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Abstract

In today’s modern world, digital media and algorithms increasingly control what is seen by
users online. This can have serious ramifications when the rankings could perpetuate bias
against legally protected groups. These ranking methods must therefore aim for fairness towards
such protected groups. However, when necessary demographic information is not available,
institutions must look to outside inference algorithms for the information. In our research,
we analyze the effectiveness of in-processing and post-processing fair ranking methods under
uncertain demographic information. Our results show that using inference algorithms that
are less accurate with respect to the protected group with a fair ranking method produces
more fair rankings. However, we recommend future researchers to spend more time tuning the
parameters of the fair ranking methods.

Executive Summary

Introduction. Digital applications are becoming increasingly relevant in all aspects of our
modern world. These applications are often driven by ranking systems, which dominate search
engines providing top results for users. The algorithms provide a ranking that can suggest the
best library books, top videos to watch, news feed stories, and online store products to buy.
These sorts of results may seem innocuous until it is considered that these ranking systems are
also used when determining top candidates for job applications, talent searches, loan/mortgage
approvals or college admissions.

Background. In order to reduce discrimination against a specified protected group, researchers
have explored many methods of fair ranking, including in-processing learning-to-rank models
and post-processing fair ranking algorithms. DELTR is an in-processing learning-to-rank model
that can produce fair rankings by balancing utility and fairness to reduce the inequality of oppor-
tunity and discrimination certain protected groups may face. DetConstSort, a post-processing
ranking algorithm, can be tailored to achieve fairness criteria such as equality of opportunity
and demographic parity. Both methods of ranking resulted in significant improvements in fair-
ness with respect to the protected groups.

Our Goals. Although it is difficult to find a balance between fairness and utility, it is im-
portant to work towards being as fair as possible so that no group is discriminated against.
However, there are certain instances when institutions are not able to acquire the information
required to produce a fair ranking. In these cases, institutions must turn to inference methods
to infer protected attributes. The protected attribute information is necessary, not only for
fairness metric calculations, but also when training an LTR model to produce fair rankings
with respect to a specified protected group or attribute. Therefore, in our research, we want
to understand what happens to the impact on fair ranking methods given inferred protected
attributes by calculating the fairness and utility of the rankings produced by various LTR
methods.

However, institutions may not always choose to use a fair LTR model to produce fair
rankings. Therefore, in our research, we also aim to explore the impact of inferred protected
attributes on rankings produced by fair post-processing ranking algorithms. Finally, we want
to compare the findings on fair LTR models and on fair post-processing ranking algorithms.

Methods. We first investigate how uncertainty in demographic information affects the per-
formance of both in-processing and post-processing fair ranking methods. To produce inferred
demographic information, we chose to use the following three inference algorithms in our ex-
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periments: Behind the Name, NameSor, and GenderAPI. Additionally, we use DELTR in our
experiments as the in-processing fair ranking method and DetConstSort as the post-processing
fair ranking method.

To evaluate the impact on the fairness of rankings produced by DELTR and DetConstSort
when given ground-truth and inferred demographic information, we explored three different
datasets: all WNBA/NBA players until 2017, Boston Marathon 2017 participants, and Cherry
Blossom 2017 race participants. For each dataset, we measured the impact of inference on
DELTR and on DetConstSort individually. Then, we compared the results between the two
ranking methods when using ground-truth demographic information and when using inferred
demographic information. We evaluated all results with four metrics that measure the fairness
and utility of rankings.

Conclusions. We found that we produced more fair rankings when using DetConstSort over
DELTR. This could be due to the deterministic nature of DetConstSort as a post-processing
re-ranking algorithm. DetConstSort allows for fine-tuning the desired characteristics of the
ranking outputs, whereas rankings produced by DELTR, a learning-to-rank model, are far less
reliable as they are heavily dependent on the methods of training and potential bias present in
the dataset.

Additionally, we find that using inference methods that are less accurate with respect to
the protected group produced more fair rankings. This conclusion was consistent when using
DELTR as well as DetConstSort. However, these results were unexpected, as previous research
has come to the opposite conclusions. Due to the time constraints on our research, we were not
able to fine tune the gamma parameter of DELTR. Having a poorly fitted model could have
had a significant effect on how our datasets were ranked. For future work, experimenting to
find the optimal gamma value and number of iterations used when training the models will be
critical for each individual dataset used. This will help to create models that are not over or
under fitted to the data, allowing for more significant results.

We would also recommend that future work incorporate experiments on other protected
attributes such as race, religion, age, etc. Our deliverables include the results and analysis
across our three experiments on the WNBA/NBA, Boston Marathon 2017, and Cherry Blossom
2017 datasets. In addition, we developed a modular Python package, FairRank, that will allow
future researchers to reproduce our experiments and expand the scope of the research.
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1 Introduction

1.1 Motivation

Digital applications are becoming increasingly relevant in all aspects of our modern world.
These applications are often driven by ranking systems, which dominate search engines provid-
ing top results for users. The algorithms provide a ranking that can suggest the best library
books, top videos to watch, news feed stories, and online store products to buy. These sorts of
results may seem innocuous until it is considered that these ranking systems are also used when
determining top candidates for job applications, talent searches, loan/mortgage approvals or
college admissions.

Recently, numerous researchers have drawn attention to the ranked lists produced by biased
machine learning (ML) models, which can exacerbate discrimination and cause unequal expo-
sure of disadvantaged groups [1, 2, 3, 4]. These sources call attention to the fact that many
Learning To Rank (LTR) algorithms base their results solely on utility and disregard fairness1

for a protected group. The protected group2 is a demographic of people of which it is illegal to
discriminate against. In order to reduce discrimination against a specified protected group, re-
searchers have explored many methods of fair ranking, including in-processing learning-to-rank
models and post-processing fair ranking algorithms.

1.2 Related Works

Zehlike et. al. introduce their in-processing learning-to-rank model, DELTR (Disparate Ex-
posure in Learning To Rank) [5]. DELTR can produce fair rankings by balancing utility and
fairness to reduce the inequality of opportunity and discrimination certain protected groups may
face. In their experiments, they compared the performance of DELTR to pre-processing and
post-processing ranking algorithms. Their research allowed them to conclude that DELTR, as
an in-processing ranking method, out-performed the pre- and post-processing ranking methods.

Geyik et. al. developed a post-processing ranking algorithm, DetConstSort, that can be
tailored to achieve fairness criteria such as equality of opportunity and demographic parity
[2]. They claim that DetConstSort and its related algorithms consist of the first large-scale
deployed framework for ensuring fairness working heavily in the hiring domain of Linkedin.
In order to support their claim, they conducted extensive simulations over different parameter
choices, and studied the effect of fairness-aware rankings on both bias and utility measures.
This approach resulted in large improvements in fairness metrics while not affecting utility and
business metrics.

Additionally, Ghosh et. al. explore how uncertainty impacts the fairness of rankings pro-
duced by DetConstSort [1]. In their experiments, they conducted simulations and three case
studies to show how inferred demographic information can lead to unfair rankings. Their re-
sults allowed them to conclude that using inferred demographic data is not recommended in
conjunction with fair ranking algorithms, except in the event that the method of inference was
highly accurate.

Most recently, Pietrick et. al. explored the impact of uncertain protected demographic infor-
mation on rankings produced by DELTR [6]. Their study consisted of experiments completed
on the COMPAS dataset, using three gender inference algorithms. Their results suggested that
using less accurate inference methods negatively impacted the fairness of rankings produced
by DELTR, while more accurate inference methods positively impacted the fairness of such

1Fairness is mathematically defined and is measured by exposure of protected groups using different metrics.
2Some common protected attributes include race, religion, national origin, gender, marital status, age, and

socioeconomic status.
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rankings. Their final recommendation was consistent with that of Ghosh et. al; it is imperative
to carefully evaluate any chosen inference method to ensure its credibility and accuracy.

1.3 Our Goals

Although it is difficult to find a balance between fairness and utility, it is important to work
towards being as fair as possible so that no group is discriminated against. However, there are
certain instances when institutions are not able to acquire the information required to produce
a fair ranking. For example, the Consumer Financial Protection Bureau states that The Equal
Credit Opportunity Act (ECOA) and Regulation B generally prohibit a creditor from inquiring
“about the race, color, religion, national origin, or sex of an applicant or any other person in
connection with a credit transaction” [7]. In these cases, institutions must turn to inference
methods to infer protected attributes. The protected attribute information is necessary, not
only for fairness metric calculations, but also when training an LTR model to produce fair
rankings with respect to a specified protected group or attribute. Therefore, in our research,
we want to understand what happens to the impact on fair ranking methods given inferred
protected attributes by calculating the fairness and utility of the rankings produced by various
LTR methods.

However, institutions may not always choose to use a fair LTR model to produce fair rank-
ings. As discussed in Section 1.2, previous research has explored fair post-processing ranking
algorithms. In our research, we also aim to explore the impact of inferred protected attributes
on rankings produced by fair post-processing ranking algorithms. Finally, we want to compare
the findings on fair LTR models and on fair post-processing ranking algorithms.

1.4 Our Approach

In this research, we investigate how uncertainty in demographic information affects the per-
formance of both in-processing and post-processing fair ranking methods. To produce inferred
demographic information, we chose to use the following three inference algorithms in our ex-
periments: Behind the Name, NameSor, and GenderAPI. Additionally, we use DELTR in our
experiments as the in-processing fair ranking method and DetConstSort as the post-processing
fair ranking method.

To evaluate the impact on the fairness of rankings produced by DELTR and DetConstSort
when given ground-truth and inferred demographic information, we explored three different
datasets: all WNBA/NBA players until 2017, Boston Marathon 2017 participants, and Cherry
Blossom 2017 race participants. For each dataset, we measured the impact of inference on
DELTR and on DetConstSort individually. Then, we compared the results between the two
ranking methods when using ground-truth demographic information and when using inferred
demographic information. We evaluated all results with four metrics that measure the fairness
and utility of rankings.

1.5 Contributions

Our results suggest that inference algorithms with lower accuracy with respect to the protected
group produced rankings that were more fair, according to our fairness metrics. As for util-
ity, across all experiments and inference algorithms, there were no discernable patterns that
suggested a gain or loss in utility when using inferred demographic information in combina-
tion with DELTR or DetConstSort. In future research, we recommend experimenting with the
parameters of DELTR and DetConstSort to expand upon the results produced in our research.

The deliverables for this research paper include the results and analysis across our three ex-
periments on the WNBA/NBA, Boston Marathon 2017, and Cherry Blossom 2017 datasets. In
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addition, we developed a modular Python package, FairRank, that will allow future researchers
to reproduce our experiments and expand the scope of the research.
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2 Background

2.1 Related Work

In this section we discuss the related work in the literature to algorithmic fairness, ranking
algorithms, and inference methods for legally protected attributes.

2.1.1 Algorithmic Fairness

Zliobaite defines algorithmic fairness as “(1) people that are similar in terms non-protected char-
acteristics should receive similar predictions, and (2) differences in predictions across groups
of people can only be as large as justified by non-protected characteristics.” [8]. Fairness can be
mathematically defined through representation-based and attention-based metrics. Representation-
based metrics aim to measure the degree to which subgroups of the population in the ranking
are proportionally represented in the top-k rankings and the entire ranking [2]. Studies have
shown that users do not pay equal attention to all items in a list [9]. For this reason, we
introduce attention-based metrics to implement group fairness [1].

When implementing fairness in conjunction with ranking quality metrics, we can balance
fairness with utility [3]. This is more useful than purely fair rankings when attempting to
implement algorithmic fairness in a real-world application [2].

2.1.2 Ranking Algorithms

Ranking algorithms use certain criteria to rank items in a dataset. The algorithm relies on
learning and estimating parameters based on a specified scoring function. The final ranking
produced by LTR will be caused by limited visibility in the position of the protected group
where their position is further down in the ranking. This is called position bias and is fairly
common in LTR [10]. The problem of position bias can be solved with new algorithms that
correct for position by focusing on boosting a protected group to the top of the ranking.

LTR is supervised machine learning, using classification methods to process and learn how
to rank a dataset. These classifications aim to categorize data given prior information [11].
Three main classification methods are pre-processing, in-processing, and post-processing learn-
ing modules that reduce bias at different stages of training.

Pre-processing typically consists of preparing high-quality training data, often using an
approach of removing protected attributes (i.e., race, gender, religion, etc.). Although this
technique may seem to remove bias from the dataset, it does not account for proxy variables
[12].

Post-processing methods assume that accurate demographic information is given to the
ranking algorithm. This is not always the case in real-world datasets. In some cases, such as
with credit lending companies, legal barriers prevent the collection of sensitive demographics
which results in inferring this information to fill the discrepancy. Inferring the demographic
information then causes the post-processing methods to be trained on possibly incorrect or
biased data resulting in unfair results [1].

In-processing may be the best method when creating a fair learning to rank algorithm by
learning how to control bias. DELTR is an in-processing LTR method that accounts for fairness
of both protected and non-protected groups, therefore supporting inferred demographics [?].
The DELTR method also uses values that used to tune how much the algorithm takes into
account fairness and utility when training a model. The model that is trained is then used to
produce a fair ranking of a dataset.
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2.1.3 Inference Methods

Demographic Inference Methods, or DIMs, are used to predict certain demographics such as
race or gender of individuals based on other given attributes such as location or name of the
individual. DIMs are often paired with Learning to Rank algorithms when certain protected
attributes are missing. This is important for when institutions need to infer certain information
for consumers because they are not allowed by policy to have it directly. For example, as
mentioned in the introduction, CPFB is charged with ensuring that lenders are following fair
lending laws and addressing discrimination. As a result, “auto lenders and other non-mortgage
lenders are generally not allowed to collect consumers’ demographic information”. However,
lenders may still need access to that information and therefore use proxy information to fill in
information about consumers’ demographic [13]. This proxy information is typically generated
by DIMs and as all predicative models and algorithms, they are not right 100% of the time.
Specifically In our research we are focusing on DIMs that infer gender based on other attributes
such as name.

2.2 Metrics and Algorithms

In this section, we introduce the notation, metrics, and algorithms that are relevant to our
research.

