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Abstract

This project addresses the inflexibility of modern robotics by developing a modular robotic
platform, capable of using various modules that can be added and removed to a base unit in a short
amount of time. The scope of the project limited development of modules to a 3-DOF leg. The proof of
concept was established by developing a main communications board capable of detecting attached
peripherals, and individual leg circuit boards capable of full PID control utilizing inverse kinematics to
precisely place the end of the leg. Mechanical issues prevented the leg constructed from being fully
functional, however plans have been developed to address all issues found in the development of this

platform.
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1. Introduction
The development and control of (self-)reconfigurable and modular robotic platforms have

emerged as a new research area in robotics within the past two decades. The field addresses new
challenges that come with the design, modeling, implementation and control of autonomous robots
whose kinematic structures can vary over time depending on the physical environment that they are in.
The reconfigurable modular robots have two important features which make them desirable in
applications; flexibility and robustness. They can adapt their shape and form with respect to changes in
their environments and they can accommodate failures within modules provided that they possess
redundancy.

A limitation to the field of robotics is that robots are designed to accomplish a specific task; this
limits the versatility of these machines. The development of a modular robotics platform, specifically
intended for rapid prototyping of autonomous systems, would promote the marketing of more products
as well as the creation of more jobs in the assembly and testing of various configurations of the
platform. Creation of various specialized units from a base of modular components would also allow
any of these units to be quickly and easily repaired or reconfigured in the field.

The goal of this project is to design, construct, and demonstrate a reconfigurable mobile
platform that addresses, at least in part, the issues outlined above. The project outcome will be a proof
of concept for future development and commercialization of a reconfigurable mobile robot.

”n u

Within the scope of this project, the terms “reconfigurable,” “mobile,” and “modular” are

defined as follows:

+ Areconfigurable robot is one that is capable of attaining various configurations by the addition
or removal of peripheral attachments (leg, arm, sensor, etc.) to predefined connection points
existing on the robot chassis.

*+ A mobile robot is one that is capable of autonomous or controlled locomotion to change its
relative position and orientation with respect to a global coordinate frame.

+ A modular robot is one that is built using a variety of peripheral units employing standardized

electrical and mechanical connections and communications.



1.1.Background

Reconfigurable robotics research has focused on design and implementation of multiple
modules to work together to complete a goal. One recent work on reconfigurability focused on two
blocks that are connected by a link that allows the two ends to rotate relative to the link (1)(2). On each
surface of the module there are permanent magnets that connect two modules together into a robot.
The module and an example configuration of modules is shown in Figure 1. The focus of the research
was how the modules could combine to achieve a simple goal. A simple goal for the robot would be to
walk on four legs or crawl along the ground. The results show how the robot can transform from the
crawler configuration to the quadruped walker configuration. The robot does not dynamically calculate
how it should configure itself or how to move itself. Instead a program was written that allows the
robot’s initial configuration and movements to be programmed into the robot. In addition the modules
have zero sensing capability which means that the modules cannot adapt nor improve their movements

(1).

Persnent
TR RRELS
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Figure 1: Kamimura Experimental Module(1)



A similar project, conducted at the Modlab of the University of Pennsylvania, demonstrates how
a robot can detect an occurrence of structural disassembly and then proceed to repair itself(3). The
entire robot consists of three modules using a Controller Area Network (CAN). Each module is
controlled by a state machine with five states. The first state is connectivity where the module is able to
communicate with other modules meaning that it is physically connected. The module will leave the
first state if the system is structural deconstructed and enter the search state. The search state means
that the module is looking for other modules to recombine with. The third and fourth states are the
approach and dock states where two modules will eventually reconnect with each other. The final state
is the walking state where all modules are combined and perform a walking gait. When the CAN was
broken the robot would realize that it has undergone a structural disassembly. Using various range
finders, a camera and LEDs, the modules can locate each other and come together. In this experiment
the modules are identical in terms of function, which means that the modules do not have to be in their
original configuration when reassembled. During this process, if two modules get reconnected, they
share a master/slave control architecture. These modules will dock with the last module to complete
the reconstruction and continue to perform its original task before the deconstruction occurred. This

behavior is shown in Figure 2.

d)

Figure 2: Demonstration of Structural Disassembly and Reconstruction(3)
BigDog is a quadruped robot being developed by Boston Dynamics for use in the United States

military. BigDog is being designed for DARPA to function as a robotic pack mule for the US soldier. The

robot must be able to navigate uneven and difficult terrain. The leg uses four hydraulic actuators to



control the position and movement. BigDog must be able to determine how it is interacting with its
environment, how it is positioned in space and how to position its legs to achieve balance and the

desired gait.

BigDog uses kinematics and the ground reaction forces generated by the robot as the basis for
its control systems. BigDog uses 50 sensors to measure leg positions, accelerations and the various
forces exerted and experienced by the robot. BigDog has different algorithms to handle different types
of terrain like mud, snow or sand as well as handling different inclines. The robot must be able to uses
its sensors to determine which type of algorithm to use and how to apply it. Although BigDog is
controlled by a human, this is only used to give it a direction and speed of travel, all calculations for leg

placement and balance is handled by the robot.

™
BostonDynamics L‘
4

ustration by James Provost. wiwjamesprovast.com

Figure 3: BigDog Robot(4)

The aforementioned robotic systems demonstrate reconfigurability, modularity, and mobility
and illustrate the benefits of each idea as it applies to the advancing frontier of the robotics industry.
The Reconfigurable Modular Mobile Robotics Platform (ReMMRP) takes the next logical step in
innovation and combines these concepts into a robust, adaptive, plug-and-play robotic system. This
report details the development of this platform and the integration of the mechanical, electrical, and

software subsystems that make up the ReMMRP.



1.2. Report Organization
This report is broken down into the following sections:

+ Methodology, separated into the following components:
0 mechanical
0 electrical
0 software

*+  Results

+  Future Work

*+  Conclusions



2.

Methodology

The ReMMRP explores the integration of the concepts of reconfigurability, modularity, and

mobility in a single robotic platform. In order to achieve this goal, the robot must be able to accept

peripheral leg modules, recognize their presence and location, and coordinate their actions. The

ReMMRP must have:

*

a base unit, or chassis, that serves as a common connection hub for all peripheral modules.

leg modules capable of supporting the robot chassis and allowing mobility in three dimensions.

the ability to detect addition or removal of peripheral modules in real time.

the ability to control peripheral modules in real time.

the ability to determine if the present configuration is balanceable, and if so balance.

2.1. Design Specifications
In order to meet the requirements outlined in Section 2, specifications for the mechanical,

electrical, and software systems of the leg modules and chassis must be as follows:

*

*

Chassis:

0 The chassis will have 12 connection points — 2 on each short side, 4 on each long side.

0 The chassis must contain a centralized power distribution and communications hub.

0 The chassis must contain a processor responsible for coordinating the actions of all
peripheral modules, referred to as the Main Processing Unit (MPU).

0 The MPU must be interchangeable.

0 MPU software must determine actions for all peripheral modules and delegate
commands to them in real time.

0 The chassis must have a dedicated processor responsible for detecting the addition or
removal of peripheral modules in real time independently of the MPUs operation,
referred to as the STATUS processor.

0 STATUS processor software must operate in real time, allowing MPU to have immediate
knowledge of attached peripherals at any given time.

Leg Modules:
0 The legs modules will have 3 degrees of freedom (DOF)
0 The leg must operate in 3-dimensional space.



0 The leg must have position sensors integrated into each joint.

0 The joint motors must be mounted internally in each leg link.

o

Each leg module must have self-contained control system, referred to as a Leg Control
Unit (LCU).

The LCU must have a processor capable of handling the software controls.

The LCU must distribute power to joint motors and read joint position sensors.

The LCU must be able to relay signals to the main control system.

© O O o©O

LCU software must respond to commands from MPU with higher priority than any other
task inherent to LCU software.
0 Communications protocol must exist for data transfer among the MPU, STATUS

processor, and LCUs).

2.2.Robot Design: Mechanical
Figure 4 is a conceptual illustration of the ReMMRP in a four-legged configuration. The chassis

and legs can clearly be seen, as well as the 12 peripheral connection ports around the perimeter of the

robot.

Figure 4: Conceptual ReMMRP lllustration

The leg modules have three degrees of freedom (DOF). The entire leg must be able to rotate

horizontally with relation to the chassis, and the upper (thigh) and lower (calf) links must be able to



rotate vertically with relation to the chassis. The robot must be able to determine each link’s position,
therefore the leg must have sensors integrated into the design. The chassis will have 12 connection
points around its perimeter. There will be two ports on each short side, and four on each long side. The
long side of the chassis will be twice the length of the short side.

In order to provide the legs the greatest movement possible and to reduce collisions, the joint
motors must be mounted internally in each leg link. However to achieve this specification, the motors
will be perpendicular to the axis of rotation. In order to transfer the motor’s rotation to the leg joint a

gearbox is necessary.

2.2.1. LegDesign
The main peripheral design of the robot is a three DOF leg module and consists of a calf link, a

thigh link, and a hip joint. The leg module is shown in Figure 5.

Figure 5: Conceptual Leg lllustration

The calf link is constructed out of two identical plates of sheet metal. Each plate is connected to
the drive shaft exiting the gearbox by set screw hubs, which are mechanical connectors that attach to
the calf plates and use a radial set screw to secure itself to the shaft. The calf link has braces to secure
the two plates together and provide structural stability.

The thigh link contains two of the three leg motors. One motor is used to rotate the calf link and
the other is used to rotate the thigh link. Two identical metal plates are used to join the two motors
together. The thigh link is also used to secure the potentiometers (see Section 2.3.2.4 for sensor
choice). The potentiometers are connected to the motors’ output shafts using shaft couplers. The

potentiometers on the two vertical joints are mounted to rectangular pieces of 1/8” sheet aluminum



which are secured to the thigh link by two #6-32 screws which use spacers to set the potentiometer at
the correct distance from the thigh link.

The hip joint of the leg module is constructed from two machined pieces of aluminum tube
stock. One piece is connected to the robot chassis and has the port connector. This piece allows for the
horizontal rotation of the leg. The other piece connects the thigh link to the hip joint. This piece allows

for the vertical rotation of the leg from the hip.

2.2.2. Gearbox
Commercial gearboxes fall into two distinct categories. The first are those designed for

industrial applications, and the second are those designed for robotic hobbyists. The industrial
gearboxes are typically large, weigh several pounds, and are designed for higher torque applications
than required by the ReMMRP. The hobbyist gearboxes are designed for simple robots and made of
cheap plastic. The gearboxes would break under the loads of this robot and are therefore unsuitable. As
a result, ReMMRP uses a custom gearbox. Due to the fact that the gearboxes are a custom design, the
leg will be designed around this gearbox. There are two types of gears that can be used for the gearbox:
a worm gear and a miter gear. Each gear type has advantages and disadvantages as will be discussed

below.

2.2.2.1. Worm Gearbox
The first gearbox design considered for the project is a worm gear system. The primary reason

for the use of the worm gears is to make the legs non-backdriveable. The non-backdriveability would
require less power to be consumed by the motors as the motors would not have to constantly be
correcting the leg position of the robot. Worm gears typically have a high gear ratio, meaning that a
weaker motor could be chosen when compared to a gear train with little or no gearing down.

This gearbox is made from two identical but mirrored parts forming a clamshell design. Figure 6
shows half of a conceptual gearbox design. Each half has two pockets to accommodate the gears. The
machining required to make this design would be a series of pocketing operations. Given the precise
nature of the gear set, the clearance holes for the axles require high tolerances (+0.0005 in.) which will

add complexity to the machining process.



Figure 6: Conceptual Worm Gearbox lllustration

2.2.2.2. Miter Gearbox
The other choice for the gearbox is miter gears. Unlike the worm gears, miter gears allow the

leg to be backdriveable. The use of miter gears will not limit the potential of the legs to explore other
fields of research such as zero force control. During testing of the leg, the miter gears will also allow the
leg to be manually positioned instead of being forced to drive the motors to the desired position. The
manufacturing of this gearbox requires a single pocket for all the gears to be seated in which simplifies

machining. Figure 7 shows a conceptual version of the miter gear box.

Figure 7: Conceptual Miter Gearbox lllustration
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2.2.2.3. Gearbox Selection
In order to select the best type of gear for the design a trade study is conducted as shown in

Table 1. The trade study has three categories for each gearbox type to be rated on. The categories are
cost, torque and ease of manufacturing. Each of these categories is given a weight of 1-5 based on their
importance. The two gearbox types are then given a rating on each category. The rating and the weight

are multiplied together for the final score. These scores are then added together.

Worm Gearbox Miter Gearbox
Cost (2) 2*2=4 3*2=6
Torque (3) 4*3=12 3*¥3=9
Manufacturability (4) 2*4=8 3*4=12
Total 24 27

Table 1: Gearbox Trade Study

According to the trade study, the miter gear is the better gear choice for the gearbox. Both
types of gears are close in price. The worm gear can have high gear ratio, but miter gears can also
increase their torque output with a modified gear ratio. Manufacturing a miter gear box is also easier to

do. Therefore, the miter gearbox will be used to construct the leg modules.

2.2.2.4. Gearbox Design
The gearbox consists of three parts. The design centers on a single piece of solid aluminum

stock as seen in Figure 8. The other two parts are sheet metal covers, thus creating a sandwich design
for the gearbox which is seen in Figure 9. The stock has a single pocket that goes through the entire
piece of metal. The pocket allows both gears to be added to the pocket, but not in mesh. The gears can
be moved into position and set into place once the entire gearbox is assembled. The two pieces of sheet

metal seal the gearbox to keep the grease in and foreign particles out.
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Figure 8: Miter Gearbox Design

Figure 9: Internal View of the Gearbox

This gearbox has several advantages. The screw pattern on the top and bottom face of the
gearbox gas only 4 screws for easy attachment of cover plates. The sizes of the screws are standardized
to a single size of 6-32, which minimizes the number of different tools necessary to machine and
assemble the part. The pocket of the gearbox also relies on looser tolerances. Often end-mill cutters will
undercut the pocket which has the potential of forcing the gears out of their meshed position. By
increasing the dimensions of the pocket it reduces the impact undercutting will have and decrease

machining time. The gearbox design utilizes press fit ball bearings for easy manufacturing and assembly.

