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Executive Summary

Laminate materials are common in both biological and industrial applications. Of par-

ticular interest are charged laminates, a class of materials that is composed of charged

solid layers and an interstitial fluid. Some examples of charged laminates are clays and

cartilage. However, relatively few models exist to model the behavior of charged lam-

inates. In this project we develop a mathematical model for the behavior of charged

laminates. We model the material as a set of charged plates with a fluid between them.

The material is analyzed in static equilibrium where the electrostatic forces between the

plates must be balanced by the force of gravity, the internal capillary force, and the

applied compressive load. We model the material as a continuum with infinitely many

differentially close plates. The result is a nonlinear integral equation for the function

that describes the spacing between plates. An analytical result for the resulting integral

equation is obtained for the case when gravity and capillary forces are neglected. This

result is than used to obtain approximate results for the more complicated cases where

gravity and capillary forces are considered. The resulting spacing function is then used

to obtain a stress strain relation for the material. The stress-strain results were than

compared to experimental results with accuracy ranging from 5% to 19%.
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1 Introduction

Most introductory engineering classes look at the behavior of pure materials [18].

The students calculate the stresses on an I-Beam made of pure steel or look at the strains

in a pipe made of pure aluminum. These problems are useful for providing a rudimentary

understanding of basic engineering concepts, however there exist few applications that

use only pure materials, especially ones that are isotropic and linear-elastic. In mod-

ern mechanics, the supreme majority of materials used are a combination of different

materials that were combined though layering, adding pores and inclusions, and other

micro-mechanical methods, in order to obtain a material with the desired properties [15].

While being able to create a material with virtually any set of properties is a tantalizing

prospect, predicting how a certain combination of materials act is a non trivial matter. In

order to describe the behavior of a compound material one must look at the interactions

between the components and think about which internal and external forces affect the

behavior of the material and which ones can be neglected.

The commonality of non-homogeneous materials leads to a need to determine behav-

iors and effective material properties for these materials. Thus, in theoretical mechanics,

problems of mathematical modeling of materials are exceptionally important. These

problems allow one to apply the theories of classical mechanics to non-classical materi-

als. A large variety of work has been done on the subject looking at how a material is

affected by defects [27], inclusions [16], and layers of other materials [5].

(a) Diagram of porous
material [45]

(b) Plywood: Layered
Material [14]

Figure 1: Examples of inhomogeneous materials
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Much work has also been done on the subject of swelling and looking at the interaction

of solids and fluids [19]. While a large amount of unique work has been done in the field

of theoretical modeling of materials there are still many unsolved problems in it.

Of particular interest to us, in this project, is the modeling of a class of materials called

laminates, meaning materials which are comprised of several layers. Laminate materials

are ubiquitous and are used for a wide variety of purposes. Some common examples

include: roads [1], which need to be both flexible, to avoid breaking due to thermal

stresses, and firm , to resist deformation due to the weight of the cars. Automobile

clutches [41]: which use a variety of solid and fluid layers to change the gear on a car.

Tank Armor [33]: which uses a combination of flexible layers, firm layers, and even

explosive layers to prevent a shell from penetrating the tank hull.

(a) Road Layers [34] (b) Automobile Clutch [3] (c) Tank Armor [23]

Figure 2: Examples of common laminates

Other common examples of laminates are biological materials. Since the 1990s there

has been much research devoted to modeling and determining the properties of biological

materials [24]. Using the methods of mechanics one is able to study and model materials

that occur in nature as well as design materials that mimic the structures and functions

of natural materials. Many biological materials exhibit laminate behavior. Materials, like

bone, are laminate due to the way they form and grow, new layers of bone form directly

on top of old layers causing bone to have a laminate structure [43]. Another example

of a biological laminate material is the annulus fibrosis, which is a multilayer material

that makes up part of the inter-vertebral disk, a soft tissue that transmits loads between

vertebrae and allows for motion of the spine. The annulus fibrosis is layered in nature
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and when a replacement for it is manufactured that material also has a layered structure

[28]. Both biological and manufactured examples of laminate materials are extremely

commonplace thus the ability to model them would be greatly beneficial.

