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ABSTRACT 

The goal of this project is to develop a multi-fingered robotics hand that is capable of 

dexterous manipulation at a low cost that is easy to replicate and study. The robotics hand 

will be used in TRINA system to perform nursing task such as grasping and manipulating 

deformable objects. A simple and intuitive controlling method for the robot hand is also 

studied and developed. The robot hand can be controlled using multiple user inputs such as 

command lines, scripting, GUI and data glove. The software required for the robotics hand 

and the controlling method will both be available and supported on Ubuntu operating system 

running the Robotics Operating System (ROS). 
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1. Introduction 

1.1. Background 

Robots have been created to aid humans in tasks which fall under the three “D” labels 

- dull, dirty and dangerous. That is not the only use case for robot, however, as technology 

and science progress, we gradually have more needs for robots to fill in. For instance, robots 

used in surgical procedure has been emerging over the past 15 years1. However, these needs 

are not completely filled in, as many of our devices are engineered based on the human’s 

hands. The human’s hand is the result of millions of years of evolution, and thus very 

complex to fully replicate and translate to a robotics hand. Therefore, there are two 

generalized schools of thoughts when it comes to robot hand design. You have robot hands 

that are simple and straightforward and get the job done. And then you have very complex 

hands with four fingers and a thumb that are designed to closely mimic human hands2. The 

problems, however, with these hands are their complexity in design and cost to manufacture, 

as the human hand is very complicated to closely mimic. For instance, the Shadow Dexterous 

Hand is made with 20 actuated degrees of freedom and multiple sensors to perform the closest 

approximation possible to the human hand3. At this level of complexity, the hand will require 

a lot of computational power to properly control, as well as a very high cost for manufacture. 

Thus, this verified the second school of thoughts on robot hands: simple and straightforward 

and get the job done. 
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Figure 1-1 Shadow Dexterous Hand4 

The different types of designs will be discussed further in the upcoming chapter of this 

report. However, as the school of thought implies, the simple and straightforward robotics 

hands are mostly gripper type designs, designed for a specific functionality in mind, thus 

reduce the complexity and cost in comparison to the closely human hand mimic hands. 

 

Figure 1-2 iHY Hand5 
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1.2. Motivation 

Traditionally, mechanical system has not been able to iterate as fast as software. The 

reason behind this was the manufacturing down time, as well as the cost of production for 

mechanical systems. Software, on the other hand, mostly suffer from compiling down time. 

However, with the help of additive manufacturing, namely 3D-printing, rapid prototyping of 

mechanical systems has become available. In additional to that, the growth of hobbyist with 

some professional communities has allowed many open-source project, opening up many 

opportunities for people to get involved and contribute to such projects. 

Of the open-source project, research team at Yale University has been working on a 

universal hand for grasping and manipulating multiple objects, called the Yale’s Open Hand 

project. The hand is mechanically built with 3D-printed molds, thus can be rapidly modified 

during production. Since the project is open-source, other organizations are able to contribute 

to it as well. One of which is Right Hand Robotics Corporation. One of the project’s designs, 

the Model O, is an open-source derivative of the iHY and RightHand Robotics’ Reflex Hand 

design6. 
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Figure 1-3 The Model O (left) and the RightHand’ Reflex (right) 

Initially, our team was planning to prototype and improve the design of the Yale’s Open 

Hand Model O for in-hand manipulation. Based on information and guides already available 

from Yale University, modify and prototype the original design with 3D printing is 

completely possible. In additional to mechanical improvements, we were going to build and 

integrate a control interface for the hand as well, such that anyone without an engineering 

background can pick-up and use the hand. Lastly, our team also wants to lower the cost of 

the hand. When school began, our project was sponsored by Righthand Robotics, Inc. to 

develop multi-fingered hand for dexterous manipulation. We based the developments on a 

newer prototype of RightHand Robotics. The source code and RightHand Robotics design 

can be found on their company’s website. 

1.3. Work significance 

With the help of 3D printing and of the shelf parts, we would like to create a modular 

hand that can be easily manufactured, replicated and modified for the purpose of further 

research required in the future. Our parts will be either directly 3D printed, or molded for 
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elasticity, with molds from the 3D printer of course. The hand’s motors are from Dynamixels, 

which support variety of hardware to directly communicate with the motors and implement 

into ROS environment. Thus, the hand should be easily replicated and studied at a low cost. 

In term of software, the hand is planning to be integrated together with the Duke’s Tele-

Robotic Intelligent Nursing Assistant (TRINA) system. Therefore, the controlling software 

interface must be intuitive toward the end-user, and scalable, compatible with another system. 

In additional to that, we want the software to be scalable and dependent only to the 

Dynamixel motor type, not the mechanical setup, constraints or number of motors, so that 

our project can be kept modularity. 

Lastly, our team will be looking into a way to intuitively control our final design. As a 

piece of software would be nothing but an expensive and fancy looking paperweight if not 

properly controlled. However, the approach to control is an important aspect to consider as 

well. For instance, a fully autonomous grasp planning system can use computer vision to 

thoroughly plan out the most optimal approach. However, such a system would require a 

very long time to set up and study in order to function properly. In the other hand, a traditional 

control system focusing on the motion of each individual motors would be very hard for a 

non-technical user to approach, as well as the system can soon be very complicated as the 

number of motors increase. Therefore, along with the hand, a data glove for capturing the 

human’s hand motion will be developed as mean to directly and intuitively control the motion 

of the robotics hand in real time. 

1.4. Objectives 

1.4.1. Mechanical design 

Previously, Reflex SF Hand only has four Dynamixel Motors. Therefore, Reflex SF 

Hand limits motions to only flexion, extension, coupled adduction and abduction of fore two 

fingers. However, the new prototype has five Dynamixel Motors so we changed the 

objectives from developing robot hand with four motors for dexterous manipulation to 

developing robot hand with five motors for dexterous manipulation. We determined the 
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dexterous manipulation tasks for testing based on daily activities, nursing tasks, and tool 

manipulation. 

1.4.2. Control software 

The Dynamixel Motors directly implemented to ROS environment like we mentioned 

before, therefore all the Control Software for the hand would also be developed directly into 

ROS. The end goal of the project for the Control Software would be a ROS package that able 

to perform advanced hand manipulation with an easy to use graphical user interface and a 

glove interface for real-time control. 

The current control for the Hand is very simple, open and close using a controller or a 

button press. Therefore, we would like to develop ways to control the hand for more 

complicated tasks in-hand manipulation, for example: picking up coins, small needles using 

recorded data from trial and error, waypoints input or in-hand force manipulation.The user 

could also see how the hand manipulation performed in RViz simulation before running the 

hand in real life.  

Collecting these data using traditional method, input series of position for the hand to 

move, can be difficult and time consuming. Therefore, we would like a better method to 

collect these data by controlling the input of the hand in real-time.These Control and Tuning 

method would be tested and performed by human hand using special glove. 

In addition to glove interface, we would also want to build an easy to use graphical user 

interface (GUI) for end-user. Controlling the hand by position, velocity control with setting 

waypoints and calibration all in one GUI.  

Furthermore, calibration for these hands are currently non intuitive and time consuming, 

therefore another objective for this would be Auto Calibration function that works for 

multiple hands version. 
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1.4.3. Modularity and scalability 

We want to hand designs and control software of the hand can easily be developed 

more in the future and performed as a foundation of further research. Therefore modularity 

and scalability are very important objectives that we have.  

For Mechanical Design, we want the hand to perform a variety of tasks ranging from 

daily activities to industrial tasks. Therefore, the design of each modular finger needs to take 

into account the purpose of each finger and its contribution to the overall performance of the 

robot hand. Scalability of Mechanical Design aspect lies in the various combination of three 

modular fingers to achieve many difficult tasks. 

