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Background 

 

 When setting reserves, there are numerous ways and reasonings available to set 

reserves. One method is called the Development Method. Also known as the Chain 

Ladder Method, the Development Method uses past data to forecast future claim costs.  

 Below is an example that will be used to demonstrate how the Development 

Method is used to set reserves. The following table is the cumulative data from past 

years used to forecast future claims starting in 2010.  

 

Cumulative Reported Claims 

 

Figure 1: Actual Data 

 

 

In Figure 1, Column A represents the year that the accident happened, the first 

accident year is the year 2000 and the most recent accident year is 2009 (AY 2009). 
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Each column represents how many months have passed since the start of the accident 

year. Usually, the columns would be time intervals such as 0-12, 12-24, …108-120, but 

we will use 6, 18, …114 since those are the midpoints of each time period (every 6 

months). This reason is because the claims are assumed to come in uniformly for the 

whole year. For example, in 2010, we assume the average accident date is July 1, 

2010.  Therefore, at the end of the first 12-month development period, we assume the 

known claims, are, on average, 6 months old. 

Cells B2 to K11 represent claims for every 12 months per accident year. These 

data points are the dollars of claims that have already come in. The first row 9 (Row 2) 

is already filled in since 10 years have passed since the accident year started in 2000 

and there is only one year of data for 2009 since only one year has passed since 2009. 

In this example, the current year is 2010. For example, Cell F6, $87,000, means that 

there were $87,000 worth of claims at the end of 60 months (5 years) for accidents that 

happened in 2004. Note that in this example, all claims are assumed closed at the end 

of 120 months (10 years).  

 

𝐿𝑖𝑛𝑘 𝑅𝑎𝑡𝑖𝑜 =
𝑐𝐴𝑌: 𝑦

𝑐𝐴𝑌: 𝑥
=

𝑐2000:18

𝑐2000:6
=

$60000

$42000
= 1.43 

Figure 2: Link Ratio Formula and Example 

 

We will use this formula for each of the known data points, 𝑐𝐴𝑌: 𝑥,𝑦 where time y is 

one time period after time x. We will do this for each known data point in the table. 
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Using these fractions, shown below, we are able to determine the rate of which claims 

are being submitted.  

 

 

Figure 3: Link Ratio Table 

 

From Figure 3, the columns per each month are very similar for each year. We can 

average these values together to get a representative link ratio for each development 

period. There are other ways to choose the link ratios. For example, if any of these 

numbers seemed like outliers, they would be omitted. Also, if there were a trend, the link 

ratios could be chosen such that it followed that trend. For example, the more recent 

years were trending such that the link ratios were getting larger or smaller than the rest 

of the policy years for that 12-month period. 
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𝜇𝑥+1 = 𝐿𝑅𝑥:𝑥+1 ⋅ 𝜇𝑥  

Figure 4: Development Method Formula for Unknown Data Points 

 

The average link ratios are used to forecast claim development. In this formula, 

LR is the average link ratio calculated in the Link Ratio Table. We will do this for each 

unknown data point until we reach ultimate for every year.  

 

 

Figure 5: Estimated Claims Development 

 

Using the selected link ratios, Figure 5 shows the estimated claims in the future. 

Each cell is multiplied by the link ratio in the same column to get the next cell in the 

same row or accident year.  
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Figure 6: Completed Table 

 

The completed table is shown in Figure 6. It shows the past data, the forecasted 

claims (highlighted in orange), the selected link ratios (red), and the LDF (Loss 

Development Factor) (blue). The LDF shows how much the current 12-month period 

number of claims would need to be multiplied by to reach ultimate at age 120.  

 

 

Figure 7: Calculating Reserve 
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Now that we have our ultimates, we can calculate how much our reserve needs 

to be. To do this, all we need to do is add up the ultimates(yellow) and subtract them by 

the diagonal, or last known data point for each year(red). Thus, our reserve is $193,393.  

We want a function that would tell us what percentage of the claims are reported 

by time x.  

 

𝐺(𝑥) =
1

𝐿𝐷𝐹𝑥
=

1

𝐿𝐷𝐹60
=

1

1.15
= 86.89% 

Figure 8: G(x) Formula and Example 

 

 

For the Development Method the variable 𝐺(𝑥) changes the Link Ratio to a 

percent of the ultimate claims reported to date. From the example, the table for 𝐺(𝑥) at 

certain points in the development is shown below. 
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Figure 9: LDF and G(x) Table  

 

Another way of setting reserves is by using the Cape Cod Method. Also known 

as the Stanard-Buhlmann Method, the Cape Cod Method uses past premiums to set 

reserves. We will use the same data as the example of the Development Method to 

keep things consistent.  

 

 

Figure 10: Cape Cod Data 
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This example has on level earned premium which is the premium for each year 

changed such that it represents the premium if it were the same as the current year due 

to inflation, changes in claim costs, or other things. This data also has percent reported 

which is not needed in the Development Method. Now that we have the data, we will 

need the Cape Cod Loss Ratio to determine the reserve.  

