
Split Cyclic Analog to Digital Converter
Using A Nonlinear Gain Stage

by

Hattie Spetla

A Thesis
Submitted to the Faculty

of the
WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the
Degree of Master of Science

in

Electrical and Computer Engineering
by

September 2009

APPROVED:

Professor John A. McNeill, Major Advisor

Professor Stephen J. Bitar

Professor Donald R. Brown

Abstract

Previous implementations of digital background calibration for cyclic ADCs have re-

quired linear amplifier behavior in the gain stage for accurate correction. Correction is

digital decoding of ADC outputs to determine the original ADC input. Permitting nonlin-

earity in the gain stage of the ADC allows for less demanding amplifier design requirements,

reducing power and size. However this requires a method of determining the value of this

variable gain during digital correction. Look up tables (LUTs,) are an effective and efficient

method of compensating for analog circuit imperfections. The LUT correction and cali-

bration method discussed in this work has been simulated using Cadence integrated circuit

simulation ADC specifications and MATLAB.

iii

Acknowledgements

I would first like to thank Professor John McNeill, who with clear explanations and im-

peccable blackboards has been a source inspiration since my undergraduate days. I have

learned an immense amount while in NECAMSID and am fortunate to have him as an

advisor. His guidance has both led me in the right direction while still requiring me to find

it myself, a careful balance.

Thank you also to my Committee members Professor Stephen J. Bitar and Professor

Donald R. Brown for their input and insight.

Next I would like to thank Texas Instruments for providing funding for my research.

This has been an amazing opportunity.

Thanks is also due to my colleagues Chris David, Chilann Ka Yan Chan, Cody Bren-

neman, Tsai Chen, Sam Beam, Ed Oliveira, Michael Irace and Michael Leferman. The

support, criticisms, and occasional snacks they provided have been invaluable.

Lastly, a special thank you to my mother Janis for the countless ways she has been there

for me, especially for the endless encouragement.

iv

Contents

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 Motivation . 1
1.2 Terminology . 2
1.3 Overview . 3
1.4 Chapter Organization . 3

2 Cyclic Analog to Digital Converters 5
2.1 Introduction . 5
2.2 Conceptual Overview . 6
2.3 ADC Simulation . 9
2.4 Nonlinearity In Amplifier Circuits . 11
2.5 Amplifier Modeling in Digital Correction . 12

2.5.1 Polynomial Approach . 14
2.5.2 Look Up Table Approach to Correction 15

2.6 Polynomial and LUT Results . 15

3 LUT Approach to Correction 19
3.1 Correction Algorithm . 19
3.2 LUT Sizing Considerations . 21

3.2.1 Choice of Interpolation Method . 21
3.2.2 Cycle Limit Of Accuracy . 22
3.2.3 Residue Mode Limitations . 24
3.2.4 Solutions . 29

3.3 LUT Correction Results . 29

4 Calibration 32
4.1 Overview . 32
4.2 Propagation of Error . 33
4.3 Calibration with Known Error . 35
4.4 Calibration of DAC and Comparator Errors 35

v

5 Split Cyclic 38
5.1 Split Cyclic Overview . 38
5.2 Split Cyclic Implementation . 40

6 Conclusions and Future Work 47
6.1 Conclusions . 47
6.2 Future Work . 47

6.2.1 Weighting . 48
6.2.2 Use of Previous Cycle Residue . 48

A Top Level MATLAB Simulation 50

B LUT Creation 57

C ADC Simulation 60

D VRES and D calculation Pure Cyclic and Wide Zero Residue Modes 63

E VRES and D calculation High and Low Residue Modes 66

F Decoder(Correction) Top Level 69

G Decoder(Correction) 71

H Calibration Top Level 74

I LUT Calibration 76

Bibliography 86

vi

List of Figures

2.1 Cyclic Converter Block Diagram [6] . 6
2.2 Graphic Representation of ADC Behavior 8
2.3 Residue Modes (a) Wide Zero (b) Pure Cyclic 10
2.4 Differential Pair V-I Characteristics . 11
2.5 Nonlinear Amplifier Behavior . 13
2.6 Cadence Amplifier Schematic . 14
2.7 25 point LUT . 16
2.8 Error in LUT Vs Third Order Polynomial 18

3.1 Correction of ADC Output . 20
3.2 ADC Behavior and Correction of ADC Output 21
3.3 Error by LUT Size and Interpolation Method 22
3.4 Number of Cycles Effect on Output Accuracy 23
3.5 Residue Mode and Correction Error with High Nonlinearity 25
3.6 Residue Mode and Correction Error with High Nonlinearity 26
3.7 Residue Mode and Correction Error with Simulated Gain 27
3.8 Residue Mode and Correction Error with Low Nonlinearity 28
3.9 INL Linear Correction vs LUT Approach 30
3.10 INL LUT Sizing . 31

4.1 LUT Error in Single Cycle . 34
4.2 Ideal Sine wave Calibration with µ 0.6 . 36
4.3 Ideal Sine Wave Calibration with High µ 0.6 37

5.1 Split ADC Architecture . 38
5.2 Split ADC Compared to Traditional ADC 39
5.3 Output error with identical LUT . 40
5.4 DC Calibration . 41
5.5 Sine Wave Split Calibration . 42
5.6 Sine Wave Calibration with Low µ . 43
5.7 Residue Modes (a) High Cyclic (b) Low Cyclic 44
5.8 Calibration Using 4 Residue Modes . 45
5.9 LUT Error after Iterations . 46

vii

6.1 Weighting . 49

viii

List of Tables

1.1 IC Specifications . 2

2.1 25 LUT Points . 17

1

Chapter 1

Introduction

1.1 Motivation

Analog to digital converters, (ADCs) are an essential part of many electrical systems.

Today, the trend is for circuits to decrease in size and power consumption. This allows for

increased use in mobile and other low power applications.

Open loop gain stages in nanoscale CMOS are of interest as they allow for much smaller

circuits, reducing power consumption and increasing speed. Open loop gain stages are less

dependent on analog precision. Accuracy is one of the most demanding aspects of analog

design[4]. Digital circuits can be used to compensate for more relaxed design requirements

in analog circuit designs. The advantage to this is that digital circuity is less ‘expensive,’ in

terms of both power and size, than analog portions of the system[1]. Several recent works

have shown an interest in allowing nonlinearity into amplifier portions of ADCs [2] [4] [13]

[14]. Because the requirements on design of the analog portion goes down, the size can

decrease and the analog portion can be made more easily reducing cost.

This work builds on previous work with split cyclic ADCs. By introducing nonlinearity

into the gain stage of the residue amplifier, analog design requirements are further reduced.

Previous cyclic ADC techniques have depended on a linear gain stage for accurate correction

and calibration[6].

This project has worked concurrently with an IC design group. The design group has

2

IC Specifications
Maximum Size 1 mm2
Process Type 0.18 µm
Resolution 12 Bits
Throughput 1 Msps
Test Time Less than 1 sec
Other Specifications Fully Differential

Table 1.1: IC Specifications

simulated and is in the process of layout for a cyclic IC. The research from this project helped

shape the design of the amplifier and rest of the circuit. The research on the operation of the

circuit has also been instrumental in developing the correction and calibration information

[15]. The IC development was sponsored by the New England Center for Analog and Mixed

Signal Design(NECAMSID).

In addition to correction, calibration of an ADC with a nonlinear gain stage was at-

tempted using the ‘Split’ technique. Split ADC architecture has been shown to be an

effective method for calibrating cyclic ADCs[6]. The split architecture has many advan-

tages, one such advantage is continuous calibration that adapts to environmental changes

in the behavior of the ADC including temperature. A second advantage to split calibration

is it is a background calibration technique, meaning it’s performed without altering the

input of the ADC. It also requires a low number of conversions for calibration [9].

1.2 Terminology

The term correction, when referring to the ADC used in this work, is the process of

determining the output code of the ADC. The correction process takes the outputs of the

comparators, which will be discussed further in Section 2, and creates a final ADC output

code which reflects the original ADC input. Calibration refers to the process of improving

the accuracy of the ‘corrected’ ADC output.

3

1.3 Overview

This thesis discusses correction and digital background calibration of a split cyclic ADC.

Previous cyclic ADC implementations have depended on a linear gain stage for effective

calibration and correction. This project however allows for further imperfection in the

analog portion of the circuit, in the form of amplifier nonlinearity, and can correct and

calibrate even with non-linearity in the gain stage.

To accomplish correction and digital background calibration, a look up table (LUT), is

used. The LUT stores points which can then be interpolated to determine the behavior of

the amplifier, which is used to determine the ADC output in ADC correction. Calibration

of this LUT based stored amplifier behavior was attempted using a split cyclic architecture.

Split architecture involves comparing the outputs of two ADCs to determine errors in the

outputs. Ideally, the outputs would only agree when correct, otherwise errors in the stored

amplifier behavior model would lead them to create different output codes.

1.4 Chapter Organization

Chapter 2, is a general background discussion of cyclic analog to digital converters, the

ADC used in this method of correction and calibration. Previous work with cyclic ana-

log to digital converters is covered. This section focuses especially on the introduction of

nonlinearity into the gain stage of cyclic ADC. There is an explanation of nonlinearity in dif-

ferential amplifiers, and suggestions, including advantages and disadvantages, for methods

of modeling this behavior.

The next section will cover the look up table (LUT) approach to correction in the ADC.

It discusses the output correction algorithm and explanation of residue modes. It contains

results from simulation of a LUT approach to correction and compares it to the previous

work.

The third chapter is a discussion of calibration of cyclic ADCs. Initially, calibration was

performed with a known error. After this was accomplished, the split ADC implementation

was used to calibrate the LUTs. The fourth section covers the the split architecture. It

discusses the complexity involved in implementing calibration in a LUT based cyclic ADC.

4

This is followed by a discussion of conclusions and proposed future work. Future work

includes suggestions for the improvement of the calibration, and implementation.

5

Chapter 2

Cyclic Analog to Digital

Converters

2.1 Introduction

Cyclic ADCs, also known as Algorithmic converters, are Nyquist rate ADCs. They

operate at near the Nyquist frequency, as opposed to oversampling converters. As such the

bandwidth can be approximated as the sampling frequency, fn over two [3].

