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 Abstract 

 The HOPE Hand exoskeleton is a motor aid for individuals with hypertonicity and 
 spasticity. This project develops a voice control system for the HOPE Hand which is trained for 
 Broca’s aphasia, a communication disorder which often impacts this population. A database was 
 created using vocalizations of typical and aphasic speech collected from participants in 
 conjunction with open source datasets. AI models were modified and trained on these data to 
 identify users and recognize commands, then integrated with the HOPE Hand. 
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 1  Introduction 

 Hand functionality plays a significant role in many  aspects of life, and many individuals 
 take this ability for granted. The practical ability to easily utilize both hands allows people to 
 perform essential tasks like lifting items, dressing themselves, performing at work, engaging in 
 social interactions, opening doors, and more. Without this functionality, it becomes more difficult 
 for one to accomplish these common day-to-day activities. Diseases and neurological traumas 
 such as traumatic brain injury (TBI), stroke, or cerebral palsy can result in upper limb 
 impairments that impede hand motion in this way (Parker, 1986; Douglas, 1965). These 
 impairments include hypertonicity, or overactive muscle contraction, spasticity, and weakness 
 (Teasell, 2003). To assist these individuals in daily tasks, rehabilitation robotics is being used 
 more to aid in hand movements, and has shown promise in leading to functional gains 
 (Schabowsky et al., 2010). 

 Individuals with moderate to severe spasticity have shown to struggle to open their 
 fingers using existing rigid commercial exoskeletons (Peters et al., 2017). Many of these existing 
 exoskeletons are not specifically designed for spasticity and do not fully meet the needs of these 
 individuals. In contrast, the HOPE Hand is specifically designed to assist in individuated finger 
 motion and extension with high resting muscle tone or spasticity present, with the goal of 
 increasing independence to these individuals. It was found that controlling the HOPE Hand 
 through a button or electromyography can pose challenges for users and even counter therapeutic 
 methods in some cases (Meier et al., 2019). A voice control system is a promising solution to fix 
 these problems and help users successfully control the HOPE Hand to their needs. 

 Oftentimes, the TBI or stroke which causes hand hypertonicity and spasticity also causes 
 a communication disorder known as aphasia. Due to differences in motor function, processing, or 
 speech production, people affected with aphasia use different speech patterns than unaffected 
 people. As a result of this, existing voice control systems designed for those with healthy speech 
 may often not work well for these individuals. Therefore, the designed voice controlled system 
 must accommodate these vocalization differences to work for the intended user population. 

 1.1  Goal Statement and Objectives 
 Our goal was to develop a usable voice control system for the HOPE Hand that 

 accommodates the speech patterns of the intended users. Therefore, this system was designed to 
 be compatible with individuals that have speech aphasia in addition to the aforementioned motor 
 impairment of the hand. In order to accomplish this goal, our team set out the following 
 objectives to accomplish. 

 1.  Develop an algorithm able to detect the commands “open” and “close” from a speaker 
 with aphasia with an accuracy of 90% ∓ 10%. 
 1.1.  Apply algorithm to detect commands and speaker with aphasic vocalization data 
 1.2.  Train and implement algorithm to recognize commands with aphasic and typical 

 vocalization data 
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 1.3.  Implement speech distortion algorithms to make model more robust 
 2.  Connect speech model (Objective 1) to HOPE Hand exoskeleton 

 2.1.  Convert microphone feed to a compatible speech signal input for model 
 2.2.  Translate algorithm output to signal the HOPE Hand to enter the desired state 

 3.  Curate database of aphasic speech and healthy speech to train speaker and speech 
 recognition models (Objective 1) 
 3.1.  Compile database from AphasiaBank, Mozilla Common Voice, Google dataset, 

 and other open-sources 
 3.2.  Collect vocalization data of aphasic speech from participants with aphasia 

 4.  Create user manual/description for future teams to work with the control system in its 
 existing state 
 4.1.  Document workflow and design choices in a legacy document 
 4.2.  Create manual for potential users of the HOPE hand and the voice control system 
 4.3.  Uploading all of the code to a repository (GitHub) (include all software packets 

 and system requirement) 

 1.2  Scope 
 This project was intended to help bridge the gap from the design and creation of the 

 HOPE Hand exoskeleton and the use of the HOPE Hand exoskeleton in assisting activities of 
 daily life. The voice control system described in this paper does not meet the requirements for 
 use in  activities of daily life but lays the foundation on which another project may improve upon 
 to bring the voice control system to the level that is reasonable for use in  activities of daily life. 
 The project described here is the first prototype of the voice control system that is designed to be 
 used with the HOPE Hand exoskeleton. It is the intention of the authors that with the 
 descriptions provided below another team may be able to develop a voice control system that is 
 ready to assist in  activities of daily life. 
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 2  Background 

 The goal of the HOPE Hand is to help individuals with hypertonicity and spasticity with 
 activities of daily living. The cause of many hand impairments is traumatic brain injury, such as 
 stroke. Rehabilitation of such hand impairments and hand exoskeletons are closely related by 
 their goal to assist individuals with hand impairments in everyday activities. The voice control 
 system was intended to help make this goal a reality. The voice control system described in this 
 paper uses several machine learning algorithms to detect and recognize the commands issues. 
 There are many forms of voice control in literature that were considered when designing the 
 voice control system. However, many of these voice control systems were not designed for 
 individuals with speech aphasia. This section provides relevant information on traumatic brain 
 injuries, hand impairments and rehabilitation as it relates to hand impairments, voice control, 
 speech aphasia and rehabilitation as it relates to speech aphasia, and machine learning and voice 
 detection 

 2.1  Traumatic Brain Injury, Stroke, Cerebral Palsy 
 The HOPE Hand is designed for individuals who have had a traumatic brain injury, such 

 as stroke. Over 795,000 people in the United states suffer from a stroke every year  (Center for 
 Disease Control and Prevention [CDC], 2023). The leading causes of traumatic brain injuries are 
 falls, firearm related injuries, motor vehicle crashes, and assault, while the leading causes of 
 stroke are high blood pressure, high cholesterol, smoking, obesity, and diabetes (CDC, 2023). 
 Both strokes and traumatic brain injuries can often cause those affected to have serious and 
 long-term disabilities, and it is estimated that over 5 million Americans currently live with 
 long-term disabilities as a result of a brain injury (Coons, 2023), with a subset having hand 
 impairments and speech aphasia. 

