

Reconfigurable Modular Mobile
Robotic Platform

A Major Qualifying Project Report
Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE
In partial fulfillment of the requirements for the

Degree of Bachelor of Science in
Robotics Engineering

on
3/16/10

by

_______________________ _______________________ _______________________

Matt Bienia
mbienia@wpi.edu

Dan Garcia
dan.r.garcia@wpi.edu

Karl Wajcs
kwajcs@wpi.edu

proteanrobotics@wpi.edu

Approved:

TaskinPadir

Project Number: RBE-TP1-RMP1

ii

Acknowledgements
We would like to thank several people for their help throughout the duration of this project,

without which this would not have been possible.

Atmel Corp. and The Fastener Source for their generous donation of electrical and mechanical
components, respectively.

The Washburn Shops Faculty for the use of their time and resources.

Mike Niziol of MG Machine Co. for his generous donation of facilities and material for CNC machining.

Chip Bienia for his experience, time, and resources involving CNC manufacturing.

Ivo Dobrev for his knowledge and support in the development of robot kinematics.

Sam Kaplan and Kevin O’Brien for their dedicated work on the balance algorithm.

Professor Hugh Lauer for his expertise and instruction in distributed processing and data structures.

Professor Joseph Beck for his expertise and instruction in artificial intelligence.

And finally, Professor Taşkin Padir for continued support, ideas, and patience throughout the ups and
downs that were encountered during this project.

iii

Abstract
 This project addresses the inflexibility of modern robotics by developing a modular robotic

platform, capable of using various modules that can be added and removed to a base unit in a short

amount of time. The scope of the project limited development of modules to a 3-DOF leg. The proof of

concept was established by developing a main communications board capable of detecting attached

peripherals, and individual leg circuit boards capable of full PID control utilizing inverse kinematics to

precisely place the end of the leg. Mechanical issues prevented the leg constructed from being fully

functional, however plans have been developed to address all issues found in the development of this

platform.

iv

Table of Contents
Acknowledgements.. ii

Abstract .. iii

Table of Contents .. iv

Table of Figures: ... vi

List of Tables: ... vii

Table of Equations .. viii

Table of Code Samples .. viii

Authorship.. ix

1. Introduction ...1

1.1. Background .. 2

1.2. Report Organization .. 5

2. Methodology ..6

2.1. Design Specifications ... 6

2.2. Robot Design: Mechanical ... 7

2.2.1. Leg Design ... 8

2.2.2. Gearbox ... 9

2.2.3. Hip Joint Design ... 12

2.2.4. Static Force Analysis .. 13

2.2.5. Chassis Design ... 15

2.3. Robot Design: Electrical System .. 16

2.3.1. Control System and Distributed Processing Overview .. 16

2.3.2. Leg Control Unit (LCU) Hardware .. 17

2.3.3. Main Communications Board (MCB) Hardware .. 23

2.3.4. Main Processing Unit (MPU) Hardware .. 26

2.3.5. Miscellaneous Electrical Considerations ... 28

2.4. Robot Design: Software and Control Systems ... 28

2.4.1. Communications Protocol ... 28

2.4.2. MPU Software & Operational Characteristics ... 37

2.4.3. LCU Software & Operational Characteristics .. 45

2.4.4. Software Model Diagrams ... 58

3. Results ... 63

v

3.1. Mechanical Design Revisions ... 64

3.1.1. Review of the Initial Design ... 65

3.1.2. Goals of the Revised Design .. 66

3.2. Electrical System Observations.. 74

3.2.1. LCU PCB Construction and Issues .. 74

3.2.2. MCB PCB Construction and Issues .. 75

3.3. Software Timing and Effective Control Frequencies ... 76

3.3.1. PID Loop Timing .. 77

3.3.2. Total Leg PID Loop Timing ... 77

3.3.3. Inverse Kinematics Timing... 78

3.3.4. Forward Kinematics Timing ... 79

3.3.5. Total LCU Command Process Timing ... 79

3.4. Budget ... 80

3.4.1. Mechanical Budget .. 80

3.4.2. Electrical Budget .. 82

4. Future Work ... 84

5. Conclusion .. 85

6. References ... 86

7. Appendices... 89

7.1. LCU Schematics .. 89

7.2. MCB Schematics .. 96

7.3. MPU Schematics .. 104

vi

Table of Figures:
Figure 1: Kamimura Experimental Module (1) .. 2
Figure 2: Demonstration of Structural Disassembly and Reconstruction (3) ... 3
Figure 3: BigDog Robot (4) .. 4
Figure 4: Conceptual ReMMRP Illustration ... 7
Figure 5: Conceptual Leg Illustration .. 8
Figure 6: Conceptual Worm Gearbox Illustration ... 10
Figure 7: Conceptual Miter Gearbox Illustration .. 10
Figure 8: Miter Gearbox Design .. 12
Figure 9: Internal View of the Gearbox ... 12
Figure 10: Hip Joint Design .. 13
Figure 11: Static Force Calculation Figure. .. 14
Figure 12: The Robot Chassis .. 16
Figure 13: Labeled Top View of the LCU ... 17
Figure 14: Front and Back View of a Blank LCU PCB ... 22
Figure 15: Labeled Top View of the MCB .. 23
Figure 16: Front and Back Views of a Blank MCB PCB .. 26
Figure 17: Labeled Top View of the MPU ... 27
Figure 18: Front and Back Views of a Blank MPU PCB .. 28
Figure 19: Single Master / Single Slave Configuration .. 30
Figure 20: Single Master / Multiple Slave Configuration .. 30
Figure 21: Master / Slave Data Transfer ... 31
Figure 22: SPI Initial Single Byte Data Exchange ... 33
Figure 23: SPI Indexed Byte Transfer .. 33
Figure 24: Robot Coordinate Frame & Port Numbering ... 39
Figure 25: Base of Support and Robot Chassis Centroids ... 42
Figure 26: The Stabilizing Vector ... 43
Figure 27: Z-Constrained Leg Workspace ... 43
Figure 28: Leg Joint Coordinate Frames .. 46
Figure 29: PWM vs Analog Drive ... 53
Figure 30: Conceptual H-Bridge Diagram .. 54
Figure 31: Forward and Reverse Configurations of the Conceptual H-Bridge .. 55
Figure 32: PID Control Process Diagram ... 57
Figure 33: MPU Software Flow Diagram .. 59
Figure 34: LCU Software Flow Diagram .. 60
Figure 35: Integrated Software Control Flow Diagram ... 62
Figure 36: Completed Robot (1 Leg) ... 64
Figure 37: Conceptual Illustration of Revised ReMMRP Design ... 65
Figure 38: Side View Comparison of the previous gearbox (Top) and the new gearbox (Bottom) 67
Figure 39: Top view comparison of the previous gearbox (Left) and the new gearbox (Right) 67

vii

Figure 40: Comparison between the old Thigh Plate (Top) and the new Leg Plate (Bottom) 68
Figure 41: Comparison View of the old HMA (Left) compared to the new design (Right) 69
Figure 42: Comparison View of the Current HCB (Left) and the Revised Design (Right). 70
Figure 43: Static Force Calculation for the Revised Design ... 70
Figure 44: Revised Chassis Short Plate CosmosXpress Results ... 72
Figure 45: Displacement of the Revised Short Chassis Plate .. 73
Figure 46: Chassis Long Plate CosmosXpress Results ... 73
Figure 47: Resulting Displacement of the Long Chassis Plate ... 74
Figure 48: Assembled LCU Board .. 75
Figure 49: Assembled MCB Board ... 76
Figure 50: Single PID Loop timing ... 77
Figure 51: Total PID Loop Timing ... 77
Figure 52: Inverse Kinematics Loop Timing .. 78
Figure 53: Forward Kinematics Loop Timing ... 79
Figure 54: Complete LCU Leg Motion Command Timing .. 79

List of Tables:
Table 1: Gearbox Trade Study ... 11
Table 2: Joint Motor Spec Comparison and Trade Study .. 19
Table 3: Graphic Comparison of LCU Connectors (11)(12)(13)(14)(15)(16) ... 21
Table 4: Comparison of ATMega164/324/644P Communication Modes ... 29
Table 5: Denavit-Hartenberg Parameters for ReMMRP Leg Modules .. 47
Table 6: Ziegler-Nichols Ultimate Gain Equations .. 57
Table 7: Design Specification Compliance .. 63
Table 8: Comparison of Current and Revised Motor Torques .. 71
Table 9: Mechanical Budget per Leg ... 81
Table 10: Single Purchase Material Budget .. 82
Table 11: LCU Itemized budget ... 83
Table 12: MCB Itemized Budget .. 83
Table 13: MPU Itemized Budget ... 84

viii

Table of Equations
Equation 1: Motor 3 Torque ... 14
Equation 2: Motor 2 Torque ... 14
Equation 3: Motor 1 Torque ... 15
Equation 4: Minimum Joint 2 Angle for Horizontal Movement .. 15
Equation 5: Choose Function .. 41
Equation 6: Total Possible Leg Configurations of ReMMRP ... 41
Equation 7: Area of a Polygon ... 42
Equation 8: Polygon Centroid Equations (7) ... 42
Equation 9: Denavit-Hartenberg Homogeneous Transformation .. 46
Equation 10: Parameterized Sequential Homogenous Transformation Matrices 47
Equation 11: Homogeneous Transformation from Coordinate Frame 0 to Coordinate Frame 3 47
Equation 12: Transformation from Leg Coordinate Frame to Robot Coordinate Frame 48
Equation 13: Angular Position of the Horizontal Hip Joint ... 50
Equation 14: Angular Position of the Vertical Hip Joint .. 51
Equation 15: Angular Position of the Knee Joint .. 51
Equation 16: Linear Interpolation ... 55
Equation 17: Motor 3 Torque in Revised Leg .. 71
Equation 18: Motor 2 Torque in Revised Leg .. 71
Equation 19: Motor 1 Torque in Revised Leg .. 71

Table of Code Samples
Code Sample 1: Slave SBDE Communication Routine .. 36
Code Sample 2: Master SBDE Communication Routine ... 37
Code Sample 3: Forward Kinematics .. 50
Code Sample 4: Inverse Kinematics .. 52
Code Sample 5: PID Control .. 58

ix

Authorship
Introduction…….. All

Background……… KW

Methodology

Robot Design: Mechanical………………………………………………………………………………. KW

Robot Design: Electrical System ……………………………………………………………………… MB

Robot Design: Software and Control Systems…………………………………………………. DG

Results

Mechanical Design Revisions………………………………………………………………………….. KW

Electrical System Observation………………………………………………………………………….. MB

Software Timing and Effective Control Frequencies………………………………………….. DG

Budget……. MB & KW

Future Work…….. MB & KW

Conclusion……….. All

1

1. Introduction
The development and control of (self-)reconfigurable and modular robotic platforms have

emerged as a new research area in robotics within the past two decades. The field addresses new

challenges that come with the design, modeling, implementation and control of autonomous robots

whose kinematic structures can vary over time depending on the physical environment that they are in.

The reconfigurable modular robots have two important features which make them desirable in

applications; flexibility and robustness. They can adapt their shape and form with respect to changes in

their environments and they can accommodate failures within modules provided that they possess

redundancy.

A limitation to the field of robotics is that robots are designed to accomplish a specific task; this

limits the versatility of these machines. The development of a modular robotics platform, specifically

intended for rapid prototyping of autonomous systems, would promote the marketing of more products

as well as the creation of more jobs in the assembly and testing of various configurations of the

platform. Creation of various specialized units from a base of modular components would also allow

any of these units to be quickly and easily repaired or reconfigured in the field.

The goal of this project is to design, construct, and demonstrate a reconfigurable mobile

platform that addresses, at least in part, the issues outlined above. The project outcome will be a proof

of concept for future development and commercialization of a reconfigurable mobile robot.

 Within the scope of this project, the terms “reconfigurable,” “mobile,” and “modular” are

defined as follows:

 A reconfigurable robot is one that is capable of attaining various configurations by the addition

or removal of peripheral attachments (leg, arm, sensor, etc.) to predefined connection points

existing on the robot chassis.

 A mobile robot is one that is capable of autonomous or controlled locomotion to change its

relative position and orientation with respect to a global coordinate frame.

 A modular robot is one that is built using a variety of peripheral units employing standardized

electrical and mechanical connections and communications.

2

1.1. Background
 Reconfigurable robotics research has focused on design and implementation of multiple

modules to work together to complete a goal. One recent work on reconfigurability focused on two

blocks that are connected by a link that allows the two ends to rotate relative to the link (1)(2). On each

surface of the module there are permanent magnets that connect two modules together into a robot.

The module and an example configuration of modules is shown in Figure 1. The focus of the research

was how the modules could combine to achieve a simple goal. A simple goal for the robot would be to

walk on four legs or crawl along the ground. The results show how the robot can transform from the

crawler configuration to the quadruped walker configuration. The robot does not dynamically calculate

how it should configure itself or how to move itself. Instead a program was written that allows the

robot’s initial configuration and movements to be programmed into the robot. In addition the modules

have zero sensing capability which means that the modules cannot adapt nor improve their movements

(1).

Figure 1: Kamimura Experimental Module(1)

3

 A similar project, conducted at the Modlab of the University of Pennsylvania, demonstrates how

a robot can detect an occurrence of structural disassembly and then proceed to repair itself(3). The

entire robot consists of three modules using a Controller Area Network (CAN). Each module is

controlled by a state machine with five states. The first state is connectivity where the module is able to

communicate with other modules meaning that it is physically connected. The module will leave the

first state if the system is structural deconstructed and enter the search state. The search state means

that the module is looking for other modules to recombine with. The third and fourth states are the

approach and dock states where two modules will eventually reconnect with each other. The final state

is the walking state where all modules are combined and perform a walking gait. When the CAN was

broken the robot would realize that it has undergone a structural disassembly. Using various range

finders, a camera and LEDs, the modules can locate each other and come together. In this experiment

the modules are identical in terms of function, which means that the modules do not have to be in their

original configuration when reassembled. During this process, if two modules get reconnected, they

share a master/slave control architecture. These modules will dock with the last module to complete

the reconstruction and continue to perform its original task before the deconstruction occurred. This

behavior is shown in Figure 2.

Figure 2: Demonstration of Structural Disassembly and Reconstruction(3)

 BigDog is a quadruped robot being developed by Boston Dynamics for use in the United States

military. BigDog is being designed for DARPA to function as a robotic pack mule for the US soldier. The

robot must be able to navigate uneven and difficult terrain. The leg uses four hydraulic actuators to

4

control the position and movement. BigDog must be able to determine how it is interacting with its

environment, how it is positioned in space and how to position its legs to achieve balance and the

desired gait.

 BigDog uses kinematics and the ground reaction forces generated by the robot as the basis for

its control systems. BigDog uses 50 sensors to measure leg positions, accelerations and the various

forces exerted and experienced by the robot. BigDog has different algorithms to handle different types

of terrain like mud, snow or sand as well as handling different inclines. The robot must be able to uses

its sensors to determine which type of algorithm to use and how to apply it. Although BigDog is

controlled by a human, this is only used to give it a direction and speed of travel, all calculations for leg

placement and balance is handled by the robot.

Figure 3: BigDog Robot(4)

 The aforementioned robotic systems demonstrate reconfigurability, modularity, and mobility

and illustrate the benefits of each idea as it applies to the advancing frontier of the robotics industry.

The Reconfigurable Modular Mobile Robotics Platform (ReMMRP) takes the next logical step in

innovation and combines these concepts into a robust, adaptive, plug-and-play robotic system. This

report details the development of this platform and the integration of the mechanical, electrical, and

software subsystems that make up the ReMMRP.

5

1.2. Report Organization
This report is broken down into the following sections:

 Methodology, separated into the following components:
o mechanical
o electrical
o software

 Results
 Future Work
 Conclusions

6

2. Methodology
The ReMMRP explores the integration of the concepts of reconfigurability, modularity, and

mobility in a single robotic platform. In order to achieve this goal, the robot must be able to accept

peripheral leg modules, recognize their presence and location, and coordinate their actions. The

ReMMRP must have:

 a base unit, or chassis, that serves as a common connection hub for all peripheral modules.

 leg modules capable of supporting the robot chassis and allowing mobility in three dimensions.

 the ability to detect addition or removal of peripheral modules in real time.

 the ability to control peripheral modules in real time.

 the ability to determine if the present configuration is balanceable, and if so balance.

2.1. Design Specifications
In order to meet the requirements outlined in Section 2, specifications for the mechanical,

electrical, and software systems of the leg modules and chassis must be as follows:

 Chassis:

o The chassis will have 12 connection points – 2 on each short side, 4 on each long side.

o The chassis must contain a centralized power distribution and communications hub.

o The chassis must contain a processor responsible for coordinating the actions of all

peripheral modules, referred to as the Main Processing Unit (MPU).

o The MPU must be interchangeable.

o MPU software must determine actions for all peripheral modules and delegate

commands to them in real time.

o The chassis must have a dedicated processor responsible for detecting the addition or

removal of peripheral modules in real time independently of the MPUs operation,

referred to as the STATUS processor.

o STATUS processor software must operate in real time, allowing MPU to have immediate

knowledge of attached peripherals at any given time.

 Leg Modules:

o The legs modules will have 3 degrees of freedom (DOF)

o The leg must operate in 3-dimensional space.

7

o The leg must have position sensors integrated into each joint.

o The joint motors must be mounted internally in each leg link.

o Each leg module must have self-contained control system, referred to as a Leg Control

Unit (LCU).

o The LCU must have a processor capable of handling the software controls.

o The LCU must distribute power to joint motors and read joint position sensors.

o The LCU must be able to relay signals to the main control system.

o LCU software must respond to commands from MPU with higher priority than any other

task inherent to LCU software.

o Communications protocol must exist for data transfer among the MPU, STATUS

processor, and LCUs).

2.2. Robot Design: Mechanical
Figure 4 is a conceptual illustration of the ReMMRP in a four-legged configuration. The chassis

and legs can clearly be seen, as well as the 12 peripheral connection ports around the perimeter of the

robot.

Figure 4: Conceptual ReMMRP Illustration

The leg modules have three degrees of freedom (DOF). The entire leg must be able to rotate

horizontally with relation to the chassis, and the upper (thigh) and lower (calf) links must be able to

8

rotate vertically with relation to the chassis. The robot must be able to determine each link’s position,

therefore the leg must have sensors integrated into the design. The chassis will have 12 connection

points around its perimeter. There will be two ports on each short side, and four on each long side. The

long side of the chassis will be twice the length of the short side.

 In order to provide the legs the greatest movement possible and to reduce collisions, the joint

motors must be mounted internally in each leg link. However to achieve this specification, the motors

will be perpendicular to the axis of rotation. In order to transfer the motor’s rotation to the leg joint a

gearbox is necessary.

2.2.1. Leg Design
 The main peripheral design of the robot is a three DOF leg module and consists of a calf link, a

thigh link, and a hip joint. The leg module is shown in Figure 5.

Figure 5: Conceptual Leg Illustration

 The calf link is constructed out of two identical plates of sheet metal. Each plate is connected to

the drive shaft exiting the gearbox by set screw hubs, which are mechanical connectors that attach to

the calf plates and use a radial set screw to secure itself to the shaft. The calf link has braces to secure

the two plates together and provide structural stability.

 The thigh link contains two of the three leg motors. One motor is used to rotate the calf link and

the other is used to rotate the thigh link. Two identical metal plates are used to join the two motors

together. The thigh link is also used to secure the potentiometers (see Section 2.3.2.4 for sensor

choice). The potentiometers are connected to the motors’ output shafts using shaft couplers. The

potentiometers on the two vertical joints are mounted to rectangular pieces of 1/8” sheet aluminum

9

which are secured to the thigh link by two #6-32 screws which use spacers to set the potentiometer at

the correct distance from the thigh link.

 The hip joint of the leg module is constructed from two machined pieces of aluminum tube

stock. One piece is connected to the robot chassis and has the port connector. This piece allows for the

horizontal rotation of the leg. The other piece connects the thigh link to the hip joint. This piece allows

for the vertical rotation of the leg from the hip.

2.2.2. Gearbox
Commercial gearboxes fall into two distinct categories. The first are those designed for

industrial applications, and the second are those designed for robotic hobbyists. The industrial

gearboxes are typically large, weigh several pounds, and are designed for higher torque applications

than required by the ReMMRP. The hobbyist gearboxes are designed for simple robots and made of

cheap plastic. The gearboxes would break under the loads of this robot and are therefore unsuitable. As

a result, ReMMRP uses a custom gearbox. Due to the fact that the gearboxes are a custom design, the

leg will be designed around this gearbox. There are two types of gears that can be used for the gearbox:

a worm gear and a miter gear. Each gear type has advantages and disadvantages as will be discussed

below.

2.2.2.1. Worm Gearbox
 The first gearbox design considered for the project is a worm gear system. The primary reason

for the use of the worm gears is to make the legs non-backdriveable. The non-backdriveability would

require less power to be consumed by the motors as the motors would not have to constantly be

correcting the leg position of the robot. Worm gears typically have a high gear ratio, meaning that a

weaker motor could be chosen when compared to a gear train with little or no gearing down.

 This gearbox is made from two identical but mirrored parts forming a clamshell design. Figure 6

shows half of a conceptual gearbox design. Each half has two pockets to accommodate the gears. The

machining required to make this design would be a series of pocketing operations. Given the precise

nature of the gear set, the clearance holes for the axles require high tolerances (±0.0005 in.) which will

add complexity to the machining process.

10

Figure 6: Conceptual Worm Gearbox Illustration

2.2.2.2. Miter Gearbox
The other choice for the gearbox is miter gears. Unlike the worm gears, miter gears allow the

leg to be backdriveable. The use of miter gears will not limit the potential of the legs to explore other

fields of research such as zero force control. During testing of the leg, the miter gears will also allow the

leg to be manually positioned instead of being forced to drive the motors to the desired position. The

manufacturing of this gearbox requires a single pocket for all the gears to be seated in which simplifies

machining. Figure 7 shows a conceptual version of the miter gear box.

Figure 7: Conceptual Miter Gearbox Illustration

11

2.2.2.3. Gearbox Selection
In order to select the best type of gear for the design a trade study is conducted as shown in

Table 1. The trade study has three categories for each gearbox type to be rated on. The categories are

cost, torque and ease of manufacturing. Each of these categories is given a weight of 1-5 based on their

importance. The two gearbox types are then given a rating on each category. The rating and the weight

are multiplied together for the final score. These scores are then added together.

 Worm Gearbox Miter Gearbox

Cost (2) 2 * 2 = 4 3 * 2 = 6

Torque (3) 4 * 3 = 12 3 * 3 = 9

Manufacturability (4) 2 * 4 = 8 3 * 4 = 12

Total 24 27

Table 1: Gearbox Trade Study

 According to the trade study, the miter gear is the better gear choice for the gearbox. Both

types of gears are close in price. The worm gear can have high gear ratio, but miter gears can also

increase their torque output with a modified gear ratio. Manufacturing a miter gear box is also easier to

do. Therefore, the miter gearbox will be used to construct the leg modules.

2.2.2.4. Gearbox Design
 The gearbox consists of three parts. The design centers on a single piece of solid aluminum

stock as seen in Figure 8. The other two parts are sheet metal covers, thus creating a sandwich design

for the gearbox which is seen in Figure 9. The stock has a single pocket that goes through the entire

piece of metal. The pocket allows both gears to be added to the pocket, but not in mesh. The gears can

be moved into position and set into place once the entire gearbox is assembled. The two pieces of sheet

metal seal the gearbox to keep the grease in and foreign particles out.

12

Figure 8: Miter Gearbox Design

Figure 9: Internal View of the Gearbox

This gearbox has several advantages. The screw pattern on the top and bottom face of the

gearbox gas only 4 screws for easy attachment of cover plates. The sizes of the screws are standardized

to a single size of 6-32, which minimizes the number of different tools necessary to machine and

assemble the part. The pocket of the gearbox also relies on looser tolerances. Often end-mill cutters will

undercut the pocket which has the potential of forcing the gears out of their meshed position. By

increasing the dimensions of the pocket it reduces the impact undercutting will have and decrease

machining time. The gearbox design utilizes press fit ball bearings for easy manufacturing and assembly.

2.2.3. Hip Joint Design
 The hip joint is responsible for the horizontal motion of the leg and is shown in Figure 10. The

motor that controls horizontal motion of the hip joint is not constrained to fit within the confines of a

leg link and is free to be mounted in any position. The motor can directly drive the axle to rotate the leg

and no gearbox is necessary. Using a single axle to rotate the leg is ideal, however it makes the

mounted potentiometer extend below the chassis. Mounting the potentiometer in this position will

increase the chance that the potentiometer may be damaged during operation. The solution is to use

two axles to achieve the motion. One axle is driven by the motor and this motion is transferred to a

second axle via spur gears. The second axle then rotates the leg and is connected to the potentiometer

on top of the joint. Using this configuration places the potentiometer in a position where it is least likely

13

to be damaged. The hip joint is made from two pieces of aluminum tube stock nested inside one

another.

Figure 10: Hip Joint Design

2.2.4. Static Force Analysis
The forces involved must be known before the motors can be selected. The force calculations are

done in units of oz-in. Also, the calculations will be done with each link fully extended and parallel to

the ground, which means that the calculations will be for the maximum torque. Each plate has a length

of 12 inches and weighs 4.64 oz. The gearboxes weigh 23.36 oz., and the center of mass is .75” from the

axis of rotation towards the center of the thigh link. The axis of rotation is 7/8” from the end of the

plate, giving the calf plate a functional length of 11.125” and the thigh plate a length of 10.25”. Figure

11 is given for a reference of the leg module.

14

Figure 11: Static Force Calculation Figure.
Note: The leg shown is the revised version of the leg as described in Section 3.1.

 The analysis starts by calculating the torque required to rotate the calf plate. The weight of the

calf link is 9.28 oz and is 11.125” long. Assuming the force of the link is acting half of the length, the

torque is:

Equation 1: Motor 3 Torque

𝑀𝑀2 =
11.125

2
 𝑖𝑖𝑖𝑖 ∗ 9.28 𝑜𝑜𝑜𝑜

𝑀𝑀2 = 51.62 𝑜𝑜𝑜𝑜-𝑖𝑖𝑖𝑖

Continuing to coordinate frame 1, this motor has to rotate not only the thigh link but the calf link as well

including a motor. Therefore:

Equation 2: Motor 2 Torque

𝑀𝑀1 = 51.62 𝑜𝑜𝑜𝑜-𝑖𝑖𝑖𝑖 + �(23.36 𝑜𝑜𝑜𝑜 ∗ 9.5 𝑖𝑖𝑖𝑖) + (
10.25

2
𝑖𝑖𝑖𝑖 ∗ 9.28 𝑜𝑜𝑜𝑜)�

𝑀𝑀1 = 51.62 𝑜𝑜𝑜𝑜-𝑖𝑖𝑖𝑖 + 221.92 𝑜𝑜𝑜𝑜-𝑖𝑖𝑖𝑖 + 47.56 𝑜𝑜𝑜𝑜-𝑖𝑖𝑖𝑖

𝑀𝑀1 = 321.1 𝑜𝑜𝑜𝑜-𝑖𝑖𝑖𝑖

The bracket that allows for the movement of the hip weighs 3.52 oz and the center of mass is 1.125 in

away from the horizontal axis of rotation. The torque required is:

15

Equation 3: Motor 1 Torque

𝑀𝑀0 = 321.1 𝑜𝑜𝑜𝑜-𝑖𝑖𝑖𝑖 + [(3.125 𝑖𝑖𝑖𝑖 ∗ 23.36 𝑜𝑜𝑜𝑜) + (1.125 𝑖𝑖𝑖𝑖 ∗ 3.52 𝑜𝑜𝑜𝑜)]

𝑀𝑀0 = 321.1 𝑜𝑜𝑜𝑜-𝑖𝑖𝑖𝑖 + 73 𝑜𝑜𝑜𝑜-𝑖𝑖𝑖𝑖 + 3.96 𝑜𝑜𝑜𝑜-𝑖𝑖𝑖𝑖

𝑀𝑀0 = 398.06 𝑜𝑜𝑜𝑜-𝑖𝑖𝑖𝑖

Based on the calculations performed, the Lynxmotion PGHM-04 is used. The motor selection is

discussed in detail in Section 2.3.2.2. The motor is rated at 341.76 oz-in of torque and weighs 3.59 oz.

Although this torque is below the maximum calculated torque for the thigh link, the specifications state

that the leg does not have to be able to rotate the leg at maximum torque.

In order for the entire leg to be rotated the thigh and calf links must be at some angle with

respect to the horizontal axis. Assuming that the calf and the thigh links are in line with each other and

the motor is 85% efficient, which gives the motor a torque rating of 289.85 oz-in. The angle required is

as follows:

Equation 4: Minimum Joint 2 Angle for Horizontal Movement

289.85 𝑜𝑜𝑜𝑜-𝑖𝑖𝑖𝑖 = 3.96 𝑜𝑜𝑜𝑜-𝑖𝑖𝑖𝑖 + (394.1 𝑜𝑜𝑜𝑜-𝑖𝑖𝑖𝑖 ∗ cos𝜃𝜃)

285.89 𝑜𝑜𝑜𝑜-𝑖𝑖𝑖𝑖 = 394.1 𝑜𝑜𝑜𝑜-𝑖𝑖𝑖𝑖 ∗ cos𝜃𝜃

285.89
394.1

= cos𝜃𝜃

cos𝜃𝜃 = .725

𝜃𝜃 = 43.5

2.2.5. Chassis Design
The chassis, shown in Figure 12, is made up of four plates of aluminum connected by four angle

brackets. There are two short sides containing two ports each and two long sides containing four ports

each. Each port contains one connector, two holes to secure the connector, and four holes to mount

each peripheral module. The holes used to mount the modules are ¼-20 threaded screw holes. The

chassis has to be able to withstand the forces exerted on it by each leg, therefore the chassis is made

out of .25” thick aluminum.

16

Figure 12: The Robot Chassis

 Power and control signals must be distributed to the peripherals by an electrical subsystem, as
discussed next.

2.3. Robot Design: Electrical System
The general specifications for the electrical system are outlined in Section 2.1. Here we will

discuss the theory, design, and construction of the electrical system in detail, including component

comparison and selection.

2.3.1. Control System and Distributed Processing Overview
 In order to fully understand the electrical system, a brief overview of the control systems is

necessary so that the need for certain components is clear. The control systems in ReMMRP are based

on distributed processing. By utilizing multiple processors, the computational power needed for the

robot to function, calculate kinematics, and control joints can be performed more efficiently through

parallelization. Within this framework, the system can effectively work as well as be able to utilize using

cheaper and less powerful microprocessors. This distributed processing also makes the programming

modular, allowing the same code to be used in several processors.

 Two structures for the tiered processing have been considered: a 2-tier and 3-tier approach. In

the preliminary design, a 3-tier processing system is utilized. A processor on the main body (Tier-1) gives

instructions all of the peripheral units. Each peripheral unit (Tier-2) has a communications and control

processor. Each peripheral control processor directs its joint control modules (Tier-3). This design utilizes

Serial Peripheral Interface (SPI) communication between Tier-1 and Tier-2, and uses serial

17

communication between Tiers 2 and 3. This structure effectively separates the two communication

loops and prevents any cross-communication.