While laminate materials are exceptionally common, there is no unified theory that

explains the behavior of all classes of laminate materials. One of the earliest works

in modeling laminate materials, and the earliest work on laminate plates, was done by

Biot in 1957 [6]. In his paper, Biot performed analysis on a material composed entirely

of solid layers, by using the methods of classical continuum mechanics. In 1973, Biot

expanded his work by looking at the effects of an initial stress on the properties of a

layered material [7]. This addition allowed for the modeling of simple laminates not

only under compression and tension but also under vibration and buckling as well. In

1974 Charles W. Bert and Philip H. Francis wrote a paper in which they summarized the

general state of the field of laminate materials including laminated bars, laminated plates,

laminated shells, and sandwich structures [4]. The paper serves as a good reference about

the behaviors of common, solid laminate structures, however, it by no means provides

a complete description of the field of laminate materials. In 1989, Seale and Kausel

wrote a paper in which, they used the theory of laminate materials and specifically the

work done by Biot to model the behavior of soil [37]. They argued that their model is

valid due to the strong effect of gravity on soil. Both static and dynamic loads were

considered as well as isotropic and anisotropic media. In 1993, Ogden and Roxburgh

wrote a paper in which, they looked at the effect of vibrations on deformations and

stability of a material consisting of incompressible elastic plates [29]. The next year the

same authors extended their results to compressible plates[35]. In 2005, Chakraborty,

Gopalakrishnan, and Kausel published a paper where they analyzed wave propagation

through a three-dimensional charged medium by viewing the medium as a combination

of thin layers [11]. Overall, a limitation of the work that has been done is the lack of

theoretical results for materials with both solid and liquid layers, results for charged
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materials are also fairly rare.

In this project, we analyze the behavior of charged laminate materials. We look at

how the internal electrostatic forces affect the material properties and how the behavior

of the internal fluid layers affect the behavior of the material as a whole. A common

example of such a material comes from biology, it is cartilage. According to [26] as well

as [42], cartilage can be modeled as a pair of negatively charged plates with an uncharged

layer of fluid in the middle.

Figure 3: Cartilage Layers Diagram [42]

The dominant internal force that leads to deformation in the cartilage is electrostatic.

Cartilage is exceptionally common in the human body, especially in children, as it is one

of the main tissues in the formation of new bone [8]. Thus, the ability to model it and

predict its behavior under load would be useful.

Another common charged laminate material is clay [30]. According to a 1989 [40]clays

are composed of charged layers and the dominant internal force in clays is electrostatic

repulsion .

Figure 4: Clay Layers Diagram [22]

In accordance to Spitzer’s article, as well as Mow’s article, we model charged laminates

as a set of charged plates. However, both articles approached the behavior of charged
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laminates by looking at only two plates where in our analysis we look at a set of many

plates. Also, Spitzer approached the problem from a chemical point of view while we are

going to analyze the behavior of charged laminates mechanically.

Before we begin our analysis, we must first acknowledge some potential difficulties

which research shows are inherent to the analysis of laminate materials. Firstly, laminate

materials are prone to instability. This has been shown both theoretically [17] and exper-

imentally [10]. We must thus acknowledge that our results are also prone to instability

or else they would not serve as a proper model. Also, surprisingly little data exists on

the shear properties and behavior of laminate materials, thus , like most of the found

sources, we focus on longitudinal loading and properties.

2 Model

2.1 Problem Formulation

Consider a material with multiple charged layers. The layers are assumed to be thin disks

surrounded by a fluid, that we assume is a pure dielectric, for the sake of simplicity. Each

disk has a constant charge density of q, an area of A. The material is loaded by a force

Nnormal to it’s surface. We are concerned with how the material behaves and how this

behavior is affected by the spacing between the laminates. In addition to the spacing, we

are interested in obtaining a stress-strain curve for the material being modeled, where

stress is defined as the load scaled with the cross sectional area(σ = N
A

), and strain is the

deformation scaled with initial length(ε = ∆L
L0

) and initial length is defined as the length

at the point when load is 0.
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Figure 5: General Illustration of the material being modeled with several differentially
small layers being shown.

