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ABSTRACT 
 
Bioengineered skin substitutes have been developed to treat burn and non-healing wounds; 
however limitations still hinder their clinical success rates.  Optimizing these current design 
strategies requires an understanding of how biochemical and topographical features of the 
native tissue modulate keratinocyte processes involved in tissue functionality. In this thesis, a 
novel bioengineered skin substitute was developed that contains a microfabricated basal 
lamina analog that recapitulates the native microenvironment found at the dermal-epidermal 
junction (DEJ).  In native skin, this microenvironment consists of both biochemical and 
topographical cues which play critical roles in maintaining tissue architecture and overall 
homeostasis with the external environment.   
  
Therefore, we hypothesize that microfabricated basal lamina analogs with extracellular 
matrix cues and three-dimensional features that mimics the cellular microenvironment of the 
DEJ will promote enhanced epithelialization and increase epidermal stem cell clustering on 
the surface of bioengineered skin substitutes.   

We determined that the extracellular matrix protein fibronectin (FN) found in the cellular 
microenvironment of the DEJ enhanced keratinocyte attachment, proliferation, and 
epithelialization of a collagen based basal lamina analog.  It was also found that the collagen 
material used to create the basal lamina analog as well as the FN conjugation strategy to this 
material significantly influenced the bioactivity of FN and its ability to modulate keratinocyte 
functions through integrin based mechanism.  To investigate spatial tissue organization and 
the role it plays in the cellular microenvironment of the DEJ on epithelialization and 
epidermal stem cell localization, we used photolithography coupled with materials 
processing techniques to create microfabricated basal lamina analogs.  It was determined that 
epidermal thicknesses found in narrow channels of microfabricated basal lamina analogs (50 
µm and 100 µm widths with 200 µm depths) were similar to cultures on de-epithelialized 
acellular dermis and native foreskin tissues after 7 days of in vitro culture.  We also 
determined that the microfabricated basal lamina analogs created an epidermal stem cell 
niche that promoted epidermal stem cell clustering in the channels which is critical for 
longevity of the tissue.   

Overall, we developed a platform technology that was specifically used to produce a highly 
functional bioengineered skin substitute with regenerative capacity that mimics native skin.  
We anticipate through the use of this technology, we can further improve bioengineered skin 
substitutes by incorporating epidermal structures of native skin including hair follicles and 
sweat glands as well as improve overall cosmetic appearance.  Additionally, this novel 
bioengineered skin substitute can serve as a model system to further our understanding of 
pathological conditions and diseases of the skin as well as facilitate robust preclinical 
screenings of epidermal responses to new therapeutic agents as well as to cosmetic and 
chemical products.   
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1.1 INTRODUCTION  

Every year in the United States 2.4 million burn injuries are reported and approximately 

12,000 people are burned severely enough to require skin grafting.1 Diabetic and venous 

ulcers, as well as pressure sores, affect an additional 3 to 4 million people and it is 

anticipated these figures will continue to increase with the rises in the average age of the 

population as well as the incidences of diabetes.2,3  A critical component in preventing 

infection, water loss, scarring, amputation, and death from severe skin wounds is the prompt 

restoration of skin integrity.  While autografts are considered the “gold standard” to treat 

localized skin injuries, a lack of available donor sites as well as donor site morbidity 

routinely hinders the recovery of patients with large burns or skin traumas.4-6 As such, the 

successful development of bioengineered skin substitutes that provide permanent coverage to 

the wound site and restore the anatomy and physiology of uninjured skin will have 

significant impact on the treatment of patients with serious skin injuries.5-7    

 

Over the past three decades, composites of cultured cells and biomaterials have been 

investigated for potential use as bioengineered skin substitutes.5,8-11  Regeneration of skin 

tissues, including neodermal formation and vascularization as well as reepithelialization of 

barrier layers, has been examined in a variety of engineered tissue analogs consisting of 

collagen-glycosaminoglycan (GAG) sponges,12-19 collagen gels,20-23 hyaluronic acid 

derivatives,24 and synthetic polymers.25  While bioengineered skin substitutes have achieved 

some clinical success restoring damaged skin, prolonged healing times, scarring, and 

mechanically induced graft failure remain persistent problems.5,23,26  In order to address these 
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limitations and improve the performance of bioengineered skin substitutes, it is critical to 

investigate how tissue scaffolds can be precisely tailored to present critical environmental 

cues that direct keratinocyte adhesion, proliferation and differentiation, and overall rapid 

epidermal formation.5,7-11   

 

A common design feature of current skin substitutes, composed of cultured cells and 

biomaterials, is a flat interface between the dermal and epidermal dermal components.  In 

native skin, the basal lamina is located at the dermal-epidermal junction (DEJ) and is not flat, 

but rather conforms to a series of three-dimensional ridges and invaginations formed by 

papillae located in the papillary region of the dermis.   Several studies have examined the 

role of native basal lamina topography on providing a microenvironment that has the 

capability of modulating keratinocyte functions.  Keratinocyte proliferation has been found to 

be affected with a higher percentage of proliferating basal and suprabasal cells found in deep 

rete ridges.27,28  It has also been shown that the expression of α2β1 integrin, a suggested 

marker for epidermal stem cells, can be found localized on the tips of the dermal papillae or 

at the bottom of the deep rete ridges.29-31  The complex microtopography of the basal lamina 

has been found to provide structural stability to the epidermis.  Analyses of areas of skin 

exposed to excessive friction such as the plantar and the palmar surfaces, indicate that dermal 

papillae and epidermal ridges are longer and more numerous in those locations.32   

 

The basal lamina is not only responsible for creating an interface between keratinocytes and 

the connective tissue of the dermal layer but it also provides instructive cues through 

extracellular matrix (ECM) proteins which direct keratinocyte polarity, proliferation, and 

differentiation, as well as preserving tissue architecture and organization.  The ECM of the 

basal lamina is composed of collagenous and non-collagenous molecules including type IV 

collagen, laminin, fibronectin, and heparin sulfate proteoglycans.32-34 
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1.2 OVERALL GOAL AND HYPOTHESIS 

The overall goal of this project is to enhance the performance of bioengineered skin 

substitutes by analyzing the effects of biochemical and microstructural cues on keratinocyte 

function, stem cell enrichment and localization, and the rapid epithelialization on the surfaces 

of tailored bioengineered skin substitutes containing microfabricated basal lamina analogs at 

the DEJ.   

 

We hypothesize that microfabricated basal lamina analogs with extracellular matrix cues 

and three-dimensional features that mimic the cellular microenvironments of the dermal-

epidermal junction will promote enhanced epithelialization and increase epidermal stem 

cell clustering on the surface of bioengineered skin substitutes. 

 

In this study, epithelialization is defined as keratinocyte attachment, proliferation, and 

differentiation, as well as cellular and graft morphology and graft thickness.  The expected 

outcome of this project is the identification of a series of parameters critical for improving 

the design of bioengineered skin substitutes, as well as for promoting the rapid regeneration 

of highly functional skin tissue with increased structural stability. 

 

To systematically test this hypothesis, this thesis was separated into two parts with a total of 

four objectives.   

 

1.3 PART I: EVALUATION OF ECM IN THE REGULATION OF KERATINOCYTE 
FUNCTION  
 
1.3.1 Objective 1: Establish Relationships Between Keratinocyte Attachment and ECM 
Proteins on the Surface of Basal Lamina Analogs 
 
The DEJ of skin contains ECM proteins that are involved in initiating and controlling 

keratinocyte signaling events such as attachment, proliferation, and terminal differentiation. 

To characterize the relationship between ECM proteins and keratinocyte attachment, Chapter 
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3 discusses a biomimetic design approach that was used to tailor the surface of basal lamina 

analogs with biochemistries that emulate the biochemical composition found at the DEJ.  A 

high-throughput screening device was developed by our laboratory that allows for the 

simultaneous investigation of the effect of ECM proteins, (types I and IV collagen (CI and 

CIV), laminin (LN), or fibronectin (FN)) passively adsorbed on the surface of an implantable 

collagen membrane, on keratinocyte attachment.  Fluorescence microscopy coupled with 

quantitative digital image analyses indicated that the ECM proteins adsorbed to the collagen-

GAG membranes in a dose-dependent manner and saturation was achieved.  To determine 

the relationship between ECM protein signaling cues and keratinocyte attachment, cells were 

seeded on collagen-GAG membranes treated with the ECM proteins and a tetrazolium-based 

colorimetric assay was used to quantify viable keratinocyte attachment.  Our results indicate 

that keratinocyte attachment was significantly enhanced on the surfaces of collagen-GAG 

membranes that were treated with FN.  These findings define a set of design parameters that 

will enhance keratinocyte binding efficiency on the surface of collagen membranes and 

ultimately improve the rate of epithelialization for dermal equivalents. Bush KA, Downing BR, 

Walsh SE, Pins GD. Conjugation of extracellular matrix proteins to basal lamina analogs enhances 

keratinocyte attachment. J Biomed Mater Res A 2007;80(2):444-52. 

 

1.3.2 Objective 2: Evaluate Keratinocyte Responses to Availability of FN Cellular 
Binding Domains 
 
Precisely engineering the surface chemistry of biomaterials to modulate the adsorption and 

functionality of biochemical signaling molecules that direct cellular functions is critical in the 

development of bioengineered scaffolds.  In chapter 4 of this thesis, we describe the use of 

functionalized self-assembled monolayers (SAMs) as a model system to assess the effects of 

biomaterial surface properties on controlling FN conformation and concentrations as well as 

keratinocyte function.  By systematically analyzing FN adsorption at low and saturated 

surface densities, we distinguished between SAM dependent effects of FN concentration and 

conformation on presenting cellular binding domains that direct cellular functions.   
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Quantitative image analyses of immunostained samples showed that modulating the 

availability of the FN synergy site corresponded with changes in keratinocyte attachment, 

spreading, and differentiation, through integrin mediated signaling mechanisms.  The results 

of this study will be used to elucidate design features that can be incorporated onto dermal 

equivalents and percutaneous implants to enhance the rate of epithelialization and tissue 

regeneration.  Furthermore, these findings indicate that SAM based model systems are a 

valuable tool for designing and investigating the development of scaffolds that regulate the 

conformation of ECM cues and cellular functions that accelerate the rate of tissue 

regeneration.  Bush, K.A., Driscoll, P.F., Soto, E.R., Lambert, C.R., McGimpsey, W.G., and Pins, G.D.  

“Designing Tailored Biomaterial Surfaces to Direct Keratinocyte Morphology, Attachment, and 

Differentiation.”  JBMR Part A, 2008. July 24 [Epub]. 
 

1.3.3 Objective 3: Investigate FN Presentation on Basal Lamina Analogs and Evaluate 
Keratinocyte Morphology, Proliferation, and Differentiation.  
 
In order to improve the regenerative potential of biomaterials used as bioengineered 

scaffolds, it is necessary to incorporate biologically active molecules that promote in vivo 

cellular processes that lead to a fully functional tissue.  Research has shown that the surface 

characteristics of a biomaterial greatly influence the conformation of the biomolecules which 

directly influences its bioactivity.  In chapter 5 of this thesis, we evaluated the effects of 

strategically binding FN to collagen scaffolds to enhance keratinocyte function and 

epithelialization on basal lamina analogs for skin regeneration.  We found that FN enhanced 

epithelial thickness and keratinocyte proliferation when compared to non-treated basal 

lamina analogs at 3 days of air/liquid (A/L) interface culture.  Additionally we evaluated the 

availability of FN cellular binding site domains when FN was either passively adsorbed or 

conjugated to collagen scaffolds fabricated from collagen-GAG coprecipiate or self-

assembled type I collagen sources using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

hydrochloride (EDC).  It was found that EDC conjugation significantly enhanced FN binding 

site presentation as well as epithelial thickness.  Overall the results gained from this study 
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can be used to improve the regenerative capacity of basal lamina analogs as well as the 

development of other bioengineered scaffolds. Bush KA, Pins GD. Carbodiimide Conjugation of 

Fibronectin on Collagen Basal Lamina Analogs Enhances Cellular Binding Domains and Epithelialization.  In 

preparation 2009. 
 

1.4 PART II: ROLE OF SCAFFOLD MICROARCHITECTURE IN THE 
REGULATION OF KERATINOCYTE FUNCTION 
 
1.4.1 Objective 4: Incorporate Biochemical and Microtopographic Features Found at 
the DEJ onto the Surface of Bioengineered Skin Substitutes and Evaluate the Effects of 
the Microenvironment on Epithelialization and Epidermal Stem Cell Localization.   
 
In native tissues, the basal lamina provides cues to modulate skin architecture, cellular 

organization, and the regeneration of the epithelial layer.  In chapter 6 of this thesis, we 

developed a novel dermal scaffold that recapitulates biochemical and microtopographic 

features provided by the basal lamina to enhance epithelialization and epidermal stem cell 

(ESC) localization.  To create the complete microenvironment, we combined 

photolithography, collagen processing, and biochemical conjugation techniques.  After 3 

days of A/L interface culture we evaluated the epidermal layer of bioengineered skin 

substitutes and found that keratinocytes cultured in 50 µm width channels with 200 µm 

depths had statistically similar epidermal thickness values as keratinocyte cultured on de-

epithelialized acellular dermis (DED).  At 7 days of A/L interface culture the 50 µm width 

and 100 µm width channels with 200 µm depths exhibited the same epidermal thicknesses as 

keratinocyte cultured on DED and native skin samples.  Furthermore, these conditions were 

statistically different from cultures in 200 µm width and 400 µm width channels with 200 µm 

depths.  It was also found that the percentage of Ki67 positive basal keratinocytes, a marker 

for proliferative cells, was statistically similar for the bioengineered skin substitutes, DED 

cultures, and in native tissues at 7 days of A/L interface culture.  In addition to epidermal 

thickness and proliferation, we evaluated ESC localization by evaluating integrin expression, 

specifically β1. We determined that integrin-bright regions of cultured keratinocytes were 

found in the channels (rete ridges) in our bioengineered skin substitutes, whereas in native 
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foreskin tissue, these cells were identified at the tips of the papillary projections.  Based on 

the results of our epidermal thickness measurements, as well as keratinocytes proliferation 

and ESC studies, we have defined a set of criteria for the design of the next generation of 

bioengineered skin substitutes to enhance epithelialization rates and control stem cell 

localization, as well as the potential for increasing mechanical stability, based on the increase 

in cellular interaction surface area.  Additionally, our bioengineered skin substitutes are an 

excellent model system to evaluate the microenvironmental cues that provide an ESC niche 

on a bioengineered skin substitute and will ultimately lead to the enhanced regenerative 

capacity and overall performance of our scaffolds.   Bush KA, Toner, M., Pins GD. 

Microenvironments of the Basal Lamina Influence Epithelialization and Stem Cell Localization on 

Bioengineered Skin Substitutes.  In preparation 2009. 
 
1.5 REFERENCES 
 
1. Burn incidence and treatment in the United States: 1999 Fact Sheet. Philadelphia, PA: The Burn 

Foundation; 1999. 
2. Clark RA, Singer AJ. Wound Repair: Basic Biology to Tissue Engineering. In: Lanza RP, Langer R, 

Vacanti J, editors. Principles of Tissue Engineering, Second Edition. Boston: Academic Press; 2000. p 
857-878. 

3. Morgan JR, Sheridan RL, Tompkins RG, Yarmush ML, Burke JF. Burn Dressings and Skin 
Substitutes. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE, editors. Biomaterials Science:  An 
Introduction to Materials in Medicine. San Diego: Academic Press; 2004. p 360-370. 

4. Jones I, Currie L, Martin R. A guide to biological skin substitutes. Br J Plast Surg 2002;55(3):185-93. 
5. Sheridan RL, Tompkins RG. Skin substitutes in burns. Burns 1999;25(2):97-103. 
6. Supp DM, Boyce ST. Engineered skin substitutes: practices and potentials. Clin Dermatol 

2005;23(4):403-12. 
7. Boyce ST. Design principles for composition and performance of cultured skin substitutes. Burns 

2001;27(5):523-33. 
8. Boyce ST. Cultures Skin Substitutes: A Review. Tissue Eng 1996;2:255-266. 
9. Clark RA, Ghosh K, Tonnesen MG. Tissue engineering for cutaneous wounds. J Invest Dermatol 

2007;127(5):1018-29. 
10. Ehrenreich M, Ruszczak Z. Update on tissue-engineered biological dressings. Tissue Eng 

2006;12(9):2407-24. 
11. Phillips T. New Skin for Old: Developments in Biological Skin Substitutes. Arch. Dermatol. 

1998;134:344-349. 
12. Yannas IV, Burke JF, Gordon PL, Huang C, Rubenstein RH. Design of an artificial skin. II. Control of 

chemical composition. J Biomed Mater Res 1980;14(2):107-32. 
13. Yannas IV, Burke JF, Orgill DP, Skrabut EM. Wound tissue can utilize a polymeric template to 

synthesize a functional extension of skin. Science 1982;215(4529):174-6. 



   
Chapter 1 
Overview 

8 

   
 

14. Heimbach D, Luterman A, Burke J, Cram A, Herndon D, Hunt J, Jordan M, McManus W, Solem L, 
Warden G and others. Artificial dermis for major burns. A multi-center randomized clinical trial. Ann 
Surg 1988;208(3):313-20. 

15. Boyce ST, Christianson DJ, Hansbrough JF. Structure of a collagen-GAG dermal skin substitute 
optimized for cultured human epidermal keratinocytes. J Biomed Mater Res 1988;22(10):939-57. 

16. Boyce ST, Hansbrough JF. Biologic attachment, growth, and differentiation of cultured human 
epidermal keratinocytes on a graftable collagen and chondroitin-6-sulfate substrate. Surgery 
1988;103(4):421-31. 

17. Black AF, Berthod F, L'Heureux N, Germain L, Auger FA. In vitro reconstruction of a human 
capillary-like network in a tissue-engineered skin equivalent. Faseb J 1998;12(13):1331-40. 

18. Hudon V, Berthod F, Black AF, Damour O, Germain L, Auger FA. A tissue-engineered 
endothelialized dermis to study the modulation of angiogenic and angiostatic molecules on capillary-
like tube formation in vitro. Br J Dermatol 2003;148(6):1094-104. 

19. Burke JF, Yannas IV, Quinby WC, Jr., Bondoc CC, Jung WK. Successful use of a physiologically 
acceptable artificial skin in the treatment of extensive burn injury. Ann Surg 1981;194(4):413-28. 

20. Bell E, Sher S, Hull B, Merrill C, Rosen S, Chamson A, Asselineau D, Dubertret L, Coulomb B, 
Lapiere C and others. The reconstitution of living skin. J Invest Dermatol 1983;81:2s-10s. 

21. Bell E, Ehrlich HP, Buttle DJ, Nakatsuji T. Living tissue formed in vitro and accepted as skin-
equivalent tissue of full thickness. Science 1981;211(4486):1052-4. 

22. Wilkins LM, Watson SR, Prosky SJ, Meunier SF, Parenteau NL. Development of a Bilayered Living 
Skin Construct for Clinical Applications. Biotech. Bioeng. 1994;43:747-756. 

23. Parenteau N, Sabolinski M, Prosky S, Nolte C, Oleson M, Kriwet K, Bilbo P. Biological and physical 
factors influencing the successful engraftment of a cultured skin substitute. Biotech. Bioeng. 
1996;52:3-14. 

24. Zacchi V, Soranzo C, Cortivo R, Radice M, Brun P, Abatangelo G. In vitro engineering of human 
skin-like tissue. J Biomed Mater Res 1998;40(2):187-94. 

25. El-Ghalbzouri A, Lamme EN, van Blitterswijk C, Koopman J, Ponec M. The use of PEGT/PBT as a 
dermal scaffold for skin tissue engineering. Biomaterials 2004;25(15):2987-96. 

26. Boyce ST, Goretsky MJ, Greenhalgh DG, Kagan RJ, Rieman MT, Warden GD. Comparative 
assessment of cultured skin substitutes and native skin autograft for treatment of full-thickness burns. 
Ann Surg 1995;222(6):743-52. 

27. Lavker RM, Sun TT. Heterogeneity in epidermal basal keratinocytes: morphological and functional 
correlations. Science 1982;215(4537):1239-41. 

28. Lavker RM, Sun TT. Epidermal stem cells. J Invest Dermatol 1983;81(1 Suppl):121s-7s. 
29. Carter WG, Symington BE, Kaur P. Cell adhesion and the basement membrane in early epidermal 

morphogenesis. In: Fleming TP, editor. Epithelial Organization and Development. London: Chapman 
and Hall; 1992. p 299-327. 

30. Jensen UB, Lowell S, Watt FM. The spatial relationship between stem cells and their progeny in the 
basal layer of human epidermis: a new view based on whole-mount labelling and lineage analysis. 
Development 1999;126(11):2409-18. 

31. Jones PH, Harper S, Watt FM. Stem cell patterning and fate in human epidermis. Cell 1995;80(1):83-
93. 

32. Odland GF. The morphology of the attachment between the dermis and the epidermis. Anat Rec 
1950;108(3):399-413. 

33. Burgeson RE. Basement Membranes. Dermatology in General Medicine. New York, NY: McGraw-
Hill; 1987. p 288-303. 

34. Vracko R. Basal lamina scaffold-anatomy and significance for maintenance of orderly tissue structure. 
Am J Pathol 1974;77(2):314-46. 

 
 



 
Chapter 2 

Background 
9 

     

 

 

 

 
2.1 SKIN STRUCTURE AND FUNCTION 

Skin is the largest organ in 

vertebrate organisms and is 

responsible for many complex 

physiological functions that 

maintain homeostasis of the body 

with its surrounding environment.  

This includes protection against 

pathogens, acting as a physical 

barrier, absorption of harmful UV 

rays, sensory detection, and 

providing thermal and hydration 

regulation.  These functions are 

carried out through integration of 

specialized cells and structures 

found in the dermal and epidermal layers of the skin.1,2  Figure 2.1 displays a cartoon of the 

anatomy of human skin.3  

 

2.1.1 The Dermis 

The innermost layer of skin, the dermis, is predominantly composed of interwoven 

connective tissue containing collagen fibrils with elastic and reticular fibers interspersed to 

provide physical strength, elasticity, and scaffolding for accessory features.  The dermis has a 

three-dimensional organization with an upper papillary region and a lower reticular region. 

Chapter 2: Background 

Figure 2.1 Anatomy of Human Skin.  Skin is composed of two 
main layers, the epidermis and dermis.  The epidermis is 
responsible for providing a physical barrier, whereas the dermis is 
responsible for maintaining physical strength of skin.  Below the 
dermis is the hypodermis, which contains the source of blood 
vessels and is composed of adipose tissue.3   
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The upper region, the papillary dermis (PD: Figure 2.21), is composed of loose, small 

diameter collagen and immature elastic fibers. Exclusive to this layer are fingerlike 

projections called papillae, which extend toward the epidermis, and contain either capillaries 

that nourish the epidermis, or Meissner’s corpuscles which are sensory touch receptors.  

Fibroblasts, the major cell type of the dermis, are most abundant in this region, as well as 

having a higher rate of metabolic 

activity, an enhanced capacity for 

proliferation, and a longer replication 

life span in comparison to fibroblasts 

found in the lower dermis.4,5   

 

The lower region of the dermis, the 

reticular layer (RD: Figure 2.21), 

contains a much denser 

concentration of thick collagen fibers 

and mature elastic fibers that form a 

basket weave pattern than found in 

the upper region of the dermis. This 

layer is responsible for providing the mechanical stability of the dermis as well as containing 

specialized cells and receptors including, sebaceous glands, apocrine glands, blood vessels, 

nerve endings, lymph vessels, arrector pili muscles, hair follicles, and Pacinian corpuscles.4,5  

 

2.1.2 The Epidermis 

The epidermis is the outer most layer of skin.  This layer is responsible for providing the 

protective barrier against the surrounding environment and is in constant regeneration with a 

turnover of approximately 4 weeks.  The predominant cell type responsible for providing the 

barrier properties of the epidermis and in its repair and regeneration is the keratinocyte, 

representing approximately 80% of the total population of cells.  The other 20% of cells are a 

combination of cells that provide immunologic protection (Langerhans cells), absorption of 

Figure 2.2 Hematoxylin and Eosin Stained 
Histological Representation of the Dermis.  The upper 
region of the dermis, the papillary dermis (PD), contains 
small diameter collagen and immature elastic fibers.  
The lower region of the dermis, the reticular dermis 
(RD), is responsible for providing mechanical stability.1 
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ultraviolet light (melanocytes), and sense mechanical events within the epidermis and at the 

surface of skin (Merkel cells).6   

 

Within the epidermis, there are four distinct 

layers, with each layer being defined by 

position, morphology, and state of 

differentiation of the keratinocytes.6  The 

bottom layer, the stratum basal (also referred 

to as the stratum germinativum) (Figure 2.31 

SG), contains a single row of columnar 

undifferentiated basal keratinocytes, 

consisting of epidermal stem cells (ESCs) 

and transit amplifying (TA) keratinocytes 

that are attached to the underlying basement 

membrane.7,8  Epidermal stem cells are 

responsible for maintaining the entire 

population of keratinocytes by i) giving rise 

to additional ESCs by tissue demand or 

specific stimuli or by ii) giving rise to 

daughter TAs that amplify the number of cells derived from each ESC mitosis by undergoing 

3-5 rounds of division.9-11  Cells resulting from TAs do not proliferate and terminally 

differentiate as they move through the upper three layers of skin, the spinsosum (SS: Figure 

2.31), granulosum (SGR: Figure 2.31), and corneum (SC: Figure 2.31), through a process that 

involves down regulation of integrin expression and function.12,13 

 

As the cells progress through the upper layers of the epidermis, they begin to produce and 

organize specific keratin filaments responsible for structural integrity of the cytoskeleton as 

well as water proofing lipids responsible for the permeability barrier.  Although these 

peptides do not play any role in directing epithelial differentiation, their expression is specific 

Figure 2.3 Hemotoxylin and Eosin Stained 
Histological Representation of the 
Epidermis.  The epidermis is responsible for 
providing a protective barrier against the 
surrounding environment.  This layer of skin 
contains four layers, the stratum germinativum 
(SG), the stratum spinsosum (SS), the stratum 
granulosum (SGR), and the stratum corneum.1 
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to keratinocyte layer location as well as function of the keratinocyte.14 Keratinocytes found in 

the second layer, the stratum spinusom contain 50% more keratin than cells in the basal 

layer.  This additional keratin is responsible for increasing the ability of the cell to sustain 

mechanical stress.15   In the uppermost spinous cells and in the third layer of the epidermis, 

the granulosum, new organelles, lamellar granules, are present which contain a variety of 

lipids, carbohydrates complexes with protein and lipid, and hydrolytic enzymes.  Lamellar 

granules are exocytosed and generate a waterproof barrier.16  The stratum granulosum 

typically contains 1 to 3 rows of squamous cells with these granules and is the highest layer 

in the epidermis where living cells are found.  Above the stratum granulosum is the stratum 

corneum which is a multilayered zone of terminally differentiated keratinocytes suspended in 

an extracellular lipid matrix.17  The number of cell layers found in the stratum corneum 

varies on location of the body, with thicker skin regions of skin such as the soles and palms 

containing many more layers than skin regions such as the 

eyelids that are very thin.  Additionally, cornified 

keratinocytes are much different in morphology and larger in 

dimension than basal, spinosum, and granulosum cells.  A 

cornified keratinocyte has a more flattened morphology and 

is 30-40 µm in diameter, whereas a basal keratinocyte has a 

more square-like morphology and is only 6-8 µm in 

diameter.18,19 

 

2.1.3 The Basal Lamina  

Located at the dermal-epidermal junction (DEJ) is the basal 

lamina which conforms to a series of three-dimensional 

ridges and invaginations formed by papillae located in the 

papillary region of the dermis (Figure 2.420).21   The basal 

lamina is approximately 40-360 nm thick22 and is composed of collagenous and non-

collagenous extracellular matrix (ECM) molecules including type IV collagen, laminin, 

fibronectin, and heparin sulfate proteoglycans (Figure 2.523).  This specialized layer is 

Figure 2.4 The Topography 
Found at the Dermal-
Epidermal Junction.  At the 
dermal-epidermal junction 
there is a series of three-
dimensional ridges and 
invaginations formed by the 
papillae located in the 
papillary region of the 
dermis.20 
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responsible for creating an interface between keratinocytes and the connective tissue of the 

dermal layer, providing instructive cues to direct 

keratinocyte polarity, proliferation, and 

differentiation, as well as preserving tissue 

architecture and organization.  Additionally, the 

basal lamina acts as a barrier that prevents 

fibroblasts in the dermal layer from directly 

contacting epidermal keratinocytes, however, it 

does not prevent diffusion of macromolecules into 

or out of the epidermis, nor does it prevent the 

innervation of the epidermis.24   

 

Several studies have examined the role of basal 

lamina topography on regulating keratinocyte 

function.  In human palmar epidermis, the highest 

percentage of proliferating basal and suprabasal 

cells is in the deeper rete ridges (Figure 

2.625).25,26  It also has been shown that the 

expression of α2β1 integrin, a suggested marker of 

epidermal stem cells, varies with topography.  

High expression found in patches of basal 

keratinocytes located on the tips of the dermal 

papillae or at the bottom of the deep rete ridges 

suggest that cells in these microenvironments 

have high proliferation potentials.11,27,28 The complex topography of the DEJ also provides 

structural stability to the epidermis.  In areas of the skin exposed to excessive friction, the 

dermal papillae and epidermal ridges are longer and more numerous, suggesting that 

increased interfacial area between the epidermis and dermis helps provide additional 

mechanical stability.29 

Figure 2.5 A Model of the Molecular 
Structure of the Basal Lamina.  Model of 
interactions between the proteins CIV 
(red), laminin (blue), nidogen (yellow), and 
proteoglycans perlecan (green) found to 
make up the basal lamina.23   

Figure 2.6 [3H]thymidine Incorporation in 
Basal Keratinocytes in Bottom of Deep 
Rete Ridges.  [3H]thymidine was used to 
evaluate the location of highly proliferative 
basal keratinocytes.  Scale bar represents 50 
µm and arrows indicate [3H]thymidine 
incorporation.25 
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2.2 THE PROCESS OF WOUND HEALING 

When skin is injured, the body has the ability to regenerate dermal and epidermal tissues.  

This process is not linear, but is an integration of many complex events involving 

biochemical factors and multiple cell types.  These events overlap and follow a specific time 

sequence that can be temporally categorized into three separate steps: inflammation, cell 

proliferation and matrix deposition, and matrix remodeling (Figure 2.730). During 

inflammation, blood coagulation and platelet aggregation generate a clot that plugs severed 

vessels and provides a temporary repair of the injured skin.  The fibrin rich clot also provides 

a provisional matrix for neutrophils which are important for the removal of bacteria and 

debris from the wounded site.31,32     

 

Cytokines released by platelets found in the clot as well as the provisional matrix provided 

by the clot are important mediators involved in the tissue formation phase.  Within hours of 

injury, keratinocytes respond to chemotactic and mitogenic factors as well as the loss of 

contact with neighboring cells and begin to migrate laterally through the wound to reestablish 

Figure 2.7 Phases of Repair in Normal Cutaneous Wound Healing.  The 
process of wound healing is not linear, but is an integration of many complex 
events that can be temporally categorized into three separate steps: inflammation, 
cell proliferation and matrix deposition, and matrix remodeling.30   



 
Chapter 2 

Background 
15 

     

a cutaneous cover.33,34  As reepithelialization of the wound ensues, keratinocytes located 

behind the actively migrating keratinocytes begin to proliferate (1-2 days post injury)35 and 

basement membrane proteins begin to reappear from the margin of the wound inward.33,34  

 

Three to 4 days post injury, granulation tissue begins to form.  The fibrin clot provides a 

scaffold to promote contact guidance and acts as a reservoir for cytokines to promote the 

migration of fibroblasts, macrophages, and blood vessels into the wound site.36    

Macrophages are responsible for providing a continuing source of growth factors necessary 

to stimulate fibroplasias and angiogenesis,37 fibroblasts dynamically interact with the 

extracellular matrix to synthesize, deposit, and remodel the provisional matrix, 38,39  and 

blood vessels carry oxygen and nutrients to allow for new tissue formation.34   

 

Approximately 2 to 3 weeks post wounding, granulation tissue is well established.  In this 

tissue, TGF-β1 and other growth factors activate fibroblasts to transform into myofibroblasts 

which can be characterized by large bundles of actin containing microfilaments and the 

capacity to generate contractile forces.37  The appearance of myofibroblasts corresponds with 

connective tissue compaction and contraction of the wound.34  The remodeling of collagen 

during the transition from granulation tissue to scar is dependent on collagen degradation and 

synthesis as well as the interaction of the matrix with myofibroblasts.  Newly formed 

collagen fibrils have the ability to make covalent crosslinks with themselves as well as with 

the collagen bundles of the adjacent dermis.40,41  Myofibroblasts interact with these fibrils, as 

well as with themselves and a combination of the collagen-collagen, collagen-cell, and cell-

cell interactions provides the network which causes contraction across the wound and results 

in scarring of the tissue.42  By the third week after the initial injury, wounds only have 20% 

of their final strength and thereafter the rate at which the wound gains tensile strength is slow 

and correlates with the rate of collagen accumulation.  The maximum final strength of a scar 

never reaches maximum strength of uninjured skin, and at best is 70% as strong.43 
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2.3 SEVERE SKIN INJURIES  

Although the epidermis and dermis have the ability to heal on their own when injured, there 

are situations when the damage exceeds the capacity for normal regeneration, and if not 

treated may result in infection, scarring, amputation, or even death of the individual.  The 

most common cause of significant skin loss occurs from thermal injury.  In the United States, 

more than 2.5 million burn injuries are reported annually.44  Severe burns result in 60,000-

80,000 hospitalizations and costs for recovery from acute injuries range from $36,000-

1117,000 per patient.45,46 It is reported that 4,500 deaths occur annually,45 however, advances 

in the initial resuscitation phase of wound care have lead to a decline in mortality.47  

Currently, most patients survive burns that cover 50% of their total body surface area and 

half of children who receive burns that cover 98% of their total body surface area survive.48 

Other causes of skin loss include diabetic and venous as well as pressure sores which affect 

an additional 3 to 4 million people in the United States annually.  Sadly enough, the statistics 

for diabetic ulcers as well as venous and pressure sores are only expected to increase with the 

increase incidences of diabetes as well as the increase age of the average population. This 

predicted rise in statistics along with the increase in survival rate of increased total body 

surface burns, and a nearly epidemic increase in burn incidents has lead to an increase need 

for wound management products.  It is expected that the burn treatment market will grow in 

revenues reaching $2.6 billion by 2011, with a compound annual growth rate of 6.9% during 

that timeframe.49 

 

2.4 CURRENT THERAPEUTIC STRATEGIES  

Autografting, which has been considered the preferred treatment for coverage of excised 

wounds, consists of removing healthy skin from the patient’s body using a dermatome and 

placing in onto the wound bed.  At present, most full thickness wounds are best closed with a 

split thickness autograft that contains the dermis and portion of the epidermis.  While this 

option is considered the “gold standard” it is often limited for patients with large burns or 

skin traumas due to the lack of available donor sites as well as patients suffering from 

diabetes due to their already compromised wound healing ability.  Additionally, split 
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thickness autografts are also associated with donor site morbidity.50  The successful 

development of a tissue engineered skin substitute that provides permanent coverage to the 

wound site and restores the anatomy and physiology of uninjured skin will have an enormous 

impact on the care of patients with serious burns, chronic ulcers, and pressure sores. 