2.2.3. Hip Joint Design
The hip joint is responsible for the horizontal motion of the leg and is shown in Figure 10. The

motor that controls horizontal motion of the hip joint is not constrained to fit within the confines of a
leg link and is free to be mounted in any position. The motor can directly drive the axle to rotate the leg
and no gearbox is necessary. Using a single axle to rotate the leg is ideal, however it makes the
mounted potentiometer extend below the chassis. Mounting the potentiometer in this position will
increase the chance that the potentiometer may be damaged during operation. The solution is to use
two axles to achieve the motion. One axle is driven by the motor and this motion is transferred to a
second axle via spur gears. The second axle then rotates the leg and is connected to the potentiometer

on top of the joint. Using this configuration places the potentiometer in a position where it is least likely
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to be damaged. The hip joint is made from two pieces of aluminum tube stock nested inside one

another.

Figure 10: Hip Joint Design

2.2.4. Static Force Analysis
The forces involved must be known before the motors can be selected. The force calculations are

done in units of oz-in. Also, the calculations will be done with each link fully extended and parallel to
the ground, which means that the calculations will be for the maximum torque. Each plate has a length
of 12 inches and weighs 4.64 oz. The gearboxes weigh 23.36 oz., and the center of mass is .75” from the
axis of rotation towards the center of the thigh link. The axis of rotation is 7/8” from the end of the
plate, giving the calf plate a functional length of 11.125” and the thigh plate a length of 10.25”. Figure

11 is given for a reference of the leg module.
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Figure 11: Static Force Calculation Figure.
Note: The leg shown is the revised version of the leg as described in Section 3.1.

The analysis starts by calculating the torque required to rotate the calf plate. The weight of the
calf link is 9.28 oz and is 11.125” long. Assuming the force of the link is acting half of the length, the

torque is:

Equation 1: Motor 3 Torque

11.125
h = > in*9.28 oz

M, = 51.62 oz-in

Continuing to coordinate frame 1, this motor has to rotate not only the thigh link but the calf link as well

including a motor. Therefore:

Equation 2: Motor 2 Torque

, . 10.25
M; = 51.62 0z-in + |(23.36 0z *9.5in) + ( >

in *9.28 oz)]

M; =51.62 0z-in + 221.92 0z-in + 47.56 oz-in
M, =321.10z-in

The bracket that allows for the movement of the hip weighs 3.52 oz and the center of mass is 1.125 in

away from the horizontal axis of rotation. The torque required is:

14



Equation 3: Motor 1 Torque

My = 321.1 0z-in + [(3.125 in * 23.36 0z) + (1.125in* 3.52 0z)]
My = 321.1 0z-in + 73 0z-in + 3.96 0z-in
My = 398.06 0z-in

Based on the calculations performed, the Lynxmotion PGHM-04 is used. The motor selection is
discussed in detail in Section 2.3.2.2. The motor is rated at 341.76 oz-in of torque and weighs 3.59 oz.
Although this torque is below the maximum calculated torque for the thigh link, the specifications state
that the leg does not have to be able to rotate the leg at maximum torque.

In order for the entire leg to be rotated the thigh and calf links must be at some angle with
respect to the horizontal axis. Assuming that the calf and the thigh links are in line with each other and
the motor is 85% efficient, which gives the motor a torque rating of 289.85 oz-in. The angle required is
as follows:

Equation 4: Minimum Joint 2 Angle for Horizontal Movement

289.85 0z-in = 3.96 0z-in + (394.1 0z-in * cos 8)

285.89 0z-in = 394.1 0z-in * cos 0

28589 _
3941 °°
cos@ = .725
0 =435

2.2.5. Chassis Design
The chassis, shown in Figure 12, is made up of four plates of aluminum connected by four angle

brackets. There are two short sides containing two ports each and two long sides containing four ports
each. Each port contains one connector, two holes to secure the connector, and four holes to mount
each peripheral module. The holes used to mount the modules are %-20 threaded screw holes. The
chassis has to be able to withstand the forces exerted on it by each leg, therefore the chassis is made

out of .25” thick aluminum.
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Figure 12: The Robot Chassis

Power and control signals must be distributed to the peripherals by an electrical subsystem, as
discussed next.

2.3. Robot Design: Electrical System
The general specifications for the electrical system are outlined in Section 2.1. Here we will

discuss the theory, design, and construction of the electrical system in detail, including component

comparison and selection.

2.3.1. Control System and Distributed Processing Overview
In order to fully understand the electrical system, a brief overview of the control systems is

necessary so that the need for certain components is clear. The control systems in ReMMRP are based
on distributed processing. By utilizing multiple processors, the computational power needed for the
robot to function, calculate kinematics, and control joints can be performed more efficiently through
parallelization. Within this framework, the system can effectively work as well as be able to utilize using
cheaper and less powerful microprocessors. This distributed processing also makes the programming
modular, allowing the same code to be used in several processors.

Two structures for the tiered processing have been considered: a 2-tier and 3-tier approach. In
the preliminary design, a 3-tier processing system is utilized. A processor on the main body (Tier-1) gives
instructions all of the peripheral units. Each peripheral unit (Tier-2) has a communications and control
processor. Each peripheral control processor directs its joint control modules (Tier-3). This design utilizes

Serial Peripheral Interface (SPI) communication between Tier-1 and Tier-2, and uses serial
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communication between Tiers 2 and 3. This structure effectively separates the two communication
loops and prevents any cross-communication.

However, serial communications are not available on the processors that would be used in the
Tier-3 modules, which would make it necessary to use ‘over-qualified’ processors for the Tier-3 modules
to construct this system. Using SPI on both levels has been explored; however doing so requires the use
of an elaborate gate system to prevent cross-communication between the Tiers. For this reason, a 2-Tier
system is used in the final design. Tier-2 now functions as both the communications processor and the
control unit for all three joints of the leg.

In the ReMMRP, every peripheral device has its own integrated processor. This allows the
processing for that component to be confined to its own board, allowing the Main Processing Unit
(MPU, Section 2.3.4) to do less work. Every peripheral chip must be capable of SPI communications for
transfer of data between the MPU and the peripheral. The only peripheral unit currently being

developed is a 3-DOF leg.

2.3.2. Leg Control Unit (LCU) Hardware
The Leg Control Unit is the board that handles all of the processing on the leg. This includes

communication to the main board, calculating inverse kinematics, movement of the joints, and the

maintenance of its health status. A completed LCU with labels is shown in Figure 13.

Potentiometer
Ports
Motor =
Ports
H Bridges
Leg
Processor Connector

To MCB

Figure 13: Labeled Top View of the LCU
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2.3.2.1. Processor
The leg processor is selected to satisfy the following requirements:

1.) It must have SPI communications in order to communicate with the main processor.

2.) It must have 3 ADC ports to handle the potentiometer readings (see Section 2.3.2.4) from
the joints.

3.) It must be capable of producing 6 PWM signals. Each of the three motors is controlled by
two PWM signals, one to drive it forward, and one to drive it in reverse.

4.) It must have two I/0 pins; one for a status signal to the main processor (output), one for a
slave select (input).

5.) None of these pins can be shared on the chip.

An Atmel processor is used in the LCU because of the team’s familiarity with the architecture, as
well as the library of code that has been developed during the coursework prior to this project. Based on
these requirements, the Atmel ATmegal64/324/644P is used. It has Universal Serial Interface (USI)
capabilities, including SPI. All of Port A (8 pins) are 10-bit ADC channels, and six PWM signals can be
produced from 3 timers (2 8-bit, 1 16-bit). The 164/324/644P can have up to 32 1/O ports, so it can easily
handle the 4 that are needed(5). This processor does not meet the specifications previously stated, as
there is one pin overlap. The slave select pin for SPI communications is the same pin as one of the PWM
signal outputs. The processor that meets the specifications for this application is the ATmegal281,
however this IC is 3 times more expensive than the 164P ($14.96 compared to $4.73 (6)(7))and has 8
times the amount of memory, which is excessive(8). The cost of this IC outweighs its benefits, which is
why it is not used. Because the 164/324/644P is used, the way that the motors are controlled is altered
due to the SPI/PWM pin overlap. Instead of keeping the H-Bridge enabled at all times and pulsing the
direction pins, the enable pin is pulsed with the PWM signal and the direction is controlled by 2 output
pins connected to the direction pins on the H-Bridge. This means that 8 I/O pins are needed, however
the 164/324/644P has more than enough. This also simplifies programming because the same code can
be used for all PWM signals. All signals can use the 8-bit timers, while the 6-PWM configuration requires
different code for the 16-bit timer.

Even though the ATmegal64P has enough memory for performing the calculations necessary to
control the leg effectively, an ATmega324P is used in the final design. This is because 324Ps are available
through a sampling program, while the 164P is not. This processor functions the same as the 164P and

has the same pinout, but has twice as much memory.
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2.3.2.2.

Motors and Motor Driver

The PWM signals that are output from the processor cannot source enough current to directly

run the motors, nor are the signals the correct voltage. The maximum ratings for the /0 pins on the

ATmegal64P are 5V at 40mA. Therefore, a motor driver is necessary.

Based on the joint torque requirements for the leg discussed in Section 2.2.4, a motor torque of

321 oz-in is necessary. A low-current (<1A) motor is preferred for the robot in order to conserve battery

life, however the majority of motors that can provide the necessary torque draw several amps. Two

Lynxmotion motors were found that fit the requirements. Their specifications are outlined in Table 2.

Their specifications are weighted, and the final scores show why motor 2 is chosen over motor 1.

Although motor 1 more closely fit the desired specifications, its availability is a large deterrent to

selecting it.

Table 2: Joint Motor Spec Comparison and Trade Study

Motor 1 Specs.(9)

Weight (1-10)

Motor 2 Specs.(10)

Weight (1-10)

Voltage (V) 12 5 12 5
Stall Current (mA) | 750 8 2710 5
Torque (oz-in) 295.34 6 341.76 8
Size (mm) 24 x 64.5 7 22 x66.2 7
Shaft Speed (RPM) | 31 7 64 6
Availability Backorder (Unknown Time) | 2 In Stock (Online Order) | 8
Total 35 39

To drive these motors, the STMicroelectronics 6225N/6205N H-Bridge can be used as a motor

driver. These chips are identical in pinout and function, but the 6205N is a higher current IC. This DIP20

has two full bridges per chip, and can handle 1.4/2.8A per channel. Each bridge has an enable pin,

allowing full control over each individual bridge (11). Unfortunately, using this H-Bridge results in having

a full bridge that is unused. This is a necessary concession.
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2.3.2.3. Connection Ports
The LCU has several ports on it, shown in Table 3. This is mainly to increase the

interchangeability of the components in the leg. Having ports allows the motors, potentiometers, and
the board itself to be changed out if something breaks.

In the preliminary design, all of the ports were rectangular female headers with 0.1” pitch.
These ports were rated for 3A per pin, making them suitable for most of the connections. After more
development, they were insufficient for many others. The first reason is that they could not handle the
current that would be travelling through the main connector on the LCU. Secondly, they did not have
any lock between the male and female connectors, meaning that they could become unintentionally
disconnected.

The main connector to the board in the preliminary design is an 8-pin 2x4 0.1” female
rectangular header. Due to the chosen motors, transferring the necessary current is not possible with
this setup. Ribbon cable is preferred for wire management, so a 16-pin 2x8 0.1” female rectangular
header is used. The 12V power is distributed across four pins, and so is the ground. Due to financial
considerations, the header is male instead of female. Also, keyed headers and ribbon cable connectors
are used to ensure proper connections every time.

The motor connectors in the preliminary design are 2-pin 2x1 0.1” female rectangular headers.
Due to the motors selected, and the lack of fasteners on the connectors, these are not acceptable for
the final design. The rectangular headers are rated for 3A, but with motors that draw up to 2.71A,
having a safety factor of 1.1 is not sufficient. Further, there is no assurance that the connection would
not unintentionally become dislodged. Given these new considerations, a 2-pin 0.25” female header is
used. It has two latches on the free hanging wire connector that attaches to the header on the board.
The holes are irregularly shaped to ensure consistent connection every time it is plugged in.

Lastly, the potentiometer connection ports are insufficient in the preliminary design. While they
meet all of the electrical specifications, there is no latch to prevent accidental disconnections. In order
to have this feature and observe financial limitations, the board connector is a male header in the final

design with a female connector on the free hanging wire.
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Table 3: Graphic Comparison of LCU Connectors (12)(13)(14)(15)(16)(17)

Motor Connector Potentiometer Connector Main Connector

Preliminary

Final

2.3.2.4. Joint Position Sensing
Each joint on the leg module needs a sensor to determine the location of the joint so that it can

be moved to the appropriate location. There are two main options for absolute position sensing. The
first is an absolute encoder. This sensor uses either optical or magnetic sensors to determine its angular
position based on a binary code inside the sensor. The downside to this sensor is that it is very expensive
to use at 10 bits of resolution, which is what the ATmegal164/324/644P converts analog signals to using
its ADC.

The other option is a potentiometer. This is an analog sensor that acts as a variable resistor,
varying the output voltage linearly as the angular position changes. They also tend to be less expensive,
and can be more accurate, depending on the quality of the potentiometer. For primarily the cost

benefits, it was decided to use potentiometers.
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High resistance potentiometers are used so that the current draw is minimized, conserving
battery life. Also, a high quality potentiometer is desired for precision position sensing. Lastly, a small
form factor is necessary so that it does not protrude very far from the leg.

For these reasons, a 10K, 20%, 1-Turn, 53 Series potentiometer from Bourns, Inc. is used on the
leg module. It is in a small package, only 0.521" L x 0.492" W x 0.350" H (18). This potentiometer

functions very well on the leg module.

2.3.2.5. PCB Design
Figure 14 shows the LCU design printed to accommodate the electronics necessary to operate

the leg. Spatial limitations of the leg restrict the board to 2.5” wide by 11” long to ensure that it can fit
inside the leg cavity. To accommodate the traces and form factor, it is necessary to have the boards
printed on 20z copper. The final board is 2.5” x 3.5”. The motor and potentiometer connections are
paired together to keep connections organized. All IC’s are mounted on sockets for easy replacement in

the event of burning one out or upgrading. The full schematics can be found in Appendix A.1.
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Figure 14: Front and Back View of a Blank LCU PCB
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2.3.3. Main Communications Board (MCB) Hardware
Figure 15 shows a completed Main Communications Board with labels. The MCB has no

decision-making power. It is essentially a communications hub for the Main Processing Unit (MPU,

2.3.4). Power management and distribution is also handled by the MCB.