 

𝐸𝑎𝑟𝑛𝑒𝑑 𝐿𝑜𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 =
∑𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝐶𝑙𝑎𝑖𝑚𝑠

∑𝑂𝑛 𝐿𝑒𝑣𝑒𝑙 𝐸𝑎𝑟𝑛𝑒𝑑 𝑃𝑟𝑒𝑚𝑖𝑢𝑚 ⋅ % 𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑
 

Figure 11: Cape Cod Loss Ratio Formula 

 

We already have the reported claims, on level earned premium, and the percent 

reported so now we just need the sums of each.  

 

∑𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝐶𝑙𝑎𝑖𝑚𝑠 $827,000 

∑𝑂𝑛 𝐿𝑒𝑣𝑒𝑙 𝐸𝑎𝑟𝑛𝑒𝑑 𝑃𝑟𝑒𝑚𝑖𝑢𝑚 ⋅ % 𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑 $1,033,750 

 

Figure 12: Cape Cod ELR Table 

 

Using these calculations, we can obtain the Earned Loss Ratio.  
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𝐸𝑎𝑟𝑛𝑒𝑑 𝐿𝑜𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 =
$827,000

$1,033,750
=  0.8 

Figure 13: Earned Loss Ratio 

 

Using the Earned Loss Ratio, we can now go back to the data and use the ratio 

to estimate our ultimates. For the sake of our example, each on level earned premium 

will have the same loss ratio. The diagonal is the last observed data point for each 

accident year. 

 

𝑈𝑙𝑡𝑖𝑚𝑎𝑡𝑒𝑥  = 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙 + (1 −
1

𝐿𝐷𝐹
) ⋅ 𝑂𝑛 𝐿𝑒𝑣𝑒𝑙 𝐸𝑎𝑟𝑛𝑒𝑑 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑥 ⋅ 𝐸𝑎𝑟𝑛𝑒𝑑 𝐿𝑜𝑠𝑠 𝑅𝑎𝑡𝑖𝑜𝑥 

Figure 14: Calculating Ultimates Using Cape Cod Method 

 

 

Figure 15: Cape Cod Ultimates 
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We can now calculate the reserve by subtracting the ultimate claims by the 

reported claims.  

 

𝑅𝑒𝑠𝑒𝑟𝑣𝑒 = $190,082 

Figure 16: Cape Cod Reserve 

 

 

The Development Method and Cape Cod Method are classic ways to establish 

the reserves. However, there are other problems that arise when using these methods. 

 

1. Interpolation 

One such problem is that it is unknown as to what happens in between each 12-

month period. It is known how many claims are expected to be submitted at the end of 

each 12-month period, but the Development Method nor the Cape Cod Method do not 

show at what rate or when the claims will come in during those 12 months.  

 

2. Variance 

Another shortcoming with the Development Method and Cape Cod Method is 

that they both lack variance estimates and point estimates associated with its 

estimations. If one wants to have a degree of certainty, then they need variance.  
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Process 

 

David R. Clark’s paper, LDF Curve-Fitting and Stochastic Reserving: A Maximum 

Likelihood Approach helps model claim distributions arises. Primarily the incremental 

claim table is much more useful to model curves than the cumulative claim counts. As 

such, below is the incremental table using the data from the background. This table is 

comprised of data representing claims reported for each 12-month period. 

 

Incremental Table 

 

Figure 17: Incremental Table of Data from Background 

 

We will use this data to create a curve to fit some distributions that best represent 

the rate at which claims are developed. The two curves that we will be fitting are the 

Weibull and Loglogistic Distributions. We will use the Weibull and Loglogistic curves as 

examples for this exercise because they are similar to how we expect our claims to 

develop. To fit the data to the two distributions, we will need to use the function G(𝑥), 
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which is the percent of the ultimate claims at time x. As mentioned before,  G(𝑥) =
1

𝐿𝐷𝐹𝑥
. 

However, this does not accurately represent the missing data, this would make the data 

linear, which is unlikely. To better represent the data, we will model G(𝑥) using the 

parameters for the Weibull and Loglogistic curves, (ω , 𝜃) to calculate its value. The 

difference between the two curves is that the Weibull curve has a smaller tail than the 

Loglogistic curve. The equations for the Weibull curve and Loglogistic curve are shown 

below. 

 

𝑊𝑒𝑖𝑏𝑢𝑙𝑙: 𝐺(𝑥|𝜔, 𝜃) = 1 − 𝑒−(𝑥/𝜃)𝜔   

Figure 18: Weibull Distribution Formula 

 

 

𝐿𝑜𝑔𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐: 𝐺(𝑥|𝜔, 𝜃) =
𝑥𝜔  

𝑥𝜔  + 𝜃𝜔
 

Figure 19: Loglogistic Distribution Formula 

  

 Starting with the Weibull Distribution, reasonably approximate 𝜔 and 𝜃 to get a 

cumulative distribution function that will approximate the curve. This data, in Figure 20, 

was changed to the best fitting curve when we found the best fitting 𝜔 and 𝜃 after 

completing the Maximum Loglikelihood Estimation (MLE) in Figure 28.  
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Figure 20: Weibull Distribution truncated 

 

Row 2 is G(𝑥) for the Weibull distribution. Notice that our ultimate, 114, is not 

equal to 1 since the Weibull distribution has infinite domain and is asymptotic to 1. As a 

result, we needed to truncate the distribution so that it reaches 1 during the last time 

interval at 114. To do this we will divide the distribution by the last term(red). We need 

to do this since our ultimate is the total number of claims and there can’t be any claims 

after that, so by truncating the Weibull distribution, it will match our data distribution. The 

new distribution that will be used is in yellow. 