For Control Software aspect, we want the software to not only run on our hand but also 

other model of hand using Dynamixel motors only depend on the Motor type and not 

mechanical setup and number of motor constraints. Therefore the user interface and glove 

interface would also changed and compatible with different setup of Dynamixel motors Daisy 

Chain with minimal user specification. Not only running the software with different hand, 

we want the software to be compatible to control multiple hand at once, which is the 

modularity and scalability of the software aspect. 

1.4.4. Data glove 

Another goal to pursue is to develop a data glove that is capable of intuitively control 

the robotics hand in real time. Like the robotics hand itself, the data glove is aimed to be 

manufactured using off the shelf parts with open source design and integration, such that 

other scholars can replicate and continue to study the work based easily. Moreover, the 

system must be compatible with Linux and ROS, as these are some of the most popular and 

supported platform for robotics system development. Not to mention the TRINA system that 

was originally intended to be tested on is developed with ROS on Ubuntu. 
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2. Related Work 

2.1. Robotics Hand 

2.1.1. Rigid robot hand 

As the name implies, this category of robotics hand consisted mostly of rigid links with 

every joint driven by a motor. These robot hands within this category can range widely from 

a simple gripper to a complex hand like the Shadow showed above. The disadvantage of this 

system, however, is that it required some extensive planning in order to grasp an object 

properly. Since each joints of this type of hand is controlled by a motor for a complicated 

design, the motors must be controlled to operate in sequence in order to generate the desirable 

grasping motion. For the case of a simpler gripper, the gripper needs to position itself 

properly before being able to grasp the object.  

 

Figure 2-1 Single servo driven gripper 
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Another drawback is that since the links are all rigid, it is hard for the controller to 

receive feedback on the grasping motion, whether the object has been grasp successfully or 

not. This leads to the issue of the inability to pick up soft objects, or the manipulator itself 

would require additional force sensors or a visual system that can detect the deformation of 

the object in order to proceed. With all of these adding up, the rigid robot hand can be either 

a relatively cheap and simple system that can do certain tasks, or a very expensive and 

complicated system that would require an extensive processing power for proper control. 

2.1.2. Compliant robot hand 

Looking to solve the soft contact issue and stiff grasp approach of the rigid hand, 

engineers and scientists alike started developing more flexible, soft robot hand to solve the 

issue. Some popular result would be a soft robotics actuator, mostly tentacle shape, powered 

by a pneumatic system picking up some soft objects, such as an egg or tomato. 

 

Figure 2-2 Soft Robotics Inc.’s gripper holding some tomatoes7 
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Some advantages for this compliant robotics gripper including gentle grasping and the 

planning does not require extensive processing power. Since the joints are flexible, they can 

deflect themselves to fit the object grasping, thus allowing higher tolerance and more 

flexibility to grasp planning to their rigid joints alternatives. 

 

Figure 2-3 Universal Jamming Gripper picking up a glass of juice8 

Despite the advantages, there are certainly drawbacks within these systems. Each joints 

still require a certain level of control in order to work properly, moreover those are 

pneumatics controllers, which is much more complicated than a motor to control properly. 

2.1.3. Under-actuated compliant robot hand 

As an attempt to combine between the soft compliant and the rigid joint together, the 

development for under-actuated compliant robotics hand started. The term under-actuated 

means that the robotic hand will have less number of motors than the number of joints, then 
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compensated for that with compliant joints. This design makes room for many unique 

behavior combinations depending on the orientation and setup of the compliant joints with 

the driven motors. This approach of lesser number of motors helps reduce the complexity 

required for controlling system. Some popular researches focusing on this category of 

robotics hand include the previously mentioned Yale’s GrabLab, RightHand Robotics. 

 

Figure 2-4 A compliance finger design 

Above is the design diagram for a compliance finger design from RightHand Robotics. 

Each finger will be driven by a single motor only. However, due to the design and the 

stiffness different in the pin and the flexure joint, the finger can be controlled to different 

location depending on the end condition. For example, the finger can bend more to grab an 

off centered object from the palm of the robotics hand. 
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Figure 2-5 The same fingers would deform differently to grasp different objects9 

This design allows a more flexible grasping approach, less control complexity due to 

smaller number of motors thus ultimately reduce the cost required to make this hand. 

However, there are certain drawbacks for this design approach. The behavior of the finger 

would actually depend on the stiffness different between the two joints. Therefore, it would 

be hard to simulate the correct behavior of the finger if the stiffness is not studied properly. 

This leads to another issue of stiffness variance during the manufacturing process of the 

flexure joint that will be discussed further in later chapter. In short, various manufacturing 

conditions can lead to a big variance in stiffness within the fingers, making it hard to correctly 

simulate the behavior of a finger on a software. 

Another drawback is since the joints are flexible, it needs to retain its shape in order to 

function correctly. Therefore, the storing and operating conditions are very important to 

assure the functionality of the robotics hand, as once a finger is permanently deformed, the 

hand will be unusable. Furthermore, the finger assembly overall is very complicated as the 

motors need to be setup properly to drive the fingers. This process will be discussed further 

in the following chapters. 

2.2. Data glove 

Due to the advancement of virtual reality technology, the development of data glove is 

also on the rise. The purpose of these gloves are to capture the motion of the human hand, 
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and transfer that information to a processor to simulate those motions within the virtual 

reality realm. As a glove allows higher precision capture and more intuitive than a remote 

controller, the VR gloves are becoming more and more popular. However, since VR 

technology is still currently in its early stage, this is also the case for most data glove 

developer companies.  

 

Figure 2-6 Virtual reality smart glove offered by CaptoGlove 

The early stage for these VR gloves means that they provide limited support for 

developers who would want to use the glove for the purposes other than gaming and virtual 

reality. Moreover, virtual reality technology is currently centralized around Microsoft 

Windows platforms, so it is unsurprisingly that Linux support for these gloves are close to 

non-existent. Not to mention the lack of a community to help develop an open source, off the 

shelf glove design that can be replicated and study. This proves to be a somewhat challenging 

task for the team. 
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3. Methodology 

3.1. Mechanical design and manufacturing 

In Reflex SF design, we noticed Righthand Robotics used a single motor to drive a gear 

mechanism for coupled adduction and abduction motion of fore fingers. In the new prototype, 

the coupled motion is replaced with a motor for each fore finger so fore fingers can 

individually perform adduction and abduction motion as well as flexion and extension. 

However, the thumb still can only perform flexion and extension. According to [citation], 

thumb accounts for approximately 50 to 60 percent in performance of hand. Therefore, we 

decided to move a motor from fore fingers to the thumb and design a gear mechanism for 

coupled motion of fore fingers as in Reflex SF. As a result, now fore fingers have one and a 

half degrees of freedom and thumb have two degrees of freedom. 

Since the motor used in the newer prototype is XL-320 instead of MX-28T, the torque 

is decreased. Therefore, we decided that the ratio of velocity reduction in the new gear 

mechanism should be less than or equal to the ratio of one in Reflex SF. The equations that 

used to determine gear parameters are listed under the GitHub repository under the Appendix. 

To manufacture and test our designs, we chose 3D printing so we could check errors 

and interference in the designs then modify the designs quickly. We planned to have our 0th 

prototype by the end of first term to have basic knowledge of how well the 3D-printer printed 

our design. From the inspections of our 0th prototype, we planned to have 3 iterations during 

our second term and the 3rd iteration would be the final one. However, we could accomplish 

2 iterations during the second term and push the finalization to our third term. Details of 

iterations are discussed from section 4.2 to section 4.5. 

3.2. Control software 

The control software for the Reflex SF ran entirely in ROS environment in a Linux 

machine, as mentioned earlier. The software consists of two different parts: 
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 Dynamixel controller: a lower level package to directly request data from 

the Dynamixel servo, or write data to the servo for operation. This package 

took care of scanning for servos, establishing UART channel and handling 

communication protocol. 