 

2.5 BIOENGINEERED SKIN SUBSTITUTES  

To address the limitations of autografts for serious skin injuries, tissue engineers have 

devised methods that combine cultured cells, biomaterials, or composites of these to provide 

a new alternative therapeutic approach to treating severe skin injuries.    The ultimate 

objective for these bioengineered skin substitutes is to reestablish the anatomy and 

physiology of native skin after placement in the wound bed.51 
 

2.5.1 Design Considerations  

In order to develop the ideal bioengineered skin substitute there are several clinical and 

engineering design criteria that must be met.  These bioengineered skin substitutes should be 

readily available off-the-shelf, inexpensive, possess physical and mechanical properties that 

facilitate easy handling, suturing, and adhesion to the wound bed, prevent water loss, and act 

as a microbial barrier. To minimize scarring and to actively promote regeneration of native 

skin functionality, engineered skin substitutes should also integrate with native host tissue, 

delivering growth factors, cytokines and ECM components that direct host cells to facilitate 

angiogenesis, neodermal, and neoepidermal regeneration. Specifically, the design of future 

skin substitutes must direct cellular migration, proliferation, and differentiation as well as 

cellular processes that mediate the morphogenesis of cells into analogs of functional skin that 

promote rapid barrier formation, reduce healing times, and restore the native tissue 

physiology.50,52  

 

2.5.2 Current Bioengineered Skin Substitutes  

To date no bioengineered skin substitute has been developed that replaces skin in its entirety.  

Conceptually, bioengineered skin substitutes offer either temporary, semi-permanent, or 
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permanent coverage, composed of epidermal, dermal, or a composite of the two, and are 

either made from biological or synthetic materials.50  Table 2.1 provides a summary of 

commercially available bioengineered skin substitutes including a cartoon schematic of the 

layers, the preservation technique used, and the development status of the product.   

 

2.5.2.1 Temporary Bioengineered Skin Substitutes-Wound Dressings 

Temporary bioengineered skin substitutes are designed to provide physiologic wound 

closure, protection from mechanical trauma and bacteria, and allow vapor transmission to 

occur between the wound bed and the environment.  Common uses of temporary 

bioengineered skin substitutes fall into the following categories: (i) a dressing for a donor site 

or for superficial wounds, (ii) to provide temporary wound closure while waiting for an 

autograft, and (iii) to test if an autograft would succeed in a questionable wound bed.  

Currently, there are three main types of temporary bioengineered skin substitutes available 

consisting of xenografts, synthetic membranes, and allogenic substitutes.50  

 

Skin xenografts are skin from one species grafted onto another species and have been used 

since 1500 BC to provide temporary cover of wounds.  The most commonly used species for 

xenografts for humans are domestic swine, however skin from frog, lizard, and dog have also 

been used. Although there have been many favorable reports using xenografts for wound 

closure, these tissues have many problems including availability, storage, rejection, and the 

short life of a living tissue.50  

 

Synthetic membranes for use as temporary bioengineered skin substitutes are designed to be 

semipermeable to provide protection against bacteria, while allowing for proper vapor 

exchange between the wound and the environment.  Additionally, synthetic membranes also 

help to control pain while the underlying superficial wound or donor site re-epithelializes.  

Biobrane® (Dow-Hickham, Sugarland, TX) is a commercially available temporary 

bioengineered skin substitute which was first developed in 1979.  This product consists of 

both a dermal and an epidermal analog.  The dermal analog is composed of a complex three-
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dimensional structure of trifilament thread to which bovine collagen has been chemically 

bound and allows for fibrovascular ingrowth.  The epidermal portion is composed of silastic 

that serves as a vapor and bacterial barrier.53  Biobrane® meets many of the important 

properties and is the most commonly used bioengineered skin substitute for partial thickness 

burns or excised wounds.  Although this product helps restore normal tissue architecture as 

well as preventing scar contracture, it is not a permanent solution, and autologous 

keratinocytes are required to provide an epithelial barrier.54   

 

Allogenic substitutes are another form of temporary bioengineered skin substitutes.  These 

bioengineered skin substitutes consist of split thickness human cadaver grafts that contain 

both dermal and epithelial cell layers.  Allogenic skin substitutes do not provide permanent 

coverage because of host rejection and are limited in use based on disease transmission and 

need for donated cadaver tissue.55-57 

 

2.5.2.2 Bioengineered Epidermal Skin Substitutes 

Restoring an epidermal layer that provides a barrier against fluid loss and infection is critical 

to wound healing and skin regeneration. In the mid 1970s, Rheinwald and his colleagues 

developed in vitro techniques to subculture keratinocytes into large confluent sheets of 

epithelial tissues.58,59 These cultured epithelial autografts (CEAs) are enzymatically removed 

from the culture substrate and placed onto the wound of the patient. This technique provides 

clinicians with large areas of epithelial wound dressing from small pieces of biopsy tissue.  

 

Clinical trials demonstrated that CEAs were a major surgical innovation, providing 

permanent coverage to large surface area burns as well as to acute and chronic wounds. 

Genzyme Tissue Repair is a commercially available CEA product that provides permanent 

wound coverage.60   While this product and other CEAs provide acceptable cosmetic results 

and eventually regenerate dermal tissue, there are several limitations.  Cultured epithelial 

autografts require biopsies from the patients and a 2-3 week interval to produce sufficient 

quantities of graft material. Additionally, CEAs are thin and fragile, very expensive, and they 
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require custom preparation. They also fail to provide adequate epithelial coverage, blistering 

often occurs, and engraftment rates are suboptimal.50,61-63 One of the primary reasons for 

suboptimal graft integration is the enzymatic treatment required to remove the cultured CEA 

from the culture plate. This treatment disrupts keratinocyte interactions with the underlying 

ECM proteins that are deposited on the substrate and causes contraction of the CEA. 

Furthermore, this process decreases mechanical stability of the grafts and hinders their 

attachment to wound beds.61,64 

 

To improve the durability and the engraftment rate of CEAs, several investigators have 

attempted to create carrier devices that support keratinocyte culture which can be transferred 

to the wound bed, eliminating the need for enzymatic treatment prior to implantation. 

Microfabrication techniques have been used to create support scaffolds with 

microenvironments that emulate native tissue properties and promote keratinocyte 

attachment as well as the deposition of cell-mediated ECM proteins.  Fidia Advanced 

Biopolymers, Inc., developed a 100% benzyl esterified hyaluronic acid derivative (HYAFF-

11®) that can be manufactured into thin transparent membranes with thicknesses of 20 or 200 

μm (Laserskin™).65  This product allows keratinocytes to grow to confluence and findings 

have demonstrated that CEAs cultured on Laserskin™ can be transferred to wound beds in a 

shorter time period, then culturing alone, substantially reducing the time required to wait for 

cultured autologous epithelial cells.66,67 Additionally keratinocytes have also been delivered 

to the wound intermixed with fibrin sealant as a spray68 or grown on fibrin glue and placed in 

the wound bed.69,70 

 

The results of studies using CEAs to transplant epithelial layers indicate that the presence of 

a dermal substitute pregrafted in the wound site enhances the function and the quality of the 

regenerating tissue. When full thickness wounds were treated with CEAs alone, or with 

CEAs on carrier devices, engraftment rates were less effective than when CEAs were applied 

to a dermal wound bed that was prepared with an allograft, autologous dermal tissue, or an 

engineered dermal substitute.50,65,66,71-75  A functioning dermal layer allows for increased 
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vascularization and improves initial engraftment rates and as well as long term durability. 

Additionally, a dermal component that contains fibroblasts provides a regulatory 

environment that contains both biochemical and structural cues to direct the growth and 

differentiation of keratinocytes in CEAs.76,77  These findings suggest that future research 

efforts should focus on the development of cell seeded dermal substitutes to augment the 

regenerative properties of epidermal scaffolds. 

 

2.5.2.3 Bioengineered Dermal Skin Substitutes 

To promote dermal regeneration, Yannas and his colleagues pioneered the use of a collagen-

glycosaminoglycan (GAG) sponge coupled with a silicone membrane barrier that acts as a 

temporary wound covering.78,79 The collagen-GAG sponge promotes vascularized neodermal 

formation and the silicone layer is eventually replaced with a thin epidermal autograft.80  

This dermal material has been successful in treating burns and has received FDA approval 

for this indication (Integra, LifeSciences Corporation, Plainsboro, NJ).60,80  Although Integra 

has achieved some clinical success, a second surgical procedure is necessary to 

reepithelialize the surface, and the cosmetic appearance of the regenerated skin is often flat 

and featureless.  

 

Additional acellular products that are on the market that serve as dermal substitutes are 

Alloderm® (LifeCell Corporation, Woodlands, TX) which is cadaver skin that has been 

chemically treated to decellularize and remove immunogenic cellular elements.  This product 

has been effectively used alone or in combination with cultured autologous keratinocytes for 

closure of burns and chronic wounds.  Decellularized allografts are advantageous because the 

dermal component retains the biochemical components of the basement membrane, the 

microtopology, and the porosity of native dermis,81,82  Although these analogs have proven 

successful in increasing the regenerative healing process, their limitations include the 

potential of disease transmission, high cost, second donor site, and the need for donated 

cadaver tissue.64,83-86 
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Hyalomatrix® (Fidia Advanced Biopolymers, srl) is another type of acellular dermal 

replacement that consists of an acellular hyaluronic acid matrix with esterfication.  Fidia 

Advanced Biopolymers, srl as well as Advanced BioHealing have developed cellular dermal 

replacement products that contain fibroblasts.   Hyalograft-3D® (Fidia Advanced 

Biopolymers) incorporates autologous fibroblasts into their esterified hyaluronic acid matrix, 

whereas Dermagraft (Advanced BioHealing) incorporates human foreskin fibroblasts into a 

biodegradable polyglactin mesh.  Currently, Dermagraft is off of the market and further 

production is ongoing to improve the product.    

 

While each of these design strategies has produced bioengineered skin substitutes that have 

achieved some clinical success in restoring damaged skin, the need for a second surgery, 

prolonged healing times, scarring and limited tissue functionality remain persistent problems. 

As such, future tissue analogs must incorporate both epidermal and dermal components in 

order to restore a fully functional tissue that is both anatomically and physiologically 

comparable to native skin. 

 

2.5.2.4 Bioengineered Composite Skin Substitutes 

Research has shown that when a CEA is engrafted onto a wound bed pretreated with a 

dermal substitute, the number of successful engraftments are increased, thus effort has been 

focused on developing a composite skin graft that consists of both dermal and epidermal 

layers.50,65,66,71-75  One of the first attempts to create a composite skin graft was by Bell et 

al.87 who combined a gel of type I bovine collagen with living allogenic neonatal fibroblasts.  

On the surface of the collagen gel, allogenic neonatal keratinocytes were cultured and over 

time created a stratified cornified barrier layer.  Apligraf (Organogenesis Inc, Canton, MA 

and Novartis Pharmaceuticals Corporation, NJ) is a commercially available composite 

bioengineered skin substitute that utilizes this technology. Its primary role is as a treatment 

for chronic ulcers. The efficacy of the product in healing venous ulcers was evaluated and it 

was found that the product was three times more effective than compression therapy alone in 

achieving complete wound closure at 8 weeks.88-91   
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OrCel is another composite skin graft.  This product was developed for the treatment of 

dystrophic epidermal bioloysis, and then further developed by Ortec International (New 

York, NY) and is now FDA approved for the treatment of burns.  This product, like Apligraf, 

consists of type I bovine collagen that contains fibroblasts and an epithelial layer on the 

surface.  The major difference between the two products is that the fibroblasts in OrCel are 

seeded into a preformed collagen sponge whereas Apligraf the fibroblasts are seeded within a 

collagen gel that then polymerizes.   

 

An additional composite system was developed by Boyce and his colleagues, who have 

modified the first approach taken by Yannas et al.78,79 Their modified approach to create a 

composite skin substitute consists of a porous collagen-GAG sponge with fibroblasts and 

then culturing a flat epidermal layer on the laminated surface of the sponge.92,93 In clinical 

studies, these composite skin substitutes showed some success for the treatment of full-

thickness burns, although engraftment rates were suboptimal.94,95  

 

2.6 CONCLUSIONS  

Overall, composite skin grafts offer an approach for an artificial full thickness skin graft that 

can be applied in one surgery for the treatment of chronic ulcers and burns.  The duration of 

these products however, is limited and they only persist for approximately 4 weeks.  

Additionally, prolonged healing times and mechanically induced graft failure remain 

persistent problems.  A design feature common to each of these skin substitutes is a flat 

interface between the epidermal and dermal components.  In native skin, this interface both 

topographically and biochemically, provided by the dermal papillae and basal lamina, 

respectively, is an important feature for maintaining homeostasis of skin.  The design of 

future skin substitutes must examine the mechanisms by which the three-dimensional 

architecture and biochemical composition of tissue scaffolds modulate cellular adhesion, 

proliferation and differentiation, as well as regeneration of dermal and epidermal tissues.   

 



    

Application Composition Product Schematic 
Representation 

Layers Preservation 
Technique 

Development Status 

    Epidermal Dermal   
Temporary 
Wound 
Coverage 

Acellular Biobrane® (Dow 
Hickman 
Pharmaceuticals, 
Inc., Sugarland, 
TX)  

 
 

Silastic layer.  
Need for 
autograft. 
 

Trifilament 
nylon fabric 
with bovine 
collagen 
chemically 
bound. 

Stored at 25ºC FDA approval for 
ulcers, lacerations, 
and full-thickness 
burns.  

TransCyte® 
(Advanced 
BioHealing, Inc., 
La Jolla, CA) 

 
 
 

Silicon 
covering. 
Need for 
autograft. 
 
 
 
 

Nylon mesh 
with human 
foreskin 
fibroblasts that 
undergo freeze 
thaw after ECM 
and growth 
factor 
production. 

Cryopreserved 
 
 
 
 
 

FDA approval for 
temporary wound 
coverage for burns 
and diabetic foot 
ulcers, however not 
on market and further 
development is 
ongoing. 

Cellular Cadaveric 
allografts (from 
nonprofit skin 
banks) 

 Epidermal 
layer of 
human skin. 
 
 
 
 
 
 
 
 
 

Dermal layer of 
human skin. 
 
 

Glycerolized FDA approval for 
burns and scar 
revision. 
 
 
 
 
 
 
 
 

Table 2.1 Summary of Commercially Available Bioengineered Skin Substitutes 



    

Application Composition Product Schematic 
Representation 

Layers Preservation 
Technique 

Development Status 

    Epidermal Dermal   

Epidermal 
Replacement 

Cellular Epicel™ 
(Genzyme 
Tissue Repair, 
Cambridge, MA) 

 
 
 
 
 

Cultured 
epithelial 
autograft. 

None. Placed 
onto wound 
bed. 

Stored at 37ºC FDA approved for 
treatment of burns, 
chronic ulcers, 
diabetic leg ulcers, 
donor sites, and scar 
revision. 

Laserskin™ 
(Fidia Advanced 
Biopolymers srl, 
Abano Terme, 
Italy) 

 
 
 
 
 
 
 
 

Cultured 
epithelial 
autograft on 
hyaluronic 
acid with laser 
perforations. 

None. Place 
onto wound 
bed. 

Stored in cool 
dry place 

FDA approval for 
biodegradable 
keratinocyte delivery 
system. 

Dermal            
Replacement 

Acellular Integra™ (Life 
Sciences 
Corporation, 
Plainsboro, NJ) 

 
 
 
 
 
 
 
 

Silicone 
covering.  
Need for 
autograft. 

Bovine collagen 
I and 
chondroitin-6-
sulfate from 
shark cartilage. 

Isopropyl 
alcohol at 2-8ºC 

FDA Approval for 
treatment of burns 
and scar revision. 

Alloderm® 
(LifeCell 
Corporation, 
Woodlands, TX) 

 
 
 

None.  Need 
for autograft, 

Acellular 
deepithelialized 
cadaver dermis. 

Lyophilized FDA Approval for 
burns and scar 
revision. 
 
 
 
 
 

Table 2.1 Summary of Commercially Available Bioengineered Skin Substitutes - continued 



    

 

Application Composition Product Schematic 
Representation 

Layers Preservation 
Technique 

Development Status 

    Epidermal Dermal   

Dermal            
Replacement 

Cellular Dermagraft® 
(Advanced 
BioHealing, La 
Jolla, CA) 

 
 
 
 
 
 
 

None.  Need 
for autograft. 

Human foreskin 
fibroblasts 
cultured in 
biodegradable 
polyglactin 
mesh. 

Cryopreserved FDA Approval for 
burns and diabetic 
Foot Ulcers, however 
off the market and 
further production 
and marketing is 
ongoing. 

Hyalograft-3D® 
(Fidia Advanced 
Biopolymers srl,  
Abano Terme, 
Italy) 

 
 
 
 
 
 
 

Silicone 
covering.  
Need for 
autograft. 

Esterified 
hyaluronic acid 
matrix with 
autologous 
fibroblasts. 

Store in cool, 
dry place 

FDA Approval for 
burns and diabetic 
foot ulcers. 

Composite 
Replacement 

Cellular Apligraft® 
(Organogenesis, 
Canton, MA and 
Novartis 
Pharmaceuticals, 
East Hanover, 
NJ) 

 
 
 
 
 
 
 
 

Neonatal 
foreskin 
keratinocytes. 

Bovine collagen 
I with neonatal 
foreskin 
fibroblasts. 

Stored at 37°C FDA approval for 
burns, and venous 
and diabetic ulcers. 

OrCel™ (Ortec 
International 
Inc., New York, 
NY) 

 
 
 
 
 

Allogenic 
keratinocytes 
cultured on 
bilayered 
collagen 
matrix. 

Bilayered 
matrix of 
bovine collagen 
I with 
fibroblasts. 

Stored at 37°C FDA approval for 
burns. 

Table 2.1 Summary of Commercially Available Bioengineered Skin Substitutes - continued 



   
Chapter 2 

Background 
27 

   
 

2.7 REFERENCES 
 
1. Swanson J, Melton J. Anatomy and Histology of Normal Skin. Dermatology Atlas: Loyola 

University Dermatology Medical Education Website 1996. 
2. Parenteau NL, Hardin-Young, J., and Ross, R.N. Skin. In: Vacanti J, editor. Principles of Tissue 

Engineering. San Diego: Academic Press; 2000. 
3. Bush KA, Pins GD. Nano- and Microtechnologies for Development of Engineered Skin 

Substitutes. In: Khademhosseini A, Borenstein J, Toner M, Takayama S, editors. Micro and 
Nanoengineering of the Cell Microenvironment: Technologies and Applications. Boston: Artech 
House; 2008. 

4. Harper RA, Grove G. Human skin fibroblasts derived from papillary and reticular dermis: 
differences in growth potential in vitro. Science 1979;204(4392):526-7. 

5. Tajima S, Pinnell SR. Collagen synthesis by human skin fibroblasts in culture: studies of 
fibroblasts explanted from papillary and reticular dermis. J Invest Dermatol 1981;77(5):410-2. 

6. Holbrook K. Ultrastructure of the epidermis. In: Leigh IM, Lane EB, Watt FM, editors. The 
Keratinocyte Handbook. New York: Press Syndicate of the University of Cambridge; 1994. p 3-
39. 

7. Potten CS, Morris RJ. Epithelial stem cells in vivo. J Cell Sci Suppl 1988;10:45-62. 
8. Jones PH. Epithelial stem cells. Bioessays 1997;19(8):683-90. 
9. Potten CS. Cell replacement in epidermis (keratopoiesis) via discrete units of proliferation. Int Rev 

Cytol 1981;69:271-318. 
10. Jones PH, Watt FM. Separation of human epidermal stem cells from transit amplifying cells on the 

basis of differences in integrin function and expression. Cell 1993;73(4):713-24. 
11. Jones PH, Harper S, Watt FM. Stem cell patterning and fate in human epidermis. Cell 

1995;80(1):83-93. 
12. Adams JC, Watt FM. Changes in keratinocyte adhesion during terminal differentiation: reduction 

in fibronectin binding precedes alpha 5 beta 1 integrin loss from the cell surface. Cell 
1990;63(2):425-35. 

13. Hotchin NA, Gandarillas A, Watt FM. Regulation of cell surface beta 1 integrin levels during 
keratinocyte terminal differentiation. J Cell Biol 1995;128(6):1209-19. 

14. Gu LH, Coulombe PA. Keratin function in skin epithelia: a broadening palette with surprising 
shades. Curr Opin Cell Biol 2007;19(1):13-23. 

15. Markova NG, Marekov LN, Chipev CC, Gan SQ, Idler WW, Steinert PM. Profilaggrin is a major 
epidermal calcium-binding protein. Mol Cell Biol 1993;13(1):613-25. 

16. Holbrook KA. Biologic structure and function: perspectives on morphologic approaches to the 
study of the granular layer keratinocyte. J Invest Dermatol 1989;92(4 Suppl):84S-104S. 

17. Potts RO, Francoeur ML. The influence of stratum corneum morphology on water permeability. J 
Invest Dermatol 1991;96(4):495-9. 

18. Kligman AM. The biology of the stratum corneum. In: Montagna W, Lobitz WC, editors. The 
Epidermis. New York: Academic Press; 1964. p 387-433. 

19. Holbrook KA. Ultrastructure of the epidermis. In: Leigh I, Lane B, Watt FM, editors. The 
Keratinocyte Handbook. New York: Cambridge University Press; 1994. p 3-39. 

20. Martini F, Nath J. Fundamentals of Anatomy and Physiology (8th Edition) Benjamin Cummings; 
2005, page 159. 

21. Young B, Burkitt HG, Heath JW, Wheater PR. Wheater's Functional Histology: Figure 9.2. 
22. Jastrow H. Workshop Anatomy for the Internet: Electron Microscopic Atlas of cells, tissues, and 

organs. Overview basement membrane and basal lamina Mainz, Germany; 1998. 
23. Alberts ea. Molecular Biology of The Cell. New York: Garland Science; 2002. 
24. Burgeson RE. Basement Membranes. Dermatology in General Medicine. New York, NY: 

McGraw-Hill; 1987. p 288-303. 
25. Lavker RM, Sun TT. Heterogeneity in epidermal basal keratinocytes: morphological and 

functional correlations. Science 1982;215(4537):1239-41. 
26. Lavker RM, Sun TT. Epidermal stem cells. J Invest Dermatol 1983;81(1 Suppl):121s-7s. 



   
Chapter 2 

Background 
28 

   
 

27. Carter WG, Symington BE, Kaur P. Cell adhesion and the basement membrane in early epidermal 
morphogenesis. In: Fleming TP, editor. Epithelial Organization and Development. London: 
Chapman and Hall; 1992. p 299-327. 

28. Jensen UB, Lowell S, Watt FM. The spatial relationship between stem cells and their progeny in 
the basal layer of human epidermis: a new view based on whole-mount labelling and lineage 
analysis. Development 1999;126(11):2409-18. 

29. Odland GF. The morphology of the attachment between the dermis and the epidermis. Anat Rec 
1950;108(3):399-413. 

30. Enoch S, Price P. Cellular, molecular and biochemical differences in the pathophysiology of 
healing between acute wounds, chronic wounds and wound in the aged. World Wide Wounds 
(Online Publication) 2004. 

31. Clark RA, Singer AJ. Wound Repair: Basic Biology to Tissue Engineering. In: Lanza RP, Langer 
R, Vacanti J, editors. Principles of Tissue Engineering, Second Edition. Boston: Academic Press; 
2000. p 857-878. 

32. Clark RAF. Wound Repair: Overview and General Considerations. In: Clark RAF, editor. The 
Molecular and Cellular Biology of Wound Repair (Second Edition). New York, NY: Plenum 
Press; 1995. 

33. Clark RA, Lanigan JM, DellaPelle P, Manseau E, Dvorak HF, Colvin RB. Fibronectin and fibrin 
provide a provisional matrix for epidermal cell migration during wound reepithelialization. J 
Invest Dermatol 1982;79(5):264-9. 

34. Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med 1999;341(10):738-46. 
35. Krawczyk WS. A pattern of epidermal cell migration during wound healing. J. Cell Biology 

1971;49:247-263. 
36. Nathan C, Sporn M. Cytokines in context. J Cell Biol 1991;113(5):981-6. 
37. Clark R. Wound Repair, Overview and General Considerations. In: Clark R, editor. The Molecular 

and Cellular Biology of Wound Repair (Second Edition). New York: Plenum Press; 1995. p 3-44. 
38. Kurkinen M, Vaheri A, Roberts PJ, Stenman S. Sequential appearance of fibronectin and collagen 

in experimental granulation tissue. Lab Invest 1980;43(1):47-51. 
39. Welch MP, Odland GF, Clark RA. Temporal relationships of F-actin bundle formation, collagen 

and fibronectin matrix assembly, and fibronectin receptor expression to wound contraction. J Cell 
Biol 1990;110(1):133-45. 

40. Yamauchi M, London RE, Guenat C, Hashimoto F, Mechanic GL. Structure and formation of a 
stable histidine-based trifunctional cross-link in skin collagen. J Biol Chem 1987;262(24):11428-
34. 

41. Birk DE, Zycband EI, Winkelmann DA, Trelstad RL. Collagen fibrillogenesis in situ: fibril 
segments are intermediates in matrix assembly. Proc Natl Acad Sci U S A 1989;86(12):4549-53. 

42. Singer, II, Kawka DW, Kazazis DM, Clark RA. In vivo co-distribution of fibronectin and actin 
fibers in granulation tissue: immunofluorescence and electron microscope studies of the 
fibronexus at the myofibroblast surface. J Cell Biol 1984;98(6):2091-106. 

43. Levenson SM, Geever EF, Crowley LV, Oates JF, 3rd, Berard CW, Rosen H. The Healing of Rat 
Skin Wounds. Ann Surg 1965;161:293-308. 

44. Burn incidence and treatment in the United States: 1999 Fact Sheet. Philadelphia, PA: The Burn 
Foundation; 1999. 

45. Brigham PA, McLoughlin E. Burn incidence and medical care use in the United States: estimates, 
trends, and data sources. J Burn Care Rehabil 1996;17(2):95-107. 

46. Saffle JR, Davis B, Williams P. Recent outcomes in the treatment of burn injury in the United 
States: a report from the American Burn Association Patient Registry. J Burn Care Rehabil 
1995;16(3 Pt 1):219-32; discussion 288-9. 

47. Supp DM, Boyce ST. Engineered skin substitutes: practices and potentials. Clin Dermatol 
2005;23(4):403-12. 

48. Rose JK, Herndon DN. Advances in the treatment of burn patients. Burns 1997;23 Suppl 1:S19-
26. 



   
Chapter 2 

Background 
29 

   
 

49. Carlson B. BioMarget Trends: Phalanx of Treatments Propels Burn Market: Recombinant Growth 
Factor Theapies Are Predicted to Be Up-and-Coming Players. Genetic Engineering and 
Biotechnology News 2008. 

50. Sheridan RL, Tompkins RG. Skin substitutes in burns. Burns 1999;25(2):97-103. 
51. Boyce ST. Design principles for composition and performance of cultured skin substitutes. Burns 

2001;27(5):523-33. 
52. Bush KA, Pins GD. Nano- and Microtechnologies for the Development of Engineered Skin 

Substitutes. In: Khademhosseini A, Borenstein J, Toner M, Takayama S, editors. Micro and 
Nanoengineering of the Cell Microenvironment. Boston: Artech House; 2008. p 579-600. 

53. Demling R. Use of the Temporary Skin Substitute,  BIOBRANE®  In the Management of Partial 
Thickness Burns and Wounds. Journal of Burns and Wounds (online journal). 

54. Burn Care: Biobrane. UDL Laboratories, Inc. 2005. 
55. Boyce ST. Cultures Skin Substitutes: A Review. Tissue Eng 1996;2:255-266. 
56. Ghosh MM, Boyce S, Layton C, Freedlander E, Mac Neil S. A comparison of methodologies for 

the preparation of human epidermal-dermal composites. Ann Plast Surg 1997;39(4):390-404. 
57. Wong T, McGrath JA, Navsaria H. The role of fibroblasts in tissue engineering and regeneration. 

Br J Dermatol 2007;156(6):1149-55. 
58. Green H, Kehinde O, Thomas J. Growth of cultured human epidermal cells into multiple epithelia 

suitable for grafting. Proc Natl Acad Sci U S A 1979;76(11):5665-8. 
59. Rheinwald JG, Green H. Formation of a keratinizing epithelium in culture by a cloned cell line 

derived from a teratoma. Cell 1975;6(3):317-30. 
60. Clark RA, Ghosh K, Tonnesen MG. Tissue engineering for cutaneous wounds. J Invest Dermatol 

2007;127(5):1018-29. 
61. Compton CC, Gill JM, Bradford DA, Regauer S, Gallico GG, O'Connor NE. Skin regenerated 

from cultured epithelial autografts on full-thickness burn wounds from 6 days to 5 years after 
grafting. Lab Invest 1989;60:600-612. 

62. Gallico 3rd GG, O'Connor NE, Compton CC, Kehinde O, Green H. Permanent coverage of large 
burn wounds with autologous cultured human epithelium. N. Engl. J. Med. 1984;311:448-451. 

63. Sheridan RL, Tompkins RG. Cultured autologous epithelium in patients with burns of ninety 
percent or more of the body surface. J Trauma 1995;38:48-50. 

64. Jones I, Currie L, Martin R. A guide to biological skin substitutes. Br J Plast Surg 2002;55(3):185-
93. 

65. Lam PK, Chan ESY, Liew CT, Lau CH, Yen SC, King WWK. Development and evaluation of a 
new composite Laserskin graft. J Trauma 1999;47:918-22. 

66. Lam PK, Chan ESY, Liew CT, Lau CH, Yen SC, King WWK. Combination of a new composite 
biocompatible skin graft on the neodermis of artificial skin in an animal model. ANZ Journal of 
Surgery 2002;72:360-363. 

67. Rennekampff HO, Kiessig V, Hansbrough JF. Current concepts in the development of cultured 
skin replacements. J Surg Res 1996;62(2):288-95. 

68. Grant I, Warwick K, Marshall J, Green C, Martin R. The co-application of sprayed cultured 
autologous keratinocytes and autologous fibrin sealant in a porcine wound model. Br J Plast Surg 
2002;55(3):219-27. 

69. Ronfard V, Broly H, Mitchell V, Galizia JP, Hochart D, Chambon E, Pellerin P, Huart JJ. Use of 
human keratinocytes cultured on fibrin glue in the treatment of burn wounds. Burns 
1991;17(3):181-4. 

70. Ronfard V, Rives JM, Neveux Y, Carsin H, Barrandon Y. Long-term regeneration of human 
epidermis on third degree burns transplanted with autologous cultured epithelium grown on a 
fibrin matrix. Transplantation 2000;70(11):1588-98. 

71. Cuono C, Langdon R, McGuire J. Use of cultured epidermal autografts and dermal allografts as 
skin replacement after burn injury. Lancet 1986;1(8490):1123-4. 

72. Compton CC, Hickerson W, Nadire K, Press W. Acceleration of skin regeneration from cultured 
epithelial autografts by transplantation to homograft dermis. J Burn Care Rehabil 1993;14(6):653-
62. 



   
Chapter 2 

Background 
30 

   
 

73. Orgill DP, Butler C, Regan JF, Barlow MS, Yannas IV, Compton CC. Vascularized collagen-
glycosaminoglycan matrix provides a dermal substrate and improves take of cultured epithelial 
autografts. Plast Reconstr Surg 1998;102(2):423-9. 

74. Kangesu T, Navsaria HA, Manek S, Shurey CB, Jones CR, Fryer PR, Leigh IM, Green CJ. A 
porcine model using skin graft chambers for studies on cultured keratinocytes. Br J Plast Surg 
1993;46(5):393-400. 