2.2.1 Notation

The following is a table of variables used to describe metrics and algorithms for the use of our
experiments. The variables are defined here to maintain consistency across formulas that were
gathered from varying sources.

Notation Definition

k position in a ranking (starting at one)
τ a ranked list of documents
τ k top-k documents in ranking τ
j protected attribute
ji subgroup i in j
pb,a proportion of a present in list b
sτk utility score of the kth element in ranking τ

Table 1: Summary of Notation.

2.2.2 Group Fairness Metrics

Below we detail the metrics chosen for measuring fairness in a ranking τ . The metric equations
have all been rewritten with the notation defined in Table 1 for clarity and consistency.

Skew. Given a ranked list τ , a protected attribute j, and a subgroup ji, the skew for ji
at position k is given as

Skew (ji)@k(τ) =
pτk,ji
pτ,ji

(1)

where pτk,ji is the proportion of members in subgroup ji in the top-k rankings in τ , and pτ,ji
is the proportion of members in subgroup ji in the list τ . For group fairness, skew should be
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as close to 1 as possible. This would show that the subgroup ji is proportionally represented
in the top-k rankings as it is represented in the the entire ranking τ . In other words, skew
measures group fairness with respect to representation in a given ranking τ . [1, 2]

Average Positional Difference For Skew. Given a list of skews σi from ranking τi and another
list of skews σj from ranking τj where both rankings are of equal length, the average positional
difference for skew of a particular group between two rankings is given as

AvgPosDiffSkew(σi, σj, τi, τj) =
1

|τ |

|τ |∑
k=1

Skew (σj)@k(τj)− Skew (σi)@k(τi) (2)

where k is the skew at each position in the ranking and σi is the list of skews from the
control ranking and σj is the list of skews from the experimental ranking. A value of greater
than one indicates that skew or the representation of that group increased and a value of less
than one indicates that the skew or the representation of that group went down. The closer to
0 means the less of an impact that was made on the skews.

NDKL. Given a ranked list τ , we can derive another representation-based fairness metric
known as the Normalized Discounted Kullback-Leibler Divergence, or NDKL Divergence. This
metric is defined as

NDKL =
1

Z

|τ |∑
k=1

1

log2(k + 1)
∗ dKL(Dτk |Dτ ) (3)

where dKL(Dτk |Dτ ) is the KL divergence score of Dτk with respect to Dτ , defined as

dKL(Dτk |Dτ ) =
∑
j

Dτk(j) ∗ log2(
Dτk(j)

Dτ (j)
) (4)

and where Z is defined as

Z =

|τ |∑
k=1

1

log2(k + 1)
(5)

For group fairness, NDKL values should be close to zero. Similar to skew, an NDKL value
close to zero would indicate that members of the list τ in all subgroups ji are represented
proportionally in the ranking τ k. [1]

Exposure. Given a ranking τ , we can evaluate the exposure at position k, defined as

Eτk =
1

log2(k + 1)
(6)

We use exposure to measure the fairness of the ranking τ with respect to attention [3]. We can
further define the average exposure per group ji as follows.

Eτk(ji) =
1

|ji|
∑
|ji|

Ek (7)

Finally, we define the ratio of average exposure between non-protected group j1 and protected
group j2 in Equation 8.

Eτk(j1 : j2) =
Ek(j1)

Ek(j2)
(8)
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When Eτk(j1 : j2) is close to one, we can conclude that the ranking is more fair than when
Eτk(j1 : j2) is closer to zero. When Eτk(j1 : j2) is greater than one, we can conclude that the
non-protected group is over-represented in the ranking. When it is less than one, we conclude
that the protected group is over-represented in the ranking.

2.2.3 Ranking Quality Metric

Below we have described the ranking quality metric we have chosen, carried over from previous
experiments for this project.

NDCG. Given a ranked list τ , we can compute Normalized Discounted Cumulative Gain,
defined as

NDCG(τ) =
1

Z

|τ |∑
k=1

sτk
log2(k + 1)

(9)

where sτk is defined as the utility score of the kth element in τ and Z is defined as in Equation
5 [1]. NDCG is a ranking quality metric that can be used to determine the utility of a given
ranking.

Average Positional Difference For NDCG. Given a list of NDCG’s σi from ranking τi and
another list of skews σj from ranking τj where both rankings are of equal length, the average
positional difference for skew of a particular group between two rankings is given as

AvgPosDiffSkew(σi, σj, τi, τj) =
1

|τ |

|τ |∑
k=1

Skew (σj)@k(τj)− Skew (σi)@k(τi) (10)

where k is the skew at each position in the ranking and σi is the list of skews from the
control ranking and σj is the list of skews from the experimental ranking. A value of greater
than one indicates that skew or the representation of that group increased and a value of less
than one indicates that the skew or the representation of that group went down. The closer to
0 means the less of an impact that was made on the skews.

2.2.4 DELTR

DELTR (Disparate Exposure in Learning To Rank) is an in-processing method of fair ranking
and can produce fairness-unaware and fairness-aware learning-to-rank (LTR) models. All LTR
frameworks require an input dataset that includes a numeric score for ranking. DELTR is a
list-wise LTR framework created by Zehlike and Castillo that runs on both protected and non-
protected groups [5]. This framework ensures equal treatment of members within a specified
group using average exposure, while giving the most attention to items at the top of the ranking.
By balancing utility and fairness, DELTR can produce a fair ranking that reduces inequality
of opportunity and discrimination. To specify the fairness of a model, a user defines a value for
the input parameter, gamma. When gamma is equal to zero, the model is “fairness-unaware”.
When gamma is greater than zero, the model is “fairness-aware”.

Fairness-unaware DELTR ranks solely on utility, disregarding fairness for a protected group.
This model takes in a dataset with numeric scores that are used for ranking and there is no
need for a protected attribute. DELTR uses this input dataset to learn how to produce scores
to rank the records in the dataset. A trained model is produced based on the specified numeric
score associated with each item in a dataset. This trained model is now capable of producing
future scores. This model is then tested with the test dataset, with the numeric score column
withheld. The ultimate output is an unordered dataset with predicted scores. This output can
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be compared with the known scores that were withheld when initially tested to determine the
accuracy. The final ranking that is produced by this model will be focused on utility and does
not rank consider equal exposure. A sorting algorithm can then be implemented. See Figure 1.

Figure 1: Framework for Vanilla LTR.

Fairness-aware DELTR uses a similar process to the fairness-unaware DELTR model, also
known as Vanilla LTR, except instead of basing the ranking only on utility, now this model
considers equal exposure of a protected group. Training DELTR with a gamma value greater
than one will consider the exposure of the protected value for the top values when ranking a
dataset. The model is also more optimized so that the rankings do not compromise the utility
of the results [5].

2.2.5 DetConstSort

DetConstSort and its related algorithms were created by Sahin Cem Geyik, Stuart Ambler,
Krishnaram Kenthapadi and by the LinkedinIn Corporation as a framework for quantifying
and mitigating algorithmic bias in ranking individuals [2]. DetConstSort works as a post-
processing re-ranking algorithm. This is to say it takes in an already ranked list by some
metric and shuffles the ranking to be more fair. Through this process DetConstSort manages
to achive fairness crietria such as equality of opportunity and demographic parity.

DetConstSort works by ranking a list of items based on their scores, while also considering
some constraints on how many times each item should appear in the ranking. It works by
starting with an empty ranking list and increasing a counter value until at least one item has
reached its minimum required count. If multiple items reach their minimum count requirement
at the same time, they are ordered based on their scores. Then, the next candidate from each
item is inserted into the ranking list, and they are swapped towards earlier positions until
they satisfy the constraints. The algorithm repeats this process until the ranking list is full
or the constraints cannot be satisfied. In summary, DetConstSort is a sorting algorithm that
takes into account some constraints on the appearance of items in the ranking list and tries to
maximize the sorting quality while meeting these constraints.
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3 Methods

3.1 Objectives

Our goal in our research is to understand what happens to the impact on fair ranking methods,
given inferred protected attributes, by calculating the fairness and utility of the rankings pro-
duced by in-processing and post-processing ranking methods. We define the following objectives
to meet this goal:

1. Research the impact that uncertain, or inferred, demographic information has on the
fairness and utility of fair rankings.

2. Research the difference in impact of in-processing ranking algorithms and post-processing
fair ranking algorithms.

3.2 Research Questions

To fulfill the research objectives, we research the following set of questions with respect to
fairness for in-processing (or learning-to-rank) and post-processing ranking methods:

F1. Given uncertain demographic information, how does the fairness of rankings produced
from a fairness-unaware LTR model compare to the fairness of rankings produced from a
fairness-aware LTR model?

F2. How does the fairness of rankings produced from a fairness-aware LTR model compare
when ranking with ground-truth demographic information and when ranking with inferred
demographic information?

F3. How does the fairness of rankings produced by post-processing a ranking from a fairness-
unaware LTR differ when using inferred demographics versus ground-truth demographics?

F4. How does the fairness of rankings obtained from a fairness-aware in-processing LTRmodel,
ranked using ground-truth demographics, compare to the fairness of rankings obtained
from post-processing a ranking from a fairness-unaware LTR?

F5. How does the fairness of rankings obtained from a fairness-aware in-processing LTRmodel,
ranked using inferred demographics, compare to the fairness of rankings obtained from a
post-processing fair ranking algorithm, ranked using inferred demographics?

The next set of questions address the utility of the rankings produced by the same ranking
methods:

U1. Given uncertain demographic information, how does the utility of rankings produced
from a fairness-unaware LTR model compare to the utility of rankings produced from a
fairness-aware LTR model?

U2. How does the utility of rankings produced from a fairness-aware LTR model compare
when ranking with ground-truth demographic information and when ranking with inferred
demographic information?

U3. How does the utility of rankings produced by post-processing a ranking from a fairness-
unaware LTR differ when using inferred demographics versus ground-truth demographics?

U4. How does the utility of rankings obtained from a fairness-aware in-processing LTR model,
ranked using ground-truth demographics, compare to the utility of rankings obtained from
post-processing a ranking from a fairness-unaware LTR?
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U5. How does the utility of rankings obtained from a fairness-aware in-processing LTR model,
ranked using inferred demographics, compare to the utility of rankings obtained from a
post-processing fair ranking algorithm, ranked using inferred demographics?

3.3 Experimental Design

In this section, we describe how our experiments are designed and the process of selection for
the various facets of the design flow.

3.3.1 Ranking Method Selection

We chose to use DELTR as our fair learning-to-rank model in order to continue the research
completed by Pietrick et. al. [6]. DetConstSort was chosen because other researchers have
previously explored the impact of uncertain demographic information on the fairness of its
rankings [1]. Therefore, we were able to build upon previous research to answer our own
questions.

3.3.2 Inference Algorithm Selection

To choose an inference algorithm for the purpose of our research, we considered the criteria as
defined in Table 2

Table 2: Comparison of Inference Algorithms

For each inference method, in addition to ensuring that it could predict gender, it was
important to evaluate the various parameters as seen in the table. According to table 2 Behind
The Name, NameSor, and GenderAPI were the best choices in terms of fastness, usability,
credibility, and price. As for the accuracy we chose to go with one bad, one medium quality,
and one good algorithm to see how they compare. These turned out to be Behind The Name,
NameSor, and GenderAPI respectively. The accuracies for each algorithm were determined
by using them on a datset from data.gov consisting of baby names from Social Security Card
Applications [14].

• Fast: If the inference algorithm is able to process atleast 1 name per second.

• Usability in Code: If the inference algorithm has an API key that can easily be obtained
and used to send python requests.
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• Credibility: If the inference algorithm has a website and has background on how the
algorithm returns a gender.

• Free: If the inference algorithm is free to use.

• Accuracy: If the overall accuracy of the inference algorithm is over 80%

For our research purposes, we have chosen three demographic inference methods that predict
the race of an individual based on other attributes. The first is Behind the Name. Behind The
Name was started by Mike Cambpell in 1996 and is a website used to obtain all aspects of a
given name such as the gender, usage (ethnicity), pronunciation, and scripts (spellings of the
name in other character sets). In this research, we focus on the gender predictions. Behind the
Name operates on a main database of 24,802 names and a submitted name database of 153,316
names that users have submitted and have been approved. This inference method will be used
to predict gender based on provided names from chosen datasets.[15]. It can be seen from the
table that Behind the Name checks all the criteria except for the fact that it does not have a
good overall accuracy. We still decided to use this inference algorithm as our ”bad” inference
algorithm to see how it compares to the other inference algorithms.

The second demographic inference method is an online API service titled Namesor. Similar
to Behind the Name, Namesor also takes in a first and a last name as input and produces
the gender and the country of origin/ethnicity of an individual. The Namesor API has been
continuously refined over the past 10 years with numerous partnerships in research with uni-
versities such as Harvard and Berkeley, scientific groups such as Elsevier, The Lancet, ASME,
SSRN, and governmental/international institutions such as ONU, IOM, European Commission.
Finally the Namesor AI has processed over 7.5 billion names making it the most accurate name
checking technology in the world [16]. NameSor was the medium quality inference algorithm
in terms of accuracy.

The final inference algorithm is GenderAPI which is is the biggest platform on the internet
to determine gender by a first name, a full name or an email address. GenderAPI achieved
the highest accuracy in our chosen inference algorithms and this is because of their advanced
multi-layer technology. In their words they are, ”not just a simple database lookup. If [they]
can’t find a name in a specific country, [they] do a global lookup. If [they] can’t find a name in
a global lookup, [they] perform several normalizations on the name to fix typos and cover all
spelling variants [17].

3.3.3 Dataset Selection

When selecting a dataset for this research, there are certain criteria necessary to ensure com-
patibility with the binary DELTR model. This means that DELTR only recognizes a protected
attribute that can be represented by a 1 or a 0. Table 3 below shows the criteria that a dataset
must pass to be used for the experiment.
NBA/WNBA Dataset

The first data set we decided to use was a compilation of all NBA and WNBA players. The
dataset originally consisted of two seperate datasets, all NBA players, who were male, and all
WNBA players, who were female. In each of the data sets we added an additional column titled
“Gender” and set them to “M” for male in the NBA dataset and “F” for female in the WNBA
dataset. In addition to this the original datasets had a seperate row for each season that a
player played that included points scored, PER (player efficiency ration). We had to convert
both datasets so that there was only one row per player and in order to do this we condensed
the stats across all seasons for a player into the following columns: NumSeasons (number of
seasons the player was in), AvgPER (Average player efficiency ratio across all seasons), and
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Criteria Description

File Type (zip/csv) Ensure compatibility to import with Python.
Who the dataset is describing? Understand full picture of the data.