 2.2  Hand Impairments and Rehabilitation 
 There are several traditional methods for rehabilitation for upper limb impairments. 

 Physical therapy, surgery, routine injections, or a combination of these methods have been used 
 as rehabilitation strategies for disorders of the arms, wrists, and hands (du Plessis et al., 2021; 
 Copley, 2014; Kamper, 2022). The treatment plan for these types of impairments are outlined in 
 models such as the “Hypertonicity Intervention Planning Model” that take into account one's 
 symptoms and clinical test results to match treatment options designed for the most effective 
 outcome (Copley, 2014). For upper limb hypertonicity specifically, treatment can include 
 stretching, splinting, strengthening of antagonist muscles, oral medications and focal injections 
 (Marciniak, 2011). For muscle spasticity, common treatments include oral medications and 
 injections, and specific stretches and physical therapy exercises designed to relax the hand 
 muscles (“Spasticity Treatment”, 2013). 
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 Unfortunately, current plans are not always able to return individuals to typical 
 functionality (Kamper, 2022). Combined with the prolonged duration of these treatment plans, 
 associated costs, and the limited effectiveness, many may lose interest in their recovery plans (du 
 Plessis, 2021). Most medications and physical therapy leave affected individuals in need of 
 assistance to complete many  activities of daily life. Especially in these cases, assistive 
 technology can be helpful. 

 Technological advancements such as assistive robotics have shown to have the ability to 
 help with hand function and assist these individuals in achieving their daily tasks (Alhamad et 
 al., 2023). HandSOME II, a hand exoskeleton developed for hand extension assistance, had users 
 attempt to grip various objects, and then release them. It was shown that subjects were able to 
 complete 13 of the 42 tasks without assistance, and 36 of the 42 tasks with assistance from the 
 exoskeleton (Casas et al., 2021). The hand exoskeleton also allowed users to increase the range 
 of motion in their fingers, as shown below in Figure 1. This provides evidence of the success that 
 users can have with assistance from assistive robotic hand exoskeletons. 

 Figure 1: Index finger range of motion with and without exoskeleton assistance (Casas et al., 
 2021). 
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 Table 1: The results of a box and blocks test, one method of testing the effectiveness of hand 
 assistive devices, from a previous study demonstrating the effectiveness of different control 

 mechanisms for a hand exoskeleton (Meier et al., 2019). 

 While hand exoskeletons for individuals with hypertonicity and spasticity exist, they lack 
 the proper control systems to help this population with  activities of daily life (Meier et al., 
 2019). The HOPE Hand is one such exoskeleton designed for individuals with hypertonicity and 
 spasticity. The voice control system described in this paper can be used in conjunction with the 
 HOPE Hand to properly control the extremities of the users. 

 2.3  Speech Aphasia and Rehabilitation 
 Speech is an involved process that engages many parts  of the body and brain. The 

 nervous, respiratory, and muscular systems come together to produce speech through the 
 processes of hearing, comprehension, speech formulation, and speech transmission (Owens & 
 Farinella, n.d.). Oftentimes, traumatic brain injury, stroke, and other neurological conditions may 
 affect these processes, therefore halting or impacting speech in a variety of ways. 

 Certain techniques such as magnetic resonance imaging (MRI), more specifically 
 functional magnetic resonance imaging (fMRI), can give insight into the parts of the brain that 
 play a role in speech. There are many specific sections of the brain involved in language, or the 
 practice of assigning symbols or sounds meaning. These are integral parts of understanding and 
 transmitting speech. Relevant identified areas include Broca’s area and Wernicke’s area. The 
 primary auditory area and motor cortex are also important for their contributions to hearing and 
 muscular control respectively (Binder et al., 1997). 

 As discussed, upon being affected by TBI or stroke, an individual may experience 
 aphasia, which is a communication disorder. Because of the range of functions needed to 
 communicate, there are also a range of types of aphasia caused by malfunction of these 
 pathways, the most common being Broca’s, Wernecke’s, and anomic. This may include having 
 difficulty naming things, recalling words, reading, writing, or understanding visual information 
 (Owens & Farinella, n.d.). People with Broca’s aphasia may struggle with creating “novel 
 words”  or stumble through words, causing repetitions or slowness (Owens & Farinella, n.d.). 
 There also may be a range of concomitant deficits that one is impacted with based on their 
 specific experience with TBI or stroke, including muscular difficulties such as hypertonicity and 
 spasticity (Owens & Farinella, n.d.). 

 There are several treatment paths available that a person with aphasia may choose to take. 
 These treatments aim to target the impairments that the person is facing, and therefore may look 
 different based on the specifics of a person’s aphasia and concomitant deficits. However, 
 treatment is often based around the concept of brain plasticity. This describes the brain’s ability 
 to reassign brain function to changing relevance in stimulus. 
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 Figure 2: Description of Health Condition (Galletta & Barrett, 2014). 

 In Figure 2, Barrett and Galletta discuss the contributing impacts that a disease may have 
 on a person, in general and in relation to day-to-day life. This source then discusses the types of 
 intervention that may be successful based on this definition of function, which includes 
 “impairment-based intervention” such as phonological practice, and “functionally oriented 
 intervention” such as support groups and supported conversation (Galletta & Barrett, 2014). 

 Some other intervention techniques that capitalize on brain plasticity for aphasia include 
 constraint-induced language treatment (CILT), non-invasive brain stimulation (NBS), and 
 transcranial direct cranial stimulation (tDCS). CILT is designed after CIMT, and describes the 
 practice of limiting the body’s reaction to make up for the difficulty in communication using 
 symbols and visual cues, forcing the individual to practice speaking. NBS uses transcranial 
 magnetic stimulation (TMS) to stimulate the brain into using language-areas more. tDCS uses 
 electrical currents across the scalp to similarly stimulate the brain in areas that are underused. 
 Speech production activities allow users to actively engage the speech centers of the brain. 
 Therefore an assistive device that requires speech engagement like the voice control system we 
 are developing may contribute to an improvement in speech production and improved functional 
 outcomes. 

