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Abstract

This thesis aims to explore methods of near-optimal stochastic planning given
high-level formal specifications. High-level formal specifications specify the prop-
erties that system behaviors should satisfy; optimal stochastic planning aims to
maximize the system performance given criteria. With high-level formal specifica-
tions, stochastic optimal planning desires to synthesize a control policy to maximize
the probability of system behavior satisfying these specifications. We commonly
encounter such problems in defense operations, robotics, and other cyber-physical
systems. However, algorithms requiring full system model knowledge or not scaling
well cannot achieve optimal performance due to the unavailability or intractable
size of system models. This thesis presents approximate algorithms that achieve
near-optimal performance. The main contributions of this thesis are listed as follows.
1) We translate system specifications in probabilistic computation tree logic formulas
to hard constraints and present a probabilistically complete approximate dynamic
programming algorithm for near-optimal planning with multiple objectives; 2) We
present a comprehensive optimal planning framework that leverages the topological
information to accelerate policy learning; 3) To tackle continuous-state dynamic
systems, we offer a variant of the actor-critic algorithm inspired by the proposed
approximate dynamic programming algorithm; 4) We extend our framework into a
two-player setting, where the agent exploits asymmetric information between players
to synthesize a policy that outmaneuvers the opponent.

This thesis first develops an approximate dynamic programming method given
soft performance criteria and hard constraints specified in a class of probabilistic
computation tree logic formulas for stochastic systems. We model a stochastic system
as a Markov decision process. Our approach consists of two steps: First, with suitably
defined cost functions, we translate a class of probabilistic computation tree logic
formulas into chance constraints enforced during planning. Second, we devise a prob-
abilistically complete sampling-based method by integrating randomized optimization
and dynamic programming with the softmax Bellman operator. The optimization
iteratively solves for an upper bound while satisfying translated constraints. By
adopting an on-policy sampling fashion, we achieve a tight error bound between the
upper bound given by the approximation and the ground truth of the value function.

In the case of the Markov decision process with a high-level formal specification
expressed by linear temporal logic formulas, probabilistic optimal planning remains
challenging because of sparse rewards. This thesis then presents a policy learning

framework guided by topological information encoded in formal specifications to



il

address this issue. First, we follow the standard procedure to translate the specification
into a corresponding deterministic finite-state automaton. Then, we take the product
between the Markov decision process and deterministic finite-state automaton to
construct a product system. Our algorithm finds topological order that describes the
structural information about deterministic finite-state automaton. This topological
order allows us to propose a framework for updating values with optimality guarantees
and accelerating policy learning. Further, this thesis utilizes our probabilistically
complete approximate dynamic programming algorithm to efficiently learn a near-
optimal value function and the associated policy.

Further, this thesis investigates the formal policy synthesis of continuous-state
stochastic systems given high-level specifications in linear temporal logic. Since the
system has continuous-state space, the product system has a hybrid product state
space that worsens the reward sparsity issue. We present an actor-critic reinforcement
learning algorithm where topological order is applicable. This algorithm employs
advanced mathematical techniques, enjoying the property of hyperparameter self-
tuning. We prove the optimality and convergence of our actor-critic algorithm. This
work uses neural networks to approximate the value and policy functions as an
alternative to storing intractable hybrid-state system models. While constructing a
deterministic finite-state automaton, assigning integer numbers to automaton states
can rank the approximated value or policy functions. We use modular learning to break
the ordinal relationship by using an individual neural network for each automaton
state’s value function (policy).

Dynamic systems interacting with stochastic environments consider the case of
symmetric information, and this thesis investigates beyond that. Additionally, we
develop the optimal probabilistic planning of deception using a concurrent stochastic
game with high-level formal specifications. There are two players: agent (player 1)
and adversary (player 2); the adversary holds incomplete knowledge about the agent’s
task specification. During the adversarial interaction, the adversary infers the agent’s
intention from observation and takes actions to prevent the agent from accomplishing
the task. By contrast, the agent exploits the incomplete information of its adversary
to outmaneuver its adversary. This thesis introduces a class of hypergame models that
capture the dynamic interaction between the player and the adversary in the presence
of asymmetric, incomplete information. Further, this thesis establishes a solution
concept for this class of hypergames. We design an online detection mechanism that
alarms the agent with potential errors in modeling the adversary’s behavior.

The thesis concludes with an overview and future research directions.
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Chapter 1

Introduction

Motivation

We commonly encounter stochastic dynamic systems in various applications, such as
defense operations [5], robotics [1, 4, 82, 100], automatic control [42, 74, 131], eco-
nomics [23, 87], manufacturing [79, 132], and other cyber-physical systems [91]. In
each application, stochastic systems usually need to fulfill beyond a reachability objective,
that is, to reach a target region, but with high-level specifications that describe specific re-
quirements. The interaction between stochastic systems and environments can be captured
by a rigorous mathematical framework, Markov decision process (MDP) [101] since its
introduction by Bellman in 1957 [11], for modeling sequential decision-making problems.
High-level formal specifications specify the properties that system behaviors should satisfy,
including 1) liveness (something good will always eventually happen), 2) safety (nothing
bad will happen), 3) and fairness (all constituent processes will be involved, and none
of them will starve) [8]. For instance, defense operations utilize computation-limited
autonomous drones for surveillance tasks. A typical surveillance task demands a drone
to visit certain areas of interest in a predefined temporal order (liveness) while avoiding

entering no-fly zones (safety) [83].

Previous work [121] synthesizes policies for the liveness property by specifying the
arrival times of the drone for each area of interest. However, if there is redundancy in
the solution: multiple trajectories satisfy the required liveness property, then defining
arrival times for each region of interest in each trajectory becomes tedious. Expressing
the temporal order of visiting regions of interest in a compact form becomes critical when

designing optimal control algorithms. Furthermore, only specifying arrival time leaves

1



2 CHAPTER 1. INTRODUCTION

how to enforce the safety property open; that is, how to prevent the drone from entering
no-fly zones.

Fortunately, temporal logic allows us to represent such high-level specifications rigor-
ously and succinctly. It enables us to reason about the order of visiting areas of interest
without explicitly introducing time. Besides, temporal logic permits reasoning more prop-
erties. For instance, if a drone has fuel or battery shortage, then the drone needs to retreat
immediately. Although temporal logic formulas can specify numerous system behaviors,
incorporating these into stochastic optimal planning remains difficult. Stochastic optimal
planning aims to maximize the system performance given criteria. With high-level for-
mal specifications, stochastic optimal planning desires to synthesize a control policy to
maximize the probability of system behavior satisfying these specifications. Researchers
did not start paying extensive attention and fully exploiting the potential of temporal logic
until Duret et al. [40] presented a systematic translation that allows us to translate temporal
logic formulas into well-studied graph-based models. Formal policy synthesis allows
controlling a stochastic system to ensure desirable system performance with provably
correct guarantees given high-level specifications in which researchers have expressed
substantial interest [24,29,94, 130]. Despite the theoretical and experimental successes,
policy synthesis with translated models remains challenging due to the following questions

this thesis motivates to explore:

1. Given a stochastic system and its high-level specification, how do we efficiently learn

optimal control policies for satisfying the given specification?

2. When it is hard to sample a trajectory that satisfies the specification, leading to a

sparse reward issue, how can we alleviate this issue?

3. How do we learn a policy when there is incomplete knowledge about other stochastic

systems’ temporal objectives? What if the system has continuous state space?

4. If an adversary has incomplete, asymmetrical information in a two-player setting,
how do we leverage this strategic information to maximize the satisfaction probability

of given high-level specifications?

Thesis Contributions and Outline

This thesis bridges dynamic programming, formal verification and synthesis, and rein-

forcement learning to propose a coherent probabilistic planning framework for stochastic



systems under temporal objectives achieving near-optimal performance. Such a framework
can reason the system’s probabilistic and temporal properties. To further improve the
policy learning’s efficiency, we incorporate the structural information of the model to
obtain a total order to guide the computation. Additionally, we embrace neural networks
to deal with the continuity of the state space and present a novel model-free reinforcement
learning (RL) algorithm suitable for applying graphic structural information. We aspire to
extend this framework to the multi-player setting, where we leverage deception to exploit
the adversary’s unawareness to maximize the probability of completing our objectives.
Our work explores formal policy synthesis with a class of high-level specifications
expressed in probabilistic computation tree logic (PCTL) [28] and linear temporal logic
(LTL) [124] to guarantee stochastic systems’ probabilistic and temporal properties. We
now present the thesis’s organization and each chapter’s primary results.
Chapter 2 presents formal definitions of linear temporal logic, deterministic finite-state
automaton, and Markov decision process.
Chapter 3 presents a probabilistically complete sampling-based approximate dynamic pro-
gramming (ADP) algorithm to learn a near-optimal value function for temporal objectives
in PCTL.

* We introduce a systematic way to translate a class of PCTL formulas into chance

constraints with properly defined cost functions.

* We formulate a constrained optimization problem that incorporates constraints
derived from the softmax Bellman operator in dynamic programming and PCTL

formulas.

* We design a probabilistically complete sampling-based ADP algorithm for such a
constrained problem. The method is scalable, technically sound, and can synthesize

a near-optimal policy that satisfies temporal constraints in PCTL formulas.

Chapter 4 leverages the topological information encoded in the high-level specification in

LTL to accelerate value function learning.

* We offer an algorithm to reveal the encoded topological information in temporal

objectives in LTL formulas to guide the optimal value function learning process.

* We guarantee the optimality of learned value functions guided by the topological

order.
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* We apply the discovered topological information to the proposed ADP algorithm to

build an efficient formal policy synthesis framework.

Chapter 5 proposes a model-free actor-critic algorithm to tackle continuous-state stochastic

systems.

* We devise a model-free actor-critic algorithm inspired by the ADP algorithm for
optimal planning with high-level specifications when the system models are unavail-
able.

* We leverage neural networks to approximate value and policy function to tackle

continuous-state space.

* We adopt modular learning to break the ordinal relation between values in different

task automaton states to improve the performance of the policy synthesis framework.

Chapter 6 analyzes the case of planning in adversarial interaction captured by a class of

hypergame models in the presence of asymmetric, incomplete information.

* We establish a solution concept for a class of hypergames, where these hypergames
enable probabilistic optimal planning in an adversarial interaction in the presence of

asymmetric, incomplete information.

* We show the effectiveness of the obtained subjectively rationalizable strategy in

deception.

* We propose an online detection mechanism to alert us when we model an adversary

incorrectly.

Chapter 7 concludes the dissertation and discusses directions for future work.

This thesis opened up a vast research area of efficient formal policy thesis for stochastic
dynamic systems with temporal objectives in single- and double-player views. It allows
for generating policy when the system models are continuous and unknown with complex
temporal objectives. Additionally, we consider an adversarial interaction when there
is asymmetrical information. This research has wide-range potential usage in robotics,

aerospace, economics, traffic control, networking, and other cyber-physical systems.



Chapter 2

Preliminaries

Notations We let R, R, R>o, N denote the set of real, positive, non-negative, and

X | denotes the size of X, and 2% denotes

natural numbers, respectively. For a finite set X,
its power set. Let A(X) denote the probability simplex in R'*I. Given a distribution
w e A(X), Supp(p) = {x € X | pu(z) # 0} is the support of u. We denote Z ~ 1
to specify the random variable Z has a distribution p. We denote expectation as E,
where E x. p,[f(X)] is the expected summation of the f(X ), where random variable X is
conditional on the distribution Pr. We use the notation X to denote a finite set of symbols
known as the alphabet. The indicator function is denoted by 1, where 1(£) evaluates to
be 1 if the event E is true and 0 otherwise.

In this chapter, we review the necessary background of the LTL and the labeled MDP

used in the following chapters.

Linear Temporal Logic

We use linear temporal logic (LTL) to describe a complex high-level task. The basic
components of LTL formulas are tautology true and falsum false, atomic propositions
(p € AP is an atomic proposition), the Boolean connector like conjunction A and negation
—, and two basic temporal modalities () (read "next") and U (read "until"). The automatic
proposition p € AP stands for the state label p € AP in a transition system. The operator
(O is a unary prefix operator and leads a single LTL formula ¢. The formula O) ¢ holds at
the current moment if the formula ¢ is true at the next step. The operator U is a binary
infix operator and stands between two LTL formulas ¢; and ¢,. The formula ¢ U ¢,

holds at the current moment if 5 becomes true in some future moment, and before that,

5
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1 holds for every time step until the future moment.

Definition 1 (Syntax of LTL).
An LTL formula is defined over the set AP of automatic propositions according to the

following grammar:

p=true|p| |1 Aps | O¢|ei1Ugps,

where p € AP. The operators { (read as eventually) and [J (read as always) are defined
using the operator U as follows: () ¢ = true U ¢ and [J ¢ = = —p.

LTL formulas describe the properties of sequences of symbols. Each finite (resp.
infinite) sequence of symbols, termed a finite (resp. w-regular) word, has the following
form: w = ogoy -+ -0, witho; € Y forany 0 <7 < n (resp. w = gpoy--- witho; € X
for any 0 < 7). We use ¥* and X to denote the set of all finite words and the set of all
w-regular words, respectively. We denote the length of a word w as |w|. The empty word,
denoted by ¢, is the empty sequence 3°, and |¢| = 0. We define the set of nonempty finite
words ¥ = ¥*\ e. The semantics of an LTL formula ¢ is defined as a language Words()

that contains all w-regular words over the alphabet > that satisfy ¢.

Definition 2 (Semantics of LTL (Interpretation over Words)).
Let ¢ be an LTL formula over AP. The language induced by the formula ¢ is

Words(y) = {w € ¥ | w = ¢}
where the satisfaction relation |=C > x LTL is defined as the following:

w = true

wkEp <= peoy(ie, o9 Fp),

wE LA ps <= w1 ANw = pg,

w = e = w i,

wkEQy = 010205 =,

wE iUy < 3j > 0,001 |F 2, and 00511+ -+ |= o1, forall 0 < i < .

Deterministic Finite-state Automaton

A syntactically co-safe LTL (scLTL) formula [67], a subclass of LTL formulas, contains

only temporal operators ¢, (), and U when written in a positive normal form [8] (i.e.,



the negation operator — appears only in front of atomic propositions). The unique property
of scLTL formulas is that a word satisfying an scLTL formula ¢ only needs a good prefix,
i.e., given a good prefix w € X, the word ww' |= ¢ satisfies the scLTL formula ¢ for any
w’ € X¥. The set of good prefixes can be compactly represented as the language accepted

by a deterministic finite-state automaton (DFA) defined as follows.

Definition 3 (Deterministic Finite-state Automaton (DFA)).

A deterministic finite-state automaton (DFA) of an scLTL formula ¢ is a tuple
Aw = <Q72757 L7F>a
where the components of .4 are defined as follows:

* a finite set () of states;

a finite set 3 = 247 of symbols;

a deterministic function 0: Q) X X — @Q;

* a unique initial state ¢;

a set F' of accepting states.

When the context is clear, we write A, as A. For a finite word w = oy0; - - - 0,, € 7,
the DFA generates a sequence of states qoq - - - gn+1 such that go = ¢ and ¢; 11 = 6(g;, 0;)
for any 0 < 7 < n. The word w is accepted by the DFA if and only if ¢,,+; € F'. The set
of words accepted by the DFA A is called its language. Given an objective expressed as
an scLTL formula ¢, the set of good prefixes of words corresponding to ¢ is accepted by a
DFA, which has a special property that all final states are sink states. If a finite prefix of an
infinite run reaches a final state, it is ensured that the “last” state will be a final state, and
the word corresponding to this run is accepted.

We assume that the DFA is complete — that is, for every state-action pair (¢, o) €
Q x 3, 0(q,0) is defined. An incomplete DFA can be made complete by adding a sink
state ggnk such that Vo € . §(gsink,; 0) = Gsink» and directing all undefined transitions to

the sink state gsin.

Example 1. A sequential visiting task requires a car to avoid obstacles and accomplish
one of the following: (a) visit A and do not visit D or obstacles until C'is visited; (b) visit
D and do not visit A or obstacles until B is visited. To describe this task, we define a set

AP of atomic propositions as follows:
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Figure 2.1: The DFA accepting the formula ¢ = =0 U (¢1 V ¢3), where o1 = a A ((—d A
—0)Uc), and @2 = d A ((—a A —0) Ub).

* a: car reaches A.
e b: car reaches B.
e ¢: car reaches C.
e d: carreaches D.
e 0: car reaches obstacles.

Given the set AP of atomic propositions, we can capture the sequential visiting task by an

scLTL formula as follows:

o ==0U (p1V ),
where

v1 =aA ((-d A —-o)Uc),
w2 =dA ((—a N —0)Ub),
where the corresponding DFA is depicted in Figure 2.1; for clarity, we trim self-loops in

Figure 2.1. That is, for state ¢y, we remove transitions from ¢, to gy via symbol o, where

o € 27\ ({a} U {d}). We similarly remove transitions for states ¢, g, g3, and qy.

Labeled Markov decision process

We use a Markov decision process to model a stochastic system. Given a labeling function
L, alabeled MDP is defined as follows.



Definition 4 (Labeled Markov Decision Process (MDP) [84]).

A labeled Markov decision process is a tuple
M = <S> A7 P7 S0, L7A7D>7

where the components of M are defined as follows:

S'is a set of states.

A is a set of actions.

P: S x Ax S — [0,1] is the transition probability function, where P(- | s,a)
represents the probability distribution over the next states given an action a € A

taken at the current state s € S.

po € A(S) is the initial state distribution.

AP is a set of atomic propositions.

L: S — 247 is the labeling function that maps a state s € S to a subset of
propositions L(s) C AP that hold true at state s € S.

For s € S, we denote A(s) = {a € A | 3¢ € S,P(s' | s,a) > 0} the set of
admissible actions at state s € S. If the initial state distribution py degenerates to a Dirac
delta function, then the MDP starts at a unique initial state, denoted by s,. For any s € .5,
we denote A(s) = {a € A|3Js' € S,P(s'| s,a) > 0} as the set of admissible actions at
state s.

Optimal planning with MDP aims to learn a policy. We consider the following policies:

A finite-memory, deterministic policy 7: S* — A maps a history of state sequence

to an action;

A finite-memory, stochastic policy m: S* x A — [0, 1] maps a history of state

sequence to a distribution over actions.

A Markov, deterministic policy 7: S — A maps the current state to an action;

A Markov, randomized policy 7: S x A — [0, 1] maps the current state into a

distribution over actions.
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We denote the set of policies as II. Given an MDP M and a policy 7, the policy
induces a Markov chain M"™ = SyA7S1 A5, - - -, where S;, A; are the random variables
describing the 7 + 1-th state and action in the chain. We omit the actions and refer to the
m-induced Markov chain by M"™ = {S,, | n > 0}. A Markov chain is a set of state-action
sequences termed paths. An infinite (resp. finite) path p™ = spagsia;--- € (S x A)¥
(resp. spapsia; - -+ sy € (S x A)*S) conditional on the policy 7 being followed satisfies:
for all t > 0, we have s, ~ P(- | s¢,a¢), ap ~ (- | s¢), and so ~ 9. We say a state
s € S is a sink or absorbing state if P(s | s,a) = 1 for all @ € A. We denote the set of
all paths as PATH, the set of paths following policy m as PATH", and the set of paths
starting at state s € S as PATH(s). We use u™ € A(PATH") to denote the trajectory
distribution induced by the policy 7 and p"(s) € A(PATH"(s)) to denote the trajectory
distribution induced by the policy 7 starting at state s € .S. More specifically, we use x™(p)
and 1™ (p; s) to denote the probability of the path p in the set of 7-induced paths and the
probability of the path p in the set of m-induced paths starting at s, respectively.

Given a finite path p = sgagsia;--- sy € PATH, we obtain a sequence of labels
L(p) = L(so)L(s1)--- L(sn) € X*. A finite path p satisfies the formula ¢, denoted by
p E o, if and only if the corresponding DFA accepts L(p).

Example 2. We have a reachability objective that is to reach a state s, eventually. Slightly
abusing notation, we define a set of atomic proposition AP = {ss}, where the atomic
proposition s; € AP means that system visits state so. Given the defined set AP, we model
the system as a labeled MDP M = (S = {sq, 51,52}, A = {a1}, P, so, L, AP = {s2}),
where labeling function L is defined as follows: L(sg) = 0, L(s1) = 0, and L(s3) = {s2},
and transition probability function P is visualized in Figure 2.2.

ay : 0.5 ay : 0.6 ap : 1.0
aj . 0.5 }1\ aj 0.4

Figure 2.2: A MDP example.

