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Abstract

True random number generators (TRNGs) ideally produce unbiased, uncorrelated, and in-

compressible bits of information by extracting randomness from a stochastic process. These

circuits help in secure communication, user authentication, and user identification protocols.

Some TRNGs employ a bistable ring (BR), a digital logic circuit made up of an even number

of inverters connected in a loop, as their core. When powered on, the BR oscillates and may

settle into one of two states. We introduce concepts from nonlinear dynamic system analysis

to determine whether the BR’s trajectories are random enough to be considered a promising

entropy source in TRNGs. Our example BR simulations and Monte Carlo process variation ex-

periments in Ngspice show that the BR’s trajectories are chaotic in the best-case scenario. We

also study the FPGA realizations of BRs and observe periodic behavior in those implementa-

tions. Following these observations, we evolved instances of BRs using a genetic algorithm (GA)

to determine whether one could surpass the chaotic and periodic characteristics of simulated

and implemented BRs. According to our results for optimizing the BR trajectories’ complexity

(measured by permutation entropy), some instances created by the GA could exhibit stochastic

behavior.
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1 Introduction

Integrated circuits are useful in the field of cryptography since their physical characteristics can

help verify and authenticate users, obfuscate keys for encryption, and generate random numbers.

This paradigm of using physical devices for cryptographic purposes forms the basis for the field of

hardware security. The bistable ring (BR) is a circuit that has found applications in this field; it uses

digital logic gates to create analog signals without needing external sources or passive components.

The BR is easy to build with digital logic gates or implement inside a field-programmable gate

array (FPGA). We are interested in its use in random number generation as the core of a true

random number generator (TRNG) like the one developed by Intel [1].

It is easy to treat a random number generator (RNG) as a black box, not caring whether its

outputs are perfectly random. However, in cryptography, forgetting to check the quality of an

RNG’s outputs is a dangerous mistake. Kerckhoff’s Principle states that one should assume all

attackers know everything about how a cryptographic system in question works, except for its

users’ secrets (e.g., keys). Many of these secrets are indirect or direct results from an RNG; if the

attacker figures out the secrets, then they can compromise the system’s security [2].

The BR has also found use in authentication, identification, and key obfuscation as part of the

fingerprint of a physical unclonable function (PUF) [3], [4]. PUFs and TRNGs built with the BR

both consistently release it from the same unstable state [1]–[4]; how can it both predictably settle

into a single result in the former yet unpredictably settle into one of two results in the latter?

Resolving this contradiction is difficult since no generalized closed-form system of equations exists

that can characterize any BR. When the mathematical models of engineering fail, one must turn to

physics to get answers: the field of nonlinear dynamics can shed light on this issue by understanding

the BR’s voltage trajectories as a dynamical system.

Nonlinear dynamics, the branch of physics concerning nonlinear dynamical systems, contains

tools that can determine whether a dynamical system is deterministic (i.e., follows an underlying

ruleset) or stochastic (i.e., involves probability distribution parameters). If the BR is a deterministic

system, then its underlying ruleset, initial conditions, and parameters define its corresponding

trajectories; this would help certify its use in PUF design but harm its use as an entropy source for

generating random numbers. Otherwise, if the BR is a stochastic system, then its trajectories are
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characterizable with probability distributions; this would help certify its use as an entropy source

for generating random numbers but harm its use in PUF design.

The purpose of this thesis is to prove the efficacy of tools from nonlinear dynamics in the

field of hardware security by characterizing the trajectories of different BR implementations to

classify them as either deterministic or stochastic. Our Monte Carlo simulations in Ngspice and

implementations in FPGA hardware show us how the BR propagates process noise, thermal noise,

and measurement noise through its signals. We then combine nonlinear dynamics with genetic

programming to evolve the most complex BRs to quantitatively increase the BR system’s chaos.

2 Randomness and Random Number Generation

At its basic form, randomness is the unpredictability of outcomes. From a frequentist’s perspective,

an event’s probability is its relative frequency of occurring in many identical trials [5]. Modern

cryptographic methods could not exist without randomness; random number generators themselves

are cryptographic primitives. Their applications include key generation algorithms for crafting

public and private keys, user identification like password generators or unique user IDs, initialization

vectors for block ciphers, and nonces for authentication protocols [2].

A random number generator (RNG) should output unbiased, uncorrelated, and incompressible

numbers or bits upon request. When generating bits, one can model a single output of a random

number generator as a Bernoulli random variable with a p-value of 0.5, outputting a “0” or a “1”

with the same probability. These Bernoulli random variables can assemble to form a Bernoulli

stochastic process, a fifty-fifty chance of outputting “0” or “1” in each trial over time [5]. Addition-

ally, each output of the random number generator should have no correlation with other outputs:

there should be no relationship between a new outcome and future or previous outcomes. The

knowledge of previous outcomes should not allow one to predict future outcomes with a better

accuracy than fifty percent. Finally, there should be no way to compress the string delivered by a

random number generator [2].

As an example, algorithms running on a computer can generate numbers by using a pseudoran-

dom number generator (PRNG). These RNGs create seemingly random numbers from an initial

starting value, called a seed. The PRNG will always output the same string of random bits when
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given the same initial seed, making it deterministic. PRNGs can be adjusted to have equal prob-

abilities of outputting “0” or “1”, which eliminates any bias present in their bit string. However,

the strong long-range correlations between different outputs of a PRNG can undermine its cryp-

tographic strength; therefore, using a PRNG in cryptographic applications is a security risk [2].

Nonetheless, PRNGs are still useful in various applications including procedural generation because

they are deterministic.

If one cannot rely on computers to generate random numbers, then one must get randomness

from an external source: this is where True RNGs (TRNGs) come into play. TRNGs extract

randomness by augmenting samples from a stochastic process to produce random bits; this makes

them much better candidates for generating truly random numbers than PRNGs since they employ

a non-deterministic system to generate unpredictable results. TRNGs are usually separate pieces

of hardware that connect via a USB or PCI bus and are managed via custom drivers. TRNGs

may produce incompressible bits of information, but their cryptographic strength may falter due to

imperfections in the randomness extractor or the stochastic process source itself. One can measure

these imperfections by determining a TRNG’s bias b and serial autocorrelation coefficients {ak}.

The values that b and ak can take are normalized to fit within the range [−1, 1] and are set so an

ideal RNG has b = 0 and ak = 0. A TRNG’s bias, shown in Equation 1, is the difference between

the probability that it outputs “1” and the probability that it outputs “0” divided by two [2].

b =
P (RNG = 1)− P (RNG = 0)

2
(1)

A TRNG’s serial autocorrelation coefficients, shown in Equation 2, measure how much its output

is correlated with itself. The serial autocorrelation coefficient of order k takes a TRNG bitstream

b of length N and determines how each bit is correlated to the bit k values away; the first-order

autocorrelation coefficient a1 is usually referred to as just “autocorrelation” [2].

ak =

∑N−k
i=1

(
b[i]− b̄

) (
b[i+ k]− b̄

)∑N−k
i=1

(
b[i]− b̄

)2 (2)

If an attacker knows enough information about a TRNG, then it can become susceptible to

attacks. An attacker can crack a TRNG if they can predict its future values via a passive attack or

forcibly change its values to desired outcomes via an active attack; cracking a TRNG compromises
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the information it makes [6]. For example, if the process used as a TRNG’s core is actually

deterministic instead of stochastic, then an attacker could perform a passive attack by analyzing

the TRNG as a deterministic dynamical system instead of treating it like a black box. Cracking

an RNG could allow one to steal confidential information, determine account passwords, or force

outcomes in video games.