 2.4 Voice Control 

 Researchers have implemented voice control to detect user intention and actuation of a 
 hand exoskeleton. An exoskeleton designed for individuals with spinal cord injury called the 
 FLEXotendon Glove-II had voice control using a smartphone for onboard signal processing and 
 a Bluetooth Lower Energy capable microcontroller for controlling the motors. Originally, they 
 required users to press a button on the phone screen to give a voice command, but found that this 
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 reduced user efficacy (Tran et al., 2020). They found that using an online application for the user 
 interface that employed continuous voice control through speech recognition better assisted 
 users, as they could now use the voice control hands free and not divide their attention between 
 tasks and their phone (Tran et al., 2020). Using discrete, task-based voice control has been shown 
 to work well in hand exoskeletons, but it is important to not have a large time delay for the voice 
 control system and motor, as delays of 4 seconds between issuing the command and end of hand 
 attenuation resulted in some voice-control exoskeletons not improving the speed of  activities of 
 daily life in users (Tran et al., 2020). Given that many individuals with hand impairments also 
 have concomitant speech disorders such as aphasia, a voice control system tailored to their needs 
 could be highly beneficial. Table 1 shows the results of a study run to investigate potential 
 control mechanisms for the HOPE Hand exoskeleton (Meier et al., 2019). This study showed that 
 a commercially available voice control system would not be sufficient to control the HOPE Hand 
 exoskeleton for individuals with speech aphasia. It was also discussed that EMG sensing and 
 foot pedals would not be practical for the users due to a lack of ability to move blocks and the 
 lack of ability to move the foot pedal respectively. 

 Having various noise filters is another aspect that was important in hand exoskeletons 
 that used voice commands. One system used with a rigid hand exoskeleton included a noise 
 reduction filter, a loudness filter, and a command detector designed to detect possible activation 
 commands with minimal computational cost (Guo et al., 2022). The noise reduction filter is used 
 to minimize high and low-frequency noise to detect potential human voices, which then enter a 
 loudness detector. The loudness detector detects audio with volume above a certain threshold and 
 uses this to set the system into pre-active mode, where it begins listening to human audio. From 
 there the model could listen to commands, and take action if it recognized the correct speaker. 

 2.5  Machine Learning and Voice Detection 
 In order to implement voice control for people with aphasia, we need a way for a 

 computer to reliably recognize commands from their speech. Early automatic speech recognition 
 systems recognize speech by filtering out noise, identifying specific sounds (phonemes) or letters 
 (graphemes), and attempting to map these data points to text or acoustic signals of specific words 
 using machine learning (Jamal et al., 2017). However, in recent applications, simply running 
 audio through a neural network such as a time-delay neural network or a convolutional neural 
 network has become more popular and successful as advances in that field are being made 
 (Mahmoud et al., 2023). 

 People with aphasia vocalize differently from healthy people whose speech phonemes 
 and graphemes have influenced automatic speech recognition systems. Therefore, a system that 
 analyzes speech on a whole-word level will likely be more effective than one that recognizes 
 individual sounds, just as has been used before to recognize dysarthric speech (Hawley et al., 
 2007). That being said, convolutional neural networks are conventional for recognizing healthy 
 speech too, and have advantages like noise robustness and a small foot-print for deploying to a 
 minicomputer like the Raspberry Pi (Huang et al., 2015). 

 13 



 Although a large variety of machine learning models have been used to recognize speech, 
 researchers have found the most success using convolutional neural networks with aphasic 
 speech, which evaluate the vocalization at the whole-word level. This differs from time-domain 
 sensitive networks like the time-delay neural networks used to evaluate syllables for correcting 
 aphasic speech ((1)Qin et al., 2020). Even with tone dependent languages such as Mandarin and 
 Cantonese, convolutional neural networks yielded good results for classifying aphasic speech 
 (Mahmoud et al., 2020)((2)Qin et al., 2020). In one study, the curated convolutional neural 
 network had a calculated accuracy of 67.78% and a precision of 73.23% for Mandarin speakers 
 with aphasia (Mahmoud et al., 2023). 

 Convolutional neural networks work by classifying spectrographic images of speech 
 signals. Mahmoud’s study found that the standard wavelet transform used to extract 
 frequency-domain speech images failed to resolve frequency well enough to capture subtly 
 different tones present in Mandarin and aphasic speech, and therefore elected to use the 
 Hyperbolic T-distribution (HTD) outlined another paper (Mahmoud et al., 2006). Mahmoud’s 
 present year review of automatic speech recognition systems for aphasic speech found that their 
 custom built convolutional neural network with HTD images outperformed Microsoft and 
 Google’s prebuilt speech recognition models, as while as a sophisticated natural language 
 processing approach using both healthy and aphasic training data, ultimately achieving an 
 accuracy of 67.8% and similarly high precision, recall, and F1 scores (Mahmoud et al., 2023). 
 While those results may not be ideal for a voice control system designed for daily use, they do 
 show the ability for speech recognition models that are tuned and trained around aphasic speech 
 to outperform prebuilt speech recognition models like the one tested with the HOPE Hand in 
 table 1. 

 3  Human-Centric Design Considerations 

 Every research project has the potential to impact both the general public and its 
 stakeholders in unforeseen ways. Biomedical research that works with a physically disabled 
 target population holds its own set of possible negative impacts that must be explored and 
 mitigated at every stage of research. Most importantly, there needs to be collaboration and input 
 from the stakeholders throughout the designing, data collection, and testing portions of the 
 project to ensure that the stakeholders’ point of view be appropriately considered. There also 
 must be a thoughtful analysis of ways in which the products and ideas produced by the research 
 team will change the day-to-day lives of the people they were designed for, as well as the general 
 public. This will encourage responsible research and product development. 

 3.1  Assessing Broader Impacts 
 Alongside the metrics used to determine precision and accuracy of the functionality of 

 this device as described in the Evaluation section, certain techniques to assess the potential 
 broader impacts of the work done were also looked at. There are many tools and techniques 
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 available to researchers that can help them consider the broader impacts relevant to their project. 
 For example, the Center for Advancing Research in Society (ARIS) is a community that focuses 
 on providing resources and networking opportunities to researchers for the goal of promoting 
 ethical research. Some of their resources, such as the Broader Impacts Wizard and the Broader 
 Impact Project Rubric, teach about and emphasize relevant topics such as: researcher identity, 
 target population alignment and engagement, infrastructure support, and external partnership 
 (Rutgers University and ARIS). As this program specifically references the National Science 
 Foundation (NSF) and its’ expectations on broader impact assessment, there may be certain 
 topics with less relevance to the HOPE Hand. However, it provided a foundation from which we 
 considered this device, and has been used by the research team to ensure thoughtful deliberation 
 about the impacts the HOPE Hand will have on stakeholders. 