Given such a reachability objective, RL uses a reward function to give feedback to the
system, i.e., a positive reward is only given when the system reaches the goal. The reward
function R: S X A — R maps the current state and action into a real value, where R(s, a)

is the reward for executing action a € A at state s € S.
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Standard RL is to maximize the expected rewards. We term the excepted sum of
rewards as value function V. A value function V starting from an initial state distribution

1o following policy 7 is defined as follows:

V(o) = Epopr [Z Y R(S; = s, Ay = ay) | so ~ po] 2.1
t=0
where p = spapsiay - - - Sgas - - - € PATH"(s), and v € [0, 1) is a discount factor.
The goal of the optimal planning problem is to learn an optimal policy that maximizes

that expected sum of rewards. The optimal policy 7* is achieved only if: for all s € .5,

7*(s) = argmax V" (s). (2.2)

mell

We recall the optimal bellman operator B as follows:

BYV(s) = max (R(S, a) + v Egp(s.a) [V(s’)D ,

acA

and bellman operator B™ w.r.t. the policy 7 as follows:
B™V(s) =m(a|s) (R(s,a) + YEgop(ismV(s)])

It is well known that the Bellman operator 5 is monotonic [116]. From this and the fact
that 13 is a contraction, there is a fixed point V*(s) = BV*(s), for all s € S, which follows
that for any s € S, due to V(s) > BV(s), we have

V(s) > BV(s) > B*V(s) > B*V(s) > --- > V*(s).

Most methods leverage monotonic and contractive properties of operator 3. We recall
two classic methods briefly: (a) linear programming (LP); (b) value iteration. Authors [34]
show that the feasible solution to the problem (2.3) is the solution for the optimal planning

problem with the given MDP.

min Y e(s) V(s) (2.3)

v ses
subject to:  V(s) > max (R(s,a) + v Egp(saV(s)]), forall s € S

acA

where V = [V(s)]ses be a vector of variables, one for each state, and ¢ = [¢(s)]ses is a

vector of non-negative state-relevance weights, i.e., c(s) > 0, for all s € S. However, the
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problem (2.3) is not linear because max operators are included in constraints. We can

convert such a problem to an equivalent LP problem:

mvin Z c(s)V(s) (2.4)

seS

subjectto:  V(s) > R(s,a) + v Ey p(jsa)[V(s')], forall (s,a) € S x A

In the exact solution using LP, as long as ¢(s) is positive, for all s € S, the value
function obtained by solving the LP is optimal. Once V is obtained, a deterministic,

optimal policy can be generated using the Bellman equation,

7(s) = argmax (R(s, a)+v Z P(s' | s,a) V(s')) .
acA
s'esS
Besides the optimization-based solution, value iteration approaches the optimal plan-
ning for MDP from a different perspective. Value iteration constantly applies bellman
operator B for every state until the values converge. We recall the value iteration algorithm

in Algorithm 1.

Algorithm 1: Value Iteration Algorithm
Input: €: a small positive number
Output: 7: a deterministic policy s.t. m ~ 7*
Initialization: Initialize ) (s) arbitrarily, e.g., V(s) =0, forall s € §
. A+0
2: while A > edo

3:  foreachs e Sdo

4: v+ V(s)

5: V(s) < maxeea (R(s,a) + 7 Eyop(sa)V(s)])
6: A + max(A, v — V(s)])

7:  end for

8: end while
9: return 7 s.t. 7(s) = argmax,c 4 (R(s,a) + v Egp(saV(5)])




Chapter 3

Approximate Dynamic Programming
with Probabilistic Computation Tree
Logic Constraints

3.1 Overview

For safety-critical dynamic systems, one primary control objective is to ensure desirable
system performance with provable correctness guarantees given high-level system specifi-
cations. In this chapter, we investigate the following problem: Given a stochastic system
modeled as an MDP, how can efficiently synthesize an optimal policy regarding a perfor-
mance criterion while satisfying safety-critical and mission-critical constraints expressed
in temporal logic? This problem considers multiple objectives, including soft constraints
that maximize the total reward and hard constraints that satisfy safety properties [37,65].

In this chapter, we develop an ADP algorithm, a class of ADP methods, in MDP given
both soft performance criteria and hard temporal logic constraints. The hard constraints are
given by PCTL [68] formulas used to reason about probabilistic properties in stochastic
systems. For instance, a PCTL formula can specify that the probability is greater than
0.85 that the goal can be reached with a cost less than 100. Our approach includes
two steps. In the first step, we show that a large subclass of PCTL formulas can be
equivalently represented by chance constraints over the path distribution in a stochastic
system by following the current policy with appropriately defined cost functions. We
introduce the mixing time for the Markov chain to approximately verify probabilistic

properties in time-unbounded PCTL using trajectories with finite lengths. It is noted that

13
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PCTL involves global properties in a system, which is often hard to enforce using locally

optimal policy search methods. In the second step, we develop a chance-constrained ADP
method to solve the planning problem with reward maximization and PCTL constraint
satisfaction. In literature, a chance-constrained approximate policy iteration method has
been developed [27]. We consider ADP methods to obtain guarantees for global properties
in PCTL formulas. This is achieved via integrating randomized optimization with the
approximate LP formulation proposed in [34].

Our sampling-based ADP method has the following desirable properties:

* It achieves a tight error bound by weighing the approximation errors over the state

space using the state visitation frequencies of an approximately optimal policy.

* It is probabilistic complete. It converges to an approximately optimal policy that

satisfies the PCTL constraints with probability one.

The rest of the chapter is structured as follows. Section 3.3 provides necessary prelimi-
naries on PCTL formulas. Section 3.4 contains the main results of this chapter, including
the translation from a subclass of PCTL to chance constraints in MDP and the ADP
algorithm. Presented in section 3.5 are case studies with robotic motion planning exam-
ples to validate the optimality and correctness of the proposed method. We conclude in
Section 3.6.

3.2 Related Work

Most existing methods assume that the system’s current state is known precisely. However,
noisy sensors and actuators can invalidate such an assumption, resulting in guaranteeing
systems’ probabilistic properties difficult. Lahijanian et al. [71,72] considered task specifi-
cations in PCTL formulas, where the learned policy could provide probabilistic guarantees
against system noise. Specifically, in 2010, Lahijanian et al. [72] investigated an automatic
deployment of a robot, where this deployment needs to satisfy a specification over a set of
properties of interest given an environment. They presented a framework that first modeled
the robot’s motion as an MDP, then translated the deployment problem into a policy syn-
thesis problem to maximize the probability of satisfying a PCTL formula. However, this
paper only focused on a small fragment of PCTL formulas. Later, Lahijanian et al. [71]
extended their previous work to the full range of PCTL formulas. Embracing the full range

of the PCTL formulas could improve expressiveness. In this framework, they leveraged
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some existing PCTL model-checking algorithms [102] as sub-algorithms corresponding to

each temporal operator as building blocks for constructing a policy from a formula with
multiple operators. Despite successful experimental results, their methods heavily rely on
abstraction methods, which requires prior knowledge or expertise. Without abstraction
methods, the existing graph-based model-checking algorithms would fail on continuous

systems.

3.3 Preliminaries: Probabilistic Computation Tree
Logic with Reachability Reward/Cost Properties

PCTL provides syntax and semantics to quantify probabilistic properties [43]. Recall that
AP is the set of atomic propositions. The syntax of PCTL with reachability reward/cost
properties [68] is defined as follows:

¢ = tue| a |oAG| 0| Byplt] | Coanl(0=Fe)

v o= 06| oV | ¢Ue

where ¢ is a state formula, and ¢ is a path formula. @ € AP is an atomic proposition.
k € N is a non-negative integer. € {<, > > <}, p € [0, 1] is a scalar variable. m € R
is a threshold for cost.

A path formula is interpreted on paths and is composed of state formulas and temporal
operators “Next” (()) and “Until” (U). U <k is the bounded until operator. Recall that
O ¢ = true U ¢ is “eventually,” and () ¢ asserts that the next state satisfies a state formula
6. The formula ¢; U =, asserts that ¢, is satisfied within k steps, and all preceding states
satisfy ¢;. The formula ¢, U ¢, asserts that ¢, is satisfied sometime in the future, and all
preceding states satisfy ¢;. The formula ¢ =*¢ means ¢ becomes true in no more than k
steps.

Similarly, a path in an MDP is related to a PCTL formula through the labeling function
L: S — 247, The labeling function L assigns each state s € S with a set of atomic
propositions L(s) C AP that are valid at the state s. The labeling function L can be
extended to paths in the usual way, i.e., L(p1p2) = L(p1)L(p2), for any py1, ps € (S x A)*.

A state formula is evaluated on states. A state s that satisfies a state formula ¢ is
denoted by s |= ¢. The statement s = P, [1)| means that the probability of a path starting
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from s that satisfies path formula v is < p, for any <€ {<, >, >, <}. The reachability

reward formula [68] s = Ci,, [0 =¥¢] means that the total accumulated rewards/costs
along a path of length no greater than k that reaches a state satisfying ¢ are 0 m for a
predefined reward/cost function. Note that we consider a PCTL formula is always a state

formula, and path formulas only appear in the composition of a state formula.
Example 3. For ease of understanding, we give several examples of PCTL formulas.

* P5ggs5(trueU =!%reach goal): From any state, the goal can be reached in less than

10 steps with a probability of at least 0.95.

o Poo(O Ccio0[0 =°a]): The probability is larger than 0.9 that from the next step
onward, the system reaches a state satisfying o with a total accumulated cost no

greater than 100 in no more than 5 steps.

Our goal is to develop an ADP algorithm that efficiently solves the following planning

problem:

Problem 1 (PCLT-constrained Optimal Planning). Givenan MDP M = (S, A, P, uo, L, AP)
and a PCTL state formula ¢, the goal is to find a policy 7 that solves

max V" (po)
subject to: Sy = ¢

where Sy is the initial state random variable conditional on 1, and Sy = ¢ means
Pr(Sy = ¢) = 1, i.e., with probability one, the state formula ¢ is satisfied.

3.4 Main Result

Our approach to solving the PCTL-constrained optimal planning problem includes two
steps: First, we show that a class of PCTL constraints can be translated into chance
constraints. Second, we introduce an ADP algorithm that solves the optimal planning

problem with chance constraints.

3.4.1 Translate PCTL formulas into Chance Constraints

Chance constraints are introduced to capture risk-sensitive optimization criteria in MDPs.
Letd: S x A — R be a cost function. For a policy w, we define the cost of a state-
action pair (s,a) € S x A (resp. a state s € S) as the summation of finite-horizon
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(discounted) total costs encountered by the decision-maker when it starts at the state-action
pair (s,a) € S x A (resp. a state s € .S) and then follows policy 7. Formally, for the cost
of any state-action pair (s,a) € S x A:

T—1
D(s,a,T;7) =E, n [Z V(S = s, Ay = ay) | so = 5,00 = a),
t=0

where p = spag - -+ sp_1ar_1 - -- € PATH"(s), ~y is a discount factor, and 7' € N U {oc}
is a stopping time. The cost of a state can be defined through the cost of the state-action

pair. Formally,
D(s,T;) ZDS&T?T m(a | s).
acA

Chance-constrained planning in MDP aims to ensure that for a given initial random

state Sy, a confidence level 3 € (0, 1), and cost tolerance «, the policy 7 satisfies
Pr(D(So, T57) > a) < 6.

Given a path p = spagsiay - -+ sp_1ar_1 - - - € PATH™(s), we define the cost of a path

p as follows
[T—1]

D(p,T;m) Z Yhd(se, ar),

and the chance constraint is equivalently expressed as
Pr(D(p,T;m) > a) < B.

We introduce the notion of mixing time and use it later to determine a stopping time 7’

for approximately satisfying time-unbounded specifications in PCTL formulas.

Definition 5 (¢-return Mixing Time).
Let M be an MDP and 7 be an ergodic policy in M. Given € € R, the e-return mixing
time of 7 is the smallest 7" such that for all 7" > T', |D(s,T";7w) — D(s,T;m)| <.

Given a policy 7, we can find an upper bound of this mixing time in terms of eigenvalues
of the state transition matrix Pr” (s’ | s) in the Markov chain M™ using methods in [111].
Next, we show how to translate PCTL formulas into chance constraints. We select the
discount factor v = 1 unless otherwise specified. The reason is that PCTL considers the
probability of satisfying path formulas and total cost without discounting when the total

cost is finite. We distinguish three classes of PCTL formulas.
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Probabilistic formula 1., (1))

We consider a class of probabilistic formula P, (1)) such that ¢ is a path formula of one of
the following forms: —¢; U ¢9, true U ¢, and () ¢, where ¢, ¢1, and ¢, are propositional

logic formulas. Formally,

s Fr Pp(¢) <= Pr({p € PATH"(s) | p |= ¢'}) pap.

We show that a chance constraint can represent a probabilistic formula with a properly

defined cost function.

Lemma 1. Given a formula P.,(O ¢), let us define a cost functiond: S x A — R as
d(S, a) = ES/NP(.‘S’Q) 1(8/ ): gb)

Given a policy 7, the m-induced Markov chain satisfies the formula, denoted by M"™ |=
Py (O ¢), if and only if D(Sy, T'; ) >< p, and the stopping time 7" = 2.

Lemma 2. Given a formula P.,(true U ¢), let us define a cost functiond: S x A — R as

d(s,a) = Eyp(s.a) 1(s' = ¢) 1(s [~ o).

Let all states in the set {s € S | s |= ¢} be sink states. Given a policy 7, the w-induced
Markov chain satisfies the formula, denoted by M"™ = B, (true U ¢), if it is one of the

following cases:
o i€ {>,>}: D(Sy, Tt m) > p;
o i€ {<, <} D(So, Te;m) ><ap — e,

where € € (0, 1) is a small constant, and 7, is an upper bound of the e-return mixing time

of policy 7.

Proof. By the definition of cost function d, D(Sy;m) is the probability of eventually
reaching a state that satisfies ¢; D(Sy, T;7) is the probability of reaching a state that
satisfies ¢ within 7" steps. Given 7. is the e-return mixing time, if a path of length 7} has
not yet visited a state that satisfies ¢, then the probability of satisfying the path formula
as we continue along this path is less than e. Since the cost is non-negative, we have
D(Sp;m) — D(Sp, Te; ) < e for a predefined positive real number €. Next, we consider

two cases:
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CaseI e {>,>}, Ps,(trueU ¢) is equivalent to D(Sy;7) > p. Given D(Sp;m) >
D(Sy, T.; ), a sufficient condition for D(Sy; ) > p is that D(Sy, T.;7) > p. The
same argument applies for strictly greater than, i.e., >.

Case Il e {<, <}, P<y(trueU¢) is equivalent to D(Sp;7) < p. Given D(Sy;7) —
D(Sy, Te;m) < e, we have D(Sy; ) < D(Sy, T¢; ) + €. A sufficient condition for
D(Sp; m) < pisthat D(Sy, T.;7) + € < p, which is equivalent to D(Sy, T; 7) <
p — €. The same argument applies for strictly less than, i.e., <.

]

Lemma 3. Given a formula P.,(—¢; U ¢3), let us define a cost functiond: S x A — R

as
d(s,a) = By p((s.a) 1(s' |5 ¢2) 1(s = o).

Let all states in the set {s € S | s = ¢ V ¢2} be sink states. Given a policy 7, the
m-induced Markov chain satisfies the formula, denoted by M™ |= P, (—¢1 U ¢o), if it is

one of the following cases:
o i€ {>,>}: D(Sy, Tt m) > p;
o i€ {<, <} D(So, Te;m) X p — €,
where 7 is an upper bound of the e-return mixing time of policy 7.

Proof. The proof is similar to that of Lemma 2. It is noted that when a system reaches a
state that satisfies ¢; before reaching a state that satisfies ¢, it receives a cost of 0 onwards,

and the path continues to evolve until the time bound 7. [

Risk neutral cost constraint formula C..,,,0 <*¢

Coam© =F ¢ is the expected cost of paths satisfying the formulas  =*¢. Based on the
definition in [68], a policy 7 satisfying the constraint given an initial state s, denoted by

S ):7r Cl><1m<> §k¢7 < Epwu“(S) [XO Sk¢(P)] XIm,

where E = (5[ X <t4(p)] denotes the expectation of the random variable X, <, : PATH"(s) —
R for the Markov chain M" given the initial state s. Letd: S x A — R be

d(s, a) = c(s,a)(1 = 1(s |= 9)),
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and any state s = ¢ be a sink state. For any path p = spagsia; --- € PATH™(s),

Xo<u(p) = D(py7) = (Z d(st, at)) + D1(sp [~ ¢),

where T = min(k, min{j | s; = ¢}) and D > 0 is a penalty term, which is added when
the path does not satisfy the specification () <¥¢. Note that instead of assigning a cost of
oo to a path that fails to satisfy Cy,,, ) ¥¢ in [68], we use a large penalty to ensure the

planning problem is well-defined.

Risk-sensitive PCTL Formula

We consider a class of PCTL formulas of the following form: ¢1 = Pug; (O Coayn© =Fb2),
where ¢; and ¢, are propositional logic formulas, i.e., state formulas that use only con-
junction and negation with atomic propositions in AP. The risk-sensitive semantics of the
formula means that if a Markov chain satisfies the formula, then starting from a state that
satisfies ¢, in the next step, the probability of a sampled path that satisfies ) <*¢, with a
cost Xy m is >y p, where 1y, <€ {>, >, <, >}. Formally, it is defined as

s ¥ d

s Er 01 = Buapp(O Coaum© =) —
S IZ ¢1 and PI’(O qugmo §k¢2) >y p.

Lemma 4. Given a risk-sensitive PCTL formula ¢; = Py, (O Crayin O =¥ b2, let us
define a cost function d: S x A — R as

d(s,a) = c(s,a)(1 = 1(s [= ¢2)),

and let any state s € {s € S | s = ¢2} be a sink state. Given a policy 7, the m-induced
Markov chain satisfies the formula, denoted by M" |= ¢, if

Pr(D(s,k+ 1;7) >y m) >y p, forall s = ¢,
where
T-1 )
D(s,k+ 1;7m) = E,oum(s) [(Z d(st, at)> + D1(sp_q ¢2)] ,
t=0

p = Soapsiar -+ € PATH™(s), T = min(k + 1,min{j | s; = ¢2}), and D > O is a
penalty.

Proof. The proof is by construction and omitted. [
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If weletY = {s € S| s |= ¢}, then the constraint is
Pr(D(s,T;m) <o m) <y p, forall s € Y.

So far, given an appropriate definition of the cost function d: S x A — R, we have shown
that any PCTL formula in these three subclasses can be represented as a chance constraint

of the following form: for some « € R and /3 € [0, 1],
Pr(D(s,k;m) > «a) < 3, foralls € Y,
where k is a positive integer, and Y C 5.

Remark 1. It is noted that D(s, k;7) < « is a special case of chance constraint and can
be expressed by Pr(D(s, k;m) > «) < 0. The conjunction of multiple PCTLs can be
translated into multiple chance constraints.

Remark 2. We use the mixing time of an ergodic policy only for PCTL with time-
unbounded temporal operator U, { to transform planning with a constraint over an infinite
horizon into planning with a constraint over a finite horizon. If the chain induced by a
policy is not ergodic, then it is unclear that the chance constraints are still valid to represent

PCTL constraints with time-bounded temporal operators U =¥ and ¢ <.

3.4.2 Formulate Stochastic Programming for PCTL
Constrained Optimal Planning

We aim to develop an ADP to solve PCTL constrained optimal policy in an MDP. First,

we consider the Bellman equation with the softmax operator [6],

TV(s) = TlogZexp { (R(s, a) 4y Z P(s' | s,a) V(s')) /T} : (3.1)

acA s'esS

where 7 > 0 is a predefined temperature parameter. With the 7 approaches 0, Equation (3.1)
recovers the hardmax Bellman operator. The softmax Bellman operator is contracting [6].
We have the following statement based on the monotonic contraction property of the

softmax Bellman operator 7.

Lemma 5. For any value function V that satisfies 7V < V, V is an upper bound of the
value function V*, where V" is the fixed point of the softmax operator, i.e., 7 V* = V",
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Next, we introduce a linear function approximator of V as follows:

K
Vo(s) = Z¢k(5)9k = 0,
k=1

where ¢ (s): S — R, ® = {¢x | 1 <k < K} is a set of preselected basis functions, and
0 =1[0,--,0k] € R is a weight vector.
Given the approximate value function )y parameterized by 6, one can obtain the corre-

sponding state-action value function Qy and policy 7y using the Bellman Equation (3.1):

Qy(s,a) = R(s,a) +7 > _ P(s'| s,a) Vo(s'), (3.2)
mo(a | s) = exp((Qq(s,a) — Va(s))/T). (3.3)

Given a value function approximation Vy(s) = ®(s)0, the goal is to search for a

function parameter # € R that solves the following optimization problem:

min Z c(s) Vo(s)

0

s€S
subjectto: T Vy(s) — Vy(s) <0, forall s € S (3.4a)
Pr(Dy(s, k) > a)— B <0, forall s € Y (3.4b)

where the constraint (3.4b) is the chance constraint introduced by the PCTL formula.
Next, we develop an ADP method for the problem (3.4). Our approach is based
on randomized optimization [118] that iteratively searches for an optimal parameter
minimizing a weighted distance between the upper bound given by the value function
approximation and the true softmax value function.
We first introduce a continuous function ~: R — R, with support equal to [0, 00), in

the sense that
h(z) =0 forall z € (—o0, 0], and h(z) > 0 for all z € (0, c0). (3.5)
One such function is h(x) = max(x,0). Let
go(s) =T Vy(s) — Vy(s), forall s € S.