How many items are in the dataset? Ensure there is a sufficient amount of data for training. Greater then 10,000 items.
Are names included in the dataset? Names are essential for inference methods.

How is the data collected? Ensure data was collected ethically.
Is there a Ground-Truth Protected Attribute? Is there a race, gender, etc. attribute accessible.

Is there a numeric scoring feature? A numerical scoring attribute is essential for training DELTR.
Are there additional numeric scores? Two numeric scores to come up with additional features.

Is the dataset easy to clean? Ensure the data can be fit properly for the model.

Table 3: Criteria for choosing a dataset to use within the experiment.

CareerPoints (the total number of points scored by that player across all seasons). After this
step we finally merged the WNBA dataset and the NBA dataset into one dataset that was then
ready to run our experiment on.

We chose to use this data set because there was a ground-truth protected attribute which
was the gender of the player. There was a numeric scoring feature which was the career points
scored by the player as well as other scoring features for the LTR model to work with. Finally
there was an attribute that we could use to infer gender which was the player name.

Boston Marathon Dataset
The next dataset that was chosen is on participants of the 2017 Boston Marathon Race in

Boston, MA. The Boston Marathon is one of the oldest marathons run in the United State,
drawing participants from all over the world. Runners abilities range but all have to qualify in
order to be a part of the race. The dataset was collected from data scrapped from the official
marathon website.

The dataset consists of the name, age, gender, country, city and state (where available),
times at 9 different stages of the race, expected time, finish time and pace, overall place, gender
place and division place.

As it matched the criteria from Table 3, Boston Marathon was chosen as the second dataset
for our experiment. It had ample data points, a gender protected attribute column, and nu-
merous numerical columns that can be used for scoring.

Cherry Blossom Dataset
The final dataset chosen to be used in these experiments consisted of participants in the

Cherry Blossom race in 2017. This race is an annual road race in Washington D.C. Some
participants ran a five kilometer race, while most ran a 16.09 kilometer (or ten mile) race. The
dataset columns include a runner’s bib number, their name, sex, age, home city, clock seconds,
net seconds, pace seconds, and the event (or distance) that the runner participated in.

We chose this dataset as it had the required types of data and was quite large. This was
important as it would allow us flexibility when training models for the experiments. Addition-
ally, it could be more easily compared to the Boston Marathon dataset as they both consist
of race data. Finally, it had a significant amount of numerical attributes that were useful for
learning scores, and protected attributes of age and gender.

3.3.4 Metric Selection

As discussed in 2.1.1 Algorithmic Fairness, fairness can be mathematically defined through
representation-based and attention-based metrics. However, we cannot just evaluate a ranking
with respect to fairness; we must balance it with utility for it to be a useful ranking to the user.
Therefore, for the experiments in this paper, we choose to evaluate rankings with skew, NDKL,
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and the average exposure ratio as our fairness metrics, and NDCG as our utility metric. To
find the equations for these metrics, see section 2.2.

3.3.5 Experiment Flow

For each dataset, we produce a distinct set of rankings according to the flow detailed in Figure
2 below.

Figure 2: General Process Flow of inputs and outputs to produce distinct rankings for analysis.

We begin by cleaning the dataset so it can be used with DELTR, an in-processing ranking
algorithm, and DetConstSort (DCS), a fair re-ranking algorithm. This involves adding columns
required for DELTR, rearranging the order of columns, and ensuring the demographic infor-
mation is represented in a binary format of 0s and 1s. We then split the main dataset into a
training split and a testing split. The training split consists of 80% of the original dataset, and
the testing split consists of the remaining 20%.

The training split is then used as an input to train two DELTR models. DELTR has
a parameter, gamma, that controls how much the demographic information is considered in
producing a fair ranking. Of the two models trained in our experiments, one will have gamma
= 0 to produce a “fairness-unaware” DELTR model (UD), and the other will have gamma
greater than 0 to produce a “fairness-aware” DELTR model (AD). For the experiment, we will
initially attempt to train each model on 10,000 epochs.

To produce the first few rankings, we rank the testing split, which has ground-truth (GT)
demographic information, with both DELTR models. The rankings produced are named AD-
GT and UD-GT. We then pass UD-GT into DetConstSort, to produce a third ranking named
UD-GT-DCS.

Inference algorithms get incorporated in the third branch of the process flow diagram. We
first duplicate the testing split which is then passed into an inference algorithm. The inference
algorithm is used to infer the demographic information, which is then added as a column into the
testing split. However, inference algorithms are not able to infer the demographic information
of every person in the dataset. Therefore, we produce two versions of the testing split for each
inference algorithm: one where the people of unidentifiable gender are given a default gender
of male, and one where the default is female. We can refer to these as INF(M) and INF(F),
where INF would be an abbreviation of the inference algorithm used. These splits only include
inferred demographic information.

The testing splits INF(M) and INF(F) can then be passed as an input to AD and UD.
The rankings produced are named AD-INF(M), AD-INF(F), UD-INF(M) and UD-INF(F).
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UD-INF(M) and UD-INF(F) are then passed into DetConstSort, to produce rankings named
UD-INF(M)-DCS and UD-INF(F)-DCS. This process can be repeated for as many inference
algorithms as desired. In these rankings, the ground-truth demographic information is then
inserted back in, producing rankings that are now ready for analysis.

The final set of rankings produced for an experiment on a dataset are as follows:

• UD-GT

• AD-GT

• UD-GT-DCS

• UD-INF(M)

• UD-INF(F)

• AD-INF(M)

• AD-INF(F)

• UD-INF(M)-DCS

• UD-INF(F)-DCS

This experimental process can be completed by using the FairRank package; the code and
documentation can be found at github.com/svadlamudi2/FairRank.

3.3.6 Analysis Framework

The rankings that were produced at the end of the process flow explained in section 3.3.5 can
be compared as in Figure 3. The cells that contain a comparison of the ranking against itself,
or duplicate comparisons, are blacked out. Cells that are shaded purple refer to a comparison
that can be made to ensure that the rankings were produced properly. Cells that are shaded
blue refer to comparisons that are either irrelevant to our research objectives, or that do not
make logical sense for comparison.

Figure 3: Comparing distinct rankings for research questions.

For example, to answer research questions F1 and U1, we calculate the chosen fairness and
utility metrics for rankings UD-INF(M/F) and AD-INF(M/F), then compare.
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3.4 FairRank Software

The following section explains how the package we developed for the experiment is structured
and how it works. In addition to this, it will explain how the package can be run to produce
other experiments. The package can be found at github.com/svadlamudi2/FairRank.

3.4.1 Package Structure

Figure 4: Fair Rank Package Structure

Figure 4 above shows the overall package structure of the Fair Rank software that we have
developed in Python to assist in our experiment. It consists of 7 sub packages that have their
own python functions.

• Data Cleaning: This sub package helps clean the inputted data and gets it ready so that
the LTR model we are using is able to accept it.

• Data Splitting: This sub package helps split the cleaned data into a training and testing
split. These split datasets are then saved in the Datasets directory.
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• Data Inferring: This sub package helps take in the testing data that was split and uses
the inference algorithms described in 3.3.2 to infer gender based on name. The inferred
datasets are then written to the Datasets directory.

• Data Training: This sub package helps take in the training data that was split and uses
it to train the LTR model that we have chosen as described in 2.2.4. The trained models
are then written to the Models directory.

• Data Ranking: This sub package helps take in the testing data, with ground truth demo-
graphic information, as well as the inferred datasets, with inferred demographics infor-
mation, and ranks them using a fairness-aware LTR model and a fairness-unaware LTR
model and writes the ranked datasets into the Datasets directory.

• DetConstSort: This sub package utilizes the DetConstSort post-processing ranking al-
gorithm to re-rank the ranked datasets produced by the fairness-unaware LTR model.
These re-ranked datasets are then written to the Datasets directory.

• Data Analysis: This sub package takes in all the ranked data sets produced by the ”Data
Ranking” and ”DetConstSort” subpackages and calculates fairness and utility metrics on
them. The results are then written to the Results directory.

3.4.2 Running the Code

This section talks about setting up the code to run a full experiment and is broken down into
various sections.

Configuring the Settings
The first step is configuring the settings as needed for the experiment. The settings can be
found in the settings.json file within the FairRank package. It comprises of 5 main sections:
Gender Data Define, Read File Settings, Data Split, Inference Methods, and DELTR options.
The following sections will go through each of these sections by setting up the WNBA/NBA
experiment.

• Gender Data Define
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Figure 5: Sample Gender Data Define Settings

Figure 5 shows a sample gender data define segment in a sample experiment. This is used
so that the values on the left side that may appear in the data sets of the experiment
can be replaced with either a 1 or a 0. This is done for the LTR model that we are using
that only accepts 1’s and 0’s for the protected attribute column. A value of 1 indicates
that a group is protected and a value of 0 indicates that a group is non-protected. In
the WNBA/NBA experiment, females are the protected group and males are the non-
protected group

• Read File Settings

Figure 6: Sample Read File Settings

Figure 6 shows a sample read file settings segment in an experiment. This portion of
the settings consists of the path which is the path to the file that you want to run the
experiment on. This file should be placed within the FairRank package. Then you must
specify whether it is a gender experiment or a race experiment by setting one of them True
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and the other to False. The SCORE COL is is the column name of the scoring feature or
what the LTR model is going to learn. In the case of the WNBA/NBA experiment this
is the Career Points.

• Data Split

Figure 7: Sample Data Split File Settings

Figure 7 shows a sample data split setting for theWNBA/NBA experiment. the TRAIN PCT
accepts any values between 0.0 where 0% of the original data will be split to the training
data and 1.0 where 100% of the original data will be split to the training data. In the
sample code above, 80% of the original data will be split to the training data and 20%
will be split to the testing data.

• Inference Methods

Figure 8: Inference Methods Settings

Figure 8 shows the different settings used by the inference algorithms in the experiment.
INFER COL is the column name in the original data set that the inference algorithms can
use to predict the necessary demographic information. In the case of the WNBA/NBA
experiment the column name is ”PlayerName”. The three different inference algorithms,
Behind The Name (BTN), NameSor (NMSOR), and GenderAPI (GAPI) have the same
two essential pieces. The API KEY value is your own individual API KEY that can be
used to make the inference requests to the website. In the case of Behind the Name
you need at least two API KEYS for the code to be functional. The URL, unlike the
API KEYS, should not be touched.

• DELTR Options
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Figure 9: Sample DELTR Options Settings

Figure 9 shows sample settings for the DELTR options. Gamma can be any value greater
than 0.0 where 0.0 is training a fairness-unaware LTR model and any value higher is a
fairness-aware LTR model. The ”num iterations” and ”standardize” are both values that
DELTR requires. SCORE COLUMN is the column name in the original data set that the
LTR model is trying to learn. In the case of the WNBA/NBA experiment the column is
titled ”CareerPoints”. Finally NORMALIZE SCORE COLUMN is a value that is either
True or False indicating whether or not you want all the values in the scoring column to
be normalized to a value between 0 and 1.
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4 Results and Analysis

4.1 NBA/WNBA Experiments

Based on the methodology described above, we have ran the experiment on a dataset consisting
of WNBA and NBA players. Each player has an associated PlayerName, NumSeasons (number
of seasons that they played in their career, AvgPER (their average player efficiency ratio),
CareerPoints (the number of points they scored in their career), and Gender.

4.1.1 Cleaning and Splitting WNBA/NBA

The WNBA/NBA dataset was cleaned and ranked according to the score attribute which is the
career points. This means that the players with the highest career points will be ranked the
highest and the players with the lowest career points will be ranked the lowest. In splitting the
data, according to the methodology described above, there was a 80/20 train-test split. This
means that 80% of the data was used for training and 20% of the data was used for testing.

4.1.2 Training With WNBA/NBA Data

Using the 80% train split we trained a fairness-aware DELTR model using gamma = 1.0 and
a fairness-unaware DELTR model using gamma = 0.0.

4.1.3 Inferring WNBA/NBA Data

According to the methodology described above, Using the 20% test split we developed inferred
datasets with inferred genders for the WNBA/NBA players. We used the following inference
algorithms:

• Behind The Name

• NameSor

• GenderAPI

When inferring the test data on each inference algorithm there was a male default inferred
result and a female default inferred result. This is because, at times the inference algorithms
were not able to produce a predicted gender from a name, in these cases we defaulted all the
unknowns to male for one data set and all the unknowns to female in another data set.

Table 4: Statistics found when inferring gender using WNBA/NBA Player Names
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Figure 10: Percentage of unpredictable names WNBA/NBA data set

From the graph in Figure 10 and table 4 we can make the following conclusions about using
inference algorithms on the WNBA/NBA data set.

Behind the Name. This inference algorithm was unable to infer the gender of 25.0% of
names in the NBA/WNBA dataset. Of those unidentified names, 28.1% were ground-truth
female and 71.9% were ground-truth male. When excluding the unidentifiable names, Behind
the Name was 98.0% accurate with respect to the ground-truth gender of the names in the
dataset. When including the unidentifiable names, Behind the Name was only 73.4% accurate
with respect to the ground-truth gender of the names in the dataset. When the unidentified
names were assigned male by default, the inference algorithm was 91.4% accurate. When the
unidentified names were assigned female by default, the inference algorithm was 80.4% accurate.

NameSor. This inference algorithm was unable to infer the gender of 15.6% of names in
the NBA/WNBA dataset. Of those unidentified names, 17.9% were ground-truth female and
82.1% were grounded-truth male. When excluding the unidentifiable names, NameSor was
97.8% accurate with respect to the ground-truth gender of the names in the dataset. When
including the unidentifiable names, NameSor was 82.3% accurate with respect to the ground-
truth gender of the names in the dataset. When the unidentified names were assigned male
by default, the inference algorithm was 95.3% accurate. When the unidentified names were
assigned female by default, the inference algorithm was 93.5% accurate.