 

𝜇𝐴𝑌:𝑥,𝑦 =  𝑈𝐿𝑇𝐴𝑌 ⋅ [𝐺(𝑦|𝜔, 𝜃) − 𝐺(𝑥|𝜔, 𝜃)] 

Figure 21: Expected Incremental Loss Formula 

 

This formula is the expected incremental loss for each accident year between 

time x and time y based on the ultimate for each accident year and the type of 

distribution. This equation will have n+2 parameters where n is the number of ultimates, 

(one ultimate per accident year) and the 2 are 𝜔 and 𝜃.  
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𝐿𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛:   ∑𝑐𝐴𝑌:𝑥,𝑦 ⋅ ln(𝜇𝐴𝑌:𝑥,𝑦) − 𝜇𝐴𝑌:𝑥,𝑦 

Figure 22: Loglikelihood Function 

See Appendix 1 for where this came from 

 

This is the Loglikelihood Function that we will use to best estimate G(𝑥).  𝑐𝐴𝑌:𝑥,𝑦 is 

the actual incremental data that we have from Figure 17: Incremental Table and 𝜇𝐴𝑌:𝑥,𝑦 is the 

expected incremental data. We will use this term to best estimate 𝜔 and 𝜃 that best fits 

the data. Each incremental claim is assumed to follow an overdispersed poisson 

distribution which is why we use Appendix 1 for the Loglikelihood Function. 

 

  

Figure 23: Obtaining Expected Incremental Loss using Weibull 

 

When calculating the formula in Figure 22: Loglikelihood , we need to first obtain the 

data in the correct form, starting with 𝜇𝐴𝑌:𝑥,𝑦, from Figure 21. In this table, we calculate 
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[𝐺(𝑦|𝜔, 𝜃) − 𝐺(𝑥|𝜔, 𝜃)], where 𝑦 is any time period after x. Thus, why it is 𝐺(𝑥) − 𝐺(𝑥 −

1) resulting in incremental data. Using the Weibull distribution for the function 𝐺(𝑥), we 

multiplied the ultimate of each accident year by the Weibull distribution to get 𝜇𝐴𝑌:𝑥,𝑦. 

 

 

Figure 24: Natural Log of Expected Incremental Claims 

 

After obtaining 𝜇𝐴𝑌:𝑥,𝑦 from the Figure 23, we can proceed to the next step in 

getting the Figure 22: Loglikelihood Function.  In this step, we took the natural log of each 

𝜇𝐴𝑌:𝑥,𝑦 which is the second term of the Loglikelihood. 
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Figure 25: Actual Data multiplied by Natural Log of Expected Incremental Claims 

 

This next step is where we multiplied c, our actual data for known incremental 

claims, by Figure 24: Natural Log of Expected Incremental Claims. This will complete the first two 

parts of the Loglikelihood Function, which was 𝑐𝐴𝑌:𝑥,𝑦 ⋅ ln(𝜇𝐴𝑌:𝑥,𝑦) . Now, we just need to 

subtract 𝜇𝐴𝑌:𝑥,𝑦. 

 

 

Figure 26: Loglikelihood Estimate Table 
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In this step, we subtract 𝜇𝐴𝑌:𝑥,𝑦 from Figure 25. Putting all the previous steps 

together, we get the Loglikelihood Estimate Table, which is the Loglikelihood Function in 

tabular format. The final step is to take the sum of this table.  

 

𝑀𝐿𝐸 𝑡𝑒𝑟𝑚 = ∑𝑐𝐴𝑌:𝑥,𝑦 ⋅ ln(𝜇𝐴𝑌:𝑥,𝑦) − 𝜇𝐴𝑌:𝑥,𝑦 

 

𝑀𝐿𝐸 = 1690.45 

Figure 27: The Maximum Loglikelihood Estimate Development Weibull 

 

 This completes the formula for Figure 22: Loglikelihood Function and we are now able 

to use this term to find a 𝜃 and 𝜔  for the Weibull Distribution that will match our 

incremental data (Figure 17). 
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Figure 28: Using Solver to find the best 𝜔 and 𝜃 

  

When using Solver in Microsoft Excel, we first set an equation for G(𝜃, 𝜔), which 

is the Loglikelihood Function in Figure 22: Loglikelihood . This will be our objective in Solver. 

Next, we need to choose the variables in order to maximize the objective. These 

parameters (n+2) for the Weibull Distribution were the number of ultimate’s (n), 𝜔 and 𝜃. 

As expected from Figure 27: The Maximum Loglikelihood Estimate .  

 

𝜔 0.75 

𝜃 2.98 

 

Figure 29: 𝜔 and 𝜃 using the Weibull Distribution 
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For the Loglogistic Distribution, we made a video going over the same steps as 

the Weibull Distribution in Excel. The Loglogistic Distribution has the same parameters 

as the Weibull Distribution, number of ultimate’s (n), 𝜔 and 𝜃. 