2.2 Developing the Full Equation

We consider the effects of three forces in describing the system: electrostatic repulsion,

gravity, and surface tension or capillary force. The effects of electrostatic repulsion are

calculated in accordance to Coulomb’s law, shown below,

F = −kQ1Q2

l2
. (1)

Q represents the charge and l is the distance between the plates. For gravity, we simply

consider the compression applied to a given layer by the layers above it. Lastly the force

due to capillarity is calculated as

F =
2γA cos(θ)

l
. (2)

Where γ is the free surface energy (a material property) and θ is the contact angle, which

is assumed constant for this model. In order to write our model we use the method of
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cutoff length: meaning the spacing at height z is be denoted as l(z). At heights close

to z the spacing is assumed to just be l(z) while at heights z̄ far from z the spacing is

|z − z̄|.

Figure 6: Illustration of continuum

We next say that for any z the compressive load must be balanced by the average

net force due to the effects of electrostatics between the layer at z and the layers above

it, the electrostatics between z and the layers close to it, and the electrostatics between

the layer at z and the layers below it. Thus we obtain the following integral equation for

the spacing function, l(z)

N =
kq2A2

L

(∫ z− l(z)
2

0

1

(z − z̄)2
dz̄ +

∫ z+
l(z)
2

z− l(z)
2

1

l2(z)
dz̄ +

∫ L

z+
l(z)
2

1

(z − z̄)2
dz̄

)
− 1

L
g

(∫ L

z

(ρfluidl(z) + ρsolidC)Adz

)
− 1

L

∫ L

0

2γAcos(θ)

l(z)
dz

(3)

with the boundery conditions

l(0) = l(L) = 0, (4)

where N is the magnitude of the compressive force, L is the total height of the material,ρ

is the density, and C is the thickness of the solid layers.

The equation is non-dimensionalized and scaled with electrostatics (the dominant internal
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force), and thus we obtain:

P =

∫ ζ− l(ζ)
2

0

1

(ζ − ζ̄)2
dζ̄ +

∫ ζ+
l(ζ)
2

ζ− l(ζ)
2

1

l2(ζ)
dζ̄ +

∫ 1

ζ+
l(ζ)
2

1

(ζ − ζ̄)2
dζ̄

−Gρφ(1− ζ)−G
∫ 1

ζ

l(ζ̄)dζ̄ − Ω

∫ 1

0

1

l(ζ)
dζ

(5)

where

P =
NL2

kq2A2
, ζ =

z

L
, l(ζ) =

l(z)

L
,G =

ρfluidgL
2

Lkq2A
, φ =

c

L

thus φ is the solid fraction of the material,

Ω =
γcos(θ)A

L
· L2

kq2A2
, ρ =

ρsolid

ρfluid

.

3 Solution of Equation

3.1 G = Ω = 0: Electrostatic Forces Only

We begin our analysis of the system by just solving the simplest case, where electrostatic

repulsion is the only internal force whose effects are considered.

P =

∫ ζ− l(ζ)
2

0

1

(ζ − ζ̄)2
dζ̄ +

∫ ζ+
l(ζ)
2

ζ− l(ζ)
2

1

l2(ζ)
dζ̄ +

∫ 1

ζ+
l(ζ)
2

1

(ζ − ζ̄)2
dζ̄. (6)

The equation can be solved analytically and thus we obtain an expression for our spacing

function :

l(ζ) =
5ζ2 − 5ζ

Pζ2 − Pζ − 1
. (7)

A plot of the function is shown in Figure 7.
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Figure 7: Spacing function for various values of P

As expected, the spacing function is symmetric and maximum at the center. Also

these results seem to match our physical intuitions, as expected an increase in force leads

to a decrease in spacing. However, one piece of the data appears counter-intuitive. A

finite result is obtained when the load is zero, however, according to Earnshaw’s Theorem

[13], the plate should be pushed apart an infinite distance if there is no constraining

force. The reason for the finite spacing distribution is the fact that the spacing is finite

is due to the fact that the spacing was scaled with the total material length, thus an

infinite spacing is being divided by an infinite length and a seemingly finite result is

being obtained, however if we were to look at the non-scaled solution it would diverge as

expected.