 In order to assess the potential impacts of the voice controlled HOPE Hand, we had a 
 meeting with a speech therapist. When asked, the therapist said that it is possible that the user 
 could become accustomed to issuing a command in a specific way in order to get the voice 
 control system to recognize it, but that it would not have much effect on how the user says those 
 words when not issuing a command. Furthermore, the speech therapist also confirmed that using 
 a voice controlled exoskeleton is an established speech therapy method, however the example 
 they gave used a second person to recognize commands rather than a machine learning model. 
 Based on the information gathered about assessing the research process, it can be determined that 
 topics of interest may include the comfort or discomfort of mobility aids, the difficulty of living 
 with slow or ineffective mobility aids, and the importance for access to and control over one’s 
 own individual device, as explained in the following subsection. For more detail on interactions 
 with stakeholders (specifically an interview where preferences for the device was discussed), see 
 Section 6.2. 

 3.2  Broader Impacts of Machine Learning and Data Collection 
 There are a few drawbacks to the use of convolutional  neural networks, which will make 

 up the machine learning algorithms of the voice-control system. Technology effective in 
 identifying speech raises concerns of privacy and data security. For many people, it is 
 disconcerting to feel like they are being listened to or watched by the machinery in the world 
 around them. It has been shown that mental health is negatively affected by the “ubiquitous use 
 of cameras and voice monitoring equipment in a home environment…” and that it is “a major 
 obstacle to the deployment of smart home systems for the care of the elderly and disabled,” 
 (Yang et al., 2018). There is the possibility that users of the HOPE Hand may feel the same way, 
 as the convolutional neural network will be taking inputted speech data from a microphone on 
 the exoskeleton. Though this global fear of the misuse of technology may not be easily 
 mitigated, it is important for the project team to ensure the least amount of mental stress on the 
 users of this voice control system as possible. Therefore, we strive to be transparent about how 
 we are storing data, as well as the algorithms and models that we are using. This information will 
 be made apparent to anyone whose vocalization samples are being collected by the research 
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 team, as well as in the user manual. These concerns were primarily explored and addressed in the 
 interviews that we conducted over the course of this project. For more information about storing 
 interviewee data, see Section 5.3.5. 

 3.3  Interviewing and Data Collection 
 One aspect of this project’s methods that may have clear impacts on both the broader 

 target community, and also those who are contributing to data collection, is the data collection 
 process itself. Understanding the meaning of the data we collected in the larger scope of usability 
 is critical in determining the success of the project. As the team previously lacked exposure to 
 and knowledge about the user demographic group, getting to know the data collection 
 participants was beneficial in understanding their needs in relation to this project. 

 In order to learn about interviewing in general, this team conducted a pilot interview, 
 where we acted out several potential interview situations for practice and to make sure the 
 process was smooth. This led to the reorganization of a few of the speech recording sections, 
 such as making the interview shorter and therefore less vocally intensive on the speakers by 
 removing some of the longer phrases. Before recording participant data, we thoroughly explained 
 the contents of the informed consent form to the interviewees to ensure that they understood the 
 risks associated with the recording of their vocalization data and what their data will be used for, 
 as indicated by the accepted IRB application. 
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 4  Evaluation 

 The HOPE Hand needs to be used in everyday activities. This section describes how the 
 authors evaluated the potential for the HOPE Hand to be used in everyday activities. The goals 
 for these evaluations were decided upon to minimize user frustration and based on commercially 
 available voice recognition systems for individuals with typical speech. These goals are the gold 
 standard for the field with typical speech. This section includes a description of how users might 
 be affected by misinterpreted or unheard commands and evaluation criteria for the algorithms 
 created 

 4.1  User Performance 
 We must ensure that the HOPE Hand does not cause harm to the user or damage their 

 possessions. The two possible situations we have identified where the hand could affect the user 
 in such a way are: 1) if the user is holding a fragile or heavy object in the HOPE Hand and the 
 hand mistakenly hears the ‘open’ command, or 2)  if the user commands the hand to grasp a hot 
 or sharp object and the hand does not respond to repeated ‘open’ commands due to the pain or 
 surprise causing inflection in the user’s speech which the HOPE Hand has not been trained on. 
 For people with speech aphasia, the latter may be an especially prevalent issue due to their 
 pre-existing difficulties with speech. While our ability to find out how often these types of errors 
 in practical use is limited by our testing environment, we will measure and report false positive 
 and false negative recognition rate for each command separately. 

 4.2  Metrics for Objective Algorithm Assessment 

 Figure 3 below shows the formulas used to calculate  the metrics for each part of the voice 
 control system. Table 2 shows the goals created for each of these metrics that our team 
 determined would allow the voice control system to be usable for individuals with the 
 aforementioned impairments. 

 𝑅𝑒𝑐𝑎𝑙𝑙    =     𝑇𝑃 
 𝑇𝑃 + 𝐹𝑁  𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦    =     𝑇𝑁 

 𝑇𝑁 + 𝐹𝑃  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦    =     𝑇𝑃 + 𝑇𝑁 
 𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

 Figure 3: Formulas for recall, specificity, and accuracy. Abbreviations are True Positive (TP), 
 True Negative (TN), False Positive (FP), and False Negative (FN). 

 System  Metrics  Goals 

 Command 
 Detection 

 Recall, Specificity  .99, N/A 
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 Speaker 
 Verification 

 Recall, Specificity, Accuracy  .95+, .90, N/A 

 Command 
 Recognition 

 Recall, Specificity, Accuracy  .90, .95, .90 

 Voice Control 
 Pipeline 

 Recall, Specificity, Accuracy  .90, .95, .90 

 Table 2: Metrics and Goals for Voice Control Pipeline Elements 

 In order to prevent the HOPE Hand voice control system from being a frustrating 
 experience for the user, our goal was to achieve a recall of 90% or greater, and a specificity of at 
 least 95% for the entire system properly processing a command, though this was an optimistic 
 goal. To this end, we should aim for command recognition around the same metrics, since that is 
 the major choke point where an error cannot be made up for further down the pipeline. This 
 would be an impactful, but reasonable improvement from a review study, from 2017, that found 
 three available speech recognition models - one of which bolstered with data from AphasiaBank- 
 that had erred 21-57.8% of the time (Egaji et al., 2019). Recent analysis of more contemporary 
 machine learning models and off-the-shelf speech recognition platforms found that the most 
 successful model was a convolutional neural network with an accuracy of 67.78 ± 0.003% 
 (Mahmoud et al., 2023), however that was trained using Mandarin speech which is highly tone 
 dependant, so English could yield different results. Furthermore, we have our own data to add to 
 that from AphasiaBank, so we expect our model to out-perform that which Egaji et al. trained on 
 just AphasiaBank data. The command recognition model is split into two convolutional neural 
 networks, one for each command, and the accuracy measures for each model was collected 
 separately. 