 Reflex controller: a higher level package ran on top of the Dynamixel 

controller that handle basic functions of the Reflex robotics hand. The 

package provides a high level control over multiple Dynamixel controllers to 

provide the user with a single controller for the whole hand. 

 

Figure 3-1 The launch file of controlling software 

From the launch file above, the Reflex package is built upon the lower level Dynamixel 

controller and thus has to be called first. Once all of the Dynamixel packages have been 

successfully initialized, the Reflex package can then initialize and allow the user to fully 

control the hand. From the packages, the proper way to control the hand is to use the terminal 

command. 

 

Figure 3-2 Position command message template from terminal line 



Page | 16  

 

 

This would be a pretty slow and manual way to send out a message. Therefore, the goal 

of this project was also to improve the controlling package for the Reflex hand by 

implementing a GUI allow easier and more intuitive control of the hand. This new package 

will be built with the idea of modularity and compatibility in mind as well. Meaning it can 

work with different numbers and models of motors. 

3.3. Data glove 

With our developed GUI, we can control our robot hand easier than just using terminal 

command. However, for motion that require continuous and complicated motion for example 

some in-hand manipulation that rotate a cylinder object. To test and study way to do this 

motion, using the GUI alone would be difficult. Therefore, our idea is to have an input device 

that able to control the robot hand easier. And what could be easier than our hand itself. There 

are multiple ways to map our hand motion into number so that we can control the robot hand.  

First solution is using computer vision which is similar to the system that we used to 

map our arm motion to Baxter. This solution has benefit as it was already implemented in 

the lab. However, one drawback of this is if we used the current setup which is used for the 

arm, we also need to change it to fit with the finger. Another problem with this solution is 

that our fingers are usually couple and in the way of others finger, therefore camera had 

difficult time capture motion of our fingers. Therefore, this solution actually had a lot of 

drawbacks with the current set up in the lab. Also If the robot hand was develop for nursing 

purpose, so the nurse need to able to control Baxter and the robot hand at the same time.  

Because of the limitation of the first solution, we came up with the second solution 

which used direct bending motion of our finger to number to control the robot hand. The 

solution was to use sensor, and more specific, flexible sensor, to measure the bending motion 

of our hand. First we looked at product on the market to see if there was already some product 

that had these feature. There are a few of these glove, and Capto Glove was one of them. At 

first we thought buying an existing product with pre-build sensors and software development 

kit would be easier to implement, however, later on we discover a lot of limitation of these 
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glove, and we decided to build our own glove to go with the robot hand. The section below 

will summarize our process and implementation, benefit and disadvantage of each solution. 

4. Mechanical design iteration 

4.1. Changing servos 

In the original design of the Reflex SF by RightHand Robotics, the motors of choice 

are four MX-28 servos: three motor to thread the fingers’ tendon and the last one to couple 

the two front fingers together using a gear box. 

 

Figure 4-1 Reflex SF with 4 MX-28 servos 

The Dynamixel servo line was originally chosen since it provides a lot of functionality 

in one package: a DC motor connected to a built-in speed reduction gear system, a circuit 

board for motor control with a provided driver firmware that can be configured using a 
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computer software from Robotis and two TTL communication board on each motors for 

communication. The TTL channel is meant for connecting multiple servos together and 

provide a single communication line for all of the servos. The on board configuration of the 

servos also allows different baud rate for different communication purposes. This TTL line 

also provide power to the servos as well. In short, the Dynamixel servos provide many 

functionalities of the shelf with the internal circuit board and the TTL communication 

channel provides a simplify method for a single communication channel, which greatly 

reduce the load onto the main controller. 

 

Figure 4-2 Summary of the TTL communication channel from Dynamixel 

The original chosen servo to operate the Reflex hand is the Dynamixel MX-28. The 

motor is compact, provides multiple functions with high maximum torque and speed output 

as well. However, the tradeoff is each motor costs around $200. 
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Figure 4-3 Price of a Dynamixel MX-28T servo from Robotis 

As the purpose of this project is to create a replicable hand for research purpose, such 

that different scholars can achieve the same study as well. A finished robotics hand would 

require at least 4 motors currently to achieve necessary dexterity, thus would make the cost 

of only motors to around $1000. It would be way too much for many to successfully replicate. 

Therefore, the servos need to be changed to a lower cost, more affordable servo that can 

provide the closest specifications as possible. Of the possible choices, the AX-12A seems to 

be a good candidate.  
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Figure 4-4 MX-28 specification 

 

Figure 4-5 AX-12A specification 

 

From the side by side comparison chart, the AX-12A has all of its dimensions either 

lesser than or equal to the original MX-28. This would be a great advantage for servo change 

as a more compact servo would result in more internal space for the hand design. Additionally, 

the servo is lighter as well. Both of them would take the same operating voltage. There are 

several tradeoffs, however. Firstly, the AX-12A is not equipped the same encoder method as 

the MX-28, as well as the angle resolution is much larger as well. However, since the purpose 

of the AX-12A will be pulling the tendon thread to open and close the fingers and not direct 

driving any joints, the angle precision should not post too big of a problem toward the overall 

hand performance. Secondly, the gear box of the AX-12A is made out of plastic instead of 

full metal gear like the MX-28. As the stall torque on the AX-12A is lower, there should be 

no need for such a metal gear. Now lastly, there is a difference between the stall torque and 

free rotating speed between the two motors. 
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Figure 4-6 Speed Vs. Stall torque performance of various Dynamixel servo models 

From the picture above, it is clear that the AX-12A model has both lower stall torque 

and free rotating speed. For the sake of pulling the tendon, the desirable servo really does not 

require much speed at all, so the lower free rotating speed should not affect the overall 

performance of the robotics hand at all. The stall torque, on the other hand, would be a 

considerable factor for servo sourcing. Based on the datasheet and diagram above, the MX-

28 has almost twice the amount of stall torque as the AX-12A. If this servo were to be used, 

some sort of speed reduction would be required to increase the torque output for normal 

rotational operation. For pulling on the tendon for finger control would result in a weaker 

finger considering the low torque, as there is really nothing can be done to improve this. This 

might be a big tradeoff, but considering the price of one AX-12A is only $45, more than 5 

times cheaper than the MX-28. 
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Figure 4-7 Price of one Dynamixel AX-12A from Robotis 

Moreover, considering this hand is aiming to be used as a researching tool for dexterous 

in-hand manipulation, it would not be required to handle heavy objects. Thus, making the 

lower torque AX-12A servo an eligible choice for servo. 

As good as a choice for tendon actuator the AX-12A is, it would be impossible to use 

this servo for direct driving the base of a finger considering the current hand design and 

layout of the servo. In order for a direct drive at the base of a finger to be possible, there must 

be a hole through the motor for the tendon to go through and tied onto the finger. Luckily, of 

the lineup of servos offered by Dynamixel, the XL-320 offered this unique choice. The XL-

320 is also offered at a very tempting price point of around $20. 
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Figure 4-8 XL-320 offered by Robotis 

The screw securing the main pulley can be taken off, revealing a through hole going 

from the back to the front of the servo, allowing a tendon thread to be put through.  

[Insert actual mounting of the AX-12A and XL-320 with tendon thread pulled through] 

Now the dimension of the XL-320 is even smaller and much lighter than the AX-12A. 

The lower weight and smaller dimension will help reduce a lot of space constraint and stress 

concentration due to the weight of the system as a whole. 
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Figure 4-9 Specification on the XL-320 

The XL-320 offered much lower stall torque as well no load speed. The speed will not 

be important as discussed earlier, and so would be the torque in this case. As the finger will 

be operated mostly from the tendon, the base will only need to position the finger so it can 

get to work properly. Therefore, the stall torque should not be an issue, as long as the finger 

design is light enough for the motor to drive. However, this servo does not offer the same 

operating voltage range as the AX-12A or the MX-28. This would be an issue but should be 

fixable within the electrical circuit design. 