75. Navsaria HA, Kangesu T, Manek S, Green CJ, Leigh IM. An animal model to study the 
significance of dermis for grafting cultured keratinocytes on full thickness wounds. Burns 1994;20 
Suppl 1:S57-60. 

76. Coulomb B, Lebreton C, Dubertret L. Influence of human dermal fibroblasts on epidermalization. 
J Invest Dermatol 1989;92(1):122-5. 

77. Coulomb B, Friteau L, Baruch J, Guilbaud J, Chretien-Marquet B, Glicenstein J, Lebreton-
Decoster C, Bell E, Dubertret L. Advantage of the presence of living dermal fibroblasts within in 
vitro reconstructed skin for grafting in humans. Plast Reconstr Surg 1998;101(7):1891-903. 

78. Yannas IV, Burke JF, Orgill DP, Skrabut EM. Wound tissue can utilize a polymeric template to 
synthesize a functional extension of skin. Science 1982;215(4529):174-6. 

79. Yannas IV, Burke JF, Gordon PL, Huang C, Rubenstein RH. Design of an artificial skin. II. 
Control of chemical composition. J Biomed Mater Res 1980;14(2):107-32. 

80. Heimbach D, Luterman A, Burke J, Cram A, Herndon D, Hunt J, Jordan M, McManus W, Solem 
L, Warden G and others. Artificial dermis for major burns. A multi-center randomized clinical 
trial. Ann Surg 1988;208(3):313-20. 

81. Prunieras M, Regnier M, Woodley D. Methods for cultivation of keratinocytes with an air-liquid 
interface. J Invest Dermatol 1983;81(1 Suppl):28s-33s. 

82. Andreadis ST, Hamoen KE, Yarmush ML, Morgan JR. Keratinocyte growth factor induces 
hyperproliferation and delays differentiation in a skin equivalent model system. Faseb J 
2001;15(6):898-906. 

83. Lattari V, Jones LM, Varcelotti JR, Latenser BA, Sherman HF, Barrette RR. The use of a 
permanent dermal allograft in full-thickness burns of the hand and foot: a report of three cases. J 
Burn Care Rehabil 1997;18(2):147-55. 

84. Sheridan R, Choucair R, Donelan M, Lydon M, Petras L, Tompkins R. Acellular allodermis in 
burns surgery: 1-year results of a pilot trial. J Burn Care Rehabil 1998;19(6):528-30. 

85. Wainwright DJ. Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-
thickness burns. Burns 1995;21(4):243-8. 

86. Kealey GP, Aguiar J, Lewis RW, 2nd, Rosenquist MD, Strauss RG, Bale JF, Jr. Cadaver skin 
allografts and transmission of human cytomegalovirus to burn patients. J Am Coll Surg 
1996;182(3):201-5. 

87. Bell E, Ehrlich HP, Buttle DJ, Nakatsuji T. Living tissue formed in vitro and accepted as skin-
equivalent tissue of full thickness. Science 1981;211(4486):1052-4. 

88. Falanga VJ. Tissue engineering in wound repair. Adv Skin Wound Care 2000;13(2 Suppl):15-9. 
89. Ramsey SD, Newton K, Blough D, McCulloch DK, Sandhu N, Reiber GE, Wagner EH. 

Incidence, outcomes, and cost of foot ulcers in patients with diabetes. Diabetes Care 
1999;22(3):382-7. 

90. Falanga V, Margolis D, Alvarez O, Auletta M, Maggiacomo F, Altman M, Jensen J, Sabolinski M, 
Jardin-Young J. Rapid healing of venous ulcers and lack of clinical rejection with an allogeneic 
cultured human skin equivalent. Arch Dermatol. 1998;134:293-300. 

91. Falanga V, Sabolinski M. A bilayered living skin construct (APLIGRAF) accelerates complete 
closure of hard-to-heal venous ulcers. Wound Repair Regen 1999;7(4):201-7. 

92. Boyce ST, Christianson DJ, Hansbrough JF. Structure of a collagen-GAG dermal skin substitute 
optimized for cultured human epidermal keratinocytes. J Biomed Mater Res 1988;22(10):939-57. 

93. Boyce ST, Hansbrough JF. Biologic attachment, growth, and differentiation of cultured human 
epidermal keratinocytes on a graftable collagen and chondroitin-6-sulfate substrate. Surgery 
1988;103(4):421-31. 



   
Chapter 2 

Background 
31 

   
 

94. Hansbrough JF, Boyce ST, Cooper ML, Foreman TJ. Burn Wound Closure with Cultured 
Autologous Keratinocytes and Fibroblasts Attached to a Collagen-Glycosaminoglycan Substrate. J 
Amer Med Assoc 1989;262(15):2125-2130. 

95. Boyce ST, Goretsky MJ, Greenhalgh DG, Kagan RJ, Rieman MT, Warden GD. Comparative 
assessment of cultured skin substitutes and native skin autograft for treatment of full-thickness 
burns. Ann Surg 1995;222(6):743-52. 

 
 



   
Chapter 3 

Fibronectin Enhances Keratinocyte Attachment to Basal Lamina Analogs 
32 

   
 

 

 

 

 
3.1 INTRODUCTION 

Bioengineered skin substitutes composed of biomaterials and cultured cells offer an 

advanced wound therapy to patients suffering from severe burns and chronic ulcers.  Despite 

favorable results with these analogs, there is still a need to improve the rate at which 

autologous keratinocytes attach, populate, and epithelialize the surface of the biomaterial 

scaffold, as well as to improve the integration of the analog with the surrounding 

environment.1-4 Optimizing current design strategies requires understanding the underlying 

mechanisms by which the biochemical composition of native skin modulates keratinocyte 

adhesion, proliferation, and differentiation.5-7  Current knowledge indicates that during the 

initial phase of reepithelialization, basal and suprabasal keratinocytes interact directly with 

dermal collagens as well as with other extracellular matrix (ECM) proteins found in the 

wound environment.8,9  These initial cell-ECM adhesions are responsible for initiating and 

controlling subsequent cellular signaling events.10-12  

 

To elucidate relationships between ECM cues and keratinocyte functions related to epithelial 

morphogenesis, investigators have examined the mechanisms that modulate cell attachment, 

proliferation, and terminal differentiation in tissue culture models13-15  and on engineered 

scaffolds.16-19 Studies using bacteriological plastic have found that when type I collagen (CI), 

type IV collagen (CIV), laminin (LN), and fibronectin (FN) were present on the surfaces, the 

percentage of adherent keratinocytes depended on the concentration of the ECM protein 

used, with FN having a significantly greater effect on overall cellular attachment.21  Collagen 

type I, CIV, LN, and FN have also been investigated on polystyrene, and a higher percentage 
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of basal keratinocytes adhered to CIV than to polystyrene, indicating a potential use of ECM 

proteins in selecting for discrete populations of keratinocytes.  In addition to attachment 

studies, CI, LN, and FN have also been found to affect migration, proliferation, and 

differentiation of keratinocytes.  Adsorption of CI on both poly(lactide-glycolide) (PLGA) 

and polystyrene substrates enhanced keratinocyte migration,16,19  adsorption of LN on 

polystyrene stimulated keratinocyte migration and proliferation,19,22 and adsorption of FN on 

polystyrene promoted keratinocyte migration and inhibited terminal differentiation (Table 

3.1).16,23 Additionally, keratinocyte attachment to biomaterial surfaces that have been 

conjugated with bioactive sequences that mimic cell binding domains of ECM proteins have 

been investigated.  Sequences for LN were found to enhance keratinocyte attachment on 

polystyrene24 and collagenous material modified with arginine-glycine-aspartic acid (RGD) 

peptides greatly promoted keratinocyte attachment.18  Together, these studies demonstrate 

that biochemically modified substrates can be used to examine the mechanisms by which 

ECM proteins direct keratinocyte function.  These findings also suggest that precisely 

designed biomaterials can be used to enhance the performance of bioengineered skin 

substitutes. 

 

 

ECM PROTEIN SUBSTRATE RESPONSE 

Fibronectin • Tissue culture 
polystyrene25 

• Polyethylene glycol26 

• Attachment25 
 

• Attachment and 
migration26 

Collagen Type I • Poly(lactide-glycolide)19 • Migration19 
Collagen Type IV • Tissue culture 

polystyrene15 
• Attachment15 

Laminin • Tissue culture 
polystyrene22 

• Proliferation and 
migration22 

Table 3.1.  Effects of ECM on Keratinocyte Functions 
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In a recent study we developed collagen-glycosaminoglycan (GAG) membrane that 

functioned as basal lamina analogs, providing an interface that facilitates the formation of an 

epidermal layer on the surface of a dermal analog.27,28  A limitation of these membranes is 

that the surface biochemistry provides a limited number of cell-signaling cues that are known 

to promote reepithelialization.  We hypothesize that by incorporating ECM proteins onto the 

surface of a collagenous biomaterial substrate, we can control keratinocyte attachment and 

subsequent cell-signaling that leads to rapid morphogenesis of a robust epidermal layer.  

Characterizing the ECM environment that influences keratinocyte attachment will also 

facilitate the design of bioengineered skin substitute with surfaces tailored to promote 

increased epithelialization rates, thereby enhancing their performance. 

 

This chapter will discuss the methodology as well as results in establishing a quantitative link 

between keratinocyte attachment and ECM proteins coupled to collagen-GAG membranes.  

Briefly, a biomimetic design approach was used and we created basal lamina analogs that 

mimic the biochemical matrix composition of native tissue through passive adsorption of CI, 

CIV, LN, and FN.  To characterize the relationship between keratinocyte attachment and 

protein binding, a high-throughput screening (HTS) device was developed that allows for 

keratinocytes to be seeded on the surface of collagen-GAG membranes and for examination 

of the effects of individual proteins at various concentrations.  A tetrazolium-based 

colorimetric (MTT) assay was used to quantify attachment of viable keratinocytes.  

Comparative analysis of cellular attachment to the protein-conjugated surfaces suggests that 

keratinocyte attachment is enhanced when 0.1 mg/ml of FN is passively adsorbed to the 

surface of collagen-GAG membranes. 

 

 

 

 

 



   
Chapter 3 

Fibronectin Enhances Keratinocyte Attachment to Basal Lamina Analogs 
35 

   
 

3.2 MATERIALS AND METHODS  

3.2.1 High Throughput Screening (HTS) Device  

To measure keratinocyte attachment on modified collagen-GAG membranes, a HTS device 

was developed by our laboratory (Figure 3.120).  This device consists of two machined 

DelrinTM plates that sandwich a rehydrated collagen-GAG membrane.  The top DelrinTM 

plate of the device contains an array of 4.5 mm diameter through-holes.  The through-holes 

are fitted with silicone o-rings to form sealed wells for protein and cell solutions when the 

plates and the membrane are sandwiched together. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.2 Collagen-GAG Membranes 

3.2.2.1 Collagen-GAG Dispersion 

To produce collagen-GAG membranes, a collagen-GAG dispersion containing type I 

collagen (5 mg/ml) and GAG (0.18 mg/ml) was prepared according to previously described 

methods.29  Briefly, 3.6 g of lyophilized bovine collagen (Semed S, Kensey Nash Corp., 

Figure 3.1.  High Throughput Screening (HTS) Device.  (A) Assembled HTS device unit 
with DelrinTM plates screwed together and sandwiching a rehydrated collagen-GAG 
membrane.  (B) Collagen-GAG membranes were modified using a design of experiment 
scheme  so that each concentration of collagen type I: CI, collagen type IV: CIV, laminin: LN, 
and fibronectin: FN were repeated in triplicate. (C) Schematic drawing of the assembly process 
with a) referring to individual wells, b) referring to silicone o-rings that form tight seals on c) 
collagen-GAG membranes when plates are screwed together.20   
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Exton, PA) was added to 500 ml of 0.05 M acetic acid (EMD Chemicals, Inc., Gibbstown, 

NJ) and blended at a constant temperature of 4°C for 90 minutes at 20,000 rpm in a 

refrigerated homogenizer.  The collagen-GAG coprecipitate was formed by adding 100 ml of 

a 0.11% w/v solution of shark cartilage chondroitin 6-sulfate (Sigma, St. Louis, MI) to the 

blending collagen dispersion, then blending the collagen-GAG copolymer for an additional 

90 minutes.  Once fully blended, the collagen-GAG dispersion was degassed by 

centrifugation and stored at 4°C. 

 

3.2.2.2 Production of Collagen-GAG Membranes 

The collagen-GAG dispersion was cast onto flat 148.5 cm2 molds made of 

polydimethylsiloxane silicone elastomer (PDMS, Sylgard 184, Dow Corning Corp., Midland, 

MI).  The dispersion was air-dried for 48 hours in a laminar flow hood at room temperature 

and the resulting dried collagen-GAG membrane was gently peeled away from the PDMS 

surface. 

 

3.2.2.3 Dehydrothermal (DHT) Crosslinking of Collagen-GAG Membranes  

To stabilize the materials, dried collagen-GAG membranes were wrapped in aluminum foil, 

placed in an oven at room temperature, and subjected to a vacuum of less than 200 mTorr for 

24 hours.  The temperature within the vacuum oven was then increased to 105°C for 24 

hours.  Before removing membranes from the oven, the temperature was decreased to room 

temperature and the pressure was relieved.  Membranes were then stored in aluminum foil in 

a desiccator.30 

 

3.2.2.4 Modification of Crosslinked Collagen-GAG Membranes 

Stock solutions (2 mg/ml) of human FN (BD Biosciences, Bedford, MA), rat tail collagen CI 

(purified by our laboratory by methods described by Elsdale and Bard31, rat tails were 

received from animals that were euthanized for other protocols, which were approved by 

Worcester Polytechnic Institute, Worcester, MA, Institutional Animal Care and Use 
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Committee), and mouse CIV and LN (BD Biosciences) were prepared as per manufacturer’s 

instructions.  Each protein was fluorescently labeled using a 594 Alexa Fluor Protein 

Labeling Kit (Molecular Probes, Eugene, OR) and purified by dialyzing against their natural 

buffer using a Slide-A-Lyzer cassette (Pierce, Rockford, IL).   

 

After the proteins were conjugated to the Alexa 

Fluor dye and purified, serial dilutions were made 

for final protein concentrations of 1 mg/ml, 0.3 

mg/ml, 0.1 mg/ml, 0.03 mg/ml, 0 mg/ml using 

Dulbecco’s phosphate buffer saline (dPBS, 

Hyclone, Logan, UT). Crosslinked membranes were 

placed on the HTS device as described, and 126 μl 

of each protein concentration or dPBS (control 

sample) were placed in the wells in triplicate 

(Figure 3.1C20) overnight at 4°C to facilitate protein 

adsorption.  After 18 hours, the wells were rinsed 

two times with dPBS to remove non-adherent 

protein. 

 

3.2.2.5 Detection of Protein Modification 

Fluorescent microscopy was used to evaluate the 

adsorption of the various concentrations of the 

proteins on the collagen-GAG membranes.  The 

membranes were visualized for fluorescent 

emission at 594 nm using an upright Nikon Eclipse 

E400 Microscope (Nikon, Melville, NY) with a 2x 

objective.  Images were captured with a RT Color 

Spot camera (Diagnostic Instruments, Inc Sterling 

Figure 3.2. Analysis of ECM Protein 
Conjugation to Collagen-GAG 
Membrane.  Extracellular matrix proteins 
were each conjugated to an Alexa Fluor 
dye, diluted, passively adsorbed to 
individual regions of a collagen-GAG 
membrane, and fluorescently imaged.  
Each photograph (A) was converted to 256 
gray scale image (B) and fluorescence 
intensity of a 726 pixels by 696 pixels or 
2.64 mm by 2.53 mm region of interest 
outlined in white was measured (C) using 
Scion Image.  Scale bar in A = 0.5 mm.20 
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Heights, MI).  All images in each protein group received the same exposure time using Spot 

Analysis 4.0.9 software (Diagnostic Instruments) in order to assess protein adsorption.   

 

To determine the fluorescence intensity for each protein, each digital image was converted 

from 24 bit color (red channel only) (Figure 3.2A20) to 256 levels of gray using Scion Image 

Analysis Software (Figure 3.2B20) (Scion Corporation, Frederick, MD).  Each image was 

scaled in the same manner, and a profile plot was taken of a rectangular region of interest 

(ROI) with dimensions of 2.64 mm by 2.53 mm (726 pixels by 696 pixels) (Figure 3.2B20) .  

The profile plot was then inverted in order to report fluorescent intensity values of 0 

representing black and 255 representing white (Figure 3.2C20).   

 

3.2.3 Keratinocyte Attachment Assay 

3.2.3.1 Modification of Crosslinked Collagen-GAG Membranes  

To modify the surfaces of the crosslinked collagen-GAG membranes, various concentrations 

of non-labeled solutions the individual ECM proteins; CI, CIV, LN, or FN, were adsorbed to 

the membrane in different wells.  Each protein was prepared at an initial concentration of 1 

mg/ml per manufacturer’s instructions, then passively adsorbed onto the membranes in 

triplicate overnight at 4°C at final concentrations of 0.3 mg/ml, 0.1 mg/ml, 0.03 mg/ml or 

0.00 mg/ml (dPBS controls).  After incubation, each well was rinsed twice with dPBS 

followed by addition of 200 μl of dPBS containing 0.5 mg/ml heat denatured bovine serum 

albumin (BSA, Sigma) for 1 hour.  Each well was then rinsed twice with dPBS.  

 

3.2.3.2 Culture of Human Cells 

To measure keratinocyte attachment to the modified collagen-GAG membranes, the wells of 

the HTS device were seeded with human keratinocytes isolated from neonatal foreskins. 

Neonatal foreskins were obtained from non-identifiable discarded tissues from UMass 

Memorial Medical Center, Worcester, MA and were approved with exempt status from the 

New England Institutional Review Board.   Keratinocyte isolations were performed using an 
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enzymatic treatment with a dispase (Gibco, Gaithersburg, MD) solution.  The cells were 

propagated on a feeder layer of 3T3-J2 mouse fibroblasts (generously donated by Dr. Stelios 

Andreadis, State University of New York at Buffalo, Buffalo, NY) and cultured according to 

methods previously described28,32 using keratinocyte media consisting of a 3:1 mixture of 

DMEM (high glucose) and Ham’s F-12 medium (Life Technologies, Inc., Gaithersburg, MD)  

supplemented with 10% fetal bovine serum (FBS, Hyclone), 10-10 M cholera toxin (Vibrio 

Cholerae, Type Inaba 569 B), 5 μg/ml transferrin, 0.4 μg/ml hydrocortisone (Calbiochem, La 

Jolla, CA), 0.13 U/ml insulin, 1.4*10-4 M adenine, 2*10-9
 M triiodo-L-thyronine (Sigma), 1% 

penicillin/streptomycin (Invitrogen, Carlsbad, CA), and 0.01 μg/ml epidermal growth factor 

(EGF, BD Biosciences).  After 5 days of culture, cells were detached using 0.05% Trypsin-

EDTA (Invitrogen) and then rinsed with serum free and EGF free keratinocyte media.  

Passage 2 keratinocytes were used in all experiments. 

 

3.2.3.3 Quantification of Keratinocyte Attachment 

To determine the number of viable attached keratinocytes in each well, a tetrazolium-based 

colorimetric (thiazoyl blue tetrazolium bromide, MTT, Sigma) assay was performed.  The 

cells were seeded on protein modified collagen-GAG membranes (as previously described), 

with each well receiving 25,000 keratinocytes in serum free and epidermal growth factor free 

keratinocyte media for 3 hours at 37°C to facilitate attachment.  Before adding the MTT 

solution, each well was rinsed twice with PBSABC (EMD Chemicals) to remove non-

adherent cells.  MTT was prepared at a final concentration of 10 mg/ml and added to each 

well for 2 hours at 37°C.  After 2 hrs, the cells were rinsed twice with PBSABC and then 

dimethyl sulfoxide (DMSO, Sigma) was added to each well to lyse the cells.  A SpectraMax 

250 spectrophotometer (Molecular Devices, Sunnyvale, CA) was used along with Softmax 

Pro software version 3.1.2 (Molecular Devices) to determine the amount of dye absorbed by 

cells in each well using a protocol described previously by Ciapetti et. al.33 Absorbance 

values from the experimental groups were compared to absorbance values from a standard 

curve of keratinocytes plated on tissue culture polystyrene. 
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3.2.5 Statistical Analyses 

Sigma Stat Version 3.10 (Systat Software Inc., Richmond, CA) was used to determine 

statistical differences among the means of experimental groups.  To determine if the means 

of two different samples were significantly different, a Student’s t-test was performed when 

the samples were drawn from a normally distributed population with equal variance.  Sigma 

Stat uses the Kolmogorov-Smirnov test to test for a normally distributed population and a P 

value > 0.05 indicates normality.  For all parametric tests, Sigma Stat assumes equal 

variance.  When the data was not drawn from a normally distributed population (P value < 

0.05), a Mann-Whitney Rank Sum Test was used and a Levene Median test was used to 

determine equal variance with a P value > 0.05 indicating equal variance.  For both the 

Student’s t-test and the Mann-Whitney Rank Sum Test, a p value < 0.05 indicated a 

significant difference between the means of experimental groups.   

 

To determine statistical differences among the means of three or more experimental groups a 

One Way Analysis of Variance (ANOVA) was used when the samples were drawn from a 

normally distributed population with equal variance (Kolmogorov-Smirnov test for normal 

distribution and equal variance was assumed).  When the data was not normally distributed, a 

Kruskal-Wallis One way ANOVA on ranks was performed (Levene Median test to determine 

equal variance with a P > 0.05 indicating equal variance).  When a statistical difference was 

detected among the group means, a Tukey post-hoc analysis was performed for both the One 

Way ANOVA and Kruskal-Wallis One Way ANOVA on ranks.  A p value < 0.05, for both 

variance tests, indicated a significant difference between the groups. 
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3.3 RESULTS  

3.3.1 Protein Adsorption  

Examination of ECM proteins at each concentration through fluorescence microscopy 

allowed for the assessment of protein binding efficiency to the collagen-GAG membranes.  

To analyze the results we plotted the fluorescence intensity obtained at each concentration, of 

each protein (Figure 3.320).  A dose dependent increase in protein adsorption to the 

membranes was found for each protein examined. These increases are significantly different 

Figure 3.3. ECM Protein Conjugation to Collagen-GAG Membrane.  Plots showing 
the average fluorescence intensities for regions of interest that were analyzed for each 
protein conjugation condition.  Each data point represents the mean and standard error of 
the mean for two experiments, each having an n = 2. Statistical analyses were performed 
on membranes modified with collagen type I: CI, collagen type IV: CIV, laminin: LN, and 
fibronectin: FN amongst each concentration of 1 mg/ml, 0.3 mg/ml, 0.1 mg/ml, 0.03 
mg/ml, and for unmodified membranes.  * indicates p < 0.05 using One-way ANOVA 
with a Tukey Test and ** indicates p < 0.05 using Kruskal-Wallis one-way ANOVA on 
ranks with a Tukey Test.   Error bars indicate standard error.20 
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between protein concentrations of 0.3 mg/ml and non-modified membranes and between 1 

mg/ml and non-modified membranes for all proteins examined.   Fibronectin and CIV 

showed significant increases in protein binding efficiency between multiple concentrations, 

except between the two highest concentrations (0.3 mg/ml vs. 1.0 mg/ml).  This phenomenon 

was also observed during the CI and LN studies.   Based on this data, keratinocyte 

attachment studies were only conducted on adsorbed protein concentrations ranging from 0 

to 0.3 mg/ml. 

 

3.3.2 Keratinocyte Attachment to ECM Modified Collagen-GAG Membranes 
 
To characterize keratinocyte attachment to ECM proteins, cells were allowed to adhere for 3 

hrs to regions of collagen-GAG membranes that had been conjugated with a range of 

concentrations of CI, CIV, LN, and FN.  Attached viable cells were quantified through 

absorbance value measurements of solubilized tetrazolium crystals from the cell lysate. 

 

A standard curve of absorbance values from a given cell number was used to calculate the 

attached cells based on the absorbance value recorded.  The results of this study indicated 

that keratinocyte attachment was significantly enhanced by the type and concentration of 

ECM protein adsorbed to the surfaces of collagen-GAG membranes (Figure 3.420).  This 

effect was most pronounced when cells were attached to CIV and FN, when comparing the 

highest concentration studied (0.3 mg/ml) to unmodified membranes.  Cell attachment to 0.1 

mg/ml of FN was statistically greater than cell attachment to the unmodified membranes.  

There were no significant differences between keratinocytes attached to 0.1 mg/ml and 0.3 

mg/ml of FN.  Neither CI nor LN, at any studied concentration, promoted increased 

keratinocyte attachment to the collagen-GAG membrane over the baseline value for the 

unmodified membranes.   
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To compare the effects of protein concentrations on cell attachment, statistical analyses were 

performed at each of the varying concentrations.  At 0.03 mg/ml of protein modification, 

there were no statistical differences found between the various proteins or the unmodified 

membranes (Figure 3.5A20).  Increasing the protein concentration to 0.1 mg/ml induced 

changes from that seen for keratinocyte attachment on the unmodified membranes and the 

initial concentration examined (0.03 mg/ml) (Figure 3.5B20). At the protein concentration of 

Figure 3.4. Percent Keratinocyte Attachment on Biochemically Modified Collagen-GAG Membranes.  
Keratinocyte attachment values were measured on extracellular matrix modified collagen-GAG membranes.  
Each data point represents the mean and standard error of the mean for three experiments, each having n = 
6.  Statistical analyses were performed on membranes modified with collagen type I: CI, collagen type IV: 
CIV, laminin: LN, and fibronectin: FN amongst each concentration of 0.3 mg/ml, 0.1 mg/ml, 0.03 mg/ml, 
and for unmodified membranes.  * indicates p < 0.05 using One-way ANOVA with a Tukey Test and ** 
indicates p < 0.05 using Kruskal-Wallis one-way ANOVA on ranks with a Tukey Test.   Error bars indicate 
standard error.20 
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0.1 mg/ml, FN significantly increased 

keratinocyte attachment in comparison to 

the other proteins studied.  It was found 

that keratinocyte attachment was 13% 

greater on FN than on CIV, 18% greater 

than on LN, and 22% greater than on CI.  

When the protein concentration was 

increased to 0.3 mg/ml, cell attachment to 

LN was found to be significantly lower 

than FN (Figure 3.5C20).   Overall, a 

concentration of 0.1 mg/ml of FN induced 

the greatest keratinocyte attachment for all 

of the protein concentrations evaluated. 

 

3.4 DISCUSSION 

The goal of this study was to investigate the 

relationship between biochemical 

modifications of crosslinked collagen-GAG 

membranes and keratinocyte attachment as 

a function of protein composition and 

concentration in order to improve the rate 

of epithelialization of bioengineered skin 

substitutes.  A HTS device was developed 

by our laboratory to facilitate examination 

of passive adsorption of multiple proteins at 

varying concentrations on a collagen-GAG 

membrane as well as the attachment of 

viable keratinocytes.  This system allows for 

Figure 3.5. Effects of Protein Concentration on 
Percent Keratinocyte Attachment.  Keratinocyte 
attachment values were compared at 0.03 mg/ml 
(A), 0.1 mg/ml (B), and 0.3 mg/ml (C) CI, CIV, 
LN, and FN.  Three experiments, each having n = 6 
for each condition were evaluated.  The baseline 
value for percent keratinocyte attachment to 
unmodified collagen-GAG membranes was found to 
be 44.03% and the dotted lines represent the 
standard error of +/- of 1.3 from this baseline value.   
* indicates p < 0.05 using One-way ANOVA with a 
Tukey Test.  Error bars indicate standard error.20 

A

B

C



   
Chapter 3 

Fibronectin Enhances Keratinocyte Attachment to Basal Lamina Analogs 
45 

   
 

a minimization in variability for each experiment since one membrane and keratinocytes 

from the same culture can be used to examine large numbers of cell-protein interactions 

simultaneously.  Protein binding efficiency to the collagen-GAG membranes was determined 

as a function of concentration by means of fluorescent microscopy coupled with image 

analysis.  Viable keratinocyte attachment was evaluated using a MTT-attachment assay.  The 

results of our study indicate that keratinocyte attachment to basal lamina analogs is enhanced 

by passively adsorbing FN at 0.1 mg/ml to the surfaces of the membranes. 

 

Previous studies have demonstrated that collagen-GAG biomaterials prevent wound 

contraction, enhance the growth rate of keratinocytes, and lead to the regeneration of 

connective tissue.34,35  Crosslinking collagenous biomaterials with DHT has shown to 

increase the strength and decrease the reabsorption rate of these implant materials without 

introducing cytotoxic chemicals into the system.30,36  However, a limitation of using DHT 

crosslinking is that cellular attachment is compromised.  It has been suggested that DHT 

masks integrin binding sites that promote cellular attachment.37  We found that passively 

adsorbing ECM proteins to the surface of the DHT crosslinked collagen-GAG membrane 

significantly increased its ability to support cellular attachment.   Collagen type IV and FN 

provided an increase of 10% and 18% cellular attachment, respectively.   

 

The results of this study demonstrate a strong relationship between the ECM protein 

conjugated to the surface of a collagenous biomaterial and the specific cellular-matrix 

interactions that occur during keratinocyte attachment.  Protein conjugation results show an 

increase in fluorescence intensity for each protein as the concentrations increased to 0.3 

mg/ml, however CI and LN were found to have no significant effect on increasing 

keratinocyte attachment even at the highest concentrations.  These trends are consistent with 

previous studies performed by Adams et al. on bacteriological plastic,21 and can be explained 

by the integrin expression profile of cultured keratinocytes that facilitates for cell-ECM 

attachment.  
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The principle integrins on the surface 

of keratinocytes in non-wounded skin 

are α2β1, which bind cells to dermal 

collagens,21,38-40 and α3β1, which bind 

cells to LN (Figure 3.6A).41  After 

wounding, changes in the expression 

profile of integrins on the wound edge 

keratinocytes allow for dynamic 

interactions with the dermal ECM as 

well as with components of the 

provisional matrix supplied by the 

fibrin clot and endogenous protein 

secretion (Figure 3.6B).9  During this 

reepithelialization process, 

keratinocytes located at the margin of 

the wound, transition from a stationary 

to a migratory phenotype characterized 

by a flat and elongated morphology, 

reorganization of cytoskeletal and 

junctional complexes, and a change in integrin expression.42-47 Most notably, the change in 

integrin expression can be characterized by the induction of α5β1, an integrin responsible for 

binding cells to FN via the RGD sequence in the central cell binding domain of the 

molecule.9,21,39,45,48  Concomitant with this transition, keratinocytes detach from the basal 

lamina and migrate laterally by dynamically interacting with the dermal ECM as well as with 

the components of the provisional matrix supplied by the fibrin clot and endogenous protein 

secretion, through integrin based mechanisms.8-11 Studies investigating wound healing 

phenomenon in vivo have found FN present under the tip of a migrating epithelial tongue and 

Figure 3.6. Reepithelialization of Wound in Native 
Skin.  (A) depicts native healthy skin with the two main 
layers, the epidermis and dermis uninjured.  At the dermal-
epidermal junction is the basal lamina.  When a wound 
occurs (B) a fibrin clot forms and keratinocytes at the 
wound margin become activated and undergo a change in 
integrin expression.  (C) The activated keratinocytes begin 
to migrate until a monolayer of cells is formed. When a 
monolayer is formed, keratinocytes begin to proliferate 
and differentiate to fill the wound site and native 
physiology is returned (D).  

A 

B 

C 

D 
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an absence of both LN and CIV, which are known to be present at greater levels in the basal 

lamina, of healthy tissue.  Once the wound surface has been covered with a monolayer of 

keratinocytes and migration has ceased (Figure 3.6C), native basement membrane proteins, 

notably LN and CIV, reappear in a very ordered sequence from the margin of the wound 

inward, and keratinocytes return to the standard proliferation and differentiation program of 

the cell (Figure 6D).49,50   When keratinocytes are harvested and cultured in vitro, they 

exhibit the same change in expression profile of integrins as wounded keratinocytes and 

develop the ability to attach to FN.51  Together these findings demonstrate that FN based 

cellular adhesions as well as interactions with dermal collagens can be used to direct the 

spatial organization, migration, proliferation, and differentiation of keratinocytes and 

enhance the rate of reepithelialization of crosslinked collagenous biomaterials.9,10,52  

 

Characterizing the composition of ECM proteins that enhance keratinocyte attachment on 

collagen-GAG membranes is an important feature that can be leveraged for the design of 

bioengineered skin substitutes.  Increased attachment of keratinocytes is thought to facilitate 

a more rapid regeneration of the wound environment through outside-in signaling events that 

are controlled by cellular-integrin-ECM adhesions.  These signals are responsible for 

triggering migration, proliferation, and differentiation.53  To further test the hypothesis of this 

study the next step in our research plan is to build on our current results by establishing a 

quantitative link between the ECM composition of our basal lamina analogs and the 

formation of an epidermal layer.  Before doing so, we will first investigate the presentation of 

FN on our dermal scaffolds and study the effects of modification strategies on its 

presentation and overall bioactivity.  We believe that understanding how to strategically 

modify a biomaterial surface to increase its bioactivity is of great importance for enhancing 

epithelialization as well for engineering other functional tissues.   
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4.1 INTRODUCTION 

The role of extracellular matrix (ECM) proteins in directing keratinocyte function has been 

studied extensively during the reepithelialization phase of wound healing,1-3 in tissue culture 

models,4,5 and on the surfaces of biomaterials.6-8  Specifically, the ECM protein fibronectin 

(FN) plays an integral role in the attachment of keratinocytes and the regeneration of an 

epidermal layer in the wound healing environment.  Fibronectin is part of the provisional 

matrix that interacts with dermal collagens and provides signaling cues to direct 

reepithelialization.  The FN interactions with collagen are mediated by specific domains on 

the surfaces of collagen molecules that produce oriented FN binding, in a manner that 

presents FN binding sites for 

cellular interactions.  Specifically, 

the principle collagen found in the 

dermis is collagen type I (CI), and 

the FN binding site is found on the 

α1(I) chain between amino acid 

residues 757-791.9    

 

Fibronectin is a high molecular 

weight glycoprotein that is found 

in the ECM as well as in blood 

plasma (Figure 4.110).  Fibronectin 

is composed of three types of 

Chapter 4: Fibronectin Cellular Binding Site 
Availability

Figure 4.1. Structure of FN Monomer. 
Fibronectin monomer with expanded view of the 
9th and 10th type III repeat.  Integrin binding motif 
is displayed in yellow.10 
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repeating modules.  There are 12 type I repeats (~45 amino acids long), two adjacent type II 

repeats (60 amino acids long), and 15-17 type III repeats (~90 amino acids long).   The 

repeating modules of FN fold independently with 20-35% β-structure and no α-helix.  When 

assembled in ECM fibrils, the subunits unfold into elongated forms 2-3 nm in diameter and 

each subunit 60-70 nm in length.11,12   

 

Fibronectin contains an arginine-glycine-aspartic acid (RGD) binding domain that acts as a 

ligand for integrin receptors found on the surfaces of keratinocytes and other cells.13,14  

Studies have demonstrated that the conformation of adsorbed FN affects the availability of 

these ligand domains for integrin binding.   Furthermore, the presence of these domains 

directs specific functions of fibroblast,15  osteoblast,16 myoblast,17 and endothelial cells.18  

Although many research efforts have elucidated the importance of FN in controlling 

keratinocyte attachment, migration, proliferation, and differentiation,19-22 little research has 

been conducted to evaluate the roles of biomaterial substrate properties, including chemistry 

and hydrophobicity, on FN conformation and subsequent FN mediated keratinocyte 

functions.   