14



3.2 Solution Including Gravity

The equation which considers gravity but not capillarity is:

P =

∫ ζ− l(ζ)
2

0

1

(ζ − ζ̄)2
dζ̄ +

∫ ζ+
l(ζ)
2

ζ− l(ζ)
2

1

l2(ζ)
dζ̄ +

∫ 1

ζ+
l(ζ)
2

1

(ζ − ζ̄)2
dζ̄ −G

∫ 1

ζ

(l(ζ̄) + ρφ)dζ̄ (8)

After some simplification the equation becomes:

P =
5

l(ζ)
− 1

ζ
+

1

ζ − 1
−Gρφ(1− ζ)−G

∫ 1

ζ

l(ζ̄)dζ̄ (9)

This equation can not be solved analytically and thus we apply a numerical approach. Let

us partition ζ such that ζ1 = 0, ζ1 = ∆ζ, ζ2 = 2∆ζ, ...ζN = 1. We now wish to determine

the spacing at every ζi, i = 1, 2, ...N . We replace the integral with a quadrature rule.

Our equation thus becomes

P =
5

li
− 1

ζi
+

1

ζi − 1
−Gρφ(1− ζi)−G ·∆ζ ·

N∑
j=i

wijlj, i = 2, ..., N − 1. (10)

Where li = l(ζi) and wij is the quadrature for trapezoidal rule. Starting at i = N

and iterating backwards, one can obtain a system of N quadratic equations for every l.

Assuming that l1 = lN = 0 one can first obtain lN−1 and then lN−2 using the previous

result, and so on and so forth. Results are shown in Figures 8 and 9 below.
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Figure 8: Spacing function for various G. P = 23 , ρ = 1, φ = 0.5

Figure 9: Spacing function for various ρ. P = 23 , G = 1, φ = 1

The results obtained again seem to match our physical intuitions as an increase in

the gravitational pull or the density of the solid compared to the liquid led to a decrease
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in spacing. This is because an increased gravitational force or heavier plates lead to

a greater compressive force applied to every layer. Also, the spacing at the bottom is

smaller than the spacing at the top [39], this is consistent with our physical intuition as

the bottom layers would be more compressed than the top layers since more weight is

applied to the bottom layers than the top.

3.3 Solution of the Full System

We finally consider the full system that was presented in equation (5). The system is

simplified and becomes:

P =
5

l(ζ)
− 1

ζ
+

1

ζ − 1
−Gρφ(1− ζ)−G

∫ 1

ζ

l(ζ̄)dζ̄ − Ω

∫ 1

0

1

l(ζ)
dζ. (11)

Again this equation can not be solved analytically thus we partition our interval into a

finite number of parts and replace the integrals with quadrature rules.

P =
5

li
− 1

ζi
+

1

ζi − 1
−Gρφ(1−ζi)−G ·∆ζ ·

N∑
j=i

wijlj−Ω
N∑
j=1

wij∆ζ

lk
, i = 2, ..., N−1. (12)

Let

u =



l1

l2
...

lN


, v =



1
l1

1
l2

...

1
lN


, then (12) can be rewritten as:

Au+B v = C (13)

where

Aij =


0 i > j

−Gwij∆ζ j ≥ i

(14)
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Bij =


−Ωwij∆ζ i 6= j

−Ωwij∆ζ + 5 i = j

(15)

Ci = P +
1

ζi
− 1

ζi − 1
+Gρφ(1− ζi), i = 2, ..., N − 1 (16)

A variation of Gauss-Seidel method [9] is used to solve this system. We make an initial

guess, in our case we use the solution for equation (10) as an initial guess for ~u and the

reciprocal of this as the initial guess for ~v. We then assume all the values of u are know

except for one and compute that value of ui we then set ui equal to the new obtained

value and go on to compute the value of ui+1. This process is repeated cyclically for all

values of u until the results are within a fixed value (1%) of each other.

Figure 10: Spacing function for various values of Ω.G = 1, P = 1 , ρ = 1.5, φ = 0.5

Again,the results appear to match our physical intuition as the surface tension acts

to prevent the fluid from being stretched, thus a larger value of surface tension leads to

a smaller spacing distribution.