 Besides identifying which command is issued, we must also be able to differentiate 
 commands from ongoing speech and verify that it is the intended user who is issuing the 
 command. For differentiating commands from ongoing speech, since full sentences should not be 
 recognized by the command recognition convolutional neural network, we will optimize this to 
 favor accidentally accepting part of a sentence over accidentally not accepting a command, 
 aiming for 99% of commands being accepted. For speaker verification, since it is more likely 
 that the user is issuing a command than a malicious actor, we will also make speaker verification 
 favor accepting the speaker over denying them. In addition to the functionality of the voice 
 control system, the model must reliably send the perceived signal to the HOPE Hand. For 
 research purposes, we will report accuracy of the HOPE Hand as a whole as well as for each of 
 the algorithms that make it up, but for our specific use case we will focus more on the rate of 
 false positives and false negatives. 

 Despite the abundance of research on voice control systems, they often lack speaker 
 verification and only test the automatic speech recognition system as a whole, and therefore 
 largely exclude detail on the individual functions that make up their automatic speech 
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 recognition systems. For the HOPE Hand’s voice control system, since aphasic speech may have 
 different effects on our algorithms’ abilities to filter out sentences, verify the speaker, and 
 identify which command has been issued, each function was tested individually. To measure 
 practical performance of the noise preprocessing system, we will report specificity. In order to 
 measure the amount of false negatives caused by the preprocessing system, it was tested on 
 single word command collected from people with aphasia for training the command recognition 
 algorithm, then reported false negative error rate as the percent of commands that did not make it 
 past preprocessing. 

 5  Methodology 

 5.1  User Experience Model 
 The design of the HOPE Hand voice control system is based on the experience of the 

 user. Following the description of the proposed user interaction flow in Figure 4 below, the user 
 will first turn the hand on. Once connected, they will say the word “open” or “close” in order to 
 open or close the hand. If the hand malfunctions, the user will retrieve an error signal and will 
 retry the dictation. If the hand succeeds in recognizing the command and opening/closing, it will 
 move to the correct position. The user may turn the hand off at any time. 

 Note that the activation key is a feature that has not yet been implemented. Because it is 
 heavily recommended to be a part of the final design of the voice control system, we considered 
 this an integral part of the user flow interaction. 
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 Figure 4: State diagram of the overall system from the perspective of the user. This provides 
 insight into the UI and how it might be designed to reach the goal of optimized design for the 

 users. 

 5.2  System Design Requirements 
 The system needed to meet certain minimum requirements to be a viable product for 

 potential users. Currently available voice recognition systems and other potential systems were 
 researched to determine goals that were both comparable to current solutions and useful for the 
 potential clients. It was decided that the voice control system would need to have an accuracy of 
 90% ∓ 10%, respond to user input within 5 seconds, and ignore words that are not commands by 
 labeling them as "notopen", "notclose". 

 5.3  Database Curation 
 In order to create the voice control system, it was  necessary to curate a database that 

 could be used to train and improve the accuracy of the algorithm. Since the voice control is 
 designed to work for people with aphasic speech, it was required to input aphasic speech data 
 into the database. Open source databases like AphasiaBank were found, but there was still a lack 
 of aphasic data, particularly for words like “open” and “close” that were required for our training 
 purposes (AphasiaBank: MacWhinney et. al). To mediate this, our team met with participants 
 with aphasic speech via zoom to collect vocalizations and integrate them into our database. We 
 also supplemented this aphasic data with typical speech data in our training, as this helped 
 improve our model by increasing the data size, therefore making it more robust. The final form 
 of our database combined aphasic and typical speech, having folders separating the word “open” 
 from other words (“notopen”), and separating “close” from other words (“notclose”). 

 The organization hierarchy of this database may be seen in Figure 5 below. The data is 
 first split into two categories: vocalizations and noise. The noise folder has not yet been 
 implemented, but is recommended for future work. This folder should be filled with sounds that 
 may be found in certain environments in which people may use their HOPE Hand, and recorded 
 by the microphone that the HOPE Hand uses to record. Though some noise is currently filtered 
 out during the preprocessing step of the command recognition pipeline (see Figure 23), the 
 implementation of a specific noise folder in the database will allow for a more robust way to 
 identify background noise as opposed to speech. 

 Vocalizations are then determined to be healthy or aphasia speech patterns. Each category 
 is then organized into location of origin (collected, AphasiaBank, Mozilla Commonvoice, 
 Google Mini Commands, etc.). Each file is then labeled with the word that is said and given a 
 unique name and timestamp combination. 
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 Figure 5: Hierarchy of Database 

 As indicated in Figure 5, the word labels will be key in training the command recognition 
 algorithm. However, the other categorizations are necessary. The name and time stamps work to 
 indicate each unique file’s contents, and the categories higher in the hierarchy, such as healthy vs 
 aphasia or collected vs AphasiaBank is helpful in directing the Python file responsible for 
 training the model in how much data to use from which categories. This allows different models 
 to be created for different users, accuracies, or effects. 

 Figure 6 indicates a more streamlined view of the data available. There are ultimately two 
 final models, both created and run separately, which will work in an alternating pattern based on 
 which state the state machine is running in when appropriate. The model on the left describes a 
 model with effectively two data training categories: “open” and “notopen”, which recognizes the 
 word “open” and when “open” is not said. The model on the right has the categories “close” and 
 “notclose” in a similar fashion. Effectively, this is the code categorization most relevant for what 
 the main command recognition Python file, main.py, interacts with. 

 Figure 6: Hierarchy of Database from Model Trainer Perspective 

 For data to successfully train models using the algorithm developed, there are certain 
 specifications for the audio files. Each audio file we put in was converted to have a sampling rate 
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 of 16KHz and to be mono, not stereo. When audio files were used to train the models without 
 these two requirements, the algorithm either did not work or would only be trained on the 
 spectrograph of part of the word, not the full word. 