 However, serial communications are not available on the processors that would be used in the

Tier-3 modules, which would make it necessary to use ‘over-qualified’ processors for the Tier-3 modules

to construct this system. Using SPI on both levels has been explored; however doing so requires the use

of an elaborate gate system to prevent cross-communication between the Tiers. For this reason, a 2-Tier

system is used in the final design. Tier-2 now functions as both the communications processor and the

control unit for all three joints of the leg.

 In the ReMMRP, every peripheral device has its own integrated processor. This allows the

processing for that component to be confined to its own board, allowing the Main Processing Unit

(MPU, Section 2.3.4) to do less work. Every peripheral chip must be capable of SPI communications for

transfer of data between the MPU and the peripheral. The only peripheral unit currently being

developed is a 3-DOF leg.

2.3.2. Leg Control Unit (LCU) Hardware
 The Leg Control Unit is the board that handles all of the processing on the leg. This includes

communication to the main board, calculating inverse kinematics, movement of the joints, and the

maintenance of its health status. A completed LCU with labels is shown in Figure 13.

Figure 13: Labeled Top View of the LCU

18

2.3.2.1. Processor
 The leg processor is selected to satisfy the following requirements:

1.) It must have SPI communications in order to communicate with the main processor.

2.) It must have 3 ADC ports to handle the potentiometer readings (see Section 2.3.2.4) from

the joints.

3.) It must be capable of producing 6 PWM signals. Each of the three motors is controlled by

two PWM signals, one to drive it forward, and one to drive it in reverse.

4.) It must have two I/O pins; one for a status signal to the main processor (output), one for a

slave select (input).

5.) None of these pins can be shared on the chip.

 An Atmel processor is used in the LCU because of the team’s familiarity with the architecture, as

well as the library of code that has been developed during the coursework prior to this project. Based on

these requirements, the Atmel ATmega164/324/644P is used. It has Universal Serial Interface (USI)

capabilities, including SPI. All of Port A (8 pins) are 10-bit ADC channels, and six PWM signals can be

produced from 3 timers (2 8-bit, 1 16-bit). The 164/324/644P can have up to 32 I/O ports, so it can easily

handle the 4 that are needed(5). This processor does not meet the specifications previously stated, as

there is one pin overlap. The slave select pin for SPI communications is the same pin as one of the PWM

signal outputs. The processor that meets the specifications for this application is the ATmega1281,

however this IC is 3 times more expensive than the 164P ($14.96 compared to $4.73 (6)(7))and has 8

times the amount of memory, which is excessive(8). The cost of this IC outweighs its benefits, which is

why it is not used. Because the 164/324/644P is used, the way that the motors are controlled is altered

due to the SPI/PWM pin overlap. Instead of keeping the H-Bridge enabled at all times and pulsing the

direction pins, the enable pin is pulsed with the PWM signal and the direction is controlled by 2 output

pins connected to the direction pins on the H-Bridge. This means that 8 I/O pins are needed, however

the 164/324/644P has more than enough. This also simplifies programming because the same code can

be used for all PWM signals. All signals can use the 8-bit timers, while the 6-PWM configuration requires

different code for the 16-bit timer.

 Even though the ATmega164P has enough memory for performing the calculations necessary to

control the leg effectively, an ATmega324P is used in the final design. This is because 324Ps are available

through a sampling program, while the 164P is not. This processor functions the same as the 164P and

has the same pinout, but has twice as much memory.

19

2.3.2.2. Motors and Motor Driver
 The PWM signals that are output from the processor cannot source enough current to directly

run the motors, nor are the signals the correct voltage. The maximum ratings for the I/O pins on the

ATmega164P are 5V at 40mA. Therefore, a motor driver is necessary.

 Based on the joint torque requirements for the leg discussed in Section 2.2.4, a motor torque of

321 oz-in is necessary. A low-current (<1A) motor is preferred for the robot in order to conserve battery

life, however the majority of motors that can provide the necessary torque draw several amps. Two

Lynxmotion motors were found that fit the requirements. Their specifications are outlined in Table 2.

Their specifications are weighted, and the final scores show why motor 2 is chosen over motor 1.

Although motor 1 more closely fit the desired specifications, its availability is a large deterrent to

selecting it.

Table 2: Joint Motor Spec Comparison and Trade Study

 Motor 1 Specs.(9)

Weight (1-10)

Motor 2 Specs.(10)

Weight (1-10)

Voltage (V) 12 5 12 5

Stall Current (mA) 750 8 2710 5

Torque (oz-in) 295.34 6 341.76 8

Size (mm) 24 x 64.5 7 22 x 66.2 7

Shaft Speed (RPM) 31 7 64 6

Availability Backorder (Unknown Time) 2 In Stock (Online Order) 8

Total 35 39

To drive these motors, the STMicroelectronics 6225N/6205N H-Bridge can be used as a motor

driver. These chips are identical in pinout and function, but the 6205N is a higher current IC. This DIP20

has two full bridges per chip, and can handle 1.4/2.8A per channel. Each bridge has an enable pin,

allowing full control over each individual bridge (11). Unfortunately, using this H-Bridge results in having

a full bridge that is unused. This is a necessary concession.

20

2.3.2.3. Connection Ports
 The LCU has several ports on it, shown in Table 3. This is mainly to increase the

interchangeability of the components in the leg. Having ports allows the motors, potentiometers, and

the board itself to be changed out if something breaks.

In the preliminary design, all of the ports were rectangular female headers with 0.1” pitch.

These ports were rated for 3A per pin, making them suitable for most of the connections. After more

development, they were insufficient for many others. The first reason is that they could not handle the

current that would be travelling through the main connector on the LCU. Secondly, they did not have

any lock between the male and female connectors, meaning that they could become unintentionally

disconnected.

 The main connector to the board in the preliminary design is an 8-pin 2x4 0.1” female

rectangular header. Due to the chosen motors, transferring the necessary current is not possible with

this setup. Ribbon cable is preferred for wire management, so a 16-pin 2x8 0.1” female rectangular

header is used. The 12V power is distributed across four pins, and so is the ground. Due to financial

considerations, the header is male instead of female. Also, keyed headers and ribbon cable connectors

are used to ensure proper connections every time.

 The motor connectors in the preliminary design are 2-pin 2x1 0.1” female rectangular headers.

Due to the motors selected, and the lack of fasteners on the connectors, these are not acceptable for

the final design. The rectangular headers are rated for 3A, but with motors that draw up to 2.71A,

having a safety factor of 1.1 is not sufficient. Further, there is no assurance that the connection would

not unintentionally become dislodged. Given these new considerations, a 2-pin 0.25” female header is

used. It has two latches on the free hanging wire connector that attaches to the header on the board.

The holes are irregularly shaped to ensure consistent connection every time it is plugged in.

 Lastly, the potentiometer connection ports are insufficient in the preliminary design. While they

meet all of the electrical specifications, there is no latch to prevent accidental disconnections. In order

to have this feature and observe financial limitations, the board connector is a male header in the final

design with a female connector on the free hanging wire.

21

Table 3: Graphic Comparison of LCU Connectors (12)(13)(14)(15)(16)(17)

 Motor Connector Potentiometer Connector Main Connector

Preliminary

Final

2.3.2.4. Joint Position Sensing
Each joint on the leg module needs a sensor to determine the location of the joint so that it can

be moved to the appropriate location. There are two main options for absolute position sensing. The

first is an absolute encoder. This sensor uses either optical or magnetic sensors to determine its angular

position based on a binary code inside the sensor. The downside to this sensor is that it is very expensive

to use at 10 bits of resolution, which is what the ATmega164/324/644P converts analog signals to using

its ADC.

The other option is a potentiometer. This is an analog sensor that acts as a variable resistor,

varying the output voltage linearly as the angular position changes. They also tend to be less expensive,

and can be more accurate, depending on the quality of the potentiometer. For primarily the cost

benefits, it was decided to use potentiometers.

22

High resistance potentiometers are used so that the current draw is minimized, conserving

battery life. Also, a high quality potentiometer is desired for precision position sensing. Lastly, a small

form factor is necessary so that it does not protrude very far from the leg.

For these reasons, a 10K, 20%, 1-Turn, 53 Series potentiometer from Bourns, Inc. is used on the

leg module. It is in a small package, only 0.521" L x 0.492" W x 0.350" H (18). This potentiometer

functions very well on the leg module.

2.3.2.5. PCB Design
 Figure 14 shows the LCU design printed to accommodate the electronics necessary to operate

the leg. Spatial limitations of the leg restrict the board to 2.5” wide by 11” long to ensure that it can fit

inside the leg cavity. To accommodate the traces and form factor, it is necessary to have the boards

printed on 2oz copper. The final board is 2.5” x 3.5”. The motor and potentiometer connections are

paired together to keep connections organized. All IC’s are mounted on sockets for easy replacement in

the event of burning one out or upgrading. The full schematics can be found in Appendix A.1.

Figure 14: Front and Back View of a Blank LCU PCB

23

2.3.3. Main Communications Board (MCB) Hardware
 Figure 15 shows a completed Main Communications Board with labels. The MCB has no

decision-making power. It is essentially a communications hub for the Main Processing Unit (MPU,

2.3.4). Power management and distribution is also handled by the MCB.

Figure 15: Labeled Top View of the MCB

2.3.3.1. Demultiplexer/Decoder
 The MPU utilizes SPI communications to transfer data between itself and the Tier-2 processors.

When using SPI, a slave select (SS) pin on the slave processor must be enabled by the MPU to establish

which sub-processor it would like to communicate with. This means that it would require 16 separate

I/O ports (15 peripherals, 1 STATUS processor (Section 2.3.3.2)) on the MPU to accomplish this. In an

effort to maintain interchangeability of the MPU, it is necessary to reduce the number of pins required

on the MPU. To do this, a line decoder, also known as a demultiplexer, or demux is used. This allows the

number of SS lines from the MPU to be reduced to 4 (Section 2.4.1.1). By using a decoder, the MPU

outputs the desired channel in binary to those 4 pins, and the decoder selects the appropriate slave

chip.

24

 The SN74154N from Texas Instruments is used as the decoder for the ReMMRP. It is a 4-16

decoder. It is also a 5V IC, which is the operating voltage of the other processors, and has a maximum

current draw of 1µA, meaning low power consumption (19).

 This decoder allows for the selection of one of 15 peripherals or the STATUS chip, for a total of

16 slaves. 12 of these peripherals will be along the outer edge of the body, and the remaining three will

be available for Internal Connection Ports (ICP), intended for use with sensors internal to the chassis,

such as inertial navigation sensors.

2.3.3.2. STATUS Processor
 The STATUS (STatus of Attached UnitS) processor is responsible for enumerating peripheral

modules attached to the system and reporting any changes to the MPU. It also is used in the

initialization sequence of the robot to establish which ports have peripherals attached. This processor

has three requirements.

1.) It must have SPI communications for conveying data to the MPU.

2.) It must have 17 I/O ports; 15 for status inputs form the peripherals, one for slave select, and

one for a status change pin to the MPU.

3.) None of these pins can be shared on the chip.

Due to the fact that 22 pins are necessary, a processor with extraneous features must be

selected so that the requisite number of pins are available. The Atmel ATtiny48 meets the requirements

outlined above, and is used as the STATUS chip. It has 24 I/O pins, and has SPI that does not interfere

with the I/O ports for the status inputs (20).

2.3.3.3. Power Management
 The motors will be running at 12 volts DC, so a 12V DC battery will be used as the power source

for the robot. All of the ICs run at 5V DC, so power must be converted for these chips. The converter

must:

1.) be efficient to conserve the battery life.

2.) be able to provide enough current to run the chips and potentiometers.

3.) reduce the voltage from 12v DC to 5v DC.

25

Using a step-down DC-DC (also known as buck) converter will help with the efficiency. A voltage

regulator is very inefficient because it sheds the excess voltage as heat (21). For the ReMMRP, voltage

will be reduced to 5V from 12V. Assuming the current is constant, a linear regulator operates at the

following efficiency:

5𝑉𝑉
12𝑉𝑉

= 41.6%

The IV1205DA from XP Power is used for the power conversion in the preliminary design. It

operates at 74% efficiency, and can supply up to 200mA of current (22). This specification meets the

power to supply requirements by all of the ICs and the leg potentiometers. The leg potentiometers in a

12-leg configuration would consume 18 mA.

In order to account for future peripherals, three 1A DC-DC converters are used in parallel in the

final design. This will allow for high draw peripherals to be developed without having to worry about not

being able to source the necessary current. The Texas Instruments 5101N DC-DC converter is used on

the MCB. It is 90%+ efficient, and can supply 1A of current and has very simple required external

circuitry (23).

Both the 12-volt and the 5-volt lines have current protection. The 12-volt line has a 15A circuit

breaker, and the 5V line has a 3A fuse. A fuse is used for the 5-volt line because it is much less likely that

this line will have a surge of current. The 15A breaker is used because stalling motors can draw large

amounts of current that could damage the board, and using a circuit breaker instead of a fuse saves

time and money by not having to replace it every time it trips.

2.3.3.4. Connection Ports
 The peripheral ports on the MCB need to meet the same requirements as the 16-pin keyed

rectangular male pin headers on the LCU, and use the same component (Section 2.3.2.3). All 15 of the

peripheral connection ports use this 16-pin header. The port to the MPU will be a 12x1 female header

with 0.1” pitch. This header contains both power and communications lines. The battery connection

port is identical to the one being used for the motors – a 0.25” 2-pin connector with two fastening

latches. This can be used for the battery and the motors because it exceeds the current requirements

for the motor application.

2.3.3.5. Signal LEDs
 There are 18 signal LEDs on the MPU. These are used to display information to the user. 16 are

status LEDs from peripherals. These are arranged in four 4-LED banks, using a bussed 10K resistor bank

26

as a pull-up resistor. An individual resistor had to be used for the 16th LED as a DIP16 resistor bank only

has 15 available resistors. These LEDs are connected to the status lines from each peripheral port. This

will tell the user which ports have connected peripherals. The other two LEDs are power LEDs, signaling

whether the 5- and 12-volt lines are functioning properly. These also have 10K resistors as pull-up

resistors.

2.3.3.6. PCB Design
 The completed blank MCB board is shown in Figure 16. The final board size is 5” x 5”. Due to the

large amount of current that will be run through the traces and the desire to keep the form factor small,

the MCB will be printed using 2oz copper. This will help to reduce the heat generated by the board. Also,

the trace widths are significantly larger on this board than on others to further help with the heat

generated by the high current. The connection ports are arranged around the perimeter to allow for

easy access. The complete schematics can be seen in Appendix A.2.

Figure 16: Front and Back Views of a Blank MCB PCB

2.3.4. Main Processing Unit (MPU) Hardware
 A completed and labeled MPU is shown in Figure 17. The Main Processing Unit is designed to be

interchangeable as the computational demands of the robot evolve. It is also designed to minimize the

number of connection pins necessary to utilize all of the functionality of the MCB. The full schematic can

be seen in Appendix A.3.

27

Figure 17: Labeled Top View of the MPU

2.3.4.1. Main Processor
 The main processor has four requirements. It must have:

 enough memory to store a complex balance algorithm and the speed to execute it (discussed in

Section 2.4.2).

 SPI capabilities

 6 I/O pins (4 outputs for the SS demux, 1 output to enable the demux, and 1 input from the

STATUS processor)

 serial communication to output data to a connected computer for data feedback during testing.

 From these requirements, the Atmel ATmega644P is used as our main processor. It has the

same specifications as the 164P/324P discussed in Section 2.3.2.1, except has 64k bytes of flash

memory, 2k bytes of EEPROM, and 4k bytes of internal SRAM (5). This can handle the computational

demands placed upon it.

2.3.4.2. Connection Ports
 The only header used is identical to the 1x12 rectangular female header on the MCB. This is

more than capable of handling the power and data going through it. The serial connector is a female DB-

9 connector. It is perpendicular to the board for easy access once installed in the robot. The processor

will be on a socket for easy replacement.

2.3.4.3. MPU PCB
 The blank PCB is shown in Figure 18. There are only three components, and all three were

placed and soldered without issue during assembly.

28

Figure 18: Front and Back Views of a Blank MPU PCB

2.3.5. Miscellaneous Electrical Considerations
 All of the PCBs are 2-layer PCBs. The connection between the robot’s chassis and the peripherals

is done using a DB-15 HD connector, the male side being on the leg. Custom DB-15 HD to 8x2 header

cables are used. One pin is left open on the DB-15 connector. The DB-15 HD connectors are fastened to

the body and the peripherals so that the mechanical connection also contains the electrical connection.

2.4. Robot Design: Software and Control Systems
To determine and coordinate the actions of all peripherals attached to the ReMMRP so that it can

accomplish a specified task (i.e., balancing, walking, etc.), control architecture and associated software

are necessary. The following are the software design requirements for the ReMMRP:

1. Communications protocol must exist for data transfer among the MPU, STATUS processor,

and LCUs (and other peripheral processors to be developed).

2. MPU software must determine actions for all peripheral devices (for the LCUs, desired

coordinates of the leg’s endpoint), and delegate commands to them in real time.

3. LCU software must respond to commands from MPU with higher priority than any other

task inherent to LCU software.

4. STATUS processor software must operate in real time, allowing MPU to have immediate

knowledge of attached peripherals at any given time.

2.4.1. Communications Protocol
The ATMega164/324/644P processors have four means of data transmission:

1. Serial Peripheral Interface (SPI)

2. Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART)

29

3. USART in SPI mode

4. Two Wire Interface (TWI)

Each of these communication modes has different properties. Table 4 compares the following

properties of each mode:

 Top speed – highest guaranteed data transmission rate in bits per second, assuming an 8 MHz

processor clock speed. Higher data transmission rates are desired.

 Processor overhead – the total size of internal data registers, in bytes, required by the processor

to use the communication mode. Lower processor overhead is desired.

 Full Duplex – whether the communication mode can simultaneously transmit and receive data.

This increases effective data transfer rate; full duplex is desired.

Table 4: Comparison of ATMega164/324/644P Communication Modes

 SPI USART USART in SPI TWI
Top Speed (bps) 2,000,000 500,000 2,000,000 400,000
Processor
Overhead (bytes)

3 7 6 6

Full Duplex? Yes Yes Yes No

The SPI mode has the highest top speed, lowest processor overhead, and communicates in full duplex,
and is subsequently the most appropriate choice for the ReMMRP communications scheme.

2.4.1.1. SPI Overview
Serial Peripheral Interface, or SPI, utilizes a master / slave hierarchy, where data transfer is

initiated by the master device. Four data lines are inherent to this protocol, and are shown in Figure

19(24):

1. MISO (Master In / Slave Out): Bits are sent from the slave and received by the master.

2. MOSI (Master Out / Slave In): Bits are sent by the master and received by the slave.

3. SS (Slave select): Two modes-

a. In Master Mode, this is used to select a slave.

b. In Slave Mode, the slave is activated by this.

4. SCLK (Serial Clock): Timing signal generated by the master that synchronizes bit transfer.

30

Figure 19: Single Master / Single Slave Configuration

SPI only allows communication between the master and one slave at a time. The ReMMRP

design incorporates multiple slaves (i.e., more than one LCU will be subject to commands from the

MPU), so a more complex approach is needed. The SCLK, MOSI, and MISO lines can be shared between

the master and all the slaves, as only the selected slave will be actively using these lines during

communication. Each slave, though, needs its own SS line from the master. This could be configured as

follows:

Figure 20: Single Master / Multiple Slave Configuration

The drawback to this configuration is the number of separate SS connections from the master;

with twelve potential peripherals, three ICPs, and one STATUS processor as slaves in this design,

nineteen pins (1 SCLK + 1 MOSI + 1 MISO + 16 SS) are required from the master to facilitate SPI

communications with all ports.

A decoder can decrease the number of pins needed for slave selection purposes from the

master. A decoder accepts input from a number of lines, or binary inputs, and has a number of outputs

equal to:

𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 2𝑏𝑏𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑏𝑏 𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

31

 The decoder selected for this design (Section 2.3.3.1) has sixteen outputs, and will activate the

output that corresponds to the value of the 4-bit input signal. This way, a four line signal can be used to

activate one of sixteen peripherals, reducing the master’s SPI pin requirements to seven (1 SCLK + 1

MOSI + 1 MISO + 4 Binary Signal to Decoder).

Once a slave is selected, the communications event can be viewed as in single master / single

slave configuration. SPI is a full-duplex means of communication, which means that data between the

master and the slave are exchanged simultaneously. SPI accomplishes this by treating the byte in the

SPI data registers of each processor as a continuous two byte register and rolling, or performing a

circular exchange of, the bits that comprise the two byte sequence. This means that:

1. The slave’s Most Significant Bit (MSB) is stored in the MISO line, and the master’s MSB is stored

in the MOSI line.

2. The slave and master’s remaining bits are all moved up one position.

3. The master’s Least Significant Bit (LSB) assumes the value of the MISO line (whatever the slave’s

MSB was), and the slave’s LSB assumes the value of the MOSI line (whatever the master’s MSB

was).

Figure 21: Master / Slave Data Transfer

This process is continued until the two bytes have been fully exchanged between the master and

slave.

Under the SPI framework, the communications architecture can be divided into two general parts:

1. Master communications procedures: Those procedures utilized by the MPU to send data to the

STATUS, LCU, or any other peripheral control processors with which the robot may be

configured.

32

2. Slave communications procedures: Those procedures utilized by the STATUS, LCU, or any other

peripheral control processors with which the robot may be configured, to send data to and

receive data from the master processor.

Since SPI utilizes a full-duplex communications mode with a clock, sending and receiving are done

not only simultaneously but also synchronously. The data exchange is quantified on the byte level, and

initiated only by the master. Therefore, the above generalization defines a communication session as:

1. Master communications procedures:

a. Select slave

b. Choose byte to send

c. Send byte, receive byte from slave

d. Unselect slave

2. Slave communications procedures:

a. Wait for selection from master

b. Exchange current stored byte with incoming byte from master

In an episodic sense, these procedures do not appear to be an effective means of transferring

information. Since communication between the master and slave at a given time involves the transfer

of multiple bytes, an additional layer of abstraction over the SPI communication protocol is

implemented.

2.4.1.2. Symmetric Data Buffer Exchange Protocol
In a multiple byte transfer scheme using SPI, the initial byte received from a slave processor is

always undefined because its SPI data register has not been loaded with any pertinent information; the

master can send valid data to the slave but will receive this undefined data, as shown in Figure 22.

33

Figure 22: SPI Initial Single Byte Data Exchange

Alternatively, the data sent from the master can be utilized by the slave as an index to define the data

on the next transmission. The master will receive undefined data (which is unusable) from the slave

upon transmission of the index to the slave, but the index will cause the slave to load the usable data

into its SPI register. Upon the next transmission from the master, the slave will send the usable data

that corresponds to the index previously sent by the master. This process is shown in Figure 23.

Figure 23: SPI Indexed Byte Transfer

This method can be extrapolated, where the master repeatedly sends indices to the slave. In

this case, only the first byte the master receives from the slave will be unusable; the remaining bytes

34

received will be pertinent information from the slave. The last byte the master sends does not need any

particular value in order to receive the last byte of indexed data from the slave. Note that this process

results in a data offset between the master and slave; the master is always one byte behind the slave in

terms of the byte sequence.

The indices sent from the master are useful in requesting data from the slave, but have no

particular meaning to the overall operation of the robot other than to ensure the proper data is received

from the slave processor. The communications session would be better exploited if more pertinent data

were exchanged as often as possible. To accomplish this, data buffers must exist on both the master

and slave processors in the following manner:

1. Each element in the data buffer must be a single byte, commensurate with the size of the SPI

register.

2. The data buffers present on the slave must be known by the master and each buffer must have

an index that explicitly identifies it.

3. The size of the data buffers on both processors must be known by the master before

transmission begins. The data buffers to be exchanged must be of equal size; this criterion is

fundamental to the symmetric aspect of this protocol.

4. One buffer is chosen on each processor as a “send” buffer, and one buffer is chosen on each

processor as a “receive” buffer.

With these rules in place, the master and slave can simultaneously transfer information blocks of

equal size. This process will be referred to as Symmetric Data Buffer Exchange (SDBE).

In the following example, the MPU simultaneously sends the LCU new coordinates and receives

from the LCU its last known coordinates using SDBE. The assumption will be made that both processors

have a data buffer called “Command Coordinates,” and the LCU has an additional buffer called “Current

Coordinates.” The data exchange will occur as follows:

1. The MPU designates its “Command Coordinates” as a send buffer, and initializes an index

variable that will correspond to successive bytes of its send and receive buffers.

2. The MPU initiates an SPI communication session with the LCU by enabling the decoder and

sending it the bit pattern that corresponds to the chassis port where the LCU is attached.

35

3. The MPU sends the LCU a byte indicating that the LCU must designate its “Command

Coordinates” as a receive buffer.

4. The MPU sends the LCU a byte indicating that the LCU must designate its “Old Coordinates” as a

send buffer; at this point the LCU will load the first byte of its “Command Coordinates” into its

SPI register, and initialize an index variable that will correspond to successive bytes in its send

and receive buffers.

5. The MPU enters a loop where:

a. The byte of the send buffer corresponding to the index variable is transmitted. This

causes the MPU to receive the first byte from the LCU.

b. Once the bytes have been exchanged, each processor copies the new data from its SPI

register into its respective receive buffer at the index indicated by their respective index

variables.

c. Index variables on both processors are incremented after the copy.

d. Steps (a) through (c) are repeated until the index variables are equal to the size of the

data buffers.

6. The MPU ends the SPI communication session with the LCU by disabling the decoder /

multiplexer.

At the end of this procedure, the MPU’s “Command Coordinates” buffer will contain the LCU’s last

known coordinates, and the LCU’s “Command Coordinates” buffer will contain the new set of

coordinates from the MPU. SBDE control code for each processor can be seen in Code Sample 1 and

Code Sample 2.

36

ISR(SPI_STC_vect)
{

 //Interrupt trigger when a byte is written to the SPI (ie, transfer is finished)
 //SPIF flag in SPSR should be set at this time

 int i, packetLen;
 unsigned char* SendBuffer;
 unsigned char* ReceiveBuffer;
 //Global variable commandReceived is used in this procedure
 //Global array instructionSet[] is used in this procedure

 //Read SPSR then SPDR;
 //This will clear the SPI interrupt flag.
 //Now commandReceived is set to first transmission byte.
 commandReceived = SPSR;
 commandReceived = SPDR;

 //Second byte indicates data requested by master
 while (!(SPSR & (1 << SPIF))) {
 //wait for receive byte 2
 }
 //Designate send buffer as proper array
 SendBuffer = instructionSet[commandReceived].data[SPDR];

 //Third byte indicates data coming from master
 while (!(SPSR & (1 << SPIF))) {
 //wait for receive byte 3
 }
 //Designate receive buffer as proper array
 ReceiveBuffer = instructionSet[commandReceived].data[SPDR];

 //Fourth byte indicates how many bytes will be transferred
 while (!(SPSR & (1 << SPIF))) {
 //wait for receive byte 4
 }
 //Set packet length to proper number of bytes
 packetLen = SPDR;

 for (i = 0; i < packetLen; i++) {
 //Load transmit byte
 SPDR = *(SendBuffer + i);

 while (!(SPSR & (1 << SPIF))) {
 //wait for receive byte
 }

 //Write received byte to receive buffer
 *(ReceiveBuffer + i) = SPDR;
 }

}
Code Sample 1: Slave SBDE Communication Routine

37

void SBDExchange(unsigned char toPort, char cmd, xData *sendData, xData *rcvData) {

 int i;
 char temp;

 //Enable demux and enable SPI communications with peripheral device
 SelectSlave(toPort);

 //Send command to peripheral, received data byte irrelevant
 temp = SPI_Transmit(cmd);

 //Request data set from peripheral, received data byte irrelevant
 temp = SPI_Transmit(rcvData->identifier);

 //Indicate incoming data set to peripheral, received data byte irrelevant
 temp = SPI_Transmit(sendData->identifier);

 //Indicate length of transfer, received data byte irrelevant
 temp = SPI_Transmit(sendData->length);

 //Initiate data exchange loop
 for (i = 0; i < sendData->length; i++) {
 //Simulataneously send and receive pertinent data
 rcvData.buffer[i] = SPI_Transmit(sendData.buffer[i]);

 }

 //Disable demux, ending communication session
 Unselect();
}
Code Sample 2: Master SBDE Communication Routine

Other means of data buffer exchange can be utilized over an SPI data link, and for certain peripherals or

procedures this may be advantageous. SDBE can also be modified slightly to accommodate an

asymmetric data buffer exchange. However, the LCUs function primarily by the use of SDBE protocol,

and only do so otherwise upon the receipt of single byte commands; therefore an asymmetric data

exchange protocol is unnecessary.

2.4.2. MPU Software & Operational Characteristics
The MPU software is the uppermost level of the control architecture of the robot. The MPU must:

1. Validate peripherals as enumerated by the STATUS processor, both on startup and in real time

as the robot operates.

2. Guarantee collision-free communication. Physical communications collisions are not possible

due to the serial and full-duplex nature of SPI communication, but logical collisions can still

occur, and the MPU must prevent this.

3. Guarantee continuous operation in the event of an unexpected peripheral loss, provided that

redundancy exists in the current configuration.

4. Determine the degree of interaction among peripherals. The MPU will determine that any

number of legs, or peripherals with an LCU, will function together towards the locomotion of the

robot. A different configuration may have multiple legs, but also a wireless communications

38

beacon. In this situation the MPU must still determine the cooperative relationship that the legs

share, but also determine that the wireless peripheral has a separate and independent function.

5. Control peripherals at their degree of interaction.

The above functions will now be discussed in further detail.

2.4.2.1. Peripheral Validation
On startup, the MPU must wait for a “ready” signal from the STATUS processor. After receiving

this signal, the MPU can poll the STATUS processor for information regarding what ports on the robot

chassis have peripheral devices attached to them. Once the MPU is aware of which ports are active, it

can then poll these ports for information.

Every peripheral device will have a serial number written directly into its memory, either as a

constant term in the embedded software, or stored in its permanent EEPROM memory. This serial

number identifies the peripheral as a particular type of device, and the MPU will have a list of every

possible peripheral. The MPU will initially request this information from each peripheral, and create a

data structure for each port that corresponds to the device that is attached there.

2.4.2.2. Communications
The MPU acts as the master in communications with all other processors in the robot

architecture. As such, it is responsible for initiating any and all communications. In a multiprocessor

environment, care must be taken to avoid collisions in data transfer. The primary type of data collision

in computer networking is a physical collision; this occurs when data transfer occurs simultaneously

between more than two processors (25). The SPI protocol is free from this concern in a single master /

multiple slave environment.

A secondary type of collision will be referred to hereafter as a logical collision. This is likely

inherent to other architectures, but for the purposes of this paper it will pertain solely to the robotic

design of this project. Logical collision potential exists when the MPU attempts to exchange data with a

peripheral before that peripheral has utilized the most recent data that was exchanged.

In the case of the SDBE protocol, this might occur if:

 The MPU exchanges a number of bytes of data with an LCU, indicating a set of coordinates.

 The LCU begins using this new data, but the master sends another set of coordinates half way

through the LCU’s procedures having to do with said data.

39

In the event of this situation, the LCU would see data that was the first half of the old set of

coordinates, and the second half of the new set of coordinates. This might range in issues from simply a

wrong coordinate set or, if the bytes in the data were actually subdivisions of a larger data type such as

a floating point decimal, completely erroneous or unusable data. Given the speed of the processors

involved, the speed at which SPI functions, and the size of the data, it is unlikely that this would occur.