GenderAPI. This inference algorithm was only unable to infer the gender of 2.5% of names
in the NBA/WNBA dataset. Of those unidentified names, 41.7% were ground-truth female
and 58.3% were ground-truth male. When excluding the unidentifiable names, GenderAPI was
94.8% accurate with respect to the ground-truth gender of the names in the dataset. When
including the unidentifiable names, GenderAPI was still 92.5% accurate with respect to the
ground-truth gender of the names in the dataset. When the unidentified names were assigned
male by default, the inference algorithm was 93.9% accurate. When the unidentified names
were assigned female by default, the inference algorithm was 93.5% accurate.
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4.1.4 Research Questions

In this section we explore the different fairness and utility research questions described in the
methodology with respect to the WNBA/NBA data set.

Fairness Question 1
Given uncertain demographic information, how does the fairness of rankings produced from a
fairness-unaware LTR model compare to the fairness of rankings produced from a fairness-aware
LTR model?

NDKL

(a) NDKL Male Default (b) NDKL Female Default

Figure 11: F1, NDKL, WNBA/NBA

From figure 11 it can be seen that for each ranking, the NDKL was lower when ranking
with fairness-aware DELTR than when ranking with fairness-unaware DELTR. This means
that in each ranking, the subgroups containing males and females were more proportionally
represented when DELTR was fairness-aware.

The NDKL was consistently the lowest in rankings where the protected attribute of gender
was inferred with Behind the Name. This means that the subgroups containing males and
females were more proportionally represented when inferring with Behind the Name.

Across all rankings produced with various inference algorithms, the rankings where uniden-
tified gender was set to male by default consistently had a lower NDKL than when the default
was female. For all three inference algorithms, the percent accuracy was lower when assigning
unidentified gender to female by default than when the default was male. Therefore, we can
conclude that the rankings were more proportionally represented when the default gender for
unidentified names was male.
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Average Exposure

(a) Avg. Exposure Ratio Male Default (b) Avg. Exposure Female Default

Figure 12: F1, Avg. Exposure Ratio, WNBA/NBA

In figure 12 it can be seen that for each ranking, the Average Exposure was closer to 1 when
ranking with fairness-aware DELTR than when ranking with fairness-unaware DELTR. This
means that in each ranking, the subgroups were more equally represented when ranking with
fairness-aware DELTR.

The Average Exposure was consistently closer to 1 in the rankings where the protected
attribute of gender were inferred with Behind the Name. This means that the subgroups
containing males and females were more equally represented when inferring with Behind the
Name.

Across all rankings produced with various inference algorithms, the Average Exposure in
rankings where unidentified gender was set to male by default were slightly closer to 1 than the
rankings where gender was female by default. This means that the subgroups containing males
and females were more equally represented when defaulting to male for unidentified gender.
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Skew

(a) Skew, UD-BTN, Default Male (b) Skew, AD-BTN, Default Male

(c) Skew, UD-BTN, Default Female (d) Skew, AD-BTN, Default Female

Figure 13: Skew, UD-BTN vs AD-BTN, WNBA/NBA

(a) Skew, UD-NSOR, Default Male (b) Skew, AD-NSOR, Default Male

(c) Skew, UD-NSOR, Default Female (d) Skew, AD-NSOR, Default Female

Figure 14: Skew UD-NSOR vs AD-NSOR, WNBA/NBA
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(a) Skew, UD-GAPI, Default Male (b) Skew, AD-GAPI, Default Male

(c) Skew, UD-GAPI, Default Female (d) Skew, AD-GAPI, Default Female

Figure 15: Skew, UD-GAPI vs AD-GAPI, WNBA/NBA

In each ranking across all three inference algorithms, the skew increased earlier on in the
ranking produced by fairness aware DELTR. Skew is calculated at every position of the ranking
for both the male and female groups. A value of greater than one means that a group is over
represented at that position in the ranking. On the other hand, a value of less than one means
that the group is underrepresented. While the skew is under one for almost the entirety of the
rankings for the female group across all inference algorithms, the skew does increase earlier on
in the rankings for fairness aware meaning that the the female and male groups are represented
earlier on in the rankings using fairness aware DELTR than the rankings using fairness unaware
DELTR.

Across all three inference algorithms, the skew for females increases at approximately po-
sition 37 in the rankings using fairness-aware DELTR and approximately position 85 in the
rankings using fairness-unaware DELTR. This indicates that the representation of both groups
remains unaffected across the three inference algorithms of varying quality.
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Average Positional Difference in Skew
Table 5 shows the average positional difference of a particular group by comparing two different
rankings. The first ranking is produced by the fairness-unaware DELTR and the second is
produced by the fairness-aware DELTR. A positive number means that group experienced an
increase in the overall skew across all positions meaning that they became more represented.
A negative number means that group experienced a decrease in the overall skew across all
positions meaning that they became more under represented.

Table 5: F1, Avg. Positional Difference in Skew, WNBA/NBA

According to table 5 across all inference algorithms there was an increase in skew, or repre-
sentation, for the female group when using a fairness-aware LTR. More specifically, there was
a higher average increase in skew for the female group when the unknown demographics from
the inference algorithms were defaulted to male.

Conclusion
For the WNBA/NBA experiment, our fairness metrics showed that the rankings were all

more fair to the protected group when using a fairness aware DELTR. In addition to this, when
using the Behind the Name inference algorithm, the rankings were more fair. More specifically
the rankings were more fair across all three fairness metrics when defaulting the unknown values
to male.
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Utility Question 1
Given uncertain demographic information, how does the utility of rankings produced from a
fairness-unaware LTR model compare to the utility of rankings produced from a fairness-aware
LTR model?

Table 6 shows the average positional difference in the NDCG of two different rankings. The
first ranking is produced by a fairness-unaware LTR model and the second is produced by a
fairness-aware LTR model. A positive number means that the NDCG experienced an average
increase across all positions meaning that the utility was increased when using a fairness-aware
LTR model. A negative number means that the NDCG experienced an average decrease in all
positions meaning that the ranking lost utility.

Table 6: U1, Avg. Positional Difference in NDCG, WNBA/NBA

From the data in Table 6, it is evident that when implementing a fairness aware LTR model
across all inference algorithms, there was a loss in the utility of the ranking. In addition to
this, across all inference algorithms, when the unknowns were defaulted to male the NDCG fell
by a little bit more meaning that the utility of these rankings was lower than all the others.
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Fairness Question 2
How does the fairness of rankings produced from a fairness-aware LTR model compare when
ranking with ground-truth demographic information and when ranking with inferred demographic
information?

Figure 16: F2, NDKL, WNBA/NBA

From Figure 16 it is clear that the fairness-aware LTR model combined with Behind the
Name inference algorithm yields the lowest NDKL meaning the subgroups are the most pro-
portionally represented in this ranking. It is also interesting to note that the fairness-aware
LTR model when combined with ground-truth information yielded the highest NDKL meaning
the subgroups are least proportionally represented in this ranking.

All three inference algorithms behaved relatively in the same range but Behind the Name
performed better than the other inference algorithms having a lower NDKL representing a more
fair ranking.

For all three inference algorithms when the unknowns were defaulted to male, this resulted
in a lower NDKL. The most drastic difference can be seen for the Behind the Name Inference
algorithm that has a 0.1 difference in NDKL when comparing male default to female default.
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Average Exposure

Figure 17: F2, Avg. Exposure Ratio, WNBA/NBA

Figure 17 above show that under a fairness-aware LTR model, the rankings have the lowest
average exposure ratio when using the Behind the Name Inference algorithm. As mentioned
above the ideal average exposure ratio is equal to 1 meaning that all groups in the ranking have
equal exposure or are equally represented.

Across all three inference algorithms, Behind the Name paired with a fairness-aware LTR
model produced the lowest average exposure ratio or the most equally represented ranking.
However, as shown in the table above, Behind the Name has a 73.4% overall accuracy which is
the lowest of the three inference algorithms.

It is also interesting to note that in all three inference algorithms, the average exposure
ratio was better or closer to 1 when defaulting to male than when defaulting to female. This
means that when the unknowns were defaulted to “male” the groups in the ranking had more
equal exposure.

Skew

Figure 18: F2, Skew, AD-GT, WNBA/NBA
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(a) Skew, AD-BTN, Default Male (b) Skew, AD-BTN, Default Female

(c) Skew, AD-NSOR, Default Male (d) Skew, AD-NSOR, Default Female

(e) Skew, AD-GAPI, Default Male (f) Skew, AD-GAPI, Default Female

Figure 19: F2, Skew AD-INF, WNBA/NBA

Average Positional Difference For Skew
The table below shows the average positional difference of a particular group by comparing
two different rankings. The first ranking is produced by the fairness-aware LTR model with
ground-truth information and the second is produced by a fairness-aware LTR with inferred
demographic information. A positive number means that group experienced an increase in
the overall skew across all positions meaning that they became more represented. A negative
number means that group experienced a decrease in the overall skew across all positions meaning
that they became more under represented.
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Table 7: F2, Avg. Positional Difference in Skew, WNBA/NBA

By looking at Table 7 and Figure 18, which show skew with ground truth information,
and Figure 19, which shows skew with inferred information, it can be seen that the skews of
females, the protected group, are generally higher than the skews of males under uncertain or
inferred information. This means that under inferred information, a fairness-aware LTR model
will increase the representation of the protected group, which in this case is females.

Across the three inference algorithms, there is a notable trend where using the less accurate
inference algorithms results in a higher increase in skew for the protected group. Behind the
Name, which has a 73.4% inference accuracy rate, had the biggest jump of 0.109. On the other
hand, GenderAPI, which has a 92.5% inference accuracy rate, only had a jump of 0.038 in the
skew for the protected group.

Conclusion
In the WNBA/NBA experiment, our chosen fairness metrics show that combining a fairness-

aware DELTR with inferred demographic information produces more fair rankings than using
ground-truth demographic information. More specifically, the rankings were most fair when
combining fairness-aware DELTR with Behind the Name, the inference algorithm with the
lowest inference accuracy. In addition to this, the rankings were more fair when defaulting the
unknowns to male.

Utility Question 2
How does the utility of rankings produced from a fairness-aware LTR model compare when rank-
ing with ground-truth demographic information and when ranking with inferred demographic
information?

Average Positional Difference For NDCG
Table 8 shows the average positional difference in the NDCG of two different rankings. The
first ranking is produced by a fairness-aware LTR model using ground truth information and
the second is produced by a fairness-aware LTR model using inferred demographic information.
A positive number means that the NDCG experienced an average increase across all positions
meaning that the utility was increased when using a fairness-aware LTR model with inferred
demographic information. A negative number means that the NDCG experienced an average
decrease in all positions meaning that the ranking lost utility when using a fairness-aware LTR
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model with inferred demographic information.

Table 8: U2, Avg. Positional Difference in NDCG, WNBA/NBA

Table 8 above shows that when using a fairness aware LTR model on inferred demographic
information over ground-truth information, there tends to typically be a loss in utility. Fur-
thermore, there is a greater loss when defaulting the unknown in the inferred demographic
information to female or the protected group in this case.
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Fairness Question 3
How does the fairness of rankings produced by post-processing a ranking from a fairness-unaware
LTR differ when using inferred demographics versus ground-truth demographics?

NDKL

Figure 20: F3, NDKL, WNBA/NBA

By observing Figure 20, where the ideal value of NDKL is 0, meaning that all subgroups
in the ranking are proportionally represented, there is a very small difference in the NDKL’s
when using ground-truth versus inferred demographic information combined with DetConst-
Sort. This is the same across the different inference algorithms used as well as defaulting the
unknowns to male or female. In conclusion, NDKL seems to be unaffected in the rankings
produced by a post-processing fair ranking algorithm when given ground-truth or inferred de-
mographic information.
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Average Exposure Ratio

Figure 21: F3, Avg. Exposure Ratio, WNBA/NBA

Figure 21 above shows average exposure ratios across different rankings produced by a
post-processing fair ranking algorithm combined with ground truth information versus inferred
information. The ideal value is 1, meaning that the groups in the ranking have equal exposure.
The graph shows all rankings with a average exposure ratio of close to 1. This means that
a post-processing fair ranking algorithm produces rankings that have almost equal exposure
when it’s combined with ground truth information or inferred information. This stays true
across all inference algorithms used in this experiment and when defaulting the unknowns to
male or female.

Skew

Figure 22: F3, Skew-GT, WNBA/NBA
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(a) Skew, UD-BTN-DCS, Default Male (b) Skew, UD-BTN-DCS, Default Female

(c) Skew, UD-NSOR-DCS, Default Male (d) Skew, UD-NSOR-DCS, Default Female

(e) Skew, UD-GAPI-DCS, Default Male (f) Skew, UD-GAPI-DCS, Default Female

Figure 23: F3, Skew-Inferred, WNBA/NBA

From the skew graphs with inferred information in Figure 23, and with ground truth infor-
mation in Figure 22, where the ideal value is 1 meaning that all groups are represented equally,
there is no difference in skews when using inferred information or ground truth-information
combined with a post-processing fair ranking algorithm. This holds true over all inference algo-
rithms and defaulting the unknowns to male or female. For a closer look, consider the average
positional difference for skew in Table 9.

Average Positional Difference For Skew
Table 9 shows the average positional difference of a particular group by comparing two differ-
ent rankings. The first ranking is produced by the post-processing fair ranking algorithm with
ground-truth information and the second is produced by the post-processing fair ranking algo-
rithm with inferred demographic information. A positive number means that group experienced
an increase in the overall skew across all positions meaning that they became more represented
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when using inferred information. A negative number means that group experienced a decrease
in the overall skew across all positions meaning that they became more under-represented when
using inferred information.

Table 9: F3, Avg Positional Difference in Skew, WNBA/NBA

From the average positional difference for the skew table, it can be seen that the skews did
not change significantly when using inferred information over ground truth information com-
bined with a post-processing fair ranking algorithm. It is interesting to note that there was only
a change in the skews when the unknowns were defaulted to female when using the inference
algorithms in this experiment. In these cases, the females’ skew was increased and thus they
became more represented when using inferred information and vice versa for the male group.