On using chaotic systems in RNGs. One would think that using chaotic systems as the core

for generating random numbers is contradictory; they produce seemingly random signals driven by

an internal underlying ruleset. Since a chaotic system only has a limited amount of information,

chaotic RNGs will only produce a limited number of random bits and eventually run out of new

states to generate random bits. Future bits produced by the chaotic RNG would be perfectly or

near-perfectly correlated to the original set. Realistically, chaotic systems never truly adhere to

their corresponding equation models thanks to random quantum or statistical effects. However,

these added effects are insignificant to the observable chaos and are not considered as part of the

chaotic RNG itself. Stipčević and Koç have suggested that researchers use chaotic systems in RNGs

because they cannot tell the difference between chaos and noise, falsely believe that hard-to-describe

systems are always random, or the chaotic system in use produces enough noise to overpower the

underlying chaotic signals [2].

3 Understanding the Bistable Ring

Recall that an inverter (a.k.a., NOT gate) is a digital logic building block that performs logical

negation to output the opposite of its input. If the input to an inverter is “0” (logical low), it outputs

“1” (logical high). A CMOS inverter contains a complementary pair of metal oxide semiconductor

transistors that should ideally produce the logical opposite of its input, as shown in Figure 1a;

however, it can also operate on analog voltages within and outside the range of its logical high

and logical low. Inputting an intermediate value between logical low and logical high produces the

voltage transfer characteristic shown in Figure 1b [7].

A bistable ring (BR) is a digital logic circuit made up of an even number of inverters connected

to each other in a loop.1 Figure 2 shows a BR with N = 8 stages. Each inverter Invi is associated

1An odd number of inverters connected to each other in a loop forms a ring oscillator (RO) [2].
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vin

PMOS

NMOS

VDD

vout =
vin vout

(a) CMOS Inverter Internals (b) CMOS Inverter DC Transfer

Figure 1: CMOS inverter’s internals and DC transfer characteristic

with its input voltage signal vini(t) and output voltage signal vouti(t). The output of each inverter

Invi is equal to the input of the next inverter Invi+1, except for the last inverter InvN−1 whose

output is the input of the first inverter Inv0. When the BR is powered on (or, more generally,

released from an unstable state or metastable position), all inverters will simultaneously try to

force their output voltages from logical low to logical high. However, this cannot happen because

inverters should output the opposite logic value to their input value. Each inverter’s input keeps

changing since the previous inverter’s output forces the change. As each inverter’s input increases

from logical low, the tendency for it to drive its corresponding output to logical high decreases. If

an inverter’s input goes beyond its metastable point (where the inverter’s input has no preference

on driving a logical low or logical high output), then the inverter will force its output to drop to

logical low, with this tendency increasing as the inverter’s input increases. Whether the BR will

stabilize into one of its two states or continue oscillating further is dependent on process variation of

the inverters’ intrinsic properties and augmentative noise. For example, maybe the even-numbered

outputs rise over their metastable points at a close-enough interval while the odd-numbered outputs

stay above their metastable points; this would trigger a positive feedback loop where all inverters

force the BR to settle onto a stable state. Alternatively, a voltage wave from previous stages in the

ring could force the inverters to drop below the metastable point, forcing the inverters to oscillate

further [3].
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vout3
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Inv5
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vout6

vin7

Inv7

vout7

Figure 2: 8-Stage Bistable Ring (BR) with labeled inverters, input voltages, and output voltages

3.1 Applications of BRs

BRs are used in authentication, identification, and key obfuscation as part of the chip-specific

electronic fingerprint of a physical unclonable function (PUF). A PUF is a device that uses its

irreproducible physical characteristics to map a set of challenges (inputs) to a set of responses

(outputs) [3]. A PUF’s strength is a measure of its challenge-response pairs (CRPs), the number of

different challenges that can map to the response set. The Bistable Ring PUF (BR-PUF), shown

in Figure 3, is a strong PUF that maps the challenge set of all N -bit sequences to the response

set {0, 1} by returning the settled state of the challenge’s corresponding N -stage BR in the BR-

PUF as a single bit. Each bit in a challenge controls a single cell containing a multiplexer, a

demultiplexer, and two NOR gates. While the reset input is low, the NOR gate acts as an inverter

on its other input. The challenge bit’s value selects which NOR gate in the cell is part of the

challenge’s corresponding BR. Since the BR-PUF has 2N unique challenges, it can implement one

of 2N unique BRs [4].

Intel developed the TRNG in Figure 4 that incorporates a BR. This circuit has two inverters

opposite each other (forming the BR) and two extra PMOS transistors; it has two stable states

just like the BR [1]. Ideally, if everything is symmetric, its output should end up in either a low

or high state when the transistors are driven high. Even though the output should be random,

slight differences in the inverters’ speeds or strengths would lead to a high imbalance between “1”
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C[0]

· · ·

C[N − 1]

R

RST

Figure 3: Bistable Ring PUF (BR-PUF) schematic, with an even number of stages

and “0” outputs, introducing bias into the system. To fix this, Intel added a current-injecting

mechanism represented by the pulse voltage source VCLK to help remove the bias. The resulting

bitstream then seeds an external PRNG for post-processing; Intel’s RNG may perform this because

the individual generated bits from the circuit may be less random (e.g., high bias, high correlation,

or both). Alternatively, Intel may have added the post-processing to comply with FIPS PUB-140,

which explicitly does not endorse physical RNGs [2].

VCLK

VDD VDD

Figure 4: Schematic of Intel’s RNG, excluding post-processing steps

3.2 Simulating BRs in Ngspice

We used the open-source data science platform Anaconda [8] and the community package repository

conda-forge [9] to manage the required Python libraries and simulation tools for our results.

The Predictive Technology Model (PTM) website from Arizona State University provides accurate
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transistor models compatible with most SPICE-based simulators. The provided library files are

BSIM3 and BSIM4 (Berkeley Short-channel IGFETModel) transistors with process channel lengths

ranging from 7 nm to 180 nm; we used the 45 nm low-power transistor models in our simulations [10].

We performed our circuit simulations using the cross-platform, open-source, SPICE-compatible

circuit simulator Ngspice [11] since we found it the easiest to work with and automate compared

to other SPICE flavors. We used the PySpice Python library to automate our Ngspice circuit

simulations [12].

Each CMOS inverter in the BR consists of a PMOS transistor and an NMOS transistor (recall

Figure 1), both of which have specifications contained within the ASU PTM 45 nm low-power tran-

sistor model card. We expected that the channel widths (w), channel lengths (l), and threshold

voltages (VTH0) of each transistor would be affected by process noise in semiconductor manufac-

turing; these properties can be modified directly when instantiating a MOS transistor with Ngspice

syntax using l, w, and delvto respectively [11]. We set the default channel length and threshold

voltages in accordance with the 45 nm PTM model card and used 120 nm from Jain et al. [13] as

the default channel width. Since we can represent one inverter with six properties (PMOS length,

PMOS width, PMOS VTH0, NMOS length, NMOS width, and NMOS VTH0), we can subsequently

represent an N -stage BR as a 6×N array of parameters as shown in Table 2a. Each row i in the

array corresponds to property i; each column j in the array corresponds to inverter j. Alternatively,

we can equivalently represent an N -stage BR as a 6×N array of percent changes from the default

values as shown in Table 2b. This alternative BR representation was useful for simulating tran-

sistor process variations in our Monte Carlo simulations. Our BR builder functions can produce

a PySpice Circuit object containing the desired BR’s SPICE netlist specified by either sub-table

in Table 2. Both BR builder functions also include an isolated pulse voltage source VCLK with a

specified period to perform a virtual sample-and-hold for simulation.