 

Understanding how to engineer biomaterial surfaces with the appropriate properties to 

present tailored biochemical signaling cues to keratinocytes, will ultimately lead to the 

design of dermal scaffolds that promote rapid reepithelialization and improve the 

performance of tissue engineered skin substitutes.  Self-assembled monolayers (SAMs) of 

alkanethiols on gold substrates offer an excellent model system to evaluate the effect of 

biomaterial surface properties on protein conformation and subsequent cellular interactions, 

due to their ease of fabrication and ability to present homogenous surface chemistries.23,24  

Various surface chemistries can be created by modifying the terminal functional group of 

alkanethiol molecules without altering other surface variables, such as roughness or 

topology.  Previous studies have demonstrated that both the hydrophobicity and charge of a 

SAM surface directly affect protein conformation and concentration and modulate cellular 
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signaling and subsequent cellular functions.15,16,23,25-28 

 

The purpose of this chapter was to evaluate the effect of FN concentration and conformation 

on keratinocyte attachment, morphology, and differentiation.  Using SAMs as model 

biomaterial surfaces, we analyzed FN adsorption and conformation at both low and saturated 

FN surface densities, as a function of different surface chemistries. Low FN surface density 

experiments were conducted to compare the effects of each surface chemistry on FN 

conformation and subsequent cellular functions, since each surface had the same amount of 

protein adsorbed. Saturated FN surface density experiments were conducted to analyze the 

effects of surface chemistry on FN conformation and concentration as well as their roles on 

keratinocyte functions. The availability of cellular binding sites was evaluated and correlated 

with keratinocyte attachment, morphology, differentiation, as well as focal adhesion (FA) 

formation.  Comparative analyses of keratinocyte function on FN coated SAMs suggest that 

NH2 and CH3 terminated surfaces at saturated FN densities increase binding domain 

availability which correlates directly with increased control of keratinocyte attachment, 

morphology, and decreased differentiation through integrin mediated signaling mechanisms. 

 

4.2 MATERIALS AND METHODS  

4.2.1 Preparation of SAMs 

Gold surfaces on glass substrates were obtained commercially from Evaporated Metal Films 

(Ithaca, NY).  For monolayer formation, slides were cleaned and immersed in 1 mM 

alkanethiol solutions in absolute ethanol of dodecanethiol (CH3 surface, Alfa Aesar, Ward 

Hill, MA), 11-mercaptoundecanoic acid (COOH surface, Aldrich, Milwaukee, WI), 11-

mercapto-1-undecanol (OH surface, Aldrich), and 11-amino-1-undecanethiol, hydrochloride 

(NH2 surface, Dojindo Laboratories, Kumamoto, Japan) for 18 hours.  After a packed 

monolayer formed, the slides were removed from solution, rinsed with ethanol, and dried 

with nitrogen following protocols previously described.25,29  New films were prepared 

immediately prior to each characterization and cellular experiment. 
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4.2.2 Characterization of SAMs 

To measure the contact angle for each SAM surface, sessile drop measurements were 

obtained using a 100-00 Goniometer (Rame-Hart Netcong, NJ) with a protractor mounted in 

the eyepiece on 1 µl droplets of deionized water that were applied to the surface.  A 

minimum of four measurements were taken on each surface and the results were averaged.  

These measurements were repeated for each surface. 

 

To determine the thickness of the SAM layers on the surface of each substrate, ellipsometry 

measurements were obtained with a manual null ellipsometer (Rudolph, Denville, NJ).  Film 

thickness values were determined using regression algorithms with constant values of 1.457 

for the index of refraction of the film, 3.50 for the substrate absorption, and varying the index 

of refraction of the substrate from 0.15 – 0.30 in 0.05 increments.  For each SAM surface 5 

measurements were made.   

 

4.2.3 Culture of Neonatal Human Keratinocytes 

Neonatal foreskins were obtained from non-identifiable discarded tissues from UMass 

Memorial Medical Center, Worcester, MA and were approved with exempt status from the 

New England Institutional Review Board.   Keratinocyte isolations were performed using an 

enzymatic treatment with a dispase (Gibco, Gaithersburg, MD) solution.  The cells were 

propagated on a feeder layer of 3T3-J2 mouse fibroblasts (generously donated by Dr. Stelios 

Andreadis, State University of New York at Buffalo, Buffalo, NY) and cultured according to 

methods previously described30,31 using keratinocyte media consisting of a 3:1 mixture of 

Dulbecco’s Modified Eagle’s Medium (DMEM high glucose) and Ham’s F-12 medium (Life 

Technologies, Inc., Gaithersburg, MD)  supplemented with 10% fetal bovine serum (FBS, 

Hyclone, Logan, UT), 10-10 M cholera toxin (Vibrio Cholerae, Type Inaba 569 B), 5 μg/ml 

transferrin, 0.4 μg/ml hydrocortisone (Calbiochem, La Jolla, CA), 0.13 U/ml insulin, 1.4*10-4 

M adenine, 2*10-9
 M triiodo-L-thyronine (Sigma, St. Louis, MI), 1% penicillin/streptomycin 

(Invitrogen, Carlsbad, CA), and 0.01 μg/ml epidermal growth factor (EGF, BD Biosciences, 
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Bedford, MA).  After 5 days of culture, cells were detached using 0.05% Trypsin-EDTA 

(Invitrogen) and then rinsed with serum free and EGF free keratinocyte media KCM(-S-GF).  

For all cellular experiments, keratinocytes were seeded in KCM(-S-GF) and passage 2-4 

keratinocytes were used for all experiments. 

 

4.2.4 FN Adsorption on SAM Surfaces  

To create individual wells for cellular assays, 9 mm inner diameter adhesive silicone isolators 

(Grace BioLabs, Bend, OR) were affixed to SAM surfaces or tissue culture polystyrene cover 

slips (positive controls) (TCPS, Thermanox, Nunc, Rochester, NY).  Fibronectin (FN, BD 

Biosciences) was then passively adsorbed at low surface density or saturated surface density 

for 1 hour at room temperature.  Based on the results of previous studies 40 ng/cm2 of FN for 

each surface was used as the low surface density to achieve the same surface density of FN 

on each SAM surface.  This density was achieved by using 10 µg/ml of FN for the OH 

surface, 2 µg/ml of FN for the CH3, COOH, and NH2 surfaces, and 1 µg/ml of FN for the 

TCPS surface.17,29  Saturated surface densities were achieved using 25 µg/ml of FN, based on 

our ellipsometry data as well as previously reported values for SAM surfaces.24,29  This 

concentration produced surfaces with FN surface densities of approximately 110 ng/cm2, 360 

ng/cm2, 280 ng/cm2, 410 ng/cm2, and 400 ng/cm2 for OH, CH3, COOH, NH2, and TCPS 

surfaces, respectively.17,29  After FN adsorption, each well was blocked for non-specific 

binding using 1% heat denatured bovine serum albumin (BSA, Sigma) in dPBS (Hyclone). 

 

4.2.5 Determining Saturation Density of Adsorbed FN using Ellipsometry 

The thickness of the adsorbed FN on the SAM surfaces was quantified using ellipsometry 

methods previously described.24  Self-assembled monolayer substrates were prepared and 

individual wells were created on each surface.  Stock solutions of 0, 5, 25, and 100 µg/ml of 

FN were added to each well in dPBS for 1 hour or 4 hours at room temperature.  Each well 

was measured three times and average film thickness was recorded and compared with the 

initial value, determined during characterization of the untreated surfaces, to give the 
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thickness of adsorbed protein on each SAM surface.  This analysis was performed on each 

surface in triplicate and averages with standard deviations were reported. 

 

4.2.6 SAM Mediated Changes in FN Conformation  

To measure SAM dependent changes in adsorbed FN conformation and the availability of the 

central cellular binding domain on FN, a monoclonal antibody directed towards this domain 

(HFN 7.1, Developmental Studies Hybridoma Bank, Iowa City, IA) was used.32   Low 

surface density and saturated surface density FN treated SAM surfaces as well as TCPS 

surfaces were blocked using 1% heat denatured BSA (in dPBS) then incubated with HFN 7.1 

for 1 hour in 10% CO2 at 37°C.  Each surface was then rinsed in blocking buffer (0.05% 

Tween-20 (Sigma) and 0.25% BSA in dPBS) and incubated with 546 Alexa Fluor conjugated 

goat anti-mouse IgG (1:200 in blocking buffer, Molecular Probes, Eugene, OR ) for 1 hour in 

10% CO2 at 37°C.  Slides were then rinsed with dPBS, and images were captured using an 

RT Color Spot camera (Spot Diagnostics, Sterling Heights, MI).  Image J Analysis software 

(downloaded from http://rsb.info.nih.gov/ij/) was used to determine the relative amount of 

cellular binding sites on each FN treated SAM and control surface.  The total area of 

fluorescent pixels was calculated, normalized against the total area of each well examined, 

and the values are reported as HFN 7.1 percent positive area.  This assay was performed four 

times for each surface at each surface density.  Results are reported as averages and standard 

deviations.   

 

4.2.7 Cell Spreading 

To quantify the effect of FN treated SAM surfaces on keratinocyte morphology, cell 

spreading was measured using fluorescein-5-maleimide, as previously described.33  

Keratinocytes were seeded at a density of 5000 cells/well in KCM(-S-GF) and allowed to 

attach for 3 hours in 10% CO2 at 37°C.  After attachment, the wells were rinsed using 

PBSABC (EMD Chemicals, Gibbstown, NJ), fixed using 16% formaldehyde (Ted Pella, Inc., 

Redding, CA), and then permeated using 0.1% Triton X-100 (Sigma).  Fluorescein-5-
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maleimide (Molecular Probes) at 0.6 mM was added to the cells for 1 hour at room 

temperature.  This fluorescent compound becomes covalently coupled to functional groups of 

proteins found in the cell membrane.  After 1 hour, cells were rinsed with dPBS and cell 

nuclei were stained with a 0.06 mM solution of Hoechst nuclear reagent (Molecular Probes) 

for 5 minutes at 37°C. All images of stained cells were thresholded using the same image 

analysis protocol to clearly define cellular areas.  Each cell was traced and its area was 

calculated with Image J software.  For each surface condition, 15 random cells were 

analyzed. 

 

4.2.8 Analysis of Keratinocyte Attachment 

Keratinocytes were seeded at a density of 5000 cells/well in KCM(-S-GF) and allowed to 

attach for 3 hours in 10% CO2 at 37°C on each FN treated surface.  The wells were then 

rinsed using PBSABC and the cell nuclei were stained Hoechst nuclear reagent.  Images 

were captured to determine the number of attached cells in a defined region.  Assuming the 

cells were homogenously dispersed in each well, this value was used to extrapolate the total 

number of attached cells per well and normalized to the initial number of cells seeded.  For 

each surface condition examined, 3 separate wells were imaged and each experimental 

surface condition was assayed in duplicate.  Values are reported as percent keratinocyte 

attachment. 

 

4.2.9 Analysis of Keratinocyte Differentiation  

The percentage of involucrin positive keratinocytes  was detected by immunofluorescence 

staining using methods previously described.34  Involucrin is expressed by keratinocytes that 

have committed to terminal differentiation.35,36  Keratinocytes were allowed to attach on FN 

treated surfaces for 3 hours in KCM(-S-GF) in 10% CO2 at 37°C.  Following incubation, the 

wells were rinsed with PBSABC, fixed with 4% formaldehyde, and then permeabilized with 

0.5% Triton X-100 in dPBS.  The cells were treated with a monoclonal mouse anti-human 
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involucrin antibody (Clone SY5, Sigma) (1:50 dilution in blocking buffer; 0.05% Tween 20 

and 0.25% BSA in dPBS) for 1 hour at room temperature. 

 

Cells were then rinsed with blocking buffer and incubated with an Alexa Fluor 546 

conjugated goat anti-mouse secondary antibody (1:200 dilution in blocking buffer) for 45 

minutes in 10% CO2 at 37°C.  Immunofluorescence images were converted to binary images 

by thresholding to 50% of maximum intensity.  Thresholded cells that exhibited a fluorescent 

area greater than 100 µm2
 were marked 

involucrin positive.  The total cell number was 

also evaluated for each image and the 

percentage of involucrin positive cells for each 

image was reported.  For each surface condition, 

4 samples were evaluated and each experimental 

surface condition was assayed in duplicate. 

 

4.2.10 Fluorescence Assessment of FA 
Formation 
 
To further evaluate keratinocyte attachment on 

precisely tailored SAM surfaces, quantitative 

immunolocalization studies were used to 

evaluate the expression of the FA protein 

vinculin within the cells following a previously 

published method.37  Keratinocytes were seeded 

on FN treated surfaces for 3 hours in 10% CO2 

at 37°C.  Each of the cell seeded surfaces was 

then rinsed with PBSABC, treated for 10 

minutes with a solution to fix and permeabilize 

the cells (4% formaldehyde, 0.2% Triton X-100 

Figure 4.2. FA Validation on Tissue Culture 
Plastic.  An anti-vinculin antibody was used to 
determine presence of peripheral FAs.  
Keratinocytes were cultured on tissue culture 
plastic for 3 hours.  A and B represent cells that 
received both primary and secondary 
antibodies.  A is the brightfield image, and B is 
the fluorescent image to detect vinculin.  Note 
the punctuate staining at the cell peripheries in 
B.  C and D represent cells that received only 
the labeled secondary antibody.  C is the 
brightfield image, and D is the fluorescent 
image to detect vinculin. E and F represent 
cells that received neither the primary nor the 
secondary antibody.  E is the brightfield image, 
and F is the fluorescent image to detect 
vinculin. Scale bar represents 100 µm. 
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in dPBS), and then treated for 10 minutes with a blocking solution (1% BSA in dPBS) to 

minimize nonspecific binding.  The cells were then incubated with mouse anti-human 

vinculin primary antibody (Clone HVIN-1, Sigma) (1:100 dilution in blocking solution) for 

45 minutes in 10% CO2 at 37°C.  Following primary incubation, the surfaces were rinsed in 

1% BSA and incubated with Alexa Fluor 546 conjugated goat anti-mouse secondary 

antibody (1:100 in blocking solution) for 30 minutes in 10% CO2 at 37°C.  Figure 4.2 

displays validation of focal adhesion staining.  Figure 4.2A and 4.2B represent cells that 

received both primary and secondary antibodies.  In the fluorescent image (Figure 4.2B) 

punctate staining of vinculin is located at the edges of the cells, where focal adhesion are 

located.  Figures 4.2C and 4.2D represent cells that received only the labeled secondary, and 

it can be seen in 4.2D that there is no punctuate staining at the edges of the cells.  Figures 

4.2E and 4.2F are images that received neither primary nor secondary antibodies.  Images 

were all exposed to the same fluorescence intensity to allow for quantification of FAs.  Using 

Image J analysis software, the area of each individual FA was measured and the total area of 

FAs was summed for each individual cell.  This value was then normalized to the area of the 

corresponding cell to calculate the area density of focal adhesions for each cell.  For each 

surface condition, 10 cells were analyzed. 

 

4.2.11 Statistical Analyses 

Sigma Stat Version 3.10 (Systat Software Inc., Richmond, CA) was used to determine 

statistical differences among the means of experimental groups.  To determine if the means 

of two different samples were significantly different, a Student’s t-test was performed when 

the samples were drawn from a normally distributed population with equal variance.  Sigma 

Stat uses the Kolmogorov-Smirnov test to test for a normally distributed population and a P 

value > 0.05 indicates normality.  For all parametric tests, Sigma Stat assumes equal 

variance.  When the data was not drawn from a normally distributed population (P value < 

0.05), a Mann-Whitney Rank Sum Test was used and a Levene Median test was used to 

determine equal variance with a P value > 0.05 indicating equal variance.  For both the 
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Student’s t-test and the Mann-Whitney Rank Sum Test, a p value < 0.05 indicated a 

significant difference between the means of experimental groups.   

 

To determine statistical differences among the means of three or more experimental groups a 

One Way Analysis of Variance (ANOVA) was used when the samples were drawn from a 

normally distributed population with equal variance (Kolmogorov-Smirnov test for normal 

distribution and equal variance was assumed).  When the data was not normally distributed, a 

Kruskal-Wallis One way ANOVA on ranks was performed (Levene Median test to determine 

equal variance with a P > 0.05 indicating equal variance).  When a statistical difference was 

detected among the group means, a Tukey post-hoc analysis was performed for both the One 

Way ANOVA and Kruskal-Wallis One Way ANOVA on ranks.  A p value < 0.05, for both 

variance tests, indicated a significant difference between the groups. 

 

4.3 RESULTS  

4.3.1 Model Surfaces with Precisely Tailored Surface 
Chemistries 
 
Self-assembled monolayer surfaces presenting nonpolar 

hydrophobic (CH3), negatively charged (COOH), neutral 

hydrophilic (OH), and positively charged (NH2) surfaces were 

produced at physiological conditions (pH 7.4) (Figure 4.3).   

Contact angles obtained from this study were 112 ± 1° for 

CH3, 20 ± 2° for OH, 29 ± 2° for COOH, and 46 ± 2° for NH2 

(Table 4.1) and are comparable to previously reported values 

for the same or similar alkanethiols.29,38  

 

 

 

Figure 4.3 SAMs on Gold 
Surface.  Cartoon depicts 
alkanethiols with different 
functional end groups to obtain 
different chemistries on a gold 
surface.  The hydorphobicity of 
each alkanethiol increases going 
from left to right. 
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4.3.2 Determining Saturation Levels of FN 
 

At 1 hour, ellipsometry showed that 

the thickness of adsorbed FN 

increased between the surfaces 

treated with 5 µg/ml and 25 µg/ml 

and plateaued at a concentration of 

25 µg/ml on all SAM surfaces.  No 

statistical differences were observed 

between 25 µg/ml and 100 

µg/ml on any surface 

examined (Figure 4.439).  

When FN was adsorbed onto 

SAM surfaces for 4 hours, the 

thicknesses of the FN were 

comparable to those measured 

at 1 hr (data not included).  

When comparing the thicknesses of FN on each SAM surface after 25 µg/ml was adsorbed, 

no statistical differences were found.  Based on our ellipsometry data, we chose to use 25 

µg/ml as our FN concentration to saturate each SAM surface. 

 

 

Table 4.1 Contact Angle and Characteristic Properties of SAMs 

Figure 4.4. Relationship Between FN Concentration and 
Thickness on SAM Surfaces.  Ellipsometry was used to determine 
saturation levels of adsorbed FN on CH3, COOH, OH, and NH2 
terminated SAM surfaces.  FN concentrations of 0, 5, 25, and 100 
µg/ml were passively adsorbed for 1 hour. It was found that saturation 
was achieved for all surfaces at 25 µg/ml.  No statistical differences 
were found between 25 µg/ml and 100 µg/ml on each SAM surface or 
between different SAM surfaces at 25 µg/ml (One way ANOVA with 
Tukey post-hoc analysis).  For each surface condition 4 samples were 
evaluated at each concentration.  Data is plotted as mean ± standard 
deviations.39 
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4.3.3 Analysis of SAM Directed Changes in FN Conformation  
 
Analyses of fluorescent images indicated that at low surface density, FN treated OH surfaces 

exhibited a statistically greater HFN 7.1 positive area than the other surfaces evaluated 

(Figure 4.539).  When surfaces were treated with saturated surface densities of FN, HFN 7.1 

positive areas on CH3, and NH2 functionalized substrates as well as TCPS were statistically 

greater than the OH and COOH functionalized surfaces. 

 

 

 

 
 
 
 
 
 
 

 
4.3.4 SAM Dependent Changes in FN Treated Surfaces Direct Keratinocyte Attachment 
 
The percentage of keratinocyte attachment at low FN surface density was found to be 

significantly higher on OH terminated SAM surfaces (25%) than other surfaces evaluated (14 

– 18%) (Figure 4.639).  When comparing keratinocyte attachment at low surface density and 

saturated surface densities of FN for each surface condition, a statistically significant 

increase was found for all surfaces except for OH terminated surfaces.  At saturated surface 

densities of FN, keratinocyte attachment values on CH3, NH2, and TCPS surfaces were 

comparable to each other and significantly greater than on the other surfaces, 55% vs. 25%, 

Figure 4.5. Analysis of Changes in FN Conformation on SAM Surfaces.  To determine the relative quantity 
of cell binding sites of FN an antibody directed towards the RGD and PHSRN sites of was used.  At low FN 
surface density, OH terminated surfaces promoted a significant increase in positive HFN 7.1 area and at 
saturated FN surface densities, CH3, NH2, and TCPS surfaces facilitated a significant increase in positive HFN 
7.1 area.  For both low and saturated surface densities * indicates statistical difference using One way ANOVA 
with Tukey post hoc analysis p < 0.05.  Sample values of n = 4 and data is plotted as mean ± standard 
deviations.39 
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respectively.  These findings exhibit a trend that is consistent with the results of analyses of 

available cell binding epitopes for FN treated SAM surfaces.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.3.5 SAM Dependent Changes in Fibronectin Treated Surfaces Direct Keratinocyte 
Morphology  
 
At low FN surface densities, OH terminated SAM surfaces facilitated a statistically 

significant increase in cell spreading relative to all other surfaces analyzed (Figure 4.739). In 

comparing keratinocyte spreading at low surface density and saturated surface densities of 

FN for each surface condition, a statistically significant increase was found for all surfaces 

except for OH terminated surfaces.  When we evaluated the effects of FN treated SAM 

substrates at saturated surface densities, it was found that NH2, CH3, and TCPS surfaces 

mediated the same amount of keratinocyte spreading, and all of these surfaces promoted 

significantly greater keratinocyte spreading than OH and COOH functionalized surfaces. 

 

 

Figure 4.6. Keratinocyte Attachment on FN Treated SAM Surfaces.  Cell nuclei were stained to 
determine attachment percentage of keratinocytes on various SAM surfaces.  Results indicate that at low 
surface density OH terminated surfaces promoted a significant increase in percent keratinocyte attachment 
and at saturated surface densities there was a statistically significant increase in percent keratinocyte 
attachment on CH3, NH2, and TCPS surfaces.  For both low and saturated surface densities * indicates 
statistical difference using One way ANOVA with Tukey post hoc analysis p < 0.05.  Sample values of n =3 
and data is plotted as mean ± standard deviations.39 
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4.3.6 SAM Dependent Changes in 
FN Treated Surfaces Direct 
Keratinocyte Differentiation 
 
11-mercapto-1-undecanol SAM 

surfaces treated with low surface 

densities of FN exhibited a 

significantly lower percentage of 

involucrin positive cells when 

compared to the other surfaces, 

20% vs. 32-37% (Figure 4.839).  At 

saturated FN surface densities, 

Figure 4.7. Keratinocyte Spreading Area on FN Treated SAM Surfaces.  For morphological assessment 
of keratinocytes, cell spreading area was analyzed.  At low FN surface density, OH terminated surfaces 
promoted a significant increase in keratinocyte spreading and at saturated FN surface densities, CH3, NH2, 
and TCPS surfaces facilitated a significant increase in cell spreading.  For low surface density * indicates 
statistical difference using One way ANOVA with Tukey post hoc analysis p < 0.05 and for saturated 
surface density * indicates statistical difference using Kruskal-Wallis One way ANOVA on ranks with 
Tukey post hoc analysis p < 0.05.  Sample values of n = 15 and data is plotted as mean ± standard 
deviations.39 

Figure 4.8. The Effect of SAM Dependent Changes in FN on Keratinocyte Differentiation.  Keratinocytes 
expressing involucrin were considered differentiated and can be seen as the cells that are stained positive (open 
arrows), whereas keratinocytes that did not express the protein were considered to stain negative (closed 
arrows).  Fluorescent images of keratinocytes on NH2 surface at A) low surface density and B) at saturated 
surface densities.  A greater percentage of cells stained positive on the low surface density (A), in comparison 
to the percentage of cells that stained positive on the saturated surface densities (B).  At low surface density, 
the OH SAM has statistically lower amounts of positive involucrin expression than the other surfaces 
evaluated.  At saturated surface densities, CH3, NH2, and TCPS surfaces have statistically lower amounts of 
positive involucrin expression than COOH or OH terminated surfaces (C).  For both low and saturated surface 
densities * indicates statistical difference using One way ANOVA with Tukey post hoc analysis p < 0.05.  
Scale bar represents 50 µm.  Sample values of n = 4 and data is plotted as mean ± standard deviations.39 
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involucrin expression decreased significantly for all surfaces except OH terminated surfaces.  

Additionally, CH3, NH2, and TCPS surfaces were shown to have the lowest levels of 

involucrin positive expression (~11%). 

 
 

4.3.7 Quantification of FA on FN Treated SAM Surfaces  
 

Fluorescent images of keratinocytes on OH surfaces 

at low FN surface density suggest these cells had a 

greater spreading area and appeared to express more 

FAs than cells on the other surfaces.  At saturated 

FN surface densities, cells cultured on CH3, NH2, 

and TCPS surfaces displayed larger spreading areas 

and appeared to have more FAs than cells cultured 

on COOH and OH surfaces (Figure 4.939).  

Qualitative analyses showed that at a low FN 

surface density, the area density of FAs in each cell 

on OH terminated surfaces was statistically greater 

than on other surfaces At saturated FN surface 

densities, all surfaces except for the OH surface 

exhibited an increase in area density of FAs when 

compared to low FN surface densities and the area 

density of FAs on NH2, CH3, and TCPS surface was 

significantly greater than on the OH and COOH 

Figure 4.9. FA Analysis on SAM Surfaces.  An anti-vinculin antibody was used to determine presence of 
FAs.  Keratinocytes cultured on OH at low FN surface density appeared to have more FAs than on the other 
surfaces evaluated.  Cells cultured on CH3, NH2, and TCPS at saturated FN surface densities exhibited larger 
spreading areas and appeared to have more FA than the COOH and OH surfaces.  Additionally, when 
comparing FAs at low and saturated surface densities, CH3, COOH, NH2, and TCPS surfaces exhibited a 
difference in the size and number of FAs.  Scale bar represents 25 µm.39 



   
Chapter 4 

Fibronectin Cellular Binding Site Availability 
66 

   
 

surfaces (Figure 4.1039). Additionally, at saturated FN surface densities, we observed that the 

size and amount of FAs were greater on the NH2, CH3, and TCPS surfaces.   

 

 

4.4 DISCUSSION 

A critical component in the advancement of tissue engineered skin substitutes is the 

development of biomaterials that are tailored to include specific biochemical cues which 

direct cellular signaling and subsequent physiological functions.  In the present study, we 

used SAMs as model biomaterial surfaces to examine the role of surface chemistry on 

mediating the conformations and concentrations of adsorbed FN, as well as on directing 

keratinocyte functions that guide reepithelialization of dermal equivalents.  Overall, our 

results indicate the NH2 and CH3 functional groups at saturation densities facilitate the 

largest quantity of FN to be adsorbed, in a manner that promotes cell binding.  We also 

showed that the availability of synergy sites correlates with the number of FAs and 

Figure 4.10. FA Area Density Measurements. The area density of FAs was determined using 
immunostaining techniques coupled with fluorescent microscopy.  Keratinocytes cultured on OH at low FN 
surface density exhibited increased area density of FAs in comparison with the other surfaces examined.  At 
high FN surface density, increased area density of FAs were expressed on CH3, NH2, and TCPS surfaces in 
comparison with the OH and COOH surfaces.  For both low and saturated surface densities * indicates 
statistical difference using One way ANOVA with Tukey post hoc analysis p < 0.05.  Sample values of n = 
10 and data is plotted as mean ± standard deviations.39 
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hypothesize that integrin mediated mechanisms modulate keratinocyte spreading, attachment, 

and differentiation. 

 

The availability of the central cellular binding domain of FN, which spans the 9th and 10th 

type III repeats of the molecule, is known to play a major role in cellular attachment.  This 

FN domain encompasses the RGD and PHSRN binding sites which are critical for integrin 

binding and subsequent cellular signaling.40-42  Availability of this region, and the biological 

activity of the protein, is highly dependent on the proper structural orientation of the protein.  

The results of our studies indicate structural orientation and biological activity of FN is 

modulated by the surface chemistry of the substrate in a manner that is consistent with the 

results of previous research.17   

 

Low FN density experiments were carried out to evaluate the effects of conformation of FN 

since at low density the same amount of FN was adsorbed on each surface (40 ng/cm2). Our 

results indicate at low FN surface density, FN adsorbed on the OH terminated SAM 

exhibited a conformation that provided an increase in available cell binding sites, relative to 

the other SAMs and the control surface.  When evaluating keratinocyte spreading and 

attachment at the low surface density, we found a direct relationship between the number of 

available binding sites and keratinocyte spreading and attachment and an inverse relationship 

for keratinocyte differentiation.  

 

Saturated FN density experiments were also performed to analyze the effects of surface 

chemistry on conformation and concentration of FN.  At saturation densities, the OH surface 

exhibited the same amount of binding sites as the low density of FN on the OH surface, 

suggesting that the surface was saturated at both densities that were analyzed.  When 

characterizing the relative number of binding sites on FN on the CH3, NH2, COOH, and 

TCPS surfaces, an increase was found between low and saturated densities.  Fibronectin 

treated CH3, NH2, and TCPS surfaces at saturation densities exhibited a greater number of 
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binding sites than the COOH or OH surfaces. In a previous study, Keselowsky et al., reported 

that the density of FN on CH3 and NH2 surfaces was not statistically different from COOH 

SAM surfaces, at theoretical saturation densities.29  Our data indicates a less preferential 

cellular binding conformation was achieved on the COOH surface relative to the CH3 and 

NH2 surfaces. This study also showed that there was a significant difference between the 

density of FN on OH and COOH surfaces at saturation densities.  However, in our studies, 

there were no differences in available binding sites or functional measurements between 

these surfaces.  Together, these observations indicate that even though a greater FN density 

was achieved on the COOH surface, it does not yield a preferential cellular binding 

conformation in comparison with the NH2 and CH3 surfaces.  In addition, although the OH 

surface at the low surface density had increased cellular binding sites in comparison to the 

other surfaces, when the CH3 and NH2 surfaces received their saturation density of FN, they 

exhibited more binding sites.  It cannot be determined however, if the increased binding sites 

on the CH3 and NH2 surfaces in comparison to the OH surfaces were due to conformation or 

concentration, or a combination of the two, since more FN was adsorbed at the saturated 

densities on the CH3 and NH2 surfaces.   

 

One proposed mechanism to explain non-specific protein adsorption on well defined SAM 

surfaces is the hydrophobicity, or the wettability of the surface.  It has been reported that as a 

surface decreases in wettability (greater contact angle), an increase in non-specific protein 

adsorption occurs.23   Other findings suggest other mechanisms such as adsorption by charge-

charge interactions as well as specific structural features of the surface, are necessary to 

consider for the adsorption of high molecular weight proteins, such as FN.43-45  Evaluating 

the wettability and charge of the SAMs used in this study, we found the same relative amount 

of FN binding site presentation on CH3 and NH2 surfaces, which are hydrophobic (contact 

angle 112°) and neutral, and hydrophilic (contact angle 46°) and positive, respectively.  