 5.3.1  Google Mini Speech Commands 
 The Google Speech Commands dataset is an open source  dataset designed to help train 

 and evaluate keyword spotting systems (Warden, 2018). A smaller version of this dataset was 
 used for training and testing of our command recognition model described in section 5.44. This 
 version contains 8 different English words, each said 1,000 times by a variety of typical 
 speakers. It contains the words “yes”, “no”, “stop”, “go”, “left”, “right”, “up”, “down”, which 
 were chosen as they are common words at the core of English vocabulary. 

 A challenging problem for command recognition is ignoring speech that does not contain 
 trigger words that the algorithm is looking for (Warden, 2018). Although this database does not 
 contain audio from aphasic speech nor the words “open” or “close”, it was still useful in our 
 model to help recognize what is not “open” or “close”. This dataset provided samples to our 
 algorithm of 8 words that differed from open and close, helping ensure that our end model is less 
 likely to predict open or close when another word was said. This is the dataset that had been used 
 in a Tensorflow tutorial that we based our command recognition model on (  Simple audio 
 recognition: Recognizing keywords  ), so it was very  prevalent in early iterations of our models. 

 These files have an undescribed amount of diversity of speakers, though it can be clearly 
 seen that there is a significant amount, and there are 1000 vocalizations in the form of 1 second 
 clips per word. The clips are all sampled at a rate of 16 kHz. 

 5.3.2  Vocalizations Collected from The Team 
 Our team found it difficult to find enough clear  audio samples of the words “open” and 

 “close” through open source databases. Having enough data on these words is crucial for the 
 success of our system, as these are the two words that it will be looking for. The Tensorflow 
 tutorial  Simple audio recognition: Recognizing keywords  ,  which was modified to create our 
 command recognition system, was trained on a dataset that used one-thousand samples of each 
 word. Using this as a reference to the preferred amount of data for a command recognition 
 system, we took measures to increase the amount of training data we had. Each team member 
 recorded 30 samples respectively of themselves saying the words “open”, and 30 samples of 
 “close”. This provided our team with 120 new audio samples for each word to input into our 
 databases, increasing our amount of data with the goal of improving the accuracy of the 
 command recognition model. These files are 1 second long with a sampling rate of 16 kHz after 
 proper conversion. 
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 5.3.3  Mozilla Common Voice Dataset 
 In order to train the speaker verification system,  we needed data that was labeled by the 

 speaker rather than what word was being said. For this we used the Mozilla Common Voice 
 Delta Segment 15.0. The delta segment was sufficient for getting a small sample of phrases to 
 train the i-vector system used in speaker verification, but we also found that the larger corpus 
 contained thousands of opens and closes embedded in these phrases. Unfortunately, since we had 
 no way to automatically separate those from the phrases that contained them, we could not use 
 them. If there was a procedure to automatically label the audio by index, these could be extracted 
 and used to drastically increase the amount and variety of training data. Such a labeler would 
 also allow for much more audio from AphasiaBank to be used since their labeling was not as 
 precise as we would need to get proper training data. 

 5.3.4  AphasiaBank Data 
 Given the large percentage of aphasic speakers among  those with hypertonicity and 

 spasticity in the arm, we need to make sure that people with aphasic speech are well-represented 
 in the data we use for training our command recognition. We found that AphasiaBank, an online 
 database, contained dozens of hours of precisely labeled aphasic speech. 

 AphasiaBank is an open source database containing vocalizations of aphasic speech from 
 interviews or discussions with people with aphasia. Many researchers have contributed data to 
 AphasiaBank which provides a wide variety of information. There were various types of aphasia 
 available, but as our project focused on Broca’s aphasia, we aimed to collect that type of data the 
 most. AphasiaBank transcribed each video on the word level with indices of the labeled speech 
 in milliseconds. Using these transcriptions and the video files, we used two procedures to isolate 
 specific words such as “open” and “close”. The isolated clips are made to be the length of the 
 word said, so each of these files are different lengths. They have a sampling rate of 16 kHz. 

 The first strategy we developed was to process the .mp4 files found on AphasiaBank as 
 quickly as possible using Python (The Python Code & DevCommunity). As the transcripts to the 
 videos were accessible via .cha files alongside timestamps of each word said, the following code 
 shows in Figure 7, an example of the procedure used to convert the downloaded .mp4 file into an 
 audio (.wav) file, and clip it by converting the timestamps in the accompanying .cha file from 
 milliseconds to individual samples. This left only the target words of “open” or “close”. This 
 code made use of the library pydub and moviepy.editor. 
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 Figure 7: Code to Process AphasiaBank Videos 

 We then developed a second, more effective procedure to automatically isolate these 
 words using a MATLAB script. In this script, we added a 100ms buffer to the indices specified in 
 the transcript in order to account for instances where the word was cut off and in order to avoid 
 making audio clips that were much smaller than our other data. The data in this database was not 
 great for our use case since their interviews were conducted in small echoey interview rooms, 
 and since AphasiaBank goes back to 1988 they did not have access to high fidelity audio 
 recording equipment with echo cancellation either. 

 With both of these procedures working to process AphasiaBank files, over 400 usable 
 .wav files became available to train the algorithms that constitute the voice control system 
 deliverable. 

 5.3.5  Study Data 
 In order to help increase the amount of aphasic speech data in our database, we conducted 

 an IRB approved study (IRB # 24-0082) in which we held online meetings with two different 
 participants and collected their speech data. This effort not only increased our data size, but 
 proved valuable by including speech data from participants with aphasia who could potentially 
 utilize the HOPE Hand’s voice control system. Training the model using samples from a 
 participant’s voice increases the likelihood of a higher accuracy when the same individual issues 
 commands later on to the system. 

 Once the participants agreed to be in the study and signed the IRB consent form, our 
 team met them in a Zoom call. The IRB consent form was reiterated to them in the call, and once 
 the participants made it clear that they understood and agreed, the data collection began. 
 Participants were asked to move out of the view of the camera or turn off their video in order to 
 help keep their identity private, and then the audio recording began. Our team recorded the audio 
 on the Zoom call computer, and on a phone as well to provide a backup in case one of the audio 
 files got lost or corrupted. 

 A slideshow our team made prior was then screen shared to the participant. The goal of 
 this slideshow was to give the participants specific words to say and encourage a variety of tones 
 and inflections. The first 9 slides prompted the participants to repeat sentences from the Harvard 
 sentences list like “Always close the barn door tight”. This gave us data on how the user says 
 “open” or “close” while reading in a sentence, and provided other words that could be used in the 

 24 



 “notopen” and “notclose” folders. Once complete, our team moved on to having the participants 
 repeat 70 single words. These words consisted of the words “open” and “close” repeatedly, and 
 similar sounding words like “opposing” and “broken”. Our team also chose to alter the 
 capitalization for some repetitions of the target words, for example having “oPEN” instead of 
 “open”. This helped make our data more robust by having the participant say the words with 
 different tones and emphasis, as it will likely change when speaking / commanding in their 
 activities of daily life. 