Our simulation functions simulate a given BR circuit with the given initial voltage conditions

and simulation options. By running the circuit simulation with a smaller maximum step time than

the clock’s period (i.e., oversampling), the clock voltage source VCLK forces Ngspice to calculate

voltage transients at time points that are multiples of VCLK’s period. Our virtual sample-and-hold

function used pandas [14], [15] and numpy [16] to filter the data from the circuit simulation to

produce periodic time-series for analysis. This method circumvents Ngspice’s inability to obtain
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Table 1: Two ways to represent the same BR: parameters or percent changes

(a) Array of Parameters

Inv0 Inv1 . . . InvN−1

lP,i [nm] 45 45 . . . 47.25
wP,i [nm] 120 120 . . . 126

VTH0P,i [V] -0.587 -0.587 . . . -0.616
lN,i [nm] 45 45 . . . 47.25
wN,i [nm] 120 120 . . . 126

VTH0N,i [V] 0.623 0.623 . . . 0.623

(b) Array of Percent Changes

Inv0 Inv1 . . . InvN−1

lP,i [nm] 0% 0% . . . +5%
wP,i [nm] 0% 0% . . . +5%

VTH0P,i [V] 0% 0% . . . +5%
lN,i [nm] 0% 0% . . . +5%
wN,i [nm] 0% 0% . . . +5%

VTH0N,i [V] 0% 0% . . . +5%

periodic circuit simulation transients. In addition, we used matplotlib [17] to render simulation

results in graphs like the one in Figure 5.

Figure 5: Voltage transients from a 16-stage BR simulation showing transition, oscillation, and
settling regions

Initial test simulations of BRs showed that it behaved in at most three separate ways, like the

16-stage BR simulation result in Figure 5. Splitting the analysis of the BR’s transient results into

these three different regions helped us understand the BR’s different convergence patterns. To

separate the regions for analysis, we developed the logic-low settling thresholds [lomin, lomax]
⊤ =

VDD [−ST, ST ]⊤ and logic-high settling thresholds [himin, himax]
⊤ = VDD [1− ST, 1 + ST ]⊤ where

ST = 2% like the MATLAB lsiminfo function used for computing linear response characteristics

[18]. Using these thresholds, we split the BR’s transient simulation into analyzable regions like
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Vasyltsov et al.’s TRNG analysis [19]. Each inverter output vini of an N -stage BR has the following

regions and threshold times, listed below in chronological order:

1. Transition Region, [0, ttransition]: The inverter turns on at time t = 0, and the feedback loop

in the BR begins.

2. Transition Time, ttransition: the time where the inverter’s input voltage vini(t) first exits the

range [lomax, himin] after entering this range.

3. Oscillation Region, (ttransition, tsettling): the inverter’s input voltage has completed transition;

it may oscillate between VSS and VDD if the transition and settling times are far enough apart.

4. Settling Time, tsettling: the first time where both the current value and all future values of

vini(t) are within the range [lomin, lomax] ∪ [himin, himax].

5. Settling Region, [tsettling, tend]: the inverter’s input voltage may settle into either VSS or VDD.

Figure 5 shows the transition time ttransition and settling time tsettling for each inverter in a

16-stage BR simulation as green points and red points, respectively. The first transition region

marked with the dotted green line and the last settling region marked with the dotted red line

act as separators between the BR’s own transition, oscillation, and settling regions. We noticed

that the transition region is present in every BR simulation, but not every BR shows oscillation or

settling behavior within the set simulation time of 5 ns.

4 Methods

Prior work has already shown that the BR’s convergence to stable states is nonlinear in nature [4];

this implies that deriving a single closed-form solution for the BR’s signals from just its transistor

properties would be difficult. Instead, we can use tools from nonlinear dynamics and time-series

analysis to glean information about the BR from just observations.

The tools from nonlinear dynamics introduced in this section form the components of the

Chaos Decision Tree Algorithm (CDTA). This algorithm is a recent innovation by Toker et al. that

can describe the behavior of an input time-series y from a dynamical system as nonstationary,

stochastic, periodic, or chaotic. The algorithm distinguishes which behavior y exhibits via process
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Figure 6: Simplified flowchart of the Chaos Decision Tree Algorithm (CDTA)

of elimination using concepts from nonlinear dynamics and linear time-system analysis [20], [21].

As shown in Figure 6, The CDTA first relies on the surrogate data method to determine if the

time-series y is not stochastic; after post-processing y using Schreiber’s denoising algorithm and

Matthews’ Method, a modified version of the 0-1 test for chaos determines whether y is chaotic or

periodic.

In addition to classifying the behavior of the input time-series y, the CDTA optionally provides

permutation entropy and 0-1 test results of y depending on its behavior. These optional metrics are

indirect but quantitative measures of y’s complexity and chaos, respectively. This leads to the fol-

lowing question: how can we make the most complex BR? We can answer this problem with genetic

algorithms since they can maximize or minimize functions without closed-form representations.

4.1 Permutation Entropy

Permutation entropy is an indirect measure of the complexity of an input time-series y, calculated

by analyzing occurrences of the relative amplitude patterns in sets of its consecutive elements [22]–

[24]. To calculate permutation entropy PE(y, n, τ) of order n ≥ 2 and lag τ ≥ 1 of an input time-
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series y = {y1, y2, . . . , yT }, first partition it into sub-vectors of length n and lag τ . Next, assign one

of n! permutations πi to each sub-vector, in order of their rank. If two elements in a sub-vector

have the same value, then the element with the lower index has the lower rank. Third, calculate

the pattern probability distribution {p(πi) ∀ i = {1, . . . , n!}} by computing the relative frequencies

of each possible permutation πi in the list of sub-vectors as shown in Equation 3. Finally, calculate

the Shannon entropy of the relative frequency distribution shown in Equation 4 [24].

p(πi) =
number of occurrences where (yj , . . . , yj+(n−1)τ ) has type πi

Total number of sub-vectors in y
(3)

PE(y, n, τ) = −
n!∑
i=1

p(πi) log2 p(πi) (4)

For example, let us calculate the permutation entropy of order n = 3 and lag τ = 1 of the

time-series y shown in Equation 5. We can write the set of n! = 6 permutations π as shown in

Equation 6. Next, we split y into a list of sub-vectors D as shown in Equation 7, assigning each

sub-vector di ∈ D to its corresponding permutation πi ∈ π. For each permutation πi ∈ π, we

calculate its relative frequency as shown in Equation 8. Finally, we calculate that the permutation

entropy of y of order 3 and lag 1 is equal to 2.5 as shown in Equation 9. The Shannon entropy

of a distribution measures its unpredictability; given the relative frequency distribution shown in

Equation 8, it would be hard to predict what permutation would come next in y.

y = {2, 5,−3, 3, 0,−2, 1, 5, 3,−1} (5)

π = {(012), (021), (102), (120), (201), (210)} (6)

D = {{2, 5,−3}︸ ︷︷ ︸
(120)

