  x-position of 

metal rectangles 
MetalRectZ      = [p_e-N:p_e-1 p_e+1:p_e+N];        %  z-position of 

metal rectangles 
XVR             = [];  
YVR             = [];  
for m = 1:length(MetalRectX) 
    xmin_        = xmin + (MetalRectX(m)-1.5)*d;  
    xmax_        = xmin_ + d; 
    zmin_        = zmin + (MetalRectZ(m)-1.5)*d;  
    zmax_        = zmin_ + d; 
    XVR(:, m)   = [xmin_ xmin_ xmax_ xmax_ xmin_]; 
    ZVR(:, m)   = [zmin_ zmax_ zmax_ zmin_ zmin_]; 
end 
%  RX 
MetalRectX1      = k_e1*ones(1,2*N);              %  x-positon of metal 

rectangles 
MetalRectZ1      = [p_e1-N:p_e1-1 p_e1+1:p_e+N];  %  z-position of 

metal rectangles 
for m = 1:length(MetalRectX1) 
    xmin_        = xmin + (MetalRectX1(m)-1.5)*d;  
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    xmax_        = xmin_ + d; 
    zmin_        = zmin + (MetalRectZ1(m)-1.5)*d;  
    zmax_        = zmin_ + d; 
    XVR(:, m+length(MetalRectX))   = [xmin_ xmin_ xmax_ xmax_ xmin_]; 
    ZVR(:, m+length(MetalRectX))   = [zmin_ zmax_ zmax_ zmin_ zmin_]; 
end 

  
%------------------------------------------------------------------ 
%------------------------------------------------------------------ 
%   Difference coefficients/dielectric boundaries - Matrix DIEL 
%------------------------------------------------------------------ 
sigmae = SIGMA; 
sigmah = 0; 
eps    = eps0*EPS; 
%------------------------------------------------------------------ 
e1     = (1 - dt*sigmae./(2*eps))./(1 + dt*sigmae./(2*eps)); 
e2     = (dt./(d*eps))./(1 + dt*sigmae./(2*eps)); 
e3     = (dt./(d*eps))./(1 + dt*sigmae./(2*eps)); 
h1      = (1 - dt*sigmah/(2*mu0))./(1 + dt*sigmah/(2*mu0)); 
h2      = (dt/(d*mu0))./(1 + dt*sigmah/(2*mu0)); 

  
sigma   = d/(d*d*RG);  
es1     = (1 - dt*sigma/(2*eps0))/(1 + dt*sigma/(2*eps0)); 
es2     = (dt/(d*eps0))/(1 + dt*sigma/(2*eps0)); 
es3     = (dt*sigma/(d*eps0))/(1 + dt*sigma/(2*eps0)); 

  
Ind     = SIGMA(2:Nx,2:Ny,1:Nz); 

  

  

  
%------------------------------------------------------------------ 
%   Main loop - "bootstrapping" (initial conditions are zeros) 
%------------------------------------------------------------------ 
n = 2; hr = []; hrd = []; VLoad = zeros(size(t)); 
tic 
while n < NT+1    
    %------------------------------------------------------------------     
    %   To distinguish between next and past updates (BCs and the 

source)     
    temp1 = Ey(2, :,:);     temp2 = Ez(2, :,:); 
    temp3 = Ey(Nx, :,:);    temp4 = Ez(Nx, :,:);  
    temp5 = Ex(:, 2,:);     temp6 = Ez(:, 2,:); 
    temp7 = Ex(:, Ny,:);    temp8 = Ez(:, Ny,:); 
    temp9 = Ex(:, :,2);     temp10 = Ey(:, :,2); 
    temp11 = Ex(:, :, Nz);  temp12 = Ey(:, :, Nz);    
    temp   = Ez(k_e, m_e, p_e); 
    temp1  = Ez(k_e1, m_e1, p_e1); 
    %------------------------------------------------------------------ 
    % E-update (everywhere except on boundary; (40% of time)) 
    Ex(:,2:Ny,2:Nz) = e1(1:Nx,2:Ny,2:Nz).*Ex(:,2:Ny,2:Nz) + 

e2(1:Nx,2:Ny,2:Nz).*(diff(Hz(:,:,2:Nz),1,2) - diff(Hy(:,2:Ny,:),1,3)); 
    Ey(2:Nx,:,2:Nz) = e1(2:Nx,1:Ny,2:Nz).*Ey(2:Nx,:,2:Nz) + 