 

Development Method Loglogistic Distribution Video 

Figure 30: Loglogistic Method Video 

 

To recap, using the equation from Figure 19: Loglogistic , we assumed that we knew 

the 𝜔 and 𝜃. We were then able to get the Loglogistic distribution from 

 𝑥 = [0: 120] as shown in Figure 31, with the top distribution being the truncated 

Loglogistic distribution such that the curve reaches 1 at 𝑥 = 10.  

 

 

Figure 31: Loglogistic Distribution Development from X= [0,10] 

 

We used this data to get the incremental table for 𝜇𝐴𝑌:𝑥,𝑦. This table is shown 

below in Figure 32: Expected Incremental Loss using Development Loglogistic.  

 

https://youtu.be/A2MbhCqXy4s
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Figure 32: Expected Incremental Loss using Development Loglogistic 

 

 From this table we are able to do the same steps to get the MLE for the 

Loglogistic Distribution as we did to get the MLE using the Weibull Distribution. As 

before this value is the same as when using the solver function in Excel. This value was 

1689.368. The solver function did not show up in the recording it is shown below in 

Figure 34: Solver Function for Loglogistic. As before, the solver function maximizes G(𝜔, 𝜃) by 

using the ultimate claims in column M and changing (𝜔, 𝜃) in B34 and B35 which are 𝜔 

and 𝜃 respectively. These cells were highlighted in the video. The final values of 𝜔 and 

𝜃 are shown below. 

 

𝜔 0.8568 

𝜃 2.881 

 

Figure 33: 𝜔 𝑎𝑛𝑑 𝜃 using the Loglogistic Distribution 
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 Below in Figure 34: Solver Function for Loglogistic shows the solver function used to obtain 

the Maximum Loglikelihood Estimate by changing the values of 𝜔 and 𝜃.  

 

 

Figure 34: Solver Function for Loglogistic 
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 We will now do these same steps for the Cape Cod Method using the Loglogistic 

Distribution.  

 

 

Figure 35: Loglogistic Distribution Truncated Cape Cod from x= [0,10] 

 

 Using this distribution, we can obtain 𝜇𝐴𝑌:𝑥,𝑦 our expected incremental data.  

 

 

Figure 36: Expected Incremental Loss using Cape Cod Loglogistic 

 

 Following the same steps as the previous two distributions using the 

Development Method, we get the Loglikelihood Estimate. 
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𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐿𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 1684.63 

Figure 37: Maximum Loglikelihood Estimate Cape Cod Loglogistic 

 

 Using the Solver Function we can change the parameters, Earned Loss Ratio, 𝜔, 

and 𝜃 to maximize the loglikelihood estimate.  

 

ELR 0.80 

𝜔 0.71 

𝜃 7.35 

 

Figure 38: ELR, 𝜔 and 𝜃 using Cape Cod Loglogistic 

 

 Now that we have our parameters to fit our models, we need to calculate the 

variance. 
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Process Variance 

 

Our next step is to find the variance occurring around the incremental data. 

When doing so, we will be calculating process variance and parameter variance. The 

first type, process variance, is the variance around the expectation of 𝐺(𝑥), the 

expected loss emergence pattern. This is the random amount for each of the expected 

claims that come in for each time period and the ultimates. This is denoted by the 

following formula. 

 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑀𝑒𝑎𝑛
= 𝜎2 =

1

𝑛 − 𝑝
⋅ 𝛴𝐴𝑌

𝑛
(
(𝑐𝐴𝑌 − 𝜇𝐴𝑌

)
2

𝜇𝐴𝑌

) 

Figure 39: Variance scale factor 

 

In this formula, 𝜎2 is a scale factor (not actual variance). The actual incremental 

loss emergence is 𝑐𝐴𝑌, and the expected incremental loss emergence is 𝜇𝐴𝑌. This 

formula is the variance around each of the expected values around the distribution 

calculated in the Process section.  
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n 55 

Number of Ultimates 10 

𝜃 1 

𝜔 1 

p= (Ultimates+𝜔+𝜃)  12 

n – p  43 

 

Figure 40: n is number data points, p is the number of parameters 

 

This table is the number of variables we have for the Weibull and Loglogistic 

Distributions using the Development Method when calculating the process variance. 

From the previous formula, 𝑛 is the number of unknown data points and 𝑝 is the number 

of parameters. The process variance for the reserve is calculated differently than the 

data points are. 

 

𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  𝜎2 ⋅ 𝑅𝑒𝑠𝑒𝑟𝑣𝑒 

Figure 41: Process Variance of the Reserve 

 

In this formula, the process variance of the reserve is calculated using 𝜎2 from 

Figure 39:  where 𝜇𝐴𝑌:𝑥,𝑦 is the expected incremental loss for that specific year. As done 

for the reserves, 𝜎2 could be multiplied by the entire table so that the process variance 

for each estimated point is that point of data multiplied by 𝜎2. 
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𝜎2 = 0.45 

Figure 42: Scale Factor for Variance Development Loglogistic  

 

 

 We found 𝜎2 and now we will need to find what the reserve is.  