Then, the constraints in (3.4a) become gy(s) < 0 for all s € S. Using randomized
optimization [117], an equivalent representation of the set of constraints in (3.4a) is

Eswp 1(g0(5)) =0,
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where s is a random variable with a distribution j.; whose support is .S.

Similarly, let
lo(s) = Pr(Dgy(s, k) > a) — B, forall s € Y.
The equivalent representation of (3.4b) is
Bqvp h((o(s)) = 0,

where s is a random variable with a distribution p5 over Y.

Thus, problem (3.4) is equivalent to:

min Z c(s) Vo(s) (3.6)
o seS
subject to:  E,.,, h(go(s)) =0
Eovps h(lo(s)) = 0

State-relevant weights We select the state-relevant weight ¢(s) = cy(s) to be the
frequency with which different states are expected to be visited in the Markov chain
induced by the policy 7y, which is computed from Vg using Equation (3.3). To justify this
choice, we rephrase the following result in [34] with softmax Bellman operator and chance

constraints.

Lemma 6 (Extended from Lemmal in [34]). A vector 8 solves the problem (3.4)

mein Z c(s)P(s)0
seES

subject to:  E,_,, h(ge(s)) =0
ESNM h(£9(5)> =0

if and only if it solves

mein ZC(S)|V*(S) — ()0

seSs

subject to:  Eg.,, h(go(s)) =0
Egp, h(lo(s)) =0

Proof. 1t is well known that softmax operator 7 is monotonic. From this and the fact that
T is a contraction with fixed point V*, it follows that for any } with V > T V), we have

V>TV>T?V>...> V",
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Here, any 6 that is a feasible solution to the optimization problems of interest satisfies
®O > V*. It follows that

S eV (s) = D)ol = 3 el)2(3)0 — 3 els) V' (s),

seS seS seS

and minimizing ) __. c(s)®(s)0 is therefore equivalent to minimum ) | __ c(s)|V*(s) —
O (s)8). O

For any state-relevant weight ¢ € A(S), it holds that ming ) ¢ c(s)|V* —®0| >
ming ) .4 co(s)|V* —®0)| for the cy(-) defined above as the state-relevant weights. Ac-
cording to Theorem 1 of [34], the ideal weight is to choose c that captures the (discounted)
frequency with which different states are expected to be visited. For a given parameter 6,
the weight function ¢y (+) can be obtained from the on-policy sampling of trajectories with
policy 7.

The augmented Lagrangian function of problem (3.6) is

/;6()" 57 V) = Z 69(‘9) V9<S) + A ESNltl h(99(3>> (37)
seS
5 (B (g0 + € - Bunyy hi(ka(5))
+ 5 Bay hllo(s) P,

where )\ and ¢ are the Lagrange multipliers, £ denotes the k-th outer iteration, and v is
a large penalty constant. If the MDP is known, then the approximately optimal value
function can be solved by the quadratic penalty function method [16], which consists of
solving a sequence of inner optimization problems of the form:

min  Ly(A¥, €5, ) (3.8)

fcRK

where {\*} and {£*} are sequences in R, {1/*} is a positive penalty parameter sequence,
and K is the size of #. The stopping criterion for each inner optimization problem is
|VoLgs (NF, 1F)|| < €F, where {€*} is a positive sequence converging to 0. In practice, we
chose a sequence of {e¥} as {m*e® | k > 0}, where m € (0, 1).

After the inner optimization for (3.8) converges, we update multipliers A and £ in the

outer optimization as

ML= €\ P B, h(ger(5)), (3.9)
L = b Uk LB, (L (s)), (3.10)
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The outer optimization stops when it reaches the maximum number of iterations or
[VaLgs (NF, € F)|| < 1073 x €, which essentially means the derivative is ignorable.
Once the outer iteration stops, the near-optimal value function is learned. We can obtain
the corresponding state-action value function and policy by equations (3.2) and (3.3).
We refer the readers to [16, Chap. 5.2] for more details about the quadratic penalty

function method, its stopping criteria, and multiplier update methods.

3.4.3 Model-based ADP for PCTL Constrained Planning

We develop a model-based ADP for PCTL constrained planning to tackle the problem (3.6),
which shows that the gradient of Ly« (\¥, £¥, 1*) can be computed from sampled trajecto-
ries.

Slightly abusing the notation, let My be a Markov chain induced by policy my. By
selecting cg(s) = Y. Pr(S; = s) as the state visitation frequency in My, for an arbitrary
function f: S — R, it holds that

> aols)fals) = > polp)falp), (3.11)

SES pEPATHﬂQ
where 114(p) is the probability of the path p in the Markov chain My, and we have

lp|—1

Jolo) = 3 folso).

where p = spapsia; - - € PATH”G,
Furthermore, by selecting j1; o ¢y and letting
k
v
fo(s) = Va(s) + A* - h(go(s)) + 5 - [h(ga(s)) "

and
k

v
m(p2) = €+ Bopiy h(lo(3)) + 5+ Bamyy hllo(9))I,
the k-th objective function in problem (3.8) becomes

min Y jg(p)f(p) +ma(p2)

0
pePATH™
NS

J/

£(0)

Using the gradient descent, parameter ¢ is updated by

07t < 07—y - VoF(0) — 12 - Vemg(pa), (3.12)
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where j represents the j-th inner iteration, and n; and 7), are positive step sizes.

VeF(0) = Y V@Me o)+ Y palp)Vafalp), (3.13)
pePATHT Y pepATH™ 2
where
L= Vous(p)folp)
pePATH™®
= > uelp)Velog pa(p) fo(p)
pePATH™®
lp|-1
= Y wlp) | D Velogm(ar | s0)| folp)
pePATH™® t=0
lol—1
|N| Z Z Vologmy(as | s¢)| fo(p)
peN | t=0
(Monte Carlo approximation)
2= ulp)Vofo(p)
pePATH™®
lol—1
= > > Vafo(sy)]
pePATH™ t=0
lp|=1
|N| Z Z Vefe St
peN | t=0
(Monte Carlo approximation)
and

Vofo(st) = Vo Va(se) + X - Vyh(ge(se))Voge(se) + v* - h(ga(s:)Voge(st),

where we generate a set NV of trajectories starting at a state with the initial distribution
{1 to estimate the gradient. Note if h(z) = max(z,0), then V h(z) = 1if x > 0and 0

otherwise. In terms of the derivative of the second term:

Vo (ps) = € - Egupy Veh(lo(5)) Vilo(s)
+ VP By -h(Lo(5))Vih(Ly(5))Valo(s). (3.14)
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To estimate the gradient, we generate a set Z of trajectories starting at a state with the
initial distribution z5. A simple choice of ps 1s a uniform distribution over Y, the set of
states subject to PCTL state formulas (3.4b).

Let D(p) be the total cost along the trajectory p; we have

Volo(s) = Vi Z te(p) L(D(p) > a) =

pEPATH(s)

= Y Veu(p) L(D(p) > )

pEPATH(s)

= Y () Ve log (p) 1D(p) > @)
pEPATH(s)

Zo 2 Voloaml(e) D() > ).
€Z(s)

~
~

where
lpl—1
Vo log pig(p) = Z Vologmg(as | s¢),
t=0
and

h(le(s)) =h( D> pa(p) 1(D(p) = a) — B)

pEPATH(s)
—max( Y pe(p) L(D(p) = @) = 5,0)
pEPATH(s)
1

PEZ(s

Again, the gradient Vymyg(u9) is approximated by the Monte Carlo approximation.
The sample bound | Z| is determined by methods in stochastic programming [35].

Using the sampling-based approach to obtain the gradient of the augmented Lagrangian,
we can perform the inner and outer optimization using trajectories sampled from the MDP.
In the outer optimization, the Monte Carlo approximation estimates the expectations for
updating the multipliers in (3.9). Furthermore, the update of the penalty parameter does not

require any new samples since both E,._,,, h(ggx(s)), and E;.,,, h({gx(s)) can be evaluated

based on sampled trajectories.

In the analysis of the convergence, we assume:
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Al Fory € {m,me},y" > 0forany k > 1, 77 y* = oc,and Y o7 (y*)? < oc.

A2 The value function approximation is continuously differentiable in 4, and Vy Vy is

locally Lipschitz continuous.
A3 There exists a feasible solution for the problem (3.6).

A4 For time-unbounded PCTL, the length of a sampled trajectory is lower bounded by
either the time bound in PCTL formulas or the mixing time of the Markov chain

with policy parameterized by 6.

A1l and A3 are standard requirements for the augmented Lagrangian method to converge.
A2 satisfies the linear function approximator and other differentiable value function ap-
proximations. A4 is to validate the PCTL constraint satisfaction using sampling-based

statistical model checking.

Theorem 1. Assuming A1-A4, the sequence of value function updates converges almost

surely (with probability 1) to a locally optimal solution 6* for the problem (3.4).

Proof. The convergence proof is standard for stochastic programming and omitted for

space limitation. [

The following establishes the probabilistic completeness of the proposed ADP algo-

rithm.

Theorem 2 (Probabilistic Completeness). If there exists an optimal value function, then
the probability that our ADP algorithm will a solution approaches 1 as the number of paths

approaches co.

Proof. When the number of paths approaches oo, then derivatives (3.13) and (3.14) are
approximately exactly. Then the gradient descent step (3.12) guarantees to converge
following the theorem 1. ]

Complexity In MDP planning problem, the number of decision variables grows linearly
in the state space and action space of the MDP, where the state space is the product of
the states of the system states and the DFA states. Further, this optimal planning problem
can be solved in polynomial time in the size of the decision variables [81]. However,
because we use a linear function to approximate the value function, the number of decision
variables becomes independent of the size of the MDP. Thus, ADP methods [17] allow
one to address the problem of scalability in planning for stochastic systems.
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3.5 Case Study

We validate the efficacy of the proposed algorithm with two robotic motion planning
examples in stochastic grid worlds illustrated in Figure 3.1. The first example is a reach-
avoid task shown in Figure 3.11, and the second is an optimal planning problem with a
PCTL constraint shown in Figure 3.12. In both examples, for each state s € S, the robot
has 4 different actions: head up (“U”), head down (“D”), head left (L"), head right (“R”).
The probability of arriving at the correct cell is 1 — 0.1 x N, where NN is the number of
the neighbors of the current state, including itself. If the system hits the wall, it will be

bounced back to its original cell.

3.5.1 Planning without PCTL Constraints

The first experiment is designed to observe the relation between the state-relevance weights
and the approximation error and to justify the choice of state-relevance weights in the
problem (3.4). The planning objective is to find an approximately optimal policy that drives
the robot from the initial position sy = [0, 0] to the goal goal = [8,10] while avoiding
obstacles. The reward is defined as the following: the robot receives a positive reward of
100 when executing an action @ € A at the state s € S only if P(s404 | 5,a) > 0.5.

The value function approximation is Vy(s) = ®6, where the basis functions ¢ =
(1, @2, - -, @Kc] are geodesic Gaussian kernels [115] defined as the following: ®;(s) =
k(s,c;) and k(s,s") = exp(—SPQ(Z’§I)2), where {¢; | 1 < j < K} is a set of preselected

centers. In this example, we select the centers to be {(z,y) | z,y € {0,5,10}} and the

variance o to be 5. The term SP(s, s) refers to the shortest path from state s € S to state
s’ € S in the graph, assuming deterministic transitions.

The parameters used in the algorithm are the following (with respect to Section 3.4.3):
the temperature parameter 7 = 5, the growth rate b = 1.1, the learning rate 7; = 0.1, the
initial penalty parameter v° = 10.0, the initial Lagrangian multipliers A\ = 0. During each
iteration, 30 trajectories of length < 6 are sampled. The algorithm converges after 4 outer
iterations, with 164, 24, 8, 1 iterations for each outer iteration. Figure 3.3 shows the result
of 100 independent experiments for solving the same planning problem starting with the
same initial parameter ¢, which is a zero vector. The black line represents the mean, the
shaded area is limited by the maximum and minimum values over iterations, and the red
line is the ground truth. The black line is above the red line after the convergence. This

is expected as the value function approximation is an upper bound of the optimal value
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Figure 3.1: (1) The grid world with initial (triangle), goal (star), obstacles (solid
squares), and no PCTL constraints. (2) The grid world with PCTL constraint « —-
Pr>s(C<130 ='b), where A and B are regions marked in the graph.
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Figure 3.2: (1) Approximate value function obtained with the proposed ADP method. (2)
The ground truth value function obtained with softmax value iteration.

function.

To illustrate the approximation error, we compare the optimal and approximate-optimal
value functions depicted in Figure 3.41, which plots the error Vy(s) — V*(s) on each state
s € S. Figure 3.42 shows state visitation frequency under the computed policy. It shows
that the error tends to be very small for a state with a high visitation frequency under the

optimal policy. This result is expected due to our choice of the state-relevance weights



3.5. CASE STUDY 31
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Figure 3.3: The learning curve for the stochastic grid world with no PCTL formulas,
averaged across 100 runs of the ADP algorithm with the same initialization.

that have larger weights for states with high visitation frequencies. Figure 3.11 plots one

simulation generated by following the computed policy.
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Figure 3.4: (1) The error heatmap Vy-(s) — V*(s). (2) The state visitation frequency
heatmap under policy 7y«
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Figure 3.5: The Convergence of Parameters.

3.5.2 Planning with PCTL Constraints

Let us consider a set AP of atomic propositions:
* a: robot reaches region A.
* b: robot reaches region B.

Given such a set AP of atomic propositions, we have a PCTL constraint a =—
Pr>s(O C<130 <'*b): When the agent visits region A, then it will ensure, starting from the
next state, with a probability of at least 0.2, to eventually visit region B in less than 14 steps
with a cost less than 13. Region A and B are shown in Figure 3.12. Let d: S x A — R be
defined by d(s,a) = 1,¥(s x a) € S X A, i.e., receiving a cost of 1 if an action is taken.
We use the same value function approximation, the same stopping criterion for the
inner optimization, and the same set of parameters with different initial penalty parameters
Y = 10.0 and v = 500 for constraints (3.4a) and (3.4b), respectively. For each iteration,
there are 30 trajectories (of lengths < 6) sampled and another 100 trajectories (of lengths =
15) starting from region A for the chance constraints. Given § = 0.2, Figure 3.5 shows the
convergence of the parameters. Even by adding PCTL constraints, the algorithm converges
after 4 outer iterations. Figure 3.12 shows two trajectories simulated by following the

computed policy. In one sampled trajectory, the system reaches A and then B with a cost
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Table 3.1: Frequencies of satisfying paths under different ¢.

The value of § 0.0 01 02 03
Number of satisfying paths 3130 2227 4581 7410
Percentage of satisfying paths | 0.15 0.11 0.23 0.37

less than the given threshold. In another sampled trajectory, the system does not visit
region A and directly goes to the goal.

We tested the algorithm with different values for §. Table 3.1 shows the frequencies
of trajectories satisfying the cost constraint () C<13 ='b under different values for §
after the empirical evaluation of 2 x 10* trajectories starting from A. In all experiments,
the PCTL constraint is satisfied. The result shows that as J increases, the probability of

satisfying the constraint increases, but not monotonically.

3.6 Conclusion

We have presented an approximate dynamic programming method for MDP with PCTL
constraints. We proposed a method that first translates PCTL constraints into chance
constraints and then uses stochastic programming for solving an upper bound of the
optimal value function subject to constraints where PCTL formulas are encoded. We
provide the almost sure convergence of the proposed algorithm under several assumptions.
In the next chapter, we are interested in extending this method to a large class of temporal

logic formulas, for which finite memory is needed for optimality.






Chapter 4

Topological Approximate Dynamic
Programming with Temporal Logic
Specifications

4.1 Overview

This chapter extends the ADP method for a stochastic system modeled as an MDP. The
planning objective is to maximize the (discounted) probability of satisfying constraints
expressed in a subclass of temporal logic—scLTL formulas [12].

This chapter proposes a different approach to mitigate the challenges in RL with sparse
reward signals from LTL other than reward shaping. Our approach is inspired by the
efficient value iteration [30]: In an acyclic MDP, an optimal backup order exists, such
that each state in the MDP only needs to perform a one-step backup operation in value
iteration [18]. Authors [30] generalize the optimal backup order for an acyclic MDP
to a general MDP. They develop a topological value iteration method that divides an
MDP into several strongly connected components (SCC). Then, they solve the values of
states for each component sequentially in the computed topological order. Although it
seems straightforward to apply topological value iteration to the product MDP, obtained
by augmenting the original MDP with a finite set of memory states related to the task, the
solution suffers from the scalability issue. However, the ADP method in section 3.4 can
mitigate this. The ADP method uses value function approximations to approximate the
optimal solutions for large-scale problems. Hence, we propose a topological approximate

dynamic programming (TADP) method that includes two stages. Firstly, we translate the

35
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task formula into a DFA referred to as the fask DFA. We exploit the graphical structure

in the task automaton to determine a topological optimal backup order for a set of value
functions—one for each discrete state in the task DFA. Transitions in the task DFA relate
value functions that jointly determine the optimal policy based on the Bellman equation.
Secondly, we introduce function approximations for the set of value functions to reduce the
number /N of decision variables—the number of states in the product MDP—to a number
M of weights in function approximations, where M < N. Finally, we integrate an ADP
method with the backup ordering to solve the set of value function approximations for each
task state in an optimal order. By doing this, the learning algorithm receives meaningful
gradient information that gets propagated back to earlier stages of task completion when
the system receives a reward when it completes a task in later stages.

Exploiting the structure of a task DFA for planning has been considered in [106],
where the authors partition the task DFA into SCC and then define progress levels towards
satisfaction of the specification. This chapter formally defines a topological backup order
based on the causal dependency among states in a task DFA. We prove the optimality
of this backup order. Further, this backup order potentially can be integrated with the
actor-critic method for LTL-constrained planning in [126] or other ADP methods that
solve value function approximations to address the sparse reward problem.

The rest of the chapter is structured as follows. Section 4.3 provides the necessary
background on modeling stochastic systems under temporal objectives in LTL formulas.
Section 4.4 contains the main results, including computing the topological order, proof
of optimality in this order, and the TADP algorithm. The correctness and effectiveness of
the proposed method are experimentally validated in Section 4.5 with a robotic motion

planning example. Section 4.6 summarizes.

4.2 Related Work

When a high-level specification is in an LTL formula, the problem becomes synthesizing
a policy that maximizes the probability of satisfying an LTL formula, which was first
introduced by Ding et al. [39] in 2011. The two major ways of approaching this satisfaction
problem are automaton-based and constraint-based approaches.

Constraint-based approaches [70, 110, 129] formulate constrained optimizations, where
LTL formulas are encoded in constraints. These constrained optimization approaches lever-

age the modern solvers and achieve substantial accomplishments in theoretical results [129]
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and applications [66]. Especially, Wolff er al. [129] formulated a mixed-integer linear
programming (MILP) problem for optimal control of nonlinear systems. They encoded
LTL specifications as mixed-integer linear constraints to avoid the construction of the task
automaton. However, MILP suffers from mathematical difficulties when the problem size
becomes large because solving a MILP is an NP-complete problem. Shoukry et al. [110]
investigated a multi-robot motion planning problem with tasks expressed in a subset of
LTL formulas. They first formulated a feasibility problem using Boolean and convex
constraints. They then followed a satisfiability modulo convex programming approach to
decompose the problem into efficiently solvable smaller problems. However, constraints

of these constraint-based methods generally only tackle a subclass to LTL formulas.

Alternatively, works following automaton-based approaches [46, 56, 57, 73] either
learn an approximate model and then use model-based methods or directly use model-free
methods to address the lack of system model knowledge. For a model-based approach,
Fu et al. [46] first proposed an algorithm that learns a probably approximately correct
MDP. Then they applied value iteration (model-based) to synthesize a policy. However,
learning a probably approximately correct MDP takes extra computational time. On the
other side, Hasanbeig et al. [57] proposed a model-free RL algorithm (i.e., Q-learning) to
produce a policy for an product MDP with a synchronous reward function dependent on the
acceptance condition. This approach’s theoretical soundness opened a vast research area for
applying state-of-art model-free reinforcement learning algorithms to learn optimal policy
following the automaton-based approach. However, their work is still only demonstrated

on discrete systems.

To improve learning efficiency, hierarchical planning is developed [38, 64, 105]. Joth-
imurugan et al. [64] developed a compositional learning approach that interleaves high-
level planning and RL algorithm. First, this learning approach encoded the specification as
an abstract graph; intuitively, the vertices and edges of the graph correspond to regions of
the state space and simpler sub-tasks, respectively. Their approach then incorporated RL
to learn neural network policies for each edge (sub-task) within a Dijkstra-style planning
algorithm to compute a high-level plan in the graph. However, this work still requires a

dynamic system model in high-level planning.

