Project Number: MQP ETJ PO1

STEPS TO DEVELOP A PLATFORM FOR ROBUST VISION

A Major Qualifying Project
Submitted to the Faculty
of the
WORCESTER POLYTECHNIC INSTITUTE
In partial fulfillment of the requirements for the
Degree of Bachelor of Science
By
Samir Zutshi

4/26/2012

Approved:
Professor Eduardo Torres-Jara, Major Advisor



Abstract

The scope of this work is centered on real time and active systems. An active
system is desired, as a more robust system is needed for robust vision where we can
implement algorithms that are non-dependent on illumination. There are four
degrees of freedom from the optical point of view, zoom, focus, light filtering and
motion. Motion is addressed because it is less dependent on illumination for
applications such as detecting edges. The work presented here is based on using
image subtraction to detect changes in motion between two frames in black and
white. When looped, this effectively presents any motion detected in the viewing
window of the camera. To further apply this concept, the detection is done with the
moving of the camera rather than the detecting motion of the environment. This
effectively creates edges of the area in view and in addition, gives more valuable
information about the subjects in the environment when compared with that of a
canny rendering of the same view. There is concern with the performance of this in
real time and therefore, we are using techniques such as integral imaging for
clustering the edges, as regular clustering can be expensive. Currently there is a
platform with one degree of freedom that is intended to be tested with the
techniques mentioned above. The results are represented as visual comparisons
frame by frame while the camera is given a simple motion path to detect such
changes. The difficulties of real time are what are meant to be highlighted in this

work and the techniques presented will attempt to address some of these difficulties



with the goal to find an alternative and efficient improvement that address these

areas of vision.



Table of Contents

=

List of Figures
2. Introduction and Motivation
a. Active Vision and the MQP
3. Platform specifications
4. Motion Detection
5. Color Detection
a. Masking and Filtering
b. Integral Image
6. Challenges and Discussion

7. Summary



List of Figures

1) Object segmentation issues.

2) Anatomy of a poke.

3) Logitech C920 Camera, 1 DOF base by Nigel Cochran.

4) Frames 1 and 2 demonstrating the motion detection algorithm.
5) The difference between frames 1 and 2 as abs. value.

6) Testimage processed using edge(‘sobel’) algorithm in Matlab.
7) Test area snapshot taken during active motion detection.

8) Canny algorithm and Motion Algorithm snapshot.

9) HSV color cone.

10) Unmodified and Strain of Red masked still.

11) Inefficient clustering pseudo code.

12) Still image values.

13) The values of the pixels summed across and vertically.

14) Integral Image calculation formula.

15) The values of the pixels summed across and vertically.

16) Area to be evaluated through the Integral Image.

17) Still of points being clustered using the Integral Image.

18) Biomemetic Robotic Head by Nigel Cochran.



Introduction and Motivation

The motivation behind active vision comes from understanding some of the
problems of still image processing and trying to improve them. [llumination and
Segmentation are two areas that can always be assessed and improved in computer
vision. In still image processing, an edge detection algorithm for example can yield
different results based on illumination. In turn, illumination can also affect
segmentation of objects detected from set still image. There are also situations
where an image may be difficult to segment based on color and orientation as seen

in the work of Paul Fitzpatrick below(1).

Edges of table and
cube overlap

Color of cube and
table are poorly

Cube has separated

misleading surface
pattern

Figure 1: Object segmentation issues. Source: Fitzpatrick(1)

Where some of these issues may be difficult to segment from a still image, Paul’s
work with motion and edge detection was able to segment the block from the table

as seen in the images below. The technique used was called a “poke”.



e ) e )
: ¥ >4 y 3 g
. 3 o : I 1 =
V. % A B s R i -
i B i . g .
£58 (o - ¢ \
g i ¥ & Y > EN
5 ’ = 3 = \
P < : Rl - 3 | ol 3
it faed » X & X
.-; ! . - A
A N
\ ~ RS N, - g
v/ ‘ . N < & 3
|~ ' r v .

Begin .Find, Sweep Contact! Withdra

Figure 2: Anatomy of a poke. Source: Fitzpatrick (1)

This experiment as well as the motive to be active can be seen as the driving force

behind the motivation of the project.