However, because the potential exists it must be mitigated.

The solution employed by this architecture is to calculate how long each command that the MPU

issues to a particular peripheral will take to execute on that peripheral. This way, the MPU can check

the system time when a particular command is issued to a peripheral, and not send further commands

to that peripheral until enough time has passed to ensure that no logical collision will occur.

2.4.2.3. Control Algorithms
The MPU is responsible for correlating the movement of the legs in such a manner as to cause

the entire robot to balance. To do so, the MPU must be able to produce sets of coordinates where the

end-effector of each leg will be located when the robot is balanced. All such algorithms, since they are

based on the geometry of the robot, use the same convention for port numbering and coordinate

assignment, as shown in Figure 24:

Figure 24: Robot Coordinate Frame & Port Numbering

40

The robot coordinate frame’s origin is positioned at the geometric center of the robot chassis,

with the long edges parallel to the y-axis, and the short edges parallel to the x-axis, as viewed from

above the robot. Using the right-hand rule, the z-axis extends skyward from the robot chassis center.

The ports are numbered beginning with “0” at the topmost right in this orientation and increasing

clockwise until “11”. Any positional coordinate of the robot’s peripherals can ultimately be expressed in

terms of this system, and the balancing algorithms described below use that fact advantageously.

Combined Static Stability and Mobility (CoSSMo) Balancing Method

This method of balancing is done without the benefit of accelerometers or gyroscopic devices. The

only data utilized is the number of legs attached to the robot and where they are. The following

assumptions are then made:

 The center of gravity of the robot is the geometric center of the chassis.

 The robot is on a flat surface.

 The robot is not in motion.

 The robot has been commanded to a set height. This will fix the z-coordinate of the robot

chassis, and calculate a configuration for the robot to stand at the desired height.

This balancing algorithm has two separate goals. These are:

 Maximize Stability: Determine most stable configuration as defined by the area of the base of

support, or the polygon made by defining each leg’s end-effector as the vertex of a polygon in

the x-y plane, and the position of the robot’s center of gravity, or mass centroid, when projected

onto this polygon.

 Maximize Mobility: Determine the greatest potential for motion from the balanced

configuration, i.e., how much each end-effector is able to move within its workspace from the

balanced position.

The mobility and stability of the robot both depend on the position of the end-effectors, but in most

cases improving one will tend to worsen the other. Therefore the algorithm must find a compromise

between the stability and mobility metrics, where a configuration is found in which the robot is both

statically balanced and has some ability to move each leg in any direction.

One approach to this involves calculating and storing optimal or sufficient solutions for each possible

configuration. However, even with the presumption that the robot cannot balance with less than three

41

legs, the possible configurations can be numbered using the “choose” function. The function �𝑖𝑖𝑥𝑥�, read

as “n choose x,” determines the number of ways that x elements from an equal or larger set of n

elements can be arranged. This function is calculated as follows:

Equation 5: Choose Function

�𝑖𝑖𝑥𝑥� =
𝑖𝑖!

𝑥𝑥! (𝑖𝑖 − 𝑥𝑥)!

Since the ReMMRP has a twelve-port chassis, n will always be fixed to 12 (the number of ports

cannot be changed). The variable x will denote how many legs are attached in a given configuration.

The robot cannot physically balance with less than 3 legs attached; therefore 1 and 2 leg configurations

will not be explored.

In the interest of examining search space for the algorithm, the choose function can be utilized

to express the number of configurations the robot can have with different numbers of legs. Beginning

with the least allowable number of legs, the number of different configurations possible can be stated as

“12 choose 3,” and calculated as:

�12
3 � =

12!
3! (12 − 3)!

= 220

Extrapolating this to the remaining possible number of legs (4 through 12) and summing the

results, the total configurations possible for the range 3 to 12 legs is:

Equation 6: Total Possible Leg Configurations of ReMMRP

��12
𝑖𝑖 �

12

𝑖𝑖=3

= �
12!

𝑖𝑖! (12 − 𝑖𝑖)!

12

𝑖𝑖=3

= 4017

Pre-calculating, optimizing, and storing this amount of possible configurations would still be a

heavily time consuming and storage intensive task. The robot uses an 8MHz main processor with 4K of

RAM, so the space and time complexity of the algorithm must remain very small in order to function at

all. Therefore, the candidate algorithm must be small enough to fit in the 64K of processor memory, and

fast enough to calculate a “good” balance scheme in a small amount of time, with a processor that is

very slow by modern standards. The CoSSMo algorithm is a rudimentary but effective solution to the

compromise between stability and mobility.

42

The stability metric is defined as a function of the distance between the centroid of the robot

chassis and the centroid of the base of support. To calculate the area of the base polygon, the following

formula is used:

Equation 7: Area of a Polygon

𝐴𝐴 =
1
2
�(𝑥𝑥𝑖𝑖𝑏𝑏𝑖𝑖+1 − 𝑥𝑥𝑖𝑖+1𝑏𝑏𝑖𝑖)
𝑖𝑖−1

𝑖𝑖=0

where X0..i and y0..i are the XY coordinate pairs of the vertices of the base polygon in order of adjacency,

and A is the area of the base polygon. Once A has been calculated, the centroid of the base of support

can be calculated using the formula,

Equation 8: Polygon Centroid Equations (7)

𝐶𝐶𝑥𝑥 =
1

6𝐴𝐴
�(𝑥𝑥𝑖𝑖 + 𝑥𝑥𝑖𝑖+1)(𝑥𝑥𝑖𝑖𝑏𝑏𝑖𝑖+1 − 𝑥𝑥𝑖𝑖+1𝑏𝑏𝑖𝑖)
𝑖𝑖−1

𝑖𝑖=0

𝐶𝐶𝑏𝑏 =
1

6𝐴𝐴
�(𝑏𝑏𝑖𝑖 + 𝑏𝑏𝑖𝑖+1)(𝑥𝑥𝑖𝑖𝑏𝑏𝑖𝑖+1 − 𝑥𝑥𝑖𝑖+1𝑏𝑏𝑖𝑖)
𝑖𝑖−1

𝑖𝑖=0

where Cx and Cy are the coordinates of the centroid, and Xi and Yi are defined similarly to the Area

equation.

In Figure 25, the red outline indicates the base of support. The red point indicates the centroid

of the base of support, and the blue point indicates the centroid of the robot chassis:

Figure 25: Base of Support and Robot Chassis Centroids

43

The robot is balanced when the robot centroid lies inside the base of support. In order to

achieve “perfect” balance, the centroid of the robot chassis and the centroid of the base of support

must be aligned. Figure 26 shows the vector (in green) along which the base of support centroid must

move in order to most efficiently maximize balance. This vector will be referred to as the stabilizing

vector:

Figure 26: The Stabilizing Vector

As previously discussed, each leg must move within its physical workspace given the height at

which the robot is commanded, referred to as the z-constrained leg workspace. Given each leg’s

constraints for joint range of motion and link length, this workspace will resemble that of the following

image, with the boundaries denoted by red lines or arcs, and the centroid, or best

mobility/manipulability position (26), denoted by the red point in Figure 27:

Figure 27: Z-Constrained Leg Workspace

The CoSSMo algorithm is a continuous simulation; it does not physically move the robot legs

until it has produced an answer. CoSSMo works by first hypothetically placing all end-effectors in their

44

optimal position for mobility, or the centroid of their respective workspaces. CoSSMo then iterates

through adjacent end-effectors and moves them incrementally along the stabilizing vector inside their

workspace boundaries. This results in one edge of the base of support moving in such a direction as to

cause an increase in overall stability of the robot. At each incremental move, a metric is calculated both

for mobility and stability, and these metrics are combined into a total score. The current highest scoring

configuration’s end-effector positions are stored, and the process repeats until the algorithm is stopped.

In this way, CoSSMo can be set to run for a fixed time, and allowed varying amounts of time to

determine a stable and mobile configuration. Start-up configurations (i.e., connecting legs to the robot

and powering it) will be allowed larger amounts of time to reach a more optimal configuration, but

other situations (such as losing a leg) may require that less time is spent on determining a configuration

and must use a less optimal but still “sufficient” answer.

Sensor Assisted Balancing

In the event that the MPU detects devices that generate data about the robot’s gravitational

orientation, such as a gyroscope or an accelerometer, other balancing methods can be employed

without making the assumptions used by the CoSSMo method. Furthermore, sensor assisted methods

do not necessarily need to operate by maximizing geometric symmetry or centroid positioning, allowing

the robot more freedom in its motions, and the ability to dynamically balance. While sensor assisted

balance methods have not been attempted on the current platform, future work will be done in this

area so a general discussion involving sensor assisted balancing follows.

The CoSSMo method can still be employed with sensors to arrive at a starting point for balance

and mobility. However, utilizing devices that can determine the robot’s acceleration can balance the

robot by means that do not force the chassis to remain parallel to the ground.

A three-axis accelerometer can report acceleration in the x, y, and z directions. This reported

acceleration can be viewed as a vector, indicating the speed and direction in which the robot is moving.

Assuming that the robot is not currently moving itself, any non-zero vector would indicate that the robot

is falling or sliding in the direction of that vector, so this vector will be referred to as the falling vector. If

the falling vector is made to be a ray originating from the centroid of the robot chassis (which would

simply involve the correct placement of the accelerometer), then it must at some point cross a boundary

of the base of support. Legs that are adjacent to where this intersection occurs can move in the

direction of the falling vector, weighted by their distance to the intersection point, and cause the robot

to stabilize.

45

In any method of balance control, the MPU must send coordinates to the LCUs. It is expected

that the LCUs will use these coordinates to position end feet of their respective legs in these locations.

Next, we will discuss how this is achieved by the LCU.

2.4.3. LCU Software & Operational Characteristics
The individual LCUs will help the ReMMRP exploit the multiprocessor environment presented by

the attachment of multiple peripherals. Were the MPU the only processor in the robot, it would have to

perform every calculation necessary for the actuation of each motor in each leg. These calculations can

be both processor-intensive and time sensitive. The amount of calculations will increase linearly with

each leg, and eventually the demand on the MPU would cause noticeable effects on the performance of

the robot, either by sheer consumption of computing cycles or decreased ability to update leg positions

at the desired frequency (also due to consumption of computing cycles.) To lessen the load on the MPU,

every peripheral will be required to perform its own joint position calculations, and the MPU will only

perform those calculations that correlate data from the peripherals.

Individual LCUs exchange relevant data with the MPU in the form of floating point three-

dimensional coordinates. The LCU is responsible for:

 Converting the end-effector coordinates into angular values between its links.

 Reading the angular position of its links, and converting that data into a three-dimensional

coordinate.

 Controlling all three of its motors in such a fashion that the angular values derived from

coordinates are reached in a reliable and timely fashion.

2.4.3.1. Kinematics
The process by which joint angles are converted to leg end-effector coordinates, and vice versa,

falls under a branch of classical mechanics referred to as kinematics (27). Each joint of the robot leg can

be defined in its own coordinate frame, where the initial coordinate frame n0 (at the first joint of the leg)

is defined in the same z-direction as the robot coordinate frame, but the x-axis is oriented away from

the chassis. The y-direction is defined as the vector cross product of z and x, respectively. Coordinate

frames of the individual joints in a leg module are illustrated in Figure 28.

46

Figure 28: Leg Joint Coordinate Frames
Note: The leg shown is the revised version of the leg as described in Section 3.1.

The Denavit-Hartenberg Convention

The Denavit-Hartenberg convention is used to describe the complete shift, or homogeneous

transformation, from coordinate frame n-1 to coordinate frame n, and is defined as the product of four

basic transformations, using four parameters:

 d – link offset

 Θ – joint angle

 α – link twist

 a - link length

The homogeneous transformation from n-1 to n, denoted as 𝑇𝑇𝑖𝑖𝑖𝑖−1, is then described as:

Equation 9: Denavit-Hartenberg Homogeneous Transformation

𝑇𝑇𝑖𝑖𝑖𝑖−1 = 𝑇𝑇𝑏𝑏𝑏𝑏𝑖𝑖𝑜𝑜𝑜𝑜𝑖𝑖−1 (𝑑𝑑𝑖𝑖) ∙ 𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖−1 (𝜃𝜃𝑖𝑖) ∙ 𝑇𝑇𝑏𝑏𝑏𝑏𝑖𝑖𝑜𝑜𝑥𝑥𝑖𝑖 (𝑏𝑏𝑖𝑖) ∙ 𝑅𝑅𝑜𝑜𝑜𝑜𝑥𝑥𝑖𝑖 (𝛼𝛼𝑖𝑖)

In linear algebraic terms, this is:

𝑇𝑇𝑖𝑖𝑖𝑖−1 = �

1 0 0 0
0 1 0 0
0 0 1 𝑑𝑑𝑖𝑖
0 0 0 1

� �

cos𝜃𝜃𝑖𝑖 − sin𝜃𝜃𝑖𝑖 0 0
sin𝜃𝜃𝑖𝑖 cos𝜃𝜃𝑖𝑖 0 0

0 0 1 0
0 0 0 1

� �

1 0 0 𝑏𝑏𝑖𝑖
0 1 0 0
0 0 1 0
0 0 0 1

� �

1 0 0 0
0 cos𝛼𝛼𝑖𝑖 − sin𝛼𝛼𝑖𝑖 0
0 sin𝛼𝛼𝑖𝑖 cos𝛼𝛼𝑖𝑖 0
0 0 0 1

�

47

= �

cos𝜃𝜃𝑖𝑖 − sin𝜃𝜃𝑖𝑖 cos𝛼𝛼𝑖𝑖 sin𝜃𝜃𝑖𝑖 sin𝛼𝛼𝑖𝑖 𝑏𝑏𝑖𝑖 cos𝜃𝜃𝑖𝑖
sin𝜃𝜃𝑖𝑖 cos𝜃𝜃𝑖𝑖 cos𝛼𝛼𝑖𝑖 − cos𝜃𝜃𝑖𝑖 sin𝛼𝛼𝑖𝑖 𝑏𝑏𝑖𝑖 sin𝜃𝜃𝑖𝑖

0 sin𝛼𝛼𝑖𝑖 cos𝛼𝛼𝑖𝑖 𝑑𝑑𝑖𝑖
0 0 0 1

�

The following table illustrates Denavit-Hartenberg values for each coordinate frame n of the leg. By

substituting these values into the general homogeneous transformation derived above, a specific

homogeneous transformation can be determined between each joint in the leg.

Table 5: Denavit-Hartenberg Parameters for ReMMRP Leg Modules

n Θn 𝜶𝜶n dn an

1 Θ1 90° 0 a1

2 Θ2 0° 0 a2

3 Θ3 0° 0 a3

Equation 10: Parameterized Sequential Homogenous Transformation Matrices

𝑇𝑇1
0 = �

cosθ1 0 sinθ1 𝑏𝑏1 cosθ1
sinθ1 0 −cosθ1 𝑏𝑏1 sinθ1

0 1 0 0
0 0 0 1

�

𝑇𝑇2
1 = �

cosθ2 − sinθ2 0 𝑏𝑏2 cosθ2
sinθ2 cosθ2 0 𝑏𝑏2 sinθ2

0 0 1 0
0 0 0 1

�

𝑇𝑇3
2 = �

cosθ3 − sinθ3 0 𝑏𝑏3 cosθ3
sinθ3 cosθ3 0 𝑏𝑏3 sinθ3

0 0 1 0
0 0 0 1

�

Computing the homogeneous transformation from coordinate frame 0 to coordinate frame 3 is then:

Equation 11: Homogeneous Transformation from Coordinate Frame 0 to Coordinate Frame 3

𝑇𝑇3
0 = 𝑇𝑇1

0𝑇𝑇2
1𝑇𝑇3

2

= �

cosθ1 0 sinθ1 𝑏𝑏1 cosθ1
sinθ1 0 −cosθ1 𝑏𝑏1 sinθ1

0 1 0 0
0 0 0 1

� �

cosθ2 − sinθ2 0 𝑏𝑏2 cosθ2
sinθ2 cosθ2 0 𝑏𝑏2 sinθ2

0 0 1 0
0 0 0 1

� �

cosθ3 − sinθ3 0 𝑏𝑏3 cosθ3
sinθ3 cosθ3 0 𝑏𝑏3 sinθ3

0 0 1 0
0 0 0 1

�

In the interest of brevity, the following notations will be used for trigonometric functions:

48

 Cn = cos (Θn); Cnm = cos (Θn + Θm)

 Sn = sin (Θn); Snm = sin (Θn + Θm)

The following trigonometric sum-difference identities are also used for simplification:

 sin(𝛼𝛼 ± 𝛽𝛽) = sin𝛼𝛼 cos𝛽𝛽 ± cos𝛼𝛼 sin𝛽𝛽

 cos(𝛼𝛼 ± 𝛽𝛽) = cos𝛼𝛼 cos𝛽𝛽 ∓ sin𝛼𝛼 sin𝛽𝛽

Accordingly, the final product is:

𝑇𝑇3
0 = �

𝑪𝑪1𝑪𝑪2𝑪𝑪3 − 𝑪𝑪1𝑺𝑺2𝑺𝑺3 −𝑪𝑪1𝑪𝑪2𝑺𝑺3 − 𝑪𝑪1𝑺𝑺2𝑪𝑪3 𝑺𝑺1 𝑏𝑏1𝑪𝑪1 + 𝑏𝑏2𝑪𝑪1𝑪𝑪2 + 𝑏𝑏3𝑪𝑪1𝑪𝑪23
𝑺𝑺1𝑪𝑪2𝑪𝑪3 − 𝑺𝑺1𝑺𝑺2𝑺𝑺3 −𝑺𝑺1𝑪𝑪2𝑺𝑺3 − 𝑺𝑺1𝑺𝑺2𝑪𝑪3 −𝑪𝑪1 𝑏𝑏1𝑺𝑺1 + 𝑏𝑏2𝑺𝑺1𝑺𝑺2 + 𝑏𝑏3𝑺𝑺1𝑪𝑪23
𝑺𝑺2𝑪𝑪3 + 𝑪𝑪2𝑺𝑺3 −𝑺𝑺2𝑺𝑺3 + 𝑪𝑪2𝑪𝑪3 0 𝑏𝑏2𝑺𝑺2 + 𝑏𝑏3𝑺𝑺23

0 0 0 1

�

Note that this transformation only results in the end-effector of the leg with respect to the initial

coordinate frame; each port on the ReMMRP chassis has a predefined transformation 𝑇𝑇𝑖𝑖0
𝑏𝑏 , which is used

to find the location of leg n’s initial coordinate frame with respect to the robot coordinate system. The

position of leg n’s foot with respect to the robot coordinate system is then calculated as:

Equation 12: Transformation from Leg Coordinate Frame to Robot Coordinate Frame

𝑇𝑇𝑖𝑖3
𝑏𝑏 = 𝑇𝑇𝑖𝑖0

𝑏𝑏 𝑇𝑇𝑖𝑖3
𝑖𝑖0

Linear algebra procedures, such as the matrix multiplication used in the above equations, are

very time and memory consuming when performed on the ATMega164/324/644P processor. However,

the matrices derived from the general equation can be condensed to produce a closed form solution,

and this can be converted almost directly into usable, efficient code.

Forward Kinematics

Forward kinematics will allow the LCU to generate a three dimensional coordinate that

describes the position of its end-effector as a function of its joint angles, or simply:

(𝜃𝜃1,𝜃𝜃2,𝜃𝜃3) → (𝑥𝑥,𝑏𝑏, 𝑜𝑜)

The final product, 𝑇𝑇3
0, from the Denavit-Hartenberg equations results in what is known as a

homogeneous transformation matrix from coordinate frame n-1 to coordinate frame n (26):

49

⎣
⎢
⎢
⎡
�

 𝑅𝑅𝑖𝑖𝑖𝑖−1

� �
𝑃𝑃𝑥𝑥
𝑃𝑃𝑏𝑏
𝑃𝑃𝑜𝑜
�

0 0 0 1 ⎦
⎥
⎥
⎤

As shown above, the homogeneous transformation matrix consists of:

 𝑅𝑅𝑖𝑖𝑖𝑖−1, a 3x3 matrix describing the rotation from n-1 to n, and

 𝑃𝑃, a 1x3 matrix describing the translation from n-1 to n, or coordinates of n with respect

to n-1.

Recall the homogenous transformation matrix 𝑇𝑇3
0, shown below with the translation portion 𝑃𝑃

highlighted:

𝑇𝑇3
0 = �

𝑪𝑪1𝑪𝑪2𝑪𝑪3 − 𝑪𝑪1𝑺𝑺2𝑺𝑺3 −𝑪𝑪1𝑪𝑪2𝑺𝑺3 − 𝑪𝑪1𝑺𝑺2𝑪𝑪3 𝑺𝑺1 𝑏𝑏1𝑪𝑪1 + 𝑏𝑏2𝑪𝑪1𝑪𝑪2 + 𝑏𝑏3𝑪𝑪1𝑪𝑪23
𝑺𝑺1𝑪𝑪2𝑪𝑪3 − 𝑺𝑺1𝑺𝑺2𝑺𝑺3 −𝑺𝑺1𝑪𝑪2𝑺𝑺3 − 𝑺𝑺1𝑺𝑺2𝑪𝑪3 −𝑪𝑪1 𝑏𝑏1𝑺𝑺1 + 𝑏𝑏2𝑺𝑺1𝑺𝑺2 + 𝑏𝑏3𝑺𝑺1𝑪𝑪23
𝑺𝑺2𝑪𝑪3 + 𝑪𝑪2𝑺𝑺3 −𝑺𝑺2𝑺𝑺3 + 𝑪𝑪2𝑪𝑪3 0 𝑏𝑏2𝑺𝑺2 + 𝑏𝑏3𝑺𝑺23

0 0 0 1

�

End-effecter positions of the leg with respect to its initial coordinate frame can simply be extracted from

this matrix, and are:

𝑥𝑥 = 𝑏𝑏1 cos𝜃𝜃1 +𝑏𝑏2 cos𝜃𝜃1 cos𝜃𝜃2 + 𝑏𝑏3 cos𝜃𝜃1 cos(𝜃𝜃2 + 𝜃𝜃3)

𝑏𝑏 = 𝑏𝑏1 sin𝜃𝜃1 +𝑏𝑏2 sin𝜃𝜃1 cos𝜃𝜃2 + 𝑏𝑏3 sin𝜃𝜃1 cos(𝜃𝜃2 + 𝜃𝜃3)

𝑜𝑜 = 𝑏𝑏2 sin𝜃𝜃2 +𝑏𝑏3 sin(𝜃𝜃2 + 𝜃𝜃3)

Control code used to perform these calculations can be seen in Code Sample 3.

50

void ForwardKinematics(Angles *angle, Coordinate *coords) {

 //Scratchpad variables
 double q1, q2;

 //Calculate and store z coordinate
 q1 = sin(angle->theta2);
 q1 += sin(angle->theta2 + angle->theta3);
 q1 *= LINK_LENGTH;
 coords->z = q1;

 //Calculate and store x coordinate
 q1 = cos(angle->theta2);
 q1 += cos(angle->theta2 + angle->theta3);
 q1 *= LINK_LENGTH;
 q1 += A1;
 q2 = cos(angle->theta1);
 coords->x = q1 * q2;

 //Calculate and store y coordinate
 q2 = sin(angle->theta1);
 coords->y = q1 * q2;

}
Code Sample 3: Forward Kinematics

In order for the LCU to derive joint angles from a set of coordinates, a different strategy is needed, and

is discussed next.

2.4.3.2. Inverse Kinematics
Inverse kinematics equations will allow the LCU to generate a set of joint angles from a set of

coordinates that will cause the end-effector to be in the position indicated by the coordinates:

(𝑥𝑥,𝑏𝑏, 𝑜𝑜) → (𝜃𝜃1,𝜃𝜃2,𝜃𝜃3),

Where (x,y,z) denotes the three-dimensional coordinate of the end-effector.

The horizontal angular position of the hip joint, or 𝜃𝜃1, is does not depend on the position of the

other two joints in the leg, as it has no effect on the z position of the end-effector. This angle can be

calculated using the inverse tangent function and the desired x and y position of the end effector:

Equation 13: Angular Position of the Horizontal Hip Joint

tan𝜃𝜃1 = �
𝑏𝑏
𝑥𝑥
� → 𝜃𝜃1 = tan−1 �

𝑏𝑏
𝑥𝑥
�

For the angle to be in the correct quadrant, the function atan2 must be utilized:

𝜃𝜃1 = 𝑏𝑏𝑜𝑜𝑏𝑏𝑖𝑖2(𝑏𝑏, 𝑥𝑥),

where atan2 will return the angle in the correct quadrant by using the signs of the x and y coordinates.

51

Unlike 𝜃𝜃1, the vertical hip angle 𝜃𝜃2 depends on the knee angle 𝜃𝜃3. Therefore, 𝜃𝜃3 must be

calculated first:

Equation 14: Angular Position of the Vertical Hip Joint

𝜃𝜃3 = cos−1 �
� 𝑥𝑥𝑪𝑪1

 − 𝑏𝑏1�
2

 + 𝑜𝑜2 − 𝑏𝑏2
2 − 𝑏𝑏3

2

2𝑏𝑏2𝑏𝑏3
�

Since the ReMMRP’s link lengths a2 and a3 are identical, they will be referred to as L, and the

above equation can be simplified to:

𝜃𝜃3 = cos−1 �
� 𝑥𝑥𝑪𝑪1

 − 𝑏𝑏1�
2

 + 𝑜𝑜2 − 2𝐿𝐿2

2𝐿𝐿 �

Finally, 𝜃𝜃2 can be calculated using 𝜃𝜃1 and 𝜃𝜃3:

Equation 15: Angular Position of the Knee Joint

𝜃𝜃2 = − tan−1 �
𝑏𝑏3𝑺𝑺3

𝑏𝑏2 + 𝑏𝑏3𝑪𝑪3
� + sin−1 �

𝑜𝑜

�(𝑏𝑏2 + 𝑏𝑏3𝑪𝑪3)2 + 𝑏𝑏3
2𝑺𝑺23

2
�

This equation must again utilize the atan2 function to return the angle in the proper quadrant,

and can be rewritten as:

𝜃𝜃2 = −𝑏𝑏𝑜𝑜𝑏𝑏𝑖𝑖2 �
𝑏𝑏3𝑺𝑺3

𝑏𝑏2 + 𝑏𝑏3𝑪𝑪3
�+ sin−1 �

𝑜𝑜

�(𝑏𝑏2 + 𝑏𝑏3𝑪𝑪3)2 + 𝑏𝑏3
2𝑺𝑺23

2
�

Control code used to perform these calculations can be seen in Code Sample 4.

52

void InverseKinematics(Coordinate *coords, Angles *angle) {

 //Scratchpad variables
 double q1, q2, b;

 //Calculate and store hip angle (theta 1)
 angle->theta1 = atan2(coords->y, coords->x);

 //Calculate knee (y) angle (theta 3)
 q2 = (coords->x / cos(angle->theta1));
 q2 -= A1;
 q2 *= q2;
 q2 += (coords->z * coords->z);

 q2 -= (2.000 * LINK_LENGTH * LINK_LENGTH);
 q1 = 2.000 * LINK_LENGTH * LINK_LENGTH;
 q2 /= q1;

 //Store theta3
 angle->theta3 = acos(q2); //2-26 4:38pm

 //Calculate hip vertical angle (theta 2)
 b = A3 * cos(angle->theta3);
 b += A2;
 q1 = A3 * sin(angle->theta3);
 q2 = atan2(q1, b);
 q2 *= -1;

 b = A3 * cos(angle->theta3);
 b += A2;
 b *= b;
 q1 = A3 * A3;
 q1 *= (sin(angle->theta3) * sin(angle->theta3));
 b += q1;
 q1 = sqrt(b);
 b = coords->z / q1;

 angle->theta2 = q2 + asin(b);

}
Code Sample 4: Inverse Kinematics

Now that leg coordinates can be converted into control angles, and vice versa, the robot control

functions can be abstracted to the Euclidean coordinates of the robot base frame.

2.4.3.3. Motion Control
The LCU contains the central processing unit for the entire leg peripheral. As such, it is

responsible for distributing power to each of three motors and interpreting data from each of three

potentiometers. Each motor is paired with a unique potentiometer as a means of measuring joint

position. The LCU must integrate the control of the motor with the interpretation of the potentiometer

signal in a meaningful way.

53

Motor Functions

Any electric motor can be controlled by varying the input voltage, which is referred to as analog

drive. However, for a digital processor to process an analog signal, it must have a digital-to-analog

converter, or DAC, to produce a usable output signal to the motor. Additionally, most processors do not

function at the voltage nor can source the amperage required by an electric motor. This means that any

voltage signal directed to a motor must be amplified, usually by means of an operational amplifier, or

op-amp. These requirements for analog drive require a large amount of accessory hardware for simple

motor control.

Another means of control is referred to as pulse width modulation, or PWM (28). In this

method, the control signal to a motor will always be a constant voltage. This signal is high (on) or low

(off) for subsequent portions of a predefined time increment, referred to as the PWM period. The

inverse of the PWM period defines the PWM Frequency. The portion of the PWM period that is

occupied by a high signal is referred to as the duty cycle.

PWM will approximate an analog signal, as seen in Figure 29, by accelerating the motor to a

certain velocity during the duty cycle, and allowing it to decelerate during the low signal portion of the

PWM period:

Figure 29: PWM vs Analog Drive

54

The PWM signal can be used to drive a simple H-bridge that will supply the motor with its necessary

power, and no DAC or op-amp is necessary. The conceptual H-bridge, shown in Figure 30, has the

following switches:

 E: Enable switch. Allows the H-bridge to operate by sourcing the motor voltage.

 1 through 4: Combinations of these switches direct the flow of current through the h-bridge to

ground. The combinations (1,4) and (2,3) will allow current to flow through the motor

Figure 30: Conceptual H-Bridge Diagram

The ATMega164/324 /644P processors are equipped with three internal timers that are each

capable of generating two PWM signals separately from each other and independent of any other

internal processing. This feature is exploited in the LCU software by initializing two timers to the same

PWM frequency. One of these timers is used to control the PWM signal to two motors, and the other

timer controls the PWM signal to the third motor. The ATMega164/324/644P PWM timer function can

then be controlled by simply augmenting the duty cycle with the software.

The only remaining aspect of motor control is directionality, where it is determined in which

direction the motor will rotate. The LCU is configured in such a fashion as to enable the H-bridge on the

“high” PWM signal, and disable the H-bridge on the “low” PWM signal. The actual motor signal in the

software is represented as a signed value, which indicates whether the motor should be moving in

forward or reverse rotation. The sign of this value will cause the H-bridge to be configured in one of two

ways:

 Forward, where current across the motor flows from the positive motor terminal to the negative

motor terminal, and

55

 Reverse, where current across the motor flows from the negative motor terminal to the positive

motor terminal.

These are illustrated below:

Figure 31: Forward and Reverse Configurations of the Conceptual H-Bridge

Now that the motor can be commanded to rotate in either direction at varying speeds, a means of

detecting the corresponding joint’s position must be employed. This is done through the use of variable

resistors, or potentiometers, connected to the joint axis.