Status Processor Signal LEDs
(Socketed)
Power LEDs
5V 3A Fuse
12V 15A
Circuit Breaker
4-16 Demux
Battery Port
Peri 1
5V-12V Buck S>> Periphera

Port
Converter Bank -

Figure 15: Labeled Top View of the MCB

2.3.3.1. Demultiplexer/Decoder
The MPU utilizes SPI communications to transfer data between itself and the Tier-2 processors.

When using SPI, a slave select (SS) pin on the slave processor must be enabled by the MPU to establish
which sub-processor it would like to communicate with. This means that it would require 16 separate
I/0 ports (15 peripherals, 1 STATUS processor (Section 2.3.3.2)) on the MPU to accomplish this. In an
effort to maintain interchangeability of the MPU, it is necessary to reduce the number of pins required
on the MPU. To do this, a line decoder, also known as a demultiplexer, or demux is used. This allows the
number of SS lines from the MPU to be reduced to 4 (Section 2.4.1.1). By using a decoder, the MPU
outputs the desired channel in binary to those 4 pins, and the decoder selects the appropriate slave

chip.

23



The SN74154N from Texas Instruments is used as the decoder for the ReMMRP. It is a 4-16
decoder. It is also a 5V IC, which is the operating voltage of the other processors, and has a maximum
current draw of 1A, meaning low power consumption (19).

This decoder allows for the selection of one of 15 peripherals or the STATUS chip, for a total of
16 slaves. 12 of these peripherals will be along the outer edge of the body, and the remaining three will
be available for Internal Connection Ports (ICP), intended for use with sensors internal to the chassis,

such as inertial navigation sensors.

2.3.3.2. STATUS Processor
The STATUS (STatus of Attached UnitS) processor is responsible for enumerating peripheral

modaules attached to the system and reporting any changes to the MPU. It also is used in the
initialization sequence of the robot to establish which ports have peripherals attached. This processor
has three requirements.
1.) It must have SPI communications for conveying data to the MPU.
2.) It must have 17 I/O ports; 15 for status inputs form the peripherals, one for slave select, and
one for a status change pin to the MPU.

3.) None of these pins can be shared on the chip.

Due to the fact that 22 pins are necessary, a processor with extraneous features must be
selected so that the requisite number of pins are available. The Atmel ATtiny48 meets the requirements
outlined above, and is used as the STATUS chip. It has 24 I/0 pins, and has SPI that does not interfere

with the 1/0 ports for the status inputs (20).

2.3.3.3. Power Management
The motors will be running at 12 volts DC, so a 12V DC battery will be used as the power source

for the robot. All of the ICs run at 5V DC, so power must be converted for these chips. The converter
must:

1.) be efficient to conserve the battery life.

2.) be able to provide enough current to run the chips and potentiometers.

3.) reduce the voltage from 12v DC to 5v DC.
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Using a step-down DC-DC (also known as buck) converter will help with the efficiency. A voltage
regulator is very inefficient because it sheds the excess voltage as heat (21). For the ReMMRP, voltage
will be reduced to 5V from 12V. Assuming the current is constant, a linear regulator operates at the

following efficiency:

a4 = 41.6%
12v 07

The IV1205DA from XP Power is used for the power conversion in the preliminary design. It
operates at 74% efficiency, and can supply up to 200mA of current (22). This specification meets the
power to supply requirements by all of the ICs and the leg potentiometers. The leg potentiometers in a
12-leg configuration would consume 18 mA.

In order to account for future peripherals, three 1A DC-DC converters are used in parallel in the
final design. This will allow for high draw peripherals to be developed without having to worry about not
being able to source the necessary current. The Texas Instruments 5101N DC-DC converter is used on
the MCB. It is 90%+ efficient, and can supply 1A of current and has very simple required external
circuitry (23).

Both the 12-volt and the 5-volt lines have current protection. The 12-volt line has a 15A circuit
breaker, and the 5V line has a 3A fuse. A fuse is used for the 5-volt line because it is much less likely that
this line will have a surge of current. The 15A breaker is used because stalling motors can draw large
amounts of current that could damage the board, and using a circuit breaker instead of a fuse saves

time and money by not having to replace it every time it trips.

2.3.3.4. Connection Ports
The peripheral ports on the MCB need to meet the same requirements as the 16-pin keyed

rectangular male pin headers on the LCU, and use the same component (Section 2.3.2.3). All 15 of the
peripheral connection ports use this 16-pin header. The port to the MPU will be a 12x1 female header
with 0.1” pitch. This header contains both power and communications lines. The battery connection
port is identical to the one being used for the motors —a 0.25” 2-pin connector with two fastening
latches. This can be used for the battery and the motors because it exceeds the current requirements

for the motor application.

2.3.3.5. Signal LEDs
There are 18 signal LEDs on the MPU. These are used to display information to the user. 16 are

status LEDs from peripherals. These are arranged in four 4-LED banks, using a bussed 10K resistor bank
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as a pull-up resistor. An individual resistor had to be used for the 16™ LED as a DIP16 resistor bank only
has 15 available resistors. These LEDs are connected to the status lines from each peripheral port. This

will tell the user which ports have connected peripherals. The other two LEDs are power LEDs, signaling
whether the 5- and 12-volt lines are functioning properly. These also have 10K resistors as pull-up

resistors.

2.3.3.6. PCB Design
The completed blank MCB board is shown in Figure 16. The final board size is 5” x 5”. Due to the

large amount of current that will be run through the traces and the desire to keep the form factor small,
the MCB will be printed using 20z copper. This will help to reduce the heat generated by the board. Also,
the trace widths are significantly larger on this board than on others to further help with the heat
generated by the high current. The connection ports are arranged around the perimeter to allow for

easy access. The complete schematics can be seen in Appendix A.2.
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Figure 16: Front and Back Views of a Blank MCB PCB

2.3.4. Main Processing Unit (MPU) Hardware
A completed and labeled MPU is shown in Figure 17. The Main Processing Unit is designed to be

interchangeable as the computational demands of the robot evolve. It is also designed to minimize the
number of connection pins necessary to utilize all of the functionality of the MCB. The full schematic can

be seen in Appendix A.3.
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Figure 17: Labeled Top View of the MPU

2.3.4.1. Main Processor
The main processor has four requirements. It must have:

*+ enough memory to store a complex balance algorithm and the speed to execute it (discussed in
Section 2.4.2).

+  SPI capabilities

+ 61/0 pins (4 outputs for the SS demux, 1 output to enable the demux, and 1 input from the
STATUS processor)

+ serial communication to output data to a connected computer for data feedback during testing.

From these requirements, the Atmel ATmega644P is used as our main processor. It has the
same specifications as the 164P/324P discussed in Section 2.3.2.1, except has 64k bytes of flash
memory, 2k bytes of EEPROM, and 4k bytes of internal SRAM (5). This can handle the computational

demands placed upon it.

2.3.4.2. Connection Ports
The only header used is identical to the 1x12 rectangular female header on the MCB. This is

more than capable of handling the power and data going through it. The serial connector is a female DB-
9 connector. It is perpendicular to the board for easy access once installed in the robot. The processor

will be on a socket for easy replacement.

2.3.4.3. MPUPCB
The blank PCB is shown in Figure 18. There are only three components, and all three were

placed and soldered without issue during assembly.
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Figure 18: Front and Back Views of a Blank MPU PCB

2.3.5. Miscellaneous Electrical Considerations
All of the PCBs are 2-layer PCBs. The connection between the robot’s chassis and the peripherals

is done using a DB-15 HD connector, the male side being on the leg. Custom DB-15 HD to 8x2 header
cables are used. One pin is left open on the DB-15 connector. The DB-15 HD connectors are fastened to

the body and the peripherals so that the mechanical connection also contains the electrical connection.

2.4.Robot Design: Software and Control Systems
To determine and coordinate the actions of all peripherals attached to the ReMMRP so that it can

accomplish a specified task (i.e., balancing, walking, etc.), control architecture and associated software

are necessary. The following are the software design requirements for the ReMMRP:

1. Communications protocol must exist for data transfer among the MPU, STATUS processor,
and LCUs (and other peripheral processors to be developed).

2. MPU software must determine actions for all peripheral devices (for the LCUs, desired
coordinates of the leg’s endpoint), and delegate commands to them in real time.

3. LCU software must respond to commands from MPU with higher priority than any other
task inherent to LCU software.

4. STATUS processor software must operate in real time, allowing MPU to have immediate

knowledge of attached peripherals at any given time.

2.4.1. Communications Protocol
The ATMegal64/324/644P processors have four means of data transmission:

1. Serial Peripheral Interface (SPI)

2. Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART)
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3. USART in SPI mode

4. Two Wire Interface (TWI)

Each of these communication modes has different properties. Table 4 compares the following

properties of each mode:

* Top speed — highest guaranteed data transmission rate in bits per second, assuming an 8 MHz

processor clock speed. Higher data transmission rates are desired.

*+  Processor overhead — the total size of internal data registers, in bytes, required by the processor

to use the communication mode. Lower processor overhead is desired.

This increases effective data transfer rate; full duplex is desired.

Table 4: Comparison of ATMegal164/324/644P Communication Modes

Full Duplex — whether the communication mode can simultaneously transmit and receive data.

SPI USART USART in SPI TWI
Top Speed (bps) 2,000,000 500,000 2,000,000 400,000
Processor 3 7 6 6
Overhead (bytes)
Full Duplex? Yes Yes Yes No

The SPI mode has the highest top speed, lowest processor overhead, and communicates in full duplex,
and is subsequently the most appropriate choice for the ReMMRP communications scheme.

2.4.1.1. SPI Overview
Serial Peripheral Interface, or SPI, utilizes a master / slave hierarchy, where data transfer is
initiated by the master device. Four data lines are inherent to this protocol, and are shown in Figure

19(24):

1. MISO (Master In / Slave Out): Bits are sent from the slave and received by the master.
2. MOSI (Master Out / Slave In): Bits are sent by the master and received by the slave.
3. SS (Slave select): Two modes-

a. In Master Mode, this is used to select a slave.

b. In Slave Mode, the slave is activated by this.

4. SCLK (Serial Clock): Timing signal generated by the master that synchronizes bit transfer.
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SPI MOSI  MOS| SPI
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Figure 19: Single Master / Single Slave Configuration

SPI only allows communication between the master and one slave at a time. The ReMMRP
design incorporates multiple slaves (i.e., more than one LCU will be subject to commands from the
MPU), so a more complex approach is needed. The SCLK, MOSI, and MISO lines can be shared between
the master and all the slaves, as only the selected slave will be actively using these lines during
communication. Each slave, though, needs its own SS line from the master. This could be configured as

follows:

SCLK * SCLK
MOSI » MOSI SPI
SPI MISO (% MISO Slave
Master 551 » 55
552
g53
—» SCLE
» MOSI SPI
MISO Slave
» S5
—# SCLK
» MOSI SPI
MISO Slave
B SS

Figure 20: Single Master / Multiple Slave Configuration

The drawback to this configuration is the number of separate SS connections from the master;
with twelve potential peripherals, three ICPs, and one STATUS processor as slaves in this design,
nineteen pins (1 SCLK + 1 MOSI + 1 MISO + 16 SS) are required from the master to facilitate SPI

communications with all ports.

A decoder can decrease the number of pins needed for slave selection purposes from the
master. A decoder accepts input from a number of lines, or binary inputs, and has a number of outputs

equal to:

_ obinary inputs
Noutputs = 2 Y mp
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The decoder selected for this design (Section 2.3.3.1) has sixteen outputs, and will activate the
output that corresponds to the value of the 4-bit input signal. This way, a four line signal can be used to
activate one of sixteen peripherals, reducing the master’s SPI pin requirements to seven (1 SCLK + 1

MOSI + 1 MISO + 4 Binary Signal to Decoder).

Once a slave is selected, the communications event can be viewed as in single master / single
slave configuration. SPlis a full-duplex means of communication, which means that data between the
master and the slave are exchanged simultaneously. SPl accomplishes this by treating the byte in the
SPI data registers of each processor as a continuous two byte register and rolling, or performing a

circular exchange of, the bits that comprise the two byte sequence. This means that:

1. The slave’s Most Significant Bit (MSB) is stored in the MISO line, and the master’s MSB is stored
in the MOSI line.

2. The slave and master’s remaining bits are all moved up one position.

3. The master’s Least Significant Bit (LSB) assumes the value of the MISO line (whatever the slave’s
MSB was), and the slave’s LSB assumes the value of the MOSI line (whatever the master’s MSB

was).

Master Slave
| Mermaory | sCLi | Mermaory |
R
lofaf2]a]4]s]s]7] MOl [o[a] 234 5] e]7]
f MISO

Figure 21: Master / Slave Data Transfer

This process is continued until the two bytes have been fully exchanged between the master and

slave.

Under the SPI framework, the communications architecture can be divided into two general parts:

1. Master communications procedures: Those procedures utilized by the MPU to send data to the
STATUS, LCU, or any other peripheral control processors with which the robot may be

configured.

31



2. Slave communications procedures: Those procedures utilized by the STATUS, LCU, or any other
peripheral control processors with which the robot may be configured, to send data to and

receive data from the master processor.

Since SPI utilizes a full-duplex communications mode with a clock, sending and receiving are done
not only simultaneously but also synchronously. The data exchange is quantified on the byte level, and

initiated only by the master. Therefore, the above generalization defines a communication session as:

1. Master communications procedures:
a. Selectslave
b. Choose byte to send
c. Send byte, receive byte from slave
d. Unselect slave
2. Slave communications procedures:
a. Wait for selection from master

b. Exchange current stored byte with incoming byte from master

In an episodic sense, these procedures do not appear to be an effective means of transferring
information. Since communication between the master and slave at a given time involves the transfer
of multiple bytes, an additional layer of abstraction over the SPI communication protocol is

implemented.