Despite the theoretical success and impressive experimental demonstration of fol-
lowing the automaton-based method and adopting model-free reinforcement learning
algorithms [48,75], the sparse reward remains a challenge when a system only receives

a few reward signals in a gigantic/continuous space, leading to no gradient information.
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Icarte et al. [61] proposed reward machines, a finite state machine that supports the specifi-

cation of rewarding function while exposing reward function structure. In doing so, the
agent could exploit the function’s internal structure to learn optimal policies more sample-
efficiently. They introduced different methodologies to exploit this structure to support
learning, including automated reward shaping, task decomposition, and counterfactual
reasoning with off-policy learning. Further, they showed that the reward machines have
the expressive power for regular language and support loops, sequences, and conditionals,
as well as the expression of temporally extended properties typical of linear temporal
logic and non-Markovian reward specification. Jiang et al. [63] presented the first reward
shaping framework for average reward learning that proves that, under standard assump-
tions, the optimal policy under the original reward function can be recovered. They used a
temporal logic formula to construct the shaping function that provides additional rewards.

However, it is difficult to find a reward shaping function to keep policy invariant.

4.3 Preliminaries: Product MDP

Recall that optimal planning for MDPs with high-level specifications in LTL formulas falls
into two categories: automaton-based and nonautomaton-based. This section provides the
necessary background for optimal planning following the automaton-based approach. We
introduce the product MDP to model the stochastic system with a high-level specification
in scLTL, a subclass of LTL.

Definition 6 (Product MDP).
Given a labeled MDP M = (S, A, P, so, L, AP) andaDFA A = (Q, ¥, §, ¢, F') associated
with an scLTL formula ¢, a product MDP is a tuple

M = M®-’4: <Z7AaA7207~F>7
where the components of M are defined as follows:

e Z: S x (@ is a set of product states. Every product state z = (s,¢) € Z has two

components:

— s1s a state in MDP.

— ¢ is an automaton state keeping track of the progress towards satisfying the

specification.
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e A is a set of actions inherited from MDP.

* A: Z x Ax Z — [0,1] is a new transition probability function: for each product
state z = (s,¢q) € Z, action a € A, and next product state 2’ = (s',¢') € Z,

A((s' ) | (s,9),a) = P(s" | 5,a) 1(q" = 6(q, L(s'))).

* 29 = (S0, qo) is the initial state that includes the initial state s, in MDP and ¢y =
A(e, L(sg)), where ¢ is the initial state of the DFA A.

 F =5 x F is the set of final states, where F' is the set of accepting states in DFA
A. Any product state (s, q) € F is a sink/absorbing state. By entering these states,

the system satisfies the specification and will never come out again.

Recall from Chapter 2, a finite path p = sgagsia; - - - € PATH satisfies the formula
v; we denote it as p = . We are interested in solving a MaxProb problem defined as

follows.

Problem 2 (MaxProb Problem). Given an MDP and a high-level specification expressed
in an scLTL formula ¢, the MaxProb is to learn an optimal policy 7* that maximizes the
probability of satisfying the formula ¢. Formally,

o0

7 =argmax E, [ » 1(p: = ¢)], (4.1)
mell —0

where p; = spagsiay .. .s; € PATH.

To solve the MaxProb problem, we introduce the reward function defined over the
product MDP. The reward function R: Z x A — R maps the current product state and
action into a real value, where R(z, a) is the reward for executing action a € A at product
state z € Z. Formally, for each product state z = (s,q) € Z, action a € A, and next
product state 2’ = (s',¢') € Z,

R(z,a):l(zeZ\f)ZA(z’ | z,a) 1(2" € F). 4.2)

z'eZ
Equation (4.2) describes that a reward is only received transiting from a product
state not in final states F to a product state in final states /. Given the defined reward
function (4.2), the MaxProb problem becomes an optimal planning problem on product

MDP whose objective is to maximize the excepted sum of rewards. We term the excepted
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sum of rewards as value function V. A value function V starting at a product state

z = (s,q) € Z following policy 7 is defined as follows:
V(2) = Epopr)[ DV Rz, a0)], (4.3)
t=0

where p = zpagz1a; . .. zia - - - € PATH™(2), and 7y € [0, 1) is a discounting factor. The
goal of the optimal planning problem is to learn an optimal policy that maximizes that
expected sum of rewards. Slightly abusing the notation, we introduce the randomized
policy m: Z x A x Z — [0, 1] over product MDP. The optimal policy 7* is achieved only
if: forall z = (s,q) € Z,

7*(z) = argmax V" (z). (4.4)

mell

4.4 Main Result

We are interested in developing ADP algorithms for solving the MaxProb problem. How-
ever, suppose we directly solve for approximately optimal policies in the product MDP
using the method in Section 3.4, as the reward is sparse. In that case, sampling a path
satisfying the specification becomes a rare event. As a consequence, the estimate of the
gradient in [76] has a high variance with finite samples. To address this problem, we
develop TADP that leverages the structural property in the task automaton to improve the

convergence due to sparse and temporally extended rewards with LTL specifications.

4.4.1 Hierarchical Decomposition and Causal Dependency

Reward function (4.2) introduces the sparse reward issue. That is because if the state
space is large or continuous, the system has difficulty transiting into a state in final states
F and receiving a reward. To address the reward sparsity, this section introduces the
topological order to generalize the optimal backup order in MDP [18] to that in product
MDP. The generalized optimal backup uses the causal dependence to direct the value
backups, resulting in a more efficient value learning process. Optimal planning over
product MDP with the generalized optimal backup order shall guarantee the optimality of
the value function.

Causal dependence was first introduced in [30] to describe a state’s value depending

on its successors’ values.
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Definition 7 (Causal Dependence in MDP [30]).
If there exists an action a € A such that P(s’ | s,a) > 0, and the Bellman equation'

indicates )V (s) is dependent on V(s), then state s causally depends on state s’

Causal dependency suggests it is more efficient to perform backup on state s’ before

state s. This observation leads to the optimal backup order in MDP.

Theorem 3 (Optimal Backup Order [18]). If an MDP is acyclic, then there exists an
optimal backup order. The optimal value function can be found with the optimal backup

order, where each state needs only one backup.
We can generalize the causal dependence in Definition 7 to product MDP.

Definition 8 (Causal Dependence on Z).

In product MDP M, a state (s, ¢) is causally dependent on state (s, ¢'), the causal depen-
dence on Z is a subset — of the set {((s,q), (s',q) | (s,q),(s',¢") € Z)}. If there exists
an action a € A such that A((s',¢') | (s,q),a) > 0, then ((s,q), (s',¢')) €—, and we
write it as (s, q) — (¢, ¢).

But, we observe that on DFA, if there exists a symbol o € 3 such that ¢ = L(q, o),
and the automaton state ¢’ makes more satisfaction progress than automaton state ¢, then
we should perform backup on product state (', ¢’) before product state (s, q) for any
s, s €8.

Given such observation, we define the invariant set and guard set in product MDP,

which are generalizations of similar definitions in Markov chains [45].

Definition 9 (Invariant Set).

Given an automaton state ¢ € () and an MDP M, the invariant set of ¢ with respect to M,
denoted by Inv(q, M), is a set of MDP states such that no matter which action is selected,
the system has probability one to stay within the state ¢q. Formally,

Inv(g, M) ={s€ S|Vae A Vs € S,P(s' | s,a) >0 = 0(q, L(s")) = q}. (4.5)

Definition 10 (Guard Set).
Given automaton states ¢, ¢’ € (Q and an MDP M, the guard set of ¢ and ¢’ with respect
to M, denoted by Guard(q, ¢’, M), is a set of MDP states where there exists an action

'Mellowmax operator 7 defined in Equation (4.7) is adopted in this work.
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a € A, and the system can transit from ¢ to ¢’ with a positive probability by taking such an

action a € A. Formally,

Guard(q,¢,M)={se S|Jae A,3s' € S,P(s' | s,a) >0AN(¢q, L(s")) =¢'}.
(4.6)

We provide the following example to help understand the defined invariant and guard

sets.

Example 4. Going back to Example 2, given a labeled MDP M = (S = {sq, s1, $2}, A =
{a1}, P, so, L, AP = {s2}), the reachability objective of the MDP can be described by
the formula ¢ so, where the associated DFA is in Figure 4.12. By Definition 9 and 10, we

Guard(qy, g1, M) Inv(q;, M)

a : 0.5 ap : 0.6 ap : 1.0

BT cios D

start —( So a:0.5 1 ap:04 . :

2 )

{90} feo e by - -
(1

0 T

{s2}
start —( 4o >

(2)

Figure 4.1: (1) M = (S = {s¢, 51,52}, A = {a1}, P, so, L, AP = {s2}), where the
satisfaction progress is labeled beneath the state. (2) The DFA accepting the formula ¢ ss.

have Inv(q;, M) = {s2} and Guard(qy, ¢;, M) = {s1}.

With the definition of the guard set in Definition 10, we define causal dependence on

automaton state space Q).

Definition 11 (Causal Dependence on ().
Given a DFA A, the causal dependence on () is a subset — of the set {(¢,¢’) | ¢, ¢ € Q}.
If Guard(q, ¢, M) # (), then (¢, ¢') €—, and we write it as ¢ — ¢'.
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If g1 — g2 and g2 — q1, then we say ¢; and ¢, are mutually causally dependent, and
we denote it as ¢; <> ¢». However, when ¢; <+ ¢», it becomes unclear that in which order
product state (s1, ¢) and product state (s, go) should be updated when there exists actions
ai,as € Asuch that A((s2,q2) | (s1,¢1),a1) > 0and A((s1,q1) | (s2,42),az2) > 0. Itis
natural to group these automaton states that are mutually causally dependent and update
these corresponding product states together.

A meta-mode X C () is a subset of automaton states mutually causally dependent
on each other. If an automaton state ¢ is not mutually causally dependent on any other

automaton state, then the set {¢} itself is a meta-mode.

Definition 12 (Maximal Meta-Mode).

Given a DFA A, a maximal meta-mode X is a subset of () such that:
* Forevery state ¢q,¢' € X, q > ¢'.

* For every state ¢ € X, for every state ¢ € Q \ X, ¢ ¥ ¢'.

‘We denote the set of all maximal meta-modes as X.

Lemma 7. The set X’ of all maximal meta-modes is a partition of automaton state space
Q, i.e., Q = UXGXX-

Proof. By way of contradiction, if X" is not a partition of automaton state space (), then
there exists an automaton state g such that ¢ € X N X’. Because ¢ is mutually causally
dependent on all states in X as well as X', then any pair (q;, g2) € X x X’ will be mutually

causally dependent—a contradiction to the definition of X'. 0
We next define the causal dependence on the set X" of all maximal meta-modes.

Definition 13 (Causal Dependence on X).

Given Definition 12, the causal dependence on X is a subset — of the set {(X, X’) |
X, X" e X}. If there exists ¢ € X, ¢ € X', and ¢ — ¢/, then (X, X') €—, and we write
itas X — X'

If X; — X5 and Xy, — X3, for simplicity, we write it as X; —1 X3. The following
lemma suggests that two product states in the product MDP can be causally dependent if

their discrete dependent modes are causally dependent.
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Lemma 8. Given two meta-modes X, X’ € X,if X —T X’ but not X’ —* X, then for
any state (s,q) € S x X and (s, ¢') € S x X', one of the following holds:

* (s,9) =7 (¢,¢) and (s, ') A7 (s,9)-

* (s,q) and (¢, ¢') are causally independent.

Proof. We prove the first case by way of contradiction. If (s,¢) =T (s',¢') and (¢',¢") =+
(s,q), then there must exist a product state (s”,¢"”) such that (s',¢") =T (s”,¢") and
(s",q") — (s,q). Relating the causal dependence on product states in Definition 8 and
the definition of the guard set in Definition 10, we have s” € Guard(q”, ¢, M) and
¢’ — q. This implies ¢ —* ¢” — ¢, and we have X’ —* X, which is a contradiction to

X' 471 X. The second case is obvious, and the proof is omitted. O]

Lemma 8 provides structural information about backup order on product states; that is,
if X -7 X’and X’ /A" X, then we should first update the product states {(s,q) | Sx X'}
then the product states {(s,q) | S x X}.

X0 X1 X9
start —( 40 td E @ ; o} @

Figure 4.2: The set of maximal meta-modes X' = { X, X1, X5, X3} on the DFA accepting
the formula .

Example 5. Continue on Example 1. We use the Kosaraju-Sharir’s algorithm [3] to
obtain the set of maximal meta-modes X = { X, X1, Xo, X3}, where X = {q}, X; =
{q1,¢2}, Xo = {¢3}, and X3 = {qu}. We draw the set of maximal meta-modes in
Figure 4.2. However, Lemma 8 does not provide a fofal order over X'. That is because
two maximal meta-modes can be causally independent. In this example, X» = {¢3} and

X3 = {qu} are causally independent.
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Two causally independent maximal meta-modes exist in Example 5, and we cannot
decide the backup order. To address this, we provide Algorithm 2 to obtain a set {L£; | 0 <

i < n}, termed a set of level sets over meta-modes.

Algorithm 2: Computation of Level Sets over Meta-Modes

Input: Set of maximal meta-modes X'.

Output: Set of level sets over meta-modes {L£; }.

Initialization: Lo ={X € X | FN X 0V {gn} N X #0},i = 1.

1: while »Ci—l 7é @ do
2 X =U_ Ly
32 L;={XeX\X|IX' €L, 1,X = X VX" e X\(XYU{X}), X A X"}
4. 1=1+1
5
6

. end while
c return {£; | j <i—1}

L) L Ly
{d) '

start —( G0

—~—
(=
—
(&)
w

Figure 4.3: The set of level sets over meta-modes { Lo, L1, Lo} on the DFA accepting the
formula ¢.

Example 6. Continue on Example 5, we use Algorithm 2 to obtain a set of level sets
over meta-modes {Ly, L1, Lo}, where Lo = {Xo, X3}, £ = {X1}, and Lo = {Xo}.
We visualize the set of level sets over meta-modes {Lg, L1, L2} in Figure 4.3, where
Lo={g3,0}* L1 ={q1, 2}, and L = {qo}.

2We are supposed to write Lo = {{g3}, {g4}}. For notional convenience, we denote an automaton state
g atlevel £; as g € L;.
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By way of construction, the set of level sets groups two causally independent meta-

modes that depend on the same level together; We introduce topological order on the set

of level sets.

Definition 14 (Topological Order).

Given a set of level sets over meta-modes {£; | 0 < i < n}, a topological order is a subset
~of the set {(L;,Lx) | L;,Lr € {L; |0 <1i<n}}. Ifj=k+1,then (L;, Ly) €,
and we write is as £; ~» L. We denote the topological order for the set of level sets over

meta-modes {£; | 0 < i < n} as follows:
Enw‘cn—lw"'w‘clwﬁo‘

Given Definition 14, we define the generalized optimal backup order in reverse to the

topological order.

Theorem 4 (Generalized Optimal Backup Order). Given a probabilistic planning problem
for product MDP and the topological order, if we update the value function of each level
set in reverse to the topological order ~~, then the optimal value function for each level set

can be found with only one backup operation.

Proof. We show this by induction. Suppose we have a set of level sets {L}, the problem
is reduced to optimal planning in a product MDP that performs only one update for
the value function in £,. When we have {£; | ¢ > 0}, for 1 < i < n, Line 2 in
Algorithm 3 performs a value update for level set £;, where value V(s, ¢) only depends on
the values of its descent states; that is, the value V(s, ¢) depends on the values of the set
{V(,q) | (s,q) = (s',¢')}. Ttis noted that any descendant automaton state ¢’ of the state
(s, q) must belong to L, for some k& < i. It means the value of any descendant V(s', ¢’) for
(s,q) is either updated in level Ly, k < 4, or along with the value V(s, ¢) when k = i. As a
result, when the value function {V(s,q) | s € S, q € L;} converges, it remains unchanged.
Value function in higher level sets updates without affecting level <. Thus, each level set

only needs to be updated once. 0

Given the set of level sets over meta-modes {£; | 0 < i < n}, we propose Algorithm 3
for solving the planning problem over product MDP optimally. The Algorithm starts with
all values being 0 for any states (s, q) € S x L. That is because level set L, only contains
the final states or the sink state. Then for level ¢, Line 2 in Algorithm 3 can call any optimal
algorithm to solve the values for any states (s,q) € S x L; given the values for any state

(s',q") € S x Ly, where i < k, have learned.
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Algorithm 3: Topological Guided Value Learning
Input: Set of level sets over meta-modes {£; | 0 < i < n} and product MDP M.
Output: Optimal value function V.
Initialization: Let Vy(s,q) = 0, for all (s,q) € S x Ly.
1: for:=1tondo
2:  Call any optimal algorithm to solve the value function V(s, ¢) for
all (s,q) € S x L,.
3: end for

4.4.2 ADP for Planning with Temporal Logic Constraints

This section first formulates a constrained optimization problem to solve the optimal value
function for level ¢ (Line 2 in Algorithm 3) over product MDP.

The value function for level 7 can be solved optimally in a constrained optimiza-
tion problem. First, we introduce the optimal mellowmax operation 7 as follows: for
all (s,q) € S x Q,

TV(s,q) =7log Y _exp{Q((s,q),a)/7}, (4.7)

acA

where the state-action value function Q is defined as follows:

Q((S7 Q)a a) = R((S7 Q)7 (l) + Y E(s’,q’)~A(~|(s,q),a) [V(Sla q,)]7

and 7 > 0 is a user-specified temperature. If 7 — 0, then mellowmax operator 7 recovers
the operator max.
Given optimal values V*(s, ¢) for all (s, q) € S x Ly, where k < i, we formulate the

problem for level ¢ as follows (similar to the linear programming formulation [34]):

min Z c(s,q) V(s,q) (4.8)

v (S,(])GSXLZ‘
s.t. T V(s,q) —V(s,q) <0,Y(s,q) € S X L;

Recall that the set {c(s,q) | (s,q) € S x L;,c(s,q) > 0} is termed as state-relevance
weights. In problem (4.8), V(s ¢) is to be solved if ¢’ € L£; or has been solved if ¢’ € L,
for some £k < 1.

The solution to the problem (4.8) is the optimal value function V*(s, q) for all (s, q) €
S x L;. We have the optimal state-action value function Q" is defined as follows: for
all (s,q) € S x L;,

Q*((s,q),a) = R((s,q),a) + YE ¢)oaci(sa.a0V (s, d)],
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and the corresponding optimal policy is defined as follows: for all (s,q) € S X L;, a € A,

m(a ] (s,q)) = exp{(Q((s, 9), @) = V(5,9))/7}.

We introduce a value function approximation for each ¢ € X as follows: For each
q € X, the value function is approximated by Vg, : S — R, where 0, € R/%l is a
parameter vector of length |,|. We use a linear function approximation of Vj, (s) =
‘,fill Ghq(5)0kq = Pyb0,, Vs € S, where ¢y, ,: S — R,and 1 < k < |6,] are pre-selected

basis functions.

Remark 3. A value iteration using the softmax Bellman operator finds a policy that
maximizes a weighted sum of total rewards and the entropy of the policy [93]. When
the value/reward is small, the total entropy of policies accumulated with the softmax
Bellman operator overshadows the value given by the reward function. Thus, when the
value V((s', ¢'); 6,) of the state to be reached is small, we scale this value by a constant «
to avoid the value overshadowed problem. Given the nature of the MaxProb problem, with
a reward of 1 being assigned when the LTL constraint is satisfied, we almost always need

to amplify the reward to avoid the value overshadowed problem.

4.5 Case Study

We validate the algorithm in a motion planning problem under an scLTL specification in a

grid world. In this example, we consider the set AP of the following atomic propositions:

* a: robot reaches region A.

b: robot reaches region B.

c: robot reaches region C'.

d: robot reaches region D.

o: robot reaches obstacles.
* goal: robot reaches goal region.

This specification describes that the system needs to avoid obstacles and satisfy one of

the following:

» System visits A, C', and goal sequentially.
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» System visits B, D, and goal sequentially.

Regions A, B, C, D, obstacles, initial, and goal are shown in Figure 4.4. Given the
set AP of atomic propositions, this task can be captured by the following specification:
O(((an (=bUc)) V (bA (—maUd))) A ¢ goal A d—0), and the corresponding DFA is
plotted in Figure 4.5. The partitions of meta-modes are shown in Figure 4.5, with different
meta-modes being boxed in different styled rectangles. The task automaton is partitioned
into four meta-modes {X; | 0 < i < 3}, and each level set £;, for 0 < i < 3, contains one
meta-mode with the same index. The reward is defined as the following: the robot receives
a reward of 60 (an amplified reward for avoiding value diminishing) if the trajectory
satisfies the specification. In each state s € S and for the robot’s different actions: heading
up, heading down, heading left, heading right, the probability of arriving at the "correct"
cell is 1 — 0.03 x |N|, and the probability of arriving a "wrong" cell is 0.03, where 0.03
is the randomness in the system and | N| is the number of possible succeeding states. We
surround the gird world with walls. If the system hits the wall, it will be bounced back and
stay in its original cell. All the obstacles are sink states; that is, it stays there forever when

a robot goes to an obstacle.
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Figure 4.4: One simulation on the grid world.

The planning objective is to find an approximately optimal policy for satisfying the
specification with a maximal probability. We compare the TADP with value iteration and

topological value iteration to show the correctness and efficiency.
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Figure 4.5: Automaton ¢ (((a A (=bUc)) V (b A (maUd))) A ¢ goal A 0—0), where
meta-modes and the level sets are marked.