Potentiometer Functions

The potentiometers will produce a voltage signal that is commensurate with their angular

position. They have a physical range of 270°, and their voltage output ranges from 0V to the input

voltage (in this application, 5V). Tests on the potentiometers used for this application showed a linear

correlation between potentiometer position and voltage output. Using linear interpolation, the start

and end voltages are referred to as x0 and x1 respectively, and the start and end angle values are

referred to as y0 and y1 respectively. An angular value y is then determined from the equation,

Equation 16: Linear Interpolation

𝑏𝑏 = 𝑏𝑏0 + (𝑥𝑥 − 𝑥𝑥0)
𝑏𝑏1 − 𝑏𝑏0

𝑥𝑥1 − 𝑥𝑥0

56

This still renders an analog voltage; the resulting value must be converted into one that can be used by

the ATMega164/324/644P processor.

The ATMega164/324/644P processors have a built-in analog to digital converter, or ADC. The

ADC functions by approximating a voltage input to a certain resolution; on the ATMega164/324/644P

this resolution is 10 bits. The input voltage is converted into a digital value in the range of 0 to

(2resolution)-1, or 0 to 1023.

The same linear interpolation can be used by replacing the voltage range of 0V to 5V with the

digital range of 0 to 1023.

2.4.3.4. PID Control
In order to control the motor to arrive and stay at a given angle, a continuous means of control

must be implemented. Simply running the motor until it reaches a certain point will not work, since the

inertia of the motor and leg will continue to carry the axis past the desired point after the motor is shut

off. A controller must be used that monitors the relationship between the desired joint position and the

actual joint position, the difference in which is referred to as the error, and adjusts the motor’s behavior

to minimize the error.

Proportional-Integral-Derivative (PID) control uses the summation of three terms to monitor and

control the signal to a motor (29):

1. Proportional Term: the difference between the current motor position and the desired position.

Greater errors will cause a larger control signal to the motor. Proportional control alone is

typically subject to oscillations in the motor output.

2. Integral Term: the sum of the positional errors over time. The role of the integral term is to

decrease the oscillation caused by the Proportional control. By using the Integral control the

arm will eventually settle into the desired position.

3. Derivative Control: the rate of change in the error, used to balance the Integral control by

dampening the decaying oscillations from proportional-integral control.

57

Figure 32: PID Control Process Diagram

As can be seen in Figure 32, each term is typically expressed with a constant coefficient that will

give weight to the term in the overall equation. The constants for proportional, integral, and derivative

terms are referred to as Kp, Ki, and Kd, respectively. The values of these constants will vary from

application to application, and in each robot leg from joint to joint, due to the different masses and

torques associated with each joint.

 To tune the PID equations for the robot leg motors, the Ziegler-Nichols Ultimate Gain method is

employed (30). This is a simple method, using only four steps:

1. Initialize PID with all constants set to zero.

2. Increase Kp until a steady oscillation is reached.

3. Once oscillation is reached, the value of Kp is referred to as Kc, or the ultimate gain, and the

period of the resulting oscillation is referred to as Pc.

4. Calculate the PID constants using the following formulae:

Table 6: Ziegler-Nichols Ultimate Gain Equations

Kp Ki Kd

0.60 Kc 2Kp / Pc KpPc / 8

Control code used to perform PID control can be seen in Code Sample 5.

58

int PIDController(int setPoint, int processValue, pidData_t *pid_st) {
 float p_term, d_term, i_term, ret, error;
 int err, output;

 err = setPoint - processValue;
 if (err > 1024) {
 err = 1024;
 } else if (err < -1024) {
 err = -1024;
 }
 error = err;

 //P TERM
 p_term = pid_st->P_Factor * error;

 //I TERM
 pid_st->sumError -= pid_st->errHistory[pid_st->curError];
 pid_st->curError++;
 pid_st->curError %= ERROR_WINDOW; //Use fixed number of previous errors

 if ((error <= DEADZONE) && (error >= -DEADZONE)) {
 pid_st->errHistory[pid_st->curError] = 0;
 } else pid_st->errHistory[pid_st->curError] = err;

 pid_st->sumError += pid_st->errHistory[pid_st->curError];

 i_term = pid_st->I_Factor * (float)pid_st->sumError;

 //D TERM
 d_term = pid_st->D_Factor * (float)(pid_st->lastProcessValue - processValue);

 pid_st->lastProcessValue = processValue;

 ret = (p_term + i_term + d_term) * pid_st->scalingFactor;
 if (ret > MAX_INT) {
 ret = MAX_INT;
 } else if (ret < -MAX_INT) {
 ret = -MAX_INT;
 }

 output = ret;
 return output;
}
Code Sample 5: PID Control

Through the use of kinematics and PID control, each robotic leg can now be reliably commanded to a

desired orientation in the robot coordinate frame.

2.4.4. Software Model Diagrams
The following section outlines the general behavior of the MPU, LCU, and integrated ReMMRP

control system during their operational cycles.

2.4.4.1. MPU Flow Diagram
The MPU software behaves continuously in the following manner:
1. On power up, initialize internal hardware (communications, timers, etc.), and wait for a “ready”

signal from STATUS processor.

2. Determine available peripherals and select proper control algorithm(s).

59

3. Command peripherals using control algorithms and real-time feedback data from peripherals.

At any time during this process, if there is a change in peripheral attachments as indicated by

the STATUS processor, return to step 2.

4. Return to step 3.

Figure 33: MPU Software Flow Diagram

2.4.4.2. LCU Flow Diagram
The LCU software behaves continuously in the following manner:

1. On power up, initialize internal hardware (communications, timers, ADC, etc.), and produce a

“ready” signal to the STATUS processor.

2. Wait for a command from the MPU, causing simultaneous transfer of real-time feedback data to

MPU.

60

3. Perform command from MPU until either:

a. A new command is received, or

b. A software or hardware error in the LCU occurs; then disable “ready” signal to STATUS

processor to indicate malfunction. Operation is terminated in this event.

4. Return to step 3.

Figure 34: LCU Software Flow Diagram

61

2.4.4.3. Integrated Flow Diagram
The complete software model of the robot behaves continuously in the following manner:

1. On power up, MPU, LCUs, and STATUS processors initialize.

2. LCUs (and other peripherals) send “ready” signal to the STATUS processor.

3. STATUS processor determines which ports have attached peripherals, or active ports, and

communicates this information to the MPU.

4. MPU polls active ports for identification information and creates a list of peripheral devices

based on type.

5. MPU groups similar peripherals and selects control algorithm to employ accordingly.

6. MPU utilizes control algorithm(s) to generate command data for peripherals.

7. Command data is distributed to peripherals while real-time configuration data is simultaneously

returned to the MPU.

8. Real-time peripheral configuration data is fed into the control algorithm(s) on the MPU to

generate new command data for the peripheral devices.

9. In the event of a change in peripherals, go to step 3.

10. Return to step 5.

62

Figure 35: Integrated Software Control Flow Diagram

63

3. Results
The primary specifications outlined in Section 2.1 were reevaluated at the conclusion of the

project. The success of each specification is rated according to the following key:

 - Design Specification Met; needs little to no revision or additional work

 - Design Specification Met; needs revision or additional work

 - Design Specification Not Met

Table 7: Design Specification Compliance

The chassis will have 12 connection points – 2 on each short side, 4 on each long side.

The chassis must contain a centralized power distribution and communications hub.

The chassis must contain a processor responsible for coordinating the actions of all
peripheral modules.

The MPU must be interchangeable.

MPU software must determine actions for all peripheral modules and delegate commands
to them in real time.

The chassis must have a dedicated processor responsible for detecting the addition or
removal of peripheral modules in real time independently of the MPUs operation.

STATUS processor software must operate in real time, allowing MPU to have immediate
knowledge of attached peripherals at any given time.

The legs modules will be 3 degree of freedom (DOF) links

The leg must operate in 3-dimensional space.

The leg must have position sensors integrated into each joint.

The joint motors must be mounted internally in each leg link.

Each leg module must have self-contained control system.

64

The LCU must have a processor capable of handling the software controls.

The LCU must distribute power to joint motors and read joint position sensors.

The LCU must be able to relay signals to the main control system.

LCU software must respond to commands from MPU with higher priority than any other
task inherent to LCU software.

Communications protocol must exist for data transfer among the MPU, STATUS processor,
and LCUs).

 While all of the design specifications were met, the fully assembled robot did not perform as

desired. Solutions to the issues that affect the current version are discussed next. The robot at the

completion of this project is shown in Figure 36.

Figure 36: Completed Robot (1 Leg)

3.1. Mechanical Design Revisions
Once the leg was constructed, several problems became apparent and areas for improvement were

noticed. In order to improve robot performance, an increase in complexity in the new version of the

robot is needed. However before a new robot is designed, the initial design must be reviewed.

65

Figure 37: Conceptual Illustration of Revised ReMMRP Design

3.1.1. Review of the Initial Design
 The main problem of the legs was caused by the miter gears used at the joints. The miter gears

generate substantial axial forces that pushed the gears out of mesh. The solution to the problem was to

ensure that washers were placed so that the gears could not force each other out of mesh. The other

problem with the gears was the fact that the set screws would be forced out of place, which would allow

the gears to spin freely. Holes were drilled through the gears and axles to pin them together and thus

ensure that gears and axles will always rotate together.

 Another problem experienced in the original design was the couplers between the motors and

the shafts. The motor’s output shaft is 4mm in diameter and the shaft used is 0.25 inches. The closest

standard size diameter for a coupler is 0.375”. The difference in diameters is 0.03 inches, which is

enough to allow an unacceptable gap between the coupler and the shaft. A commercial coupler does

not exist for the 4mm to 0.25” conversion; therefore a custom coupler was manufactured. The coupler

was designed to use a 4-40 set screw, however the set screws proved insufficient against the forces of

the gearbox. New holes were drilled into the coupler to accommodate an 8-32 set screw. These screws

were more effective, but still frequently failed to prevent slippage.

 The bracket design for the hip joint posed significant manufacturing challenges since it is made

from tube stock. The main problem came from the through holes for the shaft. These holes need to be

concentric to one another, which means that the holes should be drilled at the same time, however that

requires a long carbide drill. The problem introduced by the long drill is deflection, which means that

the drill bit will tend to be pushed off axis as the drill is pressed into the part. This phenomenon could

result in the through holes not aligning with each other. All of the brackets made for the initial leg

66

suffered from drill bit deflection. Although the deflection was minimal, it is not desirable, and the

effects were noticeable during construction of the leg.

 The weight of the initial design could be lowered to reduce the forces needed to move the leg.

There are two key places that could see weight reduction: the gearboxes, and the plate metal that forms

the legs and the chassis. The current design of the gearboxes has significant excess metal. In addition,

the placement of holes and the dimensions of the pocket could be optimized to further reduce the

weight of the gearbox.

The plates that form the leg are currently solid sheet aluminum and weigh 0.16 lbs per plate,

with a combined four-plate-per-leg weight of 0.64 pounds. Reducing the weight of each plate will

reduce the torque required to move each leg, which will produce smaller forces on the various

components in the leg.

The chassis is another source of substantial weight of the robot. The chassis is made of 0.25”

sheet aluminum. An analysis will be conducted to see if the chassis can be manufactured from 0.125”

thick aluminum.

3.1.2. Goals of the Revised Design
 There are two main considerations for the revised design of the robot. The first consideration is

to reduce the overall weight of the legs and chassis. The second consideration is to simplify the

manufacturing process and assembly of the robot’s components. Addressing these two areas will make

the robot perform better, put less stress on the connection points, and eliminate the slippage in the

gearbox that affected the previous design. Several components are targets to reduce the weight of the

robot, namely the gearbox, the leg plates, and the chassis. The hip assembly is to be redesigned to be

simpler to manufacture and assemble.

3.1.2.1. Gearbox Redesign
 The current gearbox contains significant portions of unused metal. Figure 38 and Figure 39

show comparison images of the current and the revised gearboxes. The bolt holes that mount the

gearbox to the leg are closer to the output shaft. The holes that secure the cover plates are shifted

closer to the pocket to minimize the material in the gearbox. The pocket that holds the miter gears is

reduced in size so that it will require fewer washers to mount the gears. The mounting holes that secure

the motor are moved to reduce the size of the motor mounting plate. The movement of the mounting

holes allowed for the removal of material on either side of the drive shaft. In addition, the front wall of

the gearbox (the topmost edge in Figure 39) is reduced in thickness from 0.25” to 0.125”. The thickness

67

of the gearbox was also reduced by 0.25”. These changes in the gearbox design reduced the weight of

the gearbox from 1.46 lbs to 1.03 lbs, which is a 29.5% reduction in weight.

Figure 38: Side View Comparison of the previous gearbox (Top) and the new gearbox (Bottom)

Figure 39: Top view comparison of the previous gearbox (Left) and the new gearbox (Right)

3.1.2.2. Leg Plate Redesign
 In the current design there are two separate designs for the leg plates: one for the thigh and one

for the calf. However, the only functional difference between the two plates is that the calf plate lacks

the mounting holes for the gearboxes. In terms of manufacturing, this increases the time of

manufacturing because two separate CAM files need to be created and two separate production runs

need to be made. There is also no benefit to having a design like this. In the revision, the plates are

68

unified into a single design that can serve either as a calf plate or as a thigh plate. Figure 40 shows a

comparison between the current thigh plate and the revised leg plate.

 With the reduction in size of the gearbox, the leg plate was scaled down to fit the revised

gearbox design. This leg plate is 11” long, compared to the 12” of the current design, and 1.25” wide

compared to the 2” wide of the current design. The revised plate has all of the hole patterns necessary

to connect a gearbox or mount the set screw hubs. The current thigh plate is solid plate metal with no

pockets to reduce weight. The revised leg plate has cutouts to reduce the weight of the plate. The

current thigh plate weighs 0.29 lbs while the revised leg plate weighs 0.11 lbs, which is 62% reduction in

the weight of the plate.

Figure 40: Comparison between the old Thigh Plate (Top) and the new Leg Plate (Bottom)

3.1.2.3. Hip Assembly
 The main problem with the current design of the hip assembly is the difficulty of ensuring that

the holes are concentric. The Horizontal Movement Assembly (HMA) is designed around a piece of

aluminum tube stock; however in the revision the tube stock is used to mount plates which hold the set

screw hubs. Figure 41 shows a comparison of the new and old brackets. Using plates makes it easier to

ensure that the holes for the various shafts are concentric and do not require special machining. In

addition, the bracket is smaller than the current one. The height of the part has been reduced to 1.25”

from the original 3”. The part wasn’t redesigned to be lighter, but easier to manufacture, so the overall

weight hasn’t changed drastically. The weight has dropped from .25 lbs to .22 lbs.

69

Figure 41: Comparison View of the old HMA (Left) compared to the new design (Right)

 The current Hip Connection Bracket (HCB) is one piece of cut tube stock, but the revised design

is made of two separate pieces of angle aluminum. There are two reasons for the two piece design. The

primary reason is the resolution of the problem of concentric holes. The secondary reason is so that the

design isn’t limited by the dimensions of commercially available tube stock. Commercially available tube

stock comes in a limited set of sizes, which would force the part to be designed around it. The use the

angle aluminum allows for more flexibility in terms of length and depth of the assembly.

 The electrical connector was removed from the part so that the assembly of the components

and the wiring wouldn’t interfere with each other. Also by removing the electrical connection from the

part, the HCB can become smaller and easier to assemble. A comparison is shown in Figure 42. The

weight of the original design is 0.69 lbs while the new design weighs 0.56 lbs, which is a 19% reduction

in weight.

70

Figure 42: Comparison View of the Current HCB (Left) and the Revised Design (Right).

3.1.2.4. Force Analysis of the New Design
 The revised leg design is significantly lighter compared to the current design and slightly shorter

as well. A new force analysis will show the additional benefits of the revised design. Once again, the

calculations are done in oz-in. Each plate has a length of 11 inches and weighs 1.76 oz. The gearboxes

weigh 16.48 oz and the center of mass is 0.75” from the axis of rotation towards the center of the thigh

link. The mounting hole for the drive shaft is 0.5625” from the end of the plate, giving the calf plate a

functional length of 10.4375” and the thigh plate a length of 9.875”.

Figure 43: Static Force Calculation for the Revised Design

71

 The analysis will start by calculating the torque required to rotate the calf plate. The weight of

the calf link is 3.52 oz and is 10.4375” long. Assuming the force of the link is acting at the midpoint of

the length of the calf, the torque is:

Equation 17: Motor 3 Torque in Revised Leg

𝑀𝑀2 =
10.4375

2
𝑖𝑖𝑖𝑖 ∗ 3.52 𝑜𝑜𝑜𝑜

𝑀𝑀2 = 18.37 𝑜𝑜𝑜𝑜-𝑖𝑖𝑖𝑖

 Continuing to coordinate frame 1, this motor has to rotate not only the thigh link but the calf

link as well including a motor. Therefore:

Equation 18: Motor 2 Torque in Revised Leg

𝑀𝑀1 = 18.37 𝑜𝑜𝑜𝑜-𝑖𝑖𝑖𝑖 + �(16.48 𝑜𝑜𝑜𝑜 ∗ 9.6875 𝑖𝑖𝑖𝑖) + �
9.875

2
 𝑖𝑖𝑖𝑖 ∗ 3.52 𝑜𝑜𝑜𝑜��

𝑀𝑀1 = 18.37 𝑜𝑜𝑜𝑜-𝑖𝑖𝑖𝑖 + 159.65 𝑜𝑜𝑜𝑜-𝑖𝑖𝑖𝑖 + 17.38 𝑜𝑜𝑜𝑜-𝑖𝑖𝑖𝑖

𝑀𝑀1 = 205.4 𝑜𝑜𝑜𝑜-𝑖𝑖𝑖𝑖

The bracket that allows for the movement of the hip weighs 3.52 oz and the center of mass is 1.125 in

away from the horizontal axis of rotation. The torque required is:

Equation 19: Motor 1 Torque in Revised Leg

𝑀𝑀0 = 205.4 𝑜𝑜𝑜𝑜-𝑖𝑖𝑖𝑖 + [(3.125 𝑖𝑖𝑖𝑖 ∗ 16.48 𝑜𝑜𝑜𝑜) + (1.125 𝑖𝑖𝑖𝑖 ∗ 3.52 𝑜𝑜𝑜𝑜)]

𝑀𝑀0 = 205.4 𝑜𝑜𝑜𝑜-𝑖𝑖𝑖𝑖 + 51.5 𝑜𝑜𝑜𝑜-𝑖𝑖𝑖𝑖 + 3.96 𝑜𝑜𝑜𝑜-𝑖𝑖𝑖𝑖

𝑀𝑀0 = 260.86 𝑜𝑜𝑜𝑜-𝑖𝑖

Table 8 compares the torque requirements of the current and revised designs:

Table 8: Comparison of Current and Revised Motor Torques

 Motor 1 Motor 2 Motor 3

Current (oz-in) 398.06 321.1 51.62

Revised (oz-in) 260.86 205.4 18.37

Reduction 34.47% 36.04% 64.42%

72

As Table 8 shows, the revised design results in a significant torque reduction for all motors. This will in

turn save power and extend the battery life of the robot.

3.1.2.5. The Chassis
 The main modifications to the chassis are accommodating the changes in the HCB and the new

placement of the electrical connection port. In addition, the types of bolt holes in the chassis plates

were reduced. Originally there were several types of holes: ¼-20, 10-24 and 5-40. The ¼-20 holes were

used to mount the leg to the chassis, the 10-24 holes were used to bolt the chassis plates together and

the 5-40 holes were to mount the electrical connection. Having 3 different bolt types complicates

manufacturing as a different operation, drill and tap must be used for each type of hole. This adds time

and complexity to the part. In the new design the 10-24 holes have been replaced with ¼-20 bolt holes.

 The other change to the chassis is switching from 0.25” aluminum to 0.125” aluminum. This

change is to save weight on the chassis. The current chassis weighs 3.41 lbs, while the new chassis

weighs 1.92 lbs. This is a 44% reduction in weight. The main concern about switching to a thinner plate

is that the plate would bend under the load of a configured robot.

The CosmosXpress feature in SolidWorks was used to study how the chassis plates would react

to various forces. The first test was conducted on the short chassis plate. The plate was restrained

around the bolt holes and a 15 pound force was applied to the front face of the plate. After running the

analysis, the lowest safety factor was 6.46. Figure 44 shows the distribution of safety factor across the

plate. The blue areas are where the safety factor is higher than the entered value, which in this case is

15, and the red areas are where the safety factor is lower than the entered value.

Figure 44: Revised Chassis Short Plate CosmosXpress Results

73

Figure 45 shows the maximum displacement of the part under the 15 pound load. The part

appears to bend significantly under the load, however the greatest displacement of the part (shown in

red) is 0.0018 inches.

Figure 45: Displacement of the Revised Short Chassis Plate

The long plate underwent a similar analysis using the CosmosXpress feature. Again, the plate

was restrained around the bolt holes and a 15 pound force was applied to the front of the face plate.

The red areas shown in Figure 46 are where the safety factor of the part is below 15.

Figure 46: Chassis Long Plate CosmosXpress Results

74

The red area is far larger in the long plate than in the short plate, however the minimum safety

factor is still above 2. The maximum displacement that the plate experiences under the force is 0.023

inches. The various displacements of the plate can be seen in Figure 47.

Figure 47: Resulting Displacement of the Long Chassis Plate

 As a result of the testing done on the 0.125” plates, the new chassis will be constructed from the

thinner material. Along with the changes made to the leg module, the revised robot will now be lighter

than the current design. The revised robot weighs 15.25 lbs in a four leg configuration, while the

current design weighs 25.42 lbs, a 40% overall reduction in weight.

3.2. Electrical System Observations
Overall, the electrical system performed as desired. Assembly of the boards only encountered a

few problems, and the boards functioned as designed.

3.2.1. LCU PCB Construction and Issues
The completed LCU can be seen in Figure 48. No major obstacles were met in the assembly of

the LCU PCB. All of the components designed specifically for this board fit as intended. There was one

issue with the resistors, however. 1/2 W resistors were ordered, but the board was designed for ¼ W

resistors. This did not create too much of a problem, because by purchasing one ¼ W resistor, the other

½ W resistors could be bent to fit with the other components. One other problem occurred, where

connections on certain ports weren’t consistent, but by resoldering those ports, all of the problems

were resolved.

75

Figure 48: Assembled LCU Board

3.2.2. MCB PCB Construction and Issues
 Assembly of the MCB encountered a few problems. The first of which is that the holes for the

buck converters were too small. This was due to an error in translating the data sheet for the converters

into a proper layout for a PCB. This issue was resolved by bending the leads for the DC-DC converter 90

degrees so that they could be mounted as surface mount. This allowed the parts that were in hand to be

used as was functionally intended. The next issue was the distance between peripheral connection

ports. Originally, the connection ports were designed to be 2x8 female headers, and that was what the

PCBs were designed for. However, as described in Section 2.3.4.2, they were changed to a keyed

shielded male header. Due to this change, the footprint of each header increased, but the PCB was not

altered to match this change. Because of this increase, the headers could not fit all on the top of the

PCB. Alternating headers had to be placed on the underside of the board, allowing all 15 to be placed. In

doing this, the pinouts for the 2x8 to DB-15 HD cables had to be altered, so that top and bottom cables

were different. Lastly, all of the pullup resistors were changed from 10K to 1K so that the luminosity of

the LEDs was such that it could be seen in normal lighting conditions. Having the power LEDs use the

same pullup resistor value causes them to have varying luminosity, because one is operating at 5V, and

the other at 12V. In order to correct this, a 420 resistor would be needed for the 5V line. This is a minor

issue, as they can still be seen in normal lighting conditions. Once these issues were resolved, the MCB

worked as designed. The final MCB design can be seen in Figure 49.

76

Figure 49: Assembled MCB Board

3.3. Software Timing and Effective Control Frequencies
The real-time operational characteristics of the LCU software were tested by running various

functions of the LCU software in an infinite loop and toggling an output signal from the ATMega324P

processor at the beginning of each iteration of this loop. An oscilloscope was then used to read this

output signal. It is important to note that the frequency of the resulting square wave is that of the

metered operation occurring twice. Even though a frequency is reported on the oscilloscope, it lacks the

precision of the period reported by the oscilloscope (31). Therefore, to determine the frequency of any

given function from the oscilloscope output, the following formula is used:

𝑓𝑓𝑏𝑏𝑓𝑓𝑓𝑓𝑜𝑜𝑓𝑓𝑖𝑖𝑓𝑓𝑏𝑏(𝑓𝑓𝑜𝑜𝑖𝑖𝑓𝑓𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖) =
1

�
𝑜𝑜𝑓𝑓𝑏𝑏𝑖𝑖𝑜𝑜𝑑𝑑(𝑓𝑓𝑜𝑜𝑖𝑖𝑓𝑓𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖)

2 �
=

2
𝑜𝑜𝑓𝑓𝑏𝑏𝑖𝑖𝑜𝑜𝑑𝑑(𝑓𝑓𝑜𝑜𝑖𝑖𝑓𝑓𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖)

This formula is used to calculate the overall process time of the LCUs various functions, as well as the

total expected LCU time to process a motion command from the MPU. This information, in turn, is used

to calculate the expected frequency with which the MPU can delegate commands to a single LCU

without incurring logical collisions.

77

3.3.1. PID Loop Timing

Figure 50: Single PID Loop timing

The oscilloscope-clocked period of a single PID loop in the LCU is 772.1 microseconds. The frequency of

this function is then:

𝑓𝑓𝑏𝑏𝑓𝑓𝑓𝑓𝑜𝑜𝑓𝑓𝑖𝑖𝑓𝑓𝑏𝑏(𝑜𝑜𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑓𝑓𝑃𝑃𝑠𝑠𝑠𝑠) =
2

772.1µ𝑜𝑜
= 2590.34 𝐻𝐻𝑜𝑜

3.3.2. Total Leg PID Loop Timing

Figure 51: Total PID Loop Timing

The expected frequency of three sequential PID loops is

78

𝑓𝑓𝑏𝑏𝑓𝑓𝑓𝑓𝑜𝑜𝑓𝑓𝑖𝑖𝑓𝑓𝑏𝑏(𝑜𝑜𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑓𝑓𝑃𝑃𝑠𝑠𝑠𝑠)

3
=

2590.33 𝐻𝐻𝑜𝑜
3

= 863.45 𝐻𝐻𝑜𝑜

Any difference would indicate additional overhead done in the processor between the three PID loops.

The oscilloscope-clocked period of the sequential PID loops for all three leg motors in the LCU is

2.328milliseconds. The frequency of this function is then:

𝑓𝑓𝑏𝑏𝑓𝑓𝑓𝑓𝑜𝑜𝑓𝑓𝑖𝑖𝑓𝑓𝑏𝑏(𝑜𝑜𝑜𝑜𝑜𝑜𝑏𝑏𝑠𝑠𝑃𝑃𝑠𝑠𝑠𝑠) =
2

2.328 𝑚𝑚𝑜𝑜
= 859.11 𝐻𝐻𝑜𝑜

This slightly lower-than-expected value indicates some minimal additional overhead in the processor,

but is considered negligible as the actual and expected values are within 0.5% of each other.

3.3.3. Inverse Kinematics Timing

Figure 52: Inverse Kinematics Loop Timing

The oscilloscope-clocked period of the inverse kinematics in the LCU is 4.790 milliseconds. The

frequency of this function is then:

𝑓𝑓𝑏𝑏𝑓𝑓𝑓𝑓𝑜𝑜𝑓𝑓𝑖𝑖𝑓𝑓𝑏𝑏(𝑖𝑖𝑖𝑖𝑖𝑖𝑓𝑓𝑏𝑏𝑜𝑜𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑓𝑓𝑚𝑚𝑏𝑏𝑜𝑜𝑖𝑖𝑓𝑓𝑜𝑜) =
2

4.79𝑚𝑚𝑜𝑜
= 417.54 𝐻𝐻𝑜𝑜

79

3.3.4. Forward Kinematics Timing

Figure 53: Forward Kinematics Loop Timing

The oscilloscope-clocked period of the forward kinematics in the LCU is 2.852 milliseconds. The

frequency of this function is then:

𝑓𝑓𝑏𝑏𝑓𝑓𝑓𝑓𝑜𝑜𝑓𝑓𝑖𝑖𝑓𝑓𝑏𝑏(𝑓𝑓𝑜𝑜𝑏𝑏𝑓𝑓𝑏𝑏𝑏𝑏𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑓𝑓𝑚𝑚𝑏𝑏𝑜𝑜𝑖𝑖𝑓𝑓𝑜𝑜) =
2

2.852𝑚𝑚𝑜𝑜
= 701.26 𝐻𝐻𝑜𝑜

3.3.5. Total LCU Command Process Timing

Figure 54: Complete LCU Leg Motion Command Timing

80

The expected frequency of the total LCU motion command, which will perform forward kinematics, one

PID loop for each motor, and then inverse kinematics, can be calculated using their respective periods

as:

𝑓𝑓𝑏𝑏𝑓𝑓𝑓𝑓𝑜𝑜𝑓𝑓𝑖𝑖𝑓𝑓𝑏𝑏(𝑜𝑜𝑜𝑜𝑜𝑜𝑏𝑏𝑠𝑠𝑚𝑚𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑓𝑓𝑜𝑜𝑚𝑚𝑚𝑚𝑏𝑏𝑖𝑖𝑑𝑑) =
2

2.852𝑚𝑚𝑜𝑜 + 4.79𝑚𝑚𝑜𝑜 + 2.328𝑚𝑚𝑜𝑜
= 200.6 𝐻𝐻𝑜𝑜

Again, any discrepancy between this expected value would indicate additional processing between

successive functions. The oscilloscope-clocked period of the forward kinematics in the LCU is 9.98

milliseconds. The frequency of this function is then:

𝑓𝑓𝑏𝑏𝑓𝑓𝑓𝑓𝑜𝑜𝑓𝑓𝑖𝑖𝑓𝑓𝑏𝑏(𝑜𝑜𝑜𝑜𝑜𝑜𝑏𝑏𝑠𝑠𝑚𝑚𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑓𝑓𝑜𝑜𝑚𝑚𝑚𝑚𝑏𝑏𝑖𝑖𝑑𝑑) =
2

9.98𝑚𝑚𝑜𝑜
= 200.4 𝐻𝐻𝑜𝑜

There is a 0.1% deviation between the actual and expected value; but this is a negligible difference.

Utilizing a timing safety factor, where the minimum frequency between commands is divided by the

timing safety factor to allow additional time to avoid logical collisions. Using a timing safety factor of 2,

the MPU can issue motion commands to each LCU at approximately 100 Hz:

200.4 𝐻𝐻𝑜𝑜
2

= 100.2 𝐻𝐻𝑜𝑜

Accordingly, the MPU must issue successive commands to a single LCU in time increments of no less
than 0.01 seconds.

3.4. Budget
The budget is separated into mechanical components and electrical components. The small parts

are grouped together to form units, such as the chassis, or an LCU.

3.4.1. Mechanical Budget
 The following budget is calculated for the final mechanical design of the robot. It is separated

into three distinct sections, the budget for each leg, the budget for the chassis and other onetime buys

and a list of material that was not purchased due to existing stock. Table 9 shows the cost per leg.