Bandwidth =
fn
2

(2.1)

A basic overview of cyclic ADCs is given in Section 2.2.

One of the advantages of this type of ADC is that calibration depends primarily on

the gain stage of the circuit. Although previous work has shown that calibration of the

cyclic ADC is possible, that work did not correct for nonlinearity in the gain stage. The

advantages of allowing nonlinearity in the gain stage will be discussed further in Section

2.4. Modeling and correction of the ADC increases considerably in complexity, however, as

soon as nonlinearity is introduced. Two approaches discussed in this paper are covered in

Section 2.5.1, a polynomial approach, and Section 2.5.2, a LUT approach.

6

2.2 Conceptual Overview

Figure 2.1: Cyclic Converter Block Diagram [6]

Figure 2.1 is a block diagram illustrating the operation of a cyclic ADC. Initially, as is

shown in Figure 2.1, the input switch is set to an input voltage, VIN . This VIN is sampled at

the sample and hold (S/H) block. Based on VIN , the comparators generate a digital decision

output d. A digital to analog converter(DAC), adds or subtracts a reference voltage from

the input based on the comparator decision. Then this new value VRES is amplified by a

gain G. The input switch is moved to VRES sending it to the S/H for the next cycle. This

process is then repeated a number of cycles, until the desired resolution is obtained.

The cyclic ADC acts like a negative feedback loop. Because the DAC subtracts an

appropriate amount from each of the VRES values, the gain must be kept less than two. If

the gain is increased to more than two, the VRES would eventually increase out of the range

of the ADC.

Figure 2.2 is a simplified graphical representation of the behavior of a 4 cycle cyclic

converter. This ADC has a gain of close to 2 and an input range of around +/-1V for

VREF . The first cycle takes the 0.62V VIN . The comparators make a decision of +1. This

leads the DAC to subtract 0.5V, which is the comparator decision multiplied by VREF
2 . This

7

sets V now to be 0.12V. Then this value is multiplied by the gain of near 2. This gives a

VRES(OUT) gain graphically approximated to be 0.3V.

The second stage takes the 0.3V as the new S/H input. The comparator makes another

comparator decision of +1. The DAC again subtracts 0.5V, creating a VRES of near -0.2V.

This is then multiplied by the gain stage and results in a VRES(OUT) of -0.46V. The next

cycle takes this -0.46V and again makes a comparator decision, this time of -1, subtracts

-0.5V using the DAC, and outputs a new VOUT of 0.1V. With an input of VIN = 0.62 the

ADC output would be 1, 1,−1, 1.

The cyclic ADC in this simulation has 5 possible output decisions. The decisions used

are case dependent on the residue mode used, which can be varied, as discussed in Section

2.3.

8

V

V

V

V

V

V

V

V

Figure 2.2: Graphic Representation of ADC Behavior

9

2.3 ADC Simulation

The ADC was simulated in MATLAB for analysis. Equation 2.2 is the basic formula

for calculating VRESOUT .

VRESOUT = G(VRESIN −D(
VREF

2
)) (2.2)

A gain value G is multiplied by the value of VRESIN − D(VREF
2). For simulation G

was stored as a 100,000 point vector, with a 15 significant figure accuracy, and spline

interpolation was used to calculate gain for voltage points in between the points on the

vector.

With such a high number of points for the curve, error due to interpolation is minimized.

This vector was produced using Cadence simulation of an amplifier portion of a cyclic ADC

currently under design. The amplifier was designed to have a maximum gain of 1.9. This

G was also stored as 5 separate gain curves to further improve the ability of the simulation

to replicate the behavior of the real world model, which might have different gains based

on different input ranges. This gain could be edited curve by curve.

The ADC under design has a VREF , and input range, of +/− 0.68V. Anything over

this will swing outside the range of the amplifier. Inputs to the simulation were set as a

vector of input voltages, as would be seen at the S/H portion of the circuit. The advantage

of using a vector is increased speed when processing in MATLAB. This was beneficial in

that it allowed the cycling of a large number of voltages vectors at once for correction and

calibration.

The VRESIN vector was then used to create 2 new vectors. These vectors were a decision

vector, d and a VRESOUT vector.

For the first cycle VRESIN is the input voltage. For subsequent cycles VRESIN is the

VRESOUT from the previous cycle, which was continuously stored for analysis.

The minimum gain calculated in the amplifier curve used was around 1.6. This is a 15

percent deviation from the maximum and linear gain, which from simulation is actually

1.9093, very close to the goal of 1.9. With a gain of 1.6 the resolution achieved per ADC

conversion set is lower than 2N , N being the number of cycles. Because the gain is variable,

10

the bits resolution may be slightly higher than 2 to the lowest gain, but a minimum gain of

1.6 gives a resolution of around 12,000 levels, or near 214.

LSB =
2 ∗ VREF
G20

(2.3)

This gives us a least significant bit (LSB) value of the total range, 1.36V over the total

number of bits, 1.620, an LSB equal to 112µV . The ADC resolution is much lower than

would likely be actualized, but the high level of nonlinearity gives a good representation

of the performance of the correction algorithm in worst case scenarios. This is also better

than the goal of a 12 bit from the IC design. Based on a 12 bit system the LSB would be

332µV .

Figure 2.3: Residue Modes (a) Wide Zero (b) Pure Cyclic

The choice of which gain curve to use is controlled in the ADC. There are two possible

gain curve sets, referred to as residue modes, and these are shown in Figure 2.3. Wide zero

residue mode sets the decisions to -2, 0, and 2. The pure cyclic residue mode uses only

the -1 and 1 decisions. In the simulation residue mode could be set to be random by input

point, random by cycle, or consistently wide zero or pure cyclic.

11

2.4 Nonlinearity In Amplifier Circuits

VPVN

IS

ΔI

ΔI / Is

Vx = VP - VN

VxMAX = α VOV

Figure 2.4: Differential Pair V-I Characteristics

Figure 2.4 shows the general model for a differential pair amplifier and its V-I charac-

teristics. Distortion can be modeled as shown in Equation 2.4,

∆I
ISS

=
VX
VOV

+
1
4

∆β
β

(
Vx
VOV

)2 − 1
8

∆β
β

(
Vx
VOV

)3... (2.4)

where ∆β
β is the mismatch of the two transistors and VOV is the overdrive voltage [11].

VOV = VGS − VTH (2.5)

The maximum higher order nonlinearity is determined by the input swing of the amplifier

which is shown in Equation 2.6

α =
VxMAX

VOV
(2.6)

To reduce the nonlinearity, either a large VOV must be chosen, or a small VxMAX ,

reducing the input range of the amplifier. VxMAX in this case is controlled by the VREF as

12

shown in equation 2.7. This means the main way to increase the linearity of the circuit is

to raise the VOV voltage. However this results in a power penalty and may not be possible

depending on the IC design process used [11].

VxMAX =
VREF
G

(2.7)

Another obvious advantage to open loop amplifiers is the reduction in the number of

transistors and the complexity of the circuit. Because there are more components in a

closed loop system, there are also more noise sources, decreasing amplifier efficiency. The

attainable bandwidth is also increased because the poles in the feedback of a closed loop

system become a stability problem. As a larger range is permitted in the operation of the

amplifier, headroom for the amplifier is increased as well [11].

Power consumption is inversely related to accuracy in amplifiers. Any reduction that

can be made in the amplifier accuracy, without compromising the resolution of the ADC

will reduce power consumption of the ADC[14].

2.5 Amplifier Modeling in Digital Correction

Digital correction is the analysis of the digital outputs to determine the original analog

input to the system. In a cyclic ADC this is done using knowledge of the decision set, the

VREF , and the amplifier behavior.

VIN =
VOUT
G

+D(
VREF

2
) (2.8)

For the linear amplifier, a single value can be stored for gain, a constant G and used

for the complete range of input voltage values. A non-linear gain stage however, requires

a method for determining the gain to a high precision for a large number of voltages. In

simulation it may be feasible to use tens of thousands of points to recreate the behavior of

the amplifier. However, in digital implementation this is not practical.

Previous implementations of cyclic ADCs have required linear amplifier behavior for

proper correction. Allowing the introduction of nonlinearity in the gain stage of the amplifier

allows for less demanding amplifier design requirements, but increases the complexity of

13

(V
)

(V)

Figure 2.5: Nonlinear Amplifier Behavior

the digital portion of the circuit. Figure 2.5 depicts the Cadence simulation output of the

amplifier under design. As can be seen in the figure, for a VREF of 0.68V , giving an amplifier

range of 0.34V , the deviation from maximum gain is between 10 and 20 percent.

Two approaches for implementing this variable gain value in the correction stage of the

ADC were considered. One was the use of a polynomial representing the gain curve. This

is complicated, requiring hardware intensive and time consuming calculation, especially

during calibration. The second method was the storage of a set number of representative

points on a look up table, LUT, and interpolation of these points. The effectiveness of

varying LUT sizes and three different methods of interpolation were considered. As will

be shown, high accuracy can be obtained with a limited number of LUT points and simple

linear interpolation, eliminating the need for both complex calculations and large memory

14

Figure 2.6: Cadence Amplifier Schematic

requirements. The use of a LUT also allows for a simple yet effective calibration of the

stored digital data.

2.5.1 Polynomial Approach

One way to approximate the nonlinear behavior is to use a polynomial. Input vectors

are plugged into the polynomial, giving an output value.

A third order nonlinearity model is represented in Equation 2.9 [12].

VRESOUT = a1VRESIN + a2V
2
RESIN + a3V

3
RESIN (2.9)

If the amplifier behavior is irregular it is difficult to use a polynomial to represent it.

A LUT would provide more freedom in representing amplifier behavior. It is possible for a

large change at one end of the curve to have repercussions at the other one while using a

polynomial. Using a polynomial with an order higher than three is impractical [12].

15

2.5.2 Look Up Table Approach to Correction

The second method considered was the use of a LUT and interpolation. A table of

values approximates the behavior of the amplifier as these values take into account both

gain and offset error. Interpolation can then be used to determine the amplifier output for

any value within the input range. Figure 2.7 and Table 2.1 show the ideal 25 point LUT

created from the amplifier behavior simulated in Cadence. This amplifier was specifically

designed for a cyclic ADC IC layout.