We use the following parameters: the user-specified temperature 7 = 2, discounting
factor v = 0.9, and error tolerance ¢ = 102, The tolerance is shared by topological value
iteration, value iteration, and TADP, where the stopping criterion is maX|Vj — V7 71| <e€
for j-th iteration of in topological value iteration and value iteration and for each inner
j-th iteration of TADP, respectively.

We adopt the following initial parameters in the TADP algorithm for the %k-th problem:
the coefficient of the penalty b = 1.5, the learning rate = 0.1, the penalty parame-
ter v = 2.0, and the Lagrangian multipliers A = 0. During each inner iteration, we
sample 30 trajectories of length < 3. For each s € S, the value function Vg, (s) is
approximated by a weighted sum of Gaussian Kernels: Vg (s) = ®,0,, where basis
functions ®, = [¢1, 2, ..., Pp,|] are defined as the following: ®;(s) = K(s,c;) and
K(s,s') = exp(—spz(:f/)g), where {c; | 1 < j < 6,|} is a set of pre-selected centers and

o = 1. In this example, we select the centers to be uniformly selected points with interval

1 within the grid world.

After the TADP converges, we obtain the policy from the converged value functions
computed by TADP and simulate the system. We plot one system simulation in Figure 4.4.
The system starts at the initial state sq; then it visits region A, then region C', and eventually
it visits the goal state goal.

Figure 4.6 plots the heatmaps and values for different states at g; obtained by value
iteration, topological value iteration, and TADP. In heatmaps, the brighter the area is, the
higher value of that area is. Figures 4.61 and 4.62 show that value iteration and topological

value iteration both show that the most bright area is at [7, 7]. In Figure 4.63, the area
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around [7, 7] obtained has a relatively bright color. The heatmap of TADP is not the same
as the other two. This is due to the approximation error. Comparing three value surfs in

Figures 4.71, 4.72, and 4.73, we can see the similarity between these three value surfs.

State: Q3 State: Q3 State: Q3

. . 1 T[] T
I O O N . 0

(1) 2 (3)

Figure 4.6: (1) The heatmap of V(-, ¢3) obtained by value iteration, topological value
iteration, and TADP. (2) The heatmap of V(+, ¢3) obtained by topological value iteration.
(3) The heatmap of V(-, g3) obtained by TADP.
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Figure 4.7: (1) The value surf of V(+, ¢3) obtained by value iteration, topological value
iteration, and TADP. (2) The value surf of V(+, ¢3) obtained by topological value iteration.
(3) The value surf of V(+, g3) obtained by TADP.

We conduct two experiments for different sizes of grid worlds, i.e., 10 X 10 and 20 x 20.
We show the results in Table 4.1. In different sizes of gird worlds, comparing value
iteration and topological value iteration, the runtime is reduced by 38.45% and 53.62% by
exploiting the topological structure. The total numbers of Bellman Backup Operations
are reduced by 7.71% and 7.76%. The decomposition occupies major CPU time in simple
specifications, but exploiting the topological structure will be leveraged if more complex
specifications are associated. The TADP converges after 135.96 seconds and 1117.91
seconds, respectively, for different sizes of grid worlds. The runtime of the topological
value iteration and value iteration in a 20 x 20 grid world are 14-20 times their runtime in

a 10 x 10 grid world. However, the runtime of TADP in a 20 x 20 grid world is only 8
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times the runtime of TADP in the 10 x 10 grid world. TADP is more beneficial in large
MDP problems or with more complex specifications. It is noted that though TADP takes,
in general, a longer time to converge, it is scalable. Topological value iteration and value

iteration do not scale.

Algorithms value iteration topological value iteration =~ TADP
10 % 10 Bellman Backup Operations (times) 64620 59636 N/A
Runtime (Seconds) 11.52 7.09 135.96
20 x 20 Bellman Backup Operations (times) 280620 258836 N/A
Runtime (Seconds) 222.56 103.21 1117.59

Table 4.1: Bellman Backup Operations and runtime between value iteration, topological
value iteration, and TADP. Note that topological value iteration has a significantly shorter
runtime.

In Figure 4.8, we plot the convergence of values for different states in the 10 x 10 grid
and states in automaton against epochs, which is the number of inner iterations in TADP.

It indicates that the values initially oscillate, but all values converge after 250 iterations.

Convergence of different states
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Figure 4.8: The convergence of values in TADP in the 10 x 10 stochastic grid world for
different states in the product MDP. A product state [5, 5, 3] means the grid cell [5, 5] and
the DFA state g3.

We want to quantify and compare the performance of different methods. We update
the policies from converged value functions computed by TADP and topological value

iteration. We simulate trajectories 500 times and compare the percentage of trajectories
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reaching the goal out of the total. We limit the max time-step to 500; if the system cannot
reach the goal within 500 steps, then the system fails to reach the goal. Moreover, if
the system reaches any sink states, then the system fails to reach the goal. Otherwise,
the system successfully reaches the goal. We conduct two statistical experiments under
the same setting with different starting potions, i.e., [1,2,2] and [2,2,4]. Starting with
[1,2, 2], the percentages of reaching the goal under TADP and topological value iteration
are 66.2% and 86.8%. Starting with [2, 2, 4], the percentages of reaching the goal under
TADP and topological value iteration are 80% and 88.6%. The results indicate that the
policy computed by TADP is suboptimal due to the nature of ADP, but the performance
gap between the two policies is insignificant.

4.6 Conclusion

We present a topological approximate dynamic programming method to maximize the
probability of satisfying high-level system specifications in LTL. We decompose the
product MDP and define the topological order for updating value functions at different task
states to mitigate the sparse reward problems in RL with LTL objectives. The correctness of
the algorithm is demonstrated on a robotic motion planning problem under LTL constraints.
In the next chapter, we will consider using a neural network instead of linear function
approximation and extend this method for solving continuous-state continuous-action

stochastic systems under temporal logic constraints.






Chapter 5

Topological Order Guided
Actor-Critic Modular Learning of
Continuous Systems with Temporal
Objectives

5.1 Overview

Chapter 4 has demonstrated that high-level specifications can define more sophisticated
system behaviors, distinguished from a traditional A-to-B motion planning task. Providing
probabilistic guarantees of high-level specifications brings significant value to a broad
range of safety-critical applications, including robotics [78], military defense [15], cyberse-
curity [21], and other cyber-psychical systems [13]. One most encountered safety-critical
example in robotics is that a robot avoids obstacles. Suppose we can quantitatively evaluate
the probability of a robot running into obstacles. In that case, we can trade this probability
for other decisive factors, such as cost. Despite the theoretical successes and state-of-art
experimental results on formal policy synthesis, there are challenges when implemented in
real-world applications: (1) availability of system models; i.e., the system model is often
unknown. (2) power of handling the continuous-state space; i.e., we encounter continuous
systems almost all the time, while most published results are demonstrated on discrete
systems.

This chapter investigates the formal policy synthesis for continuous-state stochastic

systems with high-level specifications expressed in LTL. Recall that LTL can succinctly
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specify a collection of desired system properties, such as safety, liveness, persistence, and

stability [83]. To learn an optimal policy that maximizes the probability of satisfying an
LTL formula, we follow an automaton-based approach described in Chapter 4. We take
a product between the stochastic system and the task automaton, where we translate the
task automaton via existing LTL-automaton conversion [40]. When the system visits the
final states, it satisfies the specification and receives positive rewards; However, since
this system has a hybrid state space, entering the final states requires extremely high
sampling complexity, raising the sparse reward issue. To mitigate this issue, we leverage
the topological order proposed in Chapter 4 to guide the value backups and help accelerate
the learning process. Topological order provides the structural information on the order of
updating values of product states. Specifically, the system receives reward signals when it
transits from the current level to the previous level whose values have converged and been

optimal.

Further, we propose a model-free RL algorithm where topological order is applicable.
This algorithm only requires paths of the stochastic process but not the system model.
Our proposed RL algorithm is a variant of the actor-critic algorithm. It differs from the
soft actor-critic (SAC) algorithm by the distinctive way of policy evaluation. We evaluate
our policy by solving a sequential optimization problem and leveraging the augmented
Lagrangian method for hyperparameter self-tuning. The proposed actor-critic algorithm
alternates between: (a) policy evaluation and (b) policy improvement. We prove that our
algorithm achieves optimality and convergence in a tabular case. We approximate value and
policy functions with neural networks to tackle storing value functions and policy functions
for hybrid product states. However, by assigning integers to denote automaton states, it
ranks values of different automaton states by integers [133]. Instead, we approximate each
automaton state’s value (policy) functions by individual neural networks, termed modular
learning. Specifically, if there are /N automaton states at the current level, we use 2N

neural networks to approximate values and policy functions.

Compared to minimizing the temporal error like temporal difference learning [119],
our policy evaluation is inspired by the linear programming solution for MDP [34]. By
using the mellowmax operator, we formulate a similar constrained optimization problem.
However, as the system is continuous/hybrid, we transform the original constrained opti-
mization problem into an equivalent stochastic constrained optimization. We only require
the constraints to be satisfied on trajectories sampled in an off-policy manner. Further, to

remove the system model in constraints, we adopt an unbiased estimate to approximate the
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value of the current state by using only the current action, the next state, and the reward
of execution for the trajectories. Similar to Chapter 4, we transform the inequality con-
straints into equality constraints by adopting the augmented Lagrangian method. We solve
this unconstrained optimization problem sequentially, where sequential solving means
solving a sequence of subproblems with a fixed set of hyperparameters. At the end of
each subproblem, we update the hyperparameters. As the number of subproblems solved
increases, solutions of value and policy functions improve. Note that we incorporate policy
improvement into the sequential optimization.

This chapter’s central theoretical contribution is to present a comprehensive, efficient
formal policy synthesis framework for continuous-state stochastic systems with high-level
specifications. Learning a control policy that maximizes the satisfaction probability of
high-level specifications is genuinely intractable when the system model is continuous and
unavailable. We present a sequential, actor-critic RL algorithm only requiring sampled
trajectories interacting with the environment. The algorithm converges and achieves
optimality in a tabular case. Using neural networks is the standard practice to save the
trouble of storing values/policies in continuous/hybrid space. However, we approximate
each value/policy function at each task state by one neural network to break the ordinal
relationship between automaton states denoted by integers. We illustrate the empirical
performance benefited from advanced mathematical methods by comparing our proposed
RL algorithm with baselines. Further, we demonstrate the efficacy of our formal policy

synthesis framework on motion planning of a Dubins car with a temporal specification.

5.2 Related Work

As motioned researchers enjoy [57]’s theoretical soundness for formal policy synthesis, a
general RL algorithms for MDP mainly fall into two categories: (a) model-based methods
(e.g., value iteration, policy iteration, and linear programming [116]) and (b) model-free
methods (e.g., Q-learning [128], deep Q-learning (DQN) [90], deep deterministic policy
gradient (DDPG) [80], and SAC [54]). An RL algorithm incorporates neural networks
to approximate functions to avoid intractable system models and has made tremendous
progress in planning for complex environments [53,54,90, 122]. Lillicrap et al. [80] first
extended Q-learning to the continuous action domain. They adopted an off-policy update
to minimize correlations between samples and a target Q network to produce a consistent

target during temporal difference backups along with batch normalization [62]. Experiment
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results demonstrate that the DDPG algorithm is competitive with algorithms with full

knowledge of models. They also showed that DDPG could learn policies directly from
raw pixel inputs. Haarnoja et al. [54] proposed an off-policy actor-critic deep refinement
learning algorithm to maximize expected reward while maximizing entropy. By combing
off-policy updates with a stable stochastic actor-citric formulation, this method conquered
two major challenges: very high sample complexity and brittle convergence properties,

which requires very fine tuning of hyperparameters.

5.3 Main Result

Recall from Section 4.4.2, given optimal values V*(s, ¢) for all (s, q) € S x Ly, where

k < 1, we formulate the problem for level ¢ as follows:

mvin Z c(s,q) V(s,q) (5.1

(s,9)ESXL;
s.t. T V(s,q) —V(s,q) <0,V(s,q) € S x L;

The corresponding optimal state-action value function Q" is defined as follows: for
all (s,q) € S x L,

Q*((Sa Q)a &) = R<<87 Q)a Cl) + Y E(s’,q’)~A(-|((s,q),a) [V*(Sla q/>]7

and the corresponding optimal policy is defined as follows: for all (s,q) € S x L;, a € A,

m(a | (s,9)) = exp{(Q((5,9),a) = V'(5,9))/7}.

However, problem (5.1) poses constraints on every state in level ¢, which makes the

computation intractable when the product state space is hybrid.

5.3.1 Sequential actor-critic RL

We use neural networks to approximate value function and policy function for level ¢ to
tackle with hybrid product state space. That is because maintaining value and policy for
each product state at level 7 is intractable. Specifically, for all state (s,q) € S x L;, the
approximate value function and policy function are denoted by Vy(s, q) and 74(- | s, ¢q),
respectively, where 6 and ¢ are the corresponding parameters to search. A product MDP

in Definition 6 can be treated as an MDP augmented with an automaton state space.
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Given such observation, for simplicity, we present our algorithm in the conventional MDP
context.

Compared to a classic actor-critic algorithm, where the critic network and actor network
share a common objective function, our proposed actor-critic algorithm provides a novel
policy evaluation mechanism—a constrained optimization. By adopting such a formulation,
we can leverage advanced mathematical techniques for hyperparameter self-tuning. Similar
to the classic actor-critic algorithm, our proposed algorithm consists of two components:
policy evaluation and policy improvement, and alternates between these two. We provide

proof of the convergence and optimality of our algorithm.

Policy Evaluation

We define a mellowmax operator 7" for policy 7: for any s € S,

T™V(s) =Y w(a|5)(Q(s,a) — rlogm(a] 5)).

acA

It can be shown that the value function V" is the solution for the following optimization

problem:
min Z c(s)V(s) (5.2)
st. V(s) >T"V(s),Vs €S

Lemma 9 (Convergence of Policy Evaluation (Extended from Lemma 1 in [34])).

A value function V solves
min Z c(s)V(s)

st. V(s) >T"V(s),Vs €S
if and only if it solves

min || V"= V||1¢
st. V(s) >T"V(s),Vs € S
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Proof. The proof is similar to Lemma 1 in [34] with the replacement of operator 7. It is

known that the mellowmax operator 7" is monotonic and contractive [113]. Given this
and the fact that there is a fixed point V™ such that V" (s) = 7™ V" (s),Vs € S, it follows
that for any V(s) with V(s) > 7" V(s), we have

V(s) > T V(s) > T T V(s) > - > V7(s). (5.3)

Hence, if solution V is a feasible solution to the optimization problem (5.2), then solution
V satisfies V(s) > V"(s), Vs € S. Further, we have

min||V" = V|1 = min » c(s)[V(s) = V7 (s)] (5.4)
ses
=min Y ¢(s)V(s) = > c(s) V7(s) (5.5)
ses seS
Hence minimizing ) _. c(s) V(s) is equivalent to minimizing min||V™ — V||, .. O

If we let ¢(s) = Pr”(s), for all s € S, where Pr" denotes the state marginals of

the trajectory distribution induced by a policy 7, then for any function f: S — R, the

following holds:
SPr()f(s) = Y w0) Y f(s) (5.6)
s€S pEPATHT >0
=By (Y0 £ (50,
>0

where p = spapsia; ... € PATH™, and p™(p) is the probability of a path p € PATH™.
Intuitively, Equation (5.6) states that the expected sum of value on states visited by
following policy 7 is equal to the expected sum of value over paths following policy 7.
Given Equation (5.6) and replacing f with V), the problem (5.2) becomes as follows:
min - E,- D V(s (5.7)
>0

st. V(s) >T"V(s),Vs €S

where p = spagsia; ... € PATH".
We define a function g: S — R such that

g(s) =T"V(s) = V(s) (5.8)
= Zﬂ(a | $)(Q(s,a) — Tlogm(a]|s)) — V(s)
acA

— Zw(a | s)(R(s,a) + YEgp(isaV(s)] — Tlogm(a | 5)) — V(s).

acA
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Given Equations g (5.8) and & (3.5), the problem (5.7) becomes as follows:

min  Epr > V(s)] (5.9)

1%
t>0

s.t. h(g(s))=0,vse S

where p = spagsia; ... € PATH".

Note that g(s), for any s € S, requires the knowledge of the transition probabilities
for the expected value of the next state Ey_p(|s0)[V(s')]. However, we can replace
R(s,a) + vEgp(|sa)[V(s')] with R(s,a) + vV (s) that is an unbiased estimate [116].
We define the unbiased estimate §: S — R as follows: for any state s € .5,

g(s) :Zﬁ(a | $)(R(s,a) +yV(s') —tlogm(a|s))—V(s), (5.10)

a€A

where s’ ~ P(- | s,a).

For a continuous-state MDP, there are an infinite number of constraints in the prob-
lem (5.7). To relieve this, we only enforce on states visited by policy 7 and obtain a new

equivalent problem as follows:

min - By D V(s (5.11)

>0

st By [h(§(s))] =0

where p = sgagsia; ... € PATH".
The augmented Lagrange function of a given path p = spagsia;--- € PATH™ is

defined as follows:

Lo, %, 7) = S V] + SN GE + S 2hG(s))? (5.12)

£>0 t>0 >0

~ Ve, o
= D Wsi) + M(h(@(s0) + 5 h((s0))?]
>0
where p = soags1a; ... € PATH™, and we let X = [\; | ¢ > 0] and 7 = [1; | i > 0].

Given the augmented Lagrange function, problem (5.9) becomes as follows:

min - By [L(p, X, 7)) (5.13)

We solve the problem (5.13) with sequential optimization techniques; sequential

optimization solves a sequence of subproblems with corresponding fixed hyperparameters



CHAPTER 5. TOPOLOGICAL ORDER GUIDED ACTOR-CRITIC MODULAR
62 LEARNING OF CONTINUOUS SYSTEMS WITH TEMPORAL OBJECTIVES

{Xm | m > 0} and {7,, | m > 0}. For m-th subproblem, we aim to solve the following

subproblem:

—

mvin E, .~ [L(p; A, V)] (5.14)

Policy Improvement

Policy improvement is to minimize soft consistency error [93]. Formally:

1
min By [5C(p)’] (5.15)
We define the soft consistency error of a finite path p = sqagsia; - - - sy € PATH™ as
follows:
T-1
Clp) ==V"(s0) + v V7 (s1) + > _+(R(s,ar) — Tlogm(ay | s,)). (5.16)
t=0

It can be shown that # = 7* when J™ = 0.

Lemma 10 (Consistency Implies Optimality [93]). If V and 7 satisfy, for all (s, a) € S x A:
V(s) = R(s,a) + YEgp(s.aV(s)] — Tlogm(a | s),

then Y = V" and 7 = 7*.

Policy lteration

The actor-citric algorithm alternates between policy evaluation and improvement, and it
will converge to the optimal policy in the tabular case [36]. Likewise, it can be shown that

our proposed algorithm converges to the optimal value function and policy function.

Theorem 5 (Policy Iteration extended from [54]). Repeated application of police eval-
uation (5.9) and policy improvement (5.15) to any 7 converges to a policy 7* such that
V*(s,a) > V" (s,a) forall 7 € T and all (s,a) € S x A.

Proof. The proof is similar to Theorem 1 in [54]. Let 7; be the policy at iteration . By
nature of the gradient descent with the appropriate step size, the sequence E,,,~ [1C/(p)?]
+C(p)?] is lower bounded by zero, the sequence
goes to zero. By Lemma 10, the consistency implies optimality; we get an optimal policy

7* such that V*(s,a) > V"(s,a) forall 7 € [T and all (s,a) € S x A. O

is monotonically decreasing. Since E,_ [
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However, we can only perform such an exact algorithm in the tabular case. We
approximate the exact algorithm and propose a practical approximation of Algorithm 4 for
continuous-state MDP.