2.4.1.2. Symmetric Data Buffer Exchange Protocol
In a multiple byte transfer scheme using SPI, the initial byte received from a slave processor is

always undefined because its SPI data register has not been loaded with any pertinent information; the

master can send valid data to the slave but will receive this undefined data, as shown in Figure 22.
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Figure 22: SPI Initial Single Byte Data Exchange

Alternatively, the data sent from the master can be utilized by the slave as an index to define the data
on the next transmission. The master will receive undefined data (which is unusable) from the slave
upon transmission of the index to the slave, but the index will cause the slave to load the usable data
into its SPI register. Upon the next transmission from the master, the slave will send the usable data

that corresponds to the index previously sent by the master. This process is shown in Figure 23.
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Figure 23: SPI Indexed Byte Transfer

This method can be extrapolated, where the master repeatedly sends indices to the slave. In

this case, only the first byte the master receives from the slave will be unusable; the remaining bytes
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received will be pertinent information from the slave. The last byte the master sends does not need any
particular value in order to receive the last byte of indexed data from the slave. Note that this process
results in a data offset between the master and slave; the master is always one byte behind the slave in

terms of the byte sequence.

The indices sent from the master are useful in requesting data from the slave, but have no
particular meaning to the overall operation of the robot other than to ensure the proper data is received
from the slave processor. The communications session would be better exploited if more pertinent data
were exchanged as often as possible. To accomplish this, data buffers must exist on both the master

and slave processors in the following manner:

1. Each element in the data buffer must be a single byte, commensurate with the size of the SPI
register.

2. The data buffers present on the slave must be known by the master and each buffer must have
an index that explicitly identifies it.

3. The size of the data buffers on both processors must be known by the master before
transmission begins. The data buffers to be exchanged must be of equal size; this criterion is
fundamental to the symmetric aspect of this protocol.

4. One buffer is chosen on each processor as a “send” buffer, and one buffer is chosen on each

processor as a “receive” buffer.

With these rules in place, the master and slave can simultaneously transfer information blocks of

equal size. This process will be referred to as Symmetric Data Buffer Exchange (SDBE).

In the following example, the MPU simultaneously sends the LCU new coordinates and receives
from the LCU its last known coordinates using SDBE. The assumption will be made that both processors
have a data buffer called “Command Coordinates,” and the LCU has an additional buffer called “Current

Coordinates.” The data exchange will occur as follows:

1. The MPU designates its “Command Coordinates” as a send buffer, and initializes an index
variable that will correspond to successive bytes of its send and receive buffers.
2. The MPU initiates an SPI communication session with the LCU by enabling the decoder and

sending it the bit pattern that corresponds to the chassis port where the LCU is attached.
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3. The MPU sends the LCU a byte indicating that the LCU must designate its “Command
Coordinates” as a receive buffer.

4. The MPU sends the LCU a byte indicating that the LCU must designate its “Old Coordinates” as a
send buffer; at this point the LCU will load the first byte of its “Command Coordinates” into its
SPI register, and initialize an index variable that will correspond to successive bytes in its send
and receive buffers.

5. The MPU enters a loop where:

a. The byte of the send buffer corresponding to the index variable is transmitted. This
causes the MPU to receive the first byte from the LCU.

b. Once the bytes have been exchanged, each processor copies the new data from its SPI
register into its respective receive buffer at the index indicated by their respective index
variables.

c. Index variables on both processors are incremented after the copy.

d. Steps (a) through (c) are repeated until the index variables are equal to the size of the
data buffers.

6. The MPU ends the SPI communication session with the LCU by disabling the decoder /

multiplexer.

At the end of this procedure, the MPU’s “Command Coordinates” buffer will contain the LCU’s last
known coordinates, and the LCU’s “Command Coordinates” buffer will contain the new set of
coordinates from the MPU. SBDE control code for each processor can be seen in Code Sample 1 and

Code Sample 2.
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ISR(SPI_STC_vect)

{

3

//Interrupt trigger when a byte is written to the SP1 (ie, transfer is finished)

//SPIF flag in SPSR should be set at this time

int i, packetlLen;

unsigned char* SendBuffer;

unsigned char* ReceiveBuffer;

//Global variable commandReceived is used in this procedure
//Global array instructionSet[] is used in this procedure

//Read SPSR then SPDR;

//This will clear the SPI interrupt flag.

//Now commandReceilved is set to first transmission byte.
commandReceived = SPSR;

commandReceived = SPDR;

//Second byte indicates data requested by master
while (I(SPSR & (1 << SPIF))) {
//wait for receive byte 2

//Designate send buffer as proper array
SendBuffer = instructionSet[commandReceived].data[SPDR];

//Third byte indicates data coming from master
while (I(SPSR & (1 << SPIF))) {
//wait for receive byte 3

//Designate receive buffer as proper array
ReceiveBuffer = instructionSet[commandReceived].data[SPDR];

//Fourth byte indicates how many bytes will be transferred
whille (1(SPSR & (1 << SPIF))) {
//wait for receive byte 4

ks
//Set packet length to proper number of bytes
packetlLen = SPDR;

for (i = 0; 1 < packetLen; i++) {
//Load transmit byte
SPDR = *(SendBuffer + i);

while (1(SPSR & (1 << SPIF))) {

//wait for receive byte
ks

//Write received byte to receive buffer
*(ReceiveBuffer + i) = SPDR;

Code Sample 1: Slave SBDE Communication Routine
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void SBDExchange(unsigned char toPort, char cmd, xData *sendData, xData *rcvData) {

int i;
char temp;

//Enable demux and enable SPl1 communications with peripheral device
SelectSlave(toPort);

//Send command to peripheral, received data byte irrelevant
temp = SPI_Transmit(cmd);

//Request data set from peripheral, received data byte irrelevant
temp = SPI_Transmit(rcvData->identifier);

//1Indicate incoming data set to peripheral, received data byte irrelevant
temp = SPI1_Transmit(sendData->identifier);

//Indicate length of transfer, received data byte irrelevant
temp = SPI_Transmit(sendData->length);

//1Initiate data exchange loop

for (i = 0; 1 < sendData->length; i++) {
//Simulataneously send and receive pertinent data
rcvData.buffer[i] = SP1_Transmit(sendData.buffer[i]);

}

//Disable demux, ending communication session
Unselect();

}

Code Sample 2: Master SBDE Communication Routine

Other means of data buffer exchange can be utilized over an SPI data link, and for certain peripherals or
procedures this may be advantageous. SDBE can also be modified slightly to accommodate an
asymmetric data buffer exchange. However, the LCUs function primarily by the use of SDBE protocol,
and only do so otherwise upon the receipt of single byte commands; therefore an asymmetric data

exchange protocol is unnecessary.

2.4.2. MPU Software & Operational Characteristics
The MPU software is the uppermost level of the control architecture of the robot. The MPU must:

1. Validate peripherals as enumerated by the STATUS processor, both on startup and in real time
as the robot operates.

2. Guarantee collision-free communication. Physical communications collisions are not possible
due to the serial and full-duplex nature of SPI communication, but logical collisions can still
occur, and the MPU must prevent this.

3. Guarantee continuous operation in the event of an unexpected peripheral loss, provided that
redundancy exists in the current configuration.

4. Determine the degree of interaction among peripherals. The MPU will determine that any
number of legs, or peripherals with an LCU, will function together towards the locomotion of the

robot. A different configuration may have multiple legs, but also a wireless communications
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beacon. In this situation the MPU must still determine the cooperative relationship that the legs
share, but also determine that the wireless peripheral has a separate and independent function.

5. Control peripherals at their degree of interaction.
The above functions will now be discussed in further detail.

2.4.2.1. Peripheral Validation
On startup, the MPU must wait for a “ready” signal from the STATUS processor. After receiving

this signal, the MPU can poll the STATUS processor for information regarding what ports on the robot
chassis have peripheral devices attached to them. Once the MPU is aware of which ports are active, it
can then poll these ports for information.

Every peripheral device will have a serial number written directly into its memory, either as a
constant term in the embedded software, or stored in its permanent EEPROM memory. This serial
number identifies the peripheral as a particular type of device, and the MPU will have a list of every
possible peripheral. The MPU will initially request this information from each peripheral, and create a

data structure for each port that corresponds to the device that is attached there.

2.4.2.2. Communications
The MPU acts as the master in communications with all other processors in the robot

architecture. As such, it is responsible for initiating any and all communications. In a multiprocessor
environment, care must be taken to avoid collisions in data transfer. The primary type of data collision
in computer networking is a physical collision; this occurs when data transfer occurs simultaneously
between more than two processors (25). The SPI protocol is free from this concern in a single master /
multiple slave environment.

A secondary type of collision will be referred to hereafter as a logical collision. This is likely
inherent to other architectures, but for the purposes of this paper it will pertain solely to the robotic
design of this project. Logical collision potential exists when the MPU attempts to exchange data with a
peripheral before that peripheral has utilized the most recent data that was exchanged.

In the case of the SDBE protocol, this might occur if:

*+ The MPU exchanges a number of bytes of data with an LCU, indicating a set of coordinates.
* The LCU begins using this new data, but the master sends another set of coordinates half way

through the LCU’s procedures having to do with said data.

38



In the event of this situation, the LCU would see data that was the first half of the old set of
coordinates, and the second half of the new set of coordinates. This might range in issues from simply a
wrong coordinate set or, if the bytes in the data were actually subdivisions of a larger data type such as
a floating point decimal, completely erroneous or unusable data. Given the speed of the processors
involved, the speed at which SPI functions, and the size of the data, it is unlikely that this would occur.
However, because the potential exists it must be mitigated.

The solution employed by this architecture is to calculate how long each command that the MPU
issues to a particular peripheral will take to execute on that peripheral. This way, the MPU can check
the system time when a particular command is issued to a peripheral, and not send further commands

to that peripheral until enough time has passed to ensure that no logical collision will occur.

2.4.2.3. Control Algorithms
The MPU is responsible for correlating the movement of the legs in such a manner as to cause

the entire robot to balance. To do so, the MPU must be able to produce sets of coordinates where the
end-effector of each leg will be located when the robot is balanced. All such algorithms, since they are
based on the geometry of the robot, use the same convention for port numbering and coordinate

assignment, as shown in Figure 24:
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Figure 24: Robot Coordinate Frame & Port Numbering
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The robot coordinate frame’s origin is positioned at the geometric center of the robot chassis,
with the long edges parallel to the y-axis, and the short edges parallel to the x-axis, as viewed from
above the robot. Using the right-hand rule, the z-axis extends skyward from the robot chassis center.
The ports are numbered beginning with “0” at the topmost right in this orientation and increasing
clockwise until “11”. Any positional coordinate of the robot’s peripherals can ultimately be expressed in

terms of this system, and the balancing algorithms described below use that fact advantageously.

Combined Static Stability and Mobility (CoSSMo) Balancing Method

This method of balancing is done without the benefit of accelerometers or gyroscopic devices. The
only data utilized is the number of legs attached to the robot and where they are. The following

assumptions are then made:

*+ The center of gravity of the robot is the geometric center of the chassis.

+ The robot is on a flat surface.

*  The robot is not in motion.

*+  The robot has been commanded to a set height. This will fix the z-coordinate of the robot

chassis, and calculate a configuration for the robot to stand at the desired height.
This balancing algorithm has two separate goals. These are:

*+  Maximize Stability: Determine most stable configuration as defined by the area of the base of
support, or the polygon made by defining each leg’s end-effector as the vertex of a polygon in
the x-y plane, and the position of the robot’s center of gravity, or mass centroid, when projected
onto this polygon.

*+ Maximize Mobility: Determine the greatest potential for motion from the balanced
configuration, i.e., how much each end-effector is able to move within its workspace from the

balanced position.

The mobility and stability of the robot both depend on the position of the end-effectors, but in most
cases improving one will tend to worsen the other. Therefore the algorithm must find a compromise
between the stability and mobility metrics, where a configuration is found in which the robot is both

statically balanced and has some ability to move each leg in any direction.

One approach to this involves calculating and storing optimal or sufficient solutions for each possible

configuration. However, even with the presumption that the robot cannot balance with less than three
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n
legs, the possible configurations can be numbered using the “choose” function. The function (x)' read

as “n choose x,” determines the number of ways that x elements from an equal or larger set of n

elements can be arranged. This function is calculated as follows:

Equation 5: Choose Function

|
(:Cl) ~ (nn— x)!

Since the ReMMRP has a twelve-port chassis, n will always be fixed to 12 (the number of ports
cannot be changed). The variable x will denote how many legs are attached in a given configuration.
The robot cannot physically balance with less than 3 legs attached; therefore 1 and 2 leg configurations
will not be explored.

In the interest of examining search space for the algorithm, the choose function can be utilized
to express the number of configurations the robot can have with different numbers of legs. Beginning
with the least allowable number of legs, the number of different configurations possible can be stated as

“12 choose 3,” and calculated as:

12!
(132) “3iaz=ay 2%

Extrapolating this to the remaining possible number of legs (4 through 12) and summing the

results, the total configurations possible for the range 3 to 12 legs is:

Equation 6: Total Possible Leg Configurations of ReMMRP

12 12 121
12 :
= —— = 4017
Z(l) Z i'(12 = 0)!
i=3 i=3

Pre-calculating, optimizing, and storing this amount of possible configurations would still be a
heavily time consuming and storage intensive task. The robot uses an 8MHz main processor with 4K of
RAM, so the space and time complexity of the algorithm must remain very small in order to function at
all. Therefore, the candidate algorithm must be small enough to fit in the 64K of processor memory, and
fast enough to calculate a “good” balance scheme in a small amount of time, with a processor that is
very slow by modern standards. The CoSSMo algorithm is a rudimentary but effective solution to the

compromise between stability and mobility.
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The stability metric is defined as a function of the distance between the centroid of the robot
chassis and the centroid of the base of support. To calculate the area of the base polygon, the following

formula is used:

Equation 7: Area of a Polygon

1n—1
A= EZ(xiyi+1 = Xi+1Yi)
i=0

where X, ;jand y,_; are the XY coordinate pairs of the vertices of the base polygon in order of adjacency,
and A is the area of the base polygon. Once A has been calculated, the centroid of the base of support

can be calculated using the formula,

Equation 8: Polygon Centroid Equations (7)

n—1

1
C, = aZ(xi + Xi41) (XiYig1 — Xiy1Yi)
i=0

n—1

1
y 6_AZ(Yi + Yir 1) (i Yiz1 — Xi41Y0)
i=0

S
I

where C, and C, are the coordinates of the centroid, and X; and Y, are defined similarly to the Area

equation.