, {5,−3, 3}︸ ︷︷ ︸
(201)

, {−3, 3, 0}︸ ︷︷ ︸
(021)

, . . . , {1, 5, 3}︸ ︷︷ ︸
(021)

, {5, 3,−1}︸ ︷︷ ︸
(210)

} (7)

p((012)) = p((102)) = p((201)) + p((210)) =
1

8
; p((021)) = p((210)) =

2

8
(8)

PE(y, 3, 1) = −
3!∑
i=1

p(πi) log2 p(πi) = 2.5 (9)

Toker et al. performed experiments that empirically demonstrate that permutation entropy
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tracks the largest Lyapunov exponent of typical chaotic systems serving as benchmark functions:

the logistic map, the tent map, and the Duffing Oscillator [21]. The permutation entropy calculation

gives a quantitative rating of a time-series’ complexity, shown graphically in Figure 7: a time-series

with a PE of 0 has only one type of permutation, while a time-series with a PE of log2(n!) has an

equal relative distribution of every permutation. The CDTA comes prepackaged with the petropy

function developed by Andreas Müller [25]. However, we also use the permutation entropy()

function from ordpy [26] in our genetic algorithm as an equivalent alternative to reduce the number

of calls to MATLAB.

Figure 7: Range of values of permutation entropy with corresponding interpretations

4.2 The Surrogate Data Method

The surrogate data method tests whether a given time-series does or does not satisfy a specific

hypothesis; it can also test whether an interaction exists between two time-series. It contains

three components: the null hypothesis, a statement that could describe y; the surrogate algorithm,

the method used to generate new time-series that do not follow the null hypothesis; and the

discriminating statistic q(·), a function that separates the time-series that obey the null hypothesis

from time-series that do not [23]. The CDTA uses the surrogate data method to examine if the

input time-series y is not stochastic. Toker et al. experimentally showed that the best-performing

discriminating statistic was permutation entropy with order n = 8 and lag τ = 1 [21].

The first step of the surrogate data method is to choose a null hypothesis to test against the

time-series y (e.g., the statement “y follows a linear stochastic process”). The goal of the surrogate

method is to reject the null hypothesis, proving that it does not describe y [23]. However, if the

surrogate data method fails to reject the null hypothesis, it does not necessarily mean that y does

follow the null hypothesis; it could mean that the surrogate data method was not properly set up

enough to discriminate between the two types of time-series [27].

The second step is to choose a surrogate algorithm that corresponds to the chosen null hy-
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pothesis. The surrogate algorithm generates the surrogate time-series dataset S; each surrogate

time-series in S is an augmented copy of the original time-series y that obeys the defining proper-

ties of the chosen null hypothesis but removes other properties [23]. For example, the Amplitude-

Adjusted Fourier Transform (AAFT) surrogate algorithm matches the null hypothesis regarding

the linearity and destroys other relationships in the linear time-series. The AAFT surrogate algo-

rithm first transforms the time-series y into the time-series x by conforming it to realizations of a

Gaussian distribution in such a way that the rank of each value in y is preserved in x. Next, the

AAFT algorithm calculates the Fourier transform F{x}, turning the adjusted time-series x into a

sequence of magnitudes and phases. A single surrogate time-series si ∈ S shares the same sequence

of magnitudes of F{x}, but the sequence of phases contains random values chosen from a uniform

distribution with the range [0, 2π] [27].

The third step of the surrogate data method is to apply a discriminating statistic function

q(·), also dependent on the null hypothesis, to the original time-series y and the elements in the

surrogate time-series dataset S [23]. When the discriminating statistic q(·) evaluates the elements

in the surrogate dataset S, it creates a distribution of discriminating statistic results that can be

compared to the original time-series’ result [27]. If q(y) is not within the range of values in q(S),

then the null hypothesis can be rejected within some confidence interval. However, if q(y) is within

the range of values in q(S), then the null hypothesis is not necessarily confirmed. The surrogate

data method can only figure out how a time-series is not characterized [23].

4.2.1 Other Surrogate Algorithms

The surrogate data method is flexible enough to handle several null hypotheses, each with cor-

responding surrogate algorithms [27]. The CDTA harnesses this flexibility by offering different

surrogate algorithms to test whether the input time-series y displays linearly stochastic and/or

non-linearly stochastic behaviors, including but not limited to the Random Permutation (RP),

Cyclic Phase Permutation (CPP), and a hybrid of the AAFT and CPP algorithms [20].

The Random Permutation (RP) surrogate algorithm can check whether an input time-series y

possesses any temporal structure or just contains uncorrelated noise. Each surrogate time-series

si ∈ S generated by the RP surrogate algorithm is a randomly shuffled version of the original time-

series. The mean, variance, and histogram distribution of each surrogate time-series si is identical
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to the original time-series y. The corresponding null hypothesis of the RP surrogate algorithm is “y

is fully described by a sequence of independent and identically distributed (IID) random variables”

[27].

The Cyclic Phase Permutation (CPP) surrogate algorithm’s null hypothesis is “two systems

have independent phase dynamics”. The CPP algorithm works directly with the phase of an input

time-series y, breaking the relationship between how the evolution of one system’s phase dynamics

would affect the evolution of another system’s phase dynamics. The CPP surrogate algorithm

first extracts the instantaneous phase ϕ of the input time-series y by using either the Hilbert or

wavelet transforms; the algorithm then wraps this phase into the range [0, 2π). Discontinuities

in the instantaneous phase ϕ denote the boundaries of individual cycles within the time-series y.

The CPP algorithm does not assume that the time-series y begins or ends with a complete cycle;

instead, the incomplete beginning and end cycles are preserved while the complete intermediate

cycles are shuffled for each surrogate time-series si ∈ S [27].

Toker et al. developed the AAFT+CPP surrogate algorithm and empirically demonstrated that

it was the most effective surrogate algorithm in the CDTA. With this option, the CDTA will run

the surrogate data method twice: once with the AAFT surrogate algorithm and once with the CPP

surrogate algorithm. If one or both surrogate sub-methods fail, then the surrogate method fails

overall; otherwise, the surrogate method passes overall. Toker et al. empirically demonstrated the

AAFT+CPP algorithm’s efficacy through tests with both simulated and realized systems [21].

4.3 Matthews’ Method

The CDTA uses Matthews’ method to improve accuracy in cases where the input time-series y is

oversampled. The first step of Matthews’ method calculates the measure η, equal to the range of

y divided by the average difference between consecutive time points, as shown in Equation 10.