Conclusion
In the WNBA/NBA experiment, there was no significant impact to the fairness of rankings

produced by a post-processing ranking algorithm when combined with ground-truth demo-
graphic information versus inferred demographic information. It is important to note that in
certain fairness metrics such as NDKL and Skew, the rankings with inferred demographic in-
formation where the unknowns were defaulted to female were more fair.

Utility Question 3
How does the utility of rankings produced by post-processing a ranking from a fairness-unaware
LTR differ when using inferred demographics versus ground-truth demographics?

Average Positional Difference For NDCG
Table 10 shows the average positional difference in the NDCG of two different rankings. The
first ranking is produced by a post-processing fairness aware ranking algorithm using ground
truth information and the second is produced by a post-processing fairness aware ranking
algorithm using inferred demographic information. A positive number means that the NDCG
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experienced an average increase across all positions meaning that the utility was increased when
using inferred demographic information. A negative number means that the NDCG experienced
an average decrease in all positions meaning that the ranking lost utility when using inferred
demographic information.

Table 10: U3, Avg. Positional Difference in NDCG, WNBA/NBA

Based on Table 10, there was no significant change in the utility of rankings when using
inferred demographic information over ground truth information in combination with the post-
processing fair ranking algorithm. However, it is important to note that the utility increased
with inferred information across all inference algorithms when the unknowns were defaulted
to male. On the other hand, the utility decreased slightly with inferred information across all
inference algorithms when the unknowns were defaulted to female.
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Fairness Question 4
How does the fairness of rankings obtained using ground-truth demographics differ from a
fairness-aware in-processing LTR model to a post-processing fair ranking algorithm?

Figure 24: F4, NDKL, WNBA/NBA

Looking at the NDKL graph above in figure 24 where the ideal value of NDKL is 0 meaning
that all subgroups in the ranking are proportionally represented, UD-GT-DCS is very close to
0 as opposed to AD-GT which is at 0.07. This means that under ground truth demographic
information, a post-processing ranking is potentially more fair than an in-processing fairness-
aware LTR model in terms of representing subgroups proportionally.

Average Exposure Ratio

Figure 25: Average Exposure Ratio Graph for Fairness Question 4, WNBA/NBA

Looking at the average exposure ratio bar graph in figure 25above where the ideal value is
one meaning that all groups are represented equally, UD-GT-DCS is closer to 1 than AD-GT.
This means that under ground truth demographic information a post-processing ranking is
potentially more fair than in-processing fairness-aware LTR model in terms of equal exposure
over all subgroups of ranking.
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Skew

(a) Skew, AD-GT (b) Skew, UD-GT-DCS

Figure 26: Skew of Rankings Using Ground Truth InformationComparing Post-Processing
Ranking Algorithm with Fairness-Aware LTR Model

Looking at the skew graphs above in figure 26 where the ideal value is 1 meaning both
subgroups are represented equally, the ranking UD-GT-DCS converges to 1 much faster than
AD-GT. This means that under ground truth information a post-processing ranking is po-
tentially more fair than an in-processing fairness-aware LTR model in terms of representing
different subgroups proportionally.

Average Positional Difference For Skew
Table 11 shows the average positional difference of a particular group by comparing two

different rankings. The first ranking is produced by the fairness-aware LTR model with ground-
truth information and the second is produced by a post-processing ranking algorithm fairness-
aware LTR also with ground truth information. A positive number means that group expe-
rienced an increase in the overall skew across all positions meaning that they became more
represented. A negative number means that group experienced a decrease in the overall skew
across all positions meaning that they became more under represented.

Table 11: F4, Avg. Positional Difference in Skew, WNBA/NBA

Table 11 shows that a post-processing ranking algorithm was on average able to increase
the overall skew or representation of the female group by 0.49 which was the protected group
in this case. In addition to this, the males, which were the over-represented group, showed a
lower representation when ranked with the post processing ranking algorithm.

Conclusion
For the WNBA/NBA experiment, our chosen fairness metrics showed that, under ground-

truth demographic information, the post-processing fair ranking algorithm produced more fair
rankings than the in-processing fairness-aware DELTR.
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Utility Question 4 How does the utility of rankings obtained from a fairness-aware in-
processing LTR model, ranked using ground-truth demographics, compare to the utility of rank-
ings obtained from post-processing a ranking from a fairness-unaware LTR?

Average Positional Difference For NDCG
Table 12 shows the average positional difference in the NDCG of two different rankings. The
first ranking is produced by an in-processing fairness-aware LTR model using ground truth
information and the second is produced by a post-processing ranking algorithm also using
ground truth information. A positive number means that the NDCG experienced an average
increase across all positions, meaning that the utility was increased when using a post-processing
algorithm with ground truth demographic information. A negative number means that the
NDCG experienced an average decrease in all positions meaning that the ranking lost utility
when using a post-processing ranking algorithm with ground truth demographic information.

Table 12: U4, Avg. Positional Difference in NDCG, WNBA/NBA

Table 12 shows that the utility of a ranking increases by an average of 0.319 across all
positions when using ground truth demographic information with a post-processing ranking
algorithm as opposed to an in-processing fairness aware LTR model.
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Fairness Question 5 How does the fairness of rankings obtained from a fairness-aware in-
processing LTR model, ranked using inferred demographics, compare to the fairness of rankings
obtained from a post-processing fair ranking algorithm, ranked using inferred demographics?

NDKL

(a) F5, NDKL, Male Default, WNBA/NBA (b) F5, NDKL, Female Default, WNBA/NBA

Figure 27: F5, NDKL, WNBA/NBA

When using inferred demographics, according to the graphs above, a post-processing fair
ranking algorithm achieves a much lower NDKL than an in-processing fairness-aware LTR
model. This means that the post-processing ranking has subgroups that are more proportionally
represented and therefore potentially more fair.

The post-processing fairness-aware LTR model has a much lower NDKL no matter which
inference algorithm used but when using the in-processing LTR model, the NDKL seems to de-
crease as the accuracy of the inference algorithm used decreases. For example the in-processing
method combined with Behind the Name, which has the lowest inference accuracy, also has the
lowest NDKL. On the other hand the in-processing method combined with GenderAPI, which
has the highest inference accuracy, has the highest NDKL.

The NDKL across all inference algorithms appears to be higher when defaulting to female
and using the in-processing LTR model.

Average Exposure Ratio

(a) F5, Avg. Exp Ratio, Male Default,
WNBA/NBA

(b) F5, Avg. Exposure Ratio, Female Default,
WNBA/NBA

Figure 28: F5, Avg. Exposure Ratio, WNBA/NBA
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Looking at the average exposure ratio graphs in figure 28a and 28b where the ideal value is
1 meaning that all groups in the ranking have an equal amount of exposure, the DetConstSort
values consistently have a much better average exposure ratio than their AD counterparts. This
means that under inferred demographic information, the post-processing fair ranking algorithm
overall produces rankings where the subgroups have more equal exposure than the in-processing
fairness-aware LTR model.

For the post-processing method, all the inference algorithms performed relatively the same
and were around 1.02. However, for the in-processing fairness-aware LTR model, Behind the
Name had an average exposure ratio that was closer to 1 than when using the other inference
algorithms.

Similar to above, the post-processing method did not alter when defaulting the unknowns
to male or female when using inference algorithms. However, the in-processing model combined
with the Behind the Name Inference algorithm showed a more ideal value of average exposure
when defaulting to male.

Skew

Behind the Name

Figure 29: F5, Skew-BTN, WNBA/NBA
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NameSor

Figure 30: F5, Skew-NSOR, WNBA/NBA

GenderAPI

Figure 31: F5, Skew-GAPI, WNBA/NBA

From the skew graphs above where the ideal value is 1, it can clearly be seen that no matter
the inference algorithm used the skews of males and females converge faster to 1 under the
post-processing fair ranking algorithm DetConstSort. On the other hand the fairness-aware
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LTR model, DELTR, produces skews that show females being underrepresented for a majority
of the ranking (a value under 1) and the males being over represented (a value of over 1).

Average Positional Difference For Skew
Table 13 shows the average positional difference of a particular group by comparing two

different rankings. The first ranking is produced by the fairness-aware LTR model with inferred
information and the second is produced by a post-processing fair ranking algorithm also with
inferred information. A positive number means that group experienced an increase in the overall
skew across all positions meaning that group became more represented. A negative number
means that the group experienced a decrease in the overall skew across all positions meaning
that group became less represented.

Table 13: F5, Avg. Positional Difference in Skew, WNBA/NBA

Looking at the average positional difference for skew table above it seems as the accuracy of
the inference algorithm increased, the representation of the protected group, females, increased
when comparing DELTR, a fairness-aware LTR model, to DetConstSort, a post-processing fair
ranking algorithm.

Across all three algorithms, when defaulting the unknowns to male or female, the post-
processing ranking method proved to increase representation of the protected group, females,
and lower the representation of the over-represented group, males.

Conclusion
For the WNBA/NBA experiment, our chosen metrics show that rankings produced by

DetConstSort, the post-processing fair ranking algorithm, produces more fair rankings than
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the in-processing fairness-aware DELTR. This remains true across all inference methods and
whether we defaulted the unknowns to male or female.

Utility Question 5 How does the utility of rankings obtained from a fairness-aware in-
processing LTR model, ranked using inferred demographics, compare to the utility of rankings
obtained from a post-processing fair ranking algorithm, ranked using inferred demographics?

Average Positional Difference For NDCG Table 14 the average positional difference in
the NDCG of two different rankings. The first ranking is produced by an in-processing fairness-
aware LTR model using inferred information and the second is produced by a post-processing
fair ranking algorithm also using inferred information. A positive number means that the NDCG
experienced an average increase across all positions, meaning that the utility was increased when
using a post-processing algorithm with inferred demographic information. A negative number
means that the NDCG experienced an average decrease in all positions meaning that the ranking
lost utility when using a post-processing ranking algorithm with inferred information.

Table 14: U5, Avg. Positional Difference in NDCG, WNBA/NBA

The average positional difference for NDCG chart above shows that under inferred informa-
tion the utility of rankings increases across all inference algorithms when using a post-processing
fair ranking algorithm over an in-processing fairness-aware LTR model.
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4.2 2017 Boston Marathon Experiment Results

Based on the methodology described above, we ran the experiment on a dataset consisting of
runners who raced in 2017 Boston Marathon. For the purposes of this experiment only times
at 3 different stages (5K,15k, Half), Pace, Name, M/F and Official Time were used.

Data Column Description

Split Times (5k, 15k, Half) Used as additional training columns.
Pace Used as an additional training column.
Name The name column was used to infer the gender attribute.
M/F This column specifies the gender of each participant and is used as the protected attribute.

Official Time The over all, official time for each participant and is used as the score attribute.

Table 15: Boston Marathon Dataset Columns.

4.2.1 Cleaning and Splitting Boston Marathon

The Boston Marathon dataset was cleaned and ranked according to the score attribute, Official
Time, in ascending order. The dataset was then split with 80/20 train/test split, as was decided
in the methodology.

4.2.2 Training With Boston Marathon Data

Using the 80% train split of the Boston Marathon Dataset, we trained a fairness-aware DELTR
model using gamma = 1.0 and a fairness-unaware DELTR model using gamma = 0.0.

4.2.3 Inferring Boston Marathon Data

According to the methodology described above, Using the 20% test split we developed inferred
datasets with inferred genders for the Boston Marathon race participants. We used the following
inference algorithms:

1. Behind The Name

2. NameSor

3. GenderAPI

When inferring the test data on each inference algorithm there was a male default inferred
result and a female default inferred result. This is because, at times the inference algorithms
were not able to produce a predicted gender from a name, in these cases we defaulted all the
unknowns to male for one data set and all the unknowns to female in another data set. Gender
API is the least accurate at inferring gender while NameSor is the most accurate. Although,
Behind the Name inference has a 98.15% accuracy, it does not identify a very high amount of
datapoint. This can be seen the Table 32 and Figure 33 below.
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Figure 32: Boston Marathon Inferred Gender Accuracy.

Figure 33: Percent Unidentified Across Inference Algorithms for Default Male and Default
Female.
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4.2.4 Research Questions

In this section we explore the different fairness and utility research questions described in the
methodology with respect to the Boston Marathon data set.

Fairness Question 1
Given uncertain demographic information, how does the fairness of rankings produced from a
fairness-unaware LTR model compare to the fairness of rankings produced from a fairness-aware
LTR model?

NDKL

(a) NDKL default male inference. (b) NDKL default female inference.

Figure 34: NDKL for Fairness-Aware DELTR Using Inference Algorithms

The Figures 34a and 34b above visualize the change in NDKL over all three inference algo-
rithms comparing Fairness-Unaware and Fairness-Aware DELTR. There is some change across
inference algorithms in Default Male, most notably with Behind the Name having significantly
more fair results. Although there differences between inference algorithms, there is little dif-
fernce between fairness-unaware and fairness aware DELTR. According to the NDKL results,
there is not fairness difference between the two DELTR models when the dataset is ranked,
regardless of the inference method.

Average Exposure Ratio

(a) Average Exposure Ratio with Default
Male inference.

(b) Average Exposure Ratio with Default Fe-
male inference.

Figure 35: Average Exposure Ratio for Fairness-Aware DELTR Using Inference Algorithms
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Figures 35a and 35b show the results found when calculating Average Exposure Ratio of
males over females. If the Average Exposure Ratio is less than one then males are under-
represented and if it is greater than one then males are over represented. Therefore over the
three inference methods males are consistently under-represented regardless of the gamma value
used to rank them. When looking at Behind the Name method, the Average Exposure Ratio
value is closer to one, more so than NameSor or GenderAPI.

Average Positional Difference in Skew
Figure 36 shows the average positional difference of a particular group by comparing two differ-
ent rankings. The first ranking is produced by the fairness-unaware DELTR and the second is
produced by the fairness-aware DELTR. A positive number means that group experienced an
increase in the overall skew across all positions meaning that they became more represented.
A negative number means that group experienced a decrease in the overall skew across all po-
sitions meaning that they became more under represented. When looking at skew, we decided
that the Average Positional Difference in Skew provided clear information, as opposed to line
graphs of the skew.

Figure 36: Average Positional Difference in Skew using Inference Algorithms.