In Figure 25, the red outline indicates the base of support. The red point indicates the centroid

of the base of support, and the blue point indicates the centroid of the robot chassis:

Figure 25: Base of Support and Robot Chassis Centroids
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The robot is balanced when the robot centroid lies inside the base of support. In order to
achieve “perfect” balance, the centroid of the robot chassis and the centroid of the base of support
must be aligned. Figure 26 shows the vector (in green) along which the base of support centroid must

move in order to most efficiently maximize balance. This vector will be referred to as the stabilizing

vector:

Figure 26: The Stabilizing Vector

As previously discussed, each leg must move within its physical workspace given the height at
which the robot is commanded, referred to as the z-constrained leg workspace. Given each leg’s
constraints for joint range of motion and link length, this workspace will resemble that of the following
image, with the boundaries denoted by red lines or arcs, and the centroid, or best

mobility/manipulability position (26), denoted by the red point in Figure 27:

Figure 27: Z-Constrained Leg Workspace

The CoSSMo algorithm is a continuous simulation; it does not physically move the robot legs

until it has produced an answer. CoSSMo works by first hypothetically placing all end-effectors in their
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optimal position for mobility, or the centroid of their respective workspaces. CoSSMo then iterates
through adjacent end-effectors and moves them incrementally along the stabilizing vector inside their
workspace boundaries. This results in one edge of the base of support moving in such a direction as to
cause an increase in overall stability of the robot. At each incremental move, a metric is calculated both
for mobility and stability, and these metrics are combined into a total score. The current highest scoring
configuration’s end-effector positions are stored, and the process repeats until the algorithm is stopped.
In this way, CoSSMo can be set to run for a fixed time, and allowed varying amounts of time to
determine a stable and mobile configuration. Start-up configurations (i.e., connecting legs to the robot
and powering it) will be allowed larger amounts of time to reach a more optimal configuration, but
other situations (such as losing a leg) may require that less time is spent on determining a configuration

and must use a less optimal but still “sufficient” answer.

Sensor Assisted Balancing

In the event that the MPU detects devices that generate data about the robot’s gravitational
orientation, such as a gyroscope or an accelerometer, other balancing methods can be employed
without making the assumptions used by the CoSSMo method. Furthermore, sensor assisted methods
do not necessarily need to operate by maximizing geometric symmetry or centroid positioning, allowing
the robot more freedom in its motions, and the ability to dynamically balance. While sensor assisted
balance methods have not been attempted on the current platform, future work will be done in this
area so a general discussion involving sensor assisted balancing follows.

The CoSSMo method can still be employed with sensors to arrive at a starting point for balance
and mobility. However, utilizing devices that can determine the robot’s acceleration can balance the
robot by means that do not force the chassis to remain parallel to the ground.

A three-axis accelerometer can report acceleration in the x, y, and z directions. This reported
acceleration can be viewed as a vector, indicating the speed and direction in which the robot is moving.
Assuming that the robot is not currently moving itself, any non-zero vector would indicate that the robot
is falling or sliding in the direction of that vector, so this vector will be referred to as the falling vector. If
the falling vector is made to be a ray originating from the centroid of the robot chassis (which would
simply involve the correct placement of the accelerometer), then it must at some point cross a boundary
of the base of support. Legs that are adjacent to where this intersection occurs can move in the
direction of the falling vector, weighted by their distance to the intersection point, and cause the robot

to stabilize.
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In any method of balance control, the MPU must send coordinates to the LCUs. It is expected
that the LCUs will use these coordinates to position end feet of their respective legs in these locations.

Next, we will discuss how this is achieved by the LCU.

2.4.3. LCU Software & Operational Characteristics
The individual LCUs will help the ReMMRP exploit the multiprocessor environment presented by

the attachment of multiple peripherals. Were the MPU the only processor in the robot, it would have to
perform every calculation necessary for the actuation of each motor in each leg. These calculations can
be both processor-intensive and time sensitive. The amount of calculations will increase linearly with
each leg, and eventually the demand on the MPU would cause noticeable effects on the performance of
the robot, either by sheer consumption of computing cycles or decreased ability to update leg positions
at the desired frequency (also due to consumption of computing cycles.) To lessen the load on the MPU,
every peripheral will be required to perform its own joint position calculations, and the MPU will only
perform those calculations that correlate data from the peripherals.

Individual LCUs exchange relevant data with the MPU in the form of floating point three-
dimensional coordinates. The LCU is responsible for:

+ Converting the end-effector coordinates into angular values between its links.

+ Reading the angular position of its links, and converting that data into a three-dimensional

coordinate.
+ Controlling all three of its motors in such a fashion that the angular values derived from

coordinates are reached in a reliable and timely fashion.

2.4.3.1. Kinematics
The process by which joint angles are converted to leg end-effector coordinates, and vice versa,

falls under a branch of classical mechanics referred to as kinematics (27). Each joint of the robot leg can
be defined in its own coordinate frame, where the initial coordinate frame n, (at the first joint of the leg)
is defined in the same z-direction as the robot coordinate frame, but the x-axis is oriented away from
the chassis. The y-direction is defined as the vector cross product of z and x, respectively. Coordinate

frames of the individual joints in a leg module are illustrated in Figure 28.
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Figure 28: Leg Joint Coordinate Frames
Note: The leg shown is the revised version of the leg as described in Section 3.1.

The Denavit-Hartenberg Convention

The Denavit-Hartenberg convention is used to describe the complete shift, or homogeneous
transformation, from coordinate frame n-1 to coordinate frame n, and is defined as the product of four

basic transformations, using four parameters:

+ d-link offset
*+ 0O-—jointangle
*+  a-—link twist

*+ a -linklength
The homogeneous transformation from n-1 to n, denoted as T,?‘l, is then described as:

Equation 9: Denavit-Hartenberg Homogeneous Transformation

-1 = Tmnszn_l(dn) -Rot, _, ,) - Trans, (ay) - Rot, (ay)

In linear algebraic terms, this is:

1 0 0 O07fcosf, —sing, 0 O0][1 0 0 a,][1 0 0 0

-1 _ 01 0 O ‘ lsm 6, cos 6, 0 offo 1 o 0]||0 cosa, —sina, O
n 0 0 1 d 1 0f|l0 0 1 0]|0 sina, <cosa, O
0 0 O 0 110 0o 0 1110 0 0 1
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cos 6,
sin g,
0
0

—sin@, cosa,
cos 8, cos a,
sina,,

0

—cosf, sina, a,sing,
cos a, d,
0 1

sinf, sina,, a,

cos 6,

The following table illustrates Denavit-Hartenberg values for each coordinate frame n of the leg. By

substituting these values into the general homogeneous transformation derived above, a specific

homogeneous transformation can be determined between each joint in the leg.

Table 5: Denavit-Hartenberg Parameters for ReMMRP Leg Modules

n On an dn an
1 0, 90° 0 a;
2 62 o° 0 dy
3 03 0° 0 ds
Equation 10: Parameterized Sequential Homogenous Transformation Matrices
[cos8; 0 sin®; a;cos0]
70 — sin@; 0 —cosB; a;sinB;
! 0 1 0 0
0 0 0 1 i
[cosB8; —sinB, 0 a;cosB,]
T1 = sin@, cosB, 0 a,sind,
2 0 0 1 0
0 0 0 1
[cosB; —sinB; 0 a3cosB3]
T2 = sinB; cosB; 0 a3sinB;
3 0 0 1 0
0 0 0 1

Computing the homogeneous transformation from coordinate frame 0 to coordinate frame 3 is then:

Equation 11: Homogeneous Transformation from Coordinate Frame 0 to Coordinate Frame 3

cosB; 0 sinB; a;cosB;
sin@; 0 —cosB; a 51n91
1 0
0

0 0

I

T = TYT; T

cos 0,
sin 9,

—sin0,
cos 62

0
0
1
0

a, cos 0,
a, sin 62

cos 03
sin 93

—sin 03
cos 93

In the interest of brevity, the following notations will be used for trigonometric functions:

o= OO

az cos 03
a3 sin 03
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*+ C,=cos(0,); C.m=cos (0, +0,)
*+ S, =sin(0,); Sam=-sin (0, + O)

The following trigonometric sum-difference identities are also used for simplification:

*+ sin(a+ B) =sinacosp + cosasinf

* cos(atpf)=cosacosf Fsinasinf

Accordingly, the final product is:

616263—615253 _616253—615263 Sl a1C1+a2C1C2+a3C1C23

70 — [51€2€3 = 515,83 —=51C353 = 515,€3 —C1  a;181 + a2815; + a3$1Cx3
3 52C3 +CzS3 —5253 +CzC3 O azsz +a3523
0 0 0 1

Note that this transformation only results in the end-effector of the leg with respect to the initial
coordinate frame; each port on the ReMMRP chassis has a predefined transformation T,{O , Which is used
to find the location of leg n’s initial coordinate frame with respect to the robot coordinate system. The

position of leg n’s foot with respect to the robot coordinate system is then calculated as:

Equation 12: Transformation from Leg Coordinate Frame to Robot Coordinate Frame

Ty, = Ty Tp?

no“ng

Linear algebra procedures, such as the matrix multiplication used in the above equations, are
very time and memory consuming when performed on the ATMega164/324/644P processor. However,
the matrices derived from the general equation can be condensed to produce a closed form solution,

and this can be converted almost directly into usable, efficient code.

Forward Kinematics

Forward kinematics will allow the LCU to generate a three dimensional coordinate that

describes the position of its end-effector as a function of its joint angles, or simply:

(61,6,,65) - (x,y,2)

The final product, T3°, from the Denavit-Hartenberg equations results in what is known as a

homogeneous transformation matrix from coordinate frame n-1 to coordinate frame n (26):
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(=)
|

0 0 O

SRR R
———]

As shown above, the homogeneous transformation matrix consists of:

. R,’{_l, a 3x3 matrix describing the rotation from n-1 to n, and
* P, a 1x3 matrix describing the translation from n-1 to n, or coordinates of n with respect

to n-1.

Recall the homogenous transformation matrix T30, shown below with the translation portion P

highlighted:

616263—615253 _616253—615263 Sl a1C1+a2C1C2+a3C1C23

70 = [51€2€3 = 515,83 —=51C353 = 515,€3 —C1 a181 + a3815; + a3§1Cx3
3 S2C3 + CzS3 —stg + CzC3 0 azsz + a3523
0 0 0 1

End-effecter positions of the leg with respect to its initial coordinate frame can simply be extracted from

this matrix, and are:
X = a4 cos 8 +a; cos 81 cos B, + a3 cos B cos(8, + 63)
y = a4 sinf; + a, sin 8 cos 0, + a3 sin 6 cos(6, + 03)
Z = a,sinf, +assin(6, + 03)

Control code used to perform these calculations can be seen in Code Sample 3.
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void ForwardKinematics(Angles *angle, Coordinate *coords) {

//Scratchpad variables
double ql, g2;

//Calculate and store z coordinate

gl = sin(angle->theta2);

gl += sin(angle->theta2 + angle->theta3);
ql *= LINK_LENGTH;

coords->z = qi;

//Calculate and store x coordinate

ql = cos(angle->theta2);

ql += cos(angle->theta2 + angle->theta3);
ql *= LINK_LENGTH;

ql += Al;

g2 = cos(angle->thetal);

coords->x = gl * g2;

//Calculate and store y coordinate
g2 = sin(angle->thetal);
coords->y = gl * g2;

}

Code Sample 3: Forward Kinematics

In order for the LCU to derive joint angles from a set of coordinates, a different strategy is needed, and

is discussed next.

2.4.3.2. Inverse Kinematics
Inverse kinematics equations will allow the LCU to generate a set of joint angles from a set of

coordinates that will cause the end-effector to be in the position indicated by the coordinates:
(x,¥,2) = (61,6,,63),
Where (x,y,z) denotes the three-dimensional coordinate of the end-effector.

The horizontal angular position of the hip joint, or 81, is does not depend on the position of the
other two joints in the leg, as it has no effect on the z position of the end-effector. This angle can be

calculated using the inverse tangent function and the desired x and y position of the end effector:

Equation 13: Angular Position of the Horizontal Hip Joint

tan 6, = C—:) - 60, = tan™! C_c])

For the angle to be in the correct quadrant, the function atan2 must be utilized:
0, = atan2(y, x),

where atan2 will return the angle in the correct quadrant by using the signs of the x and y coordinates.
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Unlike 64, the vertical hip angle 8, depends on the knee angle 683. Therefore, 83 must be

calculated first:

Equation 14: Angular Position of the Vertical Hip Joint

2
X 2 2 2
——a1)+z—a—a

6; = cos™
3 2(12(13

Since the ReMMRP’s link lengths a, and a; are identical, they will be referred to as L, and the

above equation can be simplified to:

2
— — al) + z% — 217
2L

1

63 = cos™

Finally, 8, can be calculated using 684 and 05:

Equation 15: Angular Position of the Knee Joint

asS z
6, = —tan™! (L> + sin™! < )
a, + a3C3 \/(az + a3C3)2 + a%S%3

This equation must again utilize the atan2 function to return the angle in the proper quadrant,

and can be rewritten as:

a3S3 .1 Z
0, = —atan?2 (—) + sin
az + a3C3 \/(az + a3C3)2 + a%S%

Control code used to perform these calculations can be seen in Code Sample 4.
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void InverseKinematics(Coordinate *coords, Angles *angle) {

//Scratchpad variables
double ql, g2, b;

//Calculate and store hip angle (theta 1)
angle->thetal = atan2(coords->y, coords->X);

//Calculate knee (y) angle (theta 3)
g2 = (coords->x / cos(angle->thetal));
g2 —-= Al;

g2 *= g2;

g2 += (coords->z * coords->z);

g2 -= (2.000 * LINK_LENGTH * LINK_LENGTH);
gl = 2.000 * LINK_LENGTH * LINK_LENGTH;
g2 /= ql;

//Store theta3
angle->theta3 = acos(q2); //2-26 4:38pm

//Calculate hip vertical angle (theta 2)
b = A3 * cos(angle->theta3);

b += A2;

gl = A3 * sin(angle->theta3);

g2 = atan2(ql, b);

q2 *= -1;

b = A3 * cos(angle->theta3);

b += A2;

b *= b;

ql = A3 * A3;

ql *= (sin(angle->theta3) * sin(angle->theta3l));
b += qg1;

ql = sqrt(b);

b = coords->z / ql;

angle->theta2 = g2 + asin(b);

3

Code Sample 4: Inverse Kinematics

Now that leg coordinates can be converted into control angles, and vice versa, the robot control

functions can be abstracted to the Euclidean coordinates of the robot base frame.