η =
max(y)−min(y)

avg(diff. between consecutive time points)
(10)

The time-series y is oversampled while η > 10. To fix this, downsample y by two and recalculate

η until η ≤ 10 or y has less than 100 time-points [21].
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4.4 The Modified 0-1 Test for Chaos

The CDTA’s last step uses a modified version of the “0-1 test for chaos” to figure out whether

the time-series y is either chaotic or periodic [21]. This test was originally developed by Gottwald

and Melbourne; it works directly with a dynamical system’s measurements to determine whether

it exhibits regular or chaotic dynamics using a one-dimensional time-series y(j) ∀ j ∈ {1, 2, . . . , N}

as input for a Monte Carlo experiment. First, the data from y and a uniform-randomly selected

value of c ∈ (0, 2π) drive the two-dimensional system of difference equations in Equation 11 [28].

pc(n+ 1) = pc(n) + y(n) cos(cn)

qc(n+ 1) = qc(n) + y(n) sin(cn)

(11)

Equation 12 is the solution to the system in Equation 11 for a given c-value in the range (0, π). If

the underlying dynamics of the input time-series y are regular (i.e., periodic or quasi-periodic), then

the dynamics of pc(n) and qc(n) are bounded. However, if the underlying dynamics are irregular

(i.e., chaotic), then the dynamics of pc(n) and qc(n) will display diffusive Brownian-like motion

with zero drift [28]. The next steps of the 0-1 test figure out the dynamics of pc(n) and qc(n) to

determine the corresponding underlying dynamics of y [21], [28].

pc(n) =
n∑

j=1

y(j) cos(jc)

qc(n) =
n∑

j=1

y(j) sin(jc)

(12)

The original 0-1 test tracked how the time-averaged mean square displacement grew to analyze

the dynamics of pc(n) and qc(n) as n increased [28]. The modified 0-1 test adds noise to this

mean-square displacement measurement as shown in Equation 13: the value ηn is a sample of a

uniformly distributed random variable with the range
[
−1

2 ,
1
2

]
, and the parameter σ controls the

noise level [21].

Mc(n) =
1

N

N∑
j=1

([pc(j + n)− pc(j)]
2 + [qc(j + n)− qc(j)]

2) + σηn︸︷︷︸
noise

(13)

If the noisy time-averaged mean square displacement Mc(n) stays bounded as n increases, then
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pc(n) and qc(n) are also bounded for the fixed value c. However, if the noisy time-averaged mean

square displacement Mc(n) grew linearly as n increased, then pc(n) and qc(n) display the Brownian-

like motion. The growth rate Kc can be calculated as the Pearson correlation coefficient between

the vector ξ = [1, 2, . . . , N/10]⊤ and ∆ = [Mc(1),Mc(2), . . . ,Mc(N/10)]⊤, as shown in Equation 14

[28].

Kc = corr(ξ,∆) =
cov[ξ,∆]√
var[ξ]var[∆]

∈ [−1, 1] (14)

The Kc-values are computed for at least one hundred different values of c randomly sampled

from a uniform distribution with bounds (0, 2π). The final output of the test K is the median of

the observed Kc-values [21].

Figure 8: Range of the modified 0-1 test’s output K and corresponding underlying dynamics of the
input time-series y

If K approaches 1, then pc(n) and qc(n) have Brownian-like motion for most sampled values

of c; therefore, the 0-1 test states that the underlying dynamics of the time-series y are irregular

(i.e., chaotic). Otherwise, if K approaches 0, then pc(n) and qc(n) have bounded dynamics for

most samples of c; therefore, the 0-1 test states that the underlying dynamics of the time-series y

are regular [28]. Realistically, the 0-1 test’s output K will be in the range (−1, 1) and unequal to

neither 0 nor 1. Toker et al. demonstrated that showed that systems with K-values below 0.72

will show regular behavior, while K-values between 0.72 and 1.0 had more ambiguous behavior.

In this scenario, the CDTA will automatically calculate the optimal K cutoff value to differentiate

between periodic and chaotic systems as a function of the length of the time-series y [21]. We can

therefore define the total range of the function as shown in Figure 8.

4.5 Modifications to the Chaos Decision Tree Algorithm

Some of the BR voltage signals were incompatible with the CPP surrogate algorithm because the

signals did not complete a full phase cycle. To circumvent this issue, we propose the AAFT+RP
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surrogate algorithm. Like the AAFT+CPP surrogate method described in Section 4.2.1, this

option makes the CDTA run two separate surrogate sub-methods: once with the AAFT surrogate

algorithm and once with the RP surrogate algorithm. If one or both surrogate sub-methods fail,

then the surrogate method fails overall; otherwise, the surrogate method passes overall.

4.6 Genetic Algorithms

Genetic algorithms (GAs) are methods of finding solutions to parameter optimization problems by

mimicking biological evolution. This method is useful for solving problems that do not have closed-

form solutions [29]. In our case, it was an effective method for optimizing the BR’s complexity.

We have previously shown in Table 1b that we can represent an N -stage BR as a 6×N array

of percent changes; unraveling this array for a 64-stage BR produces a list of 384 percent changes.

We can call this list the genome of an individual BR. One genome contains 384 genes, the process

variation percent changes in the BR. The population of individual BRs is the list of all individual

BRs in the GA’s current iteration, or generation. The GA starts with randomly generated individual

BRs in the first generation. The fittest individuals in each generation will pass their genes to the

next generation, creating a new population like in biological evolution [29].

How do we define what fittest means in this context? Our goal for the GA is to find the

parameters that describe the most complex BR; we can rephrase this question into a cost function

that we want to minimize. This gives us a quantitative fitness value of an individual BR in the

population, equal to the negative value of our cost function. We decided that our cost function

should be the negative permutation entropy of an individual BR’s first inverter oscillation region if

applicable, and 1.0 otherwise. This way, the most complex BRs will have the lowest cost function

result. We can perform a selection operation to choose the best BRs in our current generation

to populate the next generation. We chose tournament selection with size 3: we partition the

individuals into subgroups of threes and preserve the individual with the lowest cost function result

in each subgroup [29].

Finally, we use the preserved individuals from the current generation to populate the next

generation. We begin making the next generation by breeding the preserved individual BRs from

the current generation. First, we partition the fittest individuals of the current generation into pairs

of parents to make children. The crossover operation combines and/or rearranges the genomes of
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the two parent BRs to form the child BRs’ genomes. In addition to receiving the parents’ genes, a

mutation operator may augment some of the child BRs’ resulting genes; this adds more diversity

to the resulting population. The child BRs constitute the population of the GA’s next generation.

This process of evaluating, selecting, and repopulating continues until the GA meets a stopping

condition [29].

5 Transient Analysis of BRs

We analyzed nine 16-stage BRs, nine 32-stage BRs, and nine 64-stage BRs to further our under-

standing of the BR’s different behavior. We further subdivided each BR group into what regions

were present in their transient simulation (transition-oscillation, transition-settling, transition-

oscillation-settling).2 We analyzed the transition, oscillation, and settling regions of each BR’s

N voltage outputs using the CDTA with the new AAFT+RP surrogate algorithm. Each row in

Table 2 corresponds to a group of three unique N -stage BRs that we observed having the same

behavior. We tallied the number of CDTA results (Stochastic, Periodic, Chaotic, Error) per region

for each group of BRs on the three rightmost columns.

Table 2: CDTA classification results tabulated from each example BR’s output

Trans. Result Osc. Result Sett. Result
Stages, N Behavior S P C E S P C E S P C E

16
Trans.-Osc. 0 48 0 0 0 39 9 0 - - - -
Trans.-Osc.-Sett. 0 33 0 15 0 15 33 0 0 48 0 0
Trans.-Sett. 0 48 0 0 - - - - 0 48 0 0

32
Trans.-Osc. 0 72 0 24 0 2 94 0 - - - -
Trans.-Osc.-Sett. 0 96 0 0 1 3 61 31 0 75 4 17
Trans.-Sett. 0 82 0 14 - - - - 0 96 0 0

64
Trans.-Osc. 0 192 0 0 0 11 181 0 - - - -
Trans.-Osc.-Sett. 0 181 0 11 0 0 192 0 1 171 2 18
Trans.-Sett. 0 192 0 0 - - - - 0 192 0 0

The AAFT+RP surrogate algorithm failed to run on some of the signals because of issues

within the CDTA’s AAFT surrogate algorithm implementation. In all the example BR simulations,

most of the transition and settling regions were periodic. From a dynamical systems perspective,

this makes sense since the BR is close to an unstable equilibrium in the transition region and

2We did not observe any BRs with eight stages or less that had an oscillation region.
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approaches a stable equilibrium in the settling region. Out of all groups, the 16-stage BRs had the

most simulations where oscillation regions were classified as periodic. In comparison, most of the

oscillation regions in the 32-stage and 64-stage BR simulations were classified as chaotic.