 

 

Figure 43: Development Loglogistic Total Reserve Calculation in Thousands 

 

Total Reserve = $219,536 

Figure 44: Total Reserve Development Loglogistic  

 

 

 From the figure above, we found the expected incremental loss to be 219.54. So 

now we just need to multiply 𝜎2 and the sum of the future reserves together to get the 

process variance. 

 

Process Variance =  𝜎2 ⋅ Reserve = 0.45 ⋅ $219,536 = $99,367 

Figure 45: Process Variance of the Reserve Loglogistic Development 



30 
 

The process variance for the Cape Cod Method is calculated the same way as the 

Development Method except for the parameters.  

 

n 55 

ELR 1 

𝜃 1 

𝜔 1 

p = (ELR, 𝜔, 𝜃) 3 

n – p 52 

 

 Calculating the process variance for the Cape Cod Method using the Loglogistic 

Distribution will follow the same steps.  

 

𝜎2 = 0.50 

Figure 46: Process Variance Scale Factor Cape Cod Loglogistic 

 

 The next step is to find the reserve.  
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Figure 47: Cape Cod Loglogistic Total Reserve Calculation in Thousands 

 

 

𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑠𝑒𝑟𝑣𝑒 = $255,818 

Figure 48: Total Reserve Cape Cod Loglogistic 

 

Process Variance =  𝜎2 ⋅ Reserve = 0.50 ⋅ $255,818 = $129,035  

Figure 49: Process Variance of the Reserve Loglogistic Cape Cod 
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Parameter Variance 

 

The next step is to account for the variance of the parameters themselves. We 

call the variance of the parameters, parameter variance. For the Development Method, 

if we were to the process variance for the Development Method, we would need to find 

the covariance matrix for 𝜃, 𝜔, and the 10 ultimates which would result in a 12x12 

covariance matrix. After we find the parameter variance, we will add the parameter 

variance to the process variance to get the total variance. This process is more 

complicated as it will be an information matrix and 𝜎.  

 

𝐼 =  

[
 
 
 
 
 
 
 
 
 
 
 
 ∑

𝜕2𝑙1,𝑡

𝜕𝑈𝐿𝑇1
2 0 ⋯ 0 ∑

𝜕2𝑙1,𝑡

𝜕𝑈𝐿𝑇1𝜕𝜔
∑

𝜕2𝑙1,𝑡

𝜕𝑈𝐿𝑇1𝜕𝜃

0 ∑
𝜕2𝑙2,𝑡

𝜕𝑈𝐿𝑇2
2 … 0 ∑

𝜕2𝑙2,𝑡

𝜕𝑈𝐿𝑇2𝜕𝜔
∑

𝜕2𝑙2,𝑡

𝜕𝑈𝐿𝑇2𝜕𝜃
⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 … ∑
𝜕2𝑙𝑛,𝑡

𝜕𝑈𝐿𝑇𝑛
2

∑
𝜕2𝑙𝑛,𝑡

𝜕𝑈𝐿𝑇𝑛𝜕𝜔
∑

𝜕2𝑙𝑛,𝑡

𝜕𝑈𝐿𝑇𝑛𝜕𝜃

∑
𝜕2𝑙1,𝑡

𝜕𝜔𝜕𝑈𝐿𝑇1
∑

𝜕2𝑙2,𝑡

𝜕𝜔𝜕𝑈𝐿𝑇2
… ∑

𝜕2𝑙𝑛,𝑡

𝜕𝜔𝜕𝑈𝐿𝑇𝑛
∑  

𝜕2𝑙𝑦,𝑡

𝜕𝜔2
∑

𝜕2𝑙𝑦,𝑡

𝜕𝜔𝜕𝜃

∑
𝜕2𝑙1,𝑡

𝜕𝜃𝜕𝑈𝐿𝑇1
∑

𝜕2𝑙2,𝑡

𝜕𝜃𝜕𝑈𝐿𝑇2
… ∑

𝜕2𝑙𝑛,𝑡

𝜕𝜃𝜕𝑈𝐿𝑇𝑛
∑  

𝜕2𝑙𝑦,𝑡

𝜕𝜃𝜔
∑

𝜕2𝑙𝑦,𝑡

𝜕𝜃2 ]
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 50: LDF Method Information Matrix 

 

The information matrix uses second order partial derivatives of the twelve 

parameters based on the distribution. We will do the parameter variance based on the 
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Loglogistic Distribution. We will then use the inverse of the Information Matrix and the 

scale factor, 𝜎2 to get the covariance matrix.  

 

  Σ =  [

𝑉𝐴𝑅(𝑈𝐿𝑇𝑖) 𝐶𝑂𝑉(𝑈𝐿𝑇𝑖, 𝜔) 𝐶𝑂𝑉(𝑈𝐿𝑇𝑖, 𝜃)

𝐶𝑂𝑉(𝜔, 𝑈𝐿𝑇𝑖) 𝑉𝑎𝑟(𝜔) 𝐶𝑂𝑉(𝜔, 𝜃)

𝐶𝑂𝑉(𝜃, 𝑈𝐿𝑇𝑖) 𝐶𝑂𝑉(𝜃,𝜔) 𝑉𝐴𝑅(𝜃)
] ≥  −𝜎2 ⋅ 𝐼−1 

Figure 51: LDF Covariance Matrix 

 

After finding the parameter variance for each ultimate, we will then find the 

parameter variance of the total reserve.  The parameter variance of the reserve, R, uses 

the covariance matrix, ∑.  