18



3.3.1 Validation With Fixed Point Method

In order to validate the results we obtained from the Gauss-Seidel method we compare

them to results obtained through the fixed-point method. We take the system from (13)

and solve it by selecting an initial guess for ~u and ~v and using those initial guesses to

solve the system iteratively, selecting every next ~v by

v = B−1 (C − Au). (17)

This method converges fairly quickly and appears to agree with the results obtained

through Gauss-Seidel, suggesting that the results for spacing function that have been

obtained are valid.

3.4 Stress-Strain Relation

Now that we have fully described the behavior of the given system we wish to obtain a

stress-strain relation from the results. In order to do so, we need to rescale the system

with undeformed length rather than total length.The system thus becomes

P =

∫ ζ− l(ζ)
2

0

1 + ε

(ζ − ζ̄)2
dζ̄ +

∫ ζ+
l(ζ)
2

ζ− l(ζ)
2

1

l2(ζ)
dζ̄ +

∫ 1

ζ+
l(ζ)
2

1

(ζ − ζ̄)2
dζ̄

−Gρφ(1 + ε− ζ)−G
∫ 1+ε

ζ

l(ζ̄)dζ̄ − Ω

∫ 1+ε

0

1

l(ζ)
dζ.

(18)

The physical definition of spacing and length lead to the following system of equations.

φ+

∫ 1

0

ldζ = 1 + ε (19)

φ+

∫ 1

0

l0dζ = 1 (20)
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Combining (18) and (19) we obtain

ε =

∫ 1

0

ldζ −
∫ 1

0

l0dζ (21)

we approximate the integrals with quadrature rules and obtain

ε =
N∑
j=1

wjl∆ζ −
N∑
j=1

wjl0∆ζ. (22)

Thus, for any given load, we can obtain a spacing and use that spacing to obtain a strain.

Results for the stress-strain relation are presented in Figure 11.

Figure 11: Stress-Strain Relation

The result for the stress strain relation fits our physical intuition, if we think of the

system as a set of charged plates, for compression, eventually the plates are pushed so

close together that electrostatic repulsion dominates such that it takes a larger change

in load to enact a small deformation. On the other hand, for tension, at one point the

plates are far enough apart that even a small change in load leads to large deformations.
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4 Validation

4.1 Comparison to Experimental Results

In order to validate the model we compare our theoretical results to experimental results

for both clay(Kaolinite) and cartilage (Articular Cartilage). The results of our compari-

son are presented in Figure 12.

a b

c d

Figure 12: Experimental and theoretical comparison: a. Average difference: 14.1%
data from Illampas, Ioannou, and Charmpis 2014 [20], b. Average difference: 10.6%
data from Schinagl, Gurskis, Chen, and Sah 1997 [36], c. Average difference: 5.56% data
from Kavak and Baykal 2014 [21], d. Average difference: 18.9% data from Mow, Holmes,
and Lai 1984[26]

The values of the parameters were chosen from physically realistic values in order to

best fit the experimental results. The physically realistic values for clays are: −0.027C ≤

q ≤ −0.038C[46], 1200 kg
m3 ≤ ρsolid ≤ 1600 kg

m3 [2], 0.17 ≤ φ ≤ 0.82 [32], 17.8 ≤ θ ≤ 55.7

[38]. The values of the parameters that were used when comparing to the experimental

data which seemed to produce the best results are: q = −0.027C, ρfluid = 1000 kg
m3 , ρsolid =
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1500 kg
m3 , φ = 0.2, θ = 40◦, γ = 0.072

For cartilage the values are: q = 0.037 ± 0.004 C
m2 [25], ρsolid = 250 kg

m3 [44], 0.4 ≤

φ ≤ 0.6 [31], and θ = 80 ± 0.5 [12]. The values of the parameters that were used

when comparing to the experimental data which seemed to produce the best results are:

q = −0.037C, ρfluid = 1000 kg
m3 , ρsolid = 250 kg

m3 , φ = 0.5, θ = 80◦, γ = 0.072

Overall, our model appears to be a good fit for the behavior of the material that was

found experimentally. An interesting observation is that our model appears to overes-

timate the experimental results for stress for any given strain. The reasons for this are

not immediately clear from the model and should be investigated further. It should also

be notedthat these results are extremely sensetive to changes in the vlaue of q, this is an

example of the previously discussed instability inharent to laminate materials.