The complete range of the amplifier is not used for all points. Occasionally, as will be

discussed in a future section, the VRES value leaves the expected range of the amplifier

because of errors introduce by an initial guess. This will only happen at early stages in the

correction, because the errors introduced have very little weight in the final output error.

2.6 Polynomial and LUT Results

Figure 2.8 shows error in calculating a VRES value when using a 25 point LUT and

linear interpolation versus using a third order polynomial. The polynomial was calculated

to a high level of accuracy using MATLAB. Plotted is the difference between the 100000

point simulation output, and points calculated using LUT and polynomial. In red are the

points calculated using the LUT. Close to the LUT points the accuracy is high, further from

the points the accuracy decreases. Accuracy is much lower for the polynomial. At only 25

points the accuracy of the LUT is much higher than that of the 3rd degree polynomial.

16

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Amplifier Input (V)

A
m
pl
ifi
er
O
ut
pu
t(
V
)

Figure 2.7: 25 point LUT

17

VIN VOUT

-0.4000 -0.7075
-0.3750 -0.6710
-0.3500 -0.6326
-0.3250 -0.5926
-0.3000 -0.5513
-0.2750 -0.5088
-0.2500 -0.4653
-0.2249 -0.4209
-0.1999 -0.3758
-0.1749 -0.3301
-0.1499 -0.2838
-0.1249 -0.2371
-0.0999 -0.1900
-0.0749 -0.1427
-0.0499 -0.0952
-0.0249 -0.0475
0.0001 0.0002
0.0251 0.0480
0.0501 0.0956
0.0752 0.1432
0.1002 0.1905
0.1252 0.2376
0.1502 0.2843
0.1752 0.3305
0.2002 0.3763
0.2252 0.4214
0.2502 0.4657
0.2752 0.5092
0.3002 0.5517
0.3252 0.5930
0.3502 0.6330
0.4000 0.7075

Table 2.1: 25 LUT Points

18

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−8

−6

−4

−2

0

2

4

6

8
x 10

−4

V IN

E
rr

or
 O

ut
 V

Polynomial Calculated

LUT Calculated

Figure 2.8: Error in LUT Vs Third Order Polynomial

19

Chapter 3

LUT Approach to Correction

3.1 Correction Algorithm

Correction takes the D outputs of the ADC and uses them to determine the original

input. Figure 3.1 depicts the correction that goes on to determine the original voltage input

of the ADC. In this case based on an initial guess of 0 it finds the corresponding place on

the gain curve for that decision and the corresponding previous VRESOUT . Although the

final VRESOUT value is unknown during correction because the weight in the initial phase

of correction is minimal, error introduced because of an incorrect guess is insignificant.

The complex gain can be modeled as a function.

VRESOUT = f(
VRESIN
VREF

, D) (3.1)

When modeled like this, the operation of the ADC becomes as shown in Equation 3.2

x = f(f(f(VIN , D1), D2), D3) (3.2)

Correction works by using the inverse of the gain function to calculate the output code.

x = f−1(D1, f
−1(D2, f

−1(D3, VRESOUT))) (3.3)

The correction algorithm works in a similar fashion to the ADC simulation. The com-

plexity lies in the gain portion. Interpolation of a LUT is used in place of gain. The LUT

20

V

V
V

V

V

V

V

V

V

V

V

V

Figure 3.1: Correction of ADC Output

21

has a limited number of points, the sizing of which is discussed in the next section.

VIN = 0.62V

RESIDUE AMPLIFIER

d1 = 1

VRES2

d3 = -1

VRES(O)

x out

x2

f -1f -1

D = -1 D = 1

VRES(O)

VRES(I)

VRES(O)

VRES(I)

D = 1

D = -1

D = -1 D = 1

VRES(O)

VRES(I)

VRES1

D = -1 D = 1

VRES(O)

VRES(I)

VGuess = 0

= 0.3V

= -0.45V
= 0.1V

d2 = 1

x1

f -1

VRES(O)

VRES(I)

D = 1

D = -1

VRES(O)

VRES(I)

D = 1

D = -1

= -0.5V

= 0.3.5VVIN = 0.6V

Figure 3.2: ADC Behavior and Correction of ADC Output

3.2 LUT Sizing Considerations

When initially considering the size of the LUT, attention was paid mostly to the differ-

ence between LUT sizes and types of interpolation. Analysis was done between interpolated

curve values and the vector created in Cadence simulation. As the project progressed, the

number of cycles was determined to be the major factor in sizing the LUT.

3.2.1 Choice of Interpolation Method

Two types of interpolation were analyzed, linear and simple polynomial. Equation 3.4

is simple linear interpolation and Equation 3.5 is four point polynomial interpolation[7].

Y = Y1 + (X1 +X2)(
Y2 − Y1

X2 −X1
) (3.4)

22

Y = Y1
(X −X2)(X −X3)(X −X4)

(X1 −X2)(X1 −X3)(X1 −X4)
+ ...+ Y4

(X −X1)(X −X2)(X −X3)
(X4 −X1)(X4 −X2)(X4 −X3)

(3.5)

For both of these methods of interpolation, analysis was run between each, for varying

non-linearity and LUT size. This was to give a good idea of the nonlinearity that would

be tolerated by the correction algorithm, and be reproduced with minimal distortion using

the LUT method.

(V
)

Figure 3.3: Error by LUT Size and Interpolation Method

3.2.2 Cycle Limit Of Accuracy

Figure 3.4 shows the the relationship between the number of cycles for each input to

the ADC, the LUT size and the output RMS error. For this graph, an input range of -.65V

to .65V, with a step size of 5mV was run through the decoder for various LUT sizes. RMS

error was calculated for the outputs over this range. The RMS, or quadratic mean of the

23

10
0

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

LUT size

R
M

S
E

rr
or

 (
V

) 8b

12b

16b

Figure 3.4: Number of Cycles Effect on Output Accuracy

error, can be calculated as can be seen in Equation 3.6. This analysis of the error can take

both positive and negative values over the input range [8].

Y =

√
Err2

1 + Err2
2...Err

2
n

n
(3.6)

The decoder was using linear interpolation to determine the input value and all wide zero

residue decisions, to prevent the error caused by leaving the LUT range, which is discussed

in Section 3.2.3.

As can be seen, after a certain point, the size of the LUT no longer has any affect on

the final output error. The number of cycles has a much larger roll in the RMS output

error than the size of the LUT. Knowing the number of cycles, a maximum LUT size can

be determined, beyond which addition points are no longer beneficial.

24

3.2.3 Residue Mode Limitations

A major problem that occurs during the decode stage is the occurrence of ‘Not a Num-

ber’(NaN) values in the simulation. This occurs when the final VRESOUT guess and the

cycle of decisions leads the VRES value to leave the range of the LUT. One case in which

this is possible is when the initial guess is 0 and the last three output decisions are 1, -1, -2.

Decoder cycle 1 takes the -2 D value and outputs a VRESOUT of −0.68V . Decoder cycle

2 takes the -1 D and the VRESOUT of −0.68V and calculates a new VRESOUT . If the gain

is anything under 2, the resultant VRESOUT will be greater than the VREF value. This is

outside of the stored digital amplifier range creating a condition where the digital portion

of the circuit cannot calculate a new VRESOUT value.

VIN =
VOUT
G

+D(
VREF

2
) (3.7)

VOUT =
0
< 2

+ (−2)(
0.68V

2
) (3.8)

VOUT =
−.68V
1.79

+ (−1)(
0.68V

2
) (3.9)

In this case, the VRES values quickly reach a value of −0.7212V , which is outside the

range of the LUT, leading the simulation to return an error value of NaN.

Another issue with the nonlinear gain is a variable correction coefficient. Certain input

values will receive greater correction. The simulation gain curve ranges from 1.9 to 1.7.

This is, however, only a rough idea of what the actual gain will be at the output. It is likely

that the actual circuit fabricated will have a different curve. Simulations were run with a

gain curve of 2.5 to 1.3. Although this is an extreme case it illustrates the issues that arise

due to variations in gain. With a poor gain curve the ADC can get stuck in low gain areas

as can be seen in Figure 3.5. This situation was obtained using the gain curve with extreme

nonlinearity.

25

0 5 10 15 20 25
10

−10

10
−5

10
0

Pure Cyclic

Correction Cycle

E
rr

or
 (

V
)

0 5 10 15 20 25
10

−10

10
−5

10
0

Wide Zero

Correction Cycle

E
rr

or
 (

V
)

Figure 3.5: Residue Mode and Correction Error with High Nonlinearity

26

Correction Cycle

Correction Cycle

E
rr

or
 (

V
)

V
R
E
S

 a
nd

 D

Figure 3.6: Residue Mode and Correction Error with High Nonlinearity

27

(V
)

(V
)

Figure 3.7: Residue Mode and Correction Error with Simulated Gain

28

E
rr

or
 (

V
)

E
rr

or
 (

V
)

Correction Cycle

Figure 3.8: Residue Mode and Correction Error with Low Nonlinearity

29

3.2.4 Solutions

One way to reduce the affect of the lower gain portions of the ADC amplifier is to shuffle

residue modes, selecting it randomly each cycle. This prevents the system from getting stuck

in the lower gain stages.

As can be seen, reducing the amount of nonlinearity in the gain stage can also reduce

the effect of low gain on the correction. It is possible in a practical implementation, as seen

in Section 3.3, to not need to shuffle the residue modes and still obtain a comparably low

output error.

3.3 LUT Correction Results

Figure 3.9 is seen the result of the LUT based correction compared to a linear approx-

imation. With a LUT size of 25 the difference between correction performed with a linear

approximation and the correction done by the nonlinear look-up table is a factor of 1000

times different. As is apparent, LUT correction of a cyclic ADC with nonlinear gain is pos-

sible with a relatively small LUT size to a high degree of accuracy. The LUT was linearly

interpolated, and the input voltage was a ramp from -0.65 V to 0.65 V.

Figure 3.10 shows the difference between a LUT of size 26 and 28. These were done

assuming a LSB based on a 12 bit ADC, 332µV .