The results show that there is a very slight increase in the skew for the female group.
Although, because the average positional skew difference is so small, there are no significant
changes in the representation of the female group from the fairness-aware and fairness-unaware
models.

Results collected from the Boston Marathon dataset show little to no differences in fairness
between rankings using fairness-aware and fairness-unaware models. There is a slight improve-
ment in fairness when using Behind the Name inference over using NameSor and GenderAPI.

Conclusion
The overall findings of Fairness Question 1 found that Behind the Name performed consis-

tently more fair than NameSor or GenderAPI. This improved fairness performance in Behind
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the Name comes at the cost of overall accuracy in predicting the gender during inference. The
performance of fairness between fairness-unaware and fairness-aware DELTR models is negli-
gible.

Utility Question 1
Given uncertain demographic information, how does the utility of rankings produced from a
fairness-unaware LTR model compare to the utility of rankings produced from a fairness-aware
LTR model?

Table 37 shows the average positional difference in NDCG values for the different rankings
produced from fairness-unaware and fairness-aware DELTR models. A positive NDCG value
indicates a better performance in utility of the ranking. While a negative NDCG value will
prove a ranking has a decrease in utility.

Figure 37: Average Positional Difference in NDCG using Inference Algorithms.

The results from Table 37 will show that across all inference algorithms, the rankings all
lost utility value when comparing UD-INF to AD-INF. This is expected because the fairness-
unaware DELTR models will learn solely on the utility value, while aware-DELTR models will
try and balance fairness with utility.

The overall finding of Utility Question 1 shows the expected decrease in utility value when
a fairness-aware DELTR model is used.
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Fairness Question 2
How does the fairness of rankings produced from a fairness-aware LTR model compare when
ranking with ground-truth demographic information and when ranking with inferred demographic
information?

NDKL

Figure 38: NDKL using Ground Truth and Aware-DELTR with Inference.

The results from Figure 38 shows that all three inference methods performed with a NDKL
value within 0.01 of the Ground Truth value. The inference method did perform slightly more
fairly, having a value closer to zero, than the Ground Truth ranking.
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Average Exposure Ratio

Figure 39: Average Exposure Ratio using Ground Truth and Aware-DELTR with Inference.

Figure 39 shows that the Average Exposure Ratios of the inference methods had values
slightly closer to one than the ground truth. The inference methods did not seem to have
significance in the results with compared to the ground truth. The results also show that males
are under-represented in this ranking and females are over-represented.

Average Positional Difference in Skew
Table 16 shows the average positional difference in skew when comparing fairness-aware

DELTR in combination with ground-truth demographics versus inferred demographics. A pos-
itive value indicates that the specified group’s average representation in the ranking increased
when using inferred demographics over ground-truth demographics. The value is negitive for
the female group, which means that they lost exposure in the top rankings. This ranking was
less fair.

52



Table 16: Average Positional Difference in Skew using Ground Truth and Aware-DELTR with
Inference.

Looking at the results in Table 16 the average positional difference in skew there is a de-
crease in visibility of females from the ground truth to the inferred rankings.

Conclusion
The results of Fairness Question 2 show that the inference methods produce more fair re-

sults than the ground truth ranking. There is only a marginal difference between using default
male or default female in the inference methods.

Utility Question 2
How does the utility of rankings produced from a fairness-aware LTR model compare when rank-
ing with ground-truth demographic information and when ranking with inferred demographic
information?

Average Positional Difference in NDCG
Table 16 shows the average positional difference in NDCG when comparing fairness-aware

DELTR in combination with ground-truth demographics versus inferred demographics. A pos-
itive value indicates that there was an increase in the average utility of the ranking when using
inferred demographic information over ground-truth and a negative value means a decrease in
average utility.
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Table 17: Average Positional Difference in NDCG using Ground Truth and Aware-DELTR
with Inference.

In Table 17 above, the overall utility when using DELTR rankings improved across Behind
the Name and NameSor algorithms when Female is default. The utility value decreases in
both male and female default GenderAPI, this can be seen by the negative Average Positional
Difference in NDCG.
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Fairness Question 3
How does the fairness of rankings produced by post-processing a ranking from a fairness-unaware
LTR differ when using inferred demographics versus ground-truth demographics?

NDKL

Figure 40: NDKL using UD-GT-DCS and UD-INF-DCS.

The findings from Figure 40 compares the NDKL values of rankings produced by Unaware
DELTR trained on Ground Truth values and ranked with DetConstSort, to the rankings of Un-
aware DELTR trained on the three inference algorithms and DetConstSort. The NDKL values
have no change across the different inference algorithms or defaulted genders which indicates
no fairness benefits.

Average Exposure Ratio

Figure 41: Average Exposure Ratio using UD-GT-DCS and UD-INF-DCS.

Figure 41 shows that the Average Exposure Ratios that are equal across all compared
rankings. This value approaches one but shows that males are under-represented in the final
rankings.

Average Positional Difference in Skew
Table 18 shows the average positional difference in skew of a particular group by compar-

ing two different rankings. The first ranking is produced by the post-processing fair ranking
algorithm with ground-truth information and the second is produced by the post-processing
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fair ranking algorithm with inferred demographic information. A positive number means that
group experienced an increase in the overall skew across all positions meaning that they be-
came more represented when using inferred information. A negative number means that group
experienced a decrease in the overall skew across all positions meaning that they became more
under-represented when using inferred information. A value of 0 indicates that there was no
change in representation between the rankings.

Table 18: Average Positional Difference in Skew UD-GT-DCS and UD-INF-DCS.

The Average Positional Difference in Skew observed in the table above (Table 18) where all
0.0, meaning there was no change in position of either groups.

Conclusion.
DetConstSort re-rankings did not seem to provide any significant differences across infer-

ence algorithms when compared to the ground truth.

Utility Question 3
How does the utility of rankings produced by post-processing a ranking from a fairness-unaware
LTR differ when using inferred demographics versus ground-truth demographics?

Average Positional Difference in NDCG
Table 19 shows the average positional difference in NDCG when ranking with DetConstSort

in combination with ground-truth demographics versus inferred demographics. A negative
value indicates that there was an average loss in utility when using inferred demographics
whereas a positive value indicates that there was an average gain in utility when using inferred
demographics and a 0 indicating no change.
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Table 19: Average Positional Difference in NDCG using UD-GT-DCS and UD-INF-DCS.

In Table 19 the Average Positional Difference in NDCG is relevant to the default gender
values of the inference methods. The default female inference rankings increase the utility value
when compared to the ground truth ranking. While when male is defaulted in the inference
ranking, utility decreases in all three inference algorithms.
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Fairness Question 4
How does the fairness of rankings obtained using ground-truth demographics differ from a
fairness-aware in-processing LTR model to a post-processing fair ranking algorithm?

NDKL

Figure 42: NDKL using AD-GT and UD-GT-DCS.

The results observed from Figure 42 show that DetConstSort produced a ranking much
closer to zero than fairness-aware DELTR did on the ground truth dataset. This would mean
that DetConstSort ranked more fairly under the criteria of NDKL than the fairness-aware
DELTR model.

Average Exposure Ratio

Figure 43: Average Exposure Ratio using AD-GT and UD-GT-DCS.

As seen in Figure 43 above, the AD-GT ranking has a Average Exposure Ratio of 0.748441379,
while the DetConstSort ranking value is 0.980580594. Having a value closer to one is the ideal
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for equal exposure. which means ranking produced by DetConstSort was more fair.

Average Positional Difference in Skew Table 20 shows the average difference in skew when
ranking ground-truth demographic information in combination with fairness-aware DELTR
versus DetConstSort. A negative value indicates that the specified group saw a decrease in
representation when using DetConstSort whereas a positive value indicates that the specified
group saw an increase in representation when using DetConstSort.

Table 20: Average Positional Difference in Skew using AD-GT and UD-GT-DCS.

Table 20 shows a negative change in the skew for the female group and a positive change
in the male group. The females had a decrease in visibility in the DetConstSort ranking when
compared to the DELTR ranking.

The results in fairness question 4 show that in the Boston Marathon experiment, under
ground-truth demographic information, the post-processing fair ranking algorithm (DetConst-
Sort) yielded more equally distributed based on all three fairness metrics.

Utility Question 4 How does the utility of rankings obtained from a fairness-aware in-
processing LTR model, ranked using ground-truth demographics, compare to the utility of rank-
ings obtained from post-processing a ranking from a fairness-unaware LTR?

Average Positional Difference in NDCG
Table 21 shows the average positional difference in NDCG when ranking ground-truth in-

formation in combination with fairness-aware DELTR versus DetConstSort. A positive value
indicates that there was an increase in utility when ranking with DetConstSort using ground-
truth demographic information whereas a negative value indicates a decrease in average utility.

Table 21: Average Positional Difference in NDCG using AD-GT and UD-GT-DCS.

Having a negative Average Positional Difference NDCG value shows an overall decrease in
utility in the post-processing fairness ranking. The DELTR ranking’s utility performed better
than DetConstSort.
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Fairness Question 5 How does the fairness of rankings obtained from a fairness-aware in-
processing LTR model, ranked using inferred demographics, compare to the fairness of rankings
obtained from a post-processing fair ranking algorithm, ranked using inferred demographics?

NDKL

Figure 44: NDKL using AD-INF and UD-INF-DCS.

As seen in the table above (Figure 44), the post-processing ranking performs more fairly
across all inference methods. The NDKL values for the DetConstSort rankings are much closer
to zero than the DELTR fairness-aware inference rankings.

Average Exposure Ratio

Figure 45: Average Exposure Ratio using AD-INF and UD-INF-DCS.

The Average Exposure Ratio give insight whether males are over or under-represented. In
Figure 45, the values of the in-processing ranking are further from one, meaning the males are
under-represented. While DetConstSort produces a more evenly represented ranking across all
inference algorithms.
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Average Positional Difference in Skew
Table 22 shows the average positional difference in skew when ranking inferred demographic

information in combination with fairness-aware DELTR versus DetConstSort. A positive value
indicates that the specified group saw an increase in average representation when using Det-
ConstSort and a negative value indicates that the specified group saw a decrease in average
representation when using DetConstSort.

Table 22: Average Positional Difference in Skew using AD-INF and UD-INF-DCS.

The Average Positional Difference in Skew seen in Table 22 shows an increase in male
exposure but a decrease in female exposure.

As seen in Fairness Question 4, DetConstSort ranks more fairly than DELTR fairness-aware
models. The findings from Fairness Question 5 show that this is still true across all three in-
ference methods as well.

Utility Question 5 How does the utility of rankings obtained from a fairness-aware in-
processing LTR model, ranked using inferred demographics, compare to the utility of rankings
obtained from a post-processing fair ranking algorithm, ranked using inferred demographics?

Average Positional Difference in NDCG
Table 23 shows the average positional difference in NDCG when ranking inferred demo-

graphic information in combination with fairness-aware DELTR versus DetConstSort. A nega-
tive value indicates that the ranking saw an average decrease in utility when using DetConstSort
whereas a positive value indicates that the ranking saw an average increase in utility when using
DetConstSort.

Table 23: Average Positional Difference in NDCG using AD-GT and UD-GT-DCS.
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The utility consistently decreased across all inference methods in the DetConstSort rank-
ing, as seen in Table 23. DELTR fairness-aware preforms better with the Average Positional
Difference in NDCG and has a better utility score, regardless of which inference method is used.

62



4.3 Cherry Blossom Experiment Results

4.3.1 Cleaning and Splitting Cherry Blossom

The Cherry Blossom dataset was cleaned and ranked according to the score attribute which is
the pace seconds. This means that the racers with the lowest pace time, in seconds, will be
ranked highest and the racers with the highest pace time will be ranked the lowest.

For these experiments, we chose to keep the train-test split the same as the previous datasets.
80% of the data was used to train the models, and the remaining 20% of the data was used for
testing the models.

The original Cherry Blossom dataset was 19,961 records long. In the dataset, approximately
38.5% were male and approximately 61.5% were female. In the initial experimental stages, we
found that it was not feasible to use the entire large dataset due to restraints on time and
computing power. As a result, we began strategically downsampling the dataset.

In the first attempt at downsampling, the goal was to have 10,000 records to train the
models on. Therefore, the size of the downsampled dataset needed to be 12,500 to maintain
the 80/20 split desired. We also wanted to maintain the proportion of males to females in
the original dataset. This downsampled dataset consisted of 4,819 males and 7,682 females.
However, this dataset was still too large for the restraints on time and computing power.

In the second round of down-sampling, the goal was to have the total dataset consist of
5,000 records. This number was chosen as the NBA/WNBA experiments had been successfully
completed with that amount of records. This dataset consisted of 1,927 males and 3,073
females, and was chosen as the final downsampled dataset to be used for the Cherry Blossom
experiments.

4.3.2 Training With Cherry Blossom Data

Multiple attempts at training the models on this data were required. For these experiments,
it was necessary to consider the gamma values, the number of epochs to train the models on,
and the amount of data to use. The gamma values chosen were 1.0 for fairness-aware, and 0.0
for fairness-unaware. These values were chosen as they had provided meaningful results in [6].
Originally, we had planned to use 10,000 epochs to train the models. However, when facing
restrains on time and computing power, we decided to lower the number of epochs to 5,000.

4.3.3 Inferring Cherry Blossom Data

Using the 20% test split, we developed inferred datasets with inferred genders for the Cherry
Blossom participants. We used the following inference algorithms:

• Behind The Name

• NameSor

• GenderAPI

When inferring the test data on each inference algorithm there was a male default inferred
result and a female default inferred result. This is because, at times the inference algorithms
were not able to produce a predicted gender from a name, in these cases we defaulted all the
unknowns to male for one data set and all the unknowns to female in another data set. We
describe the inference algorithm accuracy statistics in Table 24.
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Table 24: Statistics found when inferring gender using Cherry Blossom Participant Names

Behind the Name. This inference algorithm was unable to infer the gender of 15.1% of
names in the Cherry Blossom dataset. Of those unidentified names, 78.8% were ground-truth
female and 21.2% were ground-truth male. When excluding the unidentifiable names, Behind
the Name was 98.9% accurate with respect to the ground-truth gender of the names in the
dataset. When including the unidentifiable names, Behind the Name was still 83.9% accurate
with respect to the ground-truth gender of the names in the dataset. When the unidentified
names were assigned male by default, the inference algorithm was only 87.1% accurate. When
the unidentified names were assigned female by default, the inference algorithm was 95.8%
accurate.