 

 𝑉𝑎𝑟(𝐸[𝑅]) = (𝜕𝑅)′ ⋅ ∑ ⋅ (𝜕𝑅) 

Figure 52: Parameter Variance of the Reserve 

 

In order to find the Parameter Variance of the reserve, we need to find the partial 

derivative of the reserve. 

  

𝜕𝑅 =  〈{
𝜕𝑅

𝜕𝑈𝐿𝑇𝑖

}
𝑖

𝑛

,
𝜕𝑅

𝜕𝜃
,
𝜕𝑅

𝜕𝜔
〉 

Figure 53: Partial Derivative of the Reserve with Respect to the Parameters 
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Now we need to find the partial derivatives of the reserve with respect to each of 

the parameters.  

 

𝜕𝑅

𝜕𝑈𝐿𝑇𝑖 
= ∑(𝐺(𝑦𝑖) − (𝐺(𝑥𝑖)) 

Figure 54: Partial of the Reserve with Respect to each Ultimate 

 

𝜕𝑅

𝜕𝜃
= ∑𝑈𝐿𝑇𝑖 ⋅ (

𝜕𝐺(𝑦𝑖)

𝜕𝜃
−

𝜕𝐺(𝑥𝑖)

𝜕𝜃
) 

Figure 55: Partial of the Reserve with Respect to 𝜃 

 

𝜕𝑅

𝜕𝜔
= ∑ 𝑈𝐿𝑇𝑖 ⋅ (

𝜕𝐺(𝑦𝑖)

𝜕𝜔
−

𝜕𝐺(𝑥𝑖)

𝜕𝜔
) 

Figure 56: Partial of the Reserve with Respect to 𝜔 

 

The Cape Cod Method has three parameters calculated in the parameter 

variance. These three parameters are the Earned Loss Ratio, 𝜃 and 𝜔. The Cape Cod 

parameter variance doesn’t impact the reserve, it only impacts the loss emergence. The 

Cape Cod parameter variance uses a similar Covariance Matrix.  
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Σ =  [
𝑉𝐴𝑅(𝐸𝐿𝑅) 𝐶𝑂𝑉(𝐸𝐿𝑅,𝜔) 𝐶𝑂𝑉(𝐸𝐿𝑅, 𝜃)

𝐶𝑂𝑉(𝜔,𝐸𝐿𝑅) 𝑉𝑎𝑟(𝜔) 𝐶𝑂𝑉(𝜔, 𝜃)

𝐶𝑂𝑉(𝜃, 𝐸𝐿𝑅) 𝐶𝑂𝑉(𝜃, 𝜔) 𝑉𝐴𝑅(𝜃)
] ≥  −𝜎2 ⋅ 𝐼−1 

Figure 57: Cape Cod Covariance Matrix 

 

The Cape Cod Information Matrix is a lot simpler than the Development Method 

Information Matrix. As opposed to a 12x12 matrix, the Cape Cod Information Matrix is a 

3x3.  

 

𝐼 =  

[
 
 
 
 
 
 
 
 ∑

𝜕 
2𝑙𝑦,𝑡

𝜕𝐸𝐿𝑅2
 

y,t

 ∑
𝜕 

2𝑙𝑦,𝑡

𝜕𝐸𝐿𝑅𝜕𝜔
 

y,t

∑
𝜕 

2𝑙𝑦,𝑡

𝜕𝐸𝐿𝑅𝜕𝜃
 

y,t

∑
𝜕 

2𝑙𝑦,𝑡

𝜕𝜔𝜕𝐸𝐿𝑅
 

y,t

∑
𝜕 

2𝑙𝑦,𝑡

𝜕𝜔2
 

y,t

∑
𝜕 

2𝑙𝑦,𝑡

𝜕𝜔𝜕𝜃
 

y,t

∑
𝜕 

2𝑙𝑦,𝑡

𝜕𝜃𝜕𝐸𝐿𝑅
 

y,t

∑
𝜕 

2𝑙𝑦,𝑡

𝜕𝜃𝜕𝜔
 

y,t

∑
𝜕 

2𝑙𝑦,𝑡

𝜕𝜃2
 

y,t ]
 
 
 
 
 
 
 
 

 

Figure 58: Cape Cod Information Matrix 

 

The information matrix uses partial derivatives of the three parameters based on 

the distribution. We will do the parameter variance of Cape Cod based on the 

Loglogistic Distribution. We will then use this to get the covariance matrix.  