30

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−250

−200

−150

−100

−50

0

50

100

150

200

250
Linear Gain Vs. LUT size 25

IN
L

[L
S

B
]

VIN (V)

Figure 3.9: INL Linear Correction vs LUT Approach

31

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15
INL for LUT size 26 vs. LUT size 28

IN
L

[L
S

B
]

VIN (V)

Figure 3.10: INL LUT Sizing

32

Chapter 4

Calibration

4.1 Overview

The second goal of this work was continuous background calibration of the nonlinear

gain LUTs. Background calibration signifies that calibration occurs without disrupting

the ADC input signal. Continuous calibration allows for the correction of changes to the

amplifier behavior caused by environmental factors such as temperature without taking

the converter off line. Previously, correction was performed on a single gain factor. With

the LUT method, this is not possible. Gain varies from section to section of the amplifier

behavior and is independent of the gain in other portions.

Calibration of the LUT depends firstly on determining whether or not output error is

directly reflective of the error in the LUT and a correlation can be drawn. The correlation

could be used to make changes to the LUTs, making the output of the ADC more accu-

rate. This section discusses the first step in performing the ADC calibration, which was

determining how error in the LUTs manifested in the output of the ADC.

The first part of this chapter discusses the propagation of error in the ADC from the LUT

cycle by cycle. The chapter then covers corrections done to the ADC using a converter with

a known output error. This output error is used to correct the LUT proving that calibration

of the LUT is possible with knowledge of the output error.

33

4.2 Propagation of Error

Figure 4.1 is the output error of the cyclic ADC when the LUT of a single cycle is

incorrect. As is shown, LUT error in the final cycle has the most weight on the output error

of the ADC. This was predicted earlier in the report and it allows an initial guess of 0 for

the correction input. The error introduced by an incorrect guess is minimal. Calibration

can focus on the last few cycles of the ADC.

Ideally, calibration could involve more than the final cycle of the ADC and be used

to correct the LUT. To determine the weight earlier cycles would have on the final output

error, the simulation was run with incorrect LUTs for each cycle. The final output error was

then plotted against the error in previous cycles to determine what, if any, correlation was

to be drawn between final error and error in the earlier cycles. Using the polyfit function,

a gain of 0.6 was determined to be the error from the previous cycle and then the second

to last error is 0.3.

34

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−2

0

2
x 10

−3 Error in cycle 20

O
ut

pu
tE

rr
or

 (
V

)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−2

0

2
x 10

−4 Error in cycle 16

O
ut

pu
tE

rr
or

(V
)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−2

0

2
x 10

−5 Error in cycle 12

O
ut

pu
tE

rr
or

(V
)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−2

0

2
x 10

−6 Error in cycle 8

O
ut

pu
tE

rr
or

(V
)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−2

0

2
x 10

−7 Error in cycle 4

O
ut

pu
tE

rr
or

(V
)

Vin

Figure 4.1: LUT Error in Single Cycle

35

4.3 Calibration with Known Error

To verify that the calibration technique is functioning, a simulation was run using an

ideal case for calibration. This involved running two separate ADCs. The first ADC had

an error introduced into its LUT. The second ADC had an ideal LUT, meaning that the

LUT was taken directly from points on the simulated amplifier curve.

The ADC was then run with a set of input points. After the ADC had output it’s first

corrected vector of VOUT , the output error was calculated by taking the difference between

the two ADC outputs. This information, along with the decision outputs of the ADC, was

used to calibrate the incorrect LUT.

LUTNEW = LUTOLD +
ErSUM
ErCount

∗ µ (4.1)

LUTNEW is the ‘calibrated’ LUT point. This is equal to the old LUT point plus the

sum of all error for outputs using the LUT point, divided by the total number of times the

LUT point is used for a set of input values. This is then multiplied by a µ, which initially

was the correlation factor of 0.6 determined in Section 4.2.

The results of this calibration can be seen in Figures 4.2 and 4.3. Calibration with a

known error, using Equation 4.1 is significantly lower than 1 LSB. This indicates that errors

at the output of the correction algorithm of the ADC can be used to calibrate points on

the LUT table.

4.4 Calibration of DAC and Comparator Errors

Calibration of the gain in the LUT can also improve the accuracy of the comparators.

This would be seen as an offset in the stored LUT values. If the comparators trigger at

the wrong point and the DAC subtracts the wrong value, the 0 level in the LUT can be

changed.

36

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8
x 10

−4 Output error for ADC A and B and the RMS error between A and B

Conversion Sets of 116 points

R
M

S
E

rr
or

 (
V

)

A error
B error
Output Difference

Figure 4.2: Ideal Sine wave Calibration with µ 0.6

37

900 910 920 930 940 950 960 970 980 990 1000

4

5

6

7

8

9

10

11

12
x 10

−5 Output error for ADC A and B and the RMS error between A and B

Conversion Sets of 116 points

R
M

S
E

rr
or

 (
V

)

A error
B error
Output Difference

Figure 4.3: Ideal Sine Wave Calibration with High µ 0.6

38

Chapter 5

Split Cyclic

5.1 Split Cyclic Overview

ADC A

ADC B

Calibration
Estimation

Correction
 A

Correction
B

vIN

+

+

ADC Output

xA

xB +

-

x = xA + xB
2

xA - xBΔx =
Difference

Figure 5.1: Split ADC Architecture

Split ADC is a method for performing background calibration that has been successfully

implemented in cyclic ADCs with linear gain stages.

The split cyclic works by taking the difference between two ADCs with the same input

[10]. The two ADCs are set to have two different residue modes, so that the output deci-

sions are different. These output decisions, after going though correction, should generate

identical output codes, as the two ADCs have the same input. A block diagram of this

39

Figure 5.2: Split ADC Compared to Traditional ADC

process is shown in Figure 5.1.

However, if there is any error in the correction process, the outputs will not be the same.

The output error can be used to guess what the error in the LUTs in the ADC correction

are. This is shown in the previous section where the output error is correlated to the error

in the LUT in the last few ADC cycles.

The worst case scenario for the split cyclic ADC calibration is to have identical output

errors. To prevent this from happening the residue modes of each ADC are set to be different

from each other. To show that this would prevent the output ∆x from being identical for

the same output table error, the ADC was simulated with a VIN from −0.65V to 0.65V .

ADC A was run using a wide zero residue mode and ADC B was run using the pure cyclic

mode. The output difference is shown in Figure 5.3. Even with both LUTs containing an

identical error, the output difference is still significant, as shown in Figure 5.3 and can be

used to correct the LUTs.

40

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−3

Vins

O
ut

pu
t E

rr
or

Figure 5.3: Output error with identical LUT

It would be possible for the ADC correction blocks to generate a similar error. To do this

their LUTs must be different, as Figure 5.3 proves an identical LUT generates a significant

output error. Swapping back and forth between the two residue modes should correct for

having identical output errors, but different LUT errors.

5.2 Split Cyclic Implementation

For the split cyclic calibration, two ADCs were run with identical inputs but two different

residue modes, as shown in Figure 5.1. The LUTs had identical errors. Initially they were

run with VIN as sets of 100 of the same DC voltage. Equation 4.1 was used with µ of 0.6

for the 20th cycle correction and 0.3 for the 19th cycle, as discussed in the previous section.

The residue modes switched for each ADC with each iteration of 100 input points.

The split cyclic calibration was almost identical to the calibration with a known error,

41

but with both ADC LUTs containing error and being adjusted.

Figure 5.4 shows the results of calibration. After around 20 cycles, or 2000 sample points

calibration is achieved for the DC input. The RMS error reaches a steady 28µV . This is

sufficiently accurate to be below 1 LSB, , 332µV ..

0 10 20 30 40 50

−2

0

2

4

6

8

10

12

x 10
−4 Output error for ADC A and B and the RMS error between A and B

Conversion Sets of 100 points

R
M
S
E
rr
or

A error
B error
Output Difference

(V
)

Figure 5.4: DC Calibration

However, when the same technique was applied to a sample of a sine wave, the results

were poor.

One problem with this might be overshoot. Because the change factor for each of the

points in the LUT is relatively high, there might be overshoot in determining the correct

value for the point [5].

However, even if the µ factor is reduced significantly as seen in Figure 5.6, in this case

to 0.001, the outputs are still failing to reach a suitable level of calibration.

Another issue may be that the two ADCs have 2 conversion points. The first point is the

desired result of a correct ADC output, the second point may be an incorrect value. To try

and solve this problem, two new residue modes were introduced and switched in randomly,

42

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3 Output error for ADC A and B and the RMS error between A and B

Conversion Sets of 116 points

R
M

S
E

rr
or

 (
V

)

A error
B error
Output Difference

Figure 5.5: Sine Wave Split Calibration

43

0 1000 2000 3000 4000 5000 6000
2

3

4

5

6

7

8

9

10

11

12
x 10

−4 Output error for ADC A and B and the RMS error between A and B

Conversion Sets of 116 points

R
M

S
E

rr
or

 (
V

)

A error
B error
Output Difference

Figure 5.6: Sine Wave Calibration with Low µ

44

high cyclic and low cyclic. These can be seen in Figure 5.7.

D =-1

D = 1

D = 0 D = 2

D = 0 D =-2

High Cyclic Low Cyclic

Figure 5.7: Residue Modes (a) High Cyclic (b) Low Cyclic

However, the same issue occurs. The outputs do not reach sufficient levels of calibration,

as is shown in Figure 5.8. Looking at the LUT errors in Figure 5.9, the LUT error is

much higher in those areas where the gain is much closer to linearity. Weighting from the

surrounding LUT points may be useful to even out the final output error and correcting for

this. It may increase the correction done at points furthest from the center, where error is

the highest.

45

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8
x 10

−4 Output error for ADC A and B

Conversion Sets of 116 points

R
M

S
 E

rr
or

 (
V

)

A error

B error

Figure 5.8: Calibration Using 4 Residue Modes

46

0 5 10 15 20 25 30 35
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−3

LUT Point

LU
T

E
rr

or
 (

V
)

B

cycle 5000
cycle 2500
cycle 20
cycle 10
original error

Figure 5.9: LUT Error after Iterations

47

Chapter 6

Conclusions and Future Work

6.1 Conclusions

LUTs are an effective way to compensate for nonlinearity in cyclic ADCs. A LUT of size

25, using linear interpolation can effectively correct an 12 bit cyclic ADC. The complexity

of calculations is relatively low with linear interpolation and can be implemented with

minimal digital logic. In addition to the use of minimal digital circuitry, the LUT method

of correction has the advantage of allowing a considerable leniency in the design of the

amplifier, as show with idealized calibration done with an amplifier of over 20 percent

nonlinearity.