2.4.3.3. Motion Control
The LCU contains the central processing unit for the entire leg peripheral. As such, it is

responsible for distributing power to each of three motors and interpreting data from each of three
potentiometers. Each motor is paired with a unique potentiometer as a means of measuring joint
position. The LCU must integrate the control of the motor with the interpretation of the potentiometer

signal in a meaningful way.
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Motor Functions

Any electric motor can be controlled by varying the input voltage, which is referred to as analog
drive. However, for a digital processor to process an analog signal, it must have a digital-to-analog
converter, or DAC, to produce a usable output signal to the motor. Additionally, most processors do not
function at the voltage nor can source the amperage required by an electric motor. This means that any
voltage signal directed to a motor must be amplified, usually by means of an operational amplifier, or
op-amp. These requirements for analog drive require a large amount of accessory hardware for simple
motor control.

Another means of control is referred to as pulse width modulation, or PWM (28). In this
method, the control signal to a motor will always be a constant voltage. This signal is high (on) or low
(off) for subsequent portions of a predefined time increment, referred to as the PWM period. The
inverse of the PWM period defines the PWM Frequency. The portion of the PWM period that is
occupied by a high signal is referred to as the duty cycle.

PWM will approximate an analog signal, as seen in Figure 29, by accelerating the motor to a
certain velocity during the duty cycle, and allowing it to decelerate during the low signal portion of the

PWM period:

TT TT T T T T T T T

Reference
Limits
Output

PWM signal

Time

Figure 29: PWM vs Analog Drive
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The PWM signal can be used to drive a simple H-bridge that will supply the motor with its necessary
power, and no DAC or op-amp is necessary. The conceptual H-bridge, shown in Figure 30, has the

following switches:

+ E: Enable switch. Allows the H-bridge to operate by sourcing the motor voltage.
+ 1through 4: Combinations of these switches direct the flow of current through the h-bridge to

ground. The combinations (1,4) and (2,3) will allow current to flow through the motor

Motor Veltage E

Figure 30: Conceptual H-Bridge Diagram

The ATMegal164/324 /644P processors are equipped with three internal timers that are each
capable of generating two PWM signals separately from each other and independent of any other
internal processing. This feature is exploited in the LCU software by initializing two timers to the same
PWM frequency. One of these timers is used to control the PWM signal to two motors, and the other
timer controls the PWM signal to the third motor. The ATMega164/324/644P PWM timer function can
then be controlled by simply augmenting the duty cycle with the software.

The only remaining aspect of motor control is directionality, where it is determined in which
direction the motor will rotate. The LCU is configured in such a fashion as to enable the H-bridge on the
“high” PWM signal, and disable the H-bridge on the “low” PWM signal. The actual motor signal in the
software is represented as a signed value, which indicates whether the motor should be moving in
forward or reverse rotation. The sign of this value will cause the H-bridge to be configured in one of two
ways:

+ Forward, where current across the motor flows from the positive motor terminal to the negative

motor terminal, and
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* Reverse, where current across the motor flows from the negative motor terminal to the positive

motor terminal.

These are illustrated below:

Motor Voltage Motor Voltage E T

/_\\ 7N

Ground Grounid

Forvanl Rotation Reverse Rotation

Figure 31: Forward and Reverse Configurations of the Conceptual H-Bridge

Now that the motor can be commanded to rotate in either direction at varying speeds, a means of
detecting the corresponding joint’s position must be employed. This is done through the use of variable

resistors, or potentiometers, connected to the joint axis.

Potentiometer Functions

The potentiometers will produce a voltage signal that is commensurate with their angular
position. They have a physical range of 270°, and their voltage output ranges from 0V to the input
voltage (in this application, 5V). Tests on the potentiometers used for this application showed a linear
correlation between potentiometer position and voltage output. Using linear interpolation, the start
and end voltages are referred to as x, and x; respectively, and the start and end angle values are

referred to as y, and y; respectively. An angular value y is then determined from the equation,

Equation 16: Linear Interpolation

— Yo

y= yo+(x—xo) —
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This still renders an analog voltage; the resulting value must be converted into one that can be used by
the ATMega164/324/644P processor.

The ATMegal164/324/644P processors have a built-in analog to digital converter, or ADC. The
ADC functions by approximating a voltage input to a certain resolution; on the ATMega164/324/644P
this resolution is 10 bits. The input voltage is converted into a digital value in the range of 0 to
(2.1, or 0 to 1023.

The same linear interpolation can be used by replacing the voltage range of OV to 5V with the

digital range of 0 to 1023.

2.4.3.4. PID Control
In order to control the motor to arrive and stay at a given angle, a continuous means of control

must be implemented. Simply running the motor until it reaches a certain point will not work, since the
inertia of the motor and leg will continue to carry the axis past the desired point after the motor is shut

off. A controller must be used that monitors the relationship between the desired joint position and the
actual joint position, the difference in which is referred to as the error, and adjusts the motor’s behavior

to minimize the error.

Proportional-Integral-Derivative (PID) control uses the summation of three terms to monitor and

control the signal to a motor (29):

1. Proportional Term: the difference between the current motor position and the desired position.
Greater errors will cause a larger control signal to the motor. Proportional control alone is
typically subject to oscillations in the motor output.

2. Integral Term: the sum of the positional errors over time. The role of the integral term is to
decrease the oscillation caused by the Proportional control. By using the Integral control the
arm will eventually settle into the desired position.

3. Derivative Control: the rate of change in the error, used to balance the Integral control by

dampening the decaying oscillations from proportional-integral control.
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Figure 32: PID Control Process Diagram

As can be seen in Figure 32, each term is typically expressed with a constant coefficient that will
give weight to the term in the overall equation. The constants for proportional, integral, and derivative
terms are referred to as K, K;, and Ky, respectively. The values of these constants will vary from
application to application, and in each robot leg from joint to joint, due to the different masses and
torques associated with each joint.

To tune the PID equations for the robot leg motors, the Ziegler-Nichols Ultimate Gain method is
employed (30). This is a simple method, using only four steps:

1. Initialize PID with all constants set to zero.

2. Increase K, until a steady oscillation is reached.

3. Once oscillation is reached, the value of K, is referred to as K, or the ultimate gain, and the

period of the resulting oscillation is referred to as P..

4. Calculate the PID constants using the following formulae:

Table 6: Ziegler-Nichols Ultimate Gain Equations

Ko K; Ky

0.60 K. 2K, / P, K,Pc /8

Control code used to perform PID control can be seen in Code Sample 5.
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int PIDController(int setPoint, int processValue, pidData_t *pid_st) {
float p_term, d_term, i_term, ret, error;
int err, output;

err = setPoint - processValue;
it (err > 1024) {
err = 1024;
} else if (err < -1024) {
err = -1024;
}

error = err;

//P TERM
p_term = pid_st->P_Factor * error;

//1 TERM

pid_st->sumError -= pid_st->errHistory[pid_st->curError];
pid_st->curError++;

pid_st->curError %= ERROR_WINDOW; //Use fTixed number of previous errors

iT ((error <= DEADZONE) && (error >= -DEADZONE)) {
pid_st->errHistory[pid_st->curError] = 0;
} else pid_st->errHistory[pid_st->curError] = err;

pid_st->sumError += pid_st->errHistory[pid_st->curError];

i_term = pid_st->1_Factor * (float)pid_st->sumError;

//D TERM
d_term = pid_st->D_Factor * (float)(pid_st->lastProcessValue - processValue);

pid_st->lastProcessValue = processValue;

ret = (p_term + i_term + d_term) * pid_st->scalingFactor;
if (ret > MAX_INT) {
ret = MAX_INT;
} else if (ret < -MAX_INT) {
ret = -MAX_INT;
3

output = ret;
return output;

3

Code Sample 5: PID Control

Through the use of kinematics and PID control, each robotic leg can now be reliably commanded to a

desired orientation in the robot coordinate frame.

2.4.4. Software Model Diagrams
The following section outlines the general behavior of the MPU, LCU, and integrated ReMMRP

control system during their operational cycles.

2.4.4.1. MPU Flow Diagram
The MPU software behaves continuously in the following manner:
1. On power up, initialize internal hardware (communications, timers, etc.), and wait for a “ready”

signal from STATUS processor.

2. Determine available peripherals and select proper control algorithm(s).
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3. Command peripherals using control algorithms and real-time feedback data from peripherals.
At any time during this process, if there is a change in peripheral attachments as indicated by
the STATUS processor, return to step 2.

4. Return to step 3.

Power On

3
.3

Figure 33: MPU Software Flow Diagram

2.4.4.2. LCU Flow Diagram
The LCU software behaves continuously in the following manner:

1. On power up, initialize internal hardware (communications, timers, ADC, etc.), and produce a
“ready” signal to the STATUS processor.
2. Wait for a command from the MPU, causing simultaneous transfer of real-time feedback data to

MPU.
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3. Perform command from MPU until either:
a. A new command is received, or
b. A software or hardware error in the LCU occurs; then disable “ready” signal to STATUS
processor to indicate malfunction. Operation is terminated in this event.

4. Return to step 3.

Figure 34: LCU Software Flow Diagram
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2.4.4.3.

Integrated Flow Diagram

The complete software model of the robot behaves continuously in the following manner:

9.

On power up, MPU, LCUs, and STATUS processors initialize.

LCUs (and other peripherals) send “ready” signal to the STATUS processor.

STATUS processor determines which ports have attached peripherals, or active ports, and
communicates this information to the MPU.

MPU polls active ports for identification information and creates a list of peripheral devices
based on type.

MPU groups similar peripherals and selects control algorithm to employ accordingly.

MPU utilizes control algorithm(s) to generate command data for peripherals.

Command data is distributed to peripherals while real-time configuration data is simultaneously
returned to the MPU.

Real-time peripheral configuration data is fed into the control algorithm(s) on the MPU to
generate new command data for the peripheral devices.

In the event of a change in peripherals, go to step 3.

10. Return to step 5.
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Figure 35: Integrated Software Control Flow Diagram
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3. Results

The primary specifications outlined in Section 2.1 were reevaluated at the conclusion of the

project. The success of each specification is rated according to the following key:

* @ - Design Specification Met; needs little to no revision or additional work
* - Design Specification Met; needs revision or additional work

- ® - Design Specification Not Met

Table 7: Design Specification Compliance

The chassis will have 12 connection points — 2 on each short side, 4 on each long side.

The chassis must contain a centralized power distribution and communications hub.

The chassis must contain a processor responsible for coordinating the actions of all
peripheral modules.

The MPU must be interchangeable.

MPU software must determine actions for all peripheral modules and delegate commands
to them in real time.

The chassis must have a dedicated processor responsible for detecting the addition or
removal of peripheral modules in real time independently of the MPUs operation.

STATUS processor software must operate in real time, allowing MPU to have immediate
knowledge of attached peripherals at any given time.

The legs modules will be 3 degree of freedom (DOF) links

The leg must operate in 3-dimensional space.

The leg must have position sensors integrated into each joint.

The joint motors must be mounted internally in each leg link.

Each leg module must have self-contained control system.

L ©O|0|0|O0|0O|0|O 00O
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The LCU must have a processor capable of handling the software controls.

The LCU must distribute power to joint motors and read joint position sensors.

The LCU must be able to relay signals to the main control system.

LCU software must respond to commands from MPU with higher priority than any other
task inherent to LCU software.

Communications protocol must exist for data transfer among the MPU, STATUS processor,
and LCUs).

00000

While all of the design specifications were met, the fully assembled robot did not perform as
desired. Solutions to the issues that affect the current version are discussed next. The robot at the

completion of this project is shown in Figure 36.

Figure 36: Completed Robot (1 Leg)

3.1.Mechanical Design Revisions
Once the leg was constructed, several problems became apparent and areas for improvement were

noticed. In order to improve robot performance, an increase in complexity in the new version of the

robot is needed. However before a new robot is designed, the initial design must be reviewed.
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Figure 37: Conceptual lllustration of Revised ReMMRP Design

3.1.1. Review of the Initial Design
The main problem of the legs was caused by the miter gears used at the joints. The miter gears

generate substantial axial forces that pushed the gears out of mesh. The solution to the problem was to
ensure that washers were placed so that the gears could not force each other out of mesh. The other
problem with the gears was the fact that the set screws would be forced out of place, which would allow
the gears to spin freely. Holes were drilled through the gears and axles to pin them together and thus

ensure that gears and axles will always rotate together.

Another problem experienced in the original design was the couplers between the motors and
the shafts. The motor’s output shaft is 4mm in diameter and the shaft used is 0.25 inches. The closest
standard size diameter for a coupler is 0.375”. The difference in diameters is 0.03 inches, which is
enough to allow an unacceptable gap between the coupler and the shaft. A commercial coupler does
not exist for the 4mm to 0.25” conversion; therefore a custom coupler was manufactured. The coupler
was designed to use a 4-40 set screw, however the set screws proved insufficient against the forces of
the gearbox. New holes were drilled into the coupler to accommodate an 8-32 set screw. These screws
were more effective, but still frequently failed to prevent slippage.

The bracket design for the hip joint posed significant manufacturing challenges since it is made
from tube stock. The main problem came from the through holes for the shaft. These holes need to be
concentric to one another, which means that the holes should be drilled at the same time, however that
requires a long carbide drill. The problem introduced by the long drill is deflection, which means that
the drill bit will tend to be pushed off axis as the drill is pressed into the part. This phenomenon could

result in the through holes not aligning with each other. All of the brackets made for the initial leg
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suffered from drill bit deflection. Although the deflection was minimal, it is not desirable, and the
effects were noticeable during construction of the leg.