5 Conclusion

During the course of this project, we developed an equation that describes the behav-

ior of charged laminates. We then used analytical and numerical methods in order to

solve this equation and describe the spacing distribution of the material. This spacing

distribution was then used to obtain a stress-strain relation for a given material. These

theoretical results were compared to experimental results for tow distinct examples of

charged laminates, cartilage and clay, these results appeared to correlate fairly well with

ones obtained experimentally. This correlation provides the tools for future researchers

and engineers to be able to predict the properties of clay, cartilage, or another charged

laminate material based on the properties of this material. The results can be applied

to both industrial applications, where clays and ceramic materials are common, or the

results can be applied to the quickly growing field of biomaterials.

Future research in this area should begin by obtaining an analytical expression for

the obtained stress-strain relation. More research should also be done on the internal
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forces that may need to be added to the model in order to increase its accuracy. Lastly,

it would be interesting to weaken the requirement that the interstitial fluid be a pure

dielectric.

6 Appendices

6.1 Appendix 1: Error due to increment size

In order to make sure that the obtained results are valid, we should make sure that the

error caused by the spacing size. An error can be considered small if it is equally or less

significant than the error being caused by the trapezoid rule we used to approximate the

integral. The logarithm base 10 of the difference in spacing function caused by different

partitions is plotted below.

Figure 13: Effect of partition size on error.

The error caused by the partition is on the order of 10−6 where as the error caused

by trapezoidal rule is on the order of 1
n2 or in this case 10−4, which is significantly bigger.
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Thus we can view the error that is caused by the increment size as negligibly small. If

we do need more accuracy we should look into a more accurate quadrature rule.

6.2 Appendix 2: Matlab Code

6.2.1 Code for Solution of Pure Electrostatics

1 function l = lo (F, z)

2 l = (5 * zˆ2 − 5*z)/ (F*zˆ2−F*z−1);

6.2.2 Code for Solution of System including Gravity

1 function l = ToyMass(G, p,cb, F, dz)

2 z = (0:dz:1)';

3 l = zeros(size(z));

4 sizevec = size(z);

5 n = sizevec(1);

6 i = n−1;

7 while i > 1

8 sum = 0;

9 for k = i+1 : n

10 w = 1;

11 if(or(k==i+1,k==n))

12 w = 0.5;

13 end

14 sum = sum + w*l(k);

15 end

16 a = G*dz;

17 b = F − 1 / (z(i)−1) + 1 / z(i) + G*p*cb*(1−z(i)) − sum*G*dz;

18 c = −5;
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19 l(i) = (−b + sqrt(bˆ2 − 4*a*c))/(2*a);

20 i = i − 1;

21 end

22 lorig = zeros (size (n));

23 for i = 1 : length (z);

24 lorig(i) = lo(F, z(i));

25 end

6.2.3 Code for Solution of Full System

1 function [u,A,B,C,ut] = Capilary2(O,G,p,cb,F,dz)

2 %z = (0:dz:1)';

3 z = (0:dz:1)';

4 n = length(z);

5 u = ToyMass(G,p,cb,F,dz);

6 ut = u;

7 %disp("found u")

8 %[A][u]+[B][v] = [C]

9 A = zeros(n,n);

10 B = zeros(n,n);

11 C = zeros(n,1);

12 size(A)

13 for i = 2:n−1

14 C(i) = F + 1/(z(i)) −1/(z(i)−1)+G*p*cb*(1−z(i));

15 end

16 C(1) = F;

17 C(n) = F;

18 for i = 1:n

19 for j = 1 :n

20 if j < i

21 A(i,j) = 0;
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22 end

23 if j ≥ i

24 w = 1;

25 if(or(j==i+1,j==n))

26 w = 0.5;

27 end

28 A(i,j) = −G*dz*w;

29 end

30 end

31 end

32 %disp("found A")

33 for i = 1:n

34 for j = 1:n

35 w = 1;

36 if(or(j==2,j==n))

37 w = 0.5;

38 end

39 B(i,j) = −O*dz*w;

40

41 end

42 end

43 %disp("found B")

44 tf = 0;