These results suggest that a combination of mechanisms govern non-specific FN adsorption.  
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The differences in FN conformation and availability of binding sites coupled with variations 

in cellular responses on SAMs indicated that increased binding site presentation had a direct 

effect on controlling cellular processes on model biomaterial substrates.  To examine the role 

by which the surface properties contribute to directing cellular attachment, spreading, and 

differentiation, we measured changes in FA formations by probing the expression of vinculin 

in FA complexes.  Our FA data directly correlated with the number of binding sites as well as 

the up and down regulation of the cellular processes we examined.  Focal adhesion 

complexes facilitate the transmission of information between the intra- and extracellular 

environments through integrin based mechanisms.  Although we did not specifically probe 

for integrin subunits in this study, the strong correlations between FA expression and changes 

in cellular attachment, spreading, and differentiation to FN treated surfaces suggest these 

cellular functions were governed by integrin mediated signaling mechanisms.  Previous 

studies examining integrin expression profiles of activated keratinocytes, both in the wound 

environment and culture conditions, suggest that α5β1 is a principle integrin that interacts 

with the FN and transmits information that directs cellular processes involved in 

reepithelialization.5,46,47  These observations, together with the findings in this study, suggest 

that FN mediated regulation of keratinocyte functions is directed through the α5β1 integrin 

signaling pathway.  In future studies, we plan to develop quantitative relationships between 

keratinocyte functions, specific integrin signaling pathways, and the conformation of FN.  

These studies will yield a series of design parameters that will enhance the ability of 

biomaterials to control keratinocyte functionality for use as dermal equivalents.  Similarly, 

these design parameters will be applied to the development of percutaneous devices such as 

catheters and prosthesis attachments, which depend upon the rapid formation of a robust 

cutaneous seal with the surrounding epithelial tissue to prevent infections and implant failure.  

 

To improve the design of dermal analogs, it is essential to develop relationships 

characterizing keratinocyte interactions with FN moieties, presented at different surface 

densities and different conformations on the surfaces of biomaterials.  In the wound healing 
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environment, FN is part of the provisional matrix that interacts with dermal collagens and 

provides signaling cues to direct re-epithelialization.  These FN interactions with collagen are 

mediated by specific domains on the surfaces of collagen molecules that produce oriented FN 

binding, in a manner that presents FN binding sites for cellular interactions.  Specifically, the 

main collagen found in the dermis is collagen type I, and the FN binding site is found on the 

α1(I) chain between amino acid residues 757-791.9  In a study comparing the effects of 

adsorbed FN conformation on tissue culture polystyrene and collagen coated polystyrene, it 

was shown that the saturation density of FN on collagen was approximately half the amount 

of that on tissue culture polystyrene.  Additionally, when the surfaces were immunoprobed 

for quantities of cell binding domains at saturation densities, FN treated tissue culture 

polystyrene exhibited an increase in fluorescence intensity for HFN 7.1 binding relative to 

the values observed on FN treated collagen surfaces.  Furthermore, when equal surface 

densities of FN were adsorbed to tissue culture polystyrene and collagen surfaces, minimal 

myoblast differentiation was found on the tissue culture polystyrene surface in comparison 

with the collagen surface.17  These findings suggest that passively adsorbing FN to collagen 

surfaces and collagen membranes represents a promising, but suboptimal approach to 

directing keratinocyte functions on engineered biomaterials.  Additionally, the results of our 

present study suggest that strategically conjugating FN to the collagen membranes by 

functionalizing the surface of the collagen with a NH2 or CH3 terminated ligand will increase 

the availability of the FN synergy sites and will significantly enhance keratinocyte 

attachment and reepithelialization of collagen based dermal equivalents.  
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5.1 INTRODUCTION 

In the development of bioengineered skin substitutes for replacement of skin lost to trauma or 

disease, the addition of biologically active molecules, that promote key events in non-

scarring self-healing wounds, has the potential to guide epithelialization.  In the native 

wound environment, fibronectin (FN) is part of the provisional matrix that interacts with 

dermal collagens and promotes the migration of keratinocytes through granulation tissue of 

the wound.1-3  Fibronectin is also involved in basement membrane synthesis and organization 

of the wound site, which are critical for the reestablishment of a healthy functional tissue.4  In 

vitro studies have examined the effect of FN on keratinocyte functions necessary for 

reepithelialization. When FN was passively adsorbed on bacteriological plastic, an increase 

in percentage of adherent cells was obtained.5  Studies where polystyrene was coated with 

FN showed enhanced migration6  and inhibition of terminal differentiation on the FN 

surfaces.7  Fibronectin also has been passively adsorbed to biomaterials that have the 

potential for implantation. Studies incorporating FN on the surface of PLGA, through passive 

adsorption, found limited keratinocyte migration; however, it was found that when FN was 

passively adsorbed to collagen, migration increased.8  Research investigating passive 

adsorption of FN to collagen-glycosaminoglycan (GAG) membranes found an increase in 

attachment over non-modified collagen surfaces.9 
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In addition to investigating keratinocyte responses to full FN molecules, the modification of 

biomaterial surfaces with synthetic peptides located in the central cellular binding domain of 

FN, specifically the arginine-glycine-aspartic acid (RGD) sequence have been examined. 

Arginine-glycine-aspartic acid peptides have been covalently coupled to collagen-GAG 

matrices10 and to a hyaluronate synthetic matrix.11  Both studies found increased keratinocyte 

attachment and spreading in comparison to those on unmodified matrices.  Although this 

approach allows for more RGD sites to be expressed on the surface of the biomaterials, these 

short sequences lack full biological activity when compared with the native protein.12,13 

 

During wound healing, as well as in cell culture expansion from healthy skin, keratinocytes 

express an increase in the integrin receptor α5β1 which is specific for the central cellular 

binding domain of FN.4,6,14  The availability of this FN domain and its full biological activity 

is highly dependent on the structural orientation of the protein and has been found to be 

critical in modulating cellular functions.15-19 When FN adsorbs to a surface, it undergoes a 

conformation change, which is highly dependent upon the properties of the surface.20-22  

Recently, our laboratory investigated the availability of the central cellular binding domain of 

FN and its role on keratinocyte morphology, attachment, and differentiation using self-

assembled monolayers as model biomaterial surfaces.23  A direct relationship was found 

between keratinocyte spreading area and attachment, and an indirect relationship was found 

between cellular binding domain availability and cell differentiation.  When evaluating focal 

adhesion formation, it was found that the area density of focal adhesions in individual 

keratinocytes directly corresponded with the availability of the central cellular binding 

domain of FN, suggesting that the functions evaluated were integrin mediated.   

 

Although much is known regarding the advantages of using FN to enhance re-

epithelialization in the wound environment, little work has been performed investigating its 

presentation on dermal scaffolds.  Furthermore, understanding how to strategically modify a 
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biomaterial surface to increase the availability of the central cellular binding domain, which 

has been shown to promote attachment and subsequent intracellular signaling events, is of 

great importance for enhancing epithelialization of bioengineered skin substitutes as well for 

engineering other functional tissues. 

 

The purpose of this chapter was to evaluate the presence of the central cellular binding 

domain of FN on collagen membranes and to analyze how the presentation of this binding 

site effects epithelialization.  Using an in vitro skin model, keratinocyte and overall graft 

morphology, epidermal thickness, and proliferation were evaluated on the surface of 

collagen-GAG membranes.  Fibronectin was found to promote epithelial layers on dermal 

scaffolds that were found to be morphologically similar to that of native skin.  When 

evaluating proliferation in this model system, we found that FN treated surfaces enhanced the 

number of proliferative cells at 3 days of air/liquid (A/L) interface culture.  To correlate these 

findings with the presentation of FN on the surfaces, we evaluated the availability of the 

central cellular binding domain on collagen-GAG membranes.  In effort to further enhance 

the presentation of FN on the surfaces of basal lamina analogs, we developed self-assembled 

collagen membranes, fabricated from soluble type I collagen molecules (CI) and compared 

their performance to collagen-GAG membranes.   In this chapter we also describe a method 

to covalently modify the surfaces of self-assembled CI membranes with FN using a 

carbodiimide conjugation strategy, specifically (1-ethyl-3-(3-dimethylaminopropyl) 

carbodiimide hydrochloride (EDC). Finally, we evaluated the effect of EDC conjugation on 

the presentation and bioactivity of FN.  Overall, we demonstrated that the EDC conjugation 

strategy greatly enhances the availability of the central cellular binding domain of FN.  We 

also show that this modification strategy has the potential for increasing the rate of 

epithelialization on the surfaces of basal lamina analogs. 
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5.2 MATERALS AND METHODS 

5.2.1 A/L Interface Culture Devices  

To evaluate the effect of FN on epithelialization of bioengineered skin substitutes, a custom 

designed device was developed to analyze membranes which are precisely conjugated with 

FN and cultured at the A/L interface.  This system creates an individual well on the surface 

of a collagen membrane and allows for a tight seal to be made on the surface of the 

composite assuring that FN placement is in the center (Figure 5.124). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2.2 Basal Lamina Analog Production 

5.2.2.1 Collagen-GAG Membranes 

A collagen-GAG dispersion containing type I collagen (5 mg/ml) and GAG (0.18 mg/ml) 

was prepared by placing lyophilized bovine hide derived collagen (Semed-S, Kensey Nash 

Corp., Exton, PA) in acetic acid (EMD Chemicals, Inc., Gibbstown, NJ) and homogenizing 

(20,000 rpm) at 4°C for 90 minutes resulting in a bovine-derived collagen suspension.25 

Figure 5.1.  Custom Built A/L Interface Culture Devices.  To culture keratinocytes on 
basal lamina analogs, a custom developed A/L interface culture device was developed by 
our laboratory to minimize the use of resources including cells and FN.  A) Computer-
Aided Design (CAD) drawing of individual parts of the device including the base and top 
pieces with posts on the base piece to allow for alignment of the two pieces and initial 
stability.  A screen sits on the base piece that the membrane is placed on.  This screen 
facilitates diffusion of cell culture medium from below the membrane and A/L interface 
culture.  A silicone o-ring is fit in the base piece to provide a tight seal that creates a well 
on the surface of the collagen membrane that allows for protein modification and cell 
seeding. The complete unit fits in a 6-well plate.  B) CAD drawing of device with base 
and top piece screwed together and C) shows a photograph of one of the devices with a 
collagen membrane placed on top of the screen during assembly.24 
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Shark cartilage chondroitin 6-sulfate (Sigma, St. Louis, MI) was dripped into the blending 

collagen dispersion and blended for an additional 90 minutes.  Once fully blended, the 

collagen-GAG suspension was degassed by centrifugation.  To produce membranes, the 

suspension was cast onto flat polydimethylsiloxane silicone elastomer (PDMS, Sylgard 184, 

Dow Corning Corp., Midland, MI) molds 9.62 cm2 in area, and allowed to air dry in a 

laminar flow hood at room temperature.  The membrane was then gently peeled from the 

PDMS surface and dehydrothermally (DHT) crosslinked according to previously published 

methods for 24 hours.9  Membranes were then stored in a desiccator until use.   

 

5.2.2.2 Self-Assembled Type I Collagen Membranes 

Acid-soluble type I collagen (CI) was extracted from rat tail tendons using protocols 

previously described.26  Rat tails were received from animals that were euthanized for other 

protocols, which were approved by Worcester Polytechnic Institute, Worcester, MA, 

Institutional Animal Care and Use Committee.  Briefly, rat tail tendons were extracted from 

the tails of 13 Sprague Dawley rats, rinsed in dPBS (Hyclone, Logan, UT), and dissolved in 

1600 ml of 3% acetic acid at 4°C overnight. The resulting solution was centrifuged at 8590 

rpm for 2 hours and 320 ml of a 30% NaCl (Sigma) solution was dripped into the supernatant 

at 4°C.  The resulting solution was allowed to sit for at least 1 hour at 4°C without disruption 

and then centrifuged at 4690 rpm for 30 minutes to separate precipitated and liquid material.  

The precipitated material was resuspended in 400 ml of 0.6% acetic acid and dialyzed for 4 

hours against 1 mM HCl (JT Baker, Phillipsburg, NJ) and the dialysis solution was changed 

every 4 hours until a clear collagen solution was obtained.  This solution was lyophilized and 

stored in a sealed container at 4ºC, until use.  Lyophilized collagen was dissolved in 5 mM 

HCl to obtain a working solution of 10 mg/ml.26 To produce self-assembled CI membranes, 

800 µl of the soluble CI solution was neutralized using 200 µl of 5x Dulbecco’s Modified 

Eagle’s Medium (DMEM, Invitrogen, Carlsbad, CA) with 0.22 M NaHCO3 and 40 µl of 0.1 

M NaOH (Sigma) at 37°C for 18 hours on circular PDMS molds. 
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5.2.3 FN Surface Modification of Collagen Membranes 

5.2.3.1 Passive Adsorption of FN to Collagen Membranes 

Fibronectin (BD Biosciences, Bedford, MA) was resuspended according to manufacturer’s 

recommendations in 1 ml of dH2O and diluted to desired concentrations (30, 100, and 300 

µg/ml) using dPBS.  For in vitro culture on basal lamina analogs, all collagen membranes 

were placed in A/L culture devices (Fig 5.124) and  FN (100 µg/ml) was placed in the well 

created on the surface of the collagen membrane and allowed to adsorb overnight at room 

temperature.  For FN cellular binding site evaluation of basal lamina analogs, collagen 

membranes were placed in a custom high throughput screening device9 and FN was placed 

into each individual wells at 30, 100, and 300 µg/ml for self-assembled CI membranes, and 

at 100 µg/ml for collagen-GAG membranes overnight at room temperature. 

 

5.2.3.2 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) Conjugation of 
FN to Collagen Membranes 
 
Using protocols previously described to crosslink collagenous materials,27,28 the molar ratio 

of 5:1 (EDC to carboxylic acid groups in collagen) was used to conjugate FN to the surfaces 

of collagen-GAG and self-assembled CI membranes.  The theoretical amount of collagen 

used for calculations assumed that 1 g of type I collagen contained 1.2 mmol COOH.27,28  

Collagen-GAG membranes contained 12.5 mg of type I collagen and self-assembled CI 

membranes contained 8 mg of type I collagen, thus receiving 0.075 mmol EDC and 0.048 

mmol EDC, respectively.  1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride 

(Sigma) was dissolved in 50 mM MES hydrate (Sigma) dissolved in 40% ethanol (Pharmco 

Products, Inc., Brookfield, CT) at a pH 5.5 and 1.25 ml of solution was placed on collagen-

GAG membranes and 0.8 ml was placed on self-assembled CI membranes for 4 hours.  For 

in vitro culture on basal lamina analogs, the membranes were removed from the EDC 

solution and immediately placed into the A/L culture devices and 100 µg/ml of FN was 

placed in the well created on the surface of the collagen membrane over night at room 
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temperature.  For FN cellular binding site evaluation, the membranes were immediately 

placed in a custom high throughput screening device9 and FN was placed into each individual 

wells at 30, 100, and 300 µg/ml for self-assembled CI membranes, and at 100 µg/ml for 

collagen-GAG membranes overnight at room temperature. 

 

5.2.4 Culture of Neonatal Human Keratinocytes 

Neonatal keratinocytes were cultured as previously described.9,29 Neonatal foreskins were 

obtained from non-identifiable discarded tissues from UMass Memorial Medical Center, 

Worcester, MA and were approved with exempt status from the New England Institutional 

Review Board.  Keratinocyte isolations were performed using an enzymatic treatment with a 

dispase (Gibco, Gaithersburg, MD) solution.  The cells were propagated on a feeder layer of 

3T3-J2 mouse fibroblasts (generously donated by Dr. Stelios Andreadis, State University of 

New York at Buffalo, Buffalo, NY) and cultured according to methods previously 

described29,30 using keratinocyte media consisting of a 3:1 mixture of DMEM (high glucose) 

and Ham’s F-12 medium (Invitrogen)  supplemented with 10% fetal bovine serum (FBS, 

Hyclone), 10-10 M cholera toxin (Vibrio Cholerae, Type Inaba 569 B), 5 μg/ml transferrin, 

0.4 μg/ml hydrocortisone (Calbiochem, La Jolla, CA), 0.13 U/ml insulin, 1.4*10-4 M 

adenine, 2*10-9
 M triiodo-L-thyronine (Sigma), 1% penicillin/streptomycin (Invitrogen), and 

0.01 μg/ml epidermal growth factor (EGF, BD Biosciences).  After 5 days of culture, cells 

were detached using 0.05% Trypsin-EDTA (Invitrogen) and then rinsed with serum free and 

EGF free keratinocyte media.  Passage 2 keratinocytes were used in all experiments. 

 

5.2.5 In vitro Culture of Keratinocytes on Basal Lamina Analogs 

After FN adsorption or EDC conjugation of FN to membranes, the membranes were 

sterilized in composite culture devices using 70% ethanol.  Membranes and devices were 

removed from ethanol and rinsed in sterile dPBS, 3 times for 10 minutes each, and left 

overnight in sterile dPBS.  The composite culture devices were placed into individual wells 
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of a 6-well tissue culture plate and preconditioned for 30 minutes with seeding media 

consisting of 3:1 mixture of DMEM (high glucose) and Ham’s F-12 medium supplemented 

with 10-10 M cholera toxin, 0.2 µg/mL hydrocortisone (Calbiochem), 5 µg/mL insulin, 50 

µg/mL ascorbic acid (Sigma), and 1% penicillin/streptomycin (Invitrogen). Keratinocytes 

were seeded on the surfaces of the membranes at 500,000 cells/cm2 using this media, and 

allowed to adhere for 2 hours in 10% CO2 at 37°C.  After 2 hours, seeding media containing 

1% FBS was placed in each well, completely submerging the grafts.  After 24 h, the 

keratinocyte seeding medium was removed, and the grafts were submerged for an additional 

48 h in a keratinocyte priming medium composed of keratinocyte seeding medium (with 

FBS) supplemented with 24 µM bovine serum albumin (BSA), 1.0 mM L-serine, 10 µM l-

carnitine, and a mixture of fatty acids including 25 µM oleic acid, 15 µM linoleic acid, 7 µM 

arachidonic acid, and 25 µM palmitic acid (Sigma).31 After 48 h in priming medium, skin 

equivalents were cultured for 3 or 7 days with an A/L interface medium composed of serum-

free keratinocyte priming medium supplemented with 1.0 ng/mL EGF. 

 

5.2.6 Evaluation of Epithelialization 

To assess epithelialization on the basal lamina analogs, epidermal thickness and proliferation 

were evaluated after 3 or 7 days of A/L interface culture.  Grafts were fixed in a 10% 

buffered formalin solution (EMD Chemicals), dehydrated with increasing concentrations of 

ethanol, cleared with sec-butyl alcohol (EMD Chemicals), and embedded in Paraplast tissue 

embedding medium (McCormick Scientific, St. Louis, MO).  Sections of skin equivalents, 6 

µm in thickness, were cut in a plane perpendicular to the surface of the epithelial layer using 

a Leica RM 2235 (Leica Microsystems, Inc, Bannockburn, IL).  Sections were mounted on 

poly-L-lysine coated slides (Erie Scientific Company, Portsmouth, NH) for hematoxylin and 

eosin (H&E) staining and mounted on Superfrost Plus slides (VWR, West Chester, PA) 

coated with poly-L-lysine (Sigma) to evaluate proliferation.  To evaluate thickness of the 

epithelial layer, the slides were stained with Harris hematoxylin and eosin (Richard-Allan 
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Scientific, Kalamazoo, MI) and then viewed with a Nikon Eclipse E400 microscope (Nikon, 

Inc., Melville, NY).  Images were captured using an RT Color Spot camera (Spot 

Diagnostics, Sterling Heights, MI). Thickness measurements were taken in three areas of the 

image using Image J software (downloaded from 

http://rsb.info.nih.gov.ezproxy.umassmed.edu/ij/) and an average value was reported for each 

graft. For collagen-GAG membranes with and without passive adsorbed FN, at 3 day or 7 

day culture, 7 and 4 cultured basal lamina analogs were evaluated, respectively.  For self-

assembled CI membranes with no treatment, passive adsorption of FN, and EDC conjugation 

of FN, 3 grafts were evaluated for each condition.  

 

Keratinocyte proliferation was evaluated by detecting the presence of Ki67, a marker for 

highly mitotic keratinocytes.  The tissue sections were deparaffinized in reverse ethanol–

xylene washes, and the antigens were unmasked by placing the slides in boiling Vector 

Unmasking solution (Vector Laboratories, Inc, Burlingame, CA) in a Manttra pressure 

cooker (Manttra, Inc., Virginia Beach, VA) for 1 minute after maximum pressure was 

achieved.  Slides were then incubated with blocking solution (10% normal horse serum 

(Vector Laboratories) in dPBS) for 10 min at room temperature and treated with predilute 

mouse-antihuman Ki67 (Zymed Laboratories, South San Francisco, CA) overnight in a 

humidified chamber at room temperature.  Slides were incubated with biotinylated anti-

mouse IgG (Vector Laboratories) at 1:200 for 30 minutes at RT then washed with dPBS and 

stained with Vectastain Elite ABC Kit (Vector Laboratories) for 30 minutes at RT.  Stained 

slides were washed with dPBS and developed using a Vector NovaRed Substrate Kit (Vector 

Laboratories) for approximately 1 min.  Slides were rinsed in dPBS, followed by a 5 minute 

wash with tap water, and counterstained with Harris hematoxylin for 45 seconds. The slides 

were washed with tap water, rinsed with a series of ethanol-xylene washes and mounted with 

VectaMount permanent mounting medium (Vector Laboratories).  The slides were then 

viewed with a Nikon Eclipse E400 microscope and images were captured using an RT Color 
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Spot camera.  The number of Ki67 positive cells were counted and divided by the total 

number of cells in the basal layer to give a percentage of Ki67 positive cells.  At 3 days or 7 

days of A/L interface culture on collagen-GAG membranes passively adsorbed with FN, 3 

different sections of 5 grafts were evaluated.   

 

5.2.7 FN Cellular Binding Site Detection 

To measure the availability of the central cellular binding domain of FN, a monoclonal 

antibody directed towards this domain (HFN 7.1, Developmental Studies Hybridoma Bank, 

Iowa City, IA) was measured with fluorescence microscopy and image analysis.23,32 After 

passive adsorption or EDC conjugation of FN to CI membranes, the scaffolds were sterilized 

for cellular culture, and then blocked using 1% heat denatured BSA (in dPBS) for 1 hour at 

room temperature.  HFN 7.1 was added to each well for 1 h in 10% CO2 at 37°C.  Each 

surface was rinsed in blocking buffer (0.05% Tween-20 (Sigma) and 0.25% BSA in dPBS) 

and incubated with 546 Alexa Fluor conjugated goat anti-mouse IgG (1:200 in blocking 

buffer, Molecular Probes, Eugene, OR) for 1 h in 10% CO2 at 37°C. Slides were then rinsed 

with dPBS, and images were captured using an RT Color Spot camera. Image J Analysis 

software was used to determine the relative amount of cellular binding sites in each well. The 

relative fluorescence intensity was calculated over a region of interest and normalized against 

fluorescence intensity of non-FN modified membranes.  Eight samples were evaluated for 

collagen-GAG and self-assembled CI membranes that were treated with 100 µg/ml of FN 

using EDC conjugation or passive adsorption strategy.  For self-assembled CI membranes 

treated with 30 or 300 µg/ml of FN, 4 samples were evaluated.  Results are reported as 

averages and standard deviations and each experiment was repeated twice. 

 

5.2.8 Statistical Analyses 

Sigma Stat Version 3.10 (Systat Software Inc., Richmond, CA) was used to determine 

statistical differences among the means of experimental groups.  To determine if the means 
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of two different samples were significantly different, a Student’s t-test was performed when 

the samples were drawn from a normally distributed population with equal variance.  Sigma 

Stat uses the Kolmogorov-Smirnov test to test for a normally distributed population and a P 

value > 0.05 indicates normality.  For all parametric tests, Sigma Stat assumes equal 

variance.  When the data was not drawn from a normally distributed population (P value < 

0.05), a Mann-Whitney Rank Sum Test was used and a Levene Median test was used to 

determine equal variance with a P value > 0.05 indicating equal variance.  For both the 

Student’s t-test and the Mann-Whitney Rank Sum Test, a p value < 0.05 indicated a 

significant difference between the means of experimental groups.   

 

To determine statistical differences among the means of three or more experimental groups a 

One Way Analysis of Variance (ANOVA) was used when the samples were drawn from a 

normally distributed population with equal variance (Kolmogorov-Smirnov test for normal 

distribution and equal variance was assumed).  When the data was not normally distributed, a 

Kruskal-Wallis One way ANOVA on ranks was performed (Levene Median test to determine 

equal variance with a P > 0.05 indicating equal variance).  When a statistical difference was 

detected among the group means, a Tukey post-hoc analysis was performed for both the One 

Way ANOVA and Kruskal-Wallis One Way ANOVA on ranks.  A p value < 0.05, for both 

variance tests, indicated a significant difference between the groups. 

 

5.3 RESULTS 

5.3.1 FN Enhances Epithelialization of Keratinocytes on Basal Lamina Analogs 
 
5.3.1.1 Graft Morphology and Epidermal Layer Thickness on Collagen-GAG Basal Lamina 
Analogs 
 
The effect of passively adsorbed FN on graft morphology and epithelial layer thickness of  

keratinocytes was evaluated using custom built A/L interface culture devices (Figure 5.124). 

Fibronectin (100 µg/ml) was passively adsorbed to the surfaces of collagen-GAG membranes  
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and keratinocytes were cultured on these basal 

lamina analogs for 3 or 7 days at the A/L 

interface.  Figure 5.224 shows histological 

results of control grafts compared with grafts 

that were passively adsorbed with FN, cultured 

for 3 or 7 days and stained with H&E.  A 

thicker epidermal layer formed on 

membranes modified with FN when 

compared with control membranes at 3 or 7 

days of culture at the A/L interface.  At 3 

days, 17.7+/-0.9 and 52.4+/-6.3 µm were 

found for control and FN treated 

membranes, respectively and at 7 days, 

59.6+/-7.4 and 89.6+/-4.2 µm were found 

for control and FN treated membranes, 

respectively.   These differences in epithelial 

thickness between control and FN treated 

surfaces were statistically different at both time 

points (Figure 5.324).  

 
5.3.1.2 Keratinocyte Proliferation on 
Collagen-GAG Basal Lamina Analogs  
 
To analyze keratinocyte proliferation, the 

presence of Ki67 in basal keratinocytes was 

measured on the surfaces of cultured basal 

lamina analogs.  This protein is present during 

active phases of the cell cycle and absent from  

Figure 5.2.  Histological Representations of the 
Thicknesses of Epidermal Layers on Collagen-GAG 
Membranes.  Keratinocytes were cultured for 3 or 7 
days at the A/L interface on collagen-GAG control (non-
modified) membranes or collagen-GAG membranes that 
were modified by passively adsorbing FN to the surfaces 
of the scaffolds.  At 3 or 7 days of A/L interface culture 
the thickness of the epithelial layer on collagen-GAG 
membranes treated with FN was greater than that on 
untreated collagen-GAG membranes.  Scale bar 
represents 30 µm.24

 

Figure 5.3. Quantitative Evaluation of Epidermal 
Thickness on Collagen-GAG Membranes. The 
thicknesses of the epithelial layers at 3 or 7 days of A/L 
interface culture were measured on control (non-
modified) collagen-GAG membranes or collagen-GAG 
membranes that were modified by passively adsorbing 
FN to the surfaces.    At both 3 and 7 days there was a 
significant difference between untreated and FN treated 
surfaces.  (* indicates p<0.05 Student’s t-test) Samples 
for 3 day culture are n = 7 and for 7 day culture n = 4.24  
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resting cells.33 Figure 5.424 shows 

histological images of control collagen-

GAG membranes and membranes that 

were passively adsorbed with FN, 

cultured for 3 or 7 days at the A/L 

interface and immunoassayed for Ki67.  

Quantitative analyses of these images 

are depicted in Figure 5.524.  At 3 days 

of culture, positive Ki67 basal 

keratinocytes were counted and control 

surfaces and FN treated surfaces had 

24.3+/-2.5% and 37+/-3.9% Ki67 

positive basal cells, respectively and at 

7 days control surfaces and FN treated 

surfaces had 23+/- 2.7% and 21.9+/- 

2.1% Ki67 positive basal cells, 

respectively. The percentage of basal 

keratinocytes expressing Ki67 on FN 

modified membranes was statistically 

different than on control membranes at 3 

days of culture, however at 7 days of 

culture no differences were detected. 

 

 

 

 

 

Figure 5.5. Quantitative Analyses of Ki67 Positive 
Basal Keratinocytes on Collagen-GAG Membranes. 
The percentage of positive Ki67 basal keratinocytes at 3 
or 7 days of A/L interface culture was measured on 
control (non-modified) collagen-GAG membranes or 
collagen-GAG membranes modified by passively 
adsorbing FN to the surfaces.  At 3 days statistical 
differences were found between keratinocytes cultured on 
control surface and FN treated surfaces (* indicates 
p<0.05 Student’s t-test).  For all experimental conditions, 
n = 5 samples were measured at both 3 and 7 days of 
culture.24 

Figure 5.4.  Histological Representations of Ki67 
Positive Keratinocytes on Collagen-GAG Membranes.  
Keratinocytes were cultured on collagen-GAG membranes 
for 3 or 7 days at the A/L interface on control (non-
modified) collagen-GAG membranes or collagen-GAG 
membranes modified by passively adsorbing FN to the 
surfaces. At 3 or 7 days of A/L interface culture Ki67 
immunostaining (brown stained nuclei) was used to 
evaluate proliferation of basal keratinocytes.  Scale bar 
represents 30 µm.24 
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5.3.2 Availability of Cellular Binding Domain of FN Corresponds to Keratinocyte 
Attachment on Collagen-GAG Basal Lamina Analogs 
 
The availability of the cellular binding domain of FN, specifically the domain that 

encompasses both the RGD and PHSRN 

binding sequences, was analyzed on the 

surfaces of collagen-GAG basal lamina 

analogs using an antibody directed towards 

this site.  Relative fluorescence intensity 

(RFI) measurements were made on several 

regions of interest and an average value was 

reported.  When FN was passively adsorbed 

to collagen-GAG membranes at 30, 100, or 

300 µg/ml, cellular binding sites plateaued at 

a concentration of 100 µg/ml (Figure 5.624).  

The fluorescence intensity values obtained at 

100 µg/ml and 300 µg/ml were statistically 

greater than those at 30 µg/ml of F.  his data 

directly corresponds with keratinocyte 

attachment measurements made on FN 

treated collagen-GAG membranes in a 

previously published study.23  

 

 

 

 

 

Figure 5.6. Availability of Cellular Binding 
Domains for FN Passively Adsorbed on Collagen-
GAG Basal Lamina Analogs.  The availability of 
the cellular binding domain of FN on collagen-GAG 
basal lamina analogs was evaluated using a 
quantitative immunofluorescent assay.   Fibronectin 
concentrations of 0, 30, 100, and 300 µg/ml were 
evaluated and it was determined that at a 
concentration of 100 µg/ml the average RFI was 
statistically different from 0, and 300 µg/ml, but did 
not statistically differ from 300 µg/ml indicating that 
a saturation plateau was achieved.  Data is reported 
as averages and error bars indicate standard error 
mean with n = 3.  (*Indicates statistical difference, 
one way ANOVA with Tukey post hoc analysis p< 
0.05.)24 
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5.3.3 EDC Conjugation of FN on Self-Assembled CI Basal Lamina Analogs Promotes 
Increased Cellular Binding Site Availability 
 

To determine whether we could increase the presentation of FN cellular binding sites on the 

surfaces of collagen-GAG basal lamina analogs, we analyzed the effects of covalently 

binding FN to the surface using an EDC conjugation strategy (Figure 5.724).  Since it was 

found that 100 µg/ml of FN saturated the surfaces of the collagen-GAG membranes, we 

chose to evaluate this concentration using both adsorption and EDC modification strategies.  

When analyzing collagen-GAG membranes, the difference between passive adsorption and 

EDC conjugation of 100 µg/ml of FN, was that EDC conjugation statistically increased the 

average RFI on the surfaces of FN treated membranes, suggesting that these membranes have 

a greater capacity for cellular binding (Figure 5.824).   

Figure 5.7. Schematic Representation of EDC-Mediated Conjugation of FN to Collagen.  The 
carbodiimide 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) was added to 
basal lamina analogs at a 5:1 molar ratio (EDC molecules to  carboxylic acids in collagen).   The EDC 
reacts with a carboxylic acid from the collagen molecule to form an unstable reactive o-acylisourea 
ester that can either couple with an amine group in collagen from the basal lamina analog or an amide 
group in FN that is added to the collagen membrane.  If the unstable reactive o-acylisourea ester does 
not interact with an amine, it hydrolyzes and the carboxyl group is regenerated, thus returning back to 
its native state.24 
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The availability of cellular binding 

domains on the surfaces of self-

assembled CI basal lamina analogs was 

evaluated for both passive adsorption 

of FN and EDC conjugation of FN.  

These findings were compared with 

both passive adsorption and EDC 

conjugation of FN on collagen-GAG 

collagen basal lamina analogs (Figure 

5.824).  When we compared the passive 

adsorption of 100 µg/ml of FN on 

collagen-GAG and self-

assembled CI membranes, a 

significant increase in 

average RFI was observed on 

the self-assembled CI 

membranes. Similarly, when 

we compared the binding 

efficiency of FN using an EDC conjugation strategy at a concentration of 100 µg/ml of FN 

on collagen-GAG and self-assembled CI membranes, a significant increase was found in 

average RFI on the self-assembled CI membranes.  Additional concentrations were analyzed, 

for both passive adsorption and EDC conjugation of FN on self-assembled CI membranes, to 

evaluate whether saturation levels of RFI were obtained.  When evaluating lower and higher 

concentrations of FN (30 and 300 µg/ml, respectively), we found that there were no 

statistical differences between FN concentrations of 100 µg/ml and 300 µg/ml and that the 

100 µg/ml concentration had statistically increased values over the 30 µg/ml concentration, 

regardless of the conjugation strategy that was used.  This data indicates that the presentation 

Figure 5.8. Availability of Cellular Binding Domain of FN on 
collagen-GAG and Self-Assembled CI Basal Lamina Analogs.  A 
quantitative immunofluorescent assay was used to measure the 
availability of the cellular binding domain of FN on the surfaces of 
modified collagen membranes.  * indicates p<0.05, Student’s t-test and 
** indicates p<0.05, One Way ANOVA with Tukey post hoc analysis.  
For collagen-GAG membranes, n = 8 for passive adsorption and EDC 
conjugation.  For self-assembled CI membranes n = 4 for 30 and 300 
µg/ml for both passive and EDC and n = 8 for 100 µg/ml for both 
passive and EDC.  Experiments were repeated and similar trends were 
found.24 
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of cellular binding domains on the surfaces of self-assembled CI membranes saturated at a 

FN concentration of 100 µg/ml, similar to the results obtained for collagen-GAG membranes.   