Given an approximate value function Vy and approximate policy function m,, we

rewrite Equation (5.10) as follows:

gf(s) :Zm)(a | $)(R(s,a) + v Va(s') — Tlogmy(a | s)) — Vo(se), (5.17)

a€A

where s’ ~ P(- | s, a),

Plugging Equation (5.17) in Equation (5.12), the augmented Lagrange function be-

comes as follows:

L3(p.X,7) = Y Volsi) + Mb(@s0) + Sh(@ P (S18)

>0
Correspondingly, m-th subproblem (5.14) becomes as follows:
min o [£5(p, A, Tin)] (5.19)
We use gradient descent to update parameter ¢ as follows:
Oni1 = 0 — V6 By [£57 (03 Ay Ui (5.20)

where 7 is a user-specified learning rate.
Similarly, we approximate the soft consistency error of a finite path p = spags; - - - Sp €
PATH™ defined in Equation (5.16) as follows:

T—1
C(?(P) = —Vo(s0) + ’YT Vo(sr) + Z’Yt(R(St, a;) — 7log 7T¢>(at | s¢)). (5.21)

t=0

The problem (5.15) becomes as follows:
. I 6, (2
m(;n E, [509 (p)7] (5.22)

For rotational connivance, we let Jg’ =E, [%Cg (p)?], and the updating rule for

parameter ¢ is as follows:

D1 = b — NV Ty, (5.23)
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where policy gradient for J, " has the following form:

lp|—2

v¢J§’: =K, on [CZZ (p) Z V'V glogmg, (ar | st)], (5.24)
=0

It is impossible to perform gradient descent in Equation (5.20) and (5.23) due to the
expectation is over all trajectories; we approximate Equation (5.20) and (5.23) with a set
of K trajectories {p, € PATH™n | 1 < k < K} as follows:

K
1 N
9n+1 - 971 - nve g K;Cg): (pk, Am, l/m),
k=1

K lpre|—2
1
Pny1 = On — TIZ ?CZZ(pk) Z V'V logmy, (ar | st).
k=1 t=0

Algorithm 4: Sequential Actor-Critic Algorithm
Output: Parameters 0,,, ¢,,.
Initialization: m = 0, randomly initialize 6y, ¢y, initialize a replay buffer.
1: while m < M do

2:  Sample K trajectories {pr € PATH | 1 < k < K} from the replay buffer.
\Pk\ 1

3:  violation,, = Z Zh

© Oty Omg1 Solve subproblem Oy Oy Xm, Um)
5:  Sample K trajectories {pr € PATH | 1 < k < K} from the replay buffer.
\Pk\ 1

6:  violation,, | = Z Z EJZZL:

70 Amtr 6 At U - tho (gg::f(st))

. By, if violation,,; > € - violation,,
8: Vm+1 —

—

Unm otherwise.
99 m=m-+1

10: end while

11: return Vg 7y

Let us briefly summarize the proposed actor-critic algorithm in Algorithms 4 and 5:
Recall that we use sequential optimization to solve the policy evaluation, and the policy
improvement adapts to that mechanism. The difference is that no dual variables for policy
improvement need updating for the next subproblem. We start with any random parameters

6y and ¢, for critic and actor networks. For m-th subproblem, we solve this problem
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Algorithm 5: Solve subproblem (6, ¢g, A, /)

Input: Initial solution ¢, and ¢y, dual variables X and 7.
Output: Parameters 6, and ¢,,.
Initialization: n = 0.
1: whilen < N do
2:  Sample a path p following the policy my, from env.
3:  Add p into the replay buffer.
4:  Sample K trajectories {pr € PATH | 1 < k < K} from the replay buffer.

K
1 T o
5: 9n+1 = ‘911 - UV(J Z E‘C?: (pk7 >\m7 Vm)

k=1
K 1 lpr|—2
6 Pny1=bn—1 ) ?CgZ(Pk) V' Vylogms, (ar | se)
k=1 t=0

7: n=n+1
8: end while
9: return 6,, ¢,

with fixed dual variables Xm and 7,,,. Then we update dual variables in Line 7 and 8 in
Algorithm 4, where [ is the growth rate of the penalty term 7/,,,, and € is the performance
threshold. Inside m-th subproblem, for n-th iteration, we sample a trajectory by following

the current policy, then perform one policy evaluation and improvement.

5.3.2 Modular Learning: One Neural Network Per Task State

However, we observe that it is empirically challenging to train value function V4 and
policy function 7, since a neural network can assume an ordinal relationship between
automaton states. By assigning integer numbers to automaton states, value or policy
function approximated by a single neural network can be ranked by integer numbers.

To break this ordinal relationship, we approximate value function and policy function in
one automaton state per neural network, termed modular learning. That is, instead of using
one single neural network to approximate value function V(s, q) (resp. policy function
7(- | s,q)) denoted by Vy(s, q) (resp. my(- | s,q)) for all (s,q) € S x L;, we use |L;|
neural networks to approximate, where |£;| denotes the number of the automaton states in
level £;. For each automaton state ¢ € £;, we denote the corresponding approximate value
function as Vy, (s) (reps. policy function as 74, (s)). Given 2|L£;| neural networks (|£;|
for value functions and |£;| for policy functions), we switch neural networks for different

automaton states. We observe that adopting modular learning does not affect the usage of
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the topological order.

5.4 Case Study

We evaluate our proposed RL algorithm on a classic control task, CartPole, and compare the
performance with different baselines, including Proximal Policy Optimization (PPO) [108],
DQN [89], and Advantage Actor Critic (A2C) [88]. We find that our RL algorithm matches
or beats the performance of these baselines. Further, we demonstrate the efficacy of our
proposed policy synthesis framework on a robot motion planning example with a high-level
specification, where the robotic platform is a Traxxas, the Slash 4 x 4 Platinum Edition in

Figure 5.1. For more details about the RC car platform, readers are referred to [7].

Figure 5.1: The RC car platform.

5.4.1 Performance Benchmark: CartPole-v1

We leverage OpenAl gym [22] for providing the classic control example, CartPole-v1 [9].
In CartPole, the lower end of the pole is mounted to a passive joint of a cart that moves
along a frictionless track. The pole can only swing in a vertical plane parallel to the
direction of the cart. Two actions: push back and push forward, can be applied to the cart
to balance the pole. An episode starts with the pendulum being upright and ends with one

of the following situations:
* Pole is more than 15 degrees from vertical;
e Cart moves more than 2.4 units from the center;

* The length of the episode reaches a maximum length of 500.
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A reward of 1 is received for every time step that the pole remains upright. CartPole
example aims to design a controller that prevents the pole from falling. After finding the
best hyperparameters (see Table 5.1 and 5.2), we run our proposed algorithm, PPO, DQN,
and A2C, independently five times (with randomly selected seeds). The average length of
episodes versus training steps is plotted in Figure 5.2. Figure 5.2 induces that in CartPole,

our proposed algorithm matches or defeats the performance of PPO, A2C, and DQN.

Table 5.1: Shared hyperparameters.

Parameter Symbols | Value
Learning rate n 3-107*
Discounting factor v 0.99
Number of layers 2
Number of hidden units per layer 256

Table 5.2: Environment-specific hyperparameters.

Parameter Symbols | CartPole-vl Sequential Visiting
User-specified temperature T 1 0.5
Dual variable A 10* 103
Penalty term v 10° 10°
Penalty growth rate I6] 2 2
Max outer iteration M 4 3
Max inner iteration N 2500 1500
Performance threshold € 0.9 0.9
Length of sampled trajectory T 10 10
Number of trajectories K 10 )
Replay buffer size 10* 10*
Decay of learning rate 1 0.5
Decay steps 103

Note that in practice, there is no need for |X| (resp. |7|) dual variables; Instead, all \;
(resp. ;) can be the same for all £ > 0, and we can use A (resp. v) to denote X (reps. ).

To demonstrate the convergence of our proposed algorithm, we plot the value function
of the initial state, loss of critic network, loss of actor network, and evaluation of the
constraint E, = [h(g(s;))] versus training steps in Figure 5.3. Figure 5.31 suggests our
value function of the initial state converges after 6 x 10* steps. Figure. 5.32 and Figure. 5.33
suggest 5 x 10 steps is a critical training step point, where losses of actor and critic

networks are close to zero. Near-zero losses of actor and critic networks match the
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Figure 5.2: Performance of different baselines and our proposed algorithm on the CartPole-

v1 benchmark.

step point, where the length of episodes is close to the maximum length of 500, and
the evaluation of the constraint decreases to zero, shown in Figure 5.2 and Figure 5.34,

respectively.

5.4.2 Robot Motion Planning with a High-level Specification

We are interested in using the proposed algorithm to learn a policy in robot motion planning
example with a high-level specification from Example 1, sequential visiting task. Recall
that the goal is to maximize the probability that a car avoids obstacles and completes one

of the following:
» car visits A and does not visit D or obstacles until C is visited;
e car visits D and does not visit A or obstacles until B is visited.

The RC car travels within a workspace in Figure 5.4, where A, B, C, and D are regions of

interest, and black rectangles are obstacles.
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Figure 5.3: (1) Value of the initial state V(sq) versus training steps, where sy = [0, 0, 0, 0].
(2) Loss of critic network JY = E,.,~[L(p, A, 7)] versus training steps. (3) Loss of

actor network J" = E, ;= [%C (p)?] versus training steps. (4) Evaluation of constraint
E,..~[h(g(s.))] versus training steps.

We model the RC car as a Dubins car model. Let us briefly recall the dynamics of the
Dubins car defined as follows:

T =wv-cosb,
y=wv-sinf,

0 =u,

where [z, y] denotes the car’s position, 6 is the heading, the car is moving at a constant
speed v = 0.3 m/s, and the turn rate control u € {—27/15,0,27/15}. The car starts at the
initial state [3, 0, 7/2]. For notational convenience, we use z = [z, y, 0]T and i = [T, 7, é]T
to denote the car’s state and velocity. Further, we let Z; and %, be the car’s state and velocity

at time ¢, respectively. We capture the dynamic evolution of the car as follows:

B+ At = 2t + Aznoise +z- A757
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Figure 5.4: (1) A simulated trajectory starting from an initial state [3,0,7/2]. (2) A
simulated trajectory starting from a different initial state [3, 2, —] that is different from
the initial state [3, 0, 7/2] during training.

where At is the user-specified time unit, and Az}, is the noise. In our example, we have
At = 1s,and AZ,,;s. is the white noise with a standard deviation 1072,

Typically, we reward 1 when the car completes the specification and 0 otherwise.
However, small rewards can be overshadowed when the entropy of policies is too large
using the mellowmax operators. We amplify rewards as follows: A reward of 10 is given
when the car completes the specification; A reward of —1 is given whenever the car goes
out of the workspace or hits obstacles. Furthermore, to address the sparse reward issue, we

define the reward signal as follows:

&

5
|

where Z'is the current state, Zgbgoal is the current subgoal for the current automaton state,

) (5.25)

7”(277 Zsubgoal) = ;

i

and d = [Zsubgoal — T, Ysubgoal — Y. We define the current subgoal for each automaton state

as follows:

[1.25,1.25), if ¢ = qo,
Zoubgoal = 1§ [4.25,4.25], if ¢ = qu, (5.26)
[4.25,1.25), if ¢ = qo.
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Note that we do not define the subgoal for g3 since the car has satisfied the specification.
To demonstrate our trained policy can handle different initial states, we sample two
trajectories from two initial states: (a) [3,0, /2] is the same as the one during training,
and (b) [3, 2, —] is different from the one during training, and plot them in Figure 5.4.

Table 5.3: Success Rates of Sequential Visiting Task.

Description Success Rate
Single neural network 26%
Modular learning 49%
Modular learning + topological order 71.5%

We propose topological order to address the reward sparsity and modular learning to
break down the ordinal relation between automaton states. To demonstrate the efficacy of
both techniques, we compare our proposed method with a single neural network, modular
learning, and modular learning with topological order. We plot corresponding values of
the initial state in Figure 5.5 and list the success rates of the sequential visiting task (over
200 simulations) in Table 5.3. In the case of a single neural network for the entire product
MDP, the input of the neural network is a 4-dimension vector, where the first 3 elements
are the car’s state, and the last element is the automaton state. For modular learning, the
input of the neural network is only the car’s state.

As listed in Tab 5.3, implementing modular learning increases the success rate dramati-
cally, indicating the ordinal relationship is disrupted and provides better approximations
for value and policy function. Given the same training steps, the success rate with the
topological order is much higher than the one without the topological order. The above
observation from Tab 5.3 matches the result in Figure 5.5, where the value of modular
learning with topological order has the highest value and fastest convergence. Theoretically,
the one with the topological order shall at least perform as well as the one without the
topological order. Such improvement in the performance demonstrates that the topological
order can guide value backups and accelerate the learning process.

We provide a video 'demonstrating the success of learning a controller that satisfies
the specification. The car uses AprilTags in the Tag36h11 set as fiducial markers for
localization [95].

We run our algorithms on an Ubuntu 20.04 machine with AMD Ryzen 9 5900X CPU,
32 GB RAM, and NVIDIA GeForce RTX 3060. The computational time of computing a

policy in CartPole is about 4 hours, and the computational times of computing a policy in

'"https://tinyurl.com/3dcysrux
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Figure 5.5: Values of initial state V(z,) versus training steps, where zy = [3,0, 7/2, qo|.

Dubins car’s environment are about 17 min, 23 min, and 53 min for single neural network,
modular learning, and modular learning with topological order, respectively. We find
that the long computational time for CartPole is because of trajectory simulations for
computing the mean length of the episode. > The reason for the computational time of
modular learning with topological order is 2 times these of modular learning and single
neural network is because, in our example, we have the set of level sets {L, £, Lo},
where the value of any state (s, q) € S x L, equals to 0. So we need to learn values for £,
and L,.

5.5 Conclusion

This chapter proposes a comprehensive formal policy synthesis framework for continuous-
state stochastic systems with high-level specifications. We apply the topological order
to overcome the reward sparsity. We present a sequential, actor-critic RL algorithm to

overcome the continuous/hybrid state space, where topological order still applies. We

2 As the policy converges to the optimal policy, the length of the episode converges to maximum length
500, although we only consider T steps of a trajectory.
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provide proof of optimality and convergence of this RL algorithm in a tabular case. We
further use modular learning to prevent the approximate value/policy function from being
ranked by assigning integer numbers to automaton states. Our proposed algorithm matches
or beats baselines in CartPole. We demonstrate the efficacy of our policy synthesis
framework on a Dubins car with a high-level specification, where a video validates the
success of learning a controller that satisfies the specification. The results suggest that the
topological order can relieve the sparse reward issue, and modular learning can break the

ordinal relationship between the automaton states.






Chapter 6

Dynamic Hypergames for Synthesis
of Deceptive Strategies with
Temporal Logic Objectives

6.1 Overview

Planning in adversarial environments is commonly encountered in security and defense
applications. In many such applications, the objective of the agent is partially known
to its opponent. Thus, using deception to exploit this incomplete knowledge of the
opponent becomes inseparable from strategic planning. Deception has been investigated in
economics [51], military operations [55], cybersecurity [2, 58,60, 114], and planning of
robotics and other cyber-physical systems [41,49, 85,96, 125].

This chapter investigates the synthesis of deceptive strategies for a class of adversarial
interactions with asymmetric information and Boolean payoffs in temporal logic [83].
Specifically, we consider an adversarial two-player interaction in which an agent (player
1/P1) aims to satisfy a task specified in a subclass of temporal logic [67] in a stochastic
environment, and its adversary (player 2/P2), who has incomplete knowledge about P1’s
task, aims to prevent P1 from achieving the task. The temporal logic formulas express P1’s
complex and temporally extended goals. Thus, the key question of interest is, how can
player 1 exploit player 2’s incomplete information about the task to improve player 1’s
performance?

We address this question using a game-theoretic approach. In literature, deceptive

planning has been mainly studied using two models of games with asymmetrical infor-

75
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mation: Bayesian games [60, 134] and hypergames [44,59]. Bayesian games model a

player’s incomplete information as a probability distribution over a set of types for its
opponent, and the ground truth type is the private information of the opponent. The
authors [60] utilize dynamic Bayesian games for defensive planning in cyber security
disciplines, where the type of opponent, i.e., a legitimate user or an attacker, is the private
information. Another class of incomplete information games, called hypergames [14, 127],
models multi-player interaction where each player holds a subjective viewpoint of the
game and makes decisions based on this viewpoint. The hypergame exploits its opponent’s
unawareness of a player to deceive, unlike Bayesian games, which assume that all players
have the same knowledge about all types. However, solution concepts exist only for
normal-form hypergames, where players move simultaneously and receive real-valued
payoffs for the outcomes of their actions. In [49], the authors investigate how a player’s
belief in other players’ preferences evolves by observing other players’ decisions and
analyzing the inconsistency in the equilibrium. They develop stealthy deception [50] to
restrict the deceiver’s actions so as not to contradict the belief of the deceivee. Besides
Bayesian games and hypergames, there have been investigations on deception in cyber
security [107,120] using security games [112], where the defender uses decoys to “mask”
the network configuration and creates disinformation of payoffs. Additional to game-
theoretic approaches, deceptive planning is developed in [86, 96], where the deceiver hides
its objective from the observer to achieve the goal. However, these cases have no dynamic

interaction between the deceiver and the observer.

Different from existing work, we study a class of games where players’ payoffs are
temporal logic formulas, instead of real-valued utility functions. This study is motivated by
the need to express complex, temporal objectives in multi-stage interaction. Games with
temporal logic payoffs, also known as w-regular games, have been studied to synthesize
reactive programs. w-regular games are played on a finite state space for an infinite number
of rounds. At each round, players move simultaneously or in a turn-based manner, and the
next state (or a distribution of the next state) is determined by the current state and their
joint actions. The w-regular winning conditions of players are expressed in the resulting
infinite state sequences. Existing solution concepts for w-regular games studied games
with complete information and perfect/partial observations [19, 25, 33, 98] but not for

games with asymmetric, incomplete information.

To this end, we present a modeling framework and synthesis methods for deceptive

planning in a subclass of w-regular games with a hierarchical information pattern; that is,
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P1 knows that P2 does not have complete information about P1’s task. We introduce a class
of hypergames with temporal logic objectives. The deceptive planning algorithm is based
on a solution concept of hypergames, called subjectively rationalizable strategies. Based
on this solution, two key modules, namely, opponent modeling and deceptive planning, are
developed. Since a temporal logic formula describes a sequence of temporally extended
subgoals, we assume that the adversary can infer the current agent’s subgoal based on
observations. In opponent modeling, the agent maintains a model of the adversary’s
subjectively rationalizable strategy and subgoal inference. Using the opponent model, the
agent can predict how its action will influence the perception and strategy of the adversary.
Then, it integrates the predictive opponent model into deceptive planning that computes
a strategy to maximize the probability of satisfying its temporal logic objective. The
agent’s strategy is deceptive because it intentionally steers the adversary’s perception of its
objective and thus influences the adversary’s response strategy in a way beneficial to the
agent’s task performance. We show the effectiveness of the proposed deceptive planning
algorithm using robot motion planning examples. Finally, noting that the effectiveness of
the deceptive strategy hinges on the matching between the agent’s opponent model and the
true opponent. To ensure the effectiveness of deception, we also design an online detection
algorithm to identify potential errors in the opponent model.

The remainder of this chapter is organized as follows. Section 6.3 provides some
necessary background on game theory. Section 6.4 presents the main theory and algorithms
for deceptive planning. Section 6.5 presents a case study to demonstrate the effectiveness

of the deception. Finally, Section 6.6 concludes and discusses future work.

6.2 Related Work

In literature, deceptive planning has been mainly studied using two models of games with
asymmetrical information: Bayesian games [60, 134] and hypergames [44,59]. Bayesian
games model a player’s incomplete information as a probability distribution over a set of
types for its opponent, and the true type is the private information of the opponent. The
authors [60] adopted dynamic Bayesian games to defensive planning for cyber security,
where the type of the opponent, i.e., , a legitimate user or an attacker, was the private
information. Another class of incomplete information games, called hypergames [14, 127],
models multi-player interaction where each player holds a subjective viewpoint of the game

and makes decisions based on this viewpoint. In contrast to Bayesian games, hypergames
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do not assume that all players share common knowledge about all possible types; this allows

hypergames to explicitly capture the unawareness of a player, which could be exploited
by its adversary using deception. However, existing solution concepts for hypergames are
developed for normal-form hypergames, in which players move simultaneously and receive
real-valued payoffs for the outcomes resulted from the combination of actions played.
In [49], the authors studied how a player’s belief of other players’ preferences evolves by
observing other players’ decisions and analyzing the inconsistency in the equilibrium. They
developed stealthy deception [50] to restrict the deceiver’s actions so as not to contradict
the belief of the deceivee. Besides Bayesian games and hypergames, deception in cyber
security [107, 120] has been investigated for security games [112] where the defender
uses decoys to “mask’ the network configuration and creates disinformation of payoffs.
Besides game-theoretic approaches, deceptive planning was developed in [86,96] when
the deceiver hides its objective from the observer for achieving the goal. However, in these

cases there is no dynamic interaction between the deceiver and the observer.

6.3 Preliminaries: Omega-regular Games

We consider an adversarial encounter between two players: a controllable player P1 and an
uncontrollable player P2. Both players choose their moves simultaneously. The dynamics

of their interaction can be captured as a transition system with simultaneous moves.

Definition 15 (Two-player Transition System with Simultaneous Moves).

A two-player transition system with simultaneous moves is a tuple
TS = (S, A, P, sy, AP, L)
consisting of the following components:

* S'is a finite set of states;

e A = A; x A, is a finite set of actions, where A; is the set of actions that P1 can

perform, and As is the set of actions that P2 can perform;

* P: S xAxS —[0,1] is a probabilistic transition function. At every state s € .S,
P1 chooses an action a' € A, and P2 chooses an action a® € A,, simultaneously.
Then, a successor state s’ is determined by the probability distribution P(- | s, a),

where a = (a', a?) € A;
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e g 1s an initial state;
» AP is a set of atomic propositions;

e L: S — 247 is alabeling function. For every state s € S, the label L(s) of the state

s represents a set of atomic propositions evaluated true at the state s.

In this section, unless otherwise noted, we will refer to a two-player transition system
with simultaneous moves simply as a transition system.