 Figure 8: Images used in IRB Study 

 Finally, our slideshow depicted multiple images of an open and closed jar (see Figure 8), 
 and an open and closed door. We instructed our participants to say the word “open” to open the 
 closed jar or door, and vice versa with the word “close”. To open and close the jar and door after 
 participant instruction, we used a simple animation. The goal of this was to help mimic how the 
 participant may command something, such as the HOPE Hand, to open and close. This differed 
 from the previous slides, as a person may speak differently when simply reading a word then 
 they may speak when thinking of the word themselves and then commanding it. 

 Once these meetings were complete, our team securely stored the full audio on a drive 
 with access restricted to project members with IRB permission. We then went through the 
 interview audio for both phone and computer recordings, cutting out the words we needed in ~1 
 second clips and saving them as separate files with no identifying information about the 
 participant in the name. With this, we now had over 25 new instances of “open” and “close” for 
 each participant with aphasic speech, and over 20 instances of other words to help recognize 
 what is not open or close. 

 5.3.6  Augmented Data 
 The data we have personally collected from our study participants is tailored to training 

 our command recognition algorithm to detect open and close, the only issue is that asking 
 someone with aphasia to repeat “open” and “close” hundreds of times is tedious and unrealistic, 
 so we do not have enough data from our two participants alone. In order to increase the volume 
 of audio from study participants that the command recognition model can be trained on, we 
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 decided to augment the data using the MATLAB audioDataAugmenter class. From this class we 
 applied 4 augments to each instance of “open” and “close”: speeding up or slowing down the 
 audio by 0-20%, shifting the pitch up or down a few semitones, applying a slight positive or 
 negative volume gain, and increasing or reducing the amount of background noise in the audio. 

 5.4  Voice Control Pipeline Approach 
 The voice control system can be broken down into  various steps. Moving down the 

 pipeline, the HOPE Hand starts by record audio, checking if the audio contains a command or 
 part of a sentence, then checking to make sure that the person issuing the command is a user that 
 has been enrolled into speaker verification, before finally checking if the user is telling the hand 
 to open or to close. At any of the checks if the audio does not pass, then we throw it out and wait 
 for the next clip of recorded audio. The first two checks serve to weed out scenarios where the 
 hand could erroneously activate and hopefully save battery by reducing the amount of times we 
 have to predict “open” or “close” with our command recognition convolutional neural network. 
 For a flow chart showing the path a speech signal takes through the pipeline, refer to Figure 22. 

 5.4.1  Recording 
 Since we want the system to pick out instances of  “open” and “close” from a live mic 

 feed, we will need to break that live feed up into clips that are big enough to include an entire 
 “open” or “close” command said by the user. The audio recorder is set up to record 1 second 
 long windows of audio with 500ms overlap between one window and the next, as seen in Figure 
 9. This allows for a second of overlap from one clip to the next in order to account for cases 
 where a command could be cut off if it’s at the end of the clip. This current configuration allows 
 for any command less than one half second second long that is cut off at the end of one clip to be 
 fully captured by the next. Since the command recognition model is trained on one second long 
 audio clips, these clips will be cut down to one second later in the pipeline. 
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 Figure 9: Recording Timeline 

 The main drawback of this method is that the user will have to wait until the end of the 
 clip that their command is in to finish processing before the HOPE Hand responds. The worst 
 case for this would be if the user issued a command at the start of the clip and had to wait until 
 the clip finished in order for it to be processed. In order to finetune the length of the clips to be as 
 short as possible while only cutting off commands very rarely, one could extract the mean and 
 standard deviation of the length of “open” and “close” from AphasiaBank and our study 
 participants to find the percent of commands that would be in a given length range. 

 We conducted a proof of concept to better understand the functioning of this procedure, 
 the code for which can be seen in Figure 10. First, the libraries wave and pyaudio are imported 
 (Python Documentation & Python). These libraries are used to save audio in .wav form and read 
 in a livestream respectfully. Then, the recording function is run and the stream recording, 
 ‘recorded_audio’, is saved under a uniquely generated name, ‘recorded_audio (X).wav’ where X 
 increases after each recording is saved (SarahDev). 

 27 



 Figure 10: Code for Recorder Proof of Concept 

 Figure 11 shows the result of running these functions, the audio that is recorded has been 
 saved into unique files. As these recordings are taken before the audio is processed and 
 commands are identified, all files are saved, not just those that produce predictions. These files 
 may be played back. 

 Figure 11: Recorded Audio Saved 

 The significance of this exercise is to confirm the way the audio recorder processes the 
 live stream of audio that it is fed from the microphone. Because it functions in the way it does, 
 creating these saved files, we were able to move forward with processing. 

 5.4.2  Command Detection 
 In order to reduce the possibility of the hand activating  when the user says “open” or 

 “close” in the middle of a sentence, we decided to check if a command is being issued by 
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 checking how long the user’s speech lasted. To find the indices of where speech occurs, we use 
 MATLAB’s detectSpeech function with a 45ms long Hamming windows at 35% overlap from 
 one to the next, and a 240ms gap between words for them to be considered separate speech. We 
 then check if any speech is shorter than 750ms to consider it a command and check it with 
 command recognition. The detectSpeech function fails under noisy conditions and generally 
 overestimates the length of speech, to mitigate this error we remove any noise that’s quieter than 
 5% the volume of the loudest sample in the audio signal. It is worth noting that even if 
 detectSpeech works perfectly, this method could still fail if the command is at the start of a 
 sentence but at the end of the clip it’s recorded in, or if the user pauses to think during a sentence. 
 It is also important to note that this method will fail if the user takes longer than 750ms to dictate 
 their command, which is a significant possibility for the population afflicted with speech aphasia, 
 but even for people with speech aphasia, if they are regularly using the HOPE Hand they should 
 get used to saying the commands quick enough. 