 

5.3.4 EDC Conjugation of FN on Self-Assembled CI Basal Lamina Analogs Enhances 
Epidermal Layer Thickness 
 
Fibronectin was 

covalently bound to 

the surface of self-

assembled CI 

membranes using 

EDC and 

keratinocytes were 

cultured on the 

surface of basal 

lamina analog for 3 

days at the A/L 

interface to 

determine whether 

increased cellular binding sites on our new model system promoted an increase in epithelial 

layer thickness.  Figure 5.924 shows a typical image of a cultured epithelial layer on an 

untreated self-assembled CI membrane (5.9A and 5.9D), a basal lamina analog with FN 

passively adsorbed to the surface (5.9B and 5.9E), and a basal lamina analog with FN that 

was EDC conjugated to the surface (5.9C and 5.9F).  These images suggest that the thickness 

of the epidermal layer on the scaffold corresponds to the presentation and availability of FN 

central cellular binding domains.  Morphometric analyses of these epidermal layers (Figure 

5.1024) showed that there were statistical differences between all surfaces analyzed. 

Figure 5.9. Low and High Magnification Histological Images of Self-
Assembled CI Basal Lamina Analogs Treated with FN. The surfaces of self-
assembled CI basal lamina analogs were treated with dPBS (controls) (A and D), 
passive adsorption of FN (B and E), or EDC conjugation of FN (C and F) and 
keratinocytes were cultured on the membranes at the A/L interface for 3 days.  
Conjugation of FN to the surfaces of the self-assembled CI basal lamina analogs 
using EDC caused an increase in epidermal thickness in comparison to control 
surfaces and surfaces treated by passively adsorbing FN to the scaffolds.  Scale 
bars represent 50 µm.24 
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5.4 DISCUSSION 

To improve the regenerative capacity of 

biomaterials scaffolds, biomolecules have 

been incorporated to present biochemical cues 

that direct cellular functions.  This approach 

requires that the biomolecules are precisely 

tailored to the surface of the biomaterial to 

ensure that the appropriate cellular binding 

domains are presented for maximum 

bioactivity.  To improve the 

compatibility and regenerative potential 

of biomaterials scaffolds, FN is a 

protein of interest to adsorb to the 

surfaces, based on its role in cell 

adhesions, migration, and 

differentiation.5,7-9,21 However, several 

studies indicate that when FN is 

passively adsorbed to the surface of 

biomaterials, its conformation is effected by surface properties, which modulate cellular 

binding site presentation as well as biological activity.21,22,34,35  In this work we evaluated the 

effect of passive adsorption of FN on epithelialization of a basal lamina analog.  Additionally 

we investigated the presentation sites of the central cellular binding domain of FN based on 

the preparation technique of the basal lamina analog and the conjugation strategy.  Overall 

we determined that EDC conjugation of FN to the surface of self-assembled CI membranes 

improved binding site availability.  

 

Fibronectin enhanced epithelial thickness and keratinocyte proliferation on the surfaces of 

Figure 5.10. EDC Conjugation of FN on Self-
Assembled CI Basal Lamina Analogs Enhances 
Epidermal Thickness.  Self-assembled CI basal lamina 
analogs were prepared and the surfaces were treated 
with dPBS (Control), passive adsorption of FN (Passive 
Adsorption), EDC conjugation of FN (EDC 
Conjugation) and keratinocytes were cultured at the A/L 
interface for 3 days.  All surfaces were statistically 
different from each other.  Surfaces treated with EDC 
conjugation of FN exhibited the greatest epidermal 
thickness values (* indicates p<0.05, One-Way ANOVA 
with Tukey post-hoc analysis).  Bars indicate mean 
values and error bars are standard error and sample 
numbers are n = 3 for control and passive adsorption and 
n = 5 for EDC conjugation.24   
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collagen-GAG basal lamina analogs.  When FN was passively adsorbed at a saturation 

density previously determined on the surface,9 epithelial thickness was enhanced in 

comparison to untreated membranes at both 3 and 7 days of A/L interface culture.   The 

morphology of basal keratinocytes on the FN grafts exhibited a more native columnar 

morphology than those on the scaffolds without FN.  When keratinocyte proliferation was 

examined using Ki67, a nuclear marker for proliferation, it was found that the percentage of 

Ki67 positive cells at 3 days of A/L interface culture on FN treated membranes  was greater 

than on untreated membranes, ~35% to ~20% of total basal cells, respectively.  At 7 days of 

A/L interface culture, no differences were found between percentages of Ki67 positive basal 

keratinocytes, with both membranes having ~20% of total basal cells. 

 

In unwounded epidermis, between 10 and 20% of basal keratinocytes are proliferative, based 

on the location of the skin.36-38  In an acute wound environment, keratinocyte proliferation is 

increased.  Within hours after injury, keratinocytes at the wound edge become activated and 

undergo a phenotypic change which facilitates migration over the wound bed6,16 A 

proliferative burst occurs 24 to 72 hours post injury and after wound closure, the proliferative 

capacity of the basal layer returns to normal status.39  Our results suggest that FN treated 

scaffolds closely mimic the wound environment, and provide the appropriate signals for 

proliferation to occur.  Once the cells sense that a monolayer is formed, proliferation returns 

to normal and the cells begin to undergo differentiation and migrate upward to create a 

stratum corneum that provides protection from the environment.   

 

After evaluating the effects of FN on graft morphology and proliferation, we investigated the 

presentation of the cellular binding domain of FN that was passively adsorbed on the 

collagen-GAG basal lamina analogs.  We determined that our FN cellular binding site 

presentation directly corresponded with previously published values for keratinocyte 

attachment to collagen-GAG membranes.9 We concluded that we were saturating our 
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collagen-GAG membrane surfaces using passive adsorption since there were no differences 

between membranes that were treated with 100 µg/ml or 300 µg/ml of FN.  To increase the 

number of FN presentation sites, we evaluated different sources of collagen to fabricate 

membranes as well as conjugation strategies to covalently link FN to the surfaces. 

 

In this study, we analyzed the presentation of FN cellular binding domains on collagen-GAG 

basal lamina analogs and compared it with the FN cellular binding domains on self-

assembled CI basal lamina analogs.  Our initial studies focused on the use of collagen-GAG 

membranes fabricated from an FDA approved, commercially available product, to facilitate a 

rapid translation from benchtop to bedside.40   Although this product has many advantageous 

properties; the starting collagen material is considered “insoluble” when place in an acidic 

environment and does not completely dissolve into individual collagen fibrils.  When a 

suspension of these collagen fibrils is air-dried, the aggregates of fibrils come together and 

form a membrane with random orientation.  In contrast, the self-assembled CI membranes 

developed for this study are fabricated from a solution of acid solution type I collagen 

molecules.  When neutralized, these collagen molecules self-assemble into individual fibrils, 

and aggregate laterally and linearly to form collagen fibers with structural morphology 

comparable to native tissue constructs.41 Our studies indicate that when 100 µg/ml of FN is 

passively adsorbed to the surfaces of the different collagen membranes, the self-assembled 

CI basal lamina analog has significantly more FN cellular binding site availability than the 

collagen-GAG basal lamina analog.  With CI, the FN binding site is found on the α1(1) chain 

between amino acid residues 757-791.42  When the soluble collagen self-assembles it exposes 

the FN binding site, similar to that in native tissue, unlike the collagen-GAG fibers that do 

not have all FN binding sites exposed, because of the random packing of the fibrillar 

aggregates.  Additional analysis was performed evaluating the cellular binding site 

availability of FN on self-assembled CI basal lamina analogs at varying concentrations of FN 

to determine the saturation limit.  We found that the availability of FN on the surfaces of the 
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self-assembled CI membranes at 100 µg/ml of FN was the optimal concentration for binding 

site availability, similar to the evaluation of binding site availability on collagen-GAG 

membranes. 

 

Various investigations have evaluated covalent conjugation strategies to improve the 

presentation and bioactivity of FN over passive adsorption on various surfaces.43-45  The use 

of a carbodiimide conjugation strategy was evaluated to crosslink our membranes as well as 

to covalently bind FN.  This crosslinking agent has been highly successful in crosslinking 

collagen and improving its degradation resistance and mechanical properties,46,47 as well as 

coupling chondroitin sulfate, heparin sulfate, and heparin to the surface of collagen 

scaffolds.48-50 We investigated its use as a potential method to covalently conjugate FN to the 

surface of both collagen based scaffolds and found a significant increase in cellular binding 

site availability of FN when compared to that of using passive adsorption.  When 

keratinocytes were cultured at 3 days at the A/L interface on self-assembled basal lamina 

analogs with no FN, passively adsorbed FN, and EDC conjugated FN, an increase in 

epithelial thickness was found between all surfaces.  This data also corresponds with the data 

from the FN cellular binding domain availability analysis.  Future studies will evaluate EDC 

conjugation of FN on epithelialization of a basal lamina analog laminated to a dermal 

scaffold to determine the effects of this conjugation strategy on proliferation and 

differentiation in a composite model of bioengineered skin substitute.   

 

Overall the results from these studies indicate that the cellular binding domain of FN can be 

enhanced on collagen-based biomaterials and directly influences functions important for 

epithelialization.  The information gained from this study can be applied to other model 

systems where the enhancement of cellular binding sites of FN on collagenous biomaterials 

would enhance tissue functionality.  Additionally this information can be used in the design 

of engineered tissues where the incorporation of a basal lamina analog is necessary to direct 
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epithelial polarity and functions as well as to separate cell types and act as a selectively 

permeable barrier, such as in the glomerulus of the kidney or the small intestine.   
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6.1 INTRODUCTION 

Bioengineered skin substitutes offer a promising approach in the treatment of severe burns or 

chronic wounds when autografts are not an option for the patient.   Clinically, these 

substitutes provide a barrier to prevent infection and water loss as well as therapeutic effects 

that induce dermal tissue repair and stimulate healing of chronic wounds. Although there has 

been clinical success with these grafts, limitations still exist including prolonged healing 

times, mechanically induced graft failure, poor graft take, and residual scarring. Additionally, 

current bioengineered skin substitutes only restore a subset of anatomical structures that play 

key roles in normal physiological functions of skin.1-3     

 

One design features common to current bioengineered skin substitutes is a flat interface 

between the dermal and epidermal components.  At the dermal-epidermal junction (DEJ) of 

native skin there is a basal lamina which contributes critical cues involved in regulating 

keratinocyte functions necessary for the maintenance of the tissue architecture, as well as 

skin’s overall homeostasis with the surrounding environment.4 The basal lamina is a thin 

membranous sheet composed of both collagenous and non-collagenous extracellular matrix 

(ECM) proteins including type IV collagen (CIV), laminin (LN), fibronectin (FN), and 

heparin sulfate proteoglycans.  The basal lamina is not flat, but rather conforms to a series of 

three dimensional ridges and invaginations formed by papillae located in the upper region of 
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the dermis that range from 50-400 µm in width and 50-200 µm in depth.5   It has been 

determined that in different regions of the body, the number and dimensions of dermal 

papillae and rete ridges differ.  In areas of skin exposed to excessive friction, such as the 

palms and soles, the basal lamina conforms to a series of longer and more numerous dermal 

papillae and deeper rete ridges, suggesting that the increased surface area provided by the 

topographical features also aids in enhancing mechanical stability.6 

 

Keratinocytes in direct contact with the basal lamina are the only population of cells in the 

epidermis with the capacity to proliferate.  The epidermis is in constant renewal, thus 

proliferation is necessary in order to provide proper barrier function.  The population of 

proliferating basal keratinocytes is heterogeneous and contains epidermal stem cells (ESCs) 

and transit amplifying (TA) cells that have different regenerative and differentiation 

capabilities. Epidermal stem cells are non-differentiated cells that are responsible for the 

assembly and maintenance of the epidermis as well as the rapid regeneration of damaged 

tissue.  They are capable of self-renewal and give rise to TA cells, which divide a finite 

number of times to amplify the basal layer and then undergo terminal differentiation.7   

 

Epidermal stem cells exhibit a high degree of spatial organization and clustering along the 

complex topography of the basal lamina.  Epidermal stem cells can be further classified 

based on their localization into bulge ESCs, found in the bulge region of the hair follicle and 

interfollicular ESCs found either in the bottom of rete ridges or tips of papillary projections.8-

10  Several studies have examined the localization of proliferating keratinocytes and 

interfollicular ESCs in the basal layer of native epidermis using cell cycling or integrin 

detection techniques.  In monkey palm epidermis, DNA label-retaining cells (LRCs) were 

found in the deep rete ridges;11 which is indicative of slowly cycling cells, a well accepted 

characteristic of ESCs.12       This cell-cycle kinetic analysis has been used to investigate the 

localization of ESC populations in other species and tissue sites such as hamster epidermis 
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and oral mucosa,13 the bulge region in hair follicles,7 and human embryonic and fetal 

epidermis.14  In addition to label retaining cells, research has been conducted evaluating the 

intensity of β1 integrin receptors and correlating the findings with interfollicular ESC 

localization.  All basal keratinocytes express β1 which mediates adhesion to the ECM of the 

basal lamina and regulates terminal differentiation.15-17  Enhanced β1 expression has been 

found to distinguish ESCs from keratinocytes with lower proliferative potential.18 The 

expression of β1 has been found to be distributed differently along the microtopography of 

the basal lamina, based on body site location.  These findings correspond with label-retaining 

experiments previously mentioned.  In human skin, β1-bright regions are found in deep rete 

ridges in the palms and soles; whereas in interfollicular epidermis of the scalp, foreskin, and 

breast, β1-bright regions were found at the tips of the papillary projections.12,19   

 

In addition to studies evaluating microtopographic features of the basal lamina in native 

tissues and interfollicular ESC localization, other researchers have focused their efforts on 

investigating the effects of the biochemical composition of the basal lamina that influences 

keratinocyte attachment and ESC selection, proliferation, and terminal differentiation.  

Keratinocyte attachment was investigated on CI, CIV, LN, and FN at varying concentrations 

and amounts of time.  It was determined that the percentage of keratinocytes that adhered to 

each surface was time dependent as well as ECM protein and concentration dependent with 

adhesion to FN giving the highest percentage of adherent cells.17  Studies have also 

investigated the ability to select for ESCs based on using rapid adhesion assays on ECM 

proteins.  Differences in colony forming efficiency (CFE), a metric that can be used to 

demonstrate the presence of an ESC population or proliferative potential of the population, 

have been detected based on this selection technique.8,18,20  Additionally, flow cytometry has 

been used to sort keratinocytes based on β1 integrin expression.  When evaluating the CFE of 

keratinocytes separated using this technique, a linear relationship was found between log 

fluorescence and CFE, which implies a log linear relationship between β1 integrin density on 
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the cell surface and proliferative potential.18  Studies have further examined the effects of 

ECM proteins of the basal lamina, specifically FN, on differentiation of keratinocytes.  It has 

been shown that when cells are induced to undergo differentiation in culture, they become 

less adhesive to FN, and no longer express the β1 integrin.16   

 

Understanding how the microenvironment found at the DEJ influences ESC localization and 

promotes the development of a functional tissue is critical in the development of the next 

generation of bioengineered skin grafts as well as for longevity of the tissue.  We hypothesize 

that by incorporating microfabricated basal lamina analog, containing biochemical and 

microtopographic features mimicking those found at the DEJ, we will promote enhanced 

epithelialization and epidermal stem cell clustering on the surface of novel dermal scaffolds.  

Previously, our laboratory has created basal lamina analogs on the surface of collagen-

glycosaminoglycan (GAG) dermal scaffolds that recapitulate the native topographical 

features found at the DEJ utilizing photolithography and material processing techniques.  It 

was determined that topographical features with the greatest aspect ratios enhanced 

keratinocyte stratification, proliferation, and differentiation.21,22  Additionally, we found that 

passively adsorbing the ECM protein FN, on the surface of flat collagen-GAG membranes 

increased keratinocyte attachment over non-modified control collagen-GAG surfaces by 

22%.23 When further investigating FN binding domains and conjugation strategies, we 

determined that through carbodiimide conjugation, we could enhance the presentation of the 

cellular binding site domain of FN on the surfaces of self-assembled CI membranes.24  In this 

chapter, we have developed a novel system that incorporates both microtopographic and 

biochemical features that have been previously defined by our laboratory to enhance 

epithelialization.  Using histological stains and immunohistochemistry coupled with 

quantitative morphometric analyses of microscopic images, we have determined the effect of 

this combined microenvironment on epithelial thickness, morphology, proliferation, and ESC 

localization.  Furthermore we have compared our bioengineered skin substitutes that contain 
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microfabricated basal lamina analogs with both native adult and neonatal tissues as well as 

de-epithelialized acellular dermis (DED) cultured under the same conditions as our 

experimental system.  Overall, we have developed a bioengineered skin substitute with a 

microfabricated basal lamina analog that imparts the ability to direct ESC localization, as 

well as a model system to further investigate advanced ESC markers and the mechanisms by 

which ESC localization occurs.   

 

6.2 MATERIALS and METHODS 

6.2.1 Production of Dermal Scaffold Containing a Microfabricated Basal Lamina 
Analog  
 
6.2.1.1 Photolithography of a Master Pattern and Negative Replicates 

To mimic the microtopography found at the DEJ, photolithography was used.  Master 

patterns consisting of parallel, three-dimensional channels with widths of 50-400 µm and 

depth of 200 µm were designed using Pro/Engineer software (PTC, Needham, MA).  The 

two dimensional drawing was then printed onto acetate film (CAD/Art Service Inc, Poway, 

CA) with a high resolution laser photoplotter (7008MF: 20,000 dots/inch, Orbotech, 

Billerica, MA).  The transparency masks were then aligned on the surface of silicon wafers 

coated with 200 µm thickness of SU-8 photoresist (Microchem Co., Newton, MA) and 

exposed to a collimated beam of UV light.  The wafer was immersed in propylene glycol 

methyl ether acetate (PGMEA; SU-8 Developer, Microchem Co.) and the unexposed regions 

were dissolved, leaving a three-dimensional pattern on the silicon wafer (Figure 6.1A25).  To 

create negative replicate molds, polydimethylsiloxane silicone elastomer (PDMS, Sylgard 

184, Dow Corning Corp., Midland, MI) was poured onto the surface of the wafer (10:1 base 

to curing agent), degassed to remove trapped air bubbles, and allowed to polymerize for 2 

hours at 65°C.  The PDMS was then carefully separated from the silicon wafer (Figure 

6.1B25). 
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6.2.1.2 Purification of CI 

Acid-soluble type I collagen (CI) was extracted from rat tail tendons using protocols 

previously described.26   Rat tails were received from animals that were euthanized for other 

protocols, which were approved by Worcester Polytechnic Institute, Worcester, MA, 

Institutional Animal Care and Use Committee.  Briefly, rat tail tendons were extracted from 

the tails of 13 Sprague Dawley rats, rinsed in dPBS (Hyclone, Logan, UT), and dissolved in 

1600 ml of 3% acetic acid (EMD Chemicals, Inc., Gibbstown, NJ) at 4°C overnight. The 

resulting solution was centrifuged at 8590 rpm for 2 hours and 320 ml of a 30% NaCl 

(Sigma, St. Louis, MI) solution was dripped into the supernatant at 4°C.  The resulting 

solution was allowed to sit for at least 1 hour at 4°C without disruption and then centrifuged 

at 4690 rpm for 30 minutes to separate precipitated and liquid material.  The precipitated 

material was resuspended in 400 ml of 0.6% acetic acid and dialyzed for 4 hours against 1 

mM HCl (JT Baker, Phillipsburg, NJ) and the dialysis solution was changed every 4 hours 

until a clear collagen solution was obtained.  This solution was lyophilized and stored in a 

sealed container at 4ºC, until use.  Lyophilized collagen was dissolved in 5 mM HCl to 

obtain a working solution of 10 mg/ml.26 To produce self-assembled CI membranes, 800 µl 

of the soluble CI solution was neutralized using 200 µl of 5x Dulbecco’s Modified Eagle’s 

Medium (DMEM, Invitrogen, Carlsbad, CA) with 0.22 M NaHCO3 and 40 µl of 0.1 M 

NaOH (Sigma) at 37°C for 18 hours on circular PDMS molds (Figure 6.1C24).  

 

6.2.1.3 Dermal Scaffold Production 

To create dermal scaffolds, a collagen-GAG coprecipitate containing collagen (5 mg/ml) and 

GAG (0.18 mg/ml) was prepared by placing lyophilized bovine hide derived collagen 

(Semed-S, Kensey Nash Corp., Exton, PA) in acetic acid and homogenizing (20,000 rpm) at 

4°C for 90 minutes resulting in a bovine derived collagen suspension.27 Shark cartilage 

chondroitin 6-sulfate (Sigma) was dripped into the blending collagen dispersion and blended 
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for an additional 90 minutes.  Once fully blended, the collagen-GAG coprecipitate was 

degassed by centrifugation.  Dermal scaffolds were created by placing 20 ml of the collagen-

GAG suspension in 70 mm diameter aluminum weigh boats (VWR, West Chester, PA) and 

freezing at -80°C for 1 hour.  Following the initial freezing, the tins were placed in a freeze 

dryer (Virtis Advantage, Virtis, Inc., Gardner, NY) pre-frozen to -45°C then lyophilized 

overnight at a vacuum of 100 mtorr.  Following lyophilization, the scaffolds were covalently 

crosslinked by thermal dehydration (DHT) at 105°C in a vacuum of less than 200 mtorr for 

48 hours.  Scaffolds were cut into rectangles approximately 7 cm2 (2.5 cm width x 3 cm 

height) in area and placed in desiccator until use.   

 

6.2.1.4 Production of Dermal Scaffolds with Microfabricated Basal Lamina Analogs  

The production of dermal scaffolds with microfabricated basal lamina analogs began with the 

fabrication of a self-assembled CI membrane.  Initially, a microfabricated self-assembled CI 

membrane was made by neutralizing 800 µl of 10 mg/ml CI using 200 µl of 5x DMEM 

containing 0.22 M NaHCO3 and 40 µl of 0.1 M NaOH (Sigma) at 37°C for 18 hours on 

PDMS molds containing the negative replicate of the desired channel topography (molds 

9.85 cm2) (Figure 6.1C25).  After incubation, 400 µl of 10 mg/ml of CI was neutralized using 

100 µl of 5x DMEM containing 0.22 M NaHCO3 and placed directly on the self-assembled 

CI membrane, and gently spread to cover the entire surface area.  Immediately following this 

step, a precut lyophilized dermal scaffold was placed on top of the neutralizing CI and then 

incubated at 37°C for 2 hours to facilitate complete self-assembly of the CI and lamination of 

the dermal scaffold to the basal lamina analog (Figure 6.1D25). 

 

6.2.1.5 FN Conjugation to Microfabricated Basal Lamina Analogs Laminated to Dermal 
Scaffolds  
 
Carbodiimide 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC, Sigma) 

was used to covalently conjugate FN to the surface of the microfabricated basal lamina 
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analog as well as chemically crosslink the basal lamina analog and dermal scaffold.  

Previously we have reported that this method increases cellular binding site availability of 

FN.24  Using protocols described previously, the mole ratio of 5:1 of EDC to carboxylic acid 

groups in CI was used.28  Theoretical calculations which estimated the amount of COOH in 

1000 amino acids of collagen were used to make the assumption that 1 g of CI contains 1.2 

mmol COOH based on amino acid composition of CI.28,29 Each dermal scaffold containing a 

microfabricated basal lamina contains 30 mg of CI for a total of 0.036 mmol COOH, thus 

requiring 0.18 mmol of EDC.  This amount of EDC was dissolved in 50 mM MES (Sigma), 

prepared in 40% ethanol (Pharmco Products, Inc., Brookfield, CT) at a pH of 5.5, and 3 mls 

of the solution was placed on the dermal scaffold containing a microfabricated basal lamina 

analog for 4 hours at room temperature (Figure 6.1E25).  Dermal scaffolds containing 

microfabricated basal lamina analogs were then removed from the EDC solution and 

immediately placed into air/liquid (A/L) interface culture devices24 and FN (BD Biosciences, 

Bedford, MA) at 100 µg/ml was placed in the well created on the surface of the collagen 

membrane over night at room temperature (Figure 6.1F25).  Control dermal scaffolds 

containing microfabricated basal lamina analogs without FN conjugation were also prepared.  

These controls received EDC and dPBS instead of FN.   

 

6.2.2 Preparation of De-Epithelialized Acellular Dermis 

Following methods previously described by Hamoen et al.,30 De-epithelialized acellular 

dermis (DED) was prepared to use as a control tissue scaffold. Cadaver skin was obtained 

from New England Eye and Tissue Transplant Bank and washed 3 times in sterile dPBS.  

From this point on, sterile conditions were maintained.  The cadaver skin was placed in an 

antibiotic cocktail containing 1x DMEM with 10 µg/ml Ciprofloxacin (Sigma), 2.5 µg/ml 

Amphoteracin B, 100 U/ml Penicillin, 100 µg/ml Streptomycin, and 100 µg/ml Gentamycin 

(Invitrogen) and kept at 4ºC for 1 day.  The following day, the skin was transferred to a 

cryopreservation solution composed of 1x DMEM with 15% glycerol (J.T. Baker) and placed 
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at 4ºC for 2 hours.  Following this step, skin was placed in sterile mesh gauze soaked in 

cryopreservation solution and wrapped in sterile aluminum pouches and plastic.  Wrapped 

packages of skin were transferred to -20ºC for 24 hours, and then moved to -80ºC for long 

term storage.   

 

To prepare the skin for tissue culture, pouches containing cryopreserved tissue were 

immersed in a tub of water at 15-20ºC until skin was pliable, then refrozen rapidly in liquid 

nitrogen.  This freeze-thaw cycle was repeated 3 times to devitalize the cells.  Skin was 

removed from pouches and washed 3 times in DMEM then placed in antibiotic cocktail for 1 

week at 4ºC.  After 1 week, the skin was transferred into new antibiotic cocktail and 

incubated for 1 week at 37ºC.  At the end of the incubation, the epidermis was separated from 

the dermis, and the dermis was placed into fresh antibiotic cocktail for 4 weeks at 4ºC.  After 

4 weeks, the DED was ready for tissue culture. 

 

6.2.3 In vitro Culture of Dermal Scaffolds Containing Microfabricated Basal Lamina 
Analogs 
 
6.2.3.1 Sterilization of Dermal Scaffolds Containing Microfabricated Basal Lamina Analogs 

Air/liquid culture devices containing dermal scaffolds with microfabricated basal lamina 

analogs were placed in sterile containers in 60 ml of 70% ethanol for 1 hour in a laminar flow 

hood.  After 1 hour, devices were transferred to new sterile containers and were rinsed 3 

times for 10 minutes each in sterile dPBS and then left overnight in dPBS under sterile 

conditions.   

 

6.2.3.2 Culture of Neonatal Human Keratinocytes 

Neonatal keratinocytes were cultured as previously described.22,23 Neonatal foreskins were 

obtained from non-identifiable discarded tissues from UMass Memorial Medical Center, 

Worcester, MA and were approved with exempt status from the New England Institutional 
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Review Board.  Keratinocyte isolations were performed using an enzymatic treatment with a 

dispase (Gibco, Gaithersburg, MD) solution.  The cells were propagated on a feeder layer of 

3T3-J2 mouse fibroblasts (generously donated by Dr. Stelios Andreadis, State University of 

New York at Buffalo, Buffalo, NY) and cultured according to methods previously 

described22,31 using keratinocyte media consisting of a 3:1 mixture of DMEM (high glucose) 

and Ham’s F-12 medium (Invitrogen)  supplemented with 10% fetal bovine serum (FBS, 

Hyclone), 10-10 M cholera toxin (Vibrio Cholerae, Type Inaba 569 B), 5 μg/ml transferrin, 

0.4 μg/ml hydrocortisone (Calbiochem, La Jolla, CA), 0.13 U/ml insulin, 1.4*10-4 M 

adenine, 2*10-9
 M triiodo-L-thyronine (Sigma), 1% Penicillin/Streptomycin (Invitrogen), and 

0.01 μg/ml epidermal growth factor (EGF, BD Biosciences).  After 5 days of culture, 

keratinocytes were detached using 0.05% Trypsin-EDTA (Invitrogen) and passage 2-3 

keratinocytes, from multiple donors were used in all experiments. 

 

6.2.3.3 Culture of Dermal Scaffolds Containing Microfabricated Basal Lamina Analogs  
 
After sterilization of dermal scaffolds with microfabricated basal lamina analogs, A/L 

interface culture devices were transferred to sterile 6 well plates for immediate cell culture.  

Dermal scaffolds with microfabricated basal lamina analogs were preconditioned with 

seeding media consisting of 3:1 mixture of 1x DMEM (high glucose) and Ham’s F-12 

medium supplemented with  10-10 M cholera toxin, 0.2 µg/mL hydrocortisone (Calbiochem), 

5 µg/mL insulin, 50 µg/mL ascorbic acid (Sigma), and 100 IU/mL and 100 µg/mL 

penicillin–streptomycin. Keratinocytes were seeded using this media at 500,000 cells/cm2 

and allowed to adhere for 2 hours in 10% CO2 at 37°C. After 2 hours, seeding media 

containing 1% FBS was placed in each well, completely submerging the bioengineered skin 

substitutes.  After 24 h, the keratinocyte seeding medium was removed, and the 

bioengineered skin substitutes were submerged for an additional 48 h in a keratinocyte 

priming medium composed of keratinocyte seeding medium (with FBS) supplemented with 

24 µM bovine serum albumin (BSA), 1.0 mM L-serine, 10 µM L-carnitine, and a mixture of 
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fatty acids including 25 µM oleic acid, 15 µM linoleic acid, 7 µM arachidonic acid, and 25 

µM palmitic acid (Sigma).32  After 48 h in priming medium, the bioengineered skin 

substitutes were cultured for 3 or 7 days with an air liquid interface medium composed of 

serum-free keratinocyte priming medium supplemented with 1.0 ng/mL EGF (Figure 

6.1G25).    As controls, composites without FN treatment and DED were cultured in parallel 

using the same process; however, DED was not sterilized, but placed directly into sterile A/L 

interface culture devices and keratinocytes were seeded on the papillary surface. 

 

6.3.3 Quantitative Morphometric Analysis of Microfabricated Features of Basal 
Lamina Analogs  
 
The morphology of the microtopographical features of the surfaces of the basal lamina 

analogs were evaluated using histology coupled with quantitative image analysis.  The 

specified values for the channels were 200 µm depth and 50 µm, 100 µm, 200 µm, and 400 

µm widths.  To measure the surface features of the basal lamina analogs, a series of unseeded 

dermal scaffolds containing microfabricated basal lamina analogs were fixed with 10% 

buffered formalin solution (EMD Chemicals), dehydrated with increasing concentrations of 

ethanol, cleared with sec-butyl alcohol (EMD Chemicals), and embedded in Paraplast tissue 

embedding medium (McCormick Scientific, St. Louis, MO).  Six micron sections were cut 

using a Leica RM 2235 (Leica Microsystems, Inc., Bannockburn, IL) in a plane 

perpendicular to the surface of the basal lamina.  Sections were mounted on poly-l-lysine 

coated slides (Erie Scientific Company, Portsmouth, NH). Tissue sections were 

deparaffinized in reverse ethanol–xylene (Pharmco Products, Inc. and EMD Chemicals) 

washes and stained with Harris Hematoxylin (Richard Allen Scientific, Kalamazoo, MI) for 4 

minutes.  Slides were rinsed with dH2O and 1% acid alcohol and stained with Eosin (Richard 

Allen Scientific) for 30 seconds.  The slides were then cleared in a series of ethanol and 

xylene and cover slipped using Permount (Fisher Scientific, Hampton, NH) mounting 

medium.  Brightfield images were captured of each section using a Nikon Eclipse E400 
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microscope (Nikon, Inc., Melville, NY) coupled to an RT Color Spot camera (Spot 

Diagnostics, Sterline Heights, MI).  For each sample the depths of the channels and the 

widths of the channels were measured using Image J software (downloaded from 

http://rsb.info.nih.gov.ezproxy.umassmed.edu/ij/).  Values are reported as mean +/- SEM. 

 

6.3.4 Analyses of Epithelialization and Regenerative Capacity of Bioengineered Skin 
Substitutes Containing Microfabricated Basal Lamina Analogs 
 
6.3.4.1 Epidermal Thickness and Graft Morphology 

Epidermal thickness and graft morphology on the surfaces of the basal lamina analogs 

laminated to dermal scaffolds were evaluated after 3 or 7 days of A/L interface culture.  

Samples were embedded in paraffin wax, sectioned, and mounted as described previously in 

the Quantitative Morphometric Analyses of Microfabricated Features of Basal Lamina 

Analogs Laminated to Dermal Scaffolds (Section 6.3.3).  Paraffin sections were 

deparaffinized in reverse ethanol–xylene washes and stained with Hematoxylin and Eosin.  