We use LTL formulas to represent the players’ objectives/payoffs in the game. Similarly,
a path p in a transition system 7'S is said to satisfy an LTL formula ¢, if the labeling
sequence L(p) satisfies the formula ¢, i.e., L(p) = ¢. Given this relation, we define
a zero-sum game with players’ payoffs expressed in temporal logic, also known as a

zero-sum w-regular game.

Definition 16 (Zero-sum w-regular Game).
Given an LTL formula ; and a two-player transition system with simultaneous move 7'S,
a zero-sum w-regular game, where P1’s objective is (1, and P2’s objective is py = —pq, 1S

the tuple
G(p1, 1) = (T'S, 1, ~p1).

In the interaction between P1 and P2, P1 maximizes the probability of a path satisfying
the temporal logic formula ¢;; P2 minimizes the probability of a path satisfying the
formula ;. Thus, P2’s objective is the logical negation of P1’s objective. We omit P2’s
objective = from G(p1, —p1) and simply denote the game as G(¢1).

A play in the game is constructed as follows: The players start in the initial game state
S0, simultaneously select a pair of actions a = (al, a2) € A, move to the next state s;, and
repeat. The game ends when one of the players satisfies its objective. Thus, a play is a
sequence of states and actions, denoted by p = spagsiay - -+ such that P(s;41 | s;,a;) >0
for any ¢ > 0. The set of all possible plays in the game is denoted by Plays. Slightly
abusing the notation, given a play p € Plays, we say that p |= ¢ for an LTL formula ¢
if L(p) = o, that is, the sequence of state labels satisfies the LTL formula ¢. A play
p € Plays of T'S is winning for player 7 if and only if L(p) = ¢; — that is, the labeling
of that path satisfies player 7’s Boolean objective in temporal logic. The set of prefixes of
plays is denoted by PrefPlays. We refer to i € PrefPlays as a history in the game.

A stochastic strategy 7;: PrefPlays x A; — [0, 1], for player ¢ € {1, 2}, is a function

that assigns a probability distribution over all actions given a history. Let II; denote the
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stochastic strategy space of player i. A strategy profile (7, 7o) is a pair of strategies, one

for each player. A strategy profile (7, 75) induces a probability measure Pr (™72

PrefPlays.

Given player ¢’s Boolean objective ;, we define the utility function for player ¢ as
w;: PrefPlays x II; X IT; x @ — R, such that for (¢, j) € {(1,2), (2, 1)}, wi(h, m, 7;, @;) =
Pr{™™i) (hh/ = ;) is the probability of satisfying the specification ¢;, where h €

over

PrefPlays is the initial history, and A’ is the stochastic process induced by the strategy
profile (m;, 7;) after the initial history h.
We present the definition of Nash equilibrium for w-regular games with complete

information.

Definition 17 (Nash equilibrium [20,97]).
A Nash equilibrium of a w-regular game G(i;) is a strategy profile (7}, 7;) with the
property that for (¢, j) € {(1,2), (2,1)} we have

wi(h, 77,75, i) = ui(h, m, 77, ;), forall h € PrefPlays.

In a zero-sum w-regular game, the Nash equilibrium (7}, 75) can be obtained as
follows: Given h € PrefPlays,

<7TI77T;> = arg max min Pr<7r1»7r2>(hh/ ): 901)-

m€lly mo€lls

To solve the Nash equilibrium in a zero-sum w-regular game, we can use the software
PRISM-games [26]. Qualitative solutions of zero-sum w-regular games with simultaneous
moves have been investigated in [31,32].

In Definition 16, the game is common knowledge to both players. We now consider
the case when the information about the game (e.g., dynamics, payoffs) between two
players is asymmetrical. Specifically, we consider the case when P2 has incomplete
information about P1’s temporal logic objective. Given that P2 has incomplete information,
we introduce a hypothesis space for P2, denoted by X. The set X can be discrete and
finite. For example, the set X can be a finite set of scLTL formulas that P2 believes that
P1’s true objective is one of these. The hypothesis space X can also be continuous. For
example, each x € X is a distribution over a subset of scLTL formulas ® so that z(¢) is
the probability that P2 believes o € ® to be P1’s true objective. For the time being, we do
not restrict set X . In practice, a hypothesis space can be constructed from observations of
any previous interactions or from the threat modeling [92], given P2’s understanding of

their interaction and potential objectives of an adversary.
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Assumption 1. The asymmetrical information between players is introduced as follows:
* P1’s objective is ;.

* P2 does not know (1 but has an initial hypothesis x and a hypothesis space X about

P1’s objective.

The assumption describes scenarios commonly encountered in practice for both co-
operative and adversarial interactions. For example, in a contested search and rescue
mission, a search team has a sequence of waypoints that need to be visited according to
a temporal order. The opponent may know the set of waypoints but is unclear about the

team’s temporal objective. The problem we aim to solve is stated informally as follows.

Problem 3. Given an adversarial encounter between P1 and P2 under information asym-
metry as defined by Assumption 1, how to compute a strategy for P1 that maximizes the
probability of satisfying ¢; while a rational P2 responds optimally given P2’s knowledge
of the game?

Next, we introduce the modeling framework of hypergames and present a solution

concept for a class of hypergames to solve P1’s strategy.

6.4 Main Result

Hypergame, introduced in [14], can model strategic interactions when players have asym-
metrical information. Intuitively, a hypergame is a game of games, each associated with a
player’s subjective view of its interaction with other players based on its own information

and information about others’ subjective views.

6.4.1 Static hypergames on graphs

We formally introduce a hypergame, which extends the hypergames from normal-form

games [14, 123] to w-regular games.

Definition 18 (Static w-regular Hypergames).

A static w-regular hypergame of level-1 is defined as

HG (x) = (G(¢1), G(2)),
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where G (1) is a zero-sum w-regular game given P1’s objective 1, and G(x) is the game

constructed by P2 given P2’s hypothesis z € X. If P1 is aware of P2’s game G(x), then

the resulting hypergame is said to be of level-2 and defined as
HG*(x) = (HG (2),G(2)),

where HG' () is the level-1 hypergame constructed by P1, given P1’s knowledge about
the game constructed by P2, P1 computes its strategy by solving the level-1 hypergame
HG' (z) while P2 computes its strategy by solving the game G ().

The game constructed by a player given its information and higher-order information
is called the player’s perceptual game. In level-2 hypergame HG*(z), P1’s perceptual
game is HG' (), and P2’s perceptual game is G(z). The game is static if neither player’s
perceptual game changes during their interaction.

Higher levels of hypergames can be defined through recursive reasoning about higher-
order information (e.g., what I know that you know that I know ...). In this work, level-2
hypergames suffice to capture the interaction because the highest order of information is
that P1 knows what P2 knows. To construct level-3 hypergame, higher-order information
1s needed; for instance, P2 knows that P1 knows that P2 knows... This is not the case,
given the class of asymmetric information considered herein.

For simplicity, we refer to level-2 w-regular hypergames as hypergames in this paper
whenever it is clear from the context.

We now discuss the solution concepts of hypergames. Given that different players may
have different perceptions (i.e., subjective views) of the utility functions in a hypergame, we
denote uf as the utility function of player i perceived by player j. Next, we generalize the
related notions of subjective rationalizability and best-response equilibrium in hypergames

from normal-form games in [104] to w-regular hypergames.

Definition 19 (Subjective Rationalizability).
Given a level-2 hypergame HG?(z) = (HG'(x),G(z)), strategy 7" is subjectively ra-
tionalizable (SR) for player 2 if and only if it satisfies, for any h € PrefPlays, for any
m; € 11,

u?(h, w7, ﬂ;’Q,I) > u?(h, 7Ti,7T;’2, ),
where (i,7) € {(1,2),(2,1)}. Note that in the case that P2’s hypothesis z is a distribu-

tion over @, the utility is calculated based on the expectation, that is, u?(h, i, T, x) =

Z<p€<1> ‘T(Qp)ug(ha Ty T, 90)
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The strategy 7, ! is SR for P1 if and only if it satisfies, for any h € PrefPlays, for any
m € Iy,

u%<h7 7T1k717 ﬂ-;,27 Spl) Z u%(h7 ﬂ-l? T‘-;’Q’ ()01)7

where 75 is SR for player 2.

In words, a strategy 7 " is called SR for player ¢ if in player ¢’s subjective view, it is the
best response to player j’s best response 7, which is computed from player 7’s perceptual
game. A pair of SR strategies <7r1"1, 7r§’2> is called the best-response equilibrium of the
hypergame HG?(x).

In level-2 hypergame, P2’s strategy is SR if it is rationalizable in P2’s perceptual game
G(x). P1’s strategy is SR if it is the best response to P2’s SR strategy. However, P1’s SR
strategy may not be consistent with P1’s SR strategy predicated by P2. This inconsistency
can be recognized by P2. When P2 notices the mismatch in the perceptual games, P2’s
perceptual game may evolve given new information; P2’s current hypothesis x € X may

change to a new hypothesis ' € X given new information.

6.4.2 Dynamic Hypergames on Graphs

To characterize P2’s evolving perceptual game, we introduce an inference function.

Definition 20 (Inference).

Assuming P2 has a complete observation of the game plays, a perfect recall inference
function : X x PrefPlays — X maps a hypothesis x € X and an observation (a history)
h € PrefPlays to a new hypothesis 2’ = n(z, h) € X.

Anticipating that P2 will respond with an evolving hypothesis, P1 must calculate its
moves to steer P2’s inferred hypothesis and the resulting strategy. For the time being, we
assume that P1 knows P2’s inference mechanism and initial hypothesis and study how P1
can exploit P2’s incomplete knowledge and inference mechanism for strategic advantage.
In Section 6.4.4, we introduce a method that allows P1 to validate if its knowledge about
P2’s inference mechanism is correct or not.

We introduce a transition system of P1’s level-1 hypergame to simultaneously capture

the changes in game states given players’ actions and the evolving perceptual game of P2.

Definition 21 (Transition System of P1’s Level-1 Hypergame).
Given the transition system 7'S = (S, A, P, so, AP, L), the DFA A = (Q, 3, 0, ¢, F') that
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corresponds to P1’s scLTL specification (1, and P2’s hypothesis space X, the transition

system of P1’s level-1 hypergame is a tuple
H= <V7 A7 Aa (807 h07 qo, l'()), f>7
where the components of hypergame transition system are defined as follows.

* V =5 x PrefPlays x @ x X is the set of states. Every state v = (s, h,q,z) € V

has four components:

s € S is the state.

h € PrefPlays is a history terminating in state s € S.

g € (@ is the automaton state for keeping track of P1’s progress towards

satisfying (1.

x € X represents the hypothesis of P2 given the history h.

A is the set of joint actions.

A:V x AxV — [0,1] is a probabilistic transition function defined as follows.
Consider v = (s,h,q,z) and v/ = (¢, has’,¢',z’), where has’ is the history h

appended with the new action a and state &/,

A" [v,a) = P(s' | 5,a) 1(d(q, L(s)) = ¢) - L(n(z, has') = 2).

(S0, ho, o, To) is the initial state that includes the initial state in the transition system
TS, the current history that consists of the initial state only, i.e., hg = sg, o =
d(¢, L(so)), and P2’s initial hypothesis x.

F =5 x PrefPlays x F' x X is the set of final states for P1.

The transition function is understood as follows: Given a history & ending in the current
state s and a joint action a € A, the probability of reaching the next state s’ is determined
by P(s’ | s,a) in the transition system. Upon reaching s’, P2 updates its hypothesis to
' = n(x, has’) (here, we assume the entire history is used for this update). Also, the
transition in the specification automaton is triggered to reach state ¢’ from state ¢ given the
label of the new state s'.

It is observed that the hypergame transition system in Definition 21 captures the
dynamic evolution of P2’s viewpoint. The history has time indices implicitly encoded. For

example, a history h = spagsiay - - - S¢ is a history up to time step ¢.
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Given P2’s perceptual game evolving given the history and the inference function, P2

employs a behaviorally subjectively rationalizable (BSR) strategy, defined as follows.

Definition 22 (Behaviorally Subjectively Rationalizable Strategy).
A strategy 7T§ 2. PrefPlays x Ay — [0, 1] is behaviorally subjectively rationalizable for P2
if, for any h € PrefPlays,

m(h) = 75 (h),

*7z72 .

where © = n(xo, h), and 7, : PrefPlays x Ay — [0, 1] is a SR strategy for P2 in the
hypergame HG?(x).

Intuitively, playing a BSR strategy means that for any history A, P2 plays the SR
strategy corresponding to its hypothesis constructed from the history h and its initial
hypothesis. It is noted that the BSR strategy for P2 always exists in the class of hypergames
studied herein. In [103], the author states the condition for the existence of the SR strategy
as follows: P1 never excludes an action from P2’s action set in P1’s own perceptual game,
where P1 thinks in P2’s perceptual game, P2 believes this action is rationalizable [47] to
P2. In the class of hypergames considered, P2’s SR strategy exists as P2’s perceptual game
is a zero-sum game.

The hypergame transition system has a countably infinite set of states when X is finite.
This is because a history can be of a finite but unbounded length. The entire history is
maintained as a part of the state due to the general definition of the inference mechanism.
In the next section, we show for some special cases of interactions, a state aggregation
can be performed in the hypergame transition system to reduce the infinite state space to a

finite state space.

6.4.3 Synthesizing P1’s Deceptive Strategy

Given that P2 uses a BSR strategy, P1 can play deceptively by influencing P2’s hypothesis
so that P2’s actions given P2’s hypothesis can be advantageous for P1. To make P1’s
planning problem tractable, we introduce inference-equivalent histories to aggregate the
countably infinite states of the transition system H of P1’s level-1 hypergame into a finite

state set.

Definition 23 (Inference-equivalent Histories).
Given an inference function 77: X x PrefPlays — X and a hypothesis x, two histories A,

and h; are said to be (7, x)-equivalent if n(x, hy) = n(x, hy) and for any ' € (A x S)™,
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n(z, hih') = n(z, hoh'). The set of histories equivalent to h € PrefPlays given hypothesis

x is denoted by [h].. If the equivalence between histories can be defined to be independent
of the current hypothesis, that is, for any pair of hypotheses x,z’ € X, if hy, ho are
(n, x)-equivalent, then hy, ho are also (7, x’)-equivalent, then we say that the two histories

hi and hy are n-equivalent. The set of histories n-equivalent to h € PrefPlays is denoted
by [A].

We consider a subset of dynamic hypergames, which satisfies the following assumption.

Assumption 2.

1. The hypothesis space X is discrete and finite.

2. The inference function 7 has a finite domain. The set of histories is grouped into a

finite set of inference-equivalent classes (see Definition 23).

3. For any = € X, P2 selects a quantal response strategy in the zero-sum game G(x)

with a response parameter known to P1!.
4. For any x € X, P2’s strategy in game G(x) is memoryless.

Assumptions 2-1 and 2-2 ensure the planning state space in H can be aggregated into
a finite set. Assumption 2-3 enables us only to need to consider one SR strategy for P2
in game G(x), for each x € X. If P2 takes the deterministic SR strategy instead of the
quantal response, there may be multiple strategies. There are two possible approaches to
dealing with multiple equilibria. The first one is that P1 must learn from online interaction
about which SR strategy is employed by P2 and adapt P1’s deceptive strategy. However,
this adaptive deception requires further study of online optimization. The second one is
that the deceptive planning algorithm should be robust for a range of possible equilibria
strategies used by P2. Adaptive and robust deceptive planning are future extensions for
this work.

Next, we formally state the deceptive planning problem for a subclass of dynamic

hypergames.

! At each state, the quantal response strategy selects an action that is proportional to the exponential of
A-times the expected future payoffs from that state given the chosen action. The parameter A is called the
response parameter [52].
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Problem 4. Given Assumptions 1 and 2, compute the optimal deceptive strategy for P1 in

the dynamic hypergame H, provided that P2 follows a BSR strategy.

We leverage the hierarchy of reasoning in level-2 hypergames and develop a two-step
approach: Firstly, we construct P2’s BSR strategy according to Definition 22: for each
x € X, we solve P2’s SR strategy W;’x’Q in the static hypergame HG?(z). P2’s BSR
strategy is computed from the set of SR strategies given P2’s evolving hypothesis (see
Definition 22). Secondly, we incorporate P2’s BSR strategies into the transition system in
Definition 21 to reduce P1’s planning problem into an MDP with a reachability objective,

as stated next.

Definition 24 (Hypergame Reduced MDP).
Under Assumption 2, the dynamic hypergame H = (V, A, A, (so, ho, qo, o), F) reduces
to a finite-state MDP with a reachability objective for P1,

7:[ = <‘7’ Ala A7 (SOa [[ho]]acm qo, JZO),./%%
where

« V is a finite and discrete set of states. Each state & = (s, [A].,¢, ) consists of a
state s, an inference-equivalent class given the (7, x)-equivalent relation, a state ¢ in
the DFA, and a hypothesis = of P2.

« A:V x Ay x V — [0,1] is defined as follows: For any state & = (s, [h]a, ¢, z),
if ¢ = ¢sink — the sink state in the DFA A, then state © is a sink state. Given
01 = (s1, [M]lar, 1, 21) With g1 # Gsinks ' € Ay, and 0y = (g, [h2]z,, @2, 22) and
hi(a',a?)sy € [ha]s.,, then

Ay | ora') = ) w2 (a® [ s1) - P(sz | s1,(a',a%) 1(8(q1, L(s2)) = a2),

a2€A2

*,21,2

where 75" (a? | s1) is the probability of P2 selecting action a? given its current

hypothesis z; and the current state s;. That is, P2 uses a BSR strategy.

* (80, [Mo]zo, 90, o) € V is the initial state, given (80, ho, go, o) is the initial state in

the transition system .

« F={(s,[Msq,z) €V | ¢ € F} is the set of final states for P1, where F is the
set of final states of DFA A. P1’s goal is to maximize the probability of reaching F.
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By construction, if a path in the MDP visits F , P1 satisfies the scLTL formula (. Thus,

maximizing the probability of satisfying P1’s specification is equivalent to maximizing the
probability of reaching the set F. The optimal policy for P1 in # is deceptive because by
optimally planning in this MDP, P1 will select actions to influence P2’s belief so that P2
takes actions that are advantageous for P1 to achieve its goal. We can employ dynamic
programming to solve the optimal value function V : V — R, which satisfies the Bellman
optimality condition:

V(7) = max AW | 9,a)V(0"), forall & & F, (6.1)

v'eV

and
V(o) =1, forall o € F,

where {V(?) | © € V'} is the set of decision variables. The optimal policy 7 is computed
from the optimal value function:
71(0) = arg max A | 0,a)V(¥), forall & & F.
v'ev

The time complexity for solving MDPs with reachability objectives is polynomial in the
size of state space and action space. Here, the size of state space in the MDP is O(|S| x
N x|Q|x|X|), where N is the number of (7, z)-equivalent classes of histories in the game.
The size of the action space in the MDP is |A;|. Besides using dynamic programming,
an MDP with a reachability objective can be solved using probabilistic model checking
algorithms ( [8, Chapter 10.1.1], [68]) and the existing PRISM toolbox [69].

Remark 4. Given that the problem can be large, ADP solutions of MDP can be used to
reduce the number of decision variables [77]. For example, value function approximation
in ADP uses a function approximator (such as a neural network) to approximate the value
function, where the decision variables are coefficients of the value function. In the problem
of large scale, it is often the case that the number of coefficients of the value function

approximator is much smaller than the number of states.

To this end, we include Algorithm 6 to describe how to compute P1’s SR strategy in

the dynamic hypergames with temporal logic objectives.

Theorem 6. Assuming P1’s knowledge about 7 is correct, the optimal strategy 77 : V x
A; — [0,1] in the MDP # is P1’s SR strategy in the dynamic hypergame given P2’s

evolving knowledge.
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Algorithm 6: Computation of P1’s SR Strategy
Input: Transition system 7'S, DFA A, P2’s inference function 7, and hypothesis space
X.
Output: P1’s SR strategy 7] in the dynamic hypergame.
1: Construct P1’s level-1 hypergame H with T'S, A, X, and 7). {Using Definition 21.}
: forz € X do
Compute P2’s SR strategy WS’M from game G(x). {Using Definition 18 and
equilibrium solutions of games. }
end for
Construct H with {73 | z € X} and H. {Using Definition 24.}
7+, V + Solve MDP H.
return 77.

W N

AR Y

Proof. The construction of # is achieved through marginalizing P2’s actions, given that
P2 follows the BSR strategy in the dynamic hypergame H. Thus, optimal planning in H
computes the best response strategy for P1 against P2’s BSR strategy. Any deviation from
this best response strategy will not gain P1 a better outcome. [

Remark 5. Assumption 2-4 is not necessary. If P2’s SR strategy W;’x’z is not memoryless
in the game G(z) but represented using a finite-state controller (also known as a finite-
memory policy), then we can augment the states in the hypergame transition system in
Definition 21 with the states in the finite-state controller and planning in the augmented

State space.

Definition 25 (Value of Deceit).