NameSor. This inference algorithm was unable to infer the gender of 5.8% of names in the
Cherry Blossom dataset. Of those unidentified names, 55.0% were ground-truth female and
21.2% were ground-truth male. When excluding the unidentifiable names, NameSor was 98.5%
accurate with respect to the ground-truth gender of the names in the dataset. When including
the unidentifiable names, NameSor was only 92.7% accurate with respect to the ground-truth
gender of the names in the dataset. When the unidentified names were assigned male by default,
the inference algorithm was 95.4% accurate. When the unidentified names were assigned female
by default, the inference algorithm was 95.9% accurate.

GenderAPI. This inference algorithm was the most accurate, as it was only unable to infer
the gender of 0.68% of names in the Cherry Blossom dataset. Of those unidentified names,
57.1% were ground-truth female and 42.9% were ground-truth male. When excluding the
unidentifiable names, GenderAPI was 96.4% accurate with respect to the ground-truth gender
of the names in the dataset. When including the unidentifiable names, GenderAPI was only
95.7% accurate with respect to the ground-truth gender of the names in the dataset. When the
unidentified names were assigned male by default, the inference algorithm was 96.0% accurate.
When the unidentified names were assigned female by default, the inference algorithm was
96.1% accurate.

To summarize the accuracy statistics of the three inference methods, we can refer to the
graphs shown in Figure 46.
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(a) Percent Unidentified

(b) Demographics of Unidentified Names

(c) Accuracy with Different Default Values

Figure 46: Graphs describing inference accuracy statistics with Cherry Blossom data

Figure 46a depicts the percent of names that were unidentified in the Cherry Blossom dataset
by each inference algorithm. Behind the Name had the most unidentified results, and the
majority of unidentifiable names were female for each inference algorithm. The demographics
of the unidentified group of names are broken down in Figure 46b. Finally, in Figure 46c, we
have the full picture of the varying levels of accuracy of each inference algorithm. Overall, the
accuracy was consistently high for each algorithm when defaulting the gender to female. When
defaulting to male, Behind the Name performed with less accuracy than the other two inference
algorithms.
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4.3.4 Research Questions

In this section we explore the different fairness and utility research questions described in the
methodology with respect to the Cherry Blossom data set.

Fairness Question 1
Given uncertain demographic information, how does the fairness of rankings produced from a
fairness-unaware LTR model compare to the fairness of rankings produced from a fairness-aware
LTR model?

NDKL

(a) NDKL Male Default (b) NDKL Female Default

Figure 47: F1, NDKL, Cherry Blossom

Overall, the NDKL values for all of the rankings related to this research question were very
similar in value, as shown in the graphs from Figure 47. For each ranking, NDKL was lower
when ranking with fairness-aware DELTR than when ranking with fairness-unaware DELTR.
When considering the rankings where default values were male, the NDKL was consistently
the lowest in rankings where the protected attribute of gender was inferred with Behind the
Name. However, when the default values were female, the NDKL was lowest in rankings where
the protected attribute of gender was inferred with GenderAPI.

Average Exposure Ratio

(a) Avg. Exp. Ratio: Male Default (b) Avg. Exp. Ratio: Female Default

Figure 48: F1, Average Exposure Ratio, Cherry Blossom

The average exposure ratio values, shown in Figure 48, were also very similar to one another
for all rankings that were relevant to this research question. For each ranking, the average ex-
posure ratio was closer to 1 when ranking with fairness-aware DELTR than when ranking with
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fairness-unaware DELTR. When considering the rankings where the default gender was male,
in Figure 48a, the average exposure ratio was closer to 1 in the rankings where the protected
attribute of gender was inferred with Behind the Name. However, when the default gender was
female, in Figure 48b, the average exposure ratio was nearly identical across inference algo-
rithms; rankings where gender was inferred with NameSor and Gender API did slightly better
in this instance when ranking with fairness-aware DELTR.

Average Positional Difference in Skew
In Table 25, we see the average positional difference values for the male and female skew

when comparing rankings done with fairness-aware DELTR and fairness-unaware DELTR,
where the gender was inferred.

Table 25: F1, Avg. Positional Difference in Skew, Cherry Blossom

According to Table 25, across all inference algorithms, there was an increase in skew, or
representation, for the female group when using fairness-aware DELTR. More specifically, there
was a higher average increase in skew for the female group when the unknown demographics
from the inference algorithms were defaulted to female. Finally, when the gender was inferred
by Behind the Name, the skew of the rankings increased more than when inferring with other
inference algorithms.

Conclusion.
In summary, the rankings were all more fair with respect to the chosen metrics when rank-

ing with fairness-aware DELTR. When the default gender was male, rankings where gender
was inferred by Behind the Name were often the most fair, of the three inference algorithms.
Alternatively, when the default gender was female, rankings where gender was inferred by Gen-
derAPI were the most fair, of the the three inference algorithms.

67



Utility Question 1
Given uncertain demographic information, how does the utility of rankings produced from a
fairness-unaware LTR model compare to the utility of rankings produced from a fairness-aware
LTR model?

Average Positional Difference in NDCG
Table 26 shows the average positional difference in the NDCG of two different rankings.

The first ranking is produced by a fairness-unaware LTR model and the second is produced by
a fairness-aware LTR model. A positive number means that the NDCG experienced an average
increase across all positions meaning that the utility was increased when using a fairness-aware
LTR model. A negative number means that the NDCG experienced an average decrease in all
positions meaning that the ranking lost utility.

Table 26: U1, Avg. Positional Difference in NDCG, Cherry Blossom

In Table 26, we can observe how using fairness-aware DELTR produced rankings of higher
utility across all inference algorithms. In particular, when the protected attribute of gender
were defaulted to female in a ranking, fairness-aware DELTR was able to produce a ranking
with slightly higher utility than when the default was male. Finally, we can also observe
that the highest increase in NDCG occurred when using gender inferred by Behind the Name.
Therefore, we can conclude that when using fairness-aware DELTR, we produce rankings with
higher utility when inferring gender with less accuracy.
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Fairness Question 2
How does the fairness of rankings produced from a fairness-aware LTR model compare when
ranking with ground-truth demographic information and when ranking with inferred demographic
information?

NDKL

Figure 49: F2, NDKL, Cherry Blossom

For all rankings produced with inferred demographic information, the NDKL was closer
to zero than the rankings produced with ground-truth demographic information (see Figure
49). All of the rankings produced with inferred gender had approximately the same NDKL
value. The ranking with a notably lower NDKL was the ranking where gender was inferred
with Behind the Name, and records with an unidentified gender were given a default value of
male.

Average Exposure Ratio

Figure 50: F2, Average Exposure Ratio, Cherry Blossom

As shown by Figure 50, rankings produced with inferred demographic information had av-
erage exposure ratio that were slightly closer to one than rankings produced with ground-truth
demographic information. The inference algorithm used did not seem to make a significant
impact on these results.
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Average Positional Difference in Skew
In Table 27, we see the average positional difference values for the male and female skews

when comparing fair rankings produced with ground-truth gender information and inferred
gender information.

Table 27: F2, Avg. Positional Difference in Skew, Cherry Blossom

We can see that the representation of the female group increases in all rankings produced
with inferred demographic information. In particular, the ranking with the greatest increase in
representation for the female group was the ranking with gender inferred by Behind the Name.
However, the difference between male and female defaults was marginal.

Conclusion
In the Cherry Blossom experiments, the results for this research question show that using

inference to produce gender information produces more fair rankings. Additionally, we continue
to observe that using Behind the Name, the least accurate inference algorithm, produces the
most fair rankings when used in conjunction with fairness-aware DELTR.

Utility Question 2
How does the utility of rankings produced from a fairness-aware LTR model compare when rank-
ing with ground-truth demographic information and when ranking with inferred demographic
information?

Average Positional Difference in NDCG
Table 28 shows the average positional difference in the NDCG of two different rankings.

The first ranking is produced by a fairness-aware LTR model with ground-truth gender, and
the second is produced by a fairness-aware LTR model with inferred gender. A positive number
means that the NDCG experienced an average increase across all positions meaning that the
utility was increased when using a fairness-aware LTR model. A negative number means that
the NDCG experienced an average decrease in all positions meaning that the ranking lost utility.
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Table 28: U2, Avg. Positional Difference in NDCG, Cherry Blossom

In Table 28, we can observe how using fairness-aware DELTR produced rankings of higher
utility across all inference algorithms. In particular, when the protected attribute of gender
was defaulted to male in a ranking, fairness-aware DELTR was able to produce a ranking with
higher utility than when the default was female. Finally, we can also observe that the highest
increase in NDCG occurred when using gender inferred by Behind the Name. Therefore, we
continue to observe that rankings produced with gender inferred by Behind the Name have
more utility than rankings produced with ground-truth gender.
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Fairness Question 3
How does the fairness of rankings produced by post-processing a ranking from a fairness-unaware
LTR differ when using inferred demographics versus ground-truth demographics?

NDKL

Figure 51: F3, NDKL, Cherry Blossom

As seen in Figure 51, the rankings produced almost identical NDKL values3. For all rank-
ings produced with inferred demographic information, where the default value for gender was
female, the NDKL was closer to zero than the ranking produced with ground-truth gender.
However, when inferring and the default value for gender was male, the ranking produced with
ground-truth demographic information had an NDKL value closer to zero. When the default
value was female, each ranking with inferred gender had almost identical NDKL values.

Average Exposure Ratio

Figure 52: F3, Average Exposure Ratio, Cherry Blossom

As shown by Figure 52, all of the rankings that were relevant to this research question had
the same average exposure ratio, to the seventh decimal place.

3Note that the y-axis begins at 0.01454 in order to better visualize the (otherwise minute) differences in
NDKL values.
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Average Positional Difference in Skew
In Table 29, we see the average positional difference values for the male and female skews

when comparing fair rankings produced with ground-truth gender information and inferred
gender information.

Table 29: F3, Avg. Positional Difference in Skew, Cherry Blossom

Interestingly, each of the average positional difference values in Table 29 are 0.0. It is im-
portant to note that DetConstSort is a re-ranking algorithm, so it is more deterministic than
DELTR, an in-processing learning-to-rank model.

Conclusion.
In the Cherry Blossom experiment, the use of inferred gender versus ground-truth gender

did not significantly impact the fairness of the rankings produced by DetConstSort. Interest-
ingly, when the rankings had a default gender of female, fairness metric NDKL showed that
the rankings were more fair than when using ground-truth gender.
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Utility Question 3
How does the utility of rankings produced by post-processing a ranking from a fairness-unaware
LTR differ when using inferred demographics versus ground-truth demographics?

Average Positional Difference in NDCG
Table 30 shows the average positional difference in the NDCG of two different rankings.

The first ranking is produced by DetConstSort with ground-truth gender, and the second is
produced by DetConstSort with inferred gender. A positive number means that the NDCG
experienced an average increase across all positions meaning that the utility was increased when
using a fairness-aware LTR model. A negative number means that the NDCG experienced an
average decrease in all positions meaning that the ranking lost utility.

Table 30: U3, Avg. Positional Difference in NDCG, Cherry Blossom

In Table 30, we can observe how rankings produced with inferred gender do not always have
a higher utility than the rankings produced with ground-truth gender data. Across all rankings
relevant to this research question, when the default value for gender was male, the average
positional difference in NDCG was positive. However, when the default value was female, the
average positional difference in NDCG was negative. In particular, when inferring gender with
Behind the Name, defaulting to male when it could not infer a person’s gender, we observe the
highest average positional difference in NDCG. Since Behind the Name was the least accurate
inference algorithm for the Cherry Blossom dataset when defaulting to male, we can conclude
that DetConstSort can produce a ranking with higher utility when using a less accurate infer-
ence algorithm.
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Fairness Question 4
How does the fairness of rankings obtained using ground-truth demographics differ from a
fairness-aware in-processing LTR model to a post-processing fair ranking algorithm?

NDKL

Figure 53: F4, NDKL, Cherry Blossom

Figure 53 shows the difference in NDKL values for rankings produced by fairness-aware
DELTR and by DetConstSort, both with ground-truth gender information. The ranking pro-
duced by DetConstSort has an NDKL value of approximately 0.0147. This is much closer to
the ideal value of zero than the NDKL for the ranking produced by fairness-aware DELTR,
which is approximately 0.3155.

Average Exposure Ratio

Figure 54: F4, Average Exposure Ratio, Cherry Blossom

Figure 54 depicts the difference in the average exposure ratio for rankings produced by
fairness-aware DELTR and by DetConstSort, both with ground-truth gender information. The
ranking produced by DetConstSort has a average exposure ratio of approximately 1.0281. This
is much closer to the ideal value of one than the ratio for the ranking produced by fairness-aware
DELTR, which is approximately 1.3214.
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Average Positional Difference in Skew
In Table 31, we see the average positional difference values for the male and female skews

when comparing fair rankings produced with fairness-aware DELTR and DetConstSort.

Table 31: F4, Avg. Positional Difference in Skew, Cherry Blossom

As seen in Table 31, the average positional difference in skew between these two rankings
is negative for males and positive for females. Therefore, on average, the female group saw an
increase in representation earlier in the ranking when using DetConstSort.

Conclusion
Overall, in the Cherry Blossom experiment, using DetConstSort with ground-truth gender

produced more fair rankings than when using fairness-aware DELTR.

Utility Question 4 How does the utility of rankings obtained from a fairness-aware in-
processing LTR model, ranked using ground-truth demographics, compare to the utility of rank-
ings obtained from post-processing a ranking from a fairness-unaware LTR?

Average Positional Difference in NDCG
Table 32 shows the average positional difference in the NDCG of two different rankings.

The first ranking is produced by fairness-aware DELTR with ground-truth gender, and the
second is produced by DetConstSort with ground-truth gender. A positive number means that
the NDCG experienced an average increase across all positions meaning that the utility was
increased when using a fairness-aware LTR model. A negative number means that the NDCG
experienced an average decrease in all positions meaning that the ranking lost utility.