e2(2:Nx,1:Ny,2:Nz).*(diff(Hx(2:Nx,:,:),1,3) - diff(Hz(:,:,2:Nz),1,1)); 
    Ez(2:Nx,2:Ny,:) = e1(2:Nx,2:Ny,1:Nz).*Ez(2:Nx,2:Ny,:) + 

e2(2:Nx,2:Ny,1:Nz).*(diff(Hy(:,2:Ny,:),1,1) - diff(Hx(2:Nx,:,:),1,2));        
    %------------------------------------------------------------------ 
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    %------------------------------------------------------------------ 
    m1      = (c0*dt - d)/(c0*dt + d); 
    %   Radiation BCs (Mur 1981, first order)     
    %   Left 
    Ey(1, :,:)   =  temp1  + m1*(Ey(2,  :,:) - Ey(1, :,:)); %  left - 

Ey; 
    Ez(1, :,:)   =  temp2  + m1*(Ez(2,  :,:) - Ez(1, :,:)); %  left - 

Ez; 
    %   Right 
    Ey(Nx+1, :,:)=  temp3 + m1*(Ey(Nx, :,:) - Ey(Nx+1, :,:)); %   right 

- Ey; 
    Ez(Nx+1, :,:)=  temp4 + m1*(Ez(Nx, :,:) - Ez(Nx+1, :,:)); %   right 

- Ez; 
    %   Front 
    Ex(:, 1,:)   =  temp5  + m1*(Ex(:,  2,:) - Ex(:,    1,:)); %   

front - Ex; 
    Ez(:, 1,:)   =  temp6  + m1*(Ez(:,  2,:) - Ez(:,    1,:)); %   

front - Ez; 
    %   Rear 
    Ex(:, Ny+1,:)=  temp7 + m1*(Ex(:, Ny,:) - Ex(:, Ny+1,:)); %   rear 

- Ex; 
    Ez(:, Ny+1,:)=  temp8 + m1*(Ez(:, Ny,:) - Ez(:, Ny+1,:)); %   rear 

- Ey; 
    %   Bottom 
    Ex(:, :,1)   =  temp9  + m1*(Ex(:,  :,2) - Ex(:,    :,1)); %   

bottom - Ex; 
    Ey(:, :,1)   =  temp10  + m1*(Ey(:,  :,2) - Ey(:,    :,1)); %   

bottom - Ey; 
    %   Top 
    Ex(:, :, Nz+1)=  temp11 + m1*(Ex(:, :,Nz) - Ex(:, :, Nz+1)); %    

top - Ex; 
    Ey(:, :, Nz+1)=  temp12 + m1*(Ey(:, :,Nz) - Ey(:, :, Nz+1)); %    

top - Ex;    
    %------------------------------------------------------------------ 
    %   Feed model - TX -lumped port  
    %   Voltage source    
    Ez(k_e, m_e,p_e) =       es1 * temp+... 
                             es2 *(Hy(k_e, m_e, p_e) - Hy(k_e-1, m_e, 

p_e) -... 
                                   Hx(k_e, m_e, p_e) + Hx(k_e, m_e-1, 

p_e))-... 
                             es3 *(VG(n) + VG(n-1))/2; 
    IG(n)         =   (d/RG) * Ez(k_e, m_e, p_e)  + VG(n)/RG ;  

                            
    Ez(MetalRectX, m_e, MetalRectZ)     =  0;           %   top/bottom 

wings 

  
    %------------------------------------------------------------------ 
    %   Feed model - RX -lumped load  
    Ez(k_e1, m_e1, p_e1) =       es1 * temp1+... 
                                  es2 *(Hy(k_e1, m_e1, p_e1) - Hy(k_e1-

1, m_e1, p_e1) -... 
                                     Hx(k_e1, m_e1, p_e1) + Hx(k_e1, 

m_e1-1, p_e1)); 
    IG(n)         =   (d/RG) * Ez(k_e1, m_e1, p_e1);  
    VLoad(n)      = RG*IG(n); 
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    Ez(MetalRectX1, m_e, MetalRectZ)     =  0;           %   top/bottom 

wings 

     