Given the dynamic hypergame H = (V, A, A, (so, ho, qo, o), F), the value of deceit is
defined by ]

Pri™ (soh/ = 1)

u1(807 ﬂ-fu ﬂ-;u 901)

VoD =

)

where Pr?7i (soh’ = 1) is the probability of satisfying P1’s task ¢, in the Markov chain
induced from # under the optimal policy 7y, and uq (so, 75, 75, 1) is the value of the

zero-sum game with complete information given P1’s task ;.

Note that we have Pr/7i (soh' E v1) = V(so0, [ho] o, 0, To)- In words, the value of
deceit is the ratio between P1’s probability of satisfying the scLTL objective using the
solution of the dynamic hypergame and P1’s probability of satisfying the same objective
when both players have complete information. Based on the definition, P1 will only gain

advantages with deception when the value of deceit is greater than one.



CHAPTER 6. DYNAMIC HYPERGAMES FOR SYNTHESIS OF DECEPTIVE
90 STRATEGIES WITH TEMPORAL LOGIC OBJECTIVES

6.4.4 Detecting the Mismatch for Opponent Modeling

The effectiveness of P1’s deceptive strategy hinges on the accuracy in modeling P2’s
inference and predicting P2’s BSR strategy. In this section, we develop a method to detect
if there is any inconsistency between the actual behavior of P2 observed during online
interaction and P1’s model of P2’s behavior used in the MDP #. If the method identifies
the inconsistency, it alerts P1 that the optimal policy 7] in 7 may not be effective.

Consider a finite history h = sgagsia; - - - S, we denote the action pairs for P1 and P2
as a; = (a},a?) for any 0 < i < n — 1. Under the assumption of complete observations,
both players can observe the history i. By employing the DFA A corresponding to P1’s
scLTL specification ¢, and the inference function 7 in the MDP A, we can transform the
history h to an augmented state-action sequence denoted by h= VoQoV1a7 - + - Uy, Where
Ui = (84, [hilass @i, 25) and Tip1 = (Sig1s [Pigalwiyss Gkt Tig1)s i1 = (a5, L(Si41)),
hiv1 = hia;sis1, i1 = n(x4, hivq). It is worth noting that for a unique history h, there
exists a unique augmented state-action sequence h as the transitions in the DFA and
inference functions are deterministic, and the entire history up to step ¢ + 1 is used to
compute the (7, z;,1)—equivalent histories at step i + 1. The detection problem reduces
to: Given the transition system 7S, a predicted inference function n for P2 and P2’s
BSR strategies for a set of hypotheses X, how likely is the observation / generated by
our predicted model of opponent? If the likelihood of the observation h is low (below
a predefined threshold), then there is a mismatch in the model; otherwise, there is no
mismatch.

We employ the likelihood ratio test [109] to answer this question. We have two

hypotheses as follows:
H, the data is generated by our predicted model of P2.
H, the data is not generated by our prediction.

The goal is to test which hypothesis is a good fit for the data. Given P1’s action sequences,
the state sequences, and the MDP 7 from Definition 24, the predicted P2’s policy, the

likelihood of P2’s action sequences is computed by
n—1
Lo = L(agat---ap_y [ {m™* |z € X}) = [ [ m™*(a] | 50),
i=0

where s; = ¥;[1] and x; = 7;[4] are the first and last components of ;.
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At the same time, we obtain an estimate of P2’s strategy from the history: For each
0= (s, [M]+, g, @),

#10.0%)  if 17 () £ 0
ﬁ_§<a2|5>: #l(v) # ( )7& )

T undefined otherwise,

where # 1(0, a?) is the number of times that P2 selects action a? given the current state
0, and # 1(?) is the number of times the state v is visited. For unseen state-action pairs,
we do not estimate the policy given the pair as it won’t be used in the test. Based on the

maximum likelihood estimate of P2’s strategy from the history, we have

L = L(agal---a? | | {7 |z € X}) = H”’“ (a? | s;).

The likelihood ratio is computed as

Lo
A= —.
L
We conduct a likelihood ratio test and calculate x> = —21n )\, which is an approximate Chi-

square distribution of n degree of freedom, and n is the number of parameters estimated
{7%(a® | s) | #1(0,a?) # 0}]. By selecting
a confidence level o, we reject the null hypothesis Hy if x? is larger than the Chi-square

with maximum likelihood estimation, i.e.,

percentile with n degrees of freedom given the level a.

6.5 Case Study

This section presents a robot motion planning example to illustrate the proposed deceptive
planning method. This case study includes an inference function for P2 based on the

sliding-window change detection, introduced next.

6.5.1 Inference with sliding-window change detection

We introduce a class of inference algorithms based on change detection in the Markov
chain (MC) [99]. Given P2’s finite hypothesis space X, P2 can construct a set of games
{G(x) | x € X}. For each game G(z), it is assumed that there is a unique equilibrium
(m", my™"), where " : PrefPlays x A; — [0, 1] is a stochastic strategy for player i given
the hypothesis . This equilibrium induces a probability measure Pr{™" ™) over histories

in G(x). For simplicity in notation, we denote Pr{™" ™) a5 Pr®.
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When P2’s current hypothesis is x, P2 can detect a change from x to some ' € X using

a sliding-window change detection algorithm based on the Cumulative SUM (CUSUM)
statistic [10]. First, we are given a data point in the forms of history h = sgags; - - - s, and
a nominal model z,. We denote the interval of a time window of size m + 1 as [k, k + m)],
and the history within this time window is siay - - - Sk1m@k+mSk+m+1. Second, we denote
the i-th observation of the transitions within the time window as y; = (agyi—1, Sk+i)
for 1 <i < m+ 1. When i = 0, the 0-th observation within the window is yo = (si).
Intuitively, given a data point and a nominal model z, the sliding-window change detection
algorithm uses a subsequence of history over a time window and detects if a change has
occurred in the model that generates the data during this time window. Specifically, for
each hypothesis © € X and a nominal model z, the algorithm computes the log-likelihood
ratio, for 1 <53 <m+1,

Pr”(y;)
Pro(y;)

transition given the probability measure Pr” (resp. Pr™°).

where ¥ = In , and Pr®(y;) (resp. Pr™(y;)) is the probability of observing the
The change detection lies in the difference between the log-likelihood ratio and its
current minimum value. The CUSUM score is given by,

Z' =R — min RY, for1 <[l <m+ 1.
! Lo Y

Recursively, the CUSUM score is updated for each hypothesis x € X as

Pr*(y)

Z =max{0, Z;" ; +In —+
l { -1 Pr 0(?/1)

2 (6.2)

where Zj = 0.
A change is detected at time ¢ when the score of at least one model, say Z}°, exceeds a

user-defined constant threshold ¢ > 0. Formally, the time of change is given by
t=min{l | dz € X, Z > c}.

Once a change is detected, the algorithm sets the nominal model to be the current model,
disregards the history until the change, and keeps running the online change detection
given new observations from the change point onwards. When multiple models maintain
similar CUSUM scores, we select one model based on some domain-specific heuristics or

at uniformly random.
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Lemma 11. Given a sliding-window change detection inference 7: X x PrefPlays — X
with window size m + 1 and a finite hypothesis space X, two histories hy, hy are (1, x)-

equivalent if they share the same suffix 2 of length m + 1.

Proof. The proof is based on the property of the change detection and thus omitted. [

6.5.2 Deceptive Planning with a Temporal Logic Objective

We consider two examples inspired by security games, referred to world; (Figure 6.11)
and worlds (Figure 6.12). In both worlds, a robot (P1) is to visit several regions of interest
(labeled A, B, C and colored in red) according to a temporal ordering, and an observer
(P2) can reallocate traps in cells colored in blue. Both games are concurrent: When P1
selects an action to move, P2 simultaneously chooses an action to reallocate the traps.
When P1 enters the cell where P2 allocates the trap to that cell, we say that P1 is trapped.

The game terminates in two ways: (a) P1 is trapped; (b) P1 completes its task.

15% 15%)

70%
I IAction taken
ook

ey 2 3)

Figure 6.1: (1) world;’s initial configuration for P1 and P2. (2) worlds’s initial configura-
tion for P1 and P2. Cells colored in yellow are walls. Bulbs indicate initial P2’s predictions.
(3) Robot’s dynamics when the action “up” is taken.

We consider a set AP of atomic propositions:
* a: robot reaches regions A.
* b: robot reaches regions B.

* c: robot reaches regions C'.

2For a word w = 0109 - - - 0, a suffix of w is a word v of the form 0i0iy1 - 0p, Where 1 <7 < m.
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¢ 0: robot reaches obstacles.

Formally, we describe P1’s task by the formula as follows:
01 = (—oUa) A (=(bVo)Uc).

That is, the robot needs to visit region A and region C' without reaching obstacles. Before
visiting region C, the robot cannot visit region B. The corresponding DFA is drawn in

Figure 6.2.

{0} v {c}

{a} ue

Figure 6.2: The task automaton with 5 states and 12 edges corresponds to (;, where
Q={¢|i=0,1,23,4}.

P1 can move in four compass directions, and P1’s dynamics is plotted in Figure 6.13.
A bouncing wall surrounds the grid world, i.e., if P1 hits the wall, then P1 gets bounced
back to P1’s previous cell. The orange cell in the grid world is a static obstacle, labeled by
0.

P2 can reallocate the traps (i.e., dynamic obstacles) to a subset of cells colored in blue

in world, and world,. P2 can only use ¢ traps with n possible trap locations. Thus, the

n

¢
of any trap, it must wait at least &k time steps to be able to reallocate any trap again. In the

number of actions for P2 is ( ) i.e., choose ¢ out of n. Every time P2 resets the location

example of world,, we select n = 4, ¢/ = 1, and let k£ = 0; In the example of world,, we
select n = 3,/ = 1, and let k to be a variable.

In both examples: world, and worlds, the asymmetrical information is as follows:
* P1 knows the complete task ¢;.
* P2 does not know the complete task ;.

We refer to this situation as an asymmetric information case. On the other side, if P2
knows P1’s complete task, then we refer to that as a symmetric information case. In the

asymmetric information case, P2 has a hypothesis space X = {-oU¢ | ¢ € {a,b,c}}.
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Different behaviors under asymmetric and symmetric information cases in

world,

We compare P1’s task completion rates between asymmetric and symmetric information
cases.

In the asymmetric information case, for each x € X, P2 solves a Stackelberg/leader-
follower game and decides a trap configuration against the best response of P1 in game
G(z). Let A, be the set of different configurations of traps. The strategy of P2 is obtained
as follows: For any s € S,

™" (s) = arg min maxPro (A | o | 5, %),

where Pr™ (hl/ |= x| s,a?) is the probability of P1 satisfying the formula x given P2’s
action (trap configuration) a*. For instance, if z = =0 U a and robot is at the (2, 4), then
P2’s optimal action is to allocate the trap to the blue cell right to the robot, that is (3, 4).
For each hypothesis x € X and state s € .5, P2 solves the optimal trap allocation action
a® and also computes the best response of P1 that achieves the maximum probability of
satisfying = from the state s. The joint strategy profiles for different hypotheses x € X
also enable P2 to infer the subgoal of P1: P2 observes the behavior of P1 given the current
trap location a? and then infers, for which z, P1’s behavior matches with the best response
given x and a? using the sliding-window change detection.

For the configuration of world,, we evaluate different window sizes and find that
sliding-window size m + 1 = 2 and user-defined threshold ¢ = 0.12 achieve a good
trade-off between space complexity and accuracy in prediction in this example. If we
choose a window size and a user-defined threshold not accurately modeling P2, our method
in subsection 6.4.4 enables P1 to detect the incorrect prediction of P2’s behavior. Assuming
P2 can reallocate traps anytime with WQB 2 we can construct an MDP % and solve for P1’s
optimal deceptive strategy denoted by 7.

In the symmetric information case, P1 and P2 both have exact knowledge of task
specification ¢, and P1 wants to maximize the P1’s probability of finishing the task;
P2 wants to minimize the P1’s probability of finishing the task. We denote the Nash
Equilibrium strategy profile by (7}, 75), where the Nash Equilibrium strategy profile is
obtained as follows:

(m],m3) = arg min max Pr<”1»7f2>(hh/ = o).

mo€lly m €lly
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Table 6.1: The completion rates for P1 in asymmetric information case and symmetric
information case in world;.

Info P1 Policy P2 Policy Completion rate (P1)
Asymmetric 7} ﬂf i 66.96 %
Symmetric 7] T 29.69%

In Table 6.1, we list P1’s completion rates for its task specification: one for asymmetric
information case and one for symmetric information case. Table 6.1 indicates that under
asymmetrical information, by following the deceptive strategy given P2 plays BSR strategy,
P1 has a higher probability of satisfying the specification than the case by following the

Nash Equilibrium strategy profile. The value of deceit in world; is VoD = gg:gg% = 2.26.

(1) 2 (3)

Figure 6.3: Three key steps of deception in the simulation. (1) P2 predicts P1 will reach B.
(2) P2 reallocates the trap given P1’s position. (3) P2 predicts that P1 will reach C, but it is
too late for P2 to respond.

In this case, P2 can only place traps near region B and region C' but not region A. We
plot three key steps during the simulation in Figure 6.3. The solid lines denote the robot’s
trajectories. In Figure 6.3 (1), P2 predicts that P1 will reach region B after observing that
the robot goes up. The prediction does not change until the robot reaches (1, 4) in Figure 6.3
(3). When the robot reaches (2, 4), P2 still predicts b (see Figure 6.3 (2)) and places the
trap at (3, 4) (see Figure 6.3 (3)). When the robot reaches (1,4), P2 correctly predicts c.
But it is too late, and P2 cannot prevent the robot from reaching region C'. The deceptive
strategy leverages this information asymmetry to lead P1 to achieve a higher probability of
finishing its task. We provide a short video * demonstrating the difference between P2’s

behaviors in the cases with asymmetric and symmetric information, respectively.

3https://www.dropbox.com/s/i98ka56gdhdvxgq/video_10_09_2021.mp4?d1=0
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Next, we investigate how delays in reallocating traps for P2 would affect the completion
rate of P1. However, in the world; example, we observed in experiments that any delay
in reallocation could easily lead P1 to complete its task. Based on this observation, we
construct another example worlds, and evaluate the completion rates for every k steps of

delay and effectiveness of model mismatch in this example worlds.

Reallocation every & steps of delay in world,

In this example, we assume that P2 is restricted to only reallocate the trap after & steps since
the last reallocation, where £ is an integer. P1 is aware of P2’s delay £ and synthesizes the
deceptive strategy. Figure 6.4 shows the completion rate of the task (values of P1 at initial
state (2,4) in Figure 6.12) under different steps of delay up to k£ = 3. The results indicate
that with the increase of steps of delay, the probability of completing the task increases,

and P1 exploits P2’s delay and lack of information.

100.0% A

98.0% -

96.0% -

94.0% -

92.0% -

90.0% -
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86.0% -

84.0% -

0 1 2 3
k-step of delay

Figure 6.4: The task completion rates of P1 given P2 with k-step delay in reallocating
traps, for k =0, 1,2, 3.

Detection of model mismatch in world,

We use experiments in the configuration worlds; to demonstrate the effectiveness of the

detection mechanism, that is, to identify whether there is a deviation from the predicted
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opponent model of P2. We set the significance level o = 0.05. If the likelihood of observed

action sequences is smaller than or equal to 0.05, we reject the null hypothesis: the data is
generated by our predicted model of P2.

We consider a case that P1 follows policy 77, and P2 plays the policy predicted by P1
for the first four steps. After the first four steps, we let P2 play a random policy 7, i.e.,
mia | s) = Wls)w forall @ € A(s). The mismatch is detected at the 7-th step of the online
interaction, and P1 is alerted that P2 deviates from the predicted policy. We compute A
after each step and plot it in Figure 6.5, where we also plot the x?. (The reason predicted
A = 0 is that the predicted policy Wf 2 is deterministic.) From Figure 6.5, we see that at
the 7-th step of online interaction, we have A > 2, so we reject the null hypothesis Hj.

The degree of freedom in the Chi-square detector is the number of the state-action pairs.

257

20 A

154

Value

10

0 - N N N N N
N P A N N PN
1 2 3 4 5 6 7
Online interaction steps

Figure 6.5: The likelihood ratio A for online interaction between P1 and P2.

Complexity Our realization of the proposed framework in examples includes three
major components: (a) Inference with sliding-window change detection, (b) Equilibrium
solving of Stackelberg games, (c) MDP planning for deceptive planning. The inference
with sliding-window change detection has an O(m) time complexity, where m + 1 is the
window size. It is noted that P2’s BSR strategies are computed using a set of leader policies
computed offline based on solving a set of Stackelberg games, one for each hypothesis.

Given P2’s BSR policy, we can reduce solving P1’s optimal deceptive strategy problem
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into an MDP planning problem, which can be solved in polynomial time in the size of the
states and actions [81], where the state space is the product of the states in the game, the
set of inference-equivalent histories, the DFA states, and a set of hypotheses. We solve the
equilibrium of Stackelberg games and solve the MDP with the value iteration algorithm.
We run algorithms on a Windows 10 machine with AMD Ryzen 9 5900X CPU and 16 GB
RAM. The computational time of equilibrium solving of Stackelberg games is about 5
seconds, and the computational time of MDP planning is 140 seconds.

Finally, it is remarked that the deceptive planner can use different components given
different inference algorithms and solutions of P2’s BSR strategies. This analysis of

complexity may not generalize to other classes of hypergames.

6.6 Conclusion

In this section, we propose a solution concept for a class of hypergames to solve deceptive
strategies with temporal logic objectives. Our hypergame framework identifies two key
components for deceptive planning: Opponent modeling and deceptive planning. The
general framework can be extended to other classes of games with incomplete information.
It is also important to note that the proposed approach does not generalize easily to partially
observable games with two-sided partial observations. This is because two players may
have different observations over the same history and incomplete information about what
observation the other player has. The partial observation may potentially make player 1’s
subjective model of player 2’s perceptual game diverge from the actual perceptual game of

player 2.






Chapter 7

Conclusions

To express temporal objectives, this thesis considers a class of temporal logic formulas,
PCTL and LTL formulas, for optimal planning of stochastic systems. PCTL formulas
can reason about probabilistic system properties; LTL formulas can reason about liveness,
fairness, and safety. This work starts with PCTL and formulates a constrained optimization
problem for probabilistic planning with MDP incorporating the softmax Bellman operator.
We enforce chance constraints translated from a class of PCTL formulas in this optimiza-
tion. We demonstrate the correctness of the proposed translations. This thesis successfully
develops a scalable ADP method by adopting stochastic programming techniques and
on-policy sampling. Under several assumptions, we provide the almost sure convergence of
the proposed ADP algorithm. The case study illustrates the efficacy of the ADP algorithm
and the satisfaction of temporal objectives in PCTL formulas.

Leveraging existing LTL to DFA conversion, we can compactly represent the LTL
formulas expressing temporal objectives. We describe an algorithm to discover structural
information, termed topological order, in the translated DFA. Topological order helps
generalize the optimal backup order from MDPs to product transition systems and divides
the product state space into levels. Based on the generalized optimal backup order, updating
the values in a level-by-level manner guarantees the optimality of value functions. The
case study indicates the improved convergence of the classic algorithm. Further, we show

that this generalized optimal backup order applies to our proposed ADP algorithm.

We use neural networks to approximate value and policy functions. When the stochastic
system has continuous-state space, we devise an actor-critic, model-free reinforcement
learning algorithm to avoid intractable system models. This actor-critic algorithm integrates

topological order and modular learning to boost empirical performance further. The case

101



102 CHAPTER 7. CONCLUSIONS

study shows that our proposed actor-critic algorithm matches or beats the baselines.
Furthermore, we demonstrate the successful synthesis of a policy applicable to a real RC
platform.

Hypergames allow capturing subjective views of both players. Given the inference
function, we model the opponent’s subjective view evolution to reduce the game to an
optimal planning problem. We establish a solution concept of hypergames. This solution
concept leads to a deceptive planning algorithm that learns a subjectively rationalizable
strategy. Further, we design an online detection mechanism to alert the modeling error of
the opponent’s subjective view. The case study confirms the effectiveness of the synthesized
policy in deception.

Future work can focus on extending our translation of PCTL formulas to a large class of
temporal logic formulas. To further deal with large-scale MDPs, developing a distributed
ADP based on decomposition-based planning is beneficial.

In the class of hypergames considered, we have made some assumptions about the
adversary’s inference mechanism and strategies. Future work can generalize the determin-
istic inference to probabilistic inference. One direction is considering a set of probabilistic
distributions forming continuous hypothesis space X. In addition, robust Markov decision
processes can be incorporated to deal with mismatches in the opponent model, provided
the range of mismatches is known prior. If P2 has multiple BSR strategies, then P1 needs
to consider more. One direction for P1 is to learn which strategy P2 uses and adapt its
deceptive strategy accordingly. Another is for P1 to be robust for a range of P2’s possible
equilibrium strategies.

Ultimately, we present a comprehensive, efficient, model-free framework for formal
policy synthesis for stochastic dynamic systems with temporal objectives. This thesis
broadens the horizon of the probabilistic optimal planning for stochastic systems given high-
level specifications in single- and double-player views, which potentially has extensive
applications in defense operations, robotics, economics, networking, and other cyber-

physical systems.
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