Table 32: U4, Avg. Positional Difference in NDCG, Cherry Blossom

It is evident from Table 32 that the average positional difference of NDCG between these
two rankings is negative. Therefore, we can conclude that using DetConstSort to rank data
with ground-truth gender information produces a ranking with decreased utility than when
using fairness-aware DELTR.
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Fairness Question 5 How does the fairness of rankings obtained from a fairness-aware in-
processing LTR model, ranked using inferred demographics, compare to the fairness of rankings
obtained from a post-processing fair ranking algorithm, ranked using inferred demographics?

NDKL

(a) NDKL Male Default (b) NDKL Female Default

Figure 55: F5, NDKL, Cherry Blossom: Difference in Default Gender

Figure 55a shows the difference in NDKL between fairness-aware DELTR and DetConstSort
when the default gender is male. Figure 55b shows the difference between the two models
when the default gender is female. It is evident from both of these figures that rankings using
DetConstSort have an NDKL that is much closer to zero, the ideal value, than the rankings that
use DELTR. For a clearer view of the change in NDKL between rankings, Figure 56 displays
the data on a smaller y-axis, and splits the data in two graphs according to the ranking method
used. 4

(a) NDKL from DELTR (b) NDKL from DetConstSort

Figure 56: F5, NDKL, Cherry Blossom: Difference between Ranking Methods

Figure 56a shows how the NDKL changes when the inference method changes, when using
fairness-aware DELTR to produce a ranking. In this figure, we can observe that the NDKL only
slightly changes with different inference methods. The main outlier is the ranking produced
when gender was inferred with Behind the Name. That ranking has an NDKL of 0.2793.

Figure 56b shows how the NDKL changes when the inference method changes, when using
DetConstSort to produce a ranking. We observe more of a disparity in NDKL in this case.

4Note that the y-axis on both subfigures are greater than zero, and are not equal to one another. This was
done intentionally in order to display the change in NDKL between rankings on a small scale.
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When the default gender was female, the NDKL stayed the same for all three inference meth-
ods at a value of 0.0146. However, when the default gender was male, the NDKL was slightly
closer to zero when the gender was inferred by NameSor and Gender API. It is important to
note that the changes in NDKL across these rankings are all less than 0.0003.

Average Exposure Ratio

(a) Default Male (b) Default Female

Figure 57: F5, Average Exposure Ratio, Cherry Blossom

Figure 57 depicts the average exposure ratio for the rankings relevant to this research
question. While there are slight variances in the average exposure ratio of rankings produced by
fairness-aware DELTR, the ratio remains constant for the rankings produced by DetConstSort
at 1.028075970. To more closely consider the differences in the rankings produced by DELTR,
see Figure 58. 5

Figure 58: F5, Average Exposure Ratio, Cherry Blossom: DELTR

Figure 58 shows that while most of the rankings have a similar average exposure ratio, the
notable exception is the ranking where gender was inferred with Behind the Name, and the
default value was male. This ranking had an average exposure ratio of 1.3072.

Average Positional Difference in Skew
In Table 33, we see the average positional difference values for the male and female skews

when comparing fair rankings produced with fairness-aware DELTR and DetConstSort, both
with inferred gender information.

5Note that the lower bound of the y-axis is 1.3020 in order to view the difference in values more clearly.
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Table 33: F5, Avg. Positional Difference in Skew, Cherry Blossom

Table 33 shows that in general, the average positional difference in skew for the female
group was positive, meaning their representation decreased when ranking with DetConstSort
compared to fairness-aware DELTR. Therefore, the rankings produced with DetConstSort in-
creased the representation of the under-represented group, females. The ranking where gender
was inferred by Behind the Name, and the default value was female, saw the largest increase
in representation for females from fairness-aware DELTR to DetConstSort.

In the Cherry Blossom experiment, DetConstSort produced significantly more fair rankings
than fairness-aware DELTR when using inferred gender information. Although defaulting male
or female did not make a difference when ranking with fairness-aware DELTR, defaulting fe-
male produced more fair rankings with DetConstSort.

Utility Question 5 How does the utility of rankings obtained from a fairness-aware in-
processing LTR model, ranked using inferred demographics, compare to the utility of rankings
obtained from a post-processing fair ranking algorithm, ranked using inferred demographics?

Average Positional Difference in NDCG
Table 34 shows the average positional difference in the NDCG of rankings produced with
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fairness-aware DELTR and with DetConstSort, both with inferred demographic information.

Table 34: U5, Avg. Positional Difference in NDCG, Cherry Blossom

It is evident from the table that all rankings produced with DetConstSort saw a decrease
in utility than those produced with fairness-aware DELTR. However, the ranking that saw the
lowest decrease in utility was when the gender was inferred by Behind the Name, with male as
the default value for unidentified gender.
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5 Conclusion

In this section, we summarize and discuss the final results of the experiment, contributions to
the project, and potential future steps to continue this work.

5.1 Experiment Conclusions

When evaluating each research question across all three experiments, we consider the impact
of the moving parts in the experiments: the various ranking methods and inference strategies.

Fairness Question 1
Given uncertain demographic information, how does the fairness of rankings produced from a
fairness-unaware LTR model compare to the fairness of rankings produced from a fairness-aware
LTR model?

In order to summarize this research question across all three experiments, and our chosen
metrics, we consider the impact of a fairness-aware versus fairness-unaware DELTR, the impact
of using the various inference algorithms, and the impact of defaulting the unknowns to male
or female.

Across all three experiments, fairness-aware DELTR produced the most fair rankings when
using inferred gender information. In the Boston Marathon Experiment, while some of the
fairness metrics were consistent with the WNBA/NBA and Cherry Blossom experiments,
the change in metrics was too small to make significant conclusions. The results from the
WNBA/NBA and the Cherry Blossom experiments showed that the rankings were more fair
when the gender was inferred by Behind the Name, and the default gender was male. Notably,
the method of inferring gender with Behind the Name and defaulting gender to male is the
least accurate with respect to the protected group, females.

Using these results, we can therefore conclude that when using a method of inference that
is less accurate with respect to the protected group, we can produce more fair rankings with
fairness-aware DELTR.

Utility Question 1
Given uncertain demographic information, how does the utility of rankings produced from a
fairness-unaware LTR model compare to the utility of rankings produced from a fairness-aware
LTR model?

In the WNBA/NBA experiment, when using fairness-aware DELTR and inferred gender
information, we produce rankings with lower utility than when using fairness-unaware DELTR.
In the Boston Marathon experiment, the change in utility was small enough to be negligible.
However, in the Cherry Blossom experiment, using fairness-aware DELTR produced rankings
with higher utility than when using fairness-unaware DELTR. When considering the ratio of
protected group to non-protected group in each dataset, we observe that when the proportion
of the protected group increases in the overall dataset, the utility of the ranking produced by
fairness-aware DELTR, with inferred demographic information, increases.

It is also important to note that for all three experiments, the rankings with the highest
utility were produced when using inference algorithms with lower accuracy.
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Fairness Question 2
How does the fairness of rankings produced from a fairness-aware LTR model compare when
ranking with ground-truth demographic information and when ranking with inferred demographic
information?

In order to summarize this research question across all three experiments, and our chosen
metrics, we will consider the impact of using ground-truth versus inferred demographic infor-
mation under fairness-aware DELTR, the impact of using the various inference algorithms, and
the impact of defaulting the unknowns to male or female.

Across all three experiments, fairness-aware DELTR combined with inferred demographic
information produces equally or more fair rankings over using ground-truth demographic in-
formation. The most fair rankings occurred when inferring gender with Behind the Name, and
when defaulting unidentifiable gender to male. We propose that using this inference method
may have produced the most fair rankings because it minimized the perceived number of peo-
ple in the protected group (female) for fairness-aware DELTR in the experiments. As a result,
fairness-aware DELTR was given information that suggested less females were in the ranking,
and therefore pushed them higher in the ranking to achieve a more fair result.

Utility Question 2
How does the utility of rankings produced from a fairness-aware LTR model compare when rank-
ing with ground-truth demographic information and when ranking with inferred demographic
information?

Across all three experiments, the changes in utility were small enough to be negligible.
There were no discernable patterns in the increases or decreases of utility. Therefore, based
on our results, we can conclude that using inference does not impact the utility of a ranking
produced by fairness-aware DELTR.

Fairness Question 3
How does the fairness of rankings produced by post-processing a ranking from a fairness-unaware
LTR differ when using inferred demographics versus ground-truth demographics?

In order to summarize this research question across all three experiments, and our chosen
metrics, we will consider the impact of using ground-truth versus inferred demographic infor-
mation under the post-processing fair ranking algorithm DetConstSort, the impact of using the
various inference algorithms, and the impact of defaulting the unknowns to male or female.

Across all three experiments, the use of inferred gender versus ground-truth gender did not
significantly impact the fairness of the rankings produced by DetConstSort. Interestingly, for
the Cherry Blossom and WNBA/NBA experiments, when the rankings with inference had a
default gender of female, the NDKL showed that the rankings were more fair than when using
ground-truth gender. For the WNBA/NBA experiment, this conclusion was further justified
by the skew values. It is also important to note that all three experiments had zero or close
to zero average positional difference in skew. However, since the change in values when using
inference versus ground-truth was so minor for all three experiments, we conclude that using
inference with DetConstSort did not make an impact on the fairness of rankings.
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Utility Question 3
How does the utility of rankings produced by post-processing a ranking from a fairness-unaware
LTR differ when using inferred demographics versus ground-truth demographics?

According to the results of all three experiments, we can conclude that the change in utility
of rankings when using inferred demographic information over ground-truth demographic in-
formation in combination with DetConstSort is negligible. It is important to note that in the
WNBA/NBA and Cherry Blossom experiments, when the unknowns were defaulted to male
across all inference algorithms, the utility of the rankings decreased. When the unknowns were
defaulted to female across all inference algorithms, the utility of the rankings increased. Alter-
natively, the Boston Marathon experiment produced the opposite results for utility.

Fairness Question 4
How does the fairness of rankings obtained using ground-truth demographics differ from a
fairness-aware in-processing LTR model to a post-processing fair ranking algorithm?

Across all three experiments and when using ground-truth demographic information, Det-
ConstSort far outperformed fairness-aware DELTR when considering all three fairness metrics.
We propose that this is due to DetConstSort being a deterministic algorithm that can be fine-
tuned to achieve the desired results, whereas DELTR is a learning-to-rank model that can
output unreliable rankings based on how the model was trained.

Utility Question 4 How does the utility of rankings obtained from a fairness-aware in-
processing LTR model, ranked using ground-truth demographics, compare to the utility of rank-
ings obtained from post-processing a ranking from a fairness-unaware LTR?

The change in utility when ranking ground-truth demographic information with DetCon-
stSort over fairness-aware DELTR across all three experiments saw no discernible patterns or
conclusions. In the WNBA/NBA experiment, utility increased by 0.32 when using DetCon-
stSort over fairness-aware DELTR. However, in the Boston Marathon and Cherry Blossom
experiments, utility decreased by 0.08 and 0.77 respectively. It is interesting to note that the
proportion of the protected group (females) to the non-protected group (males) increased from
WNBA/NBA to Boston Marathon to Cherry Blossom while the utility decreased.

Fairness Question 5 How does the fairness of rankings obtained from a fairness-aware in-
processing LTR model, ranked using inferred demographics, compare to the fairness of rankings
obtained from a post-processing fair ranking algorithm, ranked using inferred demographics?

Across all three experiments, DetConstSort produced significantly more fair rankings than
fairness-aware DELTR when using inferred gender information. This remains true across all
inference methods, whether we defaulted the unknowns to male or to female.

Utility Question 5 How does the utility of rankings obtained from a fairness-aware in-
processing LTR model, ranked using inferred demographics, compare to the utility of rankings
obtained from a post-processing fair ranking algorithm, ranked using inferred demographics?

The results to this question were very similar to Utility Question 4. The change in utility
when ranking inferred demographic information with DetConstSort over fairness-aware DELTR
across all three experiments again saw no discernible patterns. In the WNBA/NBA experiment,
utility increased on average of 0.32 across all inference algorithms and male or female defaults.
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However, for the Boston Marathon experiment, utility decreased on average of 0.07. Finally,
for the Cherry Blossom Experiment, utility decreased on average of 0.77. Again, it is important
to note that the proportion of the protected group to the non-protected group increased from
WNBA/NBA to Boston Marathon to Cherry Blossom while the utility decreased.

5.2 Discussions

We study the effect of using inferred gender information in conjunction with different ranking
methods on the fairness of a ranking. We found that we produced more fair rankings when using
DetConstSort over DELTR. This could be due to the deterministic nature of DetConstSort
as a post-processing re-ranking algorithm. DetConstSort allows for fine-tuning the desired
characteristics of the ranking outputs, whereas rankings produced by DELTR, a learning-to-
rank model, are far less reliable as they are heavily dependent on the methods of training and
potential bias present in the dataset.

Additionally, we find that using inference methods that are less accurate with respect to
the protected group produced more fair rankings. This conclusion was consistent when using
DELTR as well as DetConstSort. However, these results were unexpected, as the previous work
completed by [6] came to the opposite conclusions. Both our experiments and the experiments
of [6] were limited by time. Due to the time constraints, we were not able to fine tune the
gamma parameter of DELTR. Having a poorly fitted model could have had a significant effect
on how our datasets were ranked. For future work, experimenting to find the optimal gamma
value and number of iterations used when training the models will be critical for each individual
dataset used. This will help to create models that are not over or under fitted to the data,
allowing for more significant results.

We would also recommend that future work incorporate experiments on other protected
attributes such as race, religion, age, etc. This would involve adjusting the FairRank package to
accommodate such experiments, as well as conducting additional experiments on how inferring
those protected attributes will affect the fairness of rankings.

5.3 Contributions

Marie Tessier, Sai Vadlamudi, and Brinda Venkataraman all contributed equally to the work
on this project. Sai led the WNBA/NBA experiment and the development of the FairRank
package. Brinda led the Cherry Blossom experiment, focused on the incorporation of fairness
metrics, managing communications for the team, as well as contributing significantly to the
FairRank package. Gabi led the Boston Marathon experiment, created the FairRank package
structure and diagrams, and contributed significantly to the FairRank package.
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