     
    %------------------------------------------------------------------     
    %  H-update (40% of time) 
    Hx =  h1*Hx + h2*diff(Ey,1,3)- h2*diff(Ez,1,2);    
    Hy =  h1*Hy + h2*diff(Ez,1,1)- h2*diff(Ex,1,3);       
    Hz =  h1*Hz + h2*diff(Ex,1,2)- h2*diff(Ey,1,1);       
    %------------------------------------------------------------------ 
    %   Energy(n) = TotalEnergy3D(Ex, Ey, Ez, Hx, Hy, Hz, d, eps, mu);  
    n   = n + 1;       
    %------------------------------------------------------------------  
    %   Scale/Plot fields            
    output              = squeeze(Ez(:, m_e, :));     
    output              = abs(output).^0.20.*sign(output);  
    output(1,1)         =   -bound(n);  
    output(end,end)     =   +bound(n);      

     
    if (~isempty(hr)) delete(hr); end; 
    if (~isempty(hrd)) delete(hrd); end; 

     
    subplot(2,2,[1 3]) 
        imagesc( [x(1) x(end)], [z(1) z(end-1)], output');          %   

main field 
        NN = 3; line(xb(1:NN:end), zb(1:NN:end),'LineStyle','.')    %   

body shape 
        hr  = patch(XVR, ZVR, [0.5 0.5 0.5]);         
        string      =   strcat(num2str(1e9*t(n)), ' ns');   
        axis 'equal';    axis 'tight', set(gca,'YDir','normal');  
        xlabel('x, m'); ylabel('z, m'); 
        title(strcat('FDTD Simulation: Electric field at t=',string), 

'FontSize', 16); 
    subplot(2,2,2) 
        plot(t*1e9, VG,'b', t(1:n)*1e9, VLoad(1:n)*1e3, 'r'); grid on; 
        title ('Received voltage (red, mV) vs. TX voltage (blue, V)', 

'FontSize', 16);  
        xlabel('time, ns'); 
    subplot(2,2,4) 
        plot(t*1e9, VG,'b', t(1:n)*1e9, VLoad(1:n)*1e3, 'r'); grid on; 
        title ('Received voltage (red, mV) vs. TX voltage (blue, V)', 

'FontSize', 16);  
        xlabel('time, ns');     
    drawnow;      
    %------------------------------------------------------------------ 
end 
toc 
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Appendix 2: MATLAB Code for FDTD in YZ Plane 
 
%   3D FDTD - ECE539 
%   First-order ABCs 
tic 
clear all; 
eps0      = 8.85418782e-012;               %  ANSYS HFSS value  
mu0       = 1.25663706e-006;               %  ANSYS HFSS value 
c0        = 1/sqrt(eps0*mu0);              %  ANSYS HFSS value 

  
scrsz               = get(0,'ScreenSize'); 
figure('Position',[0.05*scrsz(3) 0.05*scrsz(4) 0.8*scrsz(3) 

0.8*scrsz(4)]); 
colormap(jet(128));  
load body; 
load structure; 
%------------------------------------------------------------------ 
%------------------------------------------------------------------ 
% 3D geometry definitions and magic time step 
%------------------------------------------------------------------ 
%------------------------------------------------------------------ 
Nx   = length(x) - 1;   %   Nx 
Ny   = length(y) - 1;   %   Ny 
Nz   = length(z) - 1;   %   Ny 
dt   = 1/(c0*sqrt(1/d^2 + 1/d^2 +1/d^2));%   Magic time step 
%------------------------------------------------------------------ 
%------------------------------------------------------------------ 
% Excitation - voltage(s) 
%------------------------------------------------------------------ 
%------------------------------------------------------------------ 
f = 402e6;  
                                    %    (to travel from feed to the 

end) 
T        = 15e-9;                   %    observation time 
%   Number of time steps and time vector 
NT = round(T/dt); t = [0: dt: NT*dt]; 
%   Excitation (generator) voltage 
VG = sin(2*pi*f*t); 
IG = zeros(size(VG)); 
RG = 50; 
bound = 2*ones(1, NT+1);                      %   graphics scale 