Brightfield images were captured and using Image J measurements of channel depth, channel 

widths, and epithelial thickness in each channel.  Additionally the epidermal thickness of the 

flat region adjacent to the channels (papillary plateau) was measured (Figure 6.2A25 insert).  

Multiple measurements were made for each sample since each sample contained multiple 

channels.  For epithelialized DED and native tissues, the thickness of the epidermal layer was 

measured in the rete ridges and on the papillary plateaus.  The dimensions of the rete ridges 

were also measured.  

 

To characterize the effect of channel dimensions on epidermal thickness, the epidermal 

thicknesses were measured in channels with widths that were within +/- 2 SEM of the 

topography validation width measurements, for each specified channel width. Data points 

were excluded from all other channels from this analysis.   These data points were then 

individually normalized to the depth of their channel.  The normalized data from each 
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specified channel width was then averaged and reported as a mean value +/- SEM.  Sample 

values for the 50, 100, 200, and 400 µm width channels were n = 5, 5, 6, 11 at 3 days, 

respectively and n = 5, 6, 15, and 13 at 7 days, respectively.  At both 3 and 7 days n = 4 for 

DED and n = 4 for foreskin tissue.   

 

6.3.4.2 Keratinocyte Proliferation 

Keratinocyte proliferation was evaluated after 3 or 7 days of A/L interface culture by 

measuring the presence of Ki67, a cell cycle associated antigen. Samples were embedded in 

paraffin, sectioned, and mounted on Superfrost Plus slides (VWR, West Chester, PA) coated 

with poly-L-lysine (Sigma).  The paraffin sections were deparaffinized in reverse ethanol–

xylene washes, and the antigens were unmasked by placing the slides in boiling Vector 

UnMasking solution (Vector Laboratories, Inc, Burlingame, CA) in a Manttra pressure 

cooker (Manttra, Inc., Virginia Beach, VA) for 1 minute after maximum pressure was 

achieved.  Slides were then incubated with blocking solution (10% normal horse serum 

(Vector Laboratories) in dPBS) for 10 min at room temperature and then treated with 

predilute mouse-antihuman Ki67 antibody (Zymed Laboratories, South San Francisco, CA) 

overnight in a humidified chamber (Sigma) at room temperature.  Slides were incubated with 

biotinylated anti-mouse IgG (Vector Laboratories) at 1:200 for 30 minutes at RT.  The slides 

were washed with dPBS and stained with Vectastain Elite ABC Kit (Vector Laboratories) for 

30 minutes at room temperature.  Slides were washed with dPBS and developed using a 

Vector NovaRed Substrate Kit (Vector Laboratories) for approximately 1 min for 

bioengineered skin substitutes and epithelialized DED, and 5 min for native tissues.  Slides 

were with rinsed in dPBS, followed by a 5 minute wash with tap water, and counterstained 

with Harris hematoxylin for 45 s. The slides were washed with tap water and then went 

through ethanol-xylene washes and mounted with VectaMount permanent mounting medium 

(Vector Laboratories).  The slides were viewed with a Nikon Eclipse E400 microscope and 

images were captured using an RT Color Spot camera.  The number of Ki67 positive basal 
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cells and total basal cell number were counted over the length of the basal lamina in each 

channel and for control tissues, over the entire image.  The data from each specified channel 

width was averaged and reported as the mean value +/- SEM.  Samples for 50, 100, 200, and 

400 µm width channels were n = 5, 6, 7, and 10 at 3 days, respectively and n = 5, 6, 10, and 

11 at 7 days, respectively.  At both 3 and 7 days of A/L interface culture n = 4 for 

epithelialized DED.  Samples for foreskin tissue were n = 5.  Only one sample of breast 

control tissue was obtained and 3 images of the sample were evaluated and averaged reported 

as the mean +/- standard deviations.  Breast tissue was not included in statistical analyses.   

 

6.4.3.3 Beta-1 Analysis of Keratinocyte Colonies 

To evaluate keratinocyte expression of β1 integrins in routine keratinocyte co-culture, we 

utilized quantitative immunofluorescence staining on tissue culture substrates.  For the tissue 

culture substrates, keratinocytes were cultured in 6 well culture plates, using methods 

previously described.  After 5 days of culture, each well was rinsed with dPBS and treated 

for 10 minutes with a fixing and permeabilizing solution containing dPBS, 4% formaldehyde 

(Ted Pella, Redding, CA), and 0.2% of Triton X-100 (Sigma).  Wells were then rinsed to 

remove fixative and permeabilizing solution and blocked with a 1% BSA solution in dPBS 

for 10 minutes.  Silicone gaskets made from PDMS with inner diameter of ~2 cm2 were 

secured in the center of each well using silicone vacuum grease (Dow corning, Midland, MI). 

A primary antibody directed against β1 (Anti-CD29, BioGenex, San Ramon, CA) at a 

concentration of 1:100 in blocking solution was applied for 2 hours at 37º C.  Following 

incubation, each sample was washed with dPBS twice, 5 minutes each time.  Goat anti-

mouse (Alexa Fluor 546, Invitrogen) secondary antibody at a dilution of 1:100 in blocking 

solution was placed in each well and incubated for 1 hour at 37º C.  After incubation, the 

wells were rinsed and Hoeschst nuclear reagent (Invitrogen) was added at 0.06 mM (in 

dH2O) for 5 minutes at 37ºC.  The wells were rinsed with dPBS, the gaskets removed, and 

the wells were cover slipped using an aqueous mounting medium containing anti-fading 
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agents (Biomeda Corp, Foster City, CA).  Each image was captured using the same exposure 

time.  Using Image J software, the histogram function was used to determine the greatest 

fluorescence intensity.  Following previously published methods, the greatest fluorescence 

intensity recorded was subdivided into three regions, the dullest (bottom 1/3), the brightest 

(top 1/3) and the remaining (middle 1/3).  Cells that had intensity values in the top 1/3 around 

their perimeter were considered integrin-bright.19,33,34  The number of cells that were integrin 

bright were counted as well as the total number of cells in the colony.  The average percent 

of integrin-bright keratinocytes for 4 separate wells was reported as a mean value +/- SEM 

since multiple images were captured and analyzed for each well.     

 
6.3.3.4 Beta-1 Expression in Bioengineered Skin Substitutes, Epithelialized DEDs, and 
Human Tissue 
 
The expression of β1 for basal keratinocytes in bioengineered skin substitutes, epithelialized 

DED, and human tissues, was analyzed using immunohistochemistry and quantitative 

analyses of fluorescent microscope images. Tissue samples, 6 µm thick, were mounted on 

Superfrost Plus slides coated with poly-l-lysine.  Following the same procedure as for Ki67 

detection, all samples were deparaffinized and the antigens were unmasked.  The same 

procedure was then followed as for the analysis of β1 of keratinocyte colonies on tissue 

culture plastic, except samples were cover slipped with Vectashield Mounting Medium with 

DAPI (Vector Laboratories) to visualize nuclei.  Human foreskins and breast tissue were 

obtained from non-identifiable discarded tissues from UMass Memorial Medical Center, 

Worcester, MA and were exempt from New England Institutional Review Board review.  

The human tissues were processed the same way as the bioengineered skin substitutes and 

epithelialized DED.    

 

Using Image J software, the average relative fluorescence intensity (RFI) value of cell 

borders was mapped for basal keratinocytes for all tissues evaluated.  Previously, it has been 

determined that β1 intensities correspond with ESC populations and integrin-bright patches 
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have been used as an indicator of ESC localization areas.19,34  Once measured, the average 

RFI was plotted to evaluate integrin-bright and integrin-dull regions of the basal lamina.  

Similar to β1 expression in the colonies, cells that had intensity values in the top 1/3 were 

considered integrin-bright.19,33,34 

 

6.3.5 Statistical Analyses 

Sigma Stat Version 3.10 (Systat Software Inc., Richmond, CA) was used to determine 

statistical differences among the means of experimental groups.  To determine if the means 

of two different samples were significantly different, a Student’s t-test was performed when 

the samples were drawn from a normally distributed population with equal variance.  Sigma 

Stat uses the Kolmogorov-Smirnov test to test for a normally distributed population and a P 

value > 0.05 indicates normality.  For all parametric tests, Sigma Stat assumes equal 

variance.  When the data was not drawn from a normally distributed population (P value < 

0.05), a Mann-Whitney Rank Sum Test was used and a Levene Median test was used to 

determine equal variance with a P value > 0.05 indicating equal variance.  For both the 

Student’s t-test and the Mann-Whitney Rank Sum Test, a p value < 0.05 indicated a 

significant difference between the means of experimental groups.   

 

To determine statistical differences among the means of three or more experimental groups a 

One Way Analysis of Variance (ANOVA) was used when the samples were drawn from a 

normally distributed population with equal variance (Kolmogorov-Smirnov test for normal 

distribution and equal variance was assumed).  When the data was not normally distributed, a 

Kruskal-Wallis One way ANOVA on ranks was performed (Levene Median test to determine 

equal variance with a P > 0.05 indicating equal variance).  When a statistical difference was 

detected among the group means, a Tukey post-hoc analysis was performed for both the One 

Way ANOVA and Kruskal-Wallis One Way ANOVA on ranks.  A p value < 0.05, for both 

variance tests, indicated a significant difference between the groups. 
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6.4 RESULTS 

6.4.1 Development of Bioengineered Skin Substitutes Containing Microfabricated Basal 
Lamina Analogs  
 
In native skin, the DEJ is not flat, but rather has a microtopography that conforms to a series 

of ridges and invaginations that, in combination with the biochemical composition, provides 

a microenvironment to direct basal keratinocyte functions.  To investigate the role of this 

microenvironment on epithelialization and the regenerative capacity of bioengineered skin 

substitutes, we developed a process to create a dermal scaffold containing microfabricated 

basal lamina analogs composed of a defined starting collagen material EDC conjugated with 

FN (Figure 6.125).   

 
Figure 6.1. Production of Bioengineered Skin Substitute Containing Microfabricated Basal Lamina 
Analogs.  Photolithography (A) was used to create a master pattern on a silicon wafer containing channels 
with a depth of 200 µm and widths of 50, 100, 200, and 400 µm.  Polydimethylsiloxane (PDMS) was cast 
on the microfabricated silicon wafer (B) and allowed to polymerize.  The PDMS pattern was inverted and a 
collagen gel was cast onto the surface containing the negative replicate of the original pattern (C).  Once 
polymerized, another collagen gel was cast onto the back surface of the original collagen gel which acts as 
a glue to laminate a collagen-GAG sponge (D).  This composite was EDC crosslinked (E).  The composite 
was removed from the PDMS and FN was conjugated to the surface (F).  The composite was sterilized, 
seeded with keratinocytes (G), and cultured to create an engineered graft with a stratified epidermis.25 
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Photolithography was utilized to create a master pattern containing channels with specified 

depths of 200 µm and widths of 50, 100, 200, and 400 µm.  Type I collagen was cast onto a 

PDMS negative replicate of the master pattern and allowed to polymerize.  A collagen-GAG 

sponge was then adhered to the back of the microfabricated self-assembled type I collagen 

membrane and the composite was EDC crosslinked to provide 

mechanical and degradation stability,35,36 as well as to provide 

sites for chemical conjugation of FN to the topographical 

features.37   

 

The topographical features provided on the surface of the 

basal lamina analog were analyzed through histological 

techniques before cellular seeding. Depths and widths of the 

channels were measured using Image J (Figure 6.225).  It was 

found that the depths for each channel were approximately 

150 µm (Figure 6.2B25 and Table 6.125) and widths for 50 µm 

were 60.8+/- 3.8, 100 µm were 101.2 +/- 2.4, 197.1 +/-13.5, 

and for 400 µm 315.7+/- 27.9 (Figure 6.2C25 and Table 6.125).   

Figure 6.2.  Topographical Measurements of the Surfaces of Bioengineered Basal Lamina Analogs.  To 
determine the dimensions of basal lamina analogs created using photolithography, histological sections were 
analyzed.  A) represents a section stained with eosin.  The insert illustrates the measurements made for depths 
(D) and widths (W) of the channels as well as the papillary plateau (PP) which will be discussed in later sections.  
All channels in the bioengineered skin substitutes were measured.  These values were averaged and plotted in B 
(width) and in C (depth) against specified channel widths.  Values are reported as averages +/- SEM.  Sample 
numbers for the 50 µm width channels are n = 4 and for the 100, 200, and 400 µm width channels n = 5.25 

Table 6.1. Specified and Measured Topographical Features of Basal Lamina Analog25
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6.4.2 Microenvironments Provided By a Microfabricated Basal Lamina Analog 
Influence Epidermal Thickness and Morphology of the Epidermal Layer of 
Bioengineered Skin Substitutes 

 
The effect of the 

microenvironment on 

epidermal thickness was 

analyzed at 3 or 7 days of A/L 

interface culture on a 

bioengineered skin substitute 

containing a microfabricated 

basal lamina.  Epidermal 

thickness was evaluated using 

histological techniques and 

quantitative morphometric 

analyses of microscopy 

images. Figure 6.325 displays 

representative hematoxylin 

and eosin stained channels 

that were evaluated.  

Previously our laboratory has 

shown that the presence of 

FN conjugated to the surface 

of a self-assembled CI basal  

Figure 6.3. Histological Representation of Hematoxylin and Eosin Stained Bioengineered Skin 
Substitutes. To evaluate the effects of FN and topography on epithelialization, the epidermal thickness of 
the composite was measured without FN cultured for 3 days at the A/L interface (A and B), on composites 
with FN cultured for 3 or 7 days at the A/L interface (C and D, and E and F, respectively) and compared 
to keratinocytes cultured on DED cultured for 3 or 7 days at the A/L interface (G and H, respectively) and 
foreskin and breast control tissues (I and J, respectively). Composites without FN lacked a continuous 
layer of keratinocytes in all regions and only contained 1 to 3 cellular layers as well as cellular debris. 
Cells cultured on scaffolds containing FN had a continuous monolayer and comparable epidermal 
thicknesses and morphology to epithelial layers on DED and in native tissues. Scale bars = 50 µm.25  
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lamina analog enhances epithelialization.24  When comparing basal lamina analog surfaces 

without FN conjugation (Figure 6.3A25 and 6.3B25) with basal lamina analog surface with FN 

conjugation (Figure 6.3C25 and 6.3D25), it can be seen that the FN surfaces have a continuous 

multi-layer of cells, regardless of topographical geometry (Figure 6.3A-6.3D25) in 

comparison with the non-continuous multi-layers of cells found cultured on the surfaces 

without FN.  

 

 
When comparing grafts cultured with FN at various time points, it can be seen that the 

geometrical features play a role in epidermal thickness.  At 3 days of A/L interface culture, 

channels with widths of 50 µm have a noticeably thicker epidermis than channels with 

Figure 6.4.  Epidermal Thickness of Bioengineered Skin Substitutes Normalized to Depth of 
Channel.  Epidermal thickness was measured in each channel of each composite and normalized to the 
depth of the channel.  A) At 3 days of A/L interface culture, epidermal thicknesses measured in 50 µm 
channels were statistically increased over that of all other channels measured (* indicates p<0.05, One-
Way ANOVA, Tukey post-hoc analysis).  B) When evaluating epidermal thicknesses at 7 days of A/L 
interface culture the 50 µm width channels and the 100 µm width channels were statistically different than 
the 200 and 400 µm channels (* indicates p<0.05, One-Way ANOVA, Tukey post-hoc analysis.  Large 
dashed lines represent epidermal thickness of foreskin tissue and smaller dashed lines represent epidermal 
thickness on DED.  Values represent means +/- SEM.  Samples for 50 µm and 100 µm widths at 3 and 7 
days are n = 5 and for the 200 µm widths n = 6 and 15 at 3 and 7 days, respectively, and n = 11 and 13 for 
400 µm channels at 3 and 7 days, respectively.25   
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widths of 200 µm (Figures 6.3C25 and 6.3D25, respectively).  Epidermal thickness normalized 

to the depth of the channel at 3 days of A/L interface culture for the 50 µm channels, was 

statistically greater than the thickness measured for the 100 µm width, 200 µm width, and 

400 µm width channels (Figure 6.4A25) 

 

The epidermal layer on the bioengineered 

skin substitutes cultured in the 50 µm width 

channels was similar in thickness and 

morphology to the epidermal layer cultured 

on DED for 3 days at the A/L interface 

(Figure 6.3G25). When quantifying the 

epidermal thickness, no statistical 

differences were found between the 

decellularized dermis and the 50 µm width 

channels at 3 days (Figure 6.4A25).  At 

the 7 day A/L interface culture time 

point for bioengineered skin substitutes, 

the 50 µm width and 100 µm width 

(Figure 6.3E25) channels have similar 

morphologies and epidermal 

thicknesses and when compared to the 

200 µm width channels (Figure 6.3F25) 

are much thicker.   

 

Figure 6.5. Epidermal Thickness at Papillary Plateau.  
The thicknesses of the epidermal layers at the papillary 
plateau of bioengineered skin substitutes, epithelialized 
DED, and in native foreskin were measured.  The dashed 
line represents the epithelial thickness of foreskin tissue.  
No statistical differences were detected between the 
thicknesses of bioengineered skin substitutes and 
epithelialized decellularized dermis at 3 or 7 days of A/L 
interface culture (One-Way ANOVA with Tukey post-hoc 
analysis).  At 7 days there were no statistical differences 
between foreskin tissue (dashed line) and either the 
bioengineered skin substitutes or epithelialized 
decellularized dermis (Kruskal-Wallis One-Way ANOVA 
on Ranks).  Values represent mean +/- SEM.  For 
bioengineered skin grafts n = 14 and 15 at 3 and 7 days, 
respectively, n = 4 and 7 for epithelialized DED at 3 and 7 
days, respectively, and n = 4 for foreskin tissues.25 
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Epidermal thickness for  the 50 µm 

width and 100 µm width channels had 

similar values, and were both statistically 

different from the 200 µm width and 400 

µm width channels (Figure 6.4B25).  

When comparing the bioengineered skin 

substitutes at 7 days of A/L interface 

culture to the epidermal layer on DED 

(Figure 6.3H25) and native skin (Figure 

6.3I25 and 6.3J25), it can be seen that the 

50 µm width and 100 µm width channels 

have similar morphologies and thickness.  

No statistical differences were found in 

epidermal thickness between 50 µm 

width and 100 µm width channels.  

Additionally, no statistical differences 

were found in epidermal thickness 

between 50 µm width and 100 µm width 

channels and the epidermal thickness of 

cells cultured for 7 days at A/L interface 

on DED or foreskin tissue (Figure 

6.4B25).   

 

Figure 6.6. Histological Representation of Ki67 Expression of Basal Keratinocytes Present in 
Bioengineered Skin Substitutes.  To evaluate the effects of topography on the presence of proliferating 
basal keratinocytes, Ki67, a marker for highly mitotic cells was used.  The presence of Ki67 positive basal 
keratinocytes was evaluated on bioengineered skin substitutes. A and B represent channels with 50 µm 
widths at 3 and 7 days, respectively.  C and D represent channels with 100 µm widths at 3 and 7 days, 
respectively. E and F represent channels with 200 µm widths at 3 and 7 days, respectively.  G and H 
represent channels with 400 µm widths at 3 and 7 days respectively.  I and J represent epithelialized DED 
at 3 and 7 days.  K and L are foreskin and breast tissue.  Scale bars in all images = 100 µm.25 
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To compare the thicknesses achieved regardless of depth of channels or depths of rete ridges, 

we measured the epidermal thicknesses at the papillary plateaus for the bioengineered skin 

substitutes.  (Figure 6.525 see Figure 6.2A25 for papillary plateau measurement clarification if 

necessary).  The papillary plateaus between all channels were then averaged and compared to 

the epidermal thicknesses on the papillary projections for epithelialized DED and foreskin 

tissue. At 3 days of A/L interface culture, bioengineered skin substitutes and epithelialized 

DED were not statistically different from each other but different from native foreskin. At 7 

days of A/L interface culture, the epidermal thicknesses at the papillary plateau were not 

statistically different between 

any measured tissues. 

 

6.4.3 Proliferation Capacity of 
Bioengineered Skin Substitutes 
is Affected by the 
Microenvironment Provided by 
a Microfabricated Basal 
Lamina Analog 
 
To determine the effects of 

microtopography on cell 

proliferation bioengineered skin 

substitutes and epithelialized 

DED were evaluated after 3 or 

7 days of A/L interface culture.  

The samples were stained for 

the nuclear proliferation 

antigen Ki67 and 

counterstained with 

hematoxylin (Figure 6.625).  

Figure 6.7.  Percentage of Ki67 Positive Basal Keratinocytes in 
Bioengineered Skin Substitutes.  The number basal keratinocytes 
that were Ki67 positive cells were counted in each channel as well 
as total number of basal keratinocytes and the percentage positive 
was determined. For native tissues, basal keratinocytes that were 
Ki67 positive as well as total basal keratinocytes were counted over 
a length ranging from 650 µm to 950 µm based on topographical 
features.  Values are reported as averages +/- SEM.  For 50 µm, 100 
µm, 200 µm, 400 µm widths, and epithelialized DED at 3 days, n = 
5, 6, 7, 11, and 4, respectively.  For 50 µm, 100 µm, 200 µm, 400 
µm, and epithelialized DED at 7 days, n = 4, 5, 11, 10, and 4, 
respectively.  Samples for foreskin tissues are n =5.   For breast 
tissue 3 separate sections of the same tissue were evaluated.25 
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Foreskin and breast tissues were also evaluated as native skin controls (Figure 6.6K25 and 

L25).  The percentage of Ki67 positive cells was quantified in each channel, or over the entire 

basal lamina for epithelialized DED or native tissues (Figure 6.725).    

 

At 3 days of A/L interface culture, the 50 µm width channels had the lowest average 

percentage of Ki67 positive cells (approximately 7.5% Figure 6.725), and 40% of these 

channels had zero positive cells.  At 7 days of A/L interface culture, the 50 µm width 

channels had a slightly higher average 

percentage of Ki67 positive cells than at 3 

days, and 20% of the channels analyzed had 

zero positive cells (Figure 6.725). When 

analyzing the 100 µm width channels after 3 

days of A/L interface culture, it was found 

that all channels contained positive cells and 

an average of approximately 15% Ki67 

positive cells was found.  At 7 days of A/L 

interface culture, the percentage of Ki67 

positive cells was approximately the same 

as at 3 days and all 100 µm width channels 

analyzed contained positive cells (Figure 

6.725). 

 

The 200 µm width and 400 µm width 

channels had similar values and trends at 

both 3 and 7 days of A/L interface culture.  

At 3 days of A/L interface culture the 200 

µm width channels had approximately 15% 

Figure 6.8.  Keratinocyte Colonies with β1 and 
Nuclear Expression.  Keratinocytes after 4 days of 
co-culture were immunostained for β1 (red) and 
nuclei (blue) expression.  Images A and B represent 
phase contrast and merged fluorescent images 
obtained in control wells, respectively.  Scale bar = 
100 µm.  Images C and D represent phase contrast 
and merged fluorescent images, respectively 
captured at 10x to evaluate cells and expression in 
total colonies.  Scale bar = 100 µm. Images E and F 
represent phase contrast and merged fluorescent 
images captured at 40x to demonstrate perinuclear 
expression of β1. Scale bar = 5 µm.25 
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Ki67 positive cells and the 400 µm width channels had approximately 18% Ki67 positive 

cells.  At 7 days, both channels decreased in percentage Ki67 positive cells to approximately 

10% (Figure 6.725).  Epithelialized DED exhibited approximately 10% Ki67 positive cells at 

3 days of A/L interface culture and approximately 18% Ki67 positive cells at 7 days of A/L 

interface culture. When analyzing native tissues, it was found that the basal keratinocytes of 

neonatal foreskin were approximately 12% Ki67 positive and basal keratinocytes in breast 

tissue were approximately 10% Ki67 positive.  Overall our Ki67 data suggests that no 

significant differences exist among any sample evaluated at either 3 days or 7 days of A/L 

interface culture (Figure 6.725)  When performing a power analysis, it was found that P < 0.8 

for both the 3 and 7 day data, therefore to further support these findings, sample sizes need to 

be increased. 

 

6.4.4 Beta-1 Expression in Keratinocyte Colonies Detected in Edge Keratinocytes  

The expression of β1 in colonies of keratinocytes was evaluated after 4 days of co-culture 

with a feeder layer of J2s.  It was found that for all colonies in each culture well, β1 

expression was found in the periphery of keratinocytes on the perimeter of each colony.  To 

analyze the localization of β1 bright regions, the maximal fluorescence intensity was 

determined so that no saturation occurred in the image.  This value was then divided into 

three equal regions, thus giving three regions of integrin expression values (bright, medium, 

and dull). Any value in the top third was considered β1-bright similar to previously reported 

literature.19,33,34  When analyzing the percentage of cells were β1-bright it was determined 

that 25% +/- 0.1 of the colony were β1-bright.  Figure 6.8A25 and 6.8C25 are phase contrast 

images that display a representative colony at 10 and 40x and 6.8B25 and 6.8D25 are 

fluorescent images displaying β1 expression (red) and cell nuclei (blue) at 10 and 40x, 

respectively.   
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6.4.5 Microenvironments Control Spatial Localization of β1-Bright Basal Keratinocytes 

To determine localization of β1-bright keratinocytes in bioengineered skin substitutes, 

epithelialized DEDs, and in native foreskins, we utilized immunohistochemistry coupled with 

quantitative digital image analyses.  Fluorescent intensity values were determined for cell-

cell borders similar to previously reported literature for 3 day A/L interface cultures.19,33,34  

Figure 6.9 displays representative images of 100 µm width channels (Figures 6.9A25 and 

6.9B25), 400 µm width channels (Figures 6.9D,25 6.9E,25 6.9G,25 and 6.9H25), flat regions of 

bioengineered skin substitutes (Figures 6.9J25 and 6.9K25), epithelialized DED (Figures 

6.9M25 and 6.9N25), and neonatal foreskin (Figures 6.9P25 and 6.9Q25).   

 

It was found that in the 100 µm width (Figures 6.9A,25 6.9B,25 and 6.9C25) and 400 µm width 

(Figures 6.9D,25 6.9E,25 and 6.9F25) channels, there were no β1-bright cells in the flat sections 

next to the channels (papillary plateaus), but in the channels 16.7% and 23% of basal 

keratinocytes were β1-bright, respectively (dashed lines in 6.9C and 6.9F separate flat regions 

from channel regions).  Figures 6.9G,25 6.9H,25 and 6.9I25 are another representative image of 

the 400 µm width channels demonstrating β1-bright regions localized to the corners of the 

channels. In the corners of the 400 µm width channels we found that 50% of the total basal 

keratinocyte population was β1-bright. 

 

When β1 was evaluated on flat regions of the bioengineered skin substitutes, 30% of the basal 

keratinocyte population was β1-bright, however the cells were not localized, but 

heterogeneously distributed (Figures 6.9J,25 6.9K,25 6.9L25).  The expression of β1-bright 

basal keratinocytes on epithelialized DED was found to be 15.6% and the β1-bright cells 

were localized to the rete ridges.  Additionally, β1 expression was evaluated in native 

foreskin tissue. It was found that the β1-bright basal keratinocytes localized to the tips of the 

papillary projections.  Overall 6.8% of the total basal keratinocyte population was β1-bright. 
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Figure 6.9.  Beta-1 Expression of Basal Keratinocytes in Bioengineered Skin Substitutes.  To determine 
the localization of β1 bright basal keratinocytes, immunohistochemistry coupled with digital image analyses 
was used.  Figures 6.9A, 6.9D, 6.9G, 6.9J, 6.9M, and 6.9P are images with β1 expression in red and Figures 
6.9B, 6.9E, 6.9H, 6.9N, and 6.9Q are images with β1 expression in red and nuclear expression in blue.  
Figures 6.9C, 6.9F, 6.9I, 6.9M, and 6.9R are plots of the average relative fluorescence intensities (RFI) of 
cell-cell borders in the region evaluated.  Dashed lines in 6.9C, 6.9F, and 6.9I separate flat regions from the 
channel.  It can be seen that for the 100, 400, and DED  samples (Figures 6.9B, 6.9E, 6.9H, and 6.9N) β1 
bright cells localized to the rete ridges, whereas in native foreskin β1 bright cells localized to the tips of the 
dermal papillae.  Additionally when evaluating the flat region of the bioengineered skin substitute, β1 cells 
were heterogeneously distributed. Each cell was measured and the average RFI was reported.  Insert in A 
and B represent controls for β1and β1 and nuclear staining. Error bars represent 100 µm in all images.24 
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6.5 DISCUSSION  

Understanding how the biochemical and three-dimensional microenvironment of the basal 

lamina modulates keratinocyte proliferation and differentiation, as well as contributes to 

localization of ESCs, is of great importance when designing bioengineered skin substitutes.  

In native tissues, the basal lamina provides instructive cues that are critical in skin 

architecture, cellular organization, and the regeneration of the epidermal layer.4  The 

regeneration of skin is of great importance, because in order for skin to provide the protective 

barrier against the surrounding environment, the epidermis must be in constant renewal.  In 

this study we developed a novel dermal scaffold that contains both biochemical and 

microtopographical cues provided by the native basal lamina and investigated the role of the 

microenvironment on bioengineered skin substitutes morphology, epidermal thickness, 

keratinocyte proliferation, and ESC localization.  Additionally we compared our findings 

with epithelialized DED and native foreskin tissues. 

 

To create a microfabricated basal lamina analog produced from self-assembled CI, 

photolithography was used.  A master pattern was created on a silicon wafer to produce 

channels with specified features of 200 µm depth and 50 µm, 100 µm, 200 µm, and 400 µm 

widths.  A negative replicate was produced using PDMS and acid soluble type I collagen was 

self-assembled on the surface of the negative replicate PDMS pattern.  Previously, our 

laboratory has used a similar strategy to create basal lamina analogs using a collagen-GAG 

coprecipitate with different processing techniques to create a basal lamina analog laminated 

to a dermal scaffold.21,22  When comparing the two strategies to produce microfabricated 

basal lamina analogs, we found that the features of the microfabricated basal laminas when 

composed of collagen-GAG had a greater error associated with both the widths and depths 

(mean width error varied from 13-30% and mean depth varied from 7.4-16.2%), than the 

features on the self-assembled CI lamina analogs (mean width errors varied from 2-9% and 

mean depths varied from 0.9-2.5%).  Although the depths and widths of the self-assembled 
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CI membranes varied from the design specifications, our new method using self-assembled 

CI demonstrates improved fidelity for recapitulating topographical features as well as a 

defined starting biochemistry for enhanced FN EDC conjugation.24   

 

After analyzing the topography of the channels, we investigated the responses of 

keratinocytes cultured for 3 or 7 days at the A/L interface on the surfaces of microfabricated 

basal lamina analogs laminated to dermal scaffold and compared the results to keratinocytes 

cultured on DED as well as with native neonatal foreskin and adult breast tissue.  When 

evaluating histological images, we determined that the epidermal thickness varied based on 

the geometry of the channels.  We also determined that after culturing keratinocytes on the 

microfabricated basal lamina analogs, that the topographic features had greater errors 

associated with their dimensions, than when measured prior to cellular culture. Therefore to 

account for the change in channel width, we only analyzed channels with widths that 

deviated from the mean by +/- 2 SEM, and normalized the epidermal thickness values to the 

depths of the channel based on previous data that suggests depth plays a role in the 

microenvironment.21  

 

The observed changes in topographical features of the epithelialized microfabricated self-

assembled CI basal lamina analog can be explained based on in vivo analysis of MMPs in 

normal wound healing.  Matrix metalloproteinases (MMPs) are found in the wound 

environment and are responsible for the degradation and modification of ECM proteins at the 

wound site.38  Matrix metalloproteinase-1 (MMP-1), or collagenase-1, is keratinocyte derived 

and initially found at high levels in the wound to enable keratinocyte migration and 

monolayer formation.  Once a monolayer and basement membrane proteins are formed, this 

enzyme ceases (as well as other MMPs) to be produced at high levels, and returns to normal 

levels that contribute to the constant balance of matrix synthesis and breakdown and 

recycling of the ECM.39,40 Since the keratinocytes initially seeded on the microfabricated 



   
Chapter 6 

Microenvironments of the Basal Lamina Influence Epithelialization and Stem Cell Localization on 
Bioengineered Skin Substitutes   

128 

   
 

basal lamina analogs exhibit similar characteristics to wounded keratinocytes, it is 

hypothesized that there was an upregulation of MMP levels similar to in vivo wounds which 

caused the change in the dimensions of the topographic features.41-45   

 

We evaluated the epidermal layer of bioengineered skin substitutes, after 3 days of A/L 

interface culture, and determined that keratinocytes cultured in 50 µm width channels had 

statistically similar epidermal thickness values as epithelialized DED.  At 7 days of A/L 

interface culture the 50 µm and 100 µm width channels exhibited the same epidermal 

thicknesses as keratinocyte cultured on DED and foreskin tissue and these conditions were 

statistically different from epidermal thickness values in the 200 µm width and 400 µm width 

channels.  