6 Monte Carlo Analysis

Using our BR builder functions for percent changes (as demonstrated in Table 1b), we set up the

following Monte Carlo experiments for 64-stage BRs where each Monte Carlo experiment varied

a different number of inverters’ parameters by a sample of the random variable α ∼ N (0, 1.6̄%)

corresponding to a zero-mean Gaussian distribution with 6σ region of 5%. We ran each Monte

Carlo experiment below with thirty unique 64-stage BRs. We chose to vary the PMOS and NMOS

VTH0 parameters since we believed that they had a nonlinear impact on the BR system.

1. Change the BR’s first inverter’s PMOS VTH0 by a sample of the random variable α (in Figure

9a).

2. Change the BR’s first inverter’s NMOS VTH0 by a sample of the random variable α (in Figure

9b).

3. Change the PMOS VTH0 of k = log2(64) = 6 randomly selected inverters in the BR by the

same sample of the random variable α (in Figure 10a).

4. Change the NMOS VTH0 of k = log2(64) = 6 randomly selected inverters in the BR by the

same sample of the random variable α (in Figure 10b).

5. Change all the PMOS VTH0 values in the BR by the same sample of the random variable α

(in Figure 11a).

6. Change all the NMOS VTH0 values in the BR by the same sample of the random variable α

(in Figure 11b).

The default control case for these Monte Carlo experiments is when the BR’s inverters all have

default parameters provided by the transistor SPICE model card. When the BR turns on, all

inverters’ voltages trend upward towards VDD/2. We expected that the voltage trajectories would
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eventually settle with all inverter voltages equal to VDD/2, finding a stable equilibrium point seated

in an unstable equilibrium line in the BR’s state space. However, we saw that the 64-stage control

BR oscillated for more than 5 ns. We hypothesize that these results did not match our expectations

because of imperfections within Ngspice when simulating unstable equilibria.

(a) First inverter’s PMOS VTH0 (b) First inverter’s NMOS VTH0

Figure 9: Monte Carlo simulations for varying the first inverter’s property by the percent change
α.

Figure 9 shows the results of the first two Monte Carlo experiments: each BR has the first

inverter’s PMOS VTH0 or NMOS VTH0 augmented by a sample of α. The resulting BRs did not

oscillate, showing us that modifying a single parameter threw off the BR’s instability altogether.

The decrease in settling time as a function of deviation from α = 0 follows an inversely proportional

curve. All transition regions and all settling regions in Figure 9 were periodic according to the
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CDTA through the modified 0-1 test; no K-value in this Monte Carlo experiment exceeded the

cutoff threshold needed to be chaotic.

Figure 10 shows the results of the next two Monte Carlo experiments: a random selection of

k = log2(64) = 6 inverters in each BR simulation were randomly chosen to have their PMOS VTH0

or NMOS VTH0 values augmented by the same sample of α. The CDTA classified all transition

regions in Figure 10 as periodic. In Figure 10a, one settling region was stochastic and one settling

region was chaotic; all remaining settling regions were periodic. Figure 10a shows two distinct

groups of oscillation K-values: the group with K-values in [0.6, 0.72] were periodic while the rest

were chaotic. A similar trend occurred in Figure 10b: K-values in [0.59, 0.72] were periodic.

Figure 11 shows the results of the last two Monte Carlo experiments: all inverters in each BR

simulation had their PMOS VTH0 or NMOS VTH0 values augmented by the same sample of α. All

transition regions in Figure 11 were periodic. In Figure 11a, one settling region was chaotic while

the remaining settling regions in Figure 11 were periodic. Like the previous case, there was a wider

split in the distribution of K-values of the oscillation region that separated the periodic and chaotic

trajectories.

The settling time distributions for both Figure 10 and Figure 11 show two main clusters of points

close to the end of the simulation time (at 5 ns). As mentioned in Section 3.2, the settling time

is the first time when all future values of a single voltage transient are within the settling region;

however, the circuit’s other voltage trajectories are still oscillating at this point. This highlights

that the process manufacturing variation influences the frequency of the BRs’ oscillations during

the oscillation region.

7 FPGA Implementation

As recommended by Toker et al., one should only make a verdict about a system in question once the

CDTA analyzes the trajectories from both the system’s simulation and the system’s implementation

[21]. We used a 64-stage BR-PUF (from Figure 3) to implement multiple 64-stage BRs on a Xilinx

XC7S25-1CSGA324 FPGA housed on a Digilent Arty S7-25 development board to complement

our results from the Monte Carlo simulation. We built two controller modules to sift through the

BR-PUF’s 264 BR realizations and collect data from different BR trajectories: the metastable BR
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(a) k inverters’ PMOS VTH0 (b) k inverters’ NMOS VTH0

Figure 10: Monte Carlo simulations for varying a random selection of k = log2(N) = 6 inverters’
properties by the percent change α.
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(a) All inverters’ PMOS VTH0 (b) All inverters’ NMOS VTH0

Figure 11: Monte Carlo simulations for varying all N = 64 inverters’ properties by the percent
change α.
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finder and the random BR runner. Each controller module connects to the BR and external I/O

as shown in Figure 12. We analyzed the BR-PUF implementation’s voltage trajectories with a

PicoScope 3206D MSO oscilloscope and exported them as CSV files for analysis for the CDTA.

Figure 12: FPGA Block Diagram for connecting the BR-PUF controller to the BR-PUF

As shown in Figure 12, each controller module has a clocked input clk with an active-low

synchronous reset reset n. We used Xilinx Vivado’s Clocking Wizard to convert the Arty S7’s

onboard 100 MHz clock to a 10 MHz clock. The user-controlled search button input prompts the

controller module’s internal FSM to start or resume the process of continuously sending challenges

to the BR-PUF; the BR-PUF instantiates the corresponding BR and produces the response r in

turn. The user-controlled analyze switch input prompts the controller module’s internal FSM to

start or stop sending the same challenge to the BR-PUF; we only used it in the metastable BR

finder for analyzing sequential transients from the same metastable BR. We routed the outputs

searching, found, and analyzing to the Arty S7’s onboard LEDs to provide a visual aid for the

controller module’s status.

7.1 Metastable BR Finder

The metastable BR finder searched for, tested, and analyzed the BR configurations in the BR-PUF

via brute force to find a bistable ring that showed instability for more than 0.1 ms. The metastable

BR finder contains metastability check logic that captures the BR-PUF’s r output and propagates

it through a register of two clocked D flip-flops. The logic block stores the once-delayed and twice-

delayed r-values as r d and r dd, respectively. The internal metastable wire is only equal to “1”

if the FSM’s time counter is greater than a threshold value and when there is a mismatch between
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sequentially captured r-values (i.e., r d ̸= r dd).