45 newtot=1;

46 oldtot = 1;

47 while tf == 0

48 for i = 2 : n−1

49 sum = 0;

50 for j = 2:n−1

51 if i 6=j

52 sum = sum + A(i , j)*u(j)+B(i,j)/(u(j));

53 end

54 end
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55 c = C(i)−sum;

56 a = A(i,i);

57 b = B(i,i)+5;

58 u(i) = (c − sqrt(cˆ2−4*a*b))/(2*a);

59 end

60 for i = 1 : 1 : size(u)

61 newtot = newtot + u(i);

62 end

63 check = (newtot−oldtot)/oldtot

64 if (newtot − oldtot)/oldtot ≤ 0.01

65 tf = 1;

66 end

67 oldtot = newtot;

68 end

69 size(A);

70 B=B+5*eye(n);

71 return

6.2.4 Code for Fixed Point Iteration

1 clf;

2 %Capilary(O,G,p,cb,F,dz)

3 z = (0:0.01:1)';n=length(z);

4 A0=zeros(n,n);B0=A0;C0=zeros(n,1);

5 [l0,A0,B0,C0,lg] = Capilary2(1,1,1.5,.5, 0,0.01);

6 u=l0(2:end−1);A=A0(2:end−1,2:end−1);B=B0(2:end−1,2:end−1);

7 C = C0(2:end−1);

8 norm(A*u+B*(1./u)−C)

9 %

10 % check with fixed point

11 %
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12 u1 = lg(2:end−1);

13 U = u1;

14 for it = 1:8

15 v2 = B\(C−A*u1);

16 u2=1./v2;

17 U = [U u2];

18 if it ==1

19 unorm=norm(u2−u1);

20 else

21 unorm=[unorm norm(u2−u1)]

22 u1=u2;

23 end

24 end

6.2.5 Code for Stress-Strain

1 function e = StressStrain(O, G, p, cb,dz,df)

2 F = [−10: df: 2];

3 L0 = sum(Capilary2(O, G, p, cb, 0, dz));

4 e = zeros(size(F));

5 for i = 1:1:length(F)

6 L = sum(Capilary2(O, G, p, cb, −1*F(i), dz));

7 e(i) = (L−L0)*dz;

8 end

6.2.6 Code for Stress Strain Including Dimentional Parameters

1 function e = StressStraindim

2 clf
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3 q = −0.037; %C

4 A = 1;

5 L = 1;

6 k = 9*10ˆ9;

7 g = 9.8;

8 pf = 1000;

9 ps = 250;

10 cb = 0.5;

11 gamma = 0.072;

12 dz= 0.01;

13 df = 100;

14 s = [0:df:73000];

15

16 O = gamma*A*cos(80*pi/180)/L*(Lˆ2)/(k*(qˆ2)*(Aˆ2));

17 p = ps/pf;

18 F = zeros(size(s));

19 for i = 1 :1: length(s)

20 F(i) = s(i)*Lˆ2 / (k*qˆ2 * A);

21 end

22 G = pf*g*L/(k*qˆ2*Aˆ2);

23

24 L0 = sum(Capilary2(O, G, p, cb, 0, dz));

25 e = zeros(size(F));

26 for i = 1:1:length(F)

27 L = sum(Capilary2(O, G, p, cb, −F(i), dz));

28 e(i) = (L−L0)*dz;

29 end

30 scatter(e,s)

31 xlabel('\epsilon', 'FontSize', 16)

32 ylabel('\sigma(Pa)', 'FontSize', 16)
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[24] Marc André Meyers, Po-Yu Chen, Albert Yu-Min Lin, and Yasuaki Seki. Biologi-

cal materials: structure and mechanical properties. Progress in Materials Science,

53(1):1–206, 2008.

[25] A Minassian, D O’Hare, KH Parker, JPG Urban, K Warensjo, and CP Winlove.

Measurement of the charge properties of articular cartilage by an electrokinetic

method. Journal of orthopaedic research, 16(6):720–725, 1998.

[26] Van C Mow, Mark H Holmes, and W Michael Lai. Fluid transport and mechanical

properties of articular cartilage: a review. Journal of biomechanics, 17(5):377–394,

1984.