4.2. Prototype 0th 

4.2.1. Objectives and description 

Our main objective for prototype 0th is to understand how the prototype parts assemble 

and properties of chosen 3D printer. The model of prototype 0th in Solidworks is shown in 

figure 4.10. 
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Figure 4-10 Prototype 0th Model 

From our background research, Blair and Kramer (1981) state that thumb accounts for 

40 percent of hand motion. In addition, from real-world observation, the index and middle 

fingers are coupled together. Therefore, we considered to use the gear train mechanism as in 

Reflex SF model to couple the forefingers. As a result, we could use the extra motor, 

Dynamixel XL-320, for another degree of freedom in thumb of the robot hand. Prototype 0th 

shows resemblance of Reflex SF model but the thumb of prototype 0th had one more degree 

of freedom than the thumb of Reflex SF model. We would discuss results and observations 

of prototype 0th from assembly in the next section. 

4.2.2. Results and observations 
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Figure 4-11 Prototype 0th Assembly 

Figure 4.11 shows printed parts of prototype 0th. From observations, after printed, the 

design of prototype 0th had many rooms for improvements. Firstly, we observed that holes 

were misaligned. Holes on bottom base are shifted compared to the holes on top base (easily 

detected from figure 4.11). Secondly, the gear train was not connected together. The reason 

that leads to this failure in gear train assembly is the gears were not fixed in its place therefore 

there was space for gears to shift inside the holes. As a result, torque transmission between 

driving gears and gears to drive fingers is reduced. During testing, the driving gear could not 

drive gears on finger because the gears were not in contact with each other. Thirdly, the string 

tendon that connects motor pulley to fingers was not vertical due to position of motor mounts 

on base. The string was in contact with holes inside both Dynamixel XL-320 motors and 
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hand base. This would increase friction on string and affect the adduction and abduction 

movements of fingers. Finally, the angular velocity reduction of prototype 0th’s gear train 

was 0.75. This ratio was higher than the ratio of Reflex SF’s gear train. In addition, the driven 

motor of prototype 0th, which is Dynamixel XL-320, has smaller torque so in the next 

iterations, we planned to reduce the angular velocity reduction ratio even further. 

4.2.3. Modifications for next iteration  

From the observations, firstly we decided to have a meeting with the person who was 

in charge of 3D printing our parts to improve the print quality first. After the meeting, we 

understood that the small dimension of our design (in millimeters) caused the shift in hole 

alignment so we planned to invest in better 3D printing equipment, namely 3D printing 

nozzle on millimeter scale to have better print quality. On mechanical design aspect, we 

planned to re-design the gear train to achieve a reduction ratio of 0.5. According to equations 

of angular velocity reduction in “Speed reduction calculation” figure in section 3.1 the 

reduction ratio depends on gears’ teeth and diameters. Initially, the gear train consisted of 6. 

The lower bound for distance between two gears on fingers was determined by the diameter 

of the intermediate gears and the upper bound was determined by the shape of the base. The 

compact design of robot hand lead to many constraints for how large the base was. We 

utilized this advantage, made a program using Python script in appendix which took into 

account for the constraints then output the diameters of gear train which satisfied the velocity 

reduction ratio of 0.5. After changing configurations in the program, we found that we could 

achieve the reduction ratio with less number of gears by directly connecting the driven gear 

on the top base to an intermediate gear on the bottom plate and having the intermediate gear 

driven one of the gears on fingers. From this result, we could also achieve a more compact 

design than prototype 0th design. Furthermore, we also considered the problems of size and 

positions of gear holes and vertical string tendon for the next iteration. We will discuss the 

details of iteration 1 in the next section.  

4.3. Iteration 1 



Page | 26  

 

 

4.3.1. Objectives and description 

Our main objective for iteration 1 design is to address the problems we found in 

prototype 0th and have a working model by the end of the second term. By “a working model”, 

we mean that the assembly with fingers would run smoothly and accordingly with the GUI 

controller and CaptoGlove. The model of iteration 1 in Solidworks is shown in figure 4.12. 

 

Figure 4-12 Iteration 1 Model 

In the discussion of modification for prototype 0th, we mentioned that we needed to 

find a way to directly connect the driven gear on top base with an intermediate gear on bottom 

base and make the intermediate gear drive the gears on fingers. We planned to 3D print the 

connecting shaft between the driven gear and the intermediate gear but we found that the 3D 

printer could not print the shaft due to its small dimension. Therefore, we designed a rigid 
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two stage gear, larger on top base and smaller on bottom base, and used it as the intermediate 

gear to drive gears on fingers. We needed to hold and fix the two stage gear firmly in its 

position so we modified the mount for Dynamixel AX-12 of fingers to hold and fix position 

of two stage gear. We combined the separate mounts into one fixture and used a connecting 

shaft to hold the two stage gear. The problem of reduction ratio and vertical string tendon 

was also fixed. 

4.3.2. Results and observations 

 

Figure 4-13 Iteration 1 Assembly 
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Figure 4-14 Iteration 1 Gear Train Assembly  

The assembly does not have electrical parts and fingers to show its mechanical aspects. 

In this iteration, a noticeable difference was the closer distance between two forefingers due 

to reduction in number of gears. The closer distance lead to our first problem which was the 

interference of thumb finger and forefingers in grasping motion. There was also interference 

between the bases of forefingers which lead to friction between the bases and affected overall 

performance of the hand. When assembling, we found that the pulley on Dynamixel AX-12 

motor in thumb position interfered with Dynamixel XL-320 motor causing friction between 

the parts and leading to rough adduction or abduction motion in thumb finger. We also 

noticed that the problem of torque transmission between gear train was not solved. There was 

space among gears leading to rough motions of fingers. Under a configuration of driven gear 

and two stage gear where the gears were not perfectly meshed, the gear train blocked finger 

motions instead of driving them. The following link is a video demonstrates how iteration 1 

works with GUI controller and CaptoGlove: Video link 

  

https://drive.google.com/open?id=1_I0UgaKgXYQ354hvMta18OIzwwtDU3Fz
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4.3.3. Modifications for next iteration 

From the results, we firstly decided to increase the gap between two forefingers and 

run the Python script discussed in section 4.2.3 to get new dimensions for gear diameters at 

the cost of reducing torque transmission and size of hand base. We applied the distance 

between two forefingers of Reflex One prototype to our next iteration and used this as one 

constraint in the program. By increasing the gap between two forefingers, the mounting 

fixture would be re-designed to be two motor mounts separate from each other. The height 

of thumb mount would be increased to account for the interference of the pulley on 

Dynamixel AX-12 motor and Dynamixel XL-320 motor in thumb position. In the next 

iteration, we also needed to incorporate the PCB board onto the top base and re-design the 

hand base so the base would be aesthetically appealing and mechanically functioned. We will 

discuss the details of iteration 2 in the next section. 

4.4. Iteration 2 

4.4.1. Objectives and description 

Our main objective for iteration 2 is to address all the problems mentioned in iteration 

1 and move on finalize the design for robot hand. The model of iteration 2 is shown in figure 

4.15. 
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Figure 4-15 Iteration 2 Model  

From figure 4.15, the first improvement compared to iteration 1 is that iteration 2 is 

aesthetically better with the round edges of hand base. The gears increased from 4 to 5 thus 

increasing the width of the base by 10 mm to satisfy new configuration of gears for reduction 

ratio of 0.5. In this iteration, the gear holes were smaller and gears were fixed in place by 

stainless steel rigid and hollow shafts. We used rigid shafts to prevent gears from shaking 

inside the holes. We also used hollow shafts to fix the gears on fingers because the string 

tendon needed to pass through the center holes on finger gears. When making the design for 

iteration 2, we encountered a problem of awkward design of the PCB board. Initially, the 

PCB board, which we received from RightHand Robotics, Inc., was designed for Reflex One. 