The error at the output can be tracked down to specific LUT points verifying calibration

is possible. The split cyclic method is advantageous because it is performed continuously

and without disruption of the ADC output. It is shown that even if the ADC LUTs have

the same error, there will still be a correction factor at the output.

Although calibration has not been performed to 12 bit accuracy, the framework has been

created to further pursue the split ADC architecture.

6.2 Future Work

Future work will involve the implementation of this algorithm using digital logic to per-

form correction and calibration. An IC is in development using the cyclic ADC parameters,

48

including the amplifier specifications as discussed in this paper. An FPGA would be a

rapid method for calibration and corrections. The LUTs may be small enough for on chip

memory use. This would allow for a small, low power, portable ADC that could be used

for high resolution applications.

6.2.1 Weighting

Several methods could be implemented to improve the calibration technique. One

method that could involve weighting the errors used at each of the LUT points. The

point before and after the interpolated point, A and B in Figure 6.1, are known. Both of

the points are not used equally, however, in calculating the final output value. The point

which is closer to the interpolated voltage should be altered to a greater degree than the

other point depending on the output error. This error weight was determined by how close

the point used was to each of the two points.

WeightA =
VIN −B

A−B
(6.1)

WeightB = 1 − V ININ −B

A−B
(6.2)

In addition to just the individual point weighting, calculating the number of times the

LUT point is used in comparison can give a better idea of whether the error calculated for it

is representative of an actual error in the system. For example, if a point is not used, in the

current manifestation of the calibration procedure, it’s error is calculated as 0. However,

this may not be the case. If a point adjacent to it is used frequently and the error for that

point is high, it is likely that the error in the unused point is also related to the error in the

heavily used point and should be adjusted accordingly.

6.2.2 Use of Previous Cycle Residue

Because the digital portion of the circuit is also calculating VRES for all of the cycles up

until the output of the ADC, more accurate information about the cycles leading up the final

cycle can be obtained by calculating the output error at previous cycles. This information

49

1 2 3 4
1

1.5

2

2.5

3

3.5

4

Vin

V
ou
t

LUT Pt B

LUT Pt A
Interpolated Voltage

Figure 6.1: Weighting

could be used to correct earlier cycles in the ADC. Though it would be preferable not to

have to store another layer of information from the output of the ADC, and perform another

set of calculations to determine the output error for previous cycles, the information could

lead to better correction of the ADC LUTs.

50

Appendix A

Top Level MATLAB Simulation

% Nonlin Split Cyclic ADC Top Level

c lear

% VARIABLES

% dcrange scaled linear input voltage vector, used for LUT

and ADC

5 % nonlin nonlinear amplifier curve from MQP simulation

% vins vector of input voltages

% ncycles number of cycles for adc

10 % vref reference voltage

% Comparator Values

% vhi high decision level (wide zero residue)

% vmid mid decision level (pure cyclic)

% vlo low decision level (wide zero)

15 %

% loads simulation data −.34 to .34 DC input range

% −0.6167 to 0.6167 amplifier output

load M:\ matlabADC\mqpgroupdata\err\shants

20 dcrange= 2* dcrange; % fixes simulation data that is not

differential

51

%%

sima (1,:) = nonlin; % sim is the ’real’ amp behavior from

simulation

sima (2,:) = nonlin; % ADC A

25 sima (3,:) = nonlin;

sima (4,:) = nonlin;

sima (5,:) = nonlin;

simb (1,:) = nonlin; % sim is the ’real’ amp behavior from

simulation

30 simb (2,:) = nonlin; % ADC B

simb (3,:) = nonlin;

simb (4,:) = nonlin;

simb (5,:) = nonlin;

35 % "Pure Cyclic"

% /| /

% / | /

% / | /

% / |/

40 % LUT2 : LUT4

% "Wide zero"

% / | /|

% / | / |

45 % | / | /

% |/ |/

% LUT1:LUT3: LUT5

%% create look−up tables for correction

50 n = .33; % n is gain error

52

lut_create %% sets up LUTs and error

% LUTa(1,:,:), LUTb(1,:,:), LUTi(1,:,:)

%lut_createideal % LUT a is ideal, or LUT without error

55

%% Set ADC [cycle number,] modes, residues and Vins

vins = s in (1:.1:4* pi)* .5760;

%vins = (rand([1,1000])∗1.20) − .6;

%vins = .57 ∗ ones(1,100);% dc @ 90% − 100

60 %vins = zeros(1, 100);

%vins=(−.65:.005:.65); % set input to −.65 to .65 slope (within

vref)

%%%%% COMPARATOR THRESHOLDS

vref = 0.68;

65 vhi=+vref /2;

vmid =0;

vlo=-vref /2;

%%%%% ADC Settings

70 ncycles = 20;

%%RESIDUE MODE

% Residue mode changes BY CYCLE (cyclenl2)

%chooser (1,:) = randsample(0:1, ncycles, 1);

75 %%% set RANDOM ’chooser’ for wz or pc

chooser (1,:) = zeros (1,ncycles);

%%% 1 ALL Are PC, 0 all are WZ NON RANDOM

%chooser(1,20) = 1; % prevents some of NaN from vres leaving amp

range

%chooser(1,19) = 1;

80 %chooser(1,18) = 0;

53

%% SPLIT ADC SIM

%%%%% inputs

85 %%% sima A amplifier from simulation

%%% simb B amplifier from simulation

%%% vins input voltages

%%% vref

%%% ncycles

90 %%% chooser

%%%

%%%%% outputs

%%% compouta comparator outputs (D) from A

%%% compoutb comparator outputs (D) from B

95 %%% vresiduesa vresidues from A

%%% vresiduesb vresidues from B

splitADCsim %%%% uses pure cyclic and WZ res modes

100 compoutalrg (:,:,1) = compouta; % alternates res mode

compoutblrg (:,:,1) = compoutb;

compoutalrg (:,:,2) = compoutb;

compoutblrg (:,:,2) = compouta;

105

splitADCsim3 %%%% uses high and low res modes

compoutalrg (:,:,3) = compouta; % alternates res mode

compoutblrg (:,:,3) = compoutb;

110

compoutalrg (:,:,4) = compoutb;

compoutblrg (:,:,4) = compouta;

%% Split Decoder

115 %%%%% decoder

54

%%%%% inputs

%%% LUTa

%%% LUTb

%%% compouta

120 %%% compoutb

%%% m %times decoded/ LUTs to use

%%%

%%%%% outputs

%%% decoderresiduesa

125 %%% decoderresiduesb

m = 1; %% Decode time! First time!

%%% decoder need 2−D matrix for compout

130 %%% but compout is 3−D. squeeze fixes this.

compouta = squeeze(compoutalrg (:,:,1));

compoutb = squeeze(compoutblrg (:,:,2));

decoder

135

%% Adjust A

%%%%% Calibrated LUTS

%%%%%%

%%%%% calibration

140 %%%%% inputs

%%% LUTa (m)

%%% LUTb (m)

%%% decoderresiduesa

%%% decoderresiduesb

145 %%% mu − calibration factor

%%%

%%%%% outputs

%%% LUTa (m+1)

55

%%% LUTb (m+1)

150 %%%

mu1 = .001; %% correction factor

calibration

%%calibrationideal %%% when using 1 idea LUT

155

actualerrora (:,m) = squeeze(decoderresiduesa (21,:,m)) - vins;

rmsa(m) = norm(actualerrora (:,m))/ sqrt (length(actualerrora (:,m

)));

actualerrorb (:,m) = squeeze(decoderresiduesb (21,:,m)) - vins;

rmsb(m) = norm(actualerrorb (:,m))/ sqrt (length(actualerrorb (:,m

)));

160 splitdif = (squeeze(decoderresiduesa (21,:,m)) - squeeze(

decoderresiduesb (21,:,m)));

rmssplit(m) = norm(splitdif)/ sqrt (length(splitdif));

%%

%%% iterations is number of correction cycles to go through

165 iterations = 4*5000;

%%%preallocate for speed

decoderresiduesa = (zeros (21, s i ze (vins ,2),iterations));

decoderresiduesb = (zeros (21, s i ze (vins ,2),iterations));

170

%%

for m = 2: iterations

%%% this sets the residue mode to change in A every 1000

iterations

175 %%% and in B every 100 iterations

compouta = squeeze(compoutalrg (:,:,round((mod(m/1000 ,3))+1)));

compoutb = squeeze(compoutblrg (:,:,round((mod(m/100 ,3))+1)));

56

%%% this sets the residue mode to change in A and B randomly

180 %compouta = squeeze(compoutalrg(:,:,randi(4,1,1)));

%compoutb = squeeze(compoutblrg(:,:,randi(4,1,1)));

decoder

calibration

185 %%%calibrationideal

%%% splitdif is the difference between the output of the 2 ADCs

splitdif = (squeeze(decoderresiduesa (21,:,m)) - squeeze(

decoderresiduesb (21,:,m)));

hold on

190

actualerrora (:,m) = squeeze(decoderresiduesa (21,:,m)) - vins;

rmsa(m) = norm(actualerrora (:,m))/ sqrt (length(actualerrora (:,m

)));

actualerrorb (:,m) = squeeze(decoderresiduesb (21,:,m)) - vins;

rmsb(m) = norm(actualerrorb (:,m))/ sqrt (length(actualerrorb (:,m

)));

195

rmssplit(m) = norm(splitdif)/ sqrt (length(splitdif));

end;

57

Appendix B

LUT Creation

%%LUT_EDIT

l = 5; %%% 2^l is LUT size

5 dclut = dcrange (1: c e i l (s i ze (dcrange ,1) /(2^l)):end);

%selects points from DC input

nonlinlutideal = nonlin (1: c e i l ((s i ze (nonlin ,1) /(2^l))):end);

% selects points from amp output

dclut(end) = dcrange(end);

10 % ensures that LUT covers range by taking last pt.

nonlinlutideal(end) = nonlin(end);

% create idea LUTS

LUTi(1,:,1) = nonlinlutideal;