 

The morphology of the epidermal layer on the FN conjugated basal lamina analog surfaces, 

suggests well differentiated  epidermal layers, based on cellular size and loss of nuclei from 

the stratum corneum layer.  Keratinocytes found in the basal layer are cuboidal in shape and 

as the cells progress to the stratum corneum, exhibit a more flattened morphology, similar to 

what is found in native skin.  Furthermore, in native skin, these morphological changes are 

accompanied by changes in the expression of keratin proteins and water proofing lipids, 

which are both important in functionality of the skin in providing a protective barrier against 

the environment as well as  structural integrity of the epidermis.46 

 

Additionally, to demonstrate functionality of our bioengineered skin substitute, we 

determined the percentage of Ki67 positive basal keratinocytes.  Native skin is under 

constant renewal, thus having a bioengineered skin substitute with similar regenerative 

capacity is necessary in order to maintain a healthy tissue.  Ki67 positive basal keratinocytes 

were measured at the 3 and 7 day time points.  At 3 days of A/L interface culture, the 50 µm 

width channels contained a lower percentage of Ki67 positive basal cells than any other 
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channels and was similar to the percentage of Ki67 basal keratinocytes on DED.   At 7 days 

of A/L interface culture, the 200 µm width and 400 µm width channels had displayed a 

decrease in percentage of Ki67 positive basal keratinocytes, whereas the 50 µm width and 

100 µm width channels stayed relatively consistent.  

 

The data obtained from our Ki67 study helps to elucidate the trends from the epithelial 

thickness experiments and suggests that a space filling mechanism can be used to explain the 

data.  Our data suggests that after initial seeding, a monolayer of cells was present and that a 

proliferative burst occurred, similar to results seen during in vitro cultures of low-density to 

high-density keratinocytes47-50 as well as in the in vivo wound healing environment once a 

monolayer of keratinocytes is formed and contact inhibition occurs.41  This burst can be 

characterized by the basal cells undergoing two to four mitotic divisions and committing to 

terminal differentiation that leads to epithelialization.49-51  Since the 50 µm width channels 

have much smaller dimensions, they require a fewer number of cells to fill the topographic 

feature, followed by the 100, 200, and 400 µm width channels.  At 3 days of A/L interface 

culture (6 days of culture); the 50 µm width channels had a complete epithelial layer; 

however the 100, 200, and 400 µm width channels did not.  Our Ki67 data suggests that a 

proliferative burst occurred before the 3 days time point and this channel was in a steady 

state of proliferation between 3 and 7 day time points, whereas the other channels were still 

undergoing a proliferative burst to fill the channel.  At 7 days of A/L interface culture (10 

days of culture); the 100 µm width channels had the same epithelial thickness as the 50 µm 

width channels and native skin; however the 200 µm and 400 µm width channels contained a 

less thick epidermis.  The percentage of Ki67 positive cells for the 200 µm and 400 µm width 

channels both decreased at the 7 day time point but were not statistically different from the 3 

days, which could indicate that the epithelial thickness in these channels was as thick as it 

would form.   To further support the proposed mechanism, as well as to further explain the 

trends observed, future studies should focus on collecting data at the initial seeding time to 
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verify a monolayer as well as data at later time points to evaluate whether the epithelial 

thickness of the wider channels reaches similar thickness values as the 50 µm width and 100 

µm width channels, epithelialized DED, and native tissue.  

Although we evaluated the presence of Ki67 a marker for proliferative cells, this marker does 

not distinguish between the two types of proliferating cells, ESCs and TAs, found in the 

basal layer of the epidermis.  In order to create a bioengineered skin substitute that has the 

capacity for continuous renewal, it is necessary for ESCs to be present on the surface of the 

bioengineered skin substitute.  In the basal layer of the epidermis, keratinocytes express 

receptors of the integrin family that mediate adhesion to the basal lamina17,52,53 and also 

regulate the onset of terminal differentiation.52-54  Adhesion to ECM proteins and 

fluorescence activated cell sorting (FACS) have both been used to separate basal 

keratinocytes based on their integrin expression levels.  When plating the separated fractions 

of keratinocytes and examining CFE, the cells expressing a two- to threefold increase in β1 

levels were determined to have greater proliferative potential.  Additionally when using 

fluorescence microscopy, the location of β1-bright regions in native tissues was compared 

with the location of LRCs from previous studies, and it was found that they both resided in 

the same location, which was based upon tissue site.   

 

We first investigated the presence of β1 in colonies of cultured keratinocytes and determined 

that 25% of cells in the colony were β1-bright and these cells were located at the colony 

border.  This data corresponds with previously published literature that selected for 

keratinocytes using rapid adhesion to CIV.  In this study the keratinocytes that adhered were 

28% of the total starting population and had a higher modal α2β1 fluorescence than the total 

(unselected) basal population.19  Our finding of our keratinocyte population is important 

because this is the starting population of cells to be cultured on the surface of a dermal 

scaffold with a microfabricated basal lamina analog.   
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To evaluate the location of these β1-bright cells on bioengineered skin substitutes, we utilized 

immunofluorescent microscopy and image analysis of sections of the grafts.  For our 

bioengineered skin substitutes, we found that the β1-bright regions were located in the 

channels and not on the papillary plateaus.  Analyses indicated that for the 100 µm width 

channel, 16.7% of the total basal keratinocyte population in the channel was β1-bright.  

Similar analysis for the 400 µm width channel indicated that 23% of the total basal 

keratinocyte population in the channel was β1 bright.  Additionally it was found that the β1-

bright regions in the 400 µm width channels localized to the corners of the channels as seen 

in Figures 6.9G25 and 6.9H.25 When just evaluating the “corner” regions of the 400 µm width 

channels it was found that 50% of the basal keratinocytes in this region were β1-bright.   

When evaluating the papillary plateaus, it was found that there were no β1 bright cells (0%).  

When flat regions of the bioengineered skin substitutes were evaluated, we found that the β1-

bright cells were heterogeneously dispersed and that 30% of the total basal keratinocyte 

population was β1 bright. For epithelialized DED we found that 15.6% of the total basal 

keratinocyte population was β1-bright and these cells were localized to the rete ridges.  In 

native foreskin tissue, we found that 7% of the total population of basal keratinocytes was β1-

bright and these cells were localized to the tips of the dermal papillae.  This localization 

finding is consistent with literature; although our percentage of integrin bright cells was 

much lower.19,33  This could be caused by the variation of fluorescence intensities that the 

samples were exposed to.  In our study, care was taken to not overexpose the regions, thus 

lower values could be caused by this factor. 

 

In addition to identifying ESCs in bioengineered skin substitutes, an interesting finding is 

that the β1-bright cells were found primarily in the channels as well as in the rete ridges of 

epithelialized DED.   Also our analysis of β1 in foreskin tissue is consistent with previous 

studies indicating that β1-bright regions are localized to the tips of the papillary 

projections.12,19  In native skin the localization of integrin bright regions varies with location 
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in the body.  It has been thought that this localization is a mechanism to protect the cells that 

contribute to the maintenance of population of cells responsible for the continuous 

regeneration of the skin. The question of what are the cells being protected from has been 

addressed by previous investigators.11,55     There are many insults that can occur from the 

outside environment such as ultraviolet light or chemicals, which would make the deep rete 

ridges a more protective microenvironment for the ESCs, however insults can also occur 

from the dermal tissue as well.   Inflammation or a burst of oxidative stress could damage the 

cells in the bottom of the rete ridges and therefore the safer place would be in the tips of the 

papillary projects.  Neither of these groups of insults explains why in one location of the 

body, the ESCs in skin would be in the bottom of the rete ridges or in the tips since all insults 

mentioned can occur in all locations of the body.  Another possible explanation for the 

localization of ESCs is based on the occurrence of mechanical friction in different regions of 

the body.  The palms and soles of the human body are areas of skin that are exposed to 

excessive friction and contain more numerous dermal papillae and deep rete ridges.6,12  When 

investigating β1 expression in these tissues, it was found that the bright regions are in the 

deep rete ridges, unlike other areas of the body that experience less friction and have β1-

bright expression on the tips of the papillary projections.12,19   

 

In our study, we demonstrated a similar range of percentages of β1-bright basal keratinocytes 

that correspond with previous literature in suggesting that 25-50% of basal keratinocyte are 

β1-bright.19 However, other analyses suggest that only 10% of basal keratinocytes  are 

ESCs56 and another report suggest a much lower percentage (1%) of the basal cells are 

actually ESCs.57  It has been agreed that quantitative differences in the expression of one 

particular cell surface marker is not sufficient to uniquely define the stem cell population, 

since β1 is not unique to ESCs.  Consequently, our analysis of the effect of the 

microenvironment on ESC localization, necessitates that future studies investigate additional 

means of interfollicular ESC detection.19  A major caveat to these future studies is that there 
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is no universally accepted criterion to define interfollicular ESCs and that surface markers 

used to isolate a population may not isolate a distinct population, but one that has 

overlapping population of cells.  Until a detection technique is discovered, it will be 

necessary to compile evidence of “stemness” combining many techniques57 such as  the 

evaluation of the expression of β1,18 transferrin receptors,58,59 connexin 43,60 isoform of 

CD133,61 desmosomal proteins,62 and proteins mediating intercellular adhesions,34 as well as 

label retaining studies.7,11,13,14 Additionally, studies evaluating the transcriptional profiles of 

cells isolated using surface markers will have an impact on identifying a true interfollicular 

ESC population.63   

 

Overall this study has focused on developing a bioengineered skin substitute that 

recapitulates biochemical and microtopographical features found at the DEJ to enhance 

epithelialization and interfollicular ESC localization.  We have found that 50 and 100 µm 

width channels with approximate depths of 150 µm contain a full epithelial layer after 7 days 

at A/L interface culture.  When comparing these values to epithelialized DED or native skin, 

it was found that the epithelial thicknesses were not statistically different from one another 

and also contain similar values of proliferating basal keratinocytes. The information gained 

from this study will help with design features of the next generation of bioengineered skin 

substitutes that will overcome limitations such as prolonged culture times and healing times.  

In the future we will also evaluate if the increased surface area provided by the 

microfabricated basal lamina analog with the smaller width features will increase mechanical 

stability, thus helping to overcome mechanical induced graft failures.  Additionally, our 

bioengineered skin substitute containing a microtopographical basal lamina analog provides 

an excellent model system to evaluate the proper ESC niche through both surface markers 

and label-retaining studies in order to enhance the regenerative capacity of bioengineered 

skin substitutes. 
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7.1 OVERVIEW 

The work in this thesis describes the development of a bioengineered skin substitute that 

recapitulates features found in native skin critical for maintaining tissue integrity.  Unlike 

other current bioengineered skin substitutes, our system contains a basal lamina analog, 

containing biochemical and microtopographic features.  Similar to native tissue, our 

microfabricated basal lamina analog separates the dermal and epidermal layers of our 

bioengineered skin substitute and provides cellular microenvironments that direct 

epithelialization and epidermal stem cell (ESC) localization.   

 

7.2 RESULTS AND CONCLUSIONS 

7.2.1 PART I: EVALUATION OF ECM IN THE REGULATION OF 
KERATINOCYTE FUCNTION 
 
We began to develop our bioengineered skin substitute by investigating the biochemical 

composition of the extracellular matrix (ECM) that enhances keratinocyte attachment and 

subsequent cellular functions including proliferation and differentiation. Proteins present in 

native basal lamina, such as type IV collagen (CIV) and laminin (LN), as well as ECM 

proteins found in the wound healing environment, such as fibronectin (FN) and type I 

collagen (CI) from the underlying dermis, were passively adsorbed at various concentrations 

to collagen-glycosaminoglycan (GAG) membranes and keratinocyte attachment was 

assessed.  We found that a greater percentage of keratinocytes adhered to FN than on all 

other proteins investigated, similar to other in vitro studies investigating keratinocyte 

adhesion to ECM coated bacteriological plastic.1 When keratinocytes are cultured in vitro, 
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they express a similar phenotype to keratinocytes located at the margins of a wound.  These 

keratinocytes are considered “activated” in both scenarios.  This activated phenotype is 

characterized by morphological changes, reorganization of cytoskeletal and junctional 

complexes, and changes in integrin expression, most notably an increase in α5β1 the integrin 

for fibronectin.2-7  Therefore, we hypothesize that the increased levels of α5β1 played a role in 

the increased keratinocyte attachment to FN in our study. 

 

After identifying that FN enhanced the percentage of keratinocytes attached to the collagen-

GAG membranes, we cultured keratinocytes on collagen-GAG membranes for 3 or 7 days at 

the air/liquid (A/L) interface with passively adsorbed FN to investigate epithelialization 

parameters.  An increase in epidermal thickness and an increase in the percentage of Ki67 

positive basal keratinocytes were found at 3 days of A/L interface culture compared to 

membranes without FN modified surfaces.  At 7 days of A/L interface culture, the FN 

modified surfaces still had a thicker epidermis, although Ki67 values between FN-treated and 

non-treated membranes were similar.  Our results suggest that FN-treated scaffolds closely 

mimic the wound environment; providing the appropriate signals for proliferation and 

epithelialization to occur.  In an acute wound environment in vivo, keratinocyte proliferation 

is increased.  Within hours after injury, activated keratinocytes migrate over the wound 

bed,8,9  and approximately 24 to 72 hours post injury a proliferative burst occurs.  This burst 

is responsible for the reepithelialization of the wound bed,10 and after closure of the wound, 

the basal layer returns to normal status with 10 to 20% of basal keratinocytes proliferating.11-

13   

 

Although significant research has elucidated the roles of FN on epithelialization in the native 

wound environment, little work has been performed investigating its presentation on dermal 

scaffolds and the resulting effect on keratinocyte functionality.  Furthermore, characterizing 

strategies to modify a biomaterial surface to increase the availability of the central cellular 

binding domain of FN, which has been shown to promote keratinocyte attachment and 



   
Chapter 7 

Conclusions and Future Work 
140 

   
 

subsequent intracellular signaling events, is of great importance for enhancing 

epithelialization as well as for engineering other tissue functions on the surfaces of 

bioengineered scaffolds.   

 

To investigate methods to strategically modify dermal scaffolds, we initially evaluated the 

cellular binding domain of FN passively adsorbed to collagen-GAG surfaces and determined 

that the binding sites were saturated and a plateau occurred at a FN concentration of 0.1 

mg/ml.  In the native wound environment, FN interactions with CI are mediated by specific 

domains on the surfaces of collagen molecules that produce oriented FN binding and presents 

FN binding sites for cellular interactions.14  Based on results from a previous study 

comparing the effects of adsorbed FN conformation on tissue culture polystyrene and 

collagen coated polystyrene, it was shown that the saturation density of FN on collagen was 

approximately half the amount of that on tissue culture polystyrene.15  Additionally, when the 

surfaces were immunoprobed for quantities of cell binding domains at saturation densities, 

FN treated tissue culture polystyrene exhibited an increase in fluorescence intensity for HFN 

7.1 binding relative to the values observed on FN treated collagen surfaces.  Furthermore, 

when equal surface densities of FN were adsorbed to tissue culture polystyrene and collagen 

surfaces, minimal cellular differentiation was found on the tissue culture polystyrene surface 

in comparison with the collagen surface.  These findings suggest that passively adsorbing FN 

to collagen surfaces and collagen membranes represents a promising, but suboptimal 

approach to directing keratinocyte functions on engineered biomaterials.  Therefore we began 

to investigate how the properties of a biomaterial surface affect FN adsorption, and 

furthermore the affects of the FN conformation on keratinocyte functions. 

 

To investigate the effect of surface chemistries on FN conformations that could be translated 

to the surfaces of collagen membranes to enhance FN cellular binding site presentation, we 

used self-assembled monolayers (SAMs) of alkanethiols on gold surfaces as a model 

biomaterial surface.  We chose this model system since the hydrophobicity and charge of the 
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surface can be modified by changing the functional end groups of the alkanethiols without 

changing any other surface property.16,17   It was determined that when uniform quantities of 

FN were adsorbed to each surface, the OH terminated SAMs demonstrated the greatest 

increase in the presentation of the cellular binding domains relative to the other SAMs 

surfaces as well as tissue culture plastic.  When saturation densities of FN were evaluated on 

each surface, we found that increased FN densities did not always correspond with increased 

presentation of cellular binding domains, suggesting that surface chemistries modulated FN 

conformation.  When keratinocyte functions were measured on FN treated SAMs at low or 

saturated densities we found that the availability of the synergy binding sites correlated with 

keratinocyte spreading, attachment, and differentiation.  We also found that the density of 

focal adhesion complexes significantly increased on surfaces with increased presentation of 

FN cell binding domains.  Additionally, the density of focal adhesion complexes 

corresponded with keratinocyte attachment and spreading in a direct fashion, and the density 

of focal adhesion complexes corresponded with cell differentiation in an indirect fashion.  

These findings suggest that keratinocyte attachment, spreading, and differentiation were 

integrin mediated processes.  This data suggests that tailoring the surface chemistries of 

implantable biomaterials scaffolds, to enhance FN conformations which expose the cellular 

binding domains, will lead to improved control of cellular functions and enhance the rate of 

tissue regeneration on bioengineered skin substitutes.  

 

To begin to translate our findings from the SAMs model of a biomaterials surface to 

implantable scaffolds, we investigated the use of a new starting collagen material, and we 

compared the availability of FN cellular binding sites with collagen-GAG membranes using 

passive adsorption techniques.  We found that self-assembled CI membranes increased the 

presentation of FN cellular binding sites suggesting that the self-assembled CI membranes 

facilitate a more favorable binding interaction with FN.  Additionally we chose to investigate 

covalent conjugation strategies to improve the presentation and overall bioactivity of FN on 

the surfaces of collagen membranes.18-20  We chose a carbodiimide conjugation strategy, 
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specifically 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) because 

of previously successful outcomes.  This strategy has been used to crosslink collagenous 

biomaterials and improves their degradation resistance and mechanical properties.21,22 

Additionally EDC has been used to couple chondroitin sulfate, heparin sulfate, and heparin to 

the surface of collagen scaffolds.23-25  When FN was covalently conjugated to either type of 

collagen membrane using EDC, we found a significant increase in the presentation of cellular 

binding domains, however when comparing self-assembled CI membranes with collagen-

GAG membranes, a significant increase in the availability of cellular binding domains was 

observed on the surface of the self-assembled CI membranes.   

 

In conclusion of Part I: Evaluation of ECM in the Regulation of Keratinocyte Function of 

this thesis, we determined i) FN enhances keratinocyte attachment to collagen-GAG 

membranes more than CI, CIV, as well as LN, and ii) the presence of FN in an in vitro model 

enhances epidermal thickness and proliferation.  Additionally we conclude iii) when FN is 

covalently conjugated to collagen membranes through use of EDC enhanced FN cellular 

binding site availability is detected over passive adsorption, and iv) when FN is covalently 

conjugated through use of EDC to self-assembled CI membranes increased FN binding site 

presentation occurs over that on collagen-GAG membranes.  In conjunction with data 

obtained from the SAMs studies we conclude that v) providing a surface with increased 

presentation of the cellular binding domain of FN will enhance keratinocyte functions 

necessary for epithelialization. 

 

7.2.2 PART II: ROLE OF SCAFFOLD MICROARCHITECTURE IN THE 
REGULATION OF KERATINOCYTE FUNCTION 
 
 

In this section of this thesis, we incorporated the findings from PART I: EVALUATION OF 

ECM IN THE REGULATION OF KERATINOCYTE, onto the surface of a microfabricated 

basal lamina analog laminated to a dermal sponge.  This microfabricated basal lamina analog 

contains microtopographical features that mimic the native microenvironment found at the 
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DEJ.  We evaluated the effects of both surface biochemistry and topography on 

epithelialization as well as epidermal stem cell (ESC) localization and compared our results 

with keratinocytes cultured on de-epithelialized acellular dermis (DED) and native tissue.   

In order to recapitulate the topographical features found at the DEJ, we used 

photolithography to create a silicon wafer containing channels with features of 200 µm 

depths and widths ranging from 50-400 µm.  A negative replicate of the pattern was formed 

using polydimethylsiloxane (PDMS) and CI was self-assembled on the surface of the PDMS 

negative replicate.  A dermal sponge was laminated to the back surface of the self-assembled 

CI basal lamina analog.  Fibronectin was then covalently conjugated, through the use of 

EDC, to the surface of the self-assembled CI membrane containing the microtopography.  

Using this novel composite, we evaluated the epidermal layer of bioengineered skin 

substitutes, after 3 days or 7 days of A/L interface culture.  After 3 days, we determined that 

keratinocytes cultured in 50 µm width channels had similar epidermal thickness values as 

epithelialized DED.  At 7 days of A/L interface culture the 50 µm and 100 µm width 

channels exhibited similar epidermal thicknesses as keratinocytes cultured on DED and 

foreskin tissue.  These conditions were statistically different from epidermal thickness values 

in 200 µm width and 400 µm width channels.  The percentage of Ki67 positive basal 

keratinocytes was also measured at the 3 and 7 day time points.  At 3 days of A/L interface 

culture, the 50 µm width channels contained a lower percentage of Ki67 positive basal cells 

than any other channels and were similar to the percentage of Ki67 basal keratinocytes on 

DED.   At 7 days of A/L interface culture, the 200 µm width and 400 µm width channels had 

displayed a decrease in percentage of Ki67 positive basal keratinocytes, whereas the 50 µm 

width and 100 µm width channels stayed relatively consistent. 

The data obtained from the Ki67 study helps to elucidate the trends observed from the 

epithelial thickness experiments on the surfaces of the microfabricated basal lamina analogs 

and it suggests that a space filling mechanism can be used to explain the trends.  Our data 

suggests that a proliferative burst occurred before the 3 day time point for the 50 µm width 
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channels due to contact inhibition, similar to events that occur during in vivo wound healing 

after a monolayer of cells covers the wound bed.7  This proliferative burst can be 

characterized by the basal cells undergoing two to four mitotic divisions and committing to 

terminal differentiation to reepithelialize the wound surface.26-28  Since the 50 µm width 

channels have smaller dimensions; the cells in these channels likely experience contact 

inhibition before the cells in channels with the larger dimensions.  Additionally, the smaller 

width channels have smaller overall dimensions, thus it takes a less number of cells to fill 

these channels.  By the 7 day A/L interface culture time point, the 100 µm width channels 

had approximately the same epithelial thickness as the 50 µm width channels and native skin; 

however the 200 and 400 µm width channels contained a less thick epidermis.  The 

percentage of Ki67 positive cells for the 200 and 400 µm width channels decreased at the 7 

day time point but were not statistically different from the 3 days, which could indicate that 

the epithelial thickness in these channels had reached a steady state.  To further support the 

proposed model of a space filling mechanism, as well as to further explain the trends 

observed in this study, future studies should evaluate the microenvironments of the basal 

lamina analogs after initial seeding time as well as 14 days at the A/L interface.  These 

experiments will provide information regarding the initial distribution of cells, and if the 

epithelial thickness of the wider channels reaches similar thickness values as the 50 µm 

width, 100 µm width, epithelialized DED, and foreskin tissue. 

 
Additionally, we investigated the localization of epidermal stem cells (ESCs) on the surfaces 

of our bioengineered skin substitutes as well as in epithelialized DED and in native foreskin 

tissue.  Previous studies have demonstrated that the β1 integrin is a preliminary marker for 

ESCs using cellular separation techniques based on integrin levels in combination with 

colony forming efficiency studies.29  When investigating β1 expression in native human 

tissues, these studies found that β1-bright and dull regions of the basal layer have a non-

random distribution. Patches of integrin-bright cells were found at the tips of the papillary 

projections or tips of the rete ridges depending on location of the skin.29  When we evaluated 
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the presence of β1-bright regions on the surfaces of our microfabricated basal lamina analogs 

as well as on epithelialized DED, and we found that integrin-bright regions were localized in 

the channels, and in the bottom in the rete ridges.  In native foreskin tissue, the β1-bright 

regions were localized to the tips of the dermal papillae, similar to previously reported 

data.29,30  We also evaluated the localization of ESCs on flat regions of the basal lamina 

analog, and found a heterogeneously distributed population of β1-bright cells.   

 

Our data suggests that the microtopographical features of the basal lamina analog enhance 

ESC localization over that found on a flat basal lamina analog.  In native skin, ESCs in the 

epidermis, defined by integrin-bright analysis, are located in clusters of 9-14 cells.29  Based 

on our data, we have created a cellular microenvironment or ESC “niche” that promotes the 

localization of integrin-bright cells similar to that found in native skin.  Creating an 

environment that mimics the native ESC “niche” is critical for continual regeneration of a 

bioengineered skin substitute. Although the exact mechanism of localization in vivo as well 

as in our in vitro model is unknown, it is hypothesized that the cellular microenvironment or 

“niche” provides the conditions necessary for maintenance of ESC phenotype including the 

proper combinations of growth factors, ECM proteins, and neighboring cells. 

In conclusion of Part II: Roles of Scaffold Microarchitecture in the Regulation of 

Keratinocyte Function in this thesis, we developed i) a novel bioengineered skin substitute 

that contains FN covalently conjugated to the surface of a basal lamina analog that contains 

microtopographical features similar to the native DEJ.  Additionally we determined ii) after 

7 days of A/L interface culture that smaller width topographical features (50 and 100 µm 

widths with 200 µm depths) contain a morphologically and physiologically similar epithelial 

layer as epithelialized DED or native tissue and iii) provide microtopographic cues that 

facilitate enhanced ESC clustering in comparison with a flat basal lamina analog.  
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7.3 FUTURE WORK 

7.3.1 The Next Generation of Bioengineered Skin Substitutes  

The ultimate goal for bioengineered skin substitutes is to provide complete restoration and 

physiology of uninjured skin after the treatment and healing of wound sites.31 Researchers 

have agreed that in order to achieve optimal function and appearance of the treated wound, it 

is necessary to create a bioengineered skin substitute that consists of both dermal and 

epidermal components.32  In vivo the morphogenesis and homeostasis of human skin are 

maintained by cells interacting with specialized structures and biochemical cues provided by 

components found in the dermal and epidermal layers of the skin.  In this thesis, we 

investigated the role of ECM proteins and topographical features of the basal lamina on 

keratinocyte functions; however we did not examine the role of epithelial-mesenchymal 

interactions known to influence epithelialization and basement membrane synthesis through 

paracrine signaling.33-35 

 

In skin, the basal lamina acts as a barrier that prevents fibroblasts located in the dermis from 

directly contacting epidermal keratinocytes, but it does not prevent the diffusion of 

macromolecules into or out of the epidermis.36  This is an extremely important characteristic 

of the basal lamina and these diffusible molecules, specifically growth factors and cytokines 

have been found to play an important role in regulating tissue homeostasis of the epidermal 

layer.33,35,37  In co-culture systems containing keratinocytes and mesenchymal cells, as well 

as in skin, IL-1, IL-6, IL-8, granulocyte macrophage colony stimulating factor (GMC-SF), 

TGF α and β, NGF, PDGF, FGF, and KGF are present in the environment, and have been 

identified as potential mediators of keratinocyte growth and stimuli of wound repair.38-40    It 

has also been shown that keratinocyte growth is stimulated by factors produced by 

keratinocytes/fibroblast co-cultures, and that keratinocytes actively induce the expression of 

these factors.   Thus, it has been determined that epithelial maintenance is modulated by a 

two-way paracrine signaling mechanism.41,42     
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In vitro studies investigating the role of epithelial-mesenchymal interaction, by incorporating 

fibroblasts into the dermal component of cultured composite bioengineered skin substitutes, 

found enhanced performance of the grafts over culture systems without fibroblasts. In the 

presence of fibroblasts, it was found that keratinocyte proliferation was stimulated, cell 

differentiation was shifted toward the granulosum layer, and epidermal morphology was 

improved.43-47  A study utilizing keratinocytes seeded on a collagen with fibroblasts cultured 

at the A/L interface in serum free conditions, found that when the number of fibroblasts 

seeded into the dermal component was increased, the proliferation index of the epithelial 

layer also increased after 1 week of culture.  After 3 weeks of culture all conditions, ranging 

from 2-20*104 fibroblasts/cm2, contained the same percentage of positive Mb67 basal 

keratinocytes (10-13%) which is similar to native epidermis.  This study also investigated the 

proliferation index of keratinocytes seeded on collagen matrices without fibroblasts and 

found at 1 and 2 weeks a small percentage of basal keratinocytes were positive and by the 3 

week time point, no cells were positive for the proliferation marker.48 Although there were no 

significant differences in proliferation among grafts with varying number of fibroblasts at the 

3 week time point, it was found that at the high fibroblast density, differentiation markers 

were not properly expressed in the epidermis. Additionally, a murine implant study using 

keratinocytes cultured on DED with fibroblasts also showed that the addition of fibroblasts 

improved epidermal formation as well as enhanced dermal regeneration including 

vascularization and reduced graft contraction.49  These data suggests that fibroblasts are 

necessary for long term maintenance of bioengineered skin substitutes and that an optimal 

fibroblast density is required for proper epidermal morphogenesis.   

 

In addition to improving keratinocyte growth and proper morphogenesis of the epidermal 

layer, epithelial-mesenchymal interactions are important in mediating the synthesis of ECM 

proteins that contribute to the formation of the basal lamina.  Interactions between 

keratinocytes and proteins of the basal lamina are important in maintaining tissue integrity 

and modulating adhesion,1,29 differentiation,50 proliferation,37 migration,9,51 and gene 
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expression.37  Thus, the formation of a native basal lamina at the DEJ in bioengineered skin 

substitutes is important in providing the proper cues to enhance the longevity of the tissue.   

 

From in vivo studies, the deposition and assembly of the basal lamina proteins occurs 

concurrently with epithelial growth and differentiation52,53 and keratinocytes and fibroblasts 

both contribute proteins which include CIV, and types V and VII collagens, LN, FN, 

nidogen, and hemidesmosomal plaque proteins.54  During wound healing in vivo, studies 

have found FN present under the tip of a migrating epithelial layer and an absence of both 

LN and CIV.  Once the wound surface has been covered with a monolayer of keratinocytes 

by migration, LN and CIV reappear in a very ordered sequence from the margin of the 

wound inward, and keratinocytes return to the standard proliferation and differentiation 

program of the cell.55-57  
 

Additionally, in vitro culture systems have investigated the role of epithelial-mesenchymal 

interactions on the synthesis and organization of ECM proteins of the basal lamina.  Studies 

have used three-dimensional skin models such as collagen gels or DED with incorporated 

fibroblasts, and cultured keratinocytes on the surface at the A/L interface to evaluate the 

origin of basal lamina proteins and hemidesmosomal plaque protein formation.  It has been 

found in serum free conditions, by El Ghalbzouri et al., that cultured keratinocytes on the 

surface of fibroblast populated collagen gels constitutively produce hemidesmosomal 

proteins (plectin, BP230, BP180) and that laminins are expressed by keratinocytes only when 

fibroblasts or exogenous growth factors are present.  It was also found that the expression of 

CIV and type VII collagen are regulated by fibroblasts.58 Although multiple studies have 

been conducted, the information gained regarding which cell type, keratinocyte or fibroblast, 

synthesizes particular basal lamina proteins is still controversial because of the different 

model systems used, as well as if serum proteins or exogenous growth factors are present in 

the culture media.42,53,54,59 
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Collectively, the results of these studies strongly suggest that, our future efforts must include 

the incorporation of fibroblasts in the dermal component of our bioengineered skin substitute 

to provide the complete biochemical environment necessary to achieve optimal functionality 

and longevity of our tissue in the wound site.  

 

7.3.2 Model System 

After incorporating fibroblasts into the dermal component of our bioengineered skin 

substitutes, we believe that we will not only have developed a bioengineered skin substitute 

with improved tissue morphology and functionality, but we will have an excellent in vitro 

model system that provides spatial tissue organization to i) establish the interactive role that 

the microenvironment of the basal lamina has on ESC selection and localization, ii) 

investigate markers to distinguish between transit amplifying (TA) and ESCs located in 

microniches (specifically including label retaining studies) and iii) further investigate the role 

of ESCs in the wound healing environment by creating a wound in an epithelialized graft.   

Using this system we can also investigate epithelial-mesenchymal interactions and the origin 

of iv) growth factors and cytokines and their effects on morphogenesis and epithelialization 

as well as v) basal lamina protein synthesis, deposition, and organization in a controlled 

(non-serum) environment.  Additionally, this model system can also be used as an in vitro 

model system of skin to vi) study disease pathologies including skin cancer, psoriasis, and 

chronic wounds vii) further enhance percutaneous implants, and viii) evaluate benefits and 

harms of cosmetics and chemical products as well as ix) evaluate diffusion properties for 

transcutaneous drug delivery systems.  Furthermore, we could also x) use our model system 

to study other body systems which contain complex microarchitectures, such as in the 

glomerulus of the kidney, or the crypts of the small intestine.   

 

7.4 FINAL CONCLUSIONS 

In this thesis a novel bioengineered skin substitute was developed that recapitulates the 

topography found at the DEJ and provides a biochemical environment to direct tissue 
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functionality.  We investigated the role that spatial tissue organization had on epidermal 

thickness and proliferation in our model system by creating a basal lamina analog with 

microtopographic features.  We found that the geometry of cellular microenvironments 

played a role in the growth of the tissue, with small width features (50 and 100 µm widths) 

providing statistically similar results to that of cultures on DED as well as native tissues.  

Also we evaluated the localization of ESCs and determined their presence in the channels, in 

comparison to their distribution on flat basal lamina analogs.  Based on these findings we 

believe we have created an environment, or stem cell niche that promotes their localization.  

Future work should be performed investigating these findings as well as the mechanism by 

which the localization occurs using a variety of ESC markers. 

 

Additionally, we hypothesize that incorporation of fibroblasts into our dermal scaffold will 

further improve tissue morphology and functionality of our bioengineered skin substitutes 

through paracrine signaling mechanisms.  The addition of fibroblasts to our model system 

will also enhance the regeneration of a native basal lamina critical for structural and 

mechanical stability of the tissue and for directing cellular proliferation and differentiation 

through ECM cues.  To evaluate the longevity and functionality of the tissue, longer culture 

times should be evaluated as well as implantation studies in animal models combined with 

indicators of epidermal barrier formation through measuring surface electrical capacitance as 

well as differentiation markers distributed throughout the layers of the epidermis.   
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