We implemented the metastable BR finder with three finite state machines running in parallel:

the primary state machine selected the metastable BR finder’s mode of operation, while two sec-

ondary counters kept track of elapsed time and the current testing challenge. The metastable BR

finder’s primary finite state machine (FSM) has the state diagram shown in Figure 13.

Figure 13: Metastable BR finder primary FSM state diagram

When the metastable BR finder turns on or resets, it starts in the idle state S IDLE where it

waits for the search input to be logical high. When this occurs, the metastable BR finder begins

the brute-force search to find a metastable BR starting from the first challenge 64’d0.

The searching loop contains four states: S TEST START, S TESTING, S NEXT C, and S TEST WAIT.

The first of these states, S TEST START, resets the BR-PUF and the time counter to prepare for

testing. It immediately changes into the S TESTING state, where it releases the BR-PUF from the

reset position and the time counter begins to count upward from zero. If the current challenge

shows metastable behavior, then the metastable input will be high; in this case, the FSM exits

the loop into the S FOUND state. If the BR does not show metastable behavior, then the timer will

eventually time out and the FSM will move to the S NEXT C state. In this state, the controller
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resets the BR-PUF, the time counter resets, and the challenge counter increments by one. The

FSM immediately moves to the S TEST WAIT state, letting the BR-PUF stabilize while reset before

returning to S TEST START state once the timer times out again.

The FSM only exits the searching loop when the current challenge in the BR-PUF corresponds

to a metastable BR. The metastable BR finder is inactive while its FSM is in the S FOUND state;

if the search input is high, then it will return to the searching loop; if the analyze input is high,

then it will move to the analysis loop.

The analysis loop acts like the searching loop, also containing four states: S RUN START,

S RUNNING, S RUN STOP, and S RUN WAIT. Each state acts like their corresponding searching loop

state except for two key differences. Since the current challenge already corresponds to a metastable

BR configuration, S RUNNING is unresponsive to the metastable input and the challenge counter

does not increment in S RUN STOP. The metastable BR finder enters this loop at the S RUN STOP

state. This loop only runs while the analyze input is high; otherwise, the FSM will return to

S FOUND. Figure 15b shows sixty-four transients of the same metastable BR when the metastable

BR finder is running in the analysis loop.

7.2 Random BR Runner

The random BR runner sent (pseudo-)randomly selected challenges to the BR-PUF for analysis

using a 64-bit linear feedback shift register (LFSR) with the feedback polynomial f(x) = x64 +

x63+x61+x60+1 starting from 64’d1. Like the metastable BR finder, we implemented the random

BR runner with three finite state machines running in parallel: the primary state machine selected

the random BR finder’s mode of operation, a counter kept track of elapsed time, and the LFSR

kept track of the current testing challenge. The random BR runner’s primary finite state machine

(FSM) has the state diagram shown in Figure 14.

When the random BR runner turns on or resets, it starts in the idle state S IDLE where it waits

for the search input to be logical high. When this occurs, the random BR runner begins randomly

sending challenges to the BR-PUF. Like the metastable BR finder’s searching loop, the random BR

runner’s searching loop contains four states: S TEST START, S TESTING, S NEXT C, and S TEST WAIT.

These states act like the metastable BR finder’s searching loop, except for two key differences: the

S TESTING state is unresponsive to the metastable input and S NEXT C state performs one LFSR
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Figure 14: Random BR runner primary FSM state diagram

shift to generate the next challenge. Figure 15a shows sixty-four transients of sixty-four randomly

selected BRs while the random BR runner is in the searching loop.

7.3 FPGA BR Analysis

We programmed both of our controller modules with Xilinx Vivado 2022.2 and implemented them

on the same Digilent Arty S7-25 development board. We connected the oscilloscope to the FPGA’s

ground and digital output pins to record the voltage transients from the BR-PUF using the Pico-

Scope 7 oscilloscope software. This software’s ability to record up to sixty-four triggered waveforms

back-to-back helped us obtain both the sixty-four transients of sixty-four randomly selected BRs

in Figure 15a and sixty-four transients of one metastable BR in Figure 15b. While most of the

randomly selected BRs settled quickly towards logic high within 5 µs, none of the metastable BR’s

transients showed any settling behavior.

As previously explained in Section 3.2, we already developed a function that could split the
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(a) Transients from randomly selected BRs (b) Transients from one metastable BR

Figure 15: FPGA BR implementation transient plots

simulated BRs’ transients into transition, oscillation, and settling regions. We modified this function

to split the FPGA-implemented BRs’ transients by increasing the settling threshold percentage from

2% to 25% since the FPGA-implemented BRs peaked at a relatively lower voltage value than the

simulated BRs.

Figure 16: Permutation Entropy (left) and 0-1 Test K (right) box plots of FPGA BR transients

Figure 16 shows the metastable BR’s results and random BRs’ results from the CDTA. The

metastable BR’s signals had no settling region, so it is omitted from this figure. The metastable

BR’s transients were more complex per region than the random BRs’ transients. However, the 0-1

test results show us that most BR regions were classified as periodic since the average results skew

closer to 0 than 1. The outlier signals represented by the circles on the right box plot had 0-1 test
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results much closer to 1 than 0.

8 Optimization with Genetic Algorithms

We used the deap Python library [30] to run two different GA strategies, differentiated by whether

they allowed the individual BRs’ percent change values to be outside the range of [−5%, 5%].

Table 3 shows the key differences between the two strategies. Our unrestricted α strategy sampled

values from the previously-used zero-mean Gaussian distribution with 6σ = 5% as the initial

percent change distribution. Individual genes could escape the [−5%, 5%] range using the Blend

Crossover and Gaussian Mutation functions. The restricted α strategy instead sampled values from

a zero-mean truncated Gaussian distribution with 6σ = 5% bounded to the range [−5%, 5%] (from

the Python library scipy [31]). We swapped out the crossover and mutation functions from the

unrestricted α strategy with the Bounded Simulated Binary Crossover and Bounded Polynomial

Mutation functions respectively to keep the genes within [−5%, 5%]. For extra redundancy, the

restricted α cost function included an extra clause that would punish any individual BR with

outlying percent changes in its genome.

Table 3: Genetic Algorithm (GA) procedure comparison between unrestricted α and restricted α
strategies

Strategy Unrestricted α Restricted α

α Sample α ∼ N (0, 1.6̄%) α ∼ TruncNorm(0, 1.6̄%,−5%, 5%)

Cost Function
Negative PE of oscillation
region, if applicable; 1.0
otherwise.

Negative PE of oscillation region, if applicable;
1.0 otherwise. Punish BRs with outlier genes.

Crossover Op. Blend Crossover Bounded Simulated Binary Crossover
Mutation Op. Gaussian Mutation Bounded Polynomial Mutation

Both GA strategies started with an initial population size of 128. Each strategy had a max-

imum of one hundred generations to find the most complex BRs but would halt if it made no

improvements within ten generations. Figure 17 shows our cost function statistics for both GA

strategies across all generations. The restricted α strategy failed to make any improvements after

forty-eight generations; the unrestricted α strategy continued for all one hundred generations. The

large standard deviation spikes in the earlier generation are the result of the cost function penaliz-

ing individual BRs that either failed to oscillate or did not have a large enough oscillation region

30



to calculate permutation entropy.