15 LUTi(2,:,1) = nonlinlutideal;

LUTi(3,:,1) = nonlinlutideal;

LUTi(4,:,1) = nonlinlutideal;

LUTi(5,:,1) = nonlinlutideal;

20 %%% Error introduced into LUT

nonlinlut = nonlinlutideal .* 1.01^n;

%nonlinlut = nonlinlutideal − .005∗n;

58

%nonlinlut = (1.8 + .001 ∗ n)∗ dclut; %%% sets up lut as constant

gain

25 %nonlinlut = (1.8 + .001 ∗ n)∗ dclut; %%% sets up lut as constant

gain

LUTa(1,:,1) = nonlinlut;

LUTa(2,:,1) = nonlinlut;

LUTa(3,:,1) = nonlinlut;

LUTa(4,:,1) = nonlinlut;

30 LUTa(5,:,1) = nonlinlut;

% LUTa(1,1,:) = nonlinlutideal;

% LUTa(1,2,:) = nonlinlutideal;

% LUTa(1,3,:) = nonlinlutideal;

% LUTa(1,4,:) = nonlinlutideal;

35 % LUTa(1,5,:) = nonlinlutideal;

LUTb(1,:,1) = nonlinlut;

LUTb(2,:,1) = nonlinlut;

40 LUTb(3,:,1) = nonlinlut;

LUTb(4,:,1) = nonlinlut;

LUTb(5,:,1) = nonlinlut;

% "Pure Cyclic"

45 % /| /

% / | /

% / | /

% / |/

% LUT2 : LUT4

50

% "Wide zero"

% / | /|

% / | / |

59

% | / | /

55 % |/ |/

% LUT1:LUT3: LUT5

60

Appendix C

ADC Simulation

%% Split ADC Sim

%%%%% inputs

%%% sima A amplifier

5 %%% simb B amplifier

%%% vins input voltages

%%% vref

%%% ncycles

%%% chooser

10 %%%

%%%%% outputs

%%% compouta comparator outputs (D) from A

%%% compoutb comparator outputs (D) from B

%%% vresiduesa vresidues from A

15 %%% vresiduesb vresidues from B

%%%

%% ADC Simulation A

% Set variables for a

20 sim = sima; % sets up A amplifier

chooser = chooser; % sets up resmode

61

%%preallocate

vresidues = zeros(ncycles , s i ze (vins ,2));

25 compout = zeros(ncycles , s i ze (vins ,2));

%%% Residue Mode variable by cycle

for k = 1: ncycles

i f k <1.5

30 cyclechsr = chooser(k); %%determines which residue mode

cyclein = vins; %% sets vres in to vins

cyclen_2; %% calcs vresidues and D

vresidues (1,:)= vins; %% stores

e l se

35 cyclechsr = chooser(k);

cyclein = vresidues(k,:); %% sets vres in to previous res

out

cyclen_2

end

vresidues(k+1,:)= vouts (1,:);

40 compout(k,:)= vouts (2,:);

end

vresiduesa = vresidues;

compouta = compout;

45

%% ADC Simulation B

% Set variables for B

sim = simb; % sets up B amplifier

50 chooser = ~chooser; % sets up resmode as not A resmode

%%preallocate

vresidues = zeros(ncycles , s i ze (vins ,2));

compout = zeros(ncycles , s i ze (vins ,2));

62

55

%%% Residue Mode variable by cycle

for k = 1: ncycles

i f k <1.5

cyclechsr = chooser(k); %%determines which residue mode

60 cyclein = vins; %% sets vres in to vins

cyclen_2; %% calcs vresidues and D

vresidues (1,:)= vins; %% stores

e l se

cyclechsr = chooser(k);

65 cyclein = vresidues(k,:); %% sets vres in to previous res

out

cyclen_2

end

vresidues(k+1,:)= vouts (1,:);

compout(k,:)= vouts (2,:);

70 end

vresiduesb = vresidues;

compoutb = compout;

63

Appendix D

VRES and D calculation Pure Cyclic

and Wide Zero Residue Modes

%% Cyclen − Generates Vres and D

%%%%%%%%% inputs

%%% dcrange scaled linear −0.5 to 0.5 input voltage vector

5 %%% nonlin scaled representative nonlinear amplifier curve

%%% vins vector of input voltages

%%% vref reference voltage

%%% vhi high decision level (wide zero residue)

%%% vmid mid decision level (pure cyclic)

10 %%% vlo low decision level (wide zero)

%

%%% INTERNAL VARIABLES

%%% lodec,hidec Comparator descisions

%%% compoutwz, compoutpc Comparator outputs (−2, −1, 0, 1, 2)

15 %%% vreswz,vrespc Residue voltages after cyclic

operation

%

%%%%%%%% outputs

64

%%% vouts 4XN Vector with PC and WZ residue voltages in rows 1

and 2

%%% and PC and WZ comparator decisions in rows 3 and 4

20

%%preallocate/clear

compoutwz = zeros (1, s i ze (vins ,2));

compoutpc = zeros (1, s i ze (vins ,2));

vres (:,:) = zeros (5, s i ze (vins ,2));

25

i f chooser(k)== 0

% Wide Zero

cyclein <vlo ;lodecwz = ans; %% should use simulation curve 1 [

sim1]

cyclein >vhi ;hidecwz = ans; %% should use sim5

30 middecwz = ~lodecwz &~ hidecwz; %% else sim3

compoutwz = 2*(hidecwz - lodecwz); %% makes values +−2

% Calculate Residue

35 % WZ

vres (1,:) = interp1(dcrange ,sim(1,:), (cyclein - compoutwz .*(

vref /2)), ’spline ’) .* lodecwz;

vres (3,:) = interp1(dcrange ,sim(3,:), (cyclein - compoutwz .*(

vref /2)), ’spline ’) .* middecwz;

vres (5,:) = interp1(dcrange ,sim(5,:), (cyclein - compoutwz .*(

vref /2)), ’spline ’) .* hidecwz;

40 e l se

% Pure Cyclic

cyclein <vmid;lowdecpc=ans; %% Should use sim2

cyclein >vmid;hidecpc=ans; %% Should use sim4

45 compoutpc = hidecpc -lowdecpc; %%

65

% PC

vres (2,:) = interp1(dcrange ,sim(2,:), (cyclein - compoutpc .*(

vref /2)), ’spline ’).* lowdecpc;

vres (4,:) = interp1(dcrange ,sim(4,:), (cyclein - compoutpc .*(

vref /2)), ’spline ’).* hidecpc;

50

end

vouts =[vres (1,:)+ vres (2,:)+ vres (3,:)+ vres (4,:)+ vres (5,:) ;

compoutpc + compoutwz];

66

Appendix E

VRES and D calculation High and

Low Residue Modes

%%%%%%%%%%%%%%%%%%%%%%% VARIABLES

%

% INPUT ARGUMENTS

% dcrange scaled linear −0.5 to 0.5 input voltage vector

5 % nonlin scaled representative nonlinear amplifier curve

% vins vector of input voltages

% vref reference voltage

% vhi high decision level (wide zero residue)

% vmid mid decision level (pure cyclic)

10 % vlo low decision level (wide zero)

%

% INTERNAL VARIABLES

% lodec,hidec Comparator descisions

% compoutwz, compoutpc Comparator outputs (−2, −1, 0, 1, 2)

15 % vreswz,vrespc Residue voltages after cyclic operation

%

% OUTPUTS

% vouts 4XN Vector with PC and WZ residue voltages in rows 1 and 2

% and PC and WZ comparator decisions in rows 3 and 4

67

20 %

%

%%preallocate/clear

compouthi = zeros (1, s i ze (vins ,2));

25 compoutlo = zeros (1, s i ze (vins ,2));

vres (:,:) = zeros (5, s i ze (vins ,2));

i f chooser(k)== 0

% HIGH

30 cyclein <vmid ;lodechi = ans; %% should use simulation curve 2 [

sim1]

cyclein >vhi ;hidechi2 = ans; %% should use sim5

middechi = ~lodechi &~ hidechi2; %% else sim3

compouthi = 2* hidechi2 - lodechi; %%

35

% Calculate Residue

% HIGH

vres (2,:) = interp1(dcrange ,sim(1,:), (cyclein - compouthi .*(

vref /2)), ’spline ’) .* lodechi;

vres (3,:) = interp1(dcrange ,sim(3,:), (cyclein - compouthi .*(

vref /2)), ’spline ’) .* middechi;

40 vres (4,:) = interp1(dcrange ,sim(5,:), (cyclein - compouthi .*(

vref /2)), ’spline ’) .* hidechi2;

e l se

% LOW

%%%%%%%cyclein<vmid ;lowdecpc=ans; %% Should use sim2 0

45 cyclein <vlo ; lowdec2lo=ans; %% Should use sim1 −2

cyclein >vmid ; hideclo=ans; %% Should use sim4 1

middeclo = ~lowdec2lo &~ hideclo; %% Should use sim2 0

68

compoutlo = hideclo -2* lowdec2lo; %%

50

% LOW

vres (2,:) = interp1(dcrange ,sim(2,:), (cyclein - compoutlo .*(

vref /2)), ’spline ’).* lowdec2lo;

vres (3,:) = interp1(dcrange ,sim(2,:), (cyclein - compoutlo .*(

vref /2)), ’spline ’).* middeclo;

vres (4,:) = interp1(dcrange ,sim(4,:), (cyclein - compoutlo .*(

vref /2)), ’spline ’).* hideclo;

55

end

vouts =[vres (1,:)+ vres (2,:)+ vres (3,:)+ vres (4,:)+ vres (5,:) ;

compouthi + compoutlo];

69

Appendix F

Decoder(Correction) Top Level

%% Decoder top level

%%%%% inputs

%%% LUTa

%%% LUTb

5 %%% compouta

%%% compoutb

%%% m %times decoded/ LUTs to use

%%%

%%%%% outputs

10 %%% decoderresiduesa

%%% decoderresiduesb

%%%

LUT = squeeze(LUTa(:,:,m));

15 %%% squeeze removes ’singletons’ and sets lut to right size matrix

compout = compouta;

decodesingle

decoderresiduesa (:,:,m) = decoderresidues;

20 % Set up LUTb and compoutb

LUT = squeeze(LUTb(:,:,m));