81

Table 9: Mechanical Budget per Leg

Name Cost per Unit QTY Total Cost Manufacturer Part Number
Miter Gears 47 2 94 Nordex LHSE3030
15 Tooth Spur Gear 17 1 17 Nordex LASC2015
30 Tooth Spur Gear 13.15 1 13.15 Nordex LASC1030
Shaft Collars 1.25 4 5 Nordex BACC2003
Bearings 5/8" OD 8.45 6 50.7 Nordex ABSA5031

Bearings 1/2" OD 6 4 24 Nordex ABSA5029
1/4-1/4 Coupler 7.5 3 22.5 Servo City CDS-A1-5
Set Screw Hubs 5 6 30 Servo City 3463H
Motors 32 3 96 Lynxmotion PGHM-04
1.25" #6 Spacer 0.66 4 2.64 McMaster 92510A450
1.75" #6 Spacer 1.51 4 6.04 McMaster 92510A095
5/8" #6 Spacer 0.35 4 1.4 McMaster 92510A446
1" #6 Spacer 0.45 4 1.8 McMaster 92510A449
1/16 Nylon Washer 3.86 1 3.86 McMaster 95630A242
1/32 Nylon Washer 2.44 1 2.44 McMaster 93493A234
Total Cost Per Leg 370.53

The cost to build one leg is $370.53 and does not include metal stock as that material is covered

in Table 10. The main contributors to the cost of building a leg are the miter gears and the motors. The

miter gears are expensive due to the necessarily precise manufacturing needed and the fact that miter

gears have to be purchased as a matched set. The motors are expensive due to their size and the high

reduction of the attached planetary gearbox.

 Table 10 shows the cost of one-time purchases for the robot and contains sheet metal and

fasteners.

82

Table 10: Single Purchase Material Budget

Name
Cost per

Unit QTY
Total
Cost Manufacturer Part Number

1"x3"x1/8 Tube Stock 7.67 1 7.67 McMaster 88935K571

1/8" Thick 6061 Alum 175 1 175 Yarde Metal
6061-T4-SH 0.1250 x

48 x 72
5-40 Pan Slotted Screws

.25" Long 5.7 1 5.7 McMaster 91792A124
1/4-20 Pan Slotted Screws

.25" Long 12 1 12 McMaster 91792A533
6-32 Pan Slotted Screws 2"

Long 9.1 1 9.1 McMaster 91792A159
6-32 Pan Slotted Screws

.25" Long 5 1 5 McMaster 91792A144
6-32 Pan Slotted Screws 1"

Long 8.15 1 8.15 McMaster 91792A153
6-32 Pan Slotted Screws

1.5" Long 12 1 12 McMaster 91792A157
TOTAL COST = 234.62

The biggest contributor to the single purchase budget is the purchase of the sheet aluminum.

However this will provide enough aluminum to make the chassis and six legs. The majority of Table 10 is

screws, which may be available through other means, which could save some money towards the overall

cost of the robot.

 The following parts will be made from existing stocks that do not have to be purchased:

o Gearboxes
o Motor to Drive Shaft Couplers
o The Hip Assembly Brackets
o The Chassis Angle Brackets

 Due to the fact that there are existing stocks of material to be used, those parts are not factored

into the budget for the final mechanical design.

3.4.2. Electrical Budget
The majority of the components were purchased through DigiKey. This was done so that most of

the necessary components could be ordered all at once, with only a few coming from other vendors. The

other vendor used was Newark, because DigiKey has a very small selection of power management ICs.

83

Also, blade fuse holders were purchased from Newark. The PCBs had to be custom ordered and printed,

and the price listed is the cost for a single board to be printed, even though they were ordered in a bulk

pack. The complete itemized budget per unit for the LCU, MCB, and MPU is shown in Table 11, Table 12,

and Table 13 respectively.

Table 11: LCU Itemized budget

Table 12: MCB Itemized Budget

84

Table 13: MPU Itemized Budget

4. Future Work
 Given the modular design of the robot, there are many potential areas for future work. The

most immediate task would be the construction of the final robot design including multiple leg modules.

Plans to complete this are already slated to be started following the submission of this project. The

balancing algorithm can be tested to show that the robot can identify its current configuration and

balance itself. From there, further work can be conducted to refine the algorithm and make it more

complex. For example, the algorithm can be developed to allow the robot to balance itself regardless of

the surface that the robot is standing on. The ultimate goal for the leg modules would be to allow the

robot to walk using any leg configuration.

 Other possible areas of future work would be the development of new modules for the robot.

These modules can be generalized to include, but are not limited to, movement, manipulators and

sensors. Movement modules could come in the form of wheels to enable the robot travel at fast

speeds along roads, or treads for maneuvering through sand. Manipulators could come in the form of

an arm, a claw or gripper module. Sensors could be range finders, localization sensors or thermal

sensors. Other miscellaneous possible devices include a GPS sensor, which could be used to send the

robot to a predetermined location. Also, a RF receiver module could be created to add remote control

functionality to the robot. As long as the new modules follow the connection and communication

protocol, there is no limit to the modules that can be created. The only thing that must be done to

accommodate new modules is to program into the main processor how to handle this new module. The

robot can be developed for any task with the development of new modules.

85

5. Conclusion
The ReMMRP serves as a proof of concept of the integration of reconfigurability, modularity, and

mobility in a robotic system. The final design demonstrates effective implementation of a robot for

immediate and future applications. Such a design will increase flexibility in the field of robotics, allowing

the solution to a task to be viewed as a reconfiguration, not a redesign.

Additional peripherals can be designed and incorporated, as long as they conform to the

connection and communication standards of the robot. Additional algorithms can be incorporated into

the main software to control these new peripherals. The design features presented by this platform

eliminate the need to produce an entirely new robot. Instead, focus can be shifted to the development

of peripherals that will extend the capabilities of the existing platform.

Modularity of the platform makes it fault-tolerant; that is, a failure within the robot does not

require replacement or repair of the entire system. Instead, modules can be replaced minimizing

downtime and cost.

The reconfigurable and modular design of ReMMRP allows it to be utilized in a variety of real-

world applications which would otherwise require robots of different forms and functionality. This saves

time and money for the end-user of the platform, while creating jobs in the industry for designing

software, mechanical, and electrical subsystems for new peripheral modules. Its low cost, flexible

design, and expandability make the ReMMRP a unique robotic platform for a wide range of applications

in academia and industry.

86

6. References
1. Self-Reconfigurable Modular Robot -Experiments on Reconfiguration and Locomotion. Kamimura,
Akiya, et al. 2001. International Conference on Intellegent Robots and Systems.

2. A Motion Planning Method for a Self-Reconfigurable Modular Robot. Kamimura, Akiya, et al. Maui,
Hawaii : s.n., 2003. Internatioanl Conference on Intelligent Robots and Systems.

3. Towards Robotic Self-reassembly After Explosion. Dugan, Mike, et al. 2007. IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). pp. 2767-2772.

4. Blankespor, Kevin, et al. BigDog, the Rough-Terrain Quaduped Robot. 2008.

5. Atmel Corporation. ATmega 164P/324P/644P. [Datasheet] San Jose, CA : s.n., 2009.

6. Digi-Key Corporation. Digi-Key ATMEGA1281-16AU-ND (Manufacturer - ATMEGA1281-16AU). DigiKey
Corp. | Electronic Components Distributor | United States Home Page. [Online] Digi-Key Corporation.
[Cited: November 18, 2009.]
http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=ATMEGA1281-16AU-ND.

7. —. Digi-Key - ATMEGA164PV-10PU-ND (Manufacturer - ATMEGA164PV-10PU). DigiKey Corp. |
Electronic Components Distributor | United States Home Page. [Online] Digi-Key Corporation. [Cited:
November 18, 2009.]
http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=ATMEGA164PV-10PU-ND.

8. Atmel Corporation. ATmega640V/1280V/1281V/2560V/2561V. [Datasheet] San Jose, California : s.n.,
2007.

9. Lynxmotion, Inc. Planetary Gear Motor - 12vdc 189:1 31rpm (4mm shaft). Lynxmotion Robotic Kits.
[Online] Lynxmotion, Inc. [Cited: November 26, 2009.]
http://www.lynxmotion.com/Product.aspx?productID=308&CategoryID=71.

10. —. Planetary Gear Motor - 12.0vdc 1:231 64rpm (4mm shaft). Lynxmotion Robot Kits. [Online]
Lynxmotion, Inc. [Cited: December 12, 2009.]
http://www.lynxmotion.com/Product.aspx?productID=580&CategoryID=71.

11. STMicroelectronics. L6205N DMOS Dual Full Bridge Driver. [Datasheet] Geneva, Switzerland : s.n.,
2003.

12. Digi-Key Corporation. DigiKey Corp. | Electronic Components Distributor | United States Home Page.
[Online] [Cited: March 11, 2010.]
http://media.digikey.com/photos/Tyco%20Amp%20Photos/HEADER%202%20CIRC%20FIG%201A.jpg.

13. —. DigiKey Corp. | Electronic Components Distributor | United States Home Page. [Online] [Cited:
March 11, 2010.] http://media.digikey.com/photos/Tyco%20Amp%20Photos/103639-2.jpg.

87

14. —. DigiKey Corp. | Electronic Components Distributor | United States Home Page. [Online] [Cited:
March 11, 2010.] http://media.digikey.com/photos/Tyco%20Amp%20Photos/5103309-3.jpg.

15. —. DigiKey Corp. | Electronic Components Distributor | United States Home Page. [Online] [Cited:
March 11, 2010.] http://media.digikey.com/photos/Tyco%20Amp%20Photos/534237-1.jpg.

16. —. DigiKey Corp. | Electronic Components Distributor | United States Home Page. [Online] [Cited:
March 11, 2010.] http://media.digikey.com/photos/Tyco%20Amp%20Photos/534237-6.jpg.

17. —. DigiKey Corp. | Electronic Components Distributor | United States Home Page. [Online] [Cited:
March 11, 2010.] http://media.digikey.com/photos/Sullins%20Photos/PPTC021LFBN-RC.jpg.

18. Bourns, Incorporated. 51/53 - Sealed 1/2” (12.5 mm) Square Control. [Datasheet] Riverside,
California : s.n., 2009.

19. Texas Instruments. SN54154, SN74154 4-Line To16-Line Decoders/Demultiplexers. [Datasheet]
Dallas, Texas : s.n., 1998.

20. Atmel Corporation. ATtiny48/88. [Datasheet] San Jose, CA : s.n., 2009.

21. Aivaka. Linear or LDO Regulators & Step-Down Switching Regulators. [Datasheet] San Jose, CA : s.n.,
2007.

22. XP Power. DC-DC 1 Watt IV Series. [Datasheet] Sunnyvale, California : s.n., 2009.

23. Texas Instruments. PT 5100 Series 1-A Positive Step-Down Integrated Switching Regulator.
[Datasheet] Dallas, Texas : s.n., 2001.

24. Kugelstadt, Thomas. Understanding the SPI bus' structure, operation. EETimes-India. [Online] July
28, 2009. [Cited: October 19, 2009.]
http://www.eetindia.co.in/STATIC/PDF/200907/EEIOL_2009JUL29_INTD_EMS_TA_01.pdf?SOURCES=DO
WNLOAD.

25. Reed, Kenneth D. Introduction to Networking. Arvada, CO : WestNet Learning Technologies, 2001.

26. Spong, Mark W., Hutchinson, Seth and Vidyasagar, M. Robot Modeling and Control. Hoboken, NJ :
John Wiley & Sons, Inc., 2006.

27. Craig, John J. Intorduction to Robotics. Upper Saddle River : Pearson Education, Inc., 2005.

28. Lathi, B. P. Linear Systems and Signals. New York, NY : Oxford University Press, Inc., 2005.

29. Kaiser, David. Fundamentals of Servo Motion Control. Rohnert Park, CA : s.n., July 11, 2001.

30. Optimum Settings for Automatic Controllers. Ziegler, J. G. and Nichols, N. B. 1942, Transactions of
the American Society of Mechanical Engineers, pp. 759-768.

88

31. Tektronix, Inc. Digital Storage Oscilloscopes - TDS1000B, TDS2000B Series. [Datasheet] Beaverton,
OR : s.n., October 13, 2009.

32. P. S. Schenker, P. Pirjanian, B. Balaram, K. S. Ali, A. Trebi-Ollennu, T. L. Huntsberger,.
Reconifgurable Robots for all Terrain Exploration. Pasadena : Jet Propulsion Laboratory, California
Insitute of Technology, 2001.

33. Norton, Robert L. Design of Machinery. New York, New York : McGraw-Hill, 2008.

34. Self-Adaptive Furniture with a Modular Robot. Ingber, Donald, et al. Aahus, Denmark : s.n., 2008.
Workshop on Imagine Future Domestic.

35. Hibbeler, R.C. Enineering Mechanics: Dynamics. Upper Saddle River, New Jersey : Pearson Prentice
Hall, 2007.

36. System of a Modular and Reconifgurable Multilegged Robot. Chen, Xuedong, et al. Harbin, China :
s.n., 2007. IEEE International Conference on Mechatronics and Automation.

37. Boissonnat, Joan-Daniel, et al. Motion PLanning of Legged Robots: The Spider Robot Problem. 1992.

38. Biologically Based Distributed Control and Local Reflexes Imporve Rough Terrain Locomtoion in a
Hexapod Robot. Beer, Randall D, et al. 1996, Robotics and Autonomous Systems, pp. 59-64.

39. Barry, Richard. Multitasking on an AVR. AVR Freaks. [Online] March 2004. [Cited: November 16,
2009.]

40. DARPA. FY2009-2034 Unmanned Systems Integrated Roadmap. s.l. : Department of Defense, 2009.

41. Atmel Corporation. AVR151: Setup and Use of the SPI. San Jose, CA : s.n., July 21, 2008.

42. Astrom, Karl Johan. Control System Design. s.l. : Longman Higher Education, 2002.

43. Jones, David L. PCB Design Tutorial. [PDF] s.l. : Alternate Zone, 2004.

89

7. Appendices

7.1. LCU Schematics

(Beginning on the following page)

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

Letter

Date: 2/15/2010 Sheet of
File: C:\Documents and Settings\..\H-Bridge 1.SchDocDrawn By:

IN1A1

IN2A2

SENSEA 3

OUT1A4

GND5

GND6

OUT1B 7

SENSEB 8

IN1B 9

IN2B 10

ENB 11

VBOOT 12

OUT2B 13

VSB 14

GND15

GND16 VSA 17

OUT2A18

VCP 19

ENA20

HB1

L6205 H-Bridge

GND

MTR2-EN

MTR1-SIG1 MTR2-SIG1
MTR2-SIG2MTR1-SIG2

MTR1-EN

MTR1-OUTA
MTR1-OUTB

MTR2-OUTA
MTR2-OUTB

100K

REN2

100K

REN1
5.6nF
CEN2

5.6nF
CEN1

GNDGND

10nF

C-VCP1

100 Ohm

R-VCP1

D1-1

D1-2

220nF
CBOOT1

GND

100nF

C-VS12

100uF

C-VS11

+12GND

Leg Control Unit - H-Bridge 1

V4.0

2 4
Matt Bienia

PIC0VCP101 PIC0VCP102

COC0VCP1

PIC0VS1101PIC0VS1102

COC0VS11

PIC0VS1201 PIC0VS1202

COC0VS12

PICBOOT101

PICBOOT102
COCBOOT1

PICEN101

PICEN102
COCEN1

PICEN201

PICEN202
COCEN2

PID10101
PID10102

COD101

PID10201
PID10202

COD102

PIHB101

PIHB102

PIHB103

PIHB104

PIHB105

PIHB106

PIHB107

PIHB108

PIHB109

PIHB1010

PIHB1011

PIHB1012

PIHB1013

PIHB1014

PIHB1015

PIHB1016 PIHB1017

PIHB1018

PIHB1019

PIHB1020

COHB1

PIR0VCP101 PIR0VCP102
COR0VCP1

PIREN101 PIREN102
COREN1

PIREN201 PIREN202
COREN2

POMTR10EN

POMTR10OUTA
POMTR10OUTB

POMTR10SIG1
POMTR10SIG2

POMTR20EN

POMTR20OUTA
POMTR20OUTB

POMTR20SIG1
POMTR20SIG2

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

Letter

Date: 2/15/2010 Sheet of
File: C:\Documents and Settings\..\H-Bridge 2.SchDocDrawn By:

GND

MTR3-EN

MTR3-SIG1
MTR3-SIG2

MTR3-OUTA
MTR3-OUTB

100K

REN3
5.6nF
CEN3

GND

IN1A1

IN2A2

SENSEA 3

OUT1A4

GND5

GND6

OUT1B 7

SENSEB 8

IN1B 9

IN2B 10

ENB 11

VBOOT 12

OUT2B 13

VSB 14

GND15

GND16 VSA 17

OUT2A18

VCP 19

ENA20

HB2

L6205 H-Bridge

10nF

C-VCP2

100 Ohm

R-VCP2

D2-1

D2-2

220nF
CBOOT2

GND

100nF

C-VS22

100uF

C-VS21

+12GND

Leg Control Unit - H-Bridge 2

V4.0

3 4
Matt Bienia

PIC0VCP201 PIC0VCP202

COC0VCP2

PIC0VS2101PIC0VS2102

COC0VS21

PIC0VS2201 PIC0VS2202

COC0VS22

PICBOOT201

PICBOOT202
COCBOOT2

PICEN301

PICEN302
COCEN3

PID20101
PID20102

COD201

PID20201
PID20202

COD202

PIHB201

PIHB202

PIHB203

PIHB204

PIHB205

PIHB206

PIHB207

PIHB208

PIHB209

PIHB2010

PIHB2011

PIHB2012

PIHB2013

PIHB2014

PIHB2015

PIHB2016 PIHB2017

PIHB2018

PIHB2019

PIHB2020

COHB2

PIR0VCP201 PIR0VCP202
COR0VCP2

PIREN301 PIREN302
COREN3

POMTR30EN

POMTR30OUTA
POMTR30OUTB

POMTR30SIG1
POMTR30SIG2

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

Letter

Date: 2/15/2010 Sheet of
File: C:\Documents and Settings\..\Headers.SchDocDrawn By:

1
2
3

P1

Pot Port

1
2
3

P2

Pot Port

1
2
3

P3

Pot Port

GND

GND

+5

+5

+5

POT1

POT2

POT3

GND
MOSI
MISO
SCK

SS
STAT

+5

MTR3-OUTA

MTR3-OUTB

MTR2-OUTA

MTR2-OUTB

MTR1-OUTA

MTR1-OUTB

Pos1

Neg2

M1

Motor Port

Pos1

Neg2

M2

Motor Port

Pos1

Neg2

M3

Motor Port

Leg Control Unit - Headers

V4.0

4 4
Matt Bienia

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

MCB

Header 8X2A

GND

+12

PIM101

PIM102

COM1

PIM201

PIM202

COM2

PIM301

PIM302

COM3

PIMCB01

PIMCB02

PIMCB03

PIMCB04

PIMCB05

PIMCB06

PIMCB07

PIMCB08

PIMCB09

PIMCB010

PIMCB011

PIMCB012

PIMCB013

PIMCB014

PIMCB015

PIMCB016

COMCB

PIP101

PIP102

PIP103

COP1

PIP201

PIP202

PIP203

COP2

PIP301

PIP302

PIP303

COP3

POMISO
POMOSI

POMTR10OUTA

POMTR10OUTB

POMTR20OUTA

POMTR20OUTB

POMTR30OUTA

POMTR30OUTB

POPOT1

POPOT2

POPOT3

POSCK

POSS
POSTAT

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

Letter

Date: 2/15/2010 Sheet of
File: C:\Documents and Settings\..\Leg Processor.SchDocDrawn By:

PB0 (XCK/T0)1

PB1 (T1)2

PB2 (AIN0/INT2)3

PB3 (AIN1/OC0)4

PB4 (SS)5

PB5 (MOSI)6

PB6 (MISO)7

PB7 (SCK)8

RESET9

PD0 (RXD)14

PD1 (TXD)15

PD2 (INT0)16

PD3 (INT1)17

PD4 (OC1B)18

PD5 (OC1A)19

PD6 (ICP)20

PD7 (OC2)21

XTAL212

XTAL113

GND 11

PC0 (SCL) 22

PC1 (SDA) 23

PC2 (TCK) 24

PC3 (TMS) 25

PC4 (TDO) 26

PC5 (TDI) 27

PC6 (TOSC1) 28

PC7 (TOSC2) 29

AREF 32AVCC 30

GND 31

PA7 (ADC7) 33PA6 (ADC6) 34PA5 (ADC5) 35PA4 (ADC4) 36PA3 (ADC3) 37PA2 (ADC2) 38PA1 (ADC1) 39PA0 (ADC0) 40

VCC 10

AVR

ATmega164P
GND

+5

SS
MOSI
MISO
SCK

POT1
POT2
POT3

MTR1-EN

MTR2-EN
MTR3-EN

MTR1-SIG1

MTR2-SIG1
MTR2-SIG2
MTR3-SIG1
MTR3-SIG2

MTR1-SIG2
STAT

Leg Control Unit - Leg Processor

V4.0

1 4
Matt Bienia

+5

PIAVR01

PIAVR02

PIAVR03

PIAVR04

PIAVR05

PIAVR06

PIAVR07

PIAVR08

PIAVR09 PIAVR010

PIAVR011

PIAVR012

PIAVR013

PIAVR014

PIAVR015

PIAVR016

PIAVR017

PIAVR018

PIAVR019

PIAVR020

PIAVR021

PIAVR022

PIAVR023

PIAVR024

PIAVR025

PIAVR026

PIAVR027

PIAVR028

PIAVR029

PIAVR030

PIAVR031

PIAVR032

PIAVR033

PIAVR034

PIAVR035

PIAVR036

PIAVR037

PIAVR038

PIAVR039

PIAVR040

COAVR

POMISO
POMOSI

POMTR10EN

POMTR10SIG1
POMTR10SIG2

POMTR20EN

POMTR20SIG1
POMTR20SIG2

POMTR30EN

POMTR30SIG1
POMTR30SIG2

POPOT1
POPOT2
POPOT3

POSCK

POSS

POSTAT

CO

PAAVR01 PAAVR02 PAAVR03 PAAVR04 PAAVR05 PAAVR06 PAAVR07 PAAVR08 PAAVR09 PAAVR010 PAAVR011 PAAVR012 PAAVR013 PAAVR014 PAAVR015 PAAVR016 PAAVR017 PAAVR018 PAAVR019 PAAVR020

PAAVR040 PAAVR039 PAAVR038 PAAVR037 PAAVR036 PAAVR035 PAAVR034 PAAVR033 PAAVR032 PAAVR031 PAAVR030 PAAVR029 PAAVR028 PAAVR027 PAAVR026 PAAVR025 PAAVR024 PAAVR023 PAAVR022 PAAVR021

COAVR

PAC0VCP102PAC0VCP101

COC0VCP1

PAC0VCP202PAC0VCP201

COC0VCP2

PAC0VS1101

PAC0VS1102

COC0VS11

PAC0VS1202 PAC0VS1201

COC0VS12

PAC0VS2101

PAC0VS2102

COC0VS21

PAC0VS2202PAC0VS2201

COC0VS22

PACBOOT102PACBOOT101

COCBOOT1

PACBOOT202PACBOOT201

COCBOOT2

PACEN102PACEN101

COCEN1

PACEN202PACEN201

COCEN2

PACEN302PACEN301

COCEN3

PAD10102PAD10101

COD101

PAD10202PAD10201

COD102
PAD20101 PAD20102

COD201

PAD20201 PAD20202

COD202

PAHB101

PAHB102

PAHB103

PAHB104

PAHB105

PAHB106

PAHB107

PAHB108

PAHB109

PAHB1010

PAHB1020

PAHB1019

PAHB1018

PAHB1017

PAHB1016

PAHB1015

PAHB1014

PAHB1013

PAHB1012

PAHB1011

COHB1

PAHB201

PAHB202

PAHB203

PAHB204

PAHB205

PAHB206

PAHB207

PAHB208

PAHB209

PAHB2010

PAHB2020

PAHB2019

PAHB2018

PAHB2017

PAHB2016

PAHB2015

PAHB2014

PAHB2013

PAHB2012

PAHB2011

COHB2

PAM101

PAM102

PAM103

COM1

PAM201

PAM202

PAM203

COM2

PAM301

PAM302

PAM303

COM3

PAMCB01 PAMCB02 PAMCB03 PAMCB04 PAMCB05 PAMCB06 PAMCB07 PAMCB08

PAMCB09 PAMCB010 PAMCB011 PAMCB012 PAMCB013 PAMCB014 PAMCB015 PAMCB016COMCB

PAP101

PAP102

PAP103

COP1

PAP201

PAP202

PAP203

COP2

PAP301

PAP302

PAP303

COP3

PAR0VCP102 PAR0VCP101

COR0VCP1

PAR0VCP202PAR0VCP201

COR0VCP2

PAREN102PAREN101

COREN1

PAREN202PAREN201

COREN2

PAREN302PAREN301

COREN3

Comment Description Designator Footprint LibRef Quantity

ATmega164P

8-Bit AVR
Microcontroller with
16K Bytes of In-
System
Programmable Flash
Memory AVR 40P6 ATmega32L-8PC 1

10nF Cap Capacitor C-VCP1, C-VCP2 Cap 0.2" Cap 2

100uF PolCap
Polarized Capacitor
(Axial) C-VS11, C-VS21

Electrolytic CAP
0.1" Cap Pol2 2

100nF Cap Capacitor C-VS12, C-VS22 Cap 0.2" Cap 2

220nF Cap Capacitor CBOOT1, CBOOT2 Cap 0.2" Cap 2

5.6nF Cap Capacitor CEN1, CEN2, CEN3 Cap 0.2" Cap 3

1N4148 Diode
1 Amp General
Purpose Rectifier

D1-1, D1-2, D2-1,
D2-2 DIO10.46-5.3x2.8 Diode 1N4001 4

L6205 H-Bridge

Dual H-Bridge With
2.8A Max Per
Channel HB1, HB2 20P3 AT90S1200-4PC 2

Motor Port M1, M2, M3 .250 2x1 Header 2X1 .25 Header 3

Header 8X2A
Header, 8-Pin, Dual
row MCB HDR2X8_CEN Header 8X2A 1

Pot Port Header, 3-Pin P1, P2, P3 HDR1X3 Header 3 3

100 RES Resistor R-VCP1, R-VCP2 AXIAL-0.3 Res1 2

100K RES Resistor REN1, REN2, REN3 AXIAL-0.3 Res1 3

96

7.2. MCB Schematics

(Beginning on the following page)

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

Letter

Date: 3/10/2010 Sheet of
File: C:\Documents and Settings\..\Buck Converters.SchDocDrawn By:

+12

+12V

+5V

Main Control Board (MCB) - Buck Converter

Version 2.0
1 5

Matt Bienia

10K

R12

10K

R5

GRD

GRD

Vin1

GRD2

Vout3

BC1

TI PT5101N DC/DC

Vin1

GRD2

Vout3

BC2

TI PT5101N DC/DC

Vin1

GRD2

Vout3

BC3

TI PT5101N DC/DC

D12

PWR-LED

D5

PWR-LED

12
F12

Blade Fuse Holder

12
F5

Blade Fuse Holder

G
R

D

1 uF
CBC21

100uF

CBC22
100uF Electrolytic Cap

1 uF
CBC11

100uF

CBC12
100uF Electrolytic Cap

1 uF
CBC31

100uF

CBC32
100uF Electrolytic Cap

PIBC101

PIBC102

PIBC103

COBC1

PIBC201

PIBC202

PIBC203

COBC2

PIBC301

PIBC302

PIBC303

COBC3

PICBC1101

PICBC1102
COCBC11

PICBC1201

PICBC1202
COCBC12

PICBC2101

PICBC2102
COCBC21

PICBC2201

PICBC2202
COCBC22

PICBC3101

PICBC3102
COCBC31

PICBC3201

PICBC3202
COCBC32

PID501PID502

COD5

PID1201PID1202

COD12

PIF501PIF502

COF5

PIF1201PIF1202

COF12

PIR501 PIR502
COR5

PIR1201 PIR1202
COR12

PIBC101

PIBC201

PIBC301

PICBC1102

PICBC2102

PICBC3102

PIF1201

PID1202PIR1202 PID1201

PIF1202PO012V

PID502PIR502 PID501

PIF502PO05V

PIBC103

PIBC203

PIBC303

PICBC1201

PICBC2201

PICBC3201

PIF501

PIBC102

PIBC202

PIBC302

PICBC1101
PICBC1202

PICBC2101
PICBC2202

PICBC3101
PICBC3202

PIR501

PIR1201POGRD

PO05V

PO012V

POGRD

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

Letter

Date: 3/10/2010 Sheet of
File: C:\Documents and Settings\..\Headers.SchDocDrawn By:

Main Control Board (MCB) - Headers

Version 1.2
5 5

Matt Bienia

SS1

SS2

SS3

ST1

ST2

ST3

SS4

SS5

SS6

SS7

SS8

SS9

ST4

ST5

ST6

ST7

ST8

ST9

SS10

SS11

SS12

ST10

ST11

ST12

SS13
ST13

SS14
ST14

SS15
ST15

Status

MOSI
MISO
SCK

+5V

MOSI
MISO
SCK

+5V

MOSI
MISO
SCK

+5V

MOSI
MISO
SCK

+5V

MOSI
MISO
SCK

+5V

MOSI
MISO
SCK

+5V

MOSI
MISO
SCK

+5V

MOSI
MISO
SCK

+5V

MOSI
MISO
SCK

+5V

MOSI
MISO
SCK

+5V

MOSI
MISO
SCK

+5V

MOSI
MISO
SCK

+5V

MOSI
MISO
SCK

+5V

MOSI
MISO
SCK

+5V

MOSI
MISO
SCK

GRD

+5V+12V

MCU-SSA
MCU-SSB
MCU-SSC
MCU-SSD

MOSI
MISO
SCK

GND

+12

+5V

GRD

GND

1
2
3
4
5
6
7
8
9

10
11
12

MCU-CP

MCU Connector

GRD
MUXEN

1

2

BC

2X1 .25 Header

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

CP1

Header 8X2A

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

CP3

Header 8X2A

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

CP4

Header 8X2A

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

CP5

Header 8X2A

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

CP6

Header 8X2A

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

CP7

Header 8X2A

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

CP8

Header 8X2A

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

CP9

Header 8X2A

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

CP10

Header 8X2A

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

CP11

Header 8X2A

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

CP12

Header 8X2A

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

CP13

Header 8X2A

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

CP14

Header 8X2A

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

CP15

Header 8X2A

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

CP2

Header 8X2A

GRD

+12V

GRD

+12V

GRD

+12V

GRD

+12V

GRD

+12V

GRD

+12V

GRD

+12V

GRD

+12V

GRD

+12V

GRD

+12V

GRD

+12V

GRD

+12V

GRD

+12V

GRD

+12V

PIBC01

PIBC02

COBC

PICP101

PICP102

PICP103

PICP104

PICP105

PICP106

PICP107

PICP108

PICP109

PICP1010

PICP1011

PICP1012

PICP1013

PICP1014

PICP1015

PICP1016

COCP1

PICP201

PICP202

PICP203

PICP204

PICP205

PICP206

PICP207

PICP208

PICP209

PICP2010

PICP2011

PICP2012

PICP2013

PICP2014

PICP2015

PICP2016

COCP2

PICP301

PICP302

PICP303

PICP304

PICP305

PICP306

PICP307

PICP308

PICP309

PICP3010

PICP3011

PICP3012

PICP3013

PICP3014

PICP3015

PICP3016

COCP3

PICP401

PICP402

PICP403

PICP404

PICP405

PICP406

PICP407

PICP408

PICP409

PICP4010

PICP4011

PICP4012

PICP4013

PICP4014

PICP4015

PICP4016

COCP4

PICP501

PICP502

PICP503

PICP504

PICP505

PICP506

PICP507

PICP508

PICP509

PICP5010

PICP5011

PICP5012

PICP5013

PICP5014

PICP5015

PICP5016

COCP5

PICP601

PICP602

PICP603

PICP604

PICP605

PICP606

PICP607

PICP608

PICP609

PICP6010

PICP6011

PICP6012

PICP6013

PICP6014

PICP6015

PICP6016

COCP6

PICP701

PICP702

PICP703

PICP704

PICP705

PICP706

PICP707

PICP708

PICP709

PICP7010

PICP7011

PICP7012

PICP7013

PICP7014

PICP7015

PICP7016

COCP7

PICP801

PICP802

PICP803

PICP804

PICP805

PICP806

PICP807

PICP808

PICP809

PICP8010

PICP8011

PICP8012

PICP8013

PICP8014

PICP8015

PICP8016

COCP8

PICP901

PICP902

PICP903

PICP904

PICP905

PICP906

PICP907

PICP908

PICP909

PICP9010

PICP9011

PICP9012

PICP9013

PICP9014

PICP9015

PICP9016

COCP9

PICP1001

PICP1002

PICP1003

PICP1004

PICP1005

PICP1006

PICP1007

PICP1008

PICP1009

PICP10010

PICP10011

PICP10012

PICP10013

PICP10014

PICP10015

PICP10016

COCP10

PICP1101

PICP1102

PICP1103

PICP1104

PICP1105

PICP1106

PICP1107

PICP1108

PICP1109

PICP11010

PICP11011

PICP11012

PICP11013

PICP11014

PICP11015

PICP11016

COCP11

PICP1201

PICP1202

PICP1203

PICP1204

PICP1205

PICP1206

PICP1207

PICP1208

PICP1209

PICP12010

PICP12011

PICP12012

PICP12013

PICP12014

PICP12015

PICP12016

COCP12

PICP1301

PICP1302

PICP1303

PICP1304

PICP1305

PICP1306

PICP1307

PICP1308

PICP1309

PICP13010

PICP13011

PICP13012

PICP13013

PICP13014

PICP13015

PICP13016

COCP13

PICP1401

PICP1402

PICP1403

PICP1404

PICP1405

PICP1406

PICP1407

PICP1408

PICP1409

PICP14010

PICP14011

PICP14012

PICP14013

PICP14014

PICP14015

PICP14016

COCP14

PICP1501

PICP1502

PICP1503

PICP1504

PICP1505

PICP1506

PICP1507

PICP1508

PICP1509

PICP15010

PICP15011

PICP15012

PICP15013

PICP15014

PICP15015

PICP15016

COCP15

PIMCU0CP01

PIMCU0CP02

PIMCU0CP03

PIMCU0CP04

PIMCU0CP05

PIMCU0CP06

PIMCU0CP07

PIMCU0CP08

PIMCU0CP09

PIMCU0CP010

PIMCU0CP011

PIMCU0CP012

COMCU0CP

PIBC01

PIBC02

PICP105

PICP106

PICP107

PICP108

PICP205

PICP206

PICP207

PICP208

PICP305

PICP306

PICP307

PICP308

PICP405

PICP406

PICP407

PICP408

PICP505

PICP506

PICP507

PICP508

PICP605

PICP606

PICP607

PICP608

PICP705

PICP706

PICP707

PICP708

PICP805

PICP806

PICP807

PICP808

PICP905

PICP906

PICP907

PICP908

PICP1005

PICP1006

PICP1007

PICP1008

PICP1105

PICP1106

PICP1107

PICP1108

PICP1205

PICP1206

PICP1207

PICP1208

PICP1305

PICP1306

PICP1307

PICP1308

PICP1405

PICP1406

PICP1407

PICP1408

PICP1505

PICP1506

PICP1507

PICP1508

PIMCU0CP011

POGRD

PIMCU0CP010 POMUXEN
PIMCU0CP09

PIMCU0CP08 POStatus
PIMCU0CP07 POMCU0SSD
PIMCU0CP06 POMCU0SSC
PIMCU0CP05 POMCU0SSB
PIMCU0CP04 POMCU0SSA

PICP1016

PICP2016

PICP3016

PICP4016

PICP5016

PICP6016

PICP7016

PICP8016

PICP9016

PICP10016

PICP11016

PICP12016

PICP13016

PICP14016

PICP15016

PIMCU0CP01

POMOSI

PICP1015

PICP2015

PICP3015

PICP4015

PICP5015

PICP6015

PICP7015

PICP8015

PICP9015

PICP10015

PICP11015

PICP12015

PICP13015

PICP14015

PICP15015

PIMCU0CP02

POMISO

PICP1014

PICP2014

PICP3014

PICP4014

PICP5014

PICP6014

PICP7014

PICP8014

PICP9014

PICP10014

PICP11014

PICP12014

PICP13014

PICP14014

PICP15014

PIMCU0CP03

POSCK
PICP15013

PICP1012

PICP2012

PICP3012

PICP4012

PICP5012

PICP6012

PICP7012

PICP8012

PICP9012

PICP10012

PICP11012

PICP12012

PICP13012

PICP14012

PICP15012

PIMCU0CP012

PO05V
PICP15011

PICP15010 POSS15
PICP1509 POST15

PICP101

PICP102

PICP103

PICP104

PICP201

PICP202

PICP203

PICP204

PICP301

PICP302

PICP303

PICP304

PICP401

PICP402

PICP403

PICP404

PICP501

PICP502

PICP503

PICP504

PICP601

PICP602

PICP603

PICP604

PICP701

PICP702

PICP703

PICP704

PICP801

PICP802

PICP803

PICP804

PICP901

PICP902

PICP903

PICP904

PICP1001

PICP1002

PICP1003

PICP1004

PICP1101

PICP1102

PICP1103

PICP1104

PICP1201

PICP1202

PICP1203

PICP1204

PICP1301

PICP1302

PICP1303

PICP1304

PICP1401

PICP1402

PICP1403

PICP1404

PICP1501

PICP1502

PICP1503

PICP1504PO012V

PICP14013

PICP14011

PICP14010 POSS14
PICP1409 POST14

PICP13013

PICP13011

PICP13010 POSS13
PICP1309 POST13

PICP12013

PICP12011

PICP12010 POSS12
PICP1209 POST12

PICP11013

PICP11011

PICP11010 POSS11
PICP1109 POST11

PICP10013

PICP10011

PICP10010 POSS10
PICP1009 POST10

PICP9013

PICP9011

PICP9010 POSS9
PICP909 POST9

PICP8013

PICP8011

PICP8010 POSS8
PICP809 POST8

PICP7013

PICP7011

PICP7010 POSS7
PICP709 POST7

PICP6013

PICP6011

PICP6010 POSS6
PICP609 POST6

PICP5013

PICP5011

PICP5010 POSS5
PICP509 POST5

PICP4013

PICP4011

PICP4010 POSS4
PICP409 POST4

PICP3013

PICP3011

PICP3010 POSS3
PICP309 POST3

PICP2013

PICP2011

PICP2010 POSS2
PICP209 POST2

PICP1013

PICP1011

PICP1010 POSS1
PICP109 POST1

PO05VPO012V

POGRD

POMCU0SSA
POMCU0SSB
POMCU0SSC
POMCU0SSD

POMISO
POMOSI

POMUXEN

POSCK

POSS1

POSS2

POSS3

POSS4

POSS5

POSS6

POSS7

POSS8

POSS9

POSS10

POSS11

POSS12

POSS13

POSS14

POSS15

POST1

POST2

POST3

POST4

POST5

POST6

POST7

POST8

POST9

POST10

POST11

POST12

POST13

POST14

POST15

POSTATUS

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

Letter

Date: 3/10/2010 Sheet of
File: C:\Documents and Settings\..\Mux.SchDoc Drawn By:

Y01 Y12 Y23 Y34 Y45 Y56 Y67 Y78 Y89 Y910 Y1011

GND 12

Y1113 Y1214 Y1315 Y1416 Y1517

OE1 18OE2 19

D 20

C 21

B 22

A 23

VCC 24

MUX

MM74HC154

SS16
SS15
SS14
SS13
SS12
SS11
SS10

SS2

SS9
SS8
SS7
SS6
SS5
SS4
SS3

SS1 +5V

MCU-SSA
MCU-SSB
MCU-SSC
MCU-SSD

Main Control Board (MCB) - Buck Converter

Version 2.0
3 5

Matt Bienia

MUXEN

GRD

PIMUX01

PIMUX02

PIMUX03

PIMUX04

PIMUX05

PIMUX06

PIMUX07

PIMUX08

PIMUX09

PIMUX010

PIMUX011

PIMUX012

PIMUX013

PIMUX014

PIMUX015

PIMUX016

PIMUX017

PIMUX018

PIMUX019

PIMUX020

PIMUX021

PIMUX022

PIMUX023

PIMUX024

COMUX

PIMUX024 PO05V

PIMUX023 POMCU0SSA
PIMUX022 POMCU0SSB
PIMUX021 POMCU0SSC
PIMUX020 POMCU0SSD

PIMUX018

PIMUX019

POMUXEN

PIMUX017POSS16
PIMUX016POSS15
PIMUX015POSS14
PIMUX014POSS13
PIMUX013POSS12

PIMUX012 POGRD

PIMUX011POSS11
PIMUX010POSS10
PIMUX09POSS9
PIMUX08POSS8
PIMUX07POSS7
PIMUX06POSS6
PIMUX05POSS5
PIMUX04POSS4
PIMUX03POSS3
PIMUX02POSS2
PIMUX01POSS1 PO05V

POGRD

POMCU0SSA
POMCU0SSB
POMCU0SSC
POMCU0SSD

POMUXEN

POSS1
POSS2
POSS3
POSS4
POSS5
POSS6
POSS7
POSS8
POSS9
POSS10
POSS11
POSS12
POSS13
POSS14
POSS15
POSS16

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

Letter

Date: 3/10/2010 Sheet of
File: C:\Documents and Settings\..\Signal LEDs.SchDocDrawn By:

Res11

Res22

Res33

Res44

Res55

Res66

Res77

Res88

Res99

Res1010

Res1111

Res1212

Res1313

Res1414

Res1515

GRD 16

RB1

10k 15-Resistor Bank

LED1
LED2
LED3
LED4

LED5
LED6
LED7

LED15

LED8

LED9
LED10
LED11
LED12

LED13
LED14

LED16

10K

STA

Ano11

Ano23

Ano35

Ano47

Cat1 2

Cat2 4

Cat3 6

Cat4 8

LB1

4LED Bank

Ano11

Ano23

Ano35

Ano47

Cat1 2

Cat2 4

Cat3 6

Cat4 8

LB2

4LED Bank

Ano11

Ano23

Ano35

Ano47

Cat1 2

Cat2 4

Cat3 6

Cat4 8

LB3

4LED Bank

Ano11

Ano23

Ano35

Ano47

Cat1 2

Cat2 4

Cat3 6

Cat4 8

LB4

4LED Bank

G
R

D

Main Control Board (MCB) - Buck Converter

Version 2.0
4 5

Matt Bienia

PILB101 PILB102

PILB103 PILB104

PILB105 PILB106

PILB107 PILB108

COLB1

PILB201 PILB202

PILB203 PILB204

PILB205 PILB206

PILB207 PILB208

COLB2

PILB301 PILB302

PILB303 PILB304

PILB305 PILB306

PILB307 PILB308

COLB3

PILB401 PILB402

PILB403 PILB404

PILB405 PILB406

PILB407 PILB408

COLB4

PIRB101

PIRB102

PIRB103

PIRB104

PIRB105

PIRB106

PIRB107

PIRB108

PIRB109

PIRB1010

PIRB1011

PIRB1012

PIRB1013

PIRB1014

PIRB1015

PIRB1016

CORB1

PISTA01 PISTA02
COSTA

PIRB1016

PISTA02

POGRD
PILB408

PISTA01

PILB407POLED16
PILB406

PIRB1015

PILB405POLED15
PILB404

PIRB1014

PILB403POLED14
PILB402

PIRB1013

PILB401POLED13

PILB308

PIRB1012

PILB307POLED12
PILB306

PIRB1011

PILB305POLED11
PILB304

PIRB1010

PILB303POLED10
PILB302

PIRB109

PILB301POLED9

PILB208

PIRB108

PILB207POLED8
PILB206

PIRB107

PILB205POLED7
PILB204

PIRB106

PILB203POLED6
PILB202

PIRB105

PILB201POLED5

PILB108

PIRB104

PILB107POLED4
PILB106

PIRB103

PILB105POLED3
PILB104

PIRB102

PILB103POLED2
PILB102

PIRB101

PILB101POLED1

POGRD

POLED1
POLED2
POLED3
POLED4

POLED5
POLED6
POLED7
POLED8

POLED9
POLED10
POLED11
POLED12

POLED13
POLED14
POLED15
POLED16

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

Letter

Date: 3/10/2010 Sheet of
File: C:\Documents and Settings\..\Status Chip.SchDocDrawn By:

PC6 1

PD0 2

PD1 3

PD2 4

PD3 5

PD4 6

VCC7

GND8

PB69

PB710

PD5 11

PD6 12

PD7 13

PB014

PB115

PB2 (SS)16

PB3 (MOSI)17

PB4 (MISO)18

PB5 (SCK)19

AVCC20

PC7 21

GND22

PC0 23

PC1 24

PC2 25

PC3 26

PC4 27

PC5 28

STAT

ATtiny48

ST1
ST2
ST3
ST4
ST5
ST6
ST7

ST15

ST8
ST9
ST10
ST11
ST12
ST13
ST14

SS16

+5V

Status

MOSI
MISO
SCK

Main Control Board (MCB) - Status Chip

Version 1.2
2 5

Matt Bienia

LED1
LED2
LED3
LED4
LED5
LED6
LED7

LED15

LED8
LED9
LED10
LED11
LED12
LED13
LED14

LED16

GRD

PISTAT01

PISTAT02

PISTAT03

PISTAT04

PISTAT05

PISTAT06

PISTAT07

PISTAT08

PISTAT09

PISTAT010

PISTAT011

PISTAT012

PISTAT013

PISTAT014

PISTAT015

PISTAT016

PISTAT017

PISTAT018

PISTAT019

PISTAT020

PISTAT021

PISTAT022

PISTAT023

PISTAT024

PISTAT025

PISTAT026

PISTAT027

PISTAT028

COSTAT

PISTAT028

POLED6

POST6

PISTAT027

POLED5

POST5

PISTAT026

POLED4

POST4

PISTAT025

POLED3

POST3

PISTAT024

POLED2

POST2

PISTAT023

POLED1

POST1

PISTAT021

POLED8

POST8

PISTAT020

PISTAT019POSCK
PISTAT018POMISO
PISTAT017POMOSI
PISTAT016POSS16
PISTAT015

PISTAT014

POLED16

POStatus

PISTAT013

PISTAT012

POLED15

POST15
PISTAT011

POLED14

POST14

PISTAT010

PISTAT09

PISTAT08

PISTAT022POGRD

PISTAT07PO05V
PISTAT06

POLED13

POST13
PISTAT05

POLED12

POST12
PISTAT04

POLED11

POST11
PISTAT03

POLED10

POST10
PISTAT02

POLED9

POST9

PISTAT01

POLED7

POST7

PO05V

POGRD

POLED1
POLED2
POLED3
POLED4
POLED5
POLED6
POLED7
POLED8
POLED9
POLED10
POLED11
POLED12
POLED13
POLED14
POLED15
POLED16

POMISO
POMOSI

POSCK

POSS16

POST1
POST2
POST3
POST4
POST5
POST6
POST7
POST8
POST9
POST10
POST11
POST12
POST13
POST14
POST15

POSTATUS

PABC01

PABC02

PABC03
COBC

PABC101

PABC103

PABC102 COBC1
PABC201

PABC203

PABC202 COBC2
PABC301

PABC303

PABC302 COBC3

PACBC1101

PACBC1102

COCBC11

PACBC1202

PACBC1201

COCBC12

PACBC2101

PACBC2102

COCBC21

PACBC2202

PACBC2201

COCBC22

PACBC3101

PACBC3102

COCBC31

PACBC3202

PACBC3201

COCBC32

PACP101PACP102PACP103PACP104PACP105PACP106PACP107PACP108

PACP109PACP1010PACP1011PACP1012PACP1013PACP1014PACP1015PACP1016

COCP1

PACP201PACP202PACP203PACP204PACP205PACP206PACP207PACP208

PACP209PACP2010PACP2011PACP2012PACP2013PACP2014PACP2015PACP2016

COCP2

PACP301

PACP302

PACP303

PACP304

PACP305

PACP306

PACP307

PACP308

PACP309

PACP3010

PACP3011

PACP3012

PACP3013

PACP3014

PACP3015

PACP3016

COCP3

PACP401

PACP402

PACP403

PACP404

PACP405

PACP406

PACP407

PACP408

PACP409

PACP4010

PACP4011

PACP4012

PACP4013

PACP4014

PACP4015

PACP4016

COCP4

PACP501

PACP502

PACP503

PACP504

PACP505

PACP506

PACP507

PACP508

PACP509

PACP5010

PACP5011

PACP5012

PACP5013

PACP5014

PACP5015

PACP5016

COCP5

PACP601

PACP602

PACP603

PACP604

PACP605

PACP606

PACP607

PACP608

PACP609

PACP6010

PACP6011

PACP6012

PACP6013

PACP6014

PACP6015

PACP6016

COCP6

PACP701 PACP702 PACP703 PACP704 PACP705 PACP706 PACP707 PACP708

PACP709 PACP7010 PACP7011 PACP7012 PACP7013 PACP7014 PACP7015 PACP7016

COCP7

PACP801 PACP802 PACP803 PACP804 PACP805 PACP806 PACP807 PACP808

PACP809 PACP8010 PACP8011 PACP8012 PACP8013 PACP8014 PACP8015 PACP8016

COCP8

PACP901

PACP902

PACP903

PACP904

PACP905

PACP906

PACP907

PACP908

PACP909

PACP9010

PACP9011

PACP9012

PACP9013

PACP9014

PACP9015

PACP9016

COCP9

PACP1001

PACP1002

PACP1003

PACP1004

PACP1005

PACP1006

PACP1007

PACP1008

PACP1009

PACP10010

PACP10011

PACP10012

PACP10013

PACP10014

PACP10015

PACP10016

COCP10

PACP1101

PACP1102

PACP1103

PACP1104

PACP1105

PACP1106

PACP1107

PACP1108

PACP1109

PACP11010

PACP11011

PACP11012

PACP11013

PACP11014

PACP11015

PACP11016

COCP11

PACP1201

PACP1202

PACP1203

PACP1204

PACP1205

PACP1206

PACP1207

PACP1208

PACP1209

PACP12010

PACP12011

PACP12012

PACP12013

PACP12014

PACP12015

PACP12016

COCP12

PACP1301PACP1302PACP1303PACP1304PACP1305PACP1306PACP1307PACP1308

PACP1309PACP13010PACP13011PACP13012PACP13013PACP13014PACP13015PACP13016

COCP13

PACP1401PACP1402PACP1403PACP1404PACP1405PACP1406PACP1407PACP1408

PACP1409PACP14010PACP14011PACP14012PACP14013PACP14014PACP14015PACP14016

COCP14

PACP1501 PACP1502 PACP1503 PACP1504 PACP1505 PACP1506 PACP1507 PACP1508

PACP1509 PACP15010 PACP15011 PACP15012 PACP15013 PACP15014 PACP15015 PACP15016

COCP15

PAD502

PAD501

COD5
PAD1202

PAD1201

COD12

CODesignator2

PAF501B

PAF502PAF501

PAF502B

COF5

PAF1201B

PAF1202

PAF1201

PAF1202B

COF12

PALB101PALB102PALB103PALB104PALB105PALB106PALB107PALB108

COLB1

PALB201PALB202PALB203PALB204PALB205PALB206PALB207PALB208

COLB2

PALB301 PALB302 PALB303 PALB304 PALB305 PALB306 PALB307 PALB308

COLB3

PALB401 PALB402 PALB403 PALB404 PALB405 PALB406 PALB407 PALB408

COLB4

PAMCU0CP01 PAMCU0CP02 PAMCU0CP03 PAMCU0CP04 PAMCU0CP05 PAMCU0CP06 PAMCU0CP07 PAMCU0CP08 PAMCU0CP09 PAMCU0CP010 PAMCU0CP011 PAMCU0CP012

COMCU0CP

PAMUX024

PAMUX023

PAMUX022

PAMUX021

PAMUX020

PAMUX019

PAMUX018

PAMUX017

PAMUX016

PAMUX015

PAMUX014

PAMUX013 PAMUX012

PAMUX011

PAMUX010

PAMUX09

PAMUX08

PAMUX07

PAMUX06

PAMUX05

PAMUX04

PAMUX03

PAMUX02

PAMUX01

COMUX

PAR501PAR502 COR5

PAR1201PAR1202 COR12

PARB1016PARB1015PARB1014PARB1013PARB1012PARB1011PARB1010PARB109

PARB108 PARB107 PARB106 PARB105 PARB104 PARB103 PARB102 PARB101

CORB1

PASTA01

PASTA02

COSTA
PASTAT01

PASTAT02

PASTAT03

PASTAT04

PASTAT05

PASTAT06

PASTAT07

PASTAT08

PASTAT09

PASTAT010

PASTAT011

PASTAT012

PASTAT013

PASTAT014

PASTAT028

PASTAT027

PASTAT026

PASTAT025

PASTAT024

PASTAT023

PASTAT022

PASTAT021

PASTAT020

PASTAT019

PASTAT018

PASTAT017

PASTAT016

PASTAT015

COSTAT

PABC101PABC201PABC301

PABC01

PACBC1102 PACBC2102 PACBC3102

PAF1201PAF1201B

PABC102PABC202PABC302

PABC02

PACBC1101

PACBC1202

PACBC2101

PACBC2202

PACBC3101

PACBC3202

PACP105PACP106PACP107PACP108 PACP205PACP206PACP207PACP208

PACP305

PACP306

PACP307

PACP308

PACP405

PACP406

PACP407

PACP408

PACP505

PACP506

PACP507

PACP508

PACP605

PACP606

PACP607

PACP608

PACP705 PACP706 PACP707 PACP708PACP805 PACP806 PACP807 PACP808

PACP905

PACP906

PACP907

PACP908

PACP1005

PACP1006

PACP1007

PACP1008

PACP1105

PACP1106

PACP1107

PACP1108

PACP1205

PACP1206

PACP1207

PACP1208

PACP1305PACP1306PACP1307PACP1308 PACP1405PACP1406PACP1407PACP1408

PACP1505 PACP1506 PACP1507 PACP1508 PAMCU0CP011

PAMUX012

PAR501

PAR1201

PARB1016

PASTA02

PASTAT08

PASTAT022

PABC103PABC203PABC303
PACBC1201

PACBC2201

PACBC3201

PAF501

PAF501B

PACP101PACP102PACP103PACP104 PACP201PACP202PACP203PACP204

PACP301

PACP302

PACP303

PACP304

PACP401

PACP402

PACP403

PACP404

PACP501

PACP502

PACP503

PACP504

PACP601

PACP602

PACP603

PACP604

PACP701 PACP702 PACP703 PACP704PACP801 PACP802 PACP803 PACP804

PACP901

PACP902

PACP903

PACP904

PACP1001

PACP1002

PACP1003

PACP1004

PACP1101

PACP1102

PACP1103

PACP1104

PACP1201

PACP1202

PACP1203

PACP1204

PACP1301PACP1302PACP1303PACP1304 PACP1401PACP1402PACP1403PACP1404

PACP1501 PACP1502 PACP1503 PACP1504

PAD1201

PAF1202PAF1202B

PACP109

PALB101

PASTAT023

PACP1010

PAMUX01

PACP1012 PACP2012

PACP3012

PACP4012

PACP5012

PACP6012

PACP7012PACP8012

PACP9012

PACP10012

PACP11012

PACP12012

PACP13012 PACP14012

PACP15012

PAD501

PAF502

PAF502B

PAMCU0CP012

PAMUX024

PASTAT07

PACP1014 PACP2014

PACP3014

PACP4014

PACP5014

PACP6014

PACP7014PACP8014

PACP9014

PACP10014

PACP11014

PACP12014

PACP13014 PACP14014

PACP15014

PAMCU0CP03

PASTAT019

PACP1015 PACP2015 PACP3015

PACP4015

PACP5015

PACP6015

PACP7015PACP8015PACP9015

PACP10015

PACP11015

PACP12015

PACP13015 PACP14015

PACP15015

PAMCU0CP02

PASTAT018

PACP1016 PACP2016

PACP3016

PACP4016

PACP5016

PACP6016

PACP7016PACP8016

PACP9016

PACP10016

PACP11016

PACP12016

PACP13016 PACP14016

PACP15016

PAMCU0CP01

PASTAT017

PACP209

PALB103

PASTAT024

PACP2010

PAMUX02

PACP309

PALB105

PASTAT025

PACP3010

PAMUX03

PACP409

PALB107

PASTAT026 PACP4010

PAMUX04

PACP509

PALB201

PASTAT027

PACP5010

PAMUX05

PACP609

PALB203

PASTAT028

PACP6010

PAMUX06

PACP709

PALB205

PASTAT01

PACP7010

PAMUX07

PACP809

PALB207

PASTAT021

PACP8010

PAMUX08

PACP909

PALB301

PASTAT02

PACP9010

PAMUX09

PACP1009

PALB303
PASTAT03

PACP10010

PAMUX010

PACP1109

PALB305PASTAT04PACP11010

PAMUX011

PACP1209

PALB307

PASTAT05

PACP12010

PAMUX013

PACP1309

PALB401

PASTAT06

PACP13010

PAMUX014

PACP1409

PALB403

PASTAT011

PACP14010

PAMUX015

PACP1509

PALB405

PASTAT012

PACP15010

PAMUX016

PAD502

PAR502

PAD1202

PAR1202

PALB102

PARB101

PALB104

PARB102

PALB106

PARB103

PALB108

PARB104

PALB202

PARB105

PALB204

PARB106

PALB206

PARB107

PALB208

PARB108

PALB302

PARB109

PALB304

PARB1010

PALB306

PARB1011

PALB308

PARB1012

PALB402

PARB1013

PALB404

PARB1014

PALB406

PARB1015

PALB407

PAMCU0CP08

PASTAT014

PALB408

PASTA01

PAMCU0CP04

PAMUX023

PAMCU0CP05

PAMUX022

PAMCU0CP06

PAMUX021

PAMCU0CP07

PAMUX020

PAMCU0CP010

PAMUX018

PAMUX019

PAMUX017

PASTAT016

Comment Description Designator Footprint LibRef Quantity

2X1 .25 Header BC .250 2x1 Header 2X1 .25 Header 1

TI PT5101N
DC/ DC

1A 12V To 5V
DC/ DC Buck
Converter BC1, BC2, BC3 PT5101N DC/ DC

TI PT5101N (9-
36)DC/ 5DC 3

1uF Cap Capacitor
CBC11, CBC21,
CBC31 Cap 0.2" Cap 3

100uF Electrolytic
Cap

Polarized Capacitor
(Axial)

CBC12, CBC22,
CBC32

Electrolytic CAP
0.1" Cap Pol2 3

Header 8X2A
Header, 8-Pin, Dual
row

CP1, CP2, CP3,
CP4, CP5, CP6,
CP7, CP8, CP9,
CP10, CP11, CP12,
CP13, CP14, CP15 HDR2X8_CEN Header 8X2A 15

PWR-LED
Typical RED GaAs
LED D5, D12 LED-1 LED1 2

Blade Fuse Holder F5, F12
BLADE FUSE
HOLDER Blade Fuse Holder 2

4LED Bank LB1, LB2, LB3, LB4 SIP8 0.1" 4-5mmLED Bank 4

MCU Connector Header, 12-Pin MCU-CP HDR1X12 Header 12 1

MM74HC154

4-Line to 16-Line
Decoder/ Demultiple
xer MUX DIP-24 (600mil) DM54LS154J 1

10K RES Resistor R5, R12, STA AXIAL-0.3 Res1 3
10k 15-Resistor
Bank RB1 DIP16 0.1" 15Resis DIP16 0.1" 1

ATtiny48 8-Bit AVR Microcontroller with 4K Bytes of Flash MemorySTAT 28P3 ATtiny28L-4PC 1

104

7.3. MPU Schematics

(Beginning on the following page)

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

Letter

Date: 2/8/2010 Sheet of
File: C:\Documents and Settings\..\MCU V1-1.SchDocDrawn By:

PB0 (XCK/T0)1

PB1 (T1)2

PB2 (AIN0/INT2)3

PB3 (AIN1/OC0)4

PB4 (SS)5

PB5 (MOSI)6

PB6 (MISO)7

PB7 (SCK)8

RESET9

PD0 (RXD)14

PD1 (TXD)15

PD2 (INT0)16

PD3 (INT1)17

PD4 (OC1B)18

PD5 (OC1A)19

PD6 (ICP)20

PD7 (OC2)21

XTAL212

XTAL113

GND 11

PC0 (SCL) 22

PC1 (SDA) 23

PC2 (TCK) 24

PC3 (TMS) 25

PC4 (TDO) 26

PC5 (TDI) 27

PC6 (TOSC1) 28

PC7 (TOSC2) 29

AREF 32AVCC 30

GND 31

PA7 (ADC7) 33PA6 (ADC6) 34PA5 (ADC5) 35PA4 (ADC4) 36PA3 (ADC3) 37PA2 (ADC2) 38PA1 (ADC1) 39PA0 (ADC0) 40

VCC 10

ATmega644P

1
2
3
4
5
6
7
8
9

10
11
12

MCB

MCU Connector

MOSI
MISO
SCK
SSA
SSB
SSC
SSD
STAT

MUXEN

MOSI
MISO
SCK

SSA
SSB
SSC
SSD

STAT
MUXEN

+5GND

GND

+5

1

2

3

4

5

6

7

8

9

DB9

Serial Connector

GND

Rx
Tx

Rx
Tx

Main Processing Unit

V1.1

1 1
Matt Bienia

+5

PIAVR01

PIAVR02

PIAVR03

PIAVR04

PIAVR05

PIAVR06

PIAVR07

PIAVR08

PIAVR09 PIAVR010

PIAVR011

PIAVR012

PIAVR013

PIAVR014

PIAVR015

PIAVR016

PIAVR017

PIAVR018

PIAVR019

PIAVR020

PIAVR021

PIAVR022

PIAVR023

PIAVR024

PIAVR025

PIAVR026

PIAVR027

PIAVR028

PIAVR029

PIAVR030

PIAVR031

PIAVR032

PIAVR033

PIAVR034

PIAVR035

PIAVR036

PIAVR037

PIAVR038

PIAVR039

PIAVR040

COAVR
PIDB901

PIDB902

PIDB903

PIDB904

PIDB905

PIDB906

PIDB907

PIDB908

PIDB909

CODB9

PIMCB01

PIMCB02

PIMCB03

PIMCB04

PIMCB05

PIMCB06

PIMCB07

PIMCB08

PIMCB09

PIMCB010

PIMCB011

PIMCB012

COMCB

POMISO
POMOSI

POMUXEN

PORX

POSCK

POSSA
POSSB
POSSC
POSSD

POSTAT

POTX

PAAVR01

PAAVR02

PAAVR03

PAAVR04

PAAVR05

PAAVR06

PAAVR07

PAAVR08

PAAVR09

PAAVR010

PAAVR011

PAAVR012

PAAVR013

PAAVR014

PAAVR015

PAAVR016

PAAVR017

PAAVR018

PAAVR019

PAAVR020

PAAVR040

PAAVR039

PAAVR038

PAAVR037

PAAVR036

PAAVR035

PAAVR034

PAAVR033

PAAVR032

PAAVR031

PAAVR030

PAAVR029

PAAVR028

PAAVR027

PAAVR026

PAAVR025

PAAVR024

PAAVR023

PAAVR022

PAAVR021

COAVR

PADB9011 PADB9010PADB901

PADB906

PADB902

PADB907

PADB903

PADB908

PADB904

PADB909

PADB905

CODB9

PAMCB012

PAMCB011

PAMCB010

PAMCB09

PAMCB08

PAMCB07

PAMCB06

PAMCB05

PAMCB04

PAMCB03

PAMCB02

PAMCB01

COMCB

Comment Description Designator Footprint LibRef Quantity

ATmega644P

8-Bit AVR
Microcontroller with
64K Bytes of In-
System
Programmable Flash
Memory AVR 40P6 ATmega32L-8PC 1