[27] Toshio Mura. Micromechanics of Defects in Solids. The Hague: M. Nijhoff, 1982.

[28] Nandan L Nerurkar, Brendon M Baker, Sounok Sen, Emily E Wible, Dawn M Elliott,

and Robert L Mauck. Nanofibrous biologic laminates replicate the form and function

of the annulus fibrosus. Nature materials, 8(12):986–992, 2009.

[29] RW Ogden and DG Roxburgh. The effect of pre-stress on the vibration and stability

of elastic plates. International Journal of Engineering Science, 31(12):1611–1639,

1993.

32



[30] Erwan Paineau, Isabelle Bihannic, Christophe Baravian, Adrian-Marie Philippe,

Patrick Davidson, Pierre Levitz, Srgio S. Funari, Cyrille Rochas, and Laurent J.

Michot. Aqueous suspensions of natural swelling clay minerals. 1. structure and

electrostatic interactions. Langmuir, 27(9):5562–5573, 2011.

[31] S. Pal. Design of Artificial Human Joints & Organs. Springer, 2013.

[32] Angelica M Palomino, Susan E Burns, and J Carlos Santamarina. Mixtures of

fine-grained minerals–kaolinite and carbonate grains. Clays and Clay Minerals,

56(6):599–611, 2008.

[33] Tim Ripley. New armour solutions. Armada International, 26(5):24–32, 2002.

[34] Weymouth Relief Road. Chalk testing. https://weymouthreliefroad.wordpress.

com/tag/road-layers/page/2/. Accesed: 3/27/2015.

[35] DG Roxburgh and RW Ogden. Stability and vibration of pre-stressed compressible

elastic plates. International journal of engineering science, 32(3):427–454, 1994.

[36] Robert M Schinagl, Donnell Gurskis, Albert C Chen, and Robert L Sah. Depth-

dependent confined compression modulus of full-thickness bovine articular cartilage.

Journal of Orthopaedic Research, 15(4):499–506, 1997.

[37] Sandra H Seale and Eduardo Kausel. Point loads in cross-anisotropic, layered half-

spaces. Journal of Engineering Mechanics, 115(3):509–524, 1989.

[38] Jianying Shang, Markus Flury, James B Harsh, and Richard L Zollars. Comparison

of different methods to measure contact angles of soil colloids. Journal of colloid

and interface science, 328(2):299–307, 2008.

[39] Suresh C Sharma and Surendra RS Kafle. Effect of gravity on density distributions

and orthopositronium annihilation rates in ethane and methane near the critical

point. The Journal of Chemical Physics, 78(11):6897–6900, 1983.

33



[40] J. J. Spitzer. Electrostatic calculations on swelling pressures of clay-water disper-

sions. Langmuir, 5(1):199–205, 1989.

[41] K. Tripathi. A novel approach for enhancement of automobile clutch engagement

quality using mechatronics based automated clutch system. Journal of The Institu-

tion of Engineers (India): Series C, 94(1):9–20, 2013.

[42] Leo Q Wan, X Edward Guo, and Van C Mow. A triphasic orthotropic laminate model

for cartilage curling behavior: fixed charge density versus mechanical properties

inhomogeneity. Journal of biomechanical engineering, 132(2):024504, 2010.

[43] K.R. Williams. Interfaces in medicine and mechanics–2. INTERFACES IN

MEDICINE AND MECHANICS. Elsevier Applied Science, 1991.

[44] Marc Robin Anne Valle Chelsea Catania Patrick Legriel Grard Pehau-Arnaudet

Florence Babonneau Marie-Madeleine Giraud-Guille Nadine Nassif Yan Wang,

Thierry Azas. Comparison of collagen density and organization between in

vitro models and bone. http://www.nature.com/nmat/journal/v11/n8/fig_tab/

nmat3362_F1.html.

[45] Caroline M. Zeyfert. Pmse 307. http://oasys2.confex.com/acs/238nm/

techprogram/P1273327.HTM, 2009. Accesed: 3/27/2015.

[46] Zhihong Zhou and William D Gunter. The nature of the surface charge of kaolinite.

Clays and Clay Minerals, 40(3):365–368, 1992.

34