%%% squeeze removes ’singletons’ and sets lut to right size matrix

70

compout = compoutb;

decodesingle

25 decoderresiduesb (:,:,m) = decoderresidues;

71

Appendix G

Decoder(Correction)

%% Single ADC Decode(Correction)

% INPUTS

% COMPOUT − comparator output from ADC

% LUT − ADC LUT

5 % OUPUTS

% decoderresidues − final residue is corrected ADC output x

%%%%Preallocate and Clear variables

decoderresidues = zeros(ncycles + 1, s i ze (vins ,2));

10 decoded = zeros (1, s i ze (vins ,2));

%%%%%%% Use 0s for initial guess

resguess = zeros(s i ze (compout(ncycles ,:)));

15 % decode

for k = 1: ncycles

decoded = zeros (1, s i ze (vins ,2));

i f k <1.5 %% using initial guess

20

%% Determines which LUT to use or given vins/residues

dec1 = f ind (compout(ncycles +1-k,:) == -2);

72

dec2 = f ind (compout(ncycles +1-k,:) == -1);

dec3 = f ind (compout(ncycles +1-k,:) == 0);

25 dec4 = f ind (compout(ncycles +1-k,:) == 1);

dec5 = f ind (compout(ncycles +1-k,:) == 2);

% if compout(ncycles,:) == −2 %% use LUT1

decoded(1, dec1)= -2.*(vref /2) + interp1(LUT(1,:), dclut ,

resguess(dec1), ’linear ’);

30

% elseif compout(ncycles,:) == 0 %% USE LUT3

decoded(1, dec3)= 0*(vref /2) + interp1(LUT(3,:), dclut , resguess

(dec3), ’linear ’);

% elseif compout(ncycles,:) == 2

35 decoded(1, dec5)= 2*(vref /2) + interp1(LUT(5,:), dclut , resguess

(dec5), ’linear ’);

% elseif compout(ncycles,:) == −1

decoded(1, dec2)= -1*(vref /2) + interp1(LUT(2,:), dclut ,

resguess(dec2), ’linear ’);

40 % elseif compout(ncycles,:) == 1

decoded(1, dec4)= 1*(vref /2) + interp1(LUT(4,:), dclut , resguess

(dec4), ’linear ’);

decoderresidues (1,:)= resguess; %% sets initial vres to guess

45 e l se %% using previous residue voltage

dec1 = f ind (compout (21-k,:) == -2);

dec2 = f ind (compout (21-k,:) == -1);

dec3 = f ind (compout (21-k,:) == 0);

dec4 = f ind (compout (21-k,:) == 1);

50 dec5 = f ind (compout (21-k,:) == 2);

73

%%WZ

decoded(1, dec1)= -2*(vref /2) + interp1(LUT(1,:), dclut ,

decoderresidues(k,dec1), ’linear ’);

decoded(1, dec3)= 0*(vref /2) + interp1(LUT(3,:), dclut ,

decoderresidues(k,dec3), ’linear ’);

55 decoded(1, dec5)= 2*(vref /2) + interp1(LUT(5,:), dclut ,

decoderresidues(k,dec5), ’linear ’);

%% PC

decoded(1, dec4)= 1*(vref /2) + interp1(LUT(4,:), dclut ,

decoderresidues(k,dec4), ’linear ’);

decoded(1, dec2)= -1*(vref /2) + interp1(LUT(2,:), dclut ,

decoderresidues(k,dec2), ’linear ’);

60

end

decoderresidues(k+1,:)= decoded; %sets residue to

interpolated values

65 end

74

Appendix H

Calibration Top Level

%% Calibration

%%%%% Calibrated LUTS

%%%%%%

%%%%% inputs

5 %%% LUTa (m)

%%% LUTb (m)

%%% decoderresiduesa

%%% decoderresiduesb

%%%

10 %%%%% outputs

%%% LUTa (m+1)

%%% LUTb (m+1)

%%%

15 %%%Adjust LutA

LUT = squeeze(LUTa(:,:,m));

compout = compouta;

decoderresidues = squeeze(decoderresiduesa (:,:,m));

splitdif = (squeeze(decoderresiduesa (21,:,m)) - squeeze(

decoderresiduesb (21,:,m)));

20 LUT_correct8_7 %% determines average error per point and changes

LUT

75

LUTa(:,:,m+1) = LUT; % sets LUTa to adjusted values

%%% Adjust LutB

LUT = squeeze(LUTb(:,:,m));

25 compout = compoutb;

decoderresidues = squeeze(decoderresiduesb (:,:,m));

splitdif = (squeeze(decoderresiduesb (21,:,m)) - squeeze(

decoderresiduesa (21,:,m)));

LUT_correct8_7 %% determines average error per point and

changes LUT

LUTb(:,:,m+1) = LUT; % sets LUTb to adjusted values

76

Appendix I

LUT Calibration

%% PREALLOCATE

lut1errstore= zeros (3, s i ze (LUT(1,:) ,2)); %% stores cumulative error

for each pt on lut

lut2errstore= zeros (3, s i ze (LUT(1,:) ,2));

lut3errstore= zeros (3, s i ze (LUT(1,:) ,2));

5 lut4errstore= zeros (3, s i ze (LUT(1,:) ,2));

lut5errstore= zeros (3, s i ze (LUT(1,:) ,2));

lut1errct= zeros (3, s i ze (LUT(1,:) ,2)); %% counts # of times LUT pt

is used

lut2errct= zeros (3, s i ze (LUT(1,:) ,2));

10 lut3errct= zeros (3, s i ze (LUT(1,:) ,2));

lut4errct= zeros (3, s i ze (LUT(1,:) ,2));

lut5errct= zeros (3, s i ze (LUT(1,:) ,2));

lutposition = zeros(s i ze (vins ,2) ,3); %%LUT POINT for refpoint

15

weight = zeros (3, s i ze (LUT(1,:) ,2) ,5);

c lear dec1 dec2 dec3 dec4 dec5

20 %% Accumulated Error

77

% refpoint − where APPROX on LUT the error is for vres(out)~

decoderreidues

% error VOLTAGE for 3 cycles

refpoint (1,:) = decoderresidues (21, :) - compout(1, :).*(vref /2);

25 refpoint (2,:) = decoderresidues (20, :) - compout(2, :).*(vref /2);

refpoint (3,:) = decoderresidues (19, :) - compout(3, :).*(vref /2);

% refpointa(1,:) = decoderresidues(21, :) − compout(1, :).∗(vref/2);

% refpointb(1,:) = decoderresidues(20, :) − compout(2, :).∗(vref/2);

30 % refpointc(1,:) = decoderresidues(19, :) − compout(3, :).∗(vref/2);

%%

for k = 1:3 % number of cycles back to track error

% resdif − difference between the ideal LUT output and the error

LUT

35 % output

% resdif(k,:) = decoderresidues2(21, :) − decoderresiduesi(21,

:);

dec1 = f ind (compout(k,:) == -2); %% Determines which LUT

to use

dec2 = f ind (compout(k,:) == -1); %% for vins/residues

40 dec3 = f ind (compout(k,:) == 0);

dec4 = f ind (compout(k,:) == 1); %% sum of 5 dec should =

size(vins)

dec5 = f ind (compout(k,:) == 2);

for i = dec1 %% for pts using LUT1

45 i f f ind (refpoint(k,i) <= dclut , 1) %%% ’if’ corrects for ’

Subscripted assignment dimension mismatch.’

%%% in lutposition(i,k)

when find returns empty

78

matrix

lutposition(i,k) = f ind (refpoint(k,i) <= dclut , 1); %

find point on DC input of LUT

50 % ∗ dclut(lutposition(i,k)) (B)

% /

% X − refpoint

% /

% /

55 % ∗ dclut(lutposition(i,k)−1) (A)

%

% weight(A) = weightprev. + (1−(refpoint − A)/ (B − A))

% weight(B) = weightprev. + ((refpoint − A)/ (B − A))

60

w = (refpoint(k,i)- dclut(lutposition(i,k) -1))/(dclut(

lutposition(i,k)) - dclut(lutposition(i,k) -1)); %

weights

w2 = 1 - (refpoint(k,i)- dclut(lutposition(i,k) -1))/(

dclut(lutposition(i,k)) - dclut(lutposition(i,k) -1));

% weights

65 weight(k,lutposition(i,k) ,1) = weight(k,lutposition(i,k)

,1) + w;

weight(k,lutposition(i,k) -1,1) = weight(k,lutposition(i,

k) -1,1) + w2;

%lut1errstore(k,lutposition(i,k)) = lut1errstore(k,

lutposition(i,k)) + w ∗ splitdif(1,i); % cumulative

error

79

%lut1errstore(k,lutposition(i,k)−1) = lut1errstore(k,

lutposition(i,k)−1) + w2∗ splitdif(1,i); %

70

lut1errstore(k,lutposition(i,k)) = lut1errstore(k,

lutposition(i,k)) + splitdif(1,i); % cumulative

error

lut1errstore(k,lutposition(i,k) -1) = lut1errstore(k,

lutposition(i,k) -1) + splitdif(1,i); %

lut1errct(k,lutposition(i,k))= lut1errct(k,lutposition(

i,k)) + 1;

75 lut1errct(k,lutposition(i,k) -1)= lut1errct(k,

lutposition(i,k) -1) + 1; % counts number of times

LUT pt is used

end

end

for i = dec2

80 i f f ind (refpoint(k,i) <= dclut , 1)

lutposition(i,k) = f ind (refpoint(k,i) <= dclut , 1); %

find spot on DC input of LUT

w = (refpoint(k,i)- dclut(lutposition(i,k) -1))/(dclut(

lutposition(i,k)) - dclut(lutposition(i,k) -1));

w2 = 1 - (refpoint(k,i)- dclut(lutposition(i,k) -1))/(

dclut(lutposition(i,k)) - dclut(lutposition(i,k) -1));

85

weight(k,lutposition(i,k) ,2) = weight(k,lutposition(i,k)

,2) + w;

weight(k,lutposition(i,k) -1,2) = weight(k,lutposition(i,

k) -1,2) + w2;