  
%------------------------------------------------------------------ 
%------------------------------------------------------------------ 
% Allocate field matrices 
%------------------------------------------------------------------ 
%------------------------------------------------------------------ 
Ex = zeros(Nx  , Ny+1, Nz+1); 
Ey = zeros(Nx+1, Ny  , Nz+1); 
Ez = zeros(Nx+1, Ny+1, Nz  ); 
Hx = zeros(Nx+1, Ny  , Nz  ); 
Hy = zeros(Nx  , Ny+1, Nz  ); 
Hz = zeros(Nx  , Ny  , Nz+1); 
%   To distinguish between next and past updates (for BCs) 
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temp1 = Ey(2, :,:);     temp2 = Ez(2, :,:); 
temp3 = Ey(Nx, :,:);    temp4 = Ez(Nx, :,:);  
temp5 = Ex(:, 2,:);     temp6 = Ez(:, 2,:); 
temp7 = Ex(:, Ny,:);    temp8 = Ez(:, Ny,:); 
temp9 = Ex(:, :,2);     temp10 = Ey(:, :,2); 
temp11 = Ex(:, :, Nz);  temp12 = Ey(:, :, Nz); 

  
%------------------------------------------------------------------ 
% Position of the excitation source 
%------------------------------------------------------------------ 

  
XE = 0.0; YE = -0.2; ZE = -0.2;   %   coordinates 
[dummy, k_e] = min(abs(x-XE));  %   index of the excitation node  (exp. 

with Nx/2)   
[dummy, m_e] = min(abs(y-YE));  %   index of the excitation node  (exp. 

with Nx/2)   
[dummy, p_e] = min(abs(z-ZE));  %   index of the excitation node  (exp. 

with Nx/2)   
%------------------------------------------------------------------ 
% Position of the receiver source 
%------------------------------------------------------------------ 
XR = 0.0; YR = +0.2; ZR = -0.2;   %   coordinates 
[dummy, k_e1] = min(abs(x-XR));  %   index of the excitation node  

(exp. with Nx/2)   
[dummy, m_e1] = min(abs(y-YR));  %   index of the excitation node  

(exp. with Nx/2)   
[dummy, p_e1] = min(abs(z-ZR));  %   index of the excitation node  

(exp. with Nx/2)  
%------------------------------------------------------------------ 

  
%------------------------------------------------------------------ 
%   Antenna metal boundaries 
%------------------------------------------------------------------ 
N = 4;          %   length of one wing (the length is N*d; the dipole 

length is (2*N+1)*d) 
%   TX 
MetalRectX      = m_e*ones(1,2*N);                  %  y-position of 

metal rectangles 
MetalRectZ      = [p_e-N:p_e-1 p_e+1:p_e+N];        %  z-position of 

metal rectangles 
XVR             = [];  
YVR             = [];  
for m = 1:length(MetalRectX) 
    xmin_        = xmin + (MetalRectX(m)-1.5)*d;  
    xmax_        = xmin_ + d; 
    zmin_        = zmin + (MetalRectZ(m)-1.5)*d;  
    zmax_        = zmin_ + d; 
    XVR(:, m)   = [xmin_ xmin_ xmax_ xmax_ xmin_]; 
    ZVR(:, m)   = [zmin_ zmax_ zmax_ zmin_ zmin_]; 
end 
%  RX 
MetalRectX1      = m_e1*ones(1,2*N);              %  y-positon of metal 

rectangles 
MetalRectZ1      = [p_e1-N:p_e1-1 p_e1+1:p_e+N];  %  z-position of 

metal rectangles 
for m = 1:length(MetalRectX1) 
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    xmin_        = xmin + (MetalRectX1(m)-1.5)*d;  
    xmax_        = xmin_ + d; 
    zmin_        = zmin + (MetalRectZ1(m)-1.5)*d;  
    zmax_        = zmin_ + d; 
    XVR(:, m+length(MetalRectX))   = [xmin_ xmin_ xmax_ xmax_ xmin_]; 
    ZVR(:, m+length(MetalRectX))   = [zmin_ zmax_ zmax_ zmin_ zmin_]; 
end 

  
%------------------------------------------------------------------ 
%------------------------------------------------------------------ 
%   Difference coefficients/dielectric boundaries - Matrix DIEL 
%------------------------------------------------------------------ 
sigmae = SIGMA; 
sigmah = 0; 
eps    = eps0*EPS; 
%------------------------------------------------------------------ 
e1     = (1 - dt*sigmae./(2*eps))./(1 + dt*sigmae./(2*eps)); 
e2     = (dt./(d*eps))./(1 + dt*sigmae./(2*eps)); 
e3     = (dt./(d*eps))./(1 + dt*sigmae./(2*eps)); 
h1      = (1 - dt*sigmah/(2*mu0))./(1 + dt*sigmah/(2*mu0)); 
h2      = (dt/(d*mu0))./(1 + dt*sigmah/(2*mu0)); 

  
sigma   = d/(d*d*RG);  
es1     = (1 - dt*sigma/(2*eps0))/(1 + dt*sigma/(2*eps0)); 
es2     = (dt/(d*eps0))/(1 + dt*sigma/(2*eps0)); 
es3     = (dt*sigma/(d*eps0))/(1 + dt*sigma/(2*eps0)); 