The weight of the initial design could be lowered to reduce the forces needed to move the leg.
There are two key places that could see weight reduction: the gearboxes, and the plate metal that forms
the legs and the chassis. The current design of the gearboxes has significant excess metal. In addition,
the placement of holes and the dimensions of the pocket could be optimized to further reduce the
weight of the gearbox.

The plates that form the leg are currently solid sheet aluminum and weigh 0.16 |bs per plate,
with a combined four-plate-per-leg weight of 0.64 pounds. Reducing the weight of each plate will
reduce the torque required to move each leg, which will produce smaller forces on the various
components in the leg.

The chassis is another source of substantial weight of the robot. The chassis is made of 0.25”
sheet aluminum. An analysis will be conducted to see if the chassis can be manufactured from 0.125”

thick aluminum.

3.1.2. Goals of the Revised Design
There are two main considerations for the revised design of the robot. The first consideration is

to reduce the overall weight of the legs and chassis. The second consideration is to simplify the
manufacturing process and assembly of the robot’s components. Addressing these two areas will make
the robot perform better, put less stress on the connection points, and eliminate the slippage in the
gearbox that affected the previous design. Several components are targets to reduce the weight of the
robot, namely the gearbox, the leg plates, and the chassis. The hip assembly is to be redesigned to be

simpler to manufacture and assemble.

3.1.2.1. Gearbox Redesign
The current gearbox contains significant portions of unused metal. Figure 38 and Figure 39

show comparison images of the current and the revised gearboxes. The bolt holes that mount the
gearbox to the leg are closer to the output shaft. The holes that secure the cover plates are shifted
closer to the pocket to minimize the material in the gearbox. The pocket that holds the miter gears is
reduced in size so that it will require fewer washers to mount the gears. The mounting holes that secure
the motor are moved to reduce the size of the motor mounting plate. The movement of the mounting
holes allowed for the removal of material on either side of the drive shaft. In addition, the front wall of

the gearbox (the topmost edge in Figure 39) is reduced in thickness from 0.25” to 0.125”. The thickness
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of the gearbox was also reduced by 0.25”. These changes in the gearbox design reduced the weight of

the gearbox from 1.46 Ibs to 1.03 Ibs, which is a 29.5% reduction in weight.

Figure 38: Side View Comparison of the previous gearbox (Top) and the new gearbox (Bottom)

Figure 39: Top view comparison of the previous gearbox (Left) and the new gearbox (Right)

3.1.2.2. Leg Plate Redesign
In the current design there are two separate designs for the leg plates: one for the thigh and one

for the calf. However, the only functional difference between the two plates is that the calf plate lacks
the mounting holes for the gearboxes. In terms of manufacturing, this increases the time of
manufacturing because two separate CAM files need to be created and two separate production runs

need to be made. There is also no benefit to having a design like this. In the revision, the plates are
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unified into a single design that can serve either as a calf plate or as a thigh plate. Figure 40 shows a
comparison between the current thigh plate and the revised leg plate.

With the reduction in size of the gearbox, the leg plate was scaled down to fit the revised
gearbox design. This leg plate is 11” long, compared to the 12” of the current design, and 1.25” wide
compared to the 2” wide of the current design. The revised plate has all of the hole patterns necessary
to connect a gearbox or mount the set screw hubs. The current thigh plate is solid plate metal with no
pockets to reduce weight. The revised leg plate has cutouts to reduce the weight of the plate. The
current thigh plate weighs 0.29 Ibs while the revised leg plate weighs 0.11 Ibs, which is 62% reduction in

the weight of the plate.

Figure 40: Comparison between the old Thigh Plate (Top) and the new Leg Plate (Bottom)

3.1.2.3. Hip Assembly
The main problem with the current design of the hip assembly is the difficulty of ensuring that

the holes are concentric. The Horizontal Movement Assembly (HMA) is designed around a piece of
aluminum tube stock; however in the revision the tube stock is used to mount plates which hold the set
screw hubs. Figure 41 shows a comparison of the new and old brackets. Using plates makes it easier to
ensure that the holes for the various shafts are concentric and do not require special machining. In
addition, the bracket is smaller than the current one. The height of the part has been reduced to 1.25"
from the original 3”. The part wasn’t redesigned to be lighter, but easier to manufacture, so the overall

weight hasn’t changed drastically. The weight has dropped from .25 Ibs to .22 Ibs.
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Figure 41: Comparison View of the old HMA (Left) compared to the new design (Right)

The current Hip Connection Bracket (HCB) is one piece of cut tube stock, but the revised design
is made of two separate pieces of angle aluminum. There are two reasons for the two piece design. The
primary reason is the resolution of the problem of concentric holes. The secondary reason is so that the
design isn’t limited by the dimensions of commercially available tube stock. Commercially available tube
stock comes in a limited set of sizes, which would force the part to be designed around it. The use the
angle aluminum allows for more flexibility in terms of length and depth of the assembly.

The electrical connector was removed from the part so that the assembly of the components
and the wiring wouldn’t interfere with each other. Also by removing the electrical connection from the
part, the HCB can become smaller and easier to assemble. A comparison is shown in Figure 42. The
weight of the original design is 0.69 Ibs while the new design weighs 0.56 Ibs, which is a 19% reduction

in weight.
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Figure 42: Comparison View of the Current HCB (Left) and the Revised Design (Right).

3.1.2.4. Force Analysis of the New Design
The revised leg design is significantly lighter compared to the current design and slightly shorter

as well. A new force analysis will show the additional benefits of the revised design. Once again, the
calculations are done in oz-in. Each plate has a length of 11 inches and weighs 1.76 oz. The gearboxes
weigh 16.48 oz and the center of mass is 0.75” from the axis of rotation towards the center of the thigh
link. The mounting hole for the drive shaft is 0.5625” from the end of the plate, giving the calf plate a
functional length of 10.4375” and the thigh plate a length of 9.875”.

Figure 43: Static Force Calculation for the Revised Design
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The analysis will start by calculating the torque required to rotate the calf plate. The weight of

the calf link is 3.52 oz and is 10.4375” long. Assuming the force of the link is acting at the midpoint of

the length of the calf, the torque is:

Equation 17: Motor 3 Torque in Revised Leg

10.4375 |
M, = Tln *3.52 0z

M, = 18.37 oz-in

Continuing to coordinate frame 1, this motor has to rotate not only the thigh link but the calf

link as well including a motor. Therefore:

Equation 18: Motor 2 Torque in Revised Leg

5
M; = 18.37 oz-in + [(16.48 0z * 9.6875 in) + ( in * 3.52 oz)]
M; = 18.37 0z-in + 159.65 oz-in + 17.38 0z-in
M; = 205.4 0z-in

The bracket that allows for the movement of the hip weighs 3.52 oz and the center of mass is 1.125 in

away from the horizontal axis of rotation. The torque required is:

Equation 19: Motor 1 Torque in Revised Leg

My = 205.4 0z-in + [(3.125in x16.48 0z) + (1.125 in * 3.52 0z)]

My = 205.4 0z-in + 51.5 0z-in + 3.96 0z-in
M, = 260.86 0z-i
Table 8 compares the torque requirements of the current and revised designs:

Table 8: Comparison of Current and Revised Motor Torques

Motor 1 | Motor 2 | Motor 3
Current (oz-in) | 398.06 321.1 51.62
Revised (0z-in) | 260.86 205.4 18.37
Reduction 34.47% | 36.04% | 64.42%
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As Table 8 shows, the revised design results in a significant torque reduction for all motors. This will in

turn save power and extend the battery life of the robot.

3.1.2.5. The Chassis
The main modifications to the chassis are accommodating the changes in the HCB and the new

placement of the electrical connection port. In addition, the types of bolt holes in the chassis plates
were reduced. Originally there were several types of holes: %-20, 10-24 and 5-40. The %-20 holes were
used to mount the leg to the chassis, the 10-24 holes were used to bolt the chassis plates together and
the 5-40 holes were to mount the electrical connection. Having 3 different bolt types complicates
manufacturing as a different operation, drill and tap must be used for each type of hole. This adds time
and complexity to the part. In the new design the 10-24 holes have been replaced with %-20 bolt holes.

The other change to the chassis is switching from 0.25” aluminum to 0.125” aluminum. This
change is to save weight on the chassis. The current chassis weighs 3.41 Ibs, while the new chassis
weighs 1.92 lbs. This is a 44% reduction in weight. The main concern about switching to a thinner plate
is that the plate would bend under the load of a configured robot.

The CosmosXpress feature in SolidWorks was used to study how the chassis plates would react
to various forces. The first test was conducted on the short chassis plate. The plate was restrained
around the bolt holes and a 15 pound force was applied to the front face of the plate. After running the
analysis, the lowest safety factor was 6.46. Figure 44 shows the distribution of safety factor across the
plate. The blue areas are where the safety factor is higher than the entered value, which in this case is

15, and the red areas are where the safety factor is lower than the entered value.

ﬁ cos“usxpress v COSMOS5Xpress. com

| & Material | @ Restraint| @ Load | # Analyze | Optimize & Results | ¢ *

Congratulations.  The analysis is complete.

Baszed on the specified parameters, the lowest factor of safety
[FDS] found in your design is 645901

Show me critical areas of the model where FOS is below: [15

Click Mezt to further review the results or click Close to exit the Wizard

[ <Eack] [ Hest> ] { Close ] [QancalJ l Help ]

Figure 44: Revised Chassis Short Plate CosmosXpress Results
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Figure 45 shows the maximum displacement of the part under the 15 pound load. The part
appears to bend significantly under the load, however the greatest displacement of the part (shown in

red) is 0.0018 inches.
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Figure 45: Displacement of the Revised Short Chassis Plate

The long plate underwent a similar analysis using the CosmosXpress feature. Again, the plate
was restrained around the bolt holes and a 15 pound force was applied to the front of the face plate.

The red areas shown in Figure 46 are where the safety factor of the part is below 15.

COSMOSXpress

51 COSMOSXpress

| @ Material | & Restraint | & Luad-i] @ Analyze | Upt\mlze.l @ Results | SR

Congratulations. The analysis iz complete,

Based on the specified parameters. the lowest factor of safety
[FOS5] found in your design is 2.30298

Show me critical areas of the model where FOS is below: (15

Click Mext to further review the results or click Close to exit the Wizard.

[ (Back] [ Mexts l [ Close l [Ean:ell [ Help ]

Figure 46: Chassis Long Plate CosmosXpress Results



The red area is far larger in the long plate than in the short plate, however the minimum safety
factor is still above 2. The maximum displacement that the plate experiences under the force is 0.023

inches. The various displacements of the plate can be seen in Figure 47.
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As a result of the testing done on the 0.125” plates, the new chassis will be constructed from the

Figure 47: Resulting Displacement of the Long Chassis Plate

thinner material. Along with the changes made to the leg module, the revised robot will now be lighter
than the current design. The revised robot weighs 15.25 Ibs in a four leg configuration, while the

current design weighs 25.42 |bs, a 40% overall reduction in weight.

3.2.Electrical System Observations
Overall, the electrical system performed as desired. Assembly of the boards only encountered a

few problems, and the boards functioned as designed.

3.2.1. LCU PCB Construction and Issues
The completed LCU can be seen in Figure 48. No major obstacles were met in the assembly of

the LCU PCB. All of the components designed specifically for this board fit as intended. There was one
issue with the resistors, however. 1/2 W resistors were ordered, but the board was designed for %4 W
resistors. This did not create too much of a problem, because by purchasing one % W resistor, the other
% W resistors could be bent to fit with the other components. One other problem occurred, where
connections on certain ports weren’t consistent, but by resoldering those ports, all of the problems

were resolved.
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Figure 48: Assembled LCU Board

3.2.2. MCB PCB Construction and Issues
Assembly of the MCB encountered a few problems. The first of which is that the holes for the

buck converters were too small. This was due to an error in translating the data sheet for the converters
into a proper layout for a PCB. This issue was resolved by bending the leads for the DC-DC converter 90
degrees so that they could be mounted as surface mount. This allowed the parts that were in hand to be
used as was functionally intended. The next issue was the distance between peripheral connection
ports. Originally, the connection ports were designed to be 2x8 female headers, and that was what the
PCBs were designed for. However, as described in Section 2.3.4.2, they were changed to a keyed
shielded male header. Due to this change, the footprint of each header increased, but the PCB was not
altered to match this change. Because of this increase, the headers could not fit all on the top of the
PCB. Alternating headers had to be placed on the underside of the board, allowing all 15 to be placed. In
doing this, the pinouts for the 2x8 to DB-15 HD cables had to be altered, so that top and bottom cables
were different. Lastly, all of the pullup resistors were changed from 10K to 1K so that the luminosity of
the LEDs was such that it could be seen in normal lighting conditions. Having the power LEDs use the
same pullup resistor value causes them to have varying luminosity, because one is operating at 5V, and
the other at 12V. In order to correct this, a 420_, resistor would be needed for the 5V line. This is a minor
issue, as they can still be seen in normal lighting conditions. Once these issues were resolved, the MCB

worked as designed. The final MCB design can be seen in Figure 49.
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Figure 49: Assembled MCB Board

3.3.Software Timing and Effective Control Frequencies
The real-time operational characteristics of the LCU software were tested by running various

functions of the LCU software in an infinite loop and toggling an output signal from the ATMega324P
processor at the beginning of each iteration of this loop. An oscilloscope was then used to read this
output signal. It is important to note that the frequency of the resulting square wave is that of the
metered operation occurring twice. Even though a frequency is reported on the oscilloscope, it lacks the
precision of the period reported by the oscilloscope (31). Therefore, to determine the frequency of any

given function from the oscilloscope output, the following formula is used:

1 2
requenc i = - = -
f q Y(function ) (perlOd(function )) penod(function )
2

This formula is used to calculate the overall process time of the LCUs various functions, as well as the
total expected LCU time to process a motion command from the MPU. This information, in turn, is used
to calculate the expected frequency with which the MPU can delegate commands to a single LCU

without incurring logical collisions.
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3.3.1. PID Loop Timing

Tek S Trig'd M Pos: 00005
+

k50005
10-Kar=10 04:57

Figure 50: Single PID Loop timing
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The oscilloscope-clocked period of a single PID loop in the LCU is 772.1 microseconds. The frequency of

this function is then:

frequencysingieripy = m = 2590.34 Hz
3.3.2. Total Leg PID Loop Timing
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Figure 51: Total PID Loop Timing

The expected frequency of three sequential PID loops is
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reaUencY, .. 2590.33 H
freq ;’(SLnglePID) _ 2 z = 863.45 Hz

Any difference would indicate additional overhead done in the processor between the three PID loops.
The oscilloscope-clocked period of the sequential PID loops for all three leg motors in the LCU is

2.328milliseconds. The frequency of this function is then:

2
frequencyotaipip y = 328 ms 859.11 Hz

This slightly lower-than-expected value indicates some minimal additional overhead in the processor,

but is considered negligible as the actual and expected values are within 0.5% of each other.