Active Vision and the MQP

There are four optical degrees of freedom in active vision; Zoom, Focus, Light
Filtering, and Motion. Zoom can be used to obtain detail from an image. Focus can be
used to retrieve different information from different levels of focus. Light Filtering
can handle the intensity of light being used to prime and image for filtering, and
finally motion can be used to detect and gain information from edge detection. This
MQP dealt with motion detection actively and in real time, as well as color detection

and efficient clustering through Integral Image. Real time is emphasized because



though some of the still image operations work well offline, they can be costly in real

time.

Platform specifications

Programming was done on a Linux OS with Ubuntu 11.04 installed. Image capturing
storing and displaying were done using OpenCV. The vision algorithms were all
written in C and C++ from scratch to provide complete customization for the user
and a greater sense of understanding of the algorithms for the project as they were
written. The camera used was a Logitech C920 HD Pro Webcam with a custom build

1 DOF base.

Figure 3: Logitech C920 Camera, 1 DOF base by Nigel Cochran



Motion Detection

The goal was to gather edge information actively through motion. The process
involved subtracting two frames in a loop to consistently represent the changes as
an absolute value displayed in white. As an example, the difference in the images

below is represented as the absolute value in the image that follows the two frames.

Figure 4: Frames 1 and 2 demonstrating the motion detection algorithm.



Figure 5: The difference between frames 1 and 2 as abs. value.

The standard for edge detection with still image processing has been using the
canny algorithm. The goal of this experiment was to use active motion detection to
present results that could be comparable to what the canny algorithm would
achieve on a still image. Below are examples of both the canny and motion algorithm

compared.

Figure 6: Raw test image to process through canny



Figure 8: Test area snapshot taken during active motion detection.



The idea was to make an efficient simple algorithm that would be cost efficient for
use on an embedded platform in real time. Another example of the differences can
be seen below. The canny algorithm and the motion algorithms are very close in
what they represent, but there are subtle facial features and lines in the background

that are more complete with the motion algorithm versus the canny algorithm.

Figure 9: Canny algorithm (left), Motion Algorithm snapshot (right)



Color Detection

Masking and Filtering

The objective behind color detection was to develop and understand filtering,
masking and a use for the Integral Image technique to eventually combine with
motion adding another layer of information to be received from vision. The process
involved first converting an image from RGB to HSV. The figure below explains the

parallel of RGB and HSV.

Saturation

0

Figure 10: HSV color cone.

Once converted to HSV, a color value to be filtered was chosen as in the code snippet

below, where s.val[2] represents H, s.val[0] represents V and s.val[1] represents S.

(s.val[2] >180 && s.val[0] <120 && s.val[1] > 102)

This filtered out a certain range of this color to be then masked by an algorithm that
turned anything that wasn'’t this color, black and the filtered regions white as shown

below.



® Result

Figure 11: Unmodified still (left), Strain of Red masked still (right)

Once filtered, the next step was to use a technique to cluster the points found to add
yet another layer of information to the image. To achieve this, the technique known
as the Integral Image was used. To understand the necessity of its efficiency, a naive
approach was taken first. The pseudo code snipped below gives a brief description

of the initial method used for clustering.

e Func 1:
For loop: y (from 0 -> image height-10 + 1)
For loop: x (from 0 -> image width -10 + 1)
Run helper Func 2-

e Func 2
For loop from 0 to 10 (y's)
For loop from 0 to 10 (x's)
get the value for H Sand V
sumH = sumH + value of H;
etc for S and V}}
avg them here by /100
For loop from 0 to 10 (y's)
For loop from 0 to 10 (x's)
get the Values;
set the values to avg;}

Figure 12: Inefficient clustering pseudo code.

Function 1 involved two for loops that traversed each pixel on the image leaving 10

pixels to the right and on the bottom of the image, as the window being used was a



10x10 window. Next, for each iteration of the first function, a function 2 was run.
Function 2 simply took a window of 10x10 and polled the value of H,S, and V and
summed it with the previous value in the 10x10 window and then finally locally set
an average value. Finally the last part of the code snipped polled the values again
with the same window and set the values to the averaged values. This was just one
method that slowed FPS (seen visually) and therefore seemed to be costly for

processing power in real time.

Integral Image

The integral image provided a simpler way to achieve the same results more
efficiently with a smaller cost. Formally, Integral Image is an algorithm used to
quickly efficiently generate the sum of values in a rectangular subset of a grid

(Source:Wiki). Below is an image that represents a 4x4 window of pixel values.