  
Ind     = SIGMA(2:Nx,2:Ny,1:Nz); 

  

  

  
%------------------------------------------------------------------ 
%   Main loop - "bootstrapping" (initial conditions are zeros) 
%------------------------------------------------------------------ 
n = 2; hr = []; hrd = []; VLoad = zeros(size(t)); 
tic 
while n < NT+1    
    %------------------------------------------------------------------     
    %   To distinguish between next and past updates (BCs and the 

source)     
    temp1 = Ey(2, :,:);     temp2 = Ez(2, :,:); 
    temp3 = Ey(Nx, :,:);    temp4 = Ez(Nx, :,:);  
    temp5 = Ex(:, 2,:);     temp6 = Ez(:, 2,:); 
    temp7 = Ex(:, Ny,:);    temp8 = Ez(:, Ny,:); 
    temp9 = Ex(:, :,2);     temp10 = Ey(:, :,2); 
    temp11 = Ex(:, :, Nz);  temp12 = Ey(:, :, Nz);    
    temp   = Ez(k_e, m_e, p_e); 
    temp1  = Ez(k_e1, m_e1, p_e1); 
    %------------------------------------------------------------------ 
    % E-update (everywhere except on boundary; (40% of time)) 
    Ex(:,2:Ny,2:Nz) = e1(1:Nx,2:Ny,2:Nz).*Ex(:,2:Ny,2:Nz) + 

e2(1:Nx,2:Ny,2:Nz).*(diff(Hz(:,:,2:Nz),1,2) - diff(Hy(:,2:Ny,:),1,3)); 
    Ey(2:Nx,:,2:Nz) = e1(2:Nx,1:Ny,2:Nz).*Ey(2:Nx,:,2:Nz) + 

e2(2:Nx,1:Ny,2:Nz).*(diff(Hx(2:Nx,:,:),1,3) - diff(Hz(:,:,2:Nz),1,1)); 
    Ez(2:Nx,2:Ny,:) = e1(2:Nx,2:Ny,1:Nz).*Ez(2:Nx,2:Ny,:) + 

e2(2:Nx,2:Ny,1:Nz).*(diff(Hy(:,2:Ny,:),1,1) - diff(Hx(2:Nx,:,:),1,2));        
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    %------------------------------------------------------------------ 
    %------------------------------------------------------------------ 
    m1      = (c0*dt - d)/(c0*dt + d); 
    %   Radiation BCs (Mur 1981, first order)     
    %   Left 
    Ey(1, :,:)   =  temp1  + m1*(Ey(2,  :,:) - Ey(1, :,:)); %  left - 

Ey; 
    Ez(1, :,:)   =  temp2  + m1*(Ez(2,  :,:) - Ez(1, :,:)); %  left - 

Ez; 
    %   Right 
    Ey(Nx+1, :,:)=  temp3 + m1*(Ey(Nx, :,:) - Ey(Nx+1, :,:)); %   right 

- Ey; 
    Ez(Nx+1, :,:)=  temp4 + m1*(Ez(Nx, :,:) - Ez(Nx+1, :,:)); %   right 

- Ez; 
    %   Front 
    Ex(:, 1,:)   =  temp5  + m1*(Ex(:,  2,:) - Ex(:,    1,:)); %   

front - Ex; 
    Ez(:, 1,:)   =  temp6  + m1*(Ez(:,  2,:) - Ez(:,    1,:)); %   

front - Ez; 
    %   Rear 
    Ex(:, Ny+1,:)=  temp7 + m1*(Ex(:, Ny,:) - Ex(:, Ny+1,:)); %   rear 