However, when we tried to incorporate the PCB board into our design, the board was not fit 

in the place that we intended for PCB board mounting. Therefore, we needed to design a 
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mount above top base surface to prevent the PCB board from contacting other parts while 

maintaining the ease of connecting cables from motors to PCB board. 

4.4.2. Results and observations 

 

Figure 4-16 Iteration 2 Assembly  

After assembly, we found that the shaking movement of gears stopped and torque 

transmission was better. We determined that on mechanical aspect, the design was good 

enough to finalize with other add-on parts such as cooling fans, hand housing, and mounting 

adapter to Baxter Robot arm, if necessary. 

4.4.3. Modifications to finalize the design 

From the results, we planned to modify the motor mounts to incorporate cooling fans. 

After that, we would move on to design the housing and mounting adapter. We will discuss 

the design process in the next section. 
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4.5. Finalization 

4.5.1. Housing 

On one hand, we designed the housing to be rigid enough to prevent the impact from 

surrounding environment. One the other hand, the housing design also supported cooling the 

motors inside with air ventilation system. The design of housing is shown in figure 4.17. 

 

Figure 4-17 Housing design in Solidworks  



Page | 33  

 

 

 

Figure 4-18 Stress-wide-distribution mechanism inside housing 

 

Figure 4-19 Housing design assembly  

The housing maximum thickness is 5 millimeters and minimum thickness is 1.5 

millimeters. On the top of housing, we made a crossing-bar design to distribute the stress 

uniformly and strengthen the material near the holes that connect the hand to Baxter Robot 
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arm adapter. In addition, there are two large square holes on the top and slots near the bottom 

of housing for cooling fans to support air ventilation and cooling process of motors. 

4.5.2. Mounting adapter to Baxter Robot 

Our team considered of incorporating the hand to Baxter Robot arm by modifying the 

concurrent mounting adapter of the Baxter Robot. However, due to time limitation, we are 

not able to finish the mounting of the hand to the Baxter Robot. 

5. Controlling software improvement 

5.1. GUI Controller 

5.1.1. Motivation 

With the current setup of the TRINA system right now, users can only do open and 

close command to the ReflexSF hands. Users cannot do more in-hand manipulation or 

specifically control each finger or preshape easily. Because the users for the system ideally 

will be nurses, therefore they do not have any prior experience on programming and ROS. 

They will find it very difficult to learn and operate the hand through programming and linux 

command. Therefore, we want to create a user friendly GUI to control simple motion of the 

Reflex hands. Not only that, we want to create a GUI that can control variety of different 

robot hands easily, for example the Reflex Hand and Our implemented Hand on the same 

GUI. We also want it to be as easy as possible to add another hand to control.  

5.1.2. Design 

We want to take advantage of all the possible commands we have for the Reflex Hand 

and implemented them also for our new robot hand. There are three type of control 

commands we can use for ReflexSF, position control, velocity control and position and 

velocity control. We also want to control each motor with the GUI therefore if we put all of 

them in the same interface, it would be difficult for the users to know what is going on. 

Therefore, in our design we want to make GUI as simple as possible and all the different 
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control and element should be separated. Therefore, we used the Plug-In from Rqt to open 

multiple windows (or widgets) at the same time while we can move them around, attach them 

to a dock or display all of them at the same time depend on user preferences.  

In more details, Rqt is a Qt-based framework for GUI development for ROS. Rqt is a 

software framework of ROS that implements the various GUI tools in the form of plugins. 

One can run all the existing GUI tools as dock-able windows within rqt. The tools can still 

run in a traditional standalone method, but rqt makes it easier to manage all the various 

windows on the screen at one moment. Main purpose of rqt is rqt is a Qt-based framework 

for GUI development for ROS. Therefore, inside each widget, we can use ROS without any 

difficulty. 

The design in the past can be seen in the next few figure.  

 

Figure 5-1 Initial Design and test with simulation. 
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Figure 5-2 Design iteration 2 

 

Figure 5-3 Design iteration 2 

5.1.3. Implementation 

We started with the rqt plugin tutorial from ROS website and continue to build based 

on that. For plugin function to work we first need a python file that is the main controller 

window which jobs is to initialize all the different widgets we have. Then each widgets 

python file will be displaying all the label and button and slider we have for controlling the 

hand.  



Page | 37  

 

 

Our final design of the GUI is shown in Figure below. 

 

Figure 5-4 Final Iteration 

In our final design iteration of the GUI, we have three special GUI. The first one is 

calibration tab which button click correspond to send service to the reflex node to run our 

own function for calibrating finger, instead of calibrating finger manually in the command 

line, which took a lot of them to go through each motor. Second tab is position control tab, 

which we can save series of pose of the hand, and then save all of them into a txt file and 

save them into a grasp, which data can be filtered and then play back to the hand using 

position control. We also added a grasp GUI, which users can add grasp play grasp using 

pre-existing grasp txt. In both position control tab and glove interface tab, we added the 

targeted device section and glove section so that the user can choose what device it wants to 

use the GUI for and had option of using the data glove or not.  
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5.2. Improving control package 

5.2.1. Dynamixel Protocol 2.0 

The original Dynamixel servos came along with the Protocol 1.0 for TTL 

communication between the servos. This protocol provides a simple package format that is 

divided into two packets. The instruction packet is the command data sent to the servo, 

usually from a higher level controller. This will get processed by the servo itself and 

responded via a status packet after a set period of time that can be configured by accessing 

the EEPROM table of the Dynamixel motor. Both packets consisted of a 2-bit header, 

following by a 1-bit motor ID, a 1-bit data length following by the data parameter itself, then 

ends with a 1-bit checksum. The checksum algorithm is pretty simple as well. 

 

Figure 5-5 Checksum for Protocol 1.0 

Now there are of course some difference between the instruction packet sent to the 

servo and the returned status packet. 

 

Figure 5-6 Instruction packet format 

Notice here the instruction field will contain whatever instruction that the packet wishes 

the servo to do. Considering the early implementation of the communication protocol, there 

are actually a limited number of instructions one can do with the servo. Following the 

instruction bit will be the data parameters required for the said instruction. 
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Figure 5-7 Protocol 1.0 instruction table 

Now these are some basic instructions for the Dynamixel servos, and the descriptions 

themselves are self-explanatory. One instruction worth noticing here is the sync write 

instruction. This would only work for the same model of Dynamixel servos communicated, 

as different models will have different address values. This will be discussed further in the 

following chapter where the controller software has to handle both the AX-12A and the XL-

320. Moving on to the status packet, the format is somewhat the same. 

 

Figure 5-8 Protocol 1.0 Status packet format 

The status packet instruction field is replaced by the error field, then followed by the 

data parameters requested by the instruction packet then ends with a checksum, with the same 

checksum algorithm where the instruction value will be replaced with the error value of 

course.  
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Figure 5-9 Error bit field for Protocol 1.0 

The description behind every error value is self-explanatory. This status packet is very 

helpful for the controller as a separated error instruction does not have to be sent every time 

to check for error. The packet not only reply with the necessary information requested, but 

also provide a report of its current status as well, then the higher level controller can take 

actions accordingly, assuring the system running without errors. This is especially useful for 

a system of multiple Dynamixel servos daisy chained together, as the response packet has a 

servo ID to identify what motor is having issue. 