Since there are second degree partial derivatives, there are specific formulas 

needed for each part of the Information Matrix. Using Figure 58 and Appendix 2, we get 

the following Information Matrix.  
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𝐼 = [
−1292.19 −99.53 −44.00
−99.53 −1734.68 10.46
−44.00 10.46 −23.59

] 

Figure 59: Cape Cod Information Matrix Completed 

 

After calculating the Information Matrix, we need to take the inverse of it for the 

Covariance Matrix.  

 

𝐼−1 = [
−7.31 ⋅ 10−4 5.03 ⋅ 10−5 1.39 ⋅ 10−3

3.38 ⋅ 10−5 −5.80 ⋅ 10−4 −3.20 ⋅ 10−4

−1.35 ⋅ 10−3 −1.63 ⋅ 10−4 −4.00 ⋅ 10−2

] 

Figure 60: Inverse Information Matrix Cape Cod 

 

Now that we have the Inverse Information Matrix, we multiply it by the −𝜎2 

calculated from Figure 46: Process Variance Scale Factor Cape Cod Loglogistic  

 

Σ ≥  [
3.70 ⋅ 10−4 −2.55 ⋅ 10−5 −7.01 ⋅ 10−4

−1.71 ⋅ 10−5 2.94 ⋅ 10−4 1.62 ⋅ 10−4

6.83 ⋅ 10−4 8.28 ⋅ 10−5 2.02 ⋅ 10−2

] = −𝜎2 ⋅ 𝐼−1 

Figure 61: Cape Cod Covariance Matrix Calculation 

  



37 
 

In our example, the parameter variance is very low, close to 0 for all parameters. 

In order to get the parameter variance, we only need to take the ELR variance as that is 

the only one that affects the reserve.  

 

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝑉𝐴𝑅(𝐸𝐿𝑅) ⋅ 𝑃𝑟𝑒𝑚𝑖𝑢𝑚2 = (3.70 ⋅ 10−4) ⋅ $1,308,1822 

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = $633,226,958 

Figure 62: Parameter Variance of the Reserve  

 

This uses the same reserve calculation from Figure 48: Total Reserve Cape Cod 

Loglogistic and the first term from Figure 61: Cape Cod Covariance Matrix Calculation.  

 

 

 

 

 

 

 

 

 

 



38 
 

Total Variance 

 

The total variance is the combined variance of the process variance and the 

parameter variance.  The Figure 49: Process Variance of the Reserve Loglogistic Cape Codand 

Figure 62: Parameter Variance of the Reserve are needed to obtain the final variance 

 

𝑇𝑜𝑡𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

Figure 63: Total Variance Formula 

 

𝑇𝑜𝑡𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = $129,035 + $633,226,958 = $633,355,993 

Figure 64: Total Variance Cape Cod Loglogistic 

 

The total variance of the Cape Cod Method using the Loglogistic Distribution to 

forecast future data is $129,129.  Almost all the variance comes from the process 

variance which is half of the total reserve.   

 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = $25, 167 

Figure 65: Standard Deviation Cape Cod Loglogistic 

 

The total standard deviation is 9.84% of the total estimated reserve. 
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Conclusion 

 

We were able to model both the reserve using both the Development Method 

and the Cape Cod Method using the Weibull and Loglogistic Distributions. Using these 

distributions, we were able to obtain an 𝜔 and 𝜃 that would more accurately represent 

the rate at which claims will emerge. We then found the process variance for both the 

Development Method and the Cape Cod Method modeled from the Loglogistic 

Distribution in which the Development Method had a lower process variance than the 

Cape Cod Method. Finally, we calculated the parameter variance of the model that was 

formed from the Cape Cod Method and Loglogistic Distribution. We found that the total 

standard deviation of the model used by the Cape Cod Method and Loglogistic 

Distribution was less than 10% of the estimated reserve. 
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 Appendix 1 

 

It is unlikely that we will find parameters for our expected distribution that 

perfectly matches our given data at each point in the development. To account for this 

we need to allow dispersion between what we expect at each point in the development 

for incremental loss and the actual incremental loss. However how we weigh the error 

between our expectation and the actual data will change where our expected 

distribution is most accurate. For example we could decide a distribution for u based on 

minimizing the total error defined ∑ |𝑐𝑖 − 𝜇𝑖|
𝑛
𝑖=1  or the relative error defined ∑

|𝑐𝑖−𝜇𝑖|

𝑐𝑖

𝑛
𝑖=1 , 

but what we are actually trying to capture is a distribution where of our actual 

incremental loss data points occur in other words an estimation that maximizes the joint 

likelihood or MLE. The joint likelihood is the likelihood that n multiple events all occur 

and assuming they are independent then 𝑝(⋂ 𝐴𝑖) = ∏ 𝑝(𝐴𝑖
𝑛
𝑖=1

𝑛
𝑖=1 ) So we want to find 

𝜔, 𝜃 and the ELR/Ultimates. We don’t want to bias our distribution to the beginning of 

the distribution or to the end so want to assume that the randomness of incremental 

claim count loss is proportional to the claim count. Thus, we would want to model 

incremental claims in over-dispersed Poisson of 
𝑒−𝜆𝜆𝑥

𝑥!
 as variance is equal to and thus 

proportional to the mean. Taking the maximum of the logarithm of this joint density gives 

us the most likely parameters.  
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Appendix 2 