- Ex; 
    Ez(:, Ny+1,:)=  temp8 + m1*(Ez(:, Ny,:) - Ez(:, Ny+1,:)); %   rear 

- Ey; 
    %   Bottom 
    Ex(:, :,1)   =  temp9  + m1*(Ex(:,  :,2) - Ex(:,    :,1)); %   

bottom - Ex; 
    Ey(:, :,1)   =  temp10  + m1*(Ey(:,  :,2) - Ey(:,    :,1)); %   

bottom - Ey; 
    %   Top 
    Ex(:, :, Nz+1)=  temp11 + m1*(Ex(:, :,Nz) - Ex(:, :, Nz+1)); %    

top - Ex; 
    Ey(:, :, Nz+1)=  temp12 + m1*(Ey(:, :,Nz) - Ey(:, :, Nz+1)); %    

top - Ex;    
    %------------------------------------------------------------------ 
    %   Feed model - TX -lumped port  
    %   Voltage source    
    Ez(k_e, m_e,p_e) =       es1 * temp+... 
                             es2 *(Hy(k_e, m_e, p_e) - Hy(k_e-1, m_e, 

p_e) -... 
                                   Hx(k_e, m_e, p_e) + Hx(k_e, m_e-1, 

p_e))-... 
                             es3 *(VG(n) + VG(n-1))/2; 
    IG(n)         =   (d/RG) * Ez(k_e, m_e, p_e)  + VG(n)/RG ;  

                            
    Ez(MetalRectX, m_e, MetalRectZ)     =  0;           %   top/bottom 

wings 

  
    %------------------------------------------------------------------ 
    %   Feed model - RX -lumped load  
    Ez(k_e1, m_e1, p_e1) =       es1 * temp1+... 
                                  es2 *(Hy(k_e1, m_e1, p_e1) - Hy(k_e1-

1, m_e1, p_e1) -... 
                                     Hx(k_e1, m_e1, p_e1) + Hx(k_e1, 

m_e1-1, p_e1)); 
    IG(n)         =   (d/RG) * Ez(k_e1, m_e1, p_e1);  
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    VLoad(n)      = RG*IG(n); 

                            
    Ez(MetalRectX1, m_e, MetalRectZ)     =  0;           %   top/bottom 

wings 

     
    %------------------------------------------------------------------     
    %  H-update (40% of time) 
    Hx =  h1*Hx + h2*diff(Ey,1,3)- h2*diff(Ez,1,2);    
    Hy =  h1*Hy + h2*diff(Ez,1,1)- h2*diff(Ex,1,3);       
    Hz =  h1*Hz + h2*diff(Ex,1,2)- h2*diff(Ey,1,1);       
    %------------------------------------------------------------------ 
    %   Energy(n) = TotalEnergy3D(Ex, Ey, Ez, Hx, Hy, Hz, d, eps, mu);  
    n   = n + 1;       
    %------------------------------------------------------------------  
    %   Scale/Plot fields            

     
    output              = squeeze(Ez(k_e, :, :));     
    output              = abs(output).^0.20.*sign(output);  
    output(1,1)         =   -bound(n);  
    output(end,end)     =   +bound(n);          

     
    if (~isempty(hr)) delete(hr); end; 
    if (~isempty(hrd)) delete(hrd); end; 

     
    subplot(2,2,[1 3]) 
        imagesc( [x(1) x(end)], [z(1) z(end-1)], output');          %   

main field 
        NN = 3; line(yb(1:NN:end), zb(1:NN:end),'LineStyle','.')    %   

body shape 
        hr  = patch(XVR, ZVR, [0.5 0.5 0.5]);         
        string      =   strcat(num2str(1e9*t(n)), ' ns');   
        axis 'equal';    axis 'tight', set(gca,'YDir','normal');  
        xlabel('x, m'); ylabel('z, m'); 
        title(strcat('FDTD Simulation: Electric field at t=',string), 

'FontSize', 16); 
    subplot(2,2,2) 
        plot(t*1e9, VG,'b', t(1:n)*1e9, VLoad(1:n)*1e3, 'r'); grid on; 
        title ('Received voltage (red, mV) vs. TX voltage (blue, V)', 

'FontSize', 16);  
        xlabel('time, ns'); 
    subplot(2,2,4) 
        plot(t*1e9, VG,'b', t(1:n)*1e9, VLoad(1:n)*1e3, 'r'); grid on; 
        title ('Received voltage (red, mV) vs. TX voltage (blue, V)', 

'FontSize', 16);  
        xlabel('time, ns');     
    drawnow;      
    %------------------------------------------------------------------ 
end 
toc 

 