Along with the release of later lines of products, Dynamixel also introduced the 

Protocol 2.0 for communication across servos. This later protocol is supposed to be better 

than the previous, as well as providing more functionalities as well. However, this new 

Protocol is not compatible with the previous Protocol, as the packet format order is 

significantly changed. Moreover, Dynamixel’s servos has a lot of variations in term of 

supported communication protocol: some will only support Protocol 1.0 (the Dynamixel AX-

12A for example), while some will only support Protocol 2.0 (the Dynamixel XL-320 for 

example) then there are some that can support both versions (the Dynamixel MX-28 with 

firmware upgraded for example). This provides a complication for a system with different 

Dynamixel servos models, something that will be discussed more in the controller software 

implementation section. 
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Now the first difference between Protocol 1.0 and Protocol 2.0 from Dynamixel is the 

packet layout, both on the status and instruction: the header contains 3-bit of info, then 

followed by a 1-bit reserved, the 1-bit packet ID, the length is changed to 2-bit, 1-bit 

instruction follow by the data parameters, and lastly ends with a 2-bit CRC. 

 

Figure 5-10 Protocol 2.0 instruction packet layout 

The 2-bit checksum also means a change in the checksum calculation protocol: instead 

of using the fixed bitwise complement like in Protocol 1.0, Protocol 2.0 uses a more 

complicated checksum algorithm that requires a fixed input table for calculation that is 

somewhat similar to the CRC-1610. Along with the difference in each section’s length, these 

are the main issues that have been causing issues with compatibility among the two 

communication protocols. Despite those issues, there are actually many improvements with 

the Protocol 2.0. The more complicated checksum algorithm means it is less likely to missed 

error data and damaged the whole system. The increased in length of the header will actually 

help with noise filtration as well, such that error packets will be dropped by either end. The 

increased bit size of some segments allowed more data to be transferred under one packet as 

well. Lastly, there are new instructions added for the Protocol 2.0 to allow more complicated 

commands. 



Page | 42  

 

 

 

Figure 5-11 Instructions for Dynamixel’s Protocol 2.0 

The basic functionalities are retained the same from Protocol 1.0, and many more are 

added as well. The sync read and write instructions allow effective communication packet 

sends across multiple devices daisy chained together. Imagine having a system of five 

Dynamixel servos daisy chained together, a single sync read/write command can replace five 

individual packets send across the system, reducing the chance of error occurrence and load 

on the communication channel. Additionally, the bulk read and write commands are 

extremely helpful to gain access to multiple addresses at the same time, thus again reducing 

the risk of error packets and the load on the communication line. The status packet is also 

changed accordingly to the instruction packet, with one additional bit to reflect the instruction 

sent by the instruction packet. This feature will, again, help eliminate the chance of having 

an error packet in case it got pass the checksum algorithm. 

 

Figure 5-12 Status packet from Dynamixel’s Protocol 2.0 

The bit retains the same error value table from Protocol 1.0. 
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5.2.2. Motor controller modification 

The original Dynamixel controller package developed by Antons Rebguns only 

supports Protocol 1.0 and was long abandoned.  

 

Figure 5-13 Read response function within the Dynamixel controller package 

From the code section above, the read response function will search for a header value 

of 0xFF 0xFF from Protocol 1.0, or an exception is raised and the income packet will be 

dropped. This function implementation will actually find the header position, but then the 

rest of the data will be confused, and then a checksum error is raised by the end as the 

checksum algorithm is wrong as well. Now this read response function is the heart of the 

whole controller itself, as every read and write command to the motor will required an 

instruction packet sent to the motor, then wait for the status packet is responded and read that 

packet to verify everything is working smoothly. The command to send out the instruction 

packet is actually embedded within the read and write functions itself so it can be fixed 

separately. 
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Figure 5-14 Example of how the read function Is constructed 

Considering the code layout, implementation of Protocol 2.0 should not be too much 

of an issue. First, created a similar checksum generation function based on the algorithm 

provided by Dynamixel to generate the checksum required for Protocol 2.0. Then, since 

compatibility with Protocol 1.0 is a requirement, put an additional field into the input of these 

functions as an indication of what protocol to use. 
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Figure 5-15 Modified read response command taking both Protocol 1.0 and Protocol 2.0 

The protocol input argument works as a state machine for the read response function 

in this case, and is set to a default value of 1 if not specified, meaning use Protocol 1.0 by 

default. This protocol input is passed into from higher level function calls, such as read or 

write functions as shown below. 
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Figure 5-16 Sample read function with Protocol 2.0 implemented 

Using the same implementation of state machine, the instruction packet will be built 

accordingly to the chosen communication protocol. Furthermore, the read response function 

will be using the same protocol version to wait for the status packet from the servo. The other 

instruction methods provided by Dynamixel is modified with the same principle: having one 

more additional input argument to keep track of what communication protocol version to use, 

with Protocol 1.0 as a default value. With the goal of scalability, meaning this controller can 

be used with a wide variety of system setup of different protocol motors, and the functions 

must be using the correct protocol to communicate every time. This requires a modification 

in the motor searching function. 
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Figure 5-17 Default motor finding function 

The default servo finding function will try to ping the servos for a certain number of 

times until it receives the status packet back. The status packet will contain the model 

information of the servo. After a set of fixed trials, the controller will throw an exception if 

no status packet received back from the pinging servo, thus this will always happen for a 

Protocol 2.0 servo. A fix has to be issued in order to ensure the controller can pick up both 

Protocol 1.0 and Protocol 2.0 servos, then account for which servo has which ID, protocol 

version and model. This would require a dictionary to store the information during finding 

servos phase. 
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Figure 5-18 Flexible motor finding function 

This modified version of the motor finding function will be able to pick up both 

communication protocols and adjust the communication method accordingly depending on 

which servo is currently required to communicate with. 

5.2.3. Reflex package modification 

Now with the Dynamixel controller modification completed for integrating with the 

current system design, the Reflex package needs some modification as well. 
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Figure 5-19 Reflex SF starting sequence 

The Reflex package initialize by first calling all of the controllers for the servos, then 

wait for some fixed amount of time before starting. Since this package is built upon the 

Dynamixel controllers, the Reflex package will fail if it starts before the controllers finished 

initializing. In this case, it is mainly due to the controllers take more time to start up than 

anticipated by the Reflex package. Adding more motors, requiring more retries while finding 

motors, etc., can change this anticipated timer and would require a manual change in the 

system for the package to run normally. Moreover, the anticipation time hard coded into the 

Reflex package is only a trial and errors value, meaning it can be different across systems 

with many variables contributing to the delay time: USB speed, baud rate, etc. Therefore, a 

more appropriate approach is to have the Dynamixel controllers publish to a topic once it has 

done initializing. Then the Reflex package can subscribe to that same topic and wait for the 

start signal. 

 

Figure 5-20 Topic to signal initialization complete 

This way, there is a dedicated topic for signaling the initialization process. And in the 

Reflex package, it only needs to subscribe and wait for the signal to be published before 

starting. Additionally, the Reflex package will only need to subscribe to this topic and wait 

for the done signal before launching. 
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Figure 5-21 Modification of the Reflex package super class 

The topic subscription is modified directly into the super class instead of the main 

initialization function as shown before, so that any further development sub classes will 

inherit this feature. With this modification, the fixed delay timer is eliminated and allow 

much more flexibility in motor initialization. 

One more aspect required modification from the Reflex package is how the message is 

sent out to the controller to handle from the higher level. Currently, the namespace of the 
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servos is manually declared and controller, thus requiring a subclass for every different 

system design. 

 

Figure 5-22 Reflex package message handling 

This implementation is fine but it is very system specific. Meaning the same code will 

not be able to work with a system setup of more than four servos. It would also require direct 

modification to the source code or creating a new subclass to run the new system. Therefore, 

a new modification is added by adding an additional parameter in the launch file containing 

the namespace for the servos. Then these functions can iterate through that namespace and 

send out the signal accordingly. 