Figure 17: Standard deviation, average, and best results from both GA strategies

Figure 18 compares both GA strategies’ initial process percentage α distributions to the spread

of their last generation’s genes. The spread of the unrestricted α strategy’s gene distribution on the

left shows how the unbounded mutation and crossover operations caused outliers to appear in the

last generation’s percent change distribution. These anomalies are not present in the restricted α

strategy’s gene distribution on the right. We observed in Figure 17 that the unrestricted α strategy

produced a BR with a more complex oscillation region than the restricted α strategy; therefore,

we believe that the outlier genes had a beneficial factor in making the unrestricted α strategy’s

population more fit than the restricted α strategy’s population.

Figure 19 shows our analysis of the first inverter’s transition, oscillation, and settling regions of

each BR in both GA strategies’ last generation. We omitted the transition regions from this figure

because they were too short for analysis using the CDTA. The oscillation permutation entropy on

the left graph of Figure 19 does not match the results shown in Figure 17 because the CDTA’s

output PE value uses order 5 after denoising and downsampling. However, this post-processing

does not change that the unrestricted α strategy showed more complex oscillation signals than

the restricted α strategy. As shown by the 0-1 test results on the right of Figure 19, optimizing

permutation entropy resulted in higher 0-1 test results in both strategies. From the 0-1 test, we

can declare that most of the oscillation regions are still chaotic. The CDTA could not analyze
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Figure 18: Last generation gene distribution from both GA strategies

the settling region of the restricted α population because there were not enough values in the

time-series.

Figure 19: Last generation CDTA results from both GA strategies

9 Conclusion

In our Monte Carlo experiments, we saw that varying the NMOS and PMOS threshold voltage

parameters provided only chaotic results in the best-case scenario; the transition and settling regions

were periodic. Overall, the oscillation results did show the most chaotic dynamics, but we did not

find any way to produce results that the CDTA would classify as stochastic with the AAFT+RP
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surrogate algorithm. While one settling region and one oscillation region were stochastic, these

may be false classifications because of the introduced randomness from the AAFT+RP surrogate

algorithm. From a big-picture perspective, we saw that only modifying a portion of the BR’s

inverters (from Figure 10) mixed inverters with matched transistors and inverters with unmatched

transistors in the same BR and produced the highest amount oscillation regions in our sample.

Modifying all inverters by the same value (from Figure 11) caused each inverter’s transistor pair

in the BR to become unmatched, which may be why some BRs settled in our sample. Modifying

just one inverter (from Figure 9) completely threw off the BRs’ metastability and caused all BRs

in the sample to settle quickly. Overall, our simulation results show that the bistable ring alone is

unsuitable for generating random numbers since its behavior is not primarily stochastic.

We saw an evident mismatch between the FPGA-implemented BR’s signal classification in Fig-

ure 16 and the simulated GA BR classifications in Figures 9, 10, and 11. The FPGA-implemented

BRs were quantitatively less chaotic than the simulated BRs according to the CDTA’s modified

0-1 test. In addition, the transients from simulated BRs like Figure 5 do not perfectly resemble

the FPGA-implemented BRs shown in Figure 15. One probable reason this may occur is because

the simulated BRs had a higher oscillation frequency than the FPGA-implemented BRs; we did

not check whether the results that we observed on the PicoScope had undergone aliasing. Another

probable reason is that the analog signals output by the BR-PUF were sent through digital logic

paths and recorded from a digital logic output. This could have unintentionally processed our out-

put results by limiting the slew rate. These two reasons may be why the modified 0-1 test results

consistently showed that the simulated BRs’ oscillation regions are quantitatively more chaotic

than the FPGA BRs’ oscillation regions.

Our genetic algorithm strategies were successful in optimizing the simulated BR’s parameters

to find BRs with complex oscillation region. Our observations in Figure 17 and Figure 19 showed us

that restricting the percent change range to [−5%, 5%] produced BRs with less complex oscillation

results than not restricting the percent change range. This may imply that ASIC manufacturers

can be less strict with process variations or errors when constructing ICs that employ the BR

for cryptographic hardware applications. However, a single unbalanced process parameter should

not be too overpowering or else the BR will not oscillate like those in the first two Monte Carlo

experiments in Figure 9. One issue with genetic algorithms is that they have no concept of sacrificing
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short-term rewards for long-term gain; this results in GA strategies becoming stuck in local minima

without finding their cost function’s true maximum. The mutation operator does help prevent this

in some sense by introducing new values into the system, but the GA would discard an individual

that is at the top of a lower well in the cost function’s landscape if it is not fit enough. Since we

cannot visualize the 384-dimensional problem outlined in our cost function, we cannot confirm that

our results are the most complex BRs in these ranges.

Toker et al. have recommended that each time-series input into the CDTA has at least five

thousand samples, with the minimum tested sample length of one thousand. They also observed

that the CDTA’s result could incorrectly classify systems if the input time-series is not long enough

(e.g., weakly chaotic systems misclassified as periodic) [21]. The BRs’ metastable nature and

limitations of Ngspice made it difficult to provide at least one thousand samples for each region in

each simulation; this may be why the CDTA classified some of the oscillation behaviors in the BR as

periodic. The CDTA also failed to run in some cases where the input time-series was incompatible

with the AAFT surrogate algorithm; this may be another result from not having enough input

data.

It should not be surprising that the simulated BR does not show stochastic behavior; Ngspice

simulations themselves are deterministic unless otherwise specified in the netlist configuration [11].

Our simulation results come from a hyper-ideal scenario where all noise (e.g., Johnson-Nyquist

noise, temperature fluctuations) is nonexistent and all components behave exactly as described in

their mathematical model. In other words, we are observing the BR as mapping parameters and

initial conditions into transients and settled results. The FPGA implementation of BRs provides

a more realistic scenario where removing noise from the system is impossible and mathematical

models may not necessarily reflect what occurs in hardware. The results from Figure 15b ideally

should behave similar since we released the same BR from the same unstable state; however, the

sixty-four different transients show us that the BR still produces many different signals even though

each waveform was supposed to be produced from identical initial conditions and parameters. While

we can model the BR as a chaotic system, this does not necessarily translate well into predicting

how the BR’s trajectory will evolve over time. The transient results from Figure 15b show us that

there is only a small window of time in the transition region where all BR transients line up before

diverging. In this scenario, we are observing how the BR propagates both process and thermal
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noise through its output signals.

The results of this thesis show several directions for future projects and experiments in the

fields of nonlinear dynamics, genetic programming, and hardware security. One future project

would be formalizing the CDTA as a fully-fledged library in a popular programming language

repository. While the CDTA was integral for this thesis, it still needs some improvements: it is

unoptimized for speed, contains typos in both code and documentation, and produces errors when

analyzing systems with settling behavior using the default configuration. More rigorous testing on

the CDTA and distribution via a programming language package service may help with finding

more ways to improve the algorithm’s efficacy. A second continuation would continue with the

GA optimization by running one directly on the FPGA to produce a BR with the most complex

results. For example, one could include a soft-core processor that evaluates the permutation entropy

of different individual BR-PUF configuration bitstreams and subsequently runs the remaining steps

of the GA procedure. Individuals in this GA would have bitstreams of size N , corresponding to a

single BR-PUF challenge. Since GA procedure strategies already exist for optimization with binary

genomes [29], [30], the obtained results could complement our simulated GA results and further help

understand the BR. A third project could address the mismatch between FPGA and simulation

results by analyzing the transients from BRs implemented without an FPGA. Implementing a BR-

PUF on 4000-series logic ICs would be cheaper than creating a custom BR-PUF ASIC but may

cause routing issues and introduce parasitic capacitance.
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