80

lut2errstore(k,lutposition(i,k)) = lut2errstore(k,

lutposition(i,k)) + splitdif(1,i); % cumulative

error

90 lut2errstore(k,lutposition(i,k) -1) = lut2errstore(k,

lutposition(i,k) -1) + splitdif(1,i); %

%lut2errstore(k,lutposition(i,k)) = lut2errstore(k,

lutposition(i,k)) + w∗ splitdif(1,i); % cumulative

error

%lut2errstore(k,lutposition(i,k)−1) = lut2errstore(k,

lutposition(i,k)−1) + w2∗ splitdif(1,i); %

95 lut2errct(k,lutposition(i,k))= lut2errct(k,lutposition(

i,k)) + 1;

lut2errct(k,lutposition(i,k) -1)= lut2errct(k,lutposition

(i,k) -1) + 1;

end

end

100 for i = dec3

i f f ind (refpoint(k,i) <= dclut , 1)

lutposition(i, k) = f ind (refpoint(k,i) <= dclut , 1); %

find spot on DC input of LUT

w = (refpoint(k,i)- dclut(lutposition(i,k) -1))/(dclut(

lutposition(i,k)) - dclut(lutposition(i,k) -1));

105 w2 = 1 - (refpoint(k,i)- dclut(lutposition(i,k) -1))/(

dclut(lutposition(i,k)) - dclut(lutposition(i,k) -1));

weight(k,lutposition(i,k) ,3) = weight(k,lutposition(i,

k) ,3) + w;

weight(k,lutposition(i,k) -1,3) = weight(k,lutposition(i,

k) -1,3) + w2;

81

110 lut3errstore(k,lutposition(i,k)) = lut3errstore(k,

lutposition(i,k)) + splitdif(1,i); % cumulative

error

lut3errstore(k,lutposition(i,k) -1) = lut3errstore(k,

lutposition(i,k) -1) + splitdif(1,i);

%(refpoint(k,i)− dclut(lutposition(i,k)−1))/(dclut(

lutposition(i,k)) − dclut(lutposition(i,k)−1))

% lut3errstore(k,lutposition(i,k)) = lut3errstore(k,

lutposition(i,k)) + w∗splitdif(1,i); % cumulative

error

115 % lut3errstore(k,lutposition(i,k)−1) = lut3errstore(k,

lutposition(i,k)−1) + w2∗ splitdif(1,i);

lut3errct(k,lutposition(i,k))= lut3errct(k,lutposition(i

,k)) + 1;

lut3errct(k,lutposition(i,k) -1)= lut3errct(k,lutposition(

i,k) -1) + 1;

end

end

120

for i = dec4

i f f ind (refpoint(k,i) <= dclut , 1)

lutposition(i, k) = f ind (refpoint(k,i) <= dclut , 1); %

find spot on DC input of LUT

125 w = (refpoint(k,i)- dclut(lutposition(i,k) -1))/(dclut(

lutposition(i,k)) - dclut(lutposition(i,k) -1));

w2 = 1 - (refpoint(k,i)- dclut(lutposition(i,k) -1))/(

dclut(lutposition(i,k)) - dclut(lutposition(i,k) -1));

weight(k,lutposition(i,k) ,4) = weight(k,lutposition(i,k)

,4) + w;

82

weight(k,lutposition(i,k) -1,4) = weight(k,lutposition(i,

k) -1,4) + w2;

130

lut4errstore(k,lutposition(i,k)) = lut4errstore(k,

lutposition(i,k)) + splitdif(1,i); % cumulative

error

lut4errstore(k,lutposition(i,k) -1) = lut4errstore(k,

lutposition(i,k) -1) + splitdif(1,i); %

% lut4errstore(k,lutposition(i,k)) = lut4errstore(k,

lutposition(i,k)) + w∗ splitdif(1,i); % cumulative

error

135 % lut4errstore(k,lutposition(i,k)−1) = lut4errstore(k,

lutposition(i,k)−1) + w2∗ splitdif(1,i); %

lut4errct(k,lutposition(i,k))= lut4errct(k,lutposition(i

,k)) + 1;

lut4errct(k,lutposition(i,k) -1)= lut4errct(k,lutposition

(i,k) -1) + 1;

end

140 end

for i = dec5

i f f ind (refpoint(k,i) <= dclut , 1)

lutposition(i, k) = f ind (refpoint(k,i) <= dclut , 1); %

find spot on DC input of LUT

145

w = (refpoint(k,i)- dclut(lutposition(i,k) -1))/(dclut(

lutposition(i,k)) - dclut(lutposition(i,k) -1));

w2 = 1 - (refpoint(k,i)- dclut(lutposition(i,k) -1))/(

dclut(lutposition(i,k)) - dclut(lutposition(i,k) -1));

83

weight(k,lutposition(i,k) ,5) = weight(k,lutposition(i,k)

,5) + w;

150 weight(k,lutposition(i,k) -1,5) = weight(k,lutposition(i,

k) -1,5) + w2;

lut5errstore(k,lutposition(i,k)) = lut5errstore(k,

lutposition(i,k)) + splitdif(1,i); % cumulative

error

lut5errstore(k,lutposition(i,k) -1) = lut5errstore(k,

lutposition(i,k) -1) + splitdif(1,i); %

155 %lut5errstore(k,lutposition(i,k)) = lut5errstore(k,

lutposition(i,k)) + w∗ splitdif(1,i); % cumulative

error

%lut5errstore(k,lutposition(i,k)−1) = lut5errstore(k,

lutposition(i,k)−1) + w2∗ splitdif(1,i); %

lut5errct(k,lutposition(i,k))= lut5errct(k,lutposition(i

,k)) + 1;

lut5errct(k,lutposition(i,k) -1)= lut5errct(k,lutposition

(i,k) -1) + 1;

160 end

end

end

165

%% LUT Adjustment!!!!

k=1; % Adjust final cycle weight

170 for i = 1: s i ze (LUT(1,:) ,2)

84

i f lut1errct(k,i) %% corrects for ’Subscripted assignment

dimension mismatch.’

LUT(1,i) = LUT(1,i) + (lut1errstore(k,i)/lut1errct(k,i)) .* mu1

; % corrects LUT pt

end

i f lut2errct(k,i)

175 LUT(2,i) = LUT(2,i) + (lut2errstore(k,i)/lut2errct(k,i)) .* mu1

;

end

i f lut3errct(k,i)

LUT(3,i) = LUT(3,i) + (lut3errstore(k,i)/lut3errct(k,i)) .* mu1

;

end

180 i f lut4errct(k,i)

LUT(4,i) = LUT(4,i) + (lut4errstore(k,i)/lut4errct(k,i)) .* mu1

;

end

i f lut5errct(k,i)

LUT(5,i) = LUT(5,i) + (lut5errstore(k,i)/lut5errct(k,i)) .* mu1

;

185 end

end

LUTfirst = LUT;

190 k=2; % Adjust second to last cycle weight

for i = 1: s i ze (LUT(1,:) ,2)

i f lut1errct(k,i)

LUT(1,i) = LUT(1,i) + (lut1errstore(k,i)/lut1errct(k,i)) .* (

mu1 /10);

195 end

i f lut2errct(k,i)

85

LUT(2,i) = LUT(2,i) + (lut2errstore(k,i)/lut2errct(k,i)) .* (

mu1 /10);

end

i f lut3errct(k,i)

200 LUT(3,i) = LUT(3,i) + (lut3errstore(k,i)/lut3errct(k,i)) .* (

mu1 /10);

end

i f lut4errct(k,i)

LUT(4,i) = LUT(4,i) + (lut4errstore(k,i)/lut4errct(k,i)) .* (

mu1 /10);

end

205 i f lut5errct(k,i)

LUT(5,i) = LUT(5,i) + (lut5errstore(k,i)/lut5errct(k,i)) .* (

mu1 /10);

end

end

210 LUTsecond = LUT;

86

Bibliography

[1] A. J. Annema, Analog circuit performance and process scaling, IEEE Custom Inter-

grated Circuits Conference, 1999, pp. 301–304.

[2] P. J. Hurst C. R. Grace and S. H. Lewis, A 12-bit 80-msample/s pipelined adc with

bootstrapped digital calibration, IEEE Journal of Solid-State Circuits 40 (2005), 1038 –

1046.

[3] M. Demler, High-speed analog-to-digital conversion, Academic Press, Inc., 1991.

[4] C. Tsang et al., Background adc calibration in digital domain, IEEE Custom Inter-

grated Circuits Conference, 2008, pp. 301–304.

[5] W. Press et al., Numerical recipes, Cambridge University Press, 1990.

[6] M. Coln J. McNeill and B.Larivee, Split adc architecture for deterministic digital back-

ground calibration of a 16-bit 1-ms/s adc, IEEE Journal of Solid-State Circuits 40

(2005), no. 12, 2437–2445.

[7] L. Komzsik, Approximation techniques for engineers, Taylor and Francis Group, 2007.

[8] H. Kwakernaak and R. Sivan, Modern signal and systems, Prentice Hall, 1991.

[9] J.A. McNeill, M.C.W. Coln, D.R. Brown, and B.J. Larivee, Digital background-

calibration algorithm for split adc architecture, Circuits and Systems I: Regular Papers,

IEEE Transactions on 56 (2009), no. 2, 294–306.

87

[10] J.A. McNeill, C. David, M. Coln, and R. Croughwell, split adc calibration for all-digital

correction of time-interleaved adc errors, Circuits and Systems II: Express Briefs, IEEE

Transactions on 56 (2009), no. 5, 344–348.

[11] B. Murmann, A 12b 75ms/s pipelined adc using open-loop residue amplification, 2003,

Berkleley Wireless Research Seminar.

[12] , Digital calibration for low-power high-performance a/d conversion, Ph.D. the-

sis, University of California, Berkeley, Fall 2003.

[13] B. Murmann and B. E. Boser, A 12b 75ms/s pipelined adc using open-loop residue

amplification, ISSCC Dig. Tech. Papers, Feb. 2003.

[14] A. Panigada and I. Galton, Digital background correction of harmonic distortion in

pipelined adcs, IEEE Journal of Solid-State Circuits, May 2005.

[15] G. Rrudho S. Orchanian and A. Soares Jr., Fundamental blocks for a cyclic analog-to-

digital converter, Worcester Polytechnic Institute MQP, 2009.