Image

Figure 13: Still image values. Source(3).



Summed Area Table

Figure 14: The values of the pixels summed across and vertically. Source(3).

Each row is summed across and then each column vertically. Once this process is

complete on the entire viewing space, the area of any region can be easily computed

by the equation below.

i(x}y’)=s(A) +s(D) - s(B) - s(C)

Figure 15: Integral Image calculation formula. Source(3).

The variables A, B, C and D represent the pixels to the upper left of the top left
corner, the pixel above the upper right corner, the pixel to the left of the bottom left
corner, and the pixel in the bottom right corner of the area desired respectively. The

image below shows an example area being calculated using the formula above.



Summed Area Table

>
> / 12 14
3 16 24 32
Al e
13 23 36 46
16 32 48 64
C D

Figure 16: Area to be evaluated through the Integral Image. Source(3).
By the equation, the values to compute the area are as follow, 16+64-32-32 = 16.
Therefore once a summed area table is computed, no more summing is required or
processing of the entire image and thus, the simple area calculation can be done to
quickly compute the area desired to update the image. When performing clustering,
this process can provide efficiency as well as ease when averaging pixels together in

real time.

The masked still from filtering above is represented below as a still taken

while applying this algorithm after masking.



Figure 17: Still of points being clustered using the Integral Image.



Challenges and Discussion

Challenges during this project varied from dealing with just the Linux OS to
working with the many different integration platforms using this OS. The goal of
this project was not only to develop these vision algorithms for efficiency and
robustness but also to give the student a learning experience with the Linux OS as
well as with programming in the environment. Unfortunately the version of Linux
that was chosen was Ubuntu 11.04 that ended up having many dependency issues
along the way. Initially, these issues were hard to fix as when one dependency issue
was fixed, yet another had a problem. Down the line even the Ubuntu software
manager stopped working and posed an uncanny problem to install different

software’s/libraries that were pertinent to advancing in this project.

Initially the goal was to work with V4L (Video for Linux) and its libraries to
program some of this code, but it seemed that the camera’s being used were not
supported by V4L and if they were, there were other compatibility issues that were
unable to be explained. The web offered different angles of information to solve
certain problems, but without a lot of other resource to go to, a lot of these issues
took a decent amount of time to overcome. If they weren’t overcome, the strategy

had to be redrawn and the task moved in another direction.

As the project moved along, Professor Paul Fitzpatrick was introduced and
helped shed light on some of the open CV issues. Once these issues were addressed,

and the compiling flags were found, the algorithms began to take shape. While some



of the techniques had CV libraries already, the algorithms were written without
them but using them as a reference for comparison. The goal of writing every piece
of code was to fully understand the functionality of the process and the code so that

its results could be equally understood.



Summary

In summary, the project was an experience in understanding a new OS and
developing in its environment, as well as working on steps to achieve robust vision.
It spanned from working with motion on a still setting to working with motion
actively, and thus drew areas for comparison to the techniques used in still image
processing today. The overall objective was to learn as much as possible about the
vast area of computer vision and work on adding as many layers of work to gain as
much information as possible. The problem of computer vision is not something to

be solved but to be improved upon as much as possible.

Once motion detection was established, techniques to filter, mask,
cluster and detect color were put in place. These techniques were stepping stones to
be combined in future experiments alongside the motion algorithms to add yet
another layer of detail to be examined in computer vision. Currently the project
strives to compute qualitatively and quantitatively the consistencies in the
techniques presented here using encoders and serial communication. The future can
be seen in embedded applications as well as in instances where all four optical

degrees of freedom can be applied as done in the robotic head below.

Figure18: Biomemetic Robotic Head by Nigel Cochran.



References

[1] Paul Fitzpatrick, "Better Vision through Poking", to Leg Lab group at MIT Al

Lab, June 2002, http://people.csail.mit.edu/paulfitz/presentations.shtml

[2] Wikipedia, Integral Image, www.wikipedia.org

[3] Badgerati, Computer Vision — The Integral Image,

http://computersciencesource.wordpress.com/2010/09/03 /computer-vision-

the-integral-image/

[4] M.Jones & P.Viola, Robust Real-time Object Detection,

http://research.microsoft.com/en-

us/um/people/viola/Pubs/Detect/violaJones IJCV.pdf

[5] Mathworks Documentation,

http: //www.mathworks.com/help /toolbox/images/f8-20792.html