3.3.3. Inverse Kinematics Timing
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Figure 52: Inverse Kinematics Loop Timing

The oscilloscope-clocked period of the inverse kinematics in the LCU is 4.790 milliseconds. The

frequency of this function is then:

frequency(inversekinematics )= = 417.54 Hz

4.79ms
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3.3.4. Forward Kinematics Timing

Tek M Trig'd i Pos: 0.000s AUTOZET
-

2l

Unda
hutoset

M 1.00ms
10=pdar=10 04,52

Figure 53: Forward Kinematics Loop Timing

The oscilloscope-clocked period of the forward kinematics in the LCU is 2.852 milliseconds. The

frequency of this function is then:

2
frequenCY(forwardkinematics ) = m =701.26 Hz

3.3.5. Total LCU Command Process Timing
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Figure 54: Complete LCU Leg Motion Command Timing
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The expected frequency of the total LCU motion command, which will perform forward kinematics, one
PID loop for each motor, and then inverse kinematics, can be calculated using their respective periods

as:

2

frequenCY(totalmotioncommand ) = 2.852ms + 4.79ms + 2.328ms = 200.6 Hz

Again, any discrepancy between this expected value would indicate additional processing between
successive functions. The oscilloscope-clocked period of the forward kinematics in the LCU is 9.98

milliseconds. The frequency of this function is then:

2
frequenCy(totalmotioncommand )y = 9.98ms = 2004 Hz

There is a 0.1% deviation between the actual and expected value; but this is a negligible difference.

Utilizing a timing safety factor, where the minimum frequency between commands is divided by the
timing safety factor to allow additional time to avoid logical collisions. Using a timing safety factor of 2,

the MPU can issue motion commands to each LCU at approximately 100 Hz:

200.4 Hz

> =100.2Hz

Accordingly, the MPU must issue successive commands to a single LCU in time increments of no less
than 0.01 seconds.

3.4.Budget

The budget is separated into mechanical components and electrical components. The small parts

are grouped together to form units, such as the chassis, or an LCU.

3.4.1. Mechanical Budget
The following budget is calculated for the final mechanical design of the robot. It is separated

into three distinct sections, the budget for each leg, the budget for the chassis and other onetime buys

and a list of material that was not purchased due to existing stock. Table 9 shows the cost per leg.
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Table 9: Mechanical Budget per Leg

Name Cost per Unit | QTY | Total Cost | Manufacturer | Part Number
Miter Gears 47 2 94 | Nordex LHSE3030
15 Tooth Spur Gear 17 1 17 | Nordex LASC2015
30 Tooth Spur Gear 13.15 1 13.15 | Nordex LASC1030
Shaft Collars 1.25 4 5 | Nordex BACC2003
Bearings 5/8" OD 8.45 6 50.7 | Nordex ABSA5031
Bearings 1/2" OD 6 4 24 | Nordex ABSA5029
1/4-1/4 Coupler 7.5 3 22.5 | Servo City CDS-A1-5
Set Screw Hubs 5 6 30 | Servo City 3463H
Motors 32 3 96 | Lynxmotion PGHM-04
1.25" #6 Spacer 0.66 4 2.64 | McMaster 92510A450
1.75" #6 Spacer 1.51 4 6.04 | McMaster 92510A095
5/8" #6 Spacer 0.35 4 1.4 | McMaster 92510A446
1" #6 Spacer 0.45 4 1.8 | McMaster 92510A449
1/16 Nylon Washer 3.86 1 3.86 | McMaster 95630A242
1/32 Nylon Washer 2.44 1 2.44 | McMaster 93493A234
Total Cost Per Leg 370.53

The cost to build one leg is $370.53 and does not include metal stock as that material is covered
in Table 10. The main contributors to the cost of building a leg are the miter gears and the motors. The
miter gears are expensive due to the necessarily precise manufacturing needed and the fact that miter
gears have to be purchased as a matched set. The motors are expensive due to their size and the high

reduction of the attached planetary gearbox.

Table 10 shows the cost of one-time purchases for the robot and contains sheet metal and

fasteners.

81



Table 10: Single Purchase Material Budget

Cost per Total
Name Unit QTyY Cost Manufacturer Part Number
1"x3"x1/8 Tube Stock 7.67 1 7.67 McMaster 88935K571
6061-T4-SH 0.1250 x
1/8" Thick 6061 Alum 175 1 175 Yarde Metal 48 x72
5-40 Pan Slotted Screws
.25" Long 5.7 1 5.7 McMaster 91792A124
1/4-20 Pan Slotted Screws
.25" Long 12 1 12 McMaster 91792A533
6-32 Pan Slotted Screws 2"
Long 9.1 1 9.1 McMaster 91792A159
6-32 Pan Slotted Screws
.25" Long 5 1 5 McMaster 91792A144
6-32 Pan Slotted Screws 1"
Long 8.15 1 8.15 McMaster 91792A153
6-32 Pan Slotted Screws
1.5" Long 12 1 12 McMaster 91792A157
TOTAL COST = 234.62

The biggest contributor to the single purchase budget is the purchase of the sheet aluminum.

However this will provide enough aluminum to make the chassis and six legs. The majority of Table 10 is

screws, which may be available through other means, which could save some money towards the overall

cost of the robot.

The following parts will be made from existing stocks that do not have to be purchased:

©O O O O

Gearboxes

Motor to Drive Shaft Couplers
The Hip Assembly Brackets
The Chassis Angle Brackets

Due to the fact that there are existing stocks of material to be used, those parts are not factored

into the budget for the final mechanical design.

3.4.2.

Electrical Budget

The majority of the components were purchased through DigiKey. This was done so that most of

the necessary components could be ordered all at once, with only a few coming from other vendors. The

other vendor used was Newark, because DigiKey has a very small selection of power management ICs.
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Also, blade fuse holders were purchased from Newark. The PCBs had to be custom ordered and printed,

and the price listed is the cost for a single board to be printed, even though they were ordered in a bulk

pack. The complete itemized budget per unit for the LCU, MCB, and MPU is shown in Table 11, Table 12,

and Table 13 respectively.

Table 11: LCU Itemized budget

Component Manufacturer Supplier Part Number Price Per | Quantity | Total
ATmegale4P Atmel Digikey ATMEGAL164P-20PU-NI 54.73 1 54.73
DIP40 Socket M Digikey 3ME471-ND 50.42 1 $0.42
L6205 H-Bridge STMicroelectronics Digikey 497-5344-5-ND 55.44 2 $10.88
DIP20 Socket M Digikey 3ME465-ND 50.24 2 50.48
1x2 0.25" Motor Port Tyco Electronics Digikey AZ5313-ND 50.36 3 51.08
1x3 0.1" Potentiometer PorfjTyco Electronics Digikey AZB528-ND 50.42 3 51.26
2x8 0.1" Main Port Tyco Electronics Digikey A33164-ND 51.62 1 51.62
100ohm Resistor Yageo Digikey 100QBK-MND %0.06 2 $0.13
100K Resistor Stackpole Electronics Digikey CF1/4100KJRCT-ND $0.08 3 $0.24
10nF Cap Kemet Digikey 399-4326-ND 30.13 2 30.26
100uF Polarized Cap Panasonic ECG Digikey P833-ND 50.01 2 $0.02
100nF Cap Kemet Digikey 399-4329-ND 30.21 2 30.42
220nF Cap Kemet Digikey 399-4353-ND 30.53 2 $1.06
5.6nF Cap TDK Corporation Digikey 445-4747-ND 50.28 3 $0.85
1N4148 Diode Fairchild Semiconductor  |Digikey 1N4148FS-ND 50.08 4 $0.32
Printed Circuit Board Imagineering Inc. LCU w4 $25.00 1 $25.00
20 Strand Ribbon Cable M Digikey MB16R-100-ND 30.63 1 30.63
2x8 0.1" Ribbon Cable ConngTyco Electronics Digikey AKC16H-ND $1.23 1 $1.23
DB-15 HD Male Amphenol Commercial ProqDigikey 17EHD-015-P-AA-0-0 51.56 1 $1.56

37 %$52.20
Table 12: MCB Itemized Budget

Component Manufacturer Supplier Part Number Price Per | Quantity | Total
ATtiny48 Atmel Digikey ATTINY48-PU-ND $2.04 1 $2.04
DIP28 Socket 3M Digikey 3M5480-ND $0.33 1 $0.33
SN74154N Demux Texas Instruments Digikey 296-8757-5-ND $3.50 1 $3.50
TI PT5101N Buck Converter |Texas Instruments Newark 15M7372 $13.25 3 $39.75
1x2 0.25" Battery Port Tyco Electronics Digikey A25313-MND $0.36 1 $0.36
2x8 0.1" Peripheral Port Tyco Electronics Digikey A33164-MD $1.45 15 $21.75
1x12 0.1" MPU Port Tyco Electronics Digikey A26479-ND $1.14 1 £1.14
Fuse Holder Keystone Newark 22M2712 $1.20 2 $2.40
15A Blade Circuit Breaker E-T-A Digikey 302-1243-ND $9.09 1 £9.09
3A Blade Fuse Littelfuse Inc. Digikey F99a6-ND $0.63 1 $0.63
1K Resistor Yageo Digikey 1.0KQBK-ND %0.06 3 30.19
1K 15-Resistor Bussed IC Bourns Inc. Digikey 4116R-2-102LF-ND %0.60 1 %0.60
100uF Polarized Cap Panasonic ECG Digikey PB33-ND $0.12 3 £0.36
1uF Cap Kemet Digikey 399-4329-ND $0.21 3 $0.63
Yvellow LED Avago Technologies US Inc. |Digikey 516-1764-ND 50.72 2 51.44
4-LED Bank Lumex Opto/Components Digikey 67-1285-ND $1.26 4 $5.04
Printed Circuit Board Imagineering Inc. MCB V1.2 $27.50 1 $27.50
16 Strand Ribbon Cable 3M Digikey MB16R-100-ND $0.63 15 $9.50
2x8 0.1" Ribbon Cable Connec{Tyco Electronics Digikey AKC16H-ND $1.23 15 $18.45
DB-15 HD Female Amphenol Commercial ProdugDigikey 17EHD-015-5-AA-0-00-N 51.65 15 524.71

89 $169.40
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Table 13: MPU Itemized Budget

Component Manufacturer Supplier Part Number Price Per | Quantity | Total
ATmegab44P Atmel Digikey ATMEGAS44P-20PU-ND $8.19 1 $8.19
DIP40 Socket M Digikey 3ME471-ND £0.42 1 $0.42
DB-9 Serial Port Norcomp Inc. Digikey 191-09FA-ND 5£3.48 1 £3.48
1x12 0.1" MPU Port Tyco Electronics Digikey AZ26479-ND 51.14 1 $1.14
Printed Circuit Board Imagineering Inc. MPU V1.1 $25.00 1 $25.00

3 $38.23

4. Future Work

Given the modular design of the robot, there are many potential areas for future work. The
most immediate task would be the construction of the final robot design including multiple leg modules.
Plans to complete this are already slated to be started following the submission of this project. The
balancing algorithm can be tested to show that the robot can identify its current configuration and
balance itself. From there, further work can be conducted to refine the algorithm and make it more
complex. For example, the algorithm can be developed to allow the robot to balance itself regardless of
the surface that the robot is standing on. The ultimate goal for the leg modules would be to allow the
robot to walk using any leg configuration.

Other possible areas of future work would be the development of new modules for the robot.
These modules can be generalized to include, but are not limited to, movement, manipulators and
sensors. Movement modules could come in the form of wheels to enable the robot travel at fast
speeds along roads, or treads for maneuvering through sand. Manipulators could come in the form of
an arm, a claw or gripper module. Sensors could be range finders, localization sensors or thermal
sensors. Other miscellaneous possible devices include a GPS sensor, which could be used to send the
robot to a predetermined location. Also, a RF receiver module could be created to add remote control
functionality to the robot. As long as the new modules follow the connection and communication
protocol, there is no limit to the modules that can be created. The only thing that must be done to
accommodate new modules is to program into the main processor how to handle this new module. The

robot can be developed for any task with the development of new modules.
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5. Conclusion
The ReMMRP serves as a proof of concept of the integration of reconfigurability, modularity, and

mobility in a robotic system. The final design demonstrates effective implementation of a robot for
immediate and future applications. Such a design will increase flexibility in the field of robotics, allowing
the solution to a task to be viewed as a reconfiguration, not a redesign.

Additional peripherals can be designed and incorporated, as long as they conform to the
connection and communication standards of the robot. Additional algorithms can be incorporated into
the main software to control these new peripherals. The design features presented by this platform
eliminate the need to produce an entirely new robot. Instead, focus can be shifted to the development
of peripherals that will extend the capabilities of the existing platform.

Modularity of the platform makes it fault-tolerant; that is, a failure within the robot does not
require replacement or repair of the entire system. Instead, modules can be replaced minimizing
downtime and cost.

The reconfigurable and modular design of ReMMRP allows it to be utilized in a variety of real-
world applications which would otherwise require robots of different forms and functionality. This saves
time and money for the end-user of the platform, while creating jobs in the industry for designing
software, mechanical, and electrical subsystems for new peripheral modules. Its low cost, flexible
design, and expandability make the ReMMRP a unique robotic platform for a wide range of applications

in academia and industry.
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7. Appendices

7.1.LCU Schematics

(Beginning on the following page)
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7.2.MCB Schematics
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HDR1X12

Header 12
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