 

Figure 5-23 Adding a new parameter for namespace 
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Reading the information from the input parameter, the package can just iterate through 

the namespace every time to send out the signals to the servos. This approach would only 

require a minor modification in the launch file for compatibility instead of going through the 

complete source code and modify the namespace line by line. 

 

Figure 5-24 Sending out packets accordingly to the namespace input parameter 

6. Making of the data glove 

6.1. Glove Experiments 

6.1.1. Capto Glove  

 What is CaptoGlove 

Our first solution is to use CaptoGlove, an existing product out on the market. 

CaptoGlove is glove that used for variety of purpose such as a normal mouse or Virtual 

Reality controller and we think with all its function we can easily control not only our robot 

hand but also the wrist movement of the arm.  

 Why we choose to use it 

CaptoGlove has total of 5 flex sensor with accelerometer of all three axes, therefore 

this glove has the capability to operate our robot hand easily. The glove also connected to the 

host machine through Bluetooth similar to wireless mouse, therefore we can control the robot 
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hand remotely from the working station. Remote control is also convenient with the motion 

capture setup, which capture operator arm motion and map it to Baxter. CaptoGlove also had 

its own software and SDK for developers.  

 CaptoGlove’s software 

First, our team tried use its software and SDK to see the capable of streaming data from 

the glove to our ROS hand controller with rate of at least 20 Hz because it is the fastest rate 

that the robot hand can accept command. The biggest challenge that our team face was its 

software and SDK was developed on Windows, however our ROS controller was on Linux, 

therefore we need a way to communicate between the two system. The first solution is very 

basic, we would run two systems: one run on windows that connected through Bluetooth, 

then another run on Linux which operate the robot hand, the two system then communicate 

through Wi-Fi using socket communication. Our second solution for the problem was to 

change the CaptoGlove SDK to Linux, which solve the problem of multiple wireless system 

trying to communicate with each other and also later on we want add the glove into input of 

Trina system, therefore having a Linux based software to control the glove would be easier 

to integrate.  

For the first solution, we ran the CaptoGlove SDK provided from the company which 

is written in C++. It took us a while to understand what their SDK have and how to used 

them and how we can get the data we need, the motion of bending finger to number then 

when we able to get those number we setup a server client socket communication every time 

it received the message of sensors. The flow of the solution we had is shown below. 
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Figure 6-1 Flow Diagram of Server and Client for CaptoGlove Implementation 

As in the figure above, we only need to initialize one server, however, we need to make 

a new client every time the client received information from the remote glove. Because of 

the way the glove SDK works, where we can only get raw data from the sensor through a 

constructor of a class, therefore it is very difficult and need modification to kept a single 

client holding communication while the program is running. There were also others issue 

regarding the SDK program worked, where the program started to crash and have exception 

cases we cannot solve because it happened inside a close source material from the 

CaptoGlove company. Therefore, the program could run for 20 to 30 second before 

terminated. During operation the data rate of transmission is also inconsistent as data received 

from Bluetooth CaptoGlove was unstable. The data rate could vary from 5 Hz to only 0.5 

Hz. We were still able to control the robot hand and do minimal testing with it.  
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Figure 6-2 Demo of CaptoGlove and First Prototype Hand. Video link 

As in the video, there were a noticeable delay when we move our hand and when the 

robot actually move (around 1 to 2 seconds). This is caused by the latency of the whole 

process of having client server system addition to the Bluetooth wireless communication. 

The system was also very difficult to debug because we used SDK from CaptoGlove 

For our second solution, because the CaptoGlove is close source therefore trying to 

move the SDK from window to Linux was very complicated and challenging, therefore we 

did not follow this solution.  

Pros: the glove is wireless so user don’t have to stay in one place, the glove has five 

flex sensors and accelerometer for all axis.  

Cons: Data rate is unstable and low therefore we cannot control the robot hand in real-

time.  

 Conclusion 

Based on those testing, we figure out that this implementation does not meet the 

requirement of the problem where we want to map human finger motion to Robot motion. 

With unstable data rate and delay in the system, we conclude that we cannot use this solution. 

Therefore, a different solution is needed   

https://drive.google.com/open?id=1_I0UgaKgXYQ354hvMta18OIzwwtDU3Fz
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6.1.2. Data Glove Implementation  

 Motivation 

At first because we think using existing product for our project will be quicker than 

making our own input device, however because of all the challenges and difficulty from 

CaptoGlove, we decided to build our own data glove input.  

 Initial Design,  

We want to glove to be able to control as much degree of freedom of the hand as 

possible, however with limitation human motion and the robot hand constraint motion is 

different from human, the preshape for both the thumb and two index finger is very difficult 

to mimic. Therefore, we only decide to first just have three degree of freedom on our glove 

to control three finger, for the two other degree of freedom, we decide to use GUI to control 

the robot hand. We used similar sensor with the CaptoGlove. We decided to use UBS wire 

to connect from the controller of the glove direct to PC to avoid any wireless (Bluetooth) 

issue we saw from the CaptoGlove.   

We also decided to use the glove from CaptoGlove as our testing glove, because it has 

two layer separately, one for our finger and one for the flex sensor to be put in. There are two 

way to put the flex sensor, on top or go under our finger. We have tested both and the first 

way (sensor goes on top) has minimal effect on wire and bending that could damage the 

sensors and wire permanently compare to the second solution.  

We also want our controller unit small enough to fit our glove and has minimal effect 

to the user. We take a look at a few of possible microcontroller and products on the market 

and we decided to use the Arduino Nano for the task. There are three benefit of Arduino 

Nano compare to others products. First, Arduino Nano is small and can fit perfectly in our 

glove. Second, Arduino has packages for ROS, running ROS node directly on the 

microcontroller itself, therefore it is easy to implement a simple ROS node that get 

information from the sensor and publish information at a certain rate. Third, Arduino Nano 
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has few other function such as more analog and digital ports and Bluetooth integrated, 

therefore it would be better for future development to use the Arduino Nano.  

The flex sensor circuitry needs a voltage divider, because according to the datasheet of 

flex sensor, its resistant vary from 20k to 30k ohm. Therefore, we have made a few 

calculations to determine which resistor we should use to make sure we can capture the 

largest range out of the flex sensor. Our calculation shown that if we used resistor has value 

in between the value of flex sensor maximum and minimum bending will be better, therefore 

we decided to use 100k resistor.  

The design for the glove shown in figure below 

 

Figure 6-3 Simple initial design and circuit of the glove 

The port that we used to read the value from the sensor are basically analog read (ADC) 

to read voltage across the voltage divider. The value then will need to send to the host 

machine and publish to a ROS topic.  

 Implementation: 
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For the sensor connection with the Arduino, at first we want to make a PCB that 

connect all the sensors and the Arduino Nano together. However, because our circuit is very 

simple therefore order to make a PCB will cost time and money more than necessary. 

Therefore, we decided to use a solder-able breadboard for making the circuitry, not only it is 

simple to make but also because for future development we can easily add more sensors and 

change the circuitry easily without having to redesign and order a different PCB.  

The result for the implementation is shown below 

 

Figure 6-4 Implementation of the glove 

For the Arduino code side, we used the default ROS packages for Arduino and able to 

publish the data rate to 100Hz, which is better than what we wanted. The implementation for 

coding part is pretty simple, one thing we need to note is that we need to use malloc for 

making dynamic memory for sending ROS message, which is just array of integers. This 

process took a lot of memory in the Arduino Nano, however the code and everything else 

still run good.  
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Figure 6-5 Code implementation for running ROS node and publish message at a certain rate from Arduino Nano 

 Testing,  

For testing our glove we separate into multiple part, first is testing the sensors, then test 

the circuitry ROS topic then running the glove on simulation and then on the real robot. The 

first test was simple test that just printing out the value of sensors themselves when we tested 

with different resistor.  
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Figure 6-6: Raw value reading as a ROS Topic. Data sends from the glove.  