Serial Connector

Receptacle
Assembly, 9
Position, Right
Angle DB9 DSUB1.385-2H9 D Connector 9 1

MCU Connector Header, 12-Pin MCB HDR1X12 Header 12 1

	Acknowledgements
	Abstract
	Table of Contents
	Table of Figures:
	List of Tables:
	Table of Equations
	Table of Code Samples
	Authorship
	1. Introduction
	1.1. Background
	1.2. Report Organization

	2. Methodology
	2.1. Design Specifications
	2.2. Robot Design: Mechanical
	2.2.1. Leg Design
	2.2.2. Gearbox
	2.2.2.1. Worm Gearbox
	2.2.2.2. Miter Gearbox
	2.2.2.3. Gearbox Selection
	2.2.2.4. Gearbox Design

	2.2.3. Hip Joint Design
	2.2.4. Static Force Analysis
	2.2.5. Chassis Design

	2.3. Robot Design: Electrical System
	2.3.1. Control System and Distributed Processing Overview
	2.3.2. Leg Control Unit (LCU) Hardware
	2.3.2.1. Processor
	2.3.2.2. Motors and Motor Driver
	2.3.2.3. Connection Ports
	2.3.2.4. Joint Position Sensing
	2.3.2.5. PCB Design

	2.3.3. Main Communications Board (MCB) Hardware
	2.3.3.1. Demultiplexer/Decoder
	2.3.3.2. STATUS Processor
	2.3.3.3. Power Management
	2.3.3.4. Connection Ports
	2.3.3.5. Signal LEDs
	2.3.3.6. PCB Design

	2.3.4. Main Processing Unit (MPU) Hardware
	2.3.4.1. Main Processor
	2.3.4.2. Connection Ports
	2.3.4.3. MPU PCB

	2.3.5. Miscellaneous Electrical Considerations

	2.4. Robot Design: Software and Control Systems
	2.4.1. Communications Protocol
	2.4.1.1. SPI Overview
	2.4.1.2. Symmetric Data Buffer Exchange Protocol

	2.4.2. MPU Software & Operational Characteristics
	2.4.2.1. Peripheral Validation
	2.4.2.2. Communications
	2.4.2.3. Control Algorithms
	Combined Static Stability and Mobility (CoSSMo) Balancing Method
	Sensor Assisted Balancing

	2.4.3. LCU Software & Operational Characteristics
	2.4.3.1. Kinematics
	The Denavit-Hartenberg Convention
	Forward Kinematics

	2.4.3.2. Inverse Kinematics
	2.4.3.3. Motion Control
	Motor Functions
	Potentiometer Functions

	2.4.3.4. PID Control

	2.4.4. Software Model Diagrams
	2.4.4.1. MPU Flow Diagram
	2.4.4.2. LCU Flow Diagram
	2.4.4.3. Integrated Flow Diagram

	3. Results
	3.1. Mechanical Design Revisions
	3.1.1. Review of the Initial Design
	3.1.2. Goals of the Revised Design
	3.1.2.1. Gearbox Redesign
	3.1.2.2. Leg Plate Redesign
	3.1.2.3. Hip Assembly
	3.1.2.4. Force Analysis of the New Design
	3.1.2.5. The Chassis

	3.2. Electrical System Observations
	3.2.1. LCU PCB Construction and Issues
	3.2.2. MCB PCB Construction and Issues

	3.3. Software Timing and Effective Control Frequencies
	3.3.1. PID Loop Timing
	3.3.2. Total Leg PID Loop Timing
	3.3.3. Inverse Kinematics Timing
	3.3.4. Forward Kinematics Timing
	3.3.5. Total LCU Command Process Timing

	3.4. Budget
	3.4.1. Mechanical Budget
	3.4.2. Electrical Budget

	4. Future Work
	5. Conclusion
	6. References
	7. Appendices
	7.1. LCU Schematics
	7.2. MCB Schematics
	7.3. MPU Schematics

	ReMMRP OLD.pdf
	Acknowledgements
	Abstract
	Table of Contents
	Table of Figures:
	List of Tables:
	Table of Equations
	Table of Code Samples
	Authorship
	1. Introduction
	1.1. Background
	1.2. Report Organization

	2. Methodology
	2.1. Design Specifications
	2.2. Robot Design: Mechanical
	2.2.1. Leg Design
	2.2.2. Gearbox
	2.2.2.1. Worm Gearbox
	2.2.2.2. Miter Gearbox
	2.2.2.3. Gearbox Selection
	2.2.2.4. Gearbox Design

	2.2.3. Hip Joint Design
	2.2.4. Static Force Analysis
	2.2.5. Chassis Design

	2.3. Robot Design: Electrical System
	2.3.1. Control System and Distributed Processing Overview
	2.3.2. Leg Control Unit (LCU) Hardware
	2.3.2.1. Processor
	2.3.2.2. Motors and Motor Driver
	2.3.2.3. Connection Ports
	2.3.2.4. Joint Position Sensing
	2.3.2.5. PCB Design

	2.3.3. Main Communications Board (MCB) Hardware
	2.3.3.1. Demultiplexer/Decoder
	2.3.3.2. STATUS Processor
	2.3.3.3. Power Management
	2.3.3.4. Connection Ports
	2.3.3.5. Signal LEDs
	2.3.3.6. PCB Design

	2.3.4. Main Processing Unit (MPU) Hardware
	2.3.4.1. Main Processor
	2.3.4.2. Connection Ports
	2.3.4.3. MPU PCB

	2.3.5. Miscellaneous Electrical Considerations

	2.4. Robot Design: Software and Control Systems
	2.4.1. Communications Protocol
	2.4.1.1. SPI Overview
	2.4.1.2. Symmetric Data Buffer Exchange Protocol

	2.4.2. MPU Software & Operational Characteristics
	2.4.2.1. Peripheral Validation
	2.4.2.2. Communications
	2.4.2.3. Control Algorithms
	Combined Static Stability and Mobility (CoSSMo) Balancing Method
	Sensor Assisted Balancing

	2.4.3. LCU Software & Operational Characteristics
	2.4.3.1. Kinematics
	The Denavit-Hartenberg Convention
	Forward Kinematics

	2.4.3.2. Inverse Kinematics
	2.4.3.3. Motion Control
	Motor Functions
	Potentiometer Functions

	2.4.3.4. PID Control

	2.4.4. Software Model Diagrams
	2.4.4.1. MPU Flow Diagram
	2.4.4.2. LCU Flow Diagram
	2.4.4.3. Integrated Flow Diagram

	3. Results
	3.1. Mechanical Design Revisions
	3.1.1. Review of the Initial Design
	3.1.2. Goals of the Revised Design
	3.1.2.1. Gearbox Redesign
	3.1.2.2. Leg Plate Redesign
	3.1.2.3. Hip Assembly
	3.1.2.4. Force Analysis of the New Design
	3.1.2.5. The Chassis

	3.2. Electrical System Observations
	3.2.1. LCU PCB Construction and Issues
	3.2.2. MCB PCB Construction and Issues

	3.3. Software Timing and Effective Control Frequencies
	3.3.1. PID Loop Timing
	3.3.2. Total Leg PID Loop Timing
	3.3.3. Inverse Kinematics Timing
	3.3.4. Forward Kinematics Timing
	3.3.5. Total LCU Command Process Timing

	3.4. Budget
	3.4.1. Mechanical Budget
	3.4.2. Electrical Budget

	4. Future Work
	5. Conclusion
	6. References
	7. Appendices
	7.1. LCU Schematics
	7.2. MCB Schematics
	7.3. MPU Schematics

	LCU V4[1].pdf
	Schematic Prints("All Documents",Physical)
	H-Bridge 1.SchDoc("H-Bridge 1")
	Components
	C-VCP1
	C-VCP1-1
	C-VCP1-2

	C-VS11
	C-VS11-1
	C-VS11-2

	C-VS12
	C-VS12-1
	C-VS12-2

	CBOOT1
	CBOOT1-1
	CBOOT1-2

	CEN1
	CEN1-1
	CEN1-2

	CEN2
	CEN2-1
	CEN2-2

	D1-1
	D1-1-1
	D1-1-2

	D1-2
	D1-2-1
	D1-2-2

	HB1
	HB1-1
	HB1-2
	HB1-3
	HB1-4
	HB1-5
	HB1-6
	HB1-7
	HB1-8
	HB1-9
	HB1-10
	HB1-11
	HB1-12
	HB1-13
	HB1-14
	HB1-15
	HB1-16
	HB1-17
	HB1-18
	HB1-19
	HB1-20

	R-VCP1
	R-VCP1-1
	R-VCP1-2

	REN1
	REN1-1
	REN1-2

	REN2
	REN2-1
	REN2-2

	Ports
	MTR1-EN
	MTR1-OUTA
	MTR1-OUTB
	MTR1-SIG1
	MTR1-SIG2
	MTR2-EN
	MTR2-OUTA
	MTR2-OUTB
	MTR2-SIG1
	MTR2-SIG2

	H-Bridge 2.SchDoc("H-Bridge 2")
	Components
	C-VCP2
	C-VCP2-1
	C-VCP2-2

	C-VS21
	C-VS21-1
	C-VS21-2

	C-VS22
	C-VS22-1
	C-VS22-2

	CBOOT2
	CBOOT2-1
	CBOOT2-2

	CEN3
	CEN3-1
	CEN3-2

	D2-1
	D2-1-1
	D2-1-2

	D2-2
	D2-2-1
	D2-2-2

	HB2
	HB2-1
	HB2-2
	HB2-3
	HB2-4
	HB2-5
	HB2-6
	HB2-7
	HB2-8
	HB2-9
	HB2-10
	HB2-11
	HB2-12
	HB2-13
	HB2-14
	HB2-15
	HB2-16
	HB2-17
	HB2-18
	HB2-19
	HB2-20

	R-VCP2
	R-VCP2-1
	R-VCP2-2

	REN3
	REN3-1
	REN3-2

	Ports
	MTR3-EN
	MTR3-OUTA
	MTR3-OUTB
	MTR3-SIG1
	MTR3-SIG2

	Headers.SchDoc(Headers)
	Components
	M1
	M1-1
	M1-2

	M2
	M2-1
	M2-2

	M3
	M3-1
	M3-2

	MCB
	MCB-1
	MCB-2
	MCB-3
	MCB-4
	MCB-5
	MCB-6
	MCB-7
	MCB-8
	MCB-9
	MCB-10
	MCB-11
	MCB-12
	MCB-13
	MCB-14
	MCB-15
	MCB-16

	P1
	P1-1
	P1-2
	P1-3

	P2
	P2-1
	P2-2
	P2-3

	P3
	P3-1
	P3-2
	P3-3

	Ports
	MISO
	MOSI
	MTR1-OUTA
	MTR1-OUTB
	MTR2-OUTA
	MTR2-OUTB
	MTR3-OUTA
	MTR3-OUTB
	POT1
	POT2
	POT3
	SCK
	SS
	STAT

	Leg Processor.SchDoc("Leg Processor")
	Components
	AVR
	AVR-1
	AVR-2
	AVR-3
	AVR-4
	AVR-5
	AVR-6
	AVR-7
	AVR-8
	AVR-9
	AVR-10
	AVR-11
	AVR-12
	AVR-13
	AVR-14
	AVR-15
	AVR-16
	AVR-17
	AVR-18
	AVR-19
	AVR-20
	AVR-21
	AVR-22
	AVR-23
	AVR-24
	AVR-25
	AVR-26
	AVR-27
	AVR-28
	AVR-29
	AVR-30
	AVR-31
	AVR-32
	AVR-33
	AVR-34
	AVR-35
	AVR-36
	AVR-37
	AVR-38
	AVR-39
	AVR-40

	Ports
	MISO
	MOSI
	MTR1-EN
	MTR1-SIG1
	MTR1-SIG2
	MTR2-EN
	MTR2-SIG1
	MTR2-SIG2
	MTR3-EN
	MTR3-SIG1
	MTR3-SIG2
	POT1
	POT2
	POT3
	SCK
	SS
	STAT

	PCB Prints
	LCU V4.PcbDoc
	Multilayer Composite Print
	Components
	
	AVR
	AVR-1
	AVR-2
	AVR-3
	AVR-4
	AVR-5
	AVR-6
	AVR-7
	AVR-8
	AVR-9
	AVR-10
	AVR-11
	AVR-12
	AVR-13
	AVR-14
	AVR-15
	AVR-16
	AVR-17
	AVR-18
	AVR-19
	AVR-20
	AVR-40
	AVR-39
	AVR-38
	AVR-37
	AVR-36
	AVR-35
	AVR-34
	AVR-33
	AVR-32
	AVR-31
	AVR-30
	AVR-29
	AVR-28
	AVR-27
	AVR-26
	AVR-25
	AVR-24
	AVR-23
	AVR-22
	AVR-21

	C-VCP1
	C-VCP1-2
	C-VCP1-1

	C-VCP2
	C-VCP2-2
	C-VCP2-1

	C-VS11
	C-VS11-1
	C-VS11-2

	C-VS12
	C-VS12-2
	C-VS12-1

	C-VS21
	C-VS21-1
	C-VS21-2

	C-VS22
	C-VS22-2
	C-VS22-1

	CBOOT1
	CBOOT1-2
	CBOOT1-1

	CBOOT2
	CBOOT2-2
	CBOOT2-1

	CEN1
	CEN1-2
	CEN1-1

	CEN2
	CEN2-2
	CEN2-1

	CEN3
	CEN3-2
	CEN3-1

	D1-1
	D1-1-2
	D1-1-1

	D1-2
	D1-2-2
	D1-2-1

	D2-1
	D2-1-1
	D2-1-2

	D2-2
	D2-2-1
	D2-2-2

	HB1
	HB1-1
	HB1-2
	HB1-3
	HB1-4
	HB1-5
	HB1-6
	HB1-7
	HB1-8
	HB1-9
	HB1-10
	HB1-20
	HB1-19
	HB1-18
	HB1-17
	HB1-16
	HB1-15
	HB1-14
	HB1-13
	HB1-12
	HB1-11

	HB2
	HB2-1
	HB2-2
	HB2-3
	HB2-4
	HB2-5
	HB2-6
	HB2-7
	HB2-8
	HB2-9
	HB2-10
	HB2-20
	HB2-19
	HB2-18
	HB2-17
	HB2-16
	HB2-15
	HB2-14
	HB2-13
	HB2-12
	HB2-11

	M1
	M1-1
	M1-2
	M1-3

	M2
	M2-1
	M2-2
	M2-3

	M3
	M3-1
	M3-2
	M3-3

	MCB
	MCB-1
	MCB-2
	MCB-3
	MCB-4
	MCB-5
	MCB-6
	MCB-7
	MCB-8
	MCB-9
	MCB-10
	MCB-11
	MCB-12
	MCB-13
	MCB-14
	MCB-15
	MCB-16

	P1
	P1-1
	P1-2
	P1-3

	P2
	P2-1
	P2-2
	P2-3

	P3
	P3-1
	P3-2
	P3-3

	R-VCP1
	R-VCP1-2
	R-VCP1-1

	R-VCP2
	R-VCP2-2
	R-VCP2-1

	REN1
	REN1-2
	REN1-1

	REN2
	REN2-2
	REN2-1

	REN3
	REN3-2
	REN3-1

	Bill of Materials

	MCB V1-2[1].pdf
	Schematic Prints("All Documents",Physical)
	Buck Converters.SchDoc("Buck Converters")
	Components
	BC1
	BC1-1
	BC1-2
	BC1-3

	BC2
	BC2-1
	BC2-2
	BC2-3

	BC3
	BC3-1
	BC3-2
	BC3-3

	CBC11
	CBC11-1
	CBC11-2

	CBC12
	CBC12-1
	CBC12-2

	CBC21
	CBC21-1
	CBC21-2

	CBC22
	CBC22-1
	CBC22-2

	CBC31
	CBC31-1
	CBC31-2

	CBC32
	CBC32-1
	CBC32-2

	D5
	D5-1
	D5-2

	D12
	D12-1
	D12-2

	F5
	F5-1
	F5-2

	F12
	F12-1
	F12-2

	R5
	R5-1
	R5-2

	R12
	R12-1
	R12-2

	Nets
	+12
	Pins
	BC1-1
	BC2-1
	BC3-1
	CBC11-2
	CBC21-2
	CBC31-2
	F12-1

	NetD12_2
	Pins
	D12-2
	R12-2

	NetD12_1
	Pins
	D12-1
	F12-2

	Ports
	NetD12_1

	NetD5_2
	Pins
	D5-2
	R5-2

	NetD5_1
	Pins
	D5-1
	F5-2

	Ports
	NetD5_1

	NetBC1_3
	Pins
	BC1-3
	BC2-3
	BC3-3
	CBC12-1
	CBC22-1
	CBC32-1
	F5-1

	NetBC1_2
	Pins
	BC1-2
	BC2-2
	BC3-2
	CBC11-1
	CBC12-2
	CBC21-1
	CBC22-2
	CBC31-1
	CBC32-2
	R5-1
	R12-1

	Ports
	NetBC1_2
	NetBC1_2
	NetBC1_2

	Ports
	+5V
	+12V
	GRD
	GRD
	GRD

	Headers.SchDoc(Headers)
	Components
	BC
	BC-1
	BC-2

	CP1
	CP1-1
	CP1-2
	CP1-3
	CP1-4
	CP1-5
	CP1-6
	CP1-7
	CP1-8
	CP1-9
	CP1-10
	CP1-11
	CP1-12
	CP1-13
	CP1-14
	CP1-15
	CP1-16

	CP2
	CP2-1
	CP2-2
	CP2-3
	CP2-4
	CP2-5
	CP2-6
	CP2-7
	CP2-8
	CP2-9
	CP2-10
	CP2-11
	CP2-12
	CP2-13
	CP2-14
	CP2-15
	CP2-16

	CP3
	CP3-1
	CP3-2
	CP3-3
	CP3-4
	CP3-5
	CP3-6
	CP3-7
	CP3-8
	CP3-9
	CP3-10
	CP3-11
	CP3-12
	CP3-13
	CP3-14
	CP3-15
	CP3-16

	CP4
	CP4-1
	CP4-2
	CP4-3
	CP4-4
	CP4-5
	CP4-6
	CP4-7
	CP4-8
	CP4-9
	CP4-10
	CP4-11
	CP4-12
	CP4-13
	CP4-14
	CP4-15
	CP4-16

	CP5
	CP5-1
	CP5-2
	CP5-3
	CP5-4
	CP5-5
	CP5-6
	CP5-7
	CP5-8
	CP5-9
	CP5-10
	CP5-11
	CP5-12
	CP5-13
	CP5-14
	CP5-15
	CP5-16

	CP6
	CP6-1
	CP6-2
	CP6-3
	CP6-4
	CP6-5
	CP6-6
	CP6-7
	CP6-8
	CP6-9
	CP6-10
	CP6-11
	CP6-12
	CP6-13
	CP6-14
	CP6-15
	CP6-16

	CP7
	CP7-1
	CP7-2
	CP7-3
	CP7-4
	CP7-5
	CP7-6
	CP7-7
	CP7-8
	CP7-9
	CP7-10
	CP7-11
	CP7-12
	CP7-13
	CP7-14
	CP7-15
	CP7-16

	CP8
	CP8-1
	CP8-2
	CP8-3
	CP8-4
	CP8-5
	CP8-6
	CP8-7
	CP8-8
	CP8-9
	CP8-10
	CP8-11
	CP8-12
	CP8-13
	CP8-14
	CP8-15
	CP8-16

	CP9
	CP9-1
	CP9-2
	CP9-3
	CP9-4
	CP9-5
	CP9-6
	CP9-7
	CP9-8
	CP9-9
	CP9-10
	CP9-11
	CP9-12
	CP9-13
	CP9-14
	CP9-15
	CP9-16

	CP10
	CP10-1
	CP10-2
	CP10-3
	CP10-4
	CP10-5
	CP10-6
	CP10-7
	CP10-8
	CP10-9
	CP10-10
	CP10-11
	CP10-12
	CP10-13
	CP10-14
	CP10-15
	CP10-16

	CP11
	CP11-1
	CP11-2
	CP11-3
	CP11-4
	CP11-5
	CP11-6
	CP11-7
	CP11-8
	CP11-9
	CP11-10
	CP11-11
	CP11-12
	CP11-13
	CP11-14
	CP11-15
	CP11-16

	CP12
	CP12-1
	CP12-2
	CP12-3
	CP12-4
	CP12-5
	CP12-6
	CP12-7
	CP12-8
	CP12-9
	CP12-10
	CP12-11
	CP12-12
	CP12-13
	CP12-14
	CP12-15
	CP12-16

	CP13
	CP13-1
	CP13-2
	CP13-3
	CP13-4
	CP13-5
	CP13-6
	CP13-7
	CP13-8
	CP13-9
	CP13-10
	CP13-11
	CP13-12
	CP13-13
	CP13-14
	CP13-15
	CP13-16

	CP14
	CP14-1
	CP14-2
	CP14-3
	CP14-4
	CP14-5
	CP14-6
	CP14-7
	CP14-8
	CP14-9
	CP14-10
	CP14-11
	CP14-12
	CP14-13
	CP14-14
	CP14-15
	CP14-16

	CP15
	CP15-1
	CP15-2
	CP15-3
	CP15-4
	CP15-5
	CP15-6
	CP15-7
	CP15-8
	CP15-9
	CP15-10
	CP15-11
	CP15-12
	CP15-13
	CP15-14
	CP15-15
	CP15-16

	MCU-CP
	MCU-CP-1
	MCU-CP-2
	MCU-CP-3
	MCU-CP-4
	MCU-CP-5
	MCU-CP-6
	MCU-CP-7
	MCU-CP-8
	MCU-CP-9
	MCU-CP-10
	MCU-CP-11
	MCU-CP-12

	Nets
	+12
	Pins
	BC-1

	GND
	Pins
	BC-2
	CP1-5
	CP1-6
	CP1-7
	CP1-8
	CP2-5
	CP2-6
	CP2-7
	CP2-8
	CP3-5
	CP3-6
	CP3-7
	CP3-8
	CP4-5
	CP4-6
	CP4-7
	CP4-8
	CP5-5
	CP5-6
	CP5-7
	CP5-8
	CP6-5
	CP6-6
	CP6-7
	CP6-8
	CP7-5
	CP7-6
	CP7-7
	CP7-8
	CP8-5
	CP8-6
	CP8-7
	CP8-8
	CP9-5
	CP9-6
	CP9-7
	CP9-8
	CP10-5
	CP10-6
	CP10-7
	CP10-8
	CP11-5
	CP11-6
	CP11-7
	CP11-8
	CP12-5
	CP12-6
	CP12-7
	CP12-8
	CP13-5
	CP13-6
	CP13-7
	CP13-8
	CP14-5
	CP14-6
	CP14-7
	CP14-8
	CP15-5
	CP15-6
	CP15-7
	CP15-8
	MCU-CP-11

	Ports
	GND
	GND
	GND
	GND
	GND
	GND
	GND
	GND
	GND
	GND
	GND
	GND
	GND
	GND
	GND
	GND
	GND

	NetMCU-CP_10
	Pins
	MCU-CP-10

	Ports
	NetMCU-CP_10

	NetMCU-CP_9
	Pins
	MCU-CP-9

	NetMCU-CP_8
	Pins
	MCU-CP-8

	Ports
	NetMCU-CP_8

	NetMCU-CP_7
	Pins
	MCU-CP-7

	Ports
	NetMCU-CP_7

	NetMCU-CP_6
	Pins
	MCU-CP-6

	Ports
	NetMCU-CP_6

	NetMCU-CP_5
	Pins
	MCU-CP-5

	Ports
	NetMCU-CP_5

	NetMCU-CP_4
	Pins
	MCU-CP-4

	Ports
	NetMCU-CP_4

	NetCP1_16
	Pins
	CP1-16
	CP2-16
	CP3-16
	CP4-16
	CP5-16
	CP6-16
	CP7-16
	CP8-16
	CP9-16
	CP10-16
	CP11-16
	CP12-16
	CP13-16
	CP14-16
	CP15-16
	MCU-CP-1

	Ports
	NetCP1_16
	NetCP1_16
	NetCP1_16
	NetCP1_16
	NetCP1_16
	NetCP1_16
	NetCP1_16
	NetCP1_16
	NetCP1_16
	NetCP1_16
	NetCP1_16
	NetCP1_16
	NetCP1_16
	NetCP1_16
	NetCP1_16
	NetCP1_16

	NetCP1_15
	Pins
	CP1-15
	CP2-15
	CP3-15
	CP4-15
	CP5-15
	CP6-15
	CP7-15
	CP8-15
	CP9-15
	CP10-15
	CP11-15
	CP12-15
	CP13-15
	CP14-15
	CP15-15
	MCU-CP-2

	Ports
	NetCP1_15
	NetCP1_15
	NetCP1_15
	NetCP1_15
	NetCP1_15
	NetCP1_15
	NetCP1_15
	NetCP1_15
	NetCP1_15
	NetCP1_15
	NetCP1_15
	NetCP1_15
	NetCP1_15
	NetCP1_15
	NetCP1_15
	NetCP1_15

	NetCP1_14
	Pins
	CP1-14
	CP2-14
	CP3-14
	CP4-14
	CP5-14
	CP6-14
	CP7-14
	CP8-14
	CP9-14
	CP10-14
	CP11-14
	CP12-14
	CP13-14
	CP14-14
	CP15-14
	MCU-CP-3

	Ports
	NetCP1_14
	NetCP1_14
	NetCP1_14
	NetCP1_14
	NetCP1_14
	NetCP1_14
	NetCP1_14
	NetCP1_14
	NetCP1_14
	NetCP1_14
	NetCP1_14
	NetCP1_14
	NetCP1_14
	NetCP1_14
	NetCP1_14
	NetCP1_14

	NetCP15_13
	Pins
	CP15-13

	NetCP1_12
	Pins
	CP1-12
	CP2-12
	CP3-12
	CP4-12
	CP5-12
	CP6-12
	CP7-12
	CP8-12
	CP9-12
	CP10-12
	CP11-12
	CP12-12
	CP13-12
	CP14-12
	CP15-12
	MCU-CP-12

	Ports
	NetCP1_12
	NetCP1_12
	NetCP1_12
	NetCP1_12
	NetCP1_12
	NetCP1_12
	NetCP1_12
	NetCP1_12
	NetCP1_12
	NetCP1_12
	NetCP1_12
	NetCP1_12
	NetCP1_12
	NetCP1_12
	NetCP1_12
	NetCP1_12

	NetCP15_11
	Pins
	CP15-11

	NetCP15_10
	Pins
	CP15-10

	Ports
	NetCP15_10

	NetCP15_9
	Pins
	CP15-9

	Ports
	NetCP15_9

	NetCP1_1
	Pins
	CP1-1
	CP1-2
	CP1-3
	CP1-4
	CP2-1
	CP2-2
	CP2-3
	CP2-4
	CP3-1
	CP3-2
	CP3-3
	CP3-4
	CP4-1
	CP4-2
	CP4-3
	CP4-4
	CP5-1
	CP5-2
	CP5-3
	CP5-4
	CP6-1
	CP6-2
	CP6-3
	CP6-4
	CP7-1
	CP7-2
	CP7-3
	CP7-4
	CP8-1
	CP8-2
	CP8-3
	CP8-4
	CP9-1
	CP9-2
	CP9-3
	CP9-4
	CP10-1
	CP10-2
	CP10-3
	CP10-4
	CP11-1
	CP11-2
	CP11-3
	CP11-4
	CP12-1
	CP12-2
	CP12-3
	CP12-4
	CP13-1
	CP13-2
	CP13-3
	CP13-4
	CP14-1
	CP14-2
	CP14-3
	CP14-4
	CP15-1
	CP15-2
	CP15-3
	CP15-4

	Ports
	NetCP1_1
	NetCP1_1
	NetCP1_1
	NetCP1_1
	NetCP1_1
	NetCP1_1
	NetCP1_1
	NetCP1_1
	NetCP1_1
	NetCP1_1
	NetCP1_1
	NetCP1_1
	NetCP1_1
	NetCP1_1
	NetCP1_1