Derivatives of the Loglikelihood Function 

𝜕2𝑙

𝜕𝐸𝐿𝑅2
= ∑(

−ci,t

𝐸𝐿𝑅2
) 

𝜕2𝑙

𝜕𝐸𝐿𝑅𝜕𝜔
= −∑ −𝑃𝑖 ⋅ [

∂G(x𝑡)

𝜕𝜔
−

∂G(x𝑡−1)

𝜕𝜔
 ] 

𝜕2𝑙

𝜕𝐸𝐿𝑅𝜕𝜃
= −∑−𝑃𝑖 ⋅ [

∂G(x𝑡)

𝜕𝜃
−

∂G(x𝑡−1)

𝜕𝜃
 ] 

𝜕2𝑙

𝜕𝜔2
= ∑{[

−ci,t

(𝐺(𝑥𝑡) − 𝐺(𝑥𝑡−1))
2] ⋅ [

∂G(x𝑡)

𝜕𝜔
−

∂G(x𝑡−1)

𝜕𝜔
 ]

2

+ [
ci,t

𝐺(𝑥𝑡) − 𝐺(𝑥𝑡−1)
− 𝐸𝐿𝑅 ⋅ 𝑃𝑖]

⋅  [
∂2G(x𝑡)

𝜕𝜔2
−

∂2G(x𝑡−1)

𝜕𝜔2
 ]}  

 

𝜕2𝑙

𝜕𝜔𝜕𝜃
= ∑{[

−ci,t

(𝐺(𝑥𝑡) − 𝐺(𝑥𝑡−1))
2] ⋅ [

∂G(x𝑡)

𝜕𝜔
−

∂G(x𝑡−1)

𝜕𝜔
 ] ⋅ [

∂G(x𝑡)

𝜕𝜃
−

∂G(x𝑡−1)

𝜕𝜃
 ]

+ [
𝑐

𝐺(𝑥𝑡) − 𝐺(𝑥𝑡−1)
− 𝐸𝐿𝑅 ⋅ 𝑃𝑖] ⋅  [

∂2G(x𝑡)

𝜕𝜔𝜃
−

∂2G(x𝑡−1)

𝜕𝜔𝜕𝜃
 ]}  

 

𝜕2𝑙

𝜕𝜃2
= ∑{[

−ci,t

(𝐺(𝑥𝑡) − 𝐺(𝑥𝑡−1))
2] ⋅ [

∂G(x𝑡)

𝜕𝜃
−

∂G(x𝑡−1)

𝜕𝜃
 ]

2

+ [
ci,t

𝐺(𝑥𝑡) − 𝐺(𝑥𝑡−1)
− 𝐸𝐿𝑅 ⋅ 𝑃𝑖]

⋅  [
∂2G(x𝑡)

𝜕 𝜃2 
−

∂2G(x𝑡−1)

𝜕𝜃2
 ]}  
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Loglogistic Distribution 

The following formulas are used in the Derivatives of the Loglikelihood Function 

𝐺(𝑥) =
𝑥𝜔

𝑥𝜔 + 𝜃𝜔
= 1 − (

1

1 + (
𝑥
𝜃
)
𝜔) 

𝜕𝐺(𝑥)

𝜕𝜔
= (

𝑥𝜔

𝑥𝜔 + 𝜃𝜔
) ⋅ (

𝜃𝜔

𝑥𝜔 + 𝜃𝜔
) ⋅ ln (

𝑥

𝜃
) 

𝜕𝐺(𝑥)

𝜕𝜃
= (

𝑥𝜔

𝑥𝜔 + 𝜃𝜔
) ⋅ (

𝜃𝜔

𝑥𝜔 + 𝜃𝜔
) ⋅ (

−𝜔

𝜃
) 

 

𝜕2𝐺(𝑥)

𝜕𝜔2
= (

𝑥𝜔

𝑥𝜔 + 𝜃𝜔
) ⋅ (

𝜃𝜔

𝑥𝜔 + 𝜃𝜔
) ⋅ ln (

𝑥

𝜃
)
2

⋅ [1 − 2 ⋅ (
𝑥𝜔

𝑥𝜔 + 𝜃𝜔
)] 

 

𝜕2𝐺(𝑥)

𝜕𝜔𝜕𝜃
= (

𝑥𝜔

𝑥𝜔 + 𝜃𝜔
) ⋅ (

𝜃𝜔

𝑥𝜔 + 𝜃𝜔
) ⋅ (

−1

𝜃
) ⋅ {1 + 𝜔 ⋅ ln (

𝑥

𝜃
) ⋅ [1 − 2 ⋅ (

𝑥𝜔

𝑥𝜔 + 𝜃𝜔
)]} 

 

𝜕2𝐺(𝑥)

𝜕𝜃2
= (

𝑥𝜔

𝑥𝜔 + 𝜃𝜔
) ⋅ (

𝜃𝜔

𝑥𝜔 + 𝜃𝜔
) ⋅ (

𝜔

𝜃2
) ⋅ {1 + 𝜔 ⋅ [1 − 2 ⋅ (

𝑥𝜔

𝑥𝜔 + 𝜃𝜔
)]} 