The value for each sensor (top left corner terminal) is different however in the range 

that we expected and also our ROS node setup seems to work fine.  

The next test is using those value map them out to fit the range and motion of the 

control for our robot hand and real-time human control 
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Figure 6-7: Demo of the glove with our MQP hand 

We notice a few things when using the glove to control the hand. When we control the 

Reflex SF, the rate that the robot can accept value is around 5 Hz, if it accept anything higher 

than that, the robot will stack up all the position the glove send. This create big delay in the 

system. With our MQP hand, the rate that the robot can accept the value is only 4Hz, therefore 

if we used the same setup like the ReflexSF, the control loop will receive some delay in the 

system.  

6.2. Glove housing 

With the electrical components of the glove figured out, the next step is to make a 

housing to safely wear and shield the circuit board. Since we have had the CaptoGlove, we 

decided to follow the same design principle for our circuit board. The design goal is to have 

a housing that can render the board in place during motion sessions with enough rooms for 
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the sensors to come out and USB connection, which not only serve as a data transmission 

line instead of Bluetooth protocol but also a power source for the board to function properly. 

 

Figure 6-8 CaptoGlove housing with USB and sensor ports 

Once the housing is designed and manufactured, it will be taped together using 

electrical tape to eliminate additional room requirements for screws. Glue was not considered 

in the case of further addition or repair. There is already a small area of Velcro provided 

inside the glove, thus is the main mounting mechanism for the CaptoGlove housing. 
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Figure 6-9 Provided Velcro surface beneath the CaptoGlove textile 

Therefore, the goal of the design will be to have flat bottom surface such that Velcro 

can be stick to so that the housing can be mounted securely onto the glove. The Velcro tape 

can be purchased pretty cheap from most online purchase. For the case of this design, the 

following Velcro tape was considered from Amazon. 
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Figure 6-10 Velcro tape used for glove housing design 

A thin slice of Velcro was more desirable in this case; as multiple slide of Velcro tape 

can be applied until the surface becomes completely covered. With the goal basically layout 

the housing design process was pretty straight forward measure and design. The final design 

consisted of two pieces. The bottom piece will have a flat surface for the board to reside in 

with supporting ridges on the side just so the boards can comfortably sink into and stayed in 

place. There are also half holes designed for the sensor wiring to come out as well as the USB 

cable connection port. 
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Figure 6-11 Bottom housing piece with uneven support ridges 

The other piece is the top that will lay on top of the circuit boards, which are already 

fixed in place on the bottom piece. The two piece putting together will create a gap between 

the ridges just small enough to hold the circuit boards in place and not wiggling around. On 

the top surface there is also slots created for additional air ventilation for cooling just in case. 

The ridges on the top piece is also un even to match the dimension of the electrical board 

with half holes to completely allow the sensors and USB cable to connected. The total wall 

thickness of the design turns out to be 1mm thick. As this housing does not really have to 

support anything much, it will only act as a cover to provide the board from the frictions 

caused by the glove during motion sessions. 
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Figure 6-12 Top housing piece with ridges, holes and slots 

The design is printed out using the same manufacturing method for the robotics hand 

and secured together with electrical tape and secured to the glove with electrical tape. It was 

slightly bigger than the design from CaptoGlove, which makes sense considering there was 

no single custom made circuit board and everything was bought off the shelf then soldered 

together. 
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Figure 6-13 Complete data glove built 

7. Result 

Through multiple hardware design and modification iterations, the robotics 

manipulator has been assembled and successfully tested for operation. The manipulator is 

capable of dexterous manipulation with the aid of the control glove, though the result is pretty 

unstable and slow. However, with some improvement, it is completely possible for this set 

of manipulator and controller glove would be completely capable of such tasks. 
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Figure 7-1: Human controlling the robotics hand to pick up a board eraser 

Despite several implementation design, the data transfer rate is not quite as high as it 

was originally expected. Due to the heartbeat signal sending back from servos to the ROS 

node to monitor the hand status, as well as the stack handling method for messages sent 

through the ROS network, the data transfer rate was reduced from the original desired rate 

of 100Hz to 33.33Hz. This reduction leads to a further effect on the response time of the 

control system as well. However, considering this as a base foundation for future research 

and improvements, the project is considered a success. 
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8. Discussion 

Although the project has been completed, there are still rooms for future development 

of the system. Firstly, the circuit board of the robotics hand can really use a complete redesign. 

Considering the lack of circuit board design on our current team, we had to use the board 

design for the Reflex One from RightHand Robotics to control. Since this board is 

specifically designed to fit into the Reflex One, it has a distinctive shape that ended up taking 

a lot of space within our mechanical design. If the board were to be redesigned, the servo 

layout and housing design can be adjusted. This would result in a decrease in the size of the 

robotics hand. Moreover, the current board design only supports one power plug for the fan, 

while the current mechanical design would require two fans for air circulation and cooling. 

Therefore, a completely new board design, follow up with some mechanical adjustment, 

would result in a more compact and thermodynamically efficient. 

Secondly, the housing on the data glove definitely need improvement as well. As 

mentioned earlier, due to the limitation to circuit board design, the electrical components on 

the data glove are created without any necessary filtration for the sensors, also using a bread 

board to connect the components has significantly increased the size of the electrical 

components in total, resulting in a bigger, chunkier housing required. Also this method also 

results in a less secured circuit. The current data glove seems to be working without much 

significant issues, however, the signal received from the processor proves to be very noisy. 

Additionally, more features would result in a better data glove as well, such as wireless 

protocol, portable power source, additional sensors such as IMU, encoders, etc. Therefore, 

the data glove really needs some improvement in term of the electrical design and 

manufacture as well. 

Thirdly, this might not have too much effect on the current system, but it should be 

better to swap the AX-12A servos to the more recent XL430-W250. The servo itself is not 

much more expensive than the AX-12A but it is more compatible with the XL-320, as they 

both belongs to the XL series offered by Dynamixel. The XL-320 servo cannot be changed 
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as it is the only model offered by Dynamixel that has a through hole for the tendon to thread 

through from the finger into the pulling motor. The XL430-W250 has very similar controlling 

table to the XL-320. This will allow synchronous and bulk operations between servos that 

can ultimately result in a reduction of traffic within the UART communication line. 

Furthermore, the XL430-W250 supports Dynamixel’s Protocol 2.0 that allows more security 

data transmission. The drawback, however, is modification in the mechanical design as the 

dimensions are expected to be different between the XL430-W250 and AX-12A. 

Furthermore, this model was not experimented with before since it only released in recent 

years. However, the improvements should definitely worth the drawback. 

9. Conclusion 

Through WPI’s project presentation day, this MQP has had its chance to be shown to 

many parents and students. Many of the audience has expressed their interest toward this 

project. The main reason is allowing them to directly control the manipulator using the 

control glove without requiring any prior knowledge to motion planning or robotics controls 

and such. Furthermore, the idea is quite new to the crowd as well, such that one person has 

even expressed his interest toward the system for his robotics integration company. Lastly, 

all of the parts manufactured for the system can either be bought off the shelf or manufactured 

quickly with the aid of 3D printing. Through this presentation day, the team was able to gage 

various invaluable feedback from the professional and from the general crowd alike. 

10. Appendices 

The mechanical design iteration of this project can be accessed via this GitHub 

repository. 

The Dynamixel servo controller package can be accessed via this GitHub repository. 

The robotics hand controller package can be accessed via this GitHub repository. 

The complete video demonstration can be accessed via this Google drive folder.  

https://github.com/nphoang1102/mqp-mech
https://github.com/nphoang1102/dynamixel_motor
https://github.com/nphoang1102/reflex-ros-pkg
https://drive.google.com/drive/u/0/folders/1c2OZjtN1ukzNekGFj3vK2i7vUcnfRIYB
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