	NetCP14_13
	Pins
	CP14-13

	NetCP14_11
	Pins
	CP14-11

	NetCP14_10
	Pins
	CP14-10

	Ports
	NetCP14_10

	NetCP14_9
	Pins
	CP14-9

	Ports
	NetCP14_9

	NetCP13_13
	Pins
	CP13-13

	NetCP13_11
	Pins
	CP13-11

	NetCP13_10
	Pins
	CP13-10

	Ports
	NetCP13_10

	NetCP13_9
	Pins
	CP13-9

	Ports
	NetCP13_9

	NetCP12_13
	Pins
	CP12-13

	NetCP12_11
	Pins
	CP12-11

	NetCP12_10
	Pins
	CP12-10

	Ports
	NetCP12_10

	NetCP12_9
	Pins
	CP12-9

	Ports
	NetCP12_9

	NetCP11_13
	Pins
	CP11-13

	NetCP11_11
	Pins
	CP11-11

	NetCP11_10
	Pins
	CP11-10

	Ports
	NetCP11_10

	NetCP11_9
	Pins
	CP11-9

	Ports
	NetCP11_9

	NetCP10_13
	Pins
	CP10-13

	NetCP10_11
	Pins
	CP10-11

	NetCP10_10
	Pins
	CP10-10

	Ports
	NetCP10_10

	NetCP10_9
	Pins
	CP10-9

	Ports
	NetCP10_9

	NetCP9_13
	Pins
	CP9-13

	NetCP9_11
	Pins
	CP9-11

	NetCP9_10
	Pins
	CP9-10

	Ports
	NetCP9_10

	NetCP9_9
	Pins
	CP9-9

	Ports
	NetCP9_9

	NetCP8_13
	Pins
	CP8-13

	NetCP8_11
	Pins
	CP8-11

	NetCP8_10
	Pins
	CP8-10

	Ports
	NetCP8_10

	NetCP8_9
	Pins
	CP8-9

	Ports
	NetCP8_9

	NetCP7_13
	Pins
	CP7-13

	NetCP7_11
	Pins
	CP7-11

	NetCP7_10
	Pins
	CP7-10

	Ports
	NetCP7_10

	NetCP7_9
	Pins
	CP7-9

	Ports
	NetCP7_9

	NetCP6_13
	Pins
	CP6-13

	NetCP6_11
	Pins
	CP6-11

	NetCP6_10
	Pins
	CP6-10

	Ports
	NetCP6_10

	NetCP6_9
	Pins
	CP6-9

	Ports
	NetCP6_9

	NetCP5_13
	Pins
	CP5-13

	NetCP5_11
	Pins
	CP5-11

	NetCP5_10
	Pins
	CP5-10

	Ports
	NetCP5_10

	NetCP5_9
	Pins
	CP5-9

	Ports
	NetCP5_9

	NetCP4_13
	Pins
	CP4-13

	NetCP4_11
	Pins
	CP4-11

	NetCP4_10
	Pins
	CP4-10

	Ports
	NetCP4_10

	NetCP4_9
	Pins
	CP4-9

	Ports
	NetCP4_9

	NetCP3_13
	Pins
	CP3-13

	NetCP3_11
	Pins
	CP3-11

	NetCP3_10
	Pins
	CP3-10

	Ports
	NetCP3_10

	NetCP3_9
	Pins
	CP3-9

	Ports
	NetCP3_9

	NetCP2_13
	Pins
	CP2-13

	NetCP2_11
	Pins
	CP2-11

	NetCP2_10
	Pins
	CP2-10

	Ports
	NetCP2_10

	NetCP2_9
	Pins
	CP2-9

	Ports
	NetCP2_9

	NetCP1_13
	Pins
	CP1-13

	NetCP1_11
	Pins
	CP1-11

	NetCP1_10
	Pins
	CP1-10

	Ports
	NetCP1_10

	NetCP1_9
	Pins
	CP1-9

	Ports
	NetCP1_9

	Ports
	+5V
	+5V
	+5V
	+5V
	+5V
	+5V
	+5V
	+5V
	+5V
	+5V
	+5V
	+5V
	+5V
	+5V
	+5V
	+5V
	+12V
	+12V
	+12V
	+12V
	+12V
	+12V
	+12V
	+12V
	+12V
	+12V
	+12V
	+12V
	+12V
	+12V
	+12V
	GRD
	GRD
	GRD
	GRD
	GRD
	GRD
	GRD
	GRD
	GRD
	GRD
	GRD
	GRD
	GRD
	GRD
	GRD
	GRD
	GRD
	MCU-SSA
	MCU-SSB
	MCU-SSC
	MCU-SSD
	MISO
	MISO
	MISO
	MISO
	MISO
	MISO
	MISO
	MISO
	MISO
	MISO
	MISO
	MISO
	MISO
	MISO
	MISO
	MISO
	MOSI
	MOSI
	MOSI
	MOSI
	MOSI
	MOSI
	MOSI
	MOSI
	MOSI
	MOSI
	MOSI
	MOSI
	MOSI
	MOSI
	MOSI
	MOSI
	MUXEN
	SCK
	SCK
	SCK
	SCK
	SCK
	SCK
	SCK
	SCK
	SCK
	SCK
	SCK
	SCK
	SCK
	SCK
	SCK
	SCK
	SS1
	SS2
	SS3
	SS4
	SS5
	SS6
	SS7
	SS8
	SS9
	SS10
	SS11
	SS12
	SS13
	SS14
	SS15
	ST1
	ST2
	ST3
	ST4
	ST5
	ST6
	ST7
	ST8
	ST9
	ST10
	ST11
	ST12
	ST13
	ST14
	ST15
	STATUS

	Mux.SchDoc(Mux)
	Components
	MUX
	MUX-1
	MUX-2
	MUX-3
	MUX-4
	MUX-5
	MUX-6
	MUX-7
	MUX-8
	MUX-9
	MUX-10
	MUX-11
	MUX-12
	MUX-13
	MUX-14
	MUX-15
	MUX-16
	MUX-17
	MUX-18
	MUX-19
	MUX-20
	MUX-21
	MUX-22
	MUX-23
	MUX-24

	Nets
	NetMUX_24
	Pins
	MUX-24

	Ports
	NetMUX_24

	NetMUX_23
	Pins
	MUX-23

	Ports
	NetMUX_23

	NetMUX_22
	Pins
	MUX-22

	Ports
	NetMUX_22

	NetMUX_21
	Pins
	MUX-21

	Ports
	NetMUX_21

	NetMUX_20
	Pins
	MUX-20

	Ports
	NetMUX_20

	NetMUX_18
	Pins
	MUX-18
	MUX-19

	Ports
	NetMUX_18

	NetMUX_17
	Pins
	MUX-17

	Ports
	NetMUX_17

	NetMUX_16
	Pins
	MUX-16

	Ports
	NetMUX_16

	NetMUX_15
	Pins
	MUX-15

	Ports
	NetMUX_15

	NetMUX_14
	Pins
	MUX-14

	Ports
	NetMUX_14

	NetMUX_13
	Pins
	MUX-13

	Ports
	NetMUX_13

	NetMUX_12
	Pins
	MUX-12

	Ports
	NetMUX_12

	NetMUX_11
	Pins
	MUX-11

	Ports
	NetMUX_11

	NetMUX_10
	Pins
	MUX-10

	Ports
	NetMUX_10

	NetMUX_9
	Pins
	MUX-9

	Ports
	NetMUX_9

	NetMUX_8
	Pins
	MUX-8

	Ports
	NetMUX_8

	NetMUX_7
	Pins
	MUX-7

	Ports
	NetMUX_7

	NetMUX_6
	Pins
	MUX-6

	Ports
	NetMUX_6

	NetMUX_5
	Pins
	MUX-5

	Ports
	NetMUX_5

	NetMUX_4
	Pins
	MUX-4

	Ports
	NetMUX_4

	NetMUX_3
	Pins
	MUX-3

	Ports
	NetMUX_3

	NetMUX_2
	Pins
	MUX-2

	Ports
	NetMUX_2

	NetMUX_1
	Pins
	MUX-1

	Ports
	NetMUX_1

	Ports
	+5V
	GRD
	MCU-SSA
	MCU-SSB
	MCU-SSC
	MCU-SSD
	MUXEN
	SS1
	SS2
	SS3
	SS4
	SS5
	SS6
	SS7
	SS8
	SS9
	SS10
	SS11
	SS12
	SS13
	SS14
	SS15
	SS16

	Signal LEDs.SchDoc("Signal LEDs")
	Components
	LB1
	LB1-1
	LB1-2
	LB1-3
	LB1-4
	LB1-5
	LB1-6
	LB1-7
	LB1-8

	LB2
	LB2-1
	LB2-2
	LB2-3
	LB2-4
	LB2-5
	LB2-6
	LB2-7
	LB2-8

	LB3
	LB3-1
	LB3-2
	LB3-3
	LB3-4
	LB3-5
	LB3-6
	LB3-7
	LB3-8

	LB4
	LB4-1
	LB4-2
	LB4-3
	LB4-4
	LB4-5
	LB4-6
	LB4-7
	LB4-8

	RB1
	RB1-1
	RB1-2
	RB1-3
	RB1-4
	RB1-5
	RB1-6
	RB1-7
	RB1-8
	RB1-9
	RB1-10
	RB1-11
	RB1-12
	RB1-13
	RB1-14
	RB1-15
	RB1-16

	STA
	STA-1
	STA-2

	Nets
	NetRB1_16
	Pins
	RB1-16
	STA-2

	Ports
	NetRB1_16

	NetLB4_8
	Pins
	LB4-8
	STA-1

	NetLB4_7
	Pins
	LB4-7

	Ports
	NetLB4_7

	NetLB4_6
	Pins
	LB4-6
	RB1-15

	NetLB4_5
	Pins
	LB4-5

	Ports
	NetLB4_5

	NetLB4_4
	Pins
	LB4-4
	RB1-14

	NetLB4_3
	Pins
	LB4-3

	Ports
	NetLB4_3

	NetLB4_2
	Pins
	LB4-2
	RB1-13

	NetLB4_1
	Pins
	LB4-1

	Ports
	NetLB4_1

	NetLB3_8
	Pins
	LB3-8
	RB1-12

	NetLB3_7
	Pins
	LB3-7

	Ports
	NetLB3_7

	NetLB3_6
	Pins
	LB3-6
	RB1-11

	NetLB3_5
	Pins
	LB3-5

	Ports
	NetLB3_5

	NetLB3_4
	Pins
	LB3-4
	RB1-10

	NetLB3_3
	Pins
	LB3-3

	Ports
	NetLB3_3

	NetLB3_2
	Pins
	LB3-2
	RB1-9

	NetLB3_1
	Pins
	LB3-1

	Ports
	NetLB3_1

	NetLB2_8
	Pins
	LB2-8
	RB1-8

	NetLB2_7
	Pins
	LB2-7

	Ports
	NetLB2_7

	NetLB2_6
	Pins
	LB2-6
	RB1-7

	NetLB2_5
	Pins
	LB2-5

	Ports
	NetLB2_5

	NetLB2_4
	Pins
	LB2-4
	RB1-6

	NetLB2_3
	Pins
	LB2-3

	Ports
	NetLB2_3

	NetLB2_2
	Pins
	LB2-2
	RB1-5

	NetLB2_1
	Pins
	LB2-1

	Ports
	NetLB2_1

	NetLB1_8
	Pins
	LB1-8
	RB1-4

	NetLB1_7
	Pins
	LB1-7

	Ports
	NetLB1_7

	NetLB1_6
	Pins
	LB1-6
	RB1-3

	NetLB1_5
	Pins
	LB1-5

	Ports
	NetLB1_5

	NetLB1_4
	Pins
	LB1-4
	RB1-2

	NetLB1_3
	Pins
	LB1-3

	Ports
	NetLB1_3

	NetLB1_2
	Pins
	LB1-2
	RB1-1

	NetLB1_1
	Pins
	LB1-1

	Ports
	NetLB1_1

	Ports
	GRD
	LED1
	LED2
	LED3
	LED4
	LED5
	LED6
	LED7
	LED8
	LED9
	LED10
	LED11
	LED12
	LED13
	LED14
	LED15
	LED16

	Status Chip.SchDoc("Status Chip")
	Components
	STAT
	STAT-1
	STAT-2
	STAT-3
	STAT-4
	STAT-5
	STAT-6
	STAT-7
	STAT-8
	STAT-9
	STAT-10
	STAT-11
	STAT-12
	STAT-13
	STAT-14
	STAT-15
	STAT-16
	STAT-17
	STAT-18
	STAT-19
	STAT-20
	STAT-21
	STAT-22
	STAT-23
	STAT-24
	STAT-25
	STAT-26
	STAT-27
	STAT-28

	Nets
	NetSTAT_28
	Pins
	STAT-28

	Ports
	NetSTAT_28
	NetSTAT_28

	NetSTAT_27
	Pins
	STAT-27

	Ports
	NetSTAT_27
	NetSTAT_27

	NetSTAT_26
	Pins
	STAT-26

	Ports
	NetSTAT_26
	NetSTAT_26

	NetSTAT_25
	Pins
	STAT-25

	Ports
	NetSTAT_25
	NetSTAT_25

	NetSTAT_24
	Pins
	STAT-24

	Ports
	NetSTAT_24
	NetSTAT_24

	NetSTAT_23
	Pins
	STAT-23

	Ports
	NetSTAT_23
	NetSTAT_23

	NetSTAT_21
	Pins
	STAT-21

	Ports
	NetSTAT_21
	NetSTAT_21

	NetSTAT_20
	Pins
	STAT-20

	NetSTAT_19
	Pins
	STAT-19

	Ports
	NetSTAT_19

	NetSTAT_18
	Pins
	STAT-18

	Ports
	NetSTAT_18

	NetSTAT_17
	Pins
	STAT-17

	Ports
	NetSTAT_17

	NetSTAT_16
	Pins
	STAT-16

	Ports
	NetSTAT_16

	NetSTAT_15
	Pins
	STAT-15

	NetSTAT_14
	Pins
	STAT-14

	Ports
	NetSTAT_14
	NetSTAT_14

	NetSTAT_13
	Pins
	STAT-13

	NetSTAT_12
	Pins
	STAT-12

	Ports
	NetSTAT_12
	NetSTAT_12

	NetSTAT_11
	Pins
	STAT-11

	Ports
	NetSTAT_11
	NetSTAT_11

	NetSTAT_10
	Pins
	STAT-10

	NetSTAT_9
	Pins
	STAT-9

	NetSTAT_8
	Pins
	STAT-8
	STAT-22

	Ports
	NetSTAT_8

	NetSTAT_7
	Pins
	STAT-7

	Ports
	NetSTAT_7

	NetSTAT_6
	Pins
	STAT-6

	Ports
	NetSTAT_6
	NetSTAT_6

	NetSTAT_5
	Pins
	STAT-5

	Ports
	NetSTAT_5
	NetSTAT_5

	NetSTAT_4
	Pins
	STAT-4

	Ports
	NetSTAT_4
	NetSTAT_4

	NetSTAT_3
	Pins
	STAT-3

	Ports
	NetSTAT_3
	NetSTAT_3

	NetSTAT_2
	Pins
	STAT-2

	Ports
	NetSTAT_2
	NetSTAT_2

	NetSTAT_1
	Pins
	STAT-1

	Ports
	NetSTAT_1
	NetSTAT_1

	Ports
	+5V
	GRD
	LED1
	LED2
	LED3
	LED4
	LED5
	LED6
	LED7
	LED8
	LED9
	LED10
	LED11
	LED12
	LED13
	LED14
	LED15
	LED16
	MISO
	MOSI
	SCK
	SS16
	ST1
	ST2
	ST3
	ST4
	ST5
	ST6
	ST7
	ST8
	ST9
	ST10
	ST11
	ST12
	ST13
	ST14
	ST15
	STATUS

	PCB Prints
	MCB V1-2.PcbDoc
	Multilayer Composite Print
	Components
	BC
	BC-1
	BC-2
	BC-3

	BC1
	BC1-1
	BC1-3
	BC1-2

	BC2
	BC2-1
	BC2-3
	BC2-2

	BC3
	BC3-1
	BC3-3
	BC3-2

	CBC11
	CBC11-1
	CBC11-2

	CBC12
	CBC12-2
	CBC12-1

	CBC21
	CBC21-1
	CBC21-2

	CBC22
	CBC22-2
	CBC22-1

	CBC31
	CBC31-1
	CBC31-2

	CBC32
	CBC32-2
	CBC32-1

	CP1
	CP1-1
	CP1-2
	CP1-3
	CP1-4
	CP1-5
	CP1-6
	CP1-7
	CP1-8
	CP1-9
	CP1-10
	CP1-11
	CP1-12
	CP1-13
	CP1-14
	CP1-15
	CP1-16

	CP2
	CP2-1
	CP2-2
	CP2-3
	CP2-4
	CP2-5
	CP2-6
	CP2-7
	CP2-8
	CP2-9
	CP2-10
	CP2-11
	CP2-12
	CP2-13
	CP2-14
	CP2-15
	CP2-16

	CP3
	CP3-1
	CP3-2
	CP3-3
	CP3-4
	CP3-5
	CP3-6
	CP3-7
	CP3-8
	CP3-9
	CP3-10
	CP3-11
	CP3-12
	CP3-13
	CP3-14
	CP3-15
	CP3-16

	CP4
	CP4-1
	CP4-2
	CP4-3
	CP4-4
	CP4-5
	CP4-6
	CP4-7
	CP4-8
	CP4-9
	CP4-10
	CP4-11
	CP4-12
	CP4-13
	CP4-14
	CP4-15
	CP4-16

	CP5
	CP5-1
	CP5-2
	CP5-3
	CP5-4
	CP5-5
	CP5-6
	CP5-7
	CP5-8
	CP5-9
	CP5-10
	CP5-11
	CP5-12
	CP5-13
	CP5-14
	CP5-15
	CP5-16

	CP6
	CP6-1
	CP6-2
	CP6-3
	CP6-4
	CP6-5
	CP6-6
	CP6-7
	CP6-8
	CP6-9
	CP6-10
	CP6-11
	CP6-12
	CP6-13
	CP6-14
	CP6-15
	CP6-16

	CP7
	CP7-1
	CP7-2
	CP7-3
	CP7-4
	CP7-5
	CP7-6
	CP7-7
	CP7-8
	CP7-9
	CP7-10
	CP7-11
	CP7-12
	CP7-13
	CP7-14
	CP7-15
	CP7-16

	CP8
	CP8-1
	CP8-2
	CP8-3
	CP8-4
	CP8-5
	CP8-6
	CP8-7
	CP8-8
	CP8-9
	CP8-10
	CP8-11
	CP8-12
	CP8-13
	CP8-14
	CP8-15
	CP8-16

	CP9
	CP9-1
	CP9-2
	CP9-3
	CP9-4
	CP9-5
	CP9-6
	CP9-7
	CP9-8
	CP9-9
	CP9-10
	CP9-11
	CP9-12
	CP9-13
	CP9-14
	CP9-15
	CP9-16

	CP10
	CP10-1
	CP10-2
	CP10-3
	CP10-4
	CP10-5
	CP10-6
	CP10-7
	CP10-8
	CP10-9
	CP10-10
	CP10-11
	CP10-12
	CP10-13
	CP10-14
	CP10-15
	CP10-16

	CP11
	CP11-1
	CP11-2
	CP11-3
	CP11-4
	CP11-5
	CP11-6
	CP11-7
	CP11-8
	CP11-9
	CP11-10
	CP11-11
	CP11-12
	CP11-13
	CP11-14
	CP11-15
	CP11-16

	CP12
	CP12-1
	CP12-2
	CP12-3
	CP12-4
	CP12-5
	CP12-6
	CP12-7
	CP12-8
	CP12-9
	CP12-10
	CP12-11
	CP12-12
	CP12-13
	CP12-14
	CP12-15
	CP12-16

	CP13
	CP13-1
	CP13-2
	CP13-3
	CP13-4
	CP13-5
	CP13-6
	CP13-7
	CP13-8
	CP13-9
	CP13-10
	CP13-11
	CP13-12
	CP13-13
	CP13-14
	CP13-15
	CP13-16

	CP14
	CP14-1
	CP14-2
	CP14-3
	CP14-4
	CP14-5
	CP14-6
	CP14-7
	CP14-8
	CP14-9
	CP14-10
	CP14-11
	CP14-12
	CP14-13
	CP14-14
	CP14-15
	CP14-16

	CP15
	CP15-1
	CP15-2
	CP15-3
	CP15-4
	CP15-5
	CP15-6
	CP15-7
	CP15-8
	CP15-9
	CP15-10
	CP15-11
	CP15-12
	CP15-13
	CP15-14
	CP15-15
	CP15-16

	D5
	D5-2
	D5-1

	D12
	D12-2
	D12-1

	Designator2
	F5
	F5-1B
	F5-2
	F5-1
	F5-2B

	F12
	F12-1B
	F12-2
	F12-1
	F12-2B

	LB1
	LB1-1
	LB1-2
	LB1-3
	LB1-4
	LB1-5
	LB1-6
	LB1-7
	LB1-8

	LB2
	LB2-1
	LB2-2
	LB2-3
	LB2-4
	LB2-5
	LB2-6
	LB2-7
	LB2-8

	LB3
	LB3-1
	LB3-2
	LB3-3
	LB3-4
	LB3-5
	LB3-6
	LB3-7
	LB3-8

	LB4
	LB4-1
	LB4-2
	LB4-3
	LB4-4
	LB4-5
	LB4-6
	LB4-7
	LB4-8

	MCU-CP
	MCU-CP-1
	MCU-CP-2
	MCU-CP-3
	MCU-CP-4
	MCU-CP-5
	MCU-CP-6
	MCU-CP-7
	MCU-CP-8
	MCU-CP-9
	MCU-CP-10
	MCU-CP-11
	MCU-CP-12

	MUX
	MUX-24
	MUX-23
	MUX-22
	MUX-21
	MUX-20
	MUX-19
	MUX-18
	MUX-17
	MUX-16
	MUX-15
	MUX-14
	MUX-13
	MUX-12
	MUX-11
	MUX-10
	MUX-9
	MUX-8
	MUX-7
	MUX-6
	MUX-5
	MUX-4
	MUX-3
	MUX-2
	MUX-1

	R5
	R5-1
	R5-2

	R12
	R12-1
	R12-2

	RB1
	RB1-16
	RB1-15
	RB1-14
	RB1-13
	RB1-12
	RB1-11
	RB1-10
	RB1-9
	RB1-8
	RB1-7
	RB1-6
	RB1-5
	RB1-4
	RB1-3
	RB1-2
	RB1-1

	STA
	STA-1
	STA-2

	STAT
	STAT-1
	STAT-2
	STAT-3
	STAT-4
	STAT-5
	STAT-6
	STAT-7
	STAT-8
	STAT-9
	STAT-10
	STAT-11
	STAT-12
	STAT-13
	STAT-14
	STAT-28
	STAT-27
	STAT-26
	STAT-25
	STAT-24
	STAT-23
	STAT-22
	STAT-21
	STAT-20
	STAT-19
	STAT-18
	STAT-17
	STAT-16
	STAT-15

	Nets
	+12
	BC1-1
	BC2-1
	BC3-1
	BC-1
	CBC11-2
	CBC21-2
	CBC31-2
	F12-1
	F12-1B

	GND
	BC1-2
	BC2-2
	BC3-2
	BC-2
	CBC11-1
	CBC12-2
	CBC21-1
	CBC22-2
	CBC31-1
	CBC32-2
	CP1-5
	CP1-6
	CP1-7
	CP1-8
	CP2-5
	CP2-6
	CP2-7
	CP2-8
	CP3-5
	CP3-6
	CP3-7
	CP3-8
	CP4-5
	CP4-6
	CP4-7
	CP4-8
	CP5-5
	CP5-6
	CP5-7
	CP5-8
	CP6-5
	CP6-6
	CP6-7
	CP6-8
	CP7-5
	CP7-6
	CP7-7
	CP7-8
	CP8-5
	CP8-6
	CP8-7
	CP8-8
	CP9-5
	CP9-6
	CP9-7
	CP9-8
	CP10-5
	CP10-6
	CP10-7
	CP10-8
	CP11-5
	CP11-6
	CP11-7
	CP11-8
	CP12-5
	CP12-6
	CP12-7
	CP12-8
	CP13-5
	CP13-6
	CP13-7
	CP13-8
	CP14-5
	CP14-6
	CP14-7
	CP14-8
	CP15-5
	CP15-6
	CP15-7
	CP15-8
	MCU-CP-11
	MUX-12
	R5-1
	R12-1
	RB1-16
	STA-2
	STAT-8
	STAT-22

	NetBC1_3
	BC1-3
	BC2-3
	BC3-3
	CBC12-1
	CBC22-1
	CBC32-1
	F5-1
	F5-1B

	NetCP1_1
	CP1-1
	CP1-2
	CP1-3
	CP1-4
	CP2-1
	CP2-2
	CP2-3
	CP2-4
	CP3-1
	CP3-2
	CP3-3
	CP3-4
	CP4-1
	CP4-2
	CP4-3
	CP4-4
	CP5-1
	CP5-2
	CP5-3
	CP5-4
	CP6-1
	CP6-2
	CP6-3
	CP6-4
	CP7-1
	CP7-2
	CP7-3
	CP7-4
	CP8-1
	CP8-2
	CP8-3
	CP8-4
	CP9-1
	CP9-2
	CP9-3
	CP9-4
	CP10-1
	CP10-2
	CP10-3
	CP10-4
	CP11-1
	CP11-2
	CP11-3
	CP11-4
	CP12-1
	CP12-2
	CP12-3
	CP12-4
	CP13-1
	CP13-2
	CP13-3
	CP13-4
	CP14-1
	CP14-2
	CP14-3
	CP14-4
	CP15-1
	CP15-2
	CP15-3
	CP15-4
	D12-1
	F12-2
	F12-2B

	NetCP1_9
	CP1-9
	LB1-1
	STAT-23

	NetCP1_10
	CP1-10
	MUX-1

	NetCP1_12
	CP1-12
	CP2-12
	CP3-12
	CP4-12
	CP5-12
	CP6-12
	CP7-12
	CP8-12
	CP9-12
	CP10-12
	CP11-12
	CP12-12
	CP13-12
	CP14-12
	CP15-12
	D5-1
	F5-2
	F5-2B
	MCU-CP-12
	MUX-24
	STAT-7

	NetCP1_14
	CP1-14
	CP2-14
	CP3-14
	CP4-14
	CP5-14
	CP6-14
	CP7-14
	CP8-14
	CP9-14
	CP10-14
	CP11-14
	CP12-14
	CP13-14
	CP14-14
	CP15-14
	MCU-CP-3
	STAT-19

	NetCP1_15
	CP1-15
	CP2-15
	CP3-15
	CP4-15
	CP5-15
	CP6-15
	CP7-15
	CP8-15
	CP9-15
	CP10-15
	CP11-15
	CP12-15
	CP13-15
	CP14-15
	CP15-15
	MCU-CP-2
	STAT-18

	NetCP1_16
	CP1-16
	CP2-16
	CP3-16
	CP4-16
	CP5-16
	CP6-16
	CP7-16
	CP8-16
	CP9-16
	CP10-16
	CP11-16
	CP12-16
	CP13-16
	CP14-16
	CP15-16
	MCU-CP-1
	STAT-17

	NetCP2_9
	CP2-9
	LB1-3
	STAT-24

	NetCP2_10
	CP2-10
	MUX-2

	NetCP3_9
	CP3-9
	LB1-5
	STAT-25

	NetCP3_10
	CP3-10
	MUX-3

	NetCP4_9
	CP4-9
	LB1-7
	STAT-26

	NetCP4_10
	CP4-10
	MUX-4

	NetCP5_9
	CP5-9
	LB2-1
	STAT-27

	NetCP5_10
	CP5-10
	MUX-5

	NetCP6_9
	CP6-9
	LB2-3
	STAT-28

	NetCP6_10
	CP6-10
	MUX-6

	NetCP7_9
	CP7-9
	LB2-5
	STAT-1

	NetCP7_10
	CP7-10
	MUX-7

	NetCP8_9
	CP8-9
	LB2-7
	STAT-21

	NetCP8_10
	CP8-10
	MUX-8

	NetCP9_9
	CP9-9
	LB3-1
	STAT-2

	NetCP9_10
	CP9-10
	MUX-9

	NetCP10_9
	CP10-9
	LB3-3
	STAT-3

	NetCP10_10
	CP10-10
	MUX-10

	NetCP11_9
	CP11-9
	LB3-5
	STAT-4

	NetCP11_10
	CP11-10
	MUX-11

	NetCP12_9
	CP12-9
	LB3-7
	STAT-5

	NetCP12_10
	CP12-10
	MUX-13

	NetCP13_9
	CP13-9
	LB4-1
	STAT-6

	NetCP13_10
	CP13-10
	MUX-14

	NetCP14_9
	CP14-9
	LB4-3
	STAT-11

	NetCP14_10
	CP14-10
	MUX-15

	NetCP15_9
	CP15-9
	LB4-5
	STAT-12

	NetCP15_10
	CP15-10
	MUX-16

	NetD5_2
	D5-2
	R5-2

	NetD12_2
	D12-2
	R12-2

	NetLB1_2
	LB1-2
	RB1-1

	NetLB1_4
	LB1-4
	RB1-2

	NetLB1_6
	LB1-6
	RB1-3

	NetLB1_8
	LB1-8
	RB1-4

	NetLB2_2
	LB2-2
	RB1-5

	NetLB2_4
	LB2-4
	RB1-6

	NetLB2_6
	LB2-6
	RB1-7

	NetLB2_8
	LB2-8
	RB1-8

	NetLB3_2
	LB3-2
	RB1-9

	NetLB3_4
	LB3-4
	RB1-10

	NetLB3_6
	LB3-6
	RB1-11

	NetLB3_8
	LB3-8
	RB1-12

	NetLB4_2
	LB4-2
	RB1-13

	NetLB4_4
	LB4-4
	RB1-14

	NetLB4_6
	LB4-6
	RB1-15

	NetLB4_7
	LB4-7
	MCU-CP-8
	STAT-14

	NetLB4_8
	LB4-8
	STA-1

	NetMCU-CP_4
	MCU-CP-4
	MUX-23

	NetMCU-CP_5
	MCU-CP-5
	MUX-22

	NetMCU-CP_6
	MCU-CP-6
	MUX-21

	NetMCU-CP_7
	MCU-CP-7
	MUX-20

	NetMCU-CP_10
	MCU-CP-10
	MUX-18
	MUX-19

	NetMUX_17
	MUX-17
	STAT-16

	Bill of Materials

	MCU V1-1.pdf
	Schematic Prints("All Documents",Physical)
	MCU V1-1.SchDoc("MCU V1-1")
	Components
	AVR
	AVR-1
	AVR-2
	AVR-3
	AVR-4
	AVR-5
	AVR-6
	AVR-7
	AVR-8
	AVR-9
	AVR-10
	AVR-11
	AVR-12
	AVR-13
	AVR-14
	AVR-15
	AVR-16
	AVR-17
	AVR-18
	AVR-19
	AVR-20
	AVR-21
	AVR-22
	AVR-23
	AVR-24
	AVR-25
	AVR-26
	AVR-27
	AVR-28
	AVR-29
	AVR-30
	AVR-31
	AVR-32
	AVR-33
	AVR-34
	AVR-35
	AVR-36
	AVR-37
	AVR-38
	AVR-39
	AVR-40

	DB9
	DB9-1
	DB9-2
	DB9-3
	DB9-4
	DB9-5
	DB9-6
	DB9-7
	DB9-8
	DB9-9

	MCB
	MCB-1
	MCB-2
	MCB-3
	MCB-4
	MCB-5
	MCB-6
	MCB-7
	MCB-8
	MCB-9
	MCB-10
	MCB-11
	MCB-12

	Ports
	MISO
	MISO
	MOSI
	MOSI
	MUXEN
	MUXEN
	RX
	RX
	SCK
	SCK
	SSA
	SSA
	SSB
	SSB
	SSC
	SSC
	SSD
	SSD
	STAT
	STAT
	TX
	TX

	PCB Prints
	MCU V1-1.PcbDoc
	Multilayer Composite Print
	Components
	AVR
	AVR-1
	AVR-2
	AVR-3
	AVR-4
	AVR-5
	AVR-6
	AVR-7
	AVR-8
	AVR-9
	AVR-10
	AVR-11
	AVR-12
	AVR-13
	AVR-14
	AVR-15
	AVR-16
	AVR-17
	AVR-18
	AVR-19
	AVR-20
	AVR-40
	AVR-39
	AVR-38
	AVR-37
	AVR-36
	AVR-35
	AVR-34
	AVR-33
	AVR-32
	AVR-31
	AVR-30
	AVR-29
	AVR-28
	AVR-27
	AVR-26
	AVR-25
	AVR-24
	AVR-23
	AVR-22
	AVR-21

	DB9
	DB9-11
	DB9-10
	DB9-1
	DB9-6
	DB9-2
	DB9-7
	DB9-3
	DB9-8
	DB9-4
	DB9-9
	DB9-5

	MCB
	MCB-12
	MCB-11
	MCB-10
	MCB-9
	MCB-8
	MCB-7
	MCB-6
	MCB-5
	MCB-4
	MCB-3
	MCB-2
	MCB-1

	Bill of Materials