 5.4.3  Speaker Verification 
 Speaker verification is important as it helps ensure  that only the voice control system 

 only listens to commands from its specified user. Without speaker verification, someone nearby 
 the HOPE Hand user could say “open” or “close” and the hand may listen to it, even though the 
 actual user did not state the command. For speaker verification, we used a linear discriminant 
 analysis (LDA) of i-vectors extracted from different speakers’ speech (Prince & Elder, 2007). 
 This was a standard approach for speaker verification before modern neural network techniques 
 helped it evolve into today’s x-vector systems (Wang et al., 2018)(Snyder et al., 2018), but since 
 that involves calibrating the LDA with a neural network, we opted for an i-vector system due to 
 memory and power concerns. We specifically use MATLAB’s i-vector system to do the math for 
 us, then compare the results from the LDA with a threshold where the likelihood of a false 
 positive is twice that of a false negative since the vast majority of the time it will just be the user 
 issuing commands. 

 The i-vector system was trained on data from the Mozilla Common Voice dataset and 
 some of the data we collected. Since our database layout only separates files by what word is 
 said and where we got the data, we used a csv to map the file locations to a unique id for each 
 different speaker. To find the threshold for converting the LDA likelihood outputs to a decision 
 on whether the input audio signal is from an enrolled user or not, we used MATLAB’s 
 detectionErrorTradeoff function (Mathworks, 2021) which graphs the rate of false positives with 
 respect to the rate of false negatives for various possible decision thresholds. This wouldn’t 
 always give the same error rates as live testing on different mics, so from there the threshold can 
 be tuned heuristically. 
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 5.4.4  Command Recognition 
 The command recognition part of this pipeline works to identify what is being said by the 

 user. This process makes use of the following steps. 

 Command Recognition Pipeline Step  Purpose of Pipeline Step 

 Integration of the MATLAB engine  Integrates command detection and speaker 
 verification into the command recognition 
 function procedure 

 File conditioning  Ensures data is usable by the model trainer 

 Creation of the command recognition model  Establishes and saves a usable model to be 
 used by the main command recognition file 
 (main.py) 

 Command identification  Ensures a command is being said, discourages 
 false positives 

 Creation of configuration file  Allows for easy access to variables important 
 for customization 

 Connection to HOPE Hand GUI  Allowing the command recognized to impact 
 the status of the HOPE Hand 

 Table 3: Command Recognition Pipeline Steps 

 5.4.4.1  Overview of Python Code 

 The command recognition model was trained using code adapted from the TensorFlow 
 tutorial:  Simple audio recognition: Recognizing keywords  (TensorFlow). This TensorFlow code 
 takes a selection of .wav files and produces waveforms and spectrograms, representing the audio. 
 A convolutional neural network is used to train the models on these spectrograms. 

 Using a Jupyter Notebook, a file named vr_w_application.ipynb makes use of this tutorial 
 code, with added functionality relevant to the HOPE Hand project. This added functionality 
 includes certain preprocessing steps, such as a procedure that ensures that the files inputted for 
 training the model are the appropriate file type and audio type. Certain variables are also changed 
 to fit our models’ needs, such as batch size, split of training vs validation data, the data path of 
 the target data and the classes of these files, and the target number of epochs and patience 
 threshold for the training process. For more information on the libraries and resources used by 
 this system, as well as detailed descriptions of functions written, see Appendix A. 
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 5.4.4.2  Integration of the MATLAB Engine 
 In order to implement the command detection and speaker recognition procedures into 

 the command recognition process, it is necessary to call these functions in Python. This begins 
 with connecting to the MATLAB Engine, which is a tool that allows for communication between 
 the two programs, as shown in Figure 12. 

 Figure 12: MATLAB Engine Importation 

 Reference the two blocks of code below (Figures 13 and 14). Figure 13 shows the 
 MATLAB code containing the function for checkUserCommand, which is used to determine 
 three statements: whether or not a command is found, whether or not the speaker is recognized, 
 and whether or not both of these things are true. These values are then stored and returned as an 
 array in the variable “user”. 

 The second block of code, Figure 14, is in Python (in main.py). After initializing the 
 MATLAB engine, the MATLAB function is then called with reference to the engine using 
 eng.checkUserCommand. This method allows the passing of variables (here, we pass the 
 function checkUserCommand its variables defined in MATLAB as ivs, audio, and fs. In the case 
 of this use, we define iv (which stands for ivector) using another MATLAB function which 
 returns the appropriate iv (see eng.loadiv()). We define audio as the audio clip received by the 
 recorder, and we define the sampling frequency (fs) as a constant of 16000. 

 Figure 13: MATLAB Code Showing checkUserCommand Function 
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 … 

 Figure 14: Example of Use of eng.checkUserCommand 

 Other relevant MATLAB function files and Python files which are used in this pipeline 
 but not shown in this example can be found on the github address in Appendix A. 

 5.4.4.3  File Conditioning 
 A major part in ensuring that every data point can  be used by the deep learning model is 

 creating a file conditioning system that can ensure that the data, whether coming from the 
 AphasiaBank dataset, the Google dataset, a self-created dataset, or other, are compatible. Python 
 code was used to ensure that the files taken from the database are all .wav files. These files are 
 then converted into mono, as opposed to stereo (  GeeksforGeeks  & Vašina). This code can be 
 modified for future iterations of this project based on expected input and model training 
 characteristics. Downsampling data with sampling rates inconsistent with the model training 
 procedure is also a type of file conditioning. This is further expanded upon in Section 6.1. 

 5.4.4.4 Creation of the Command Recognition Model 
 Though there are many steps in training the model, loading a dataset is the first. Once the 

 files are conditioned, you can use the audio_dataset_from_directory function from keras, shown 
 in Figure 15. 
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 Figure 15: Keras audio_dataset_from_directory function 

 Next, the dataset is converted from flat audio signals to spectrographic images that the 
 convolutional neural network can process. This example used the TensorFlow short-time Fourier 
 transform (stft) function as is shown below in Figure 16. This is then mapped onto the dataset 
 using the map function in Figure 17. 

 Figure 16: Converting waveform to spectrogram Tensorflow 

 Figure 17: Mapping onto dataset 

 Next, the model and training protocol must be defined. Figure 18 shows the architecture 
 of the model, and Figure 19 shows the block of code that calls for the model training specifically 
 (Tensorflow). 
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 Figure 18: Defining the Architecture 

 Figure 19: Training Model 

 The following is the output of this block of code. It shows the loss (which is an indicator 
 of how inaccurate the model currently is), training accuracy, and validation accuracy of the 
 model at each step: 

 Epoch 1/20 
 1/101 [..............................] - ETA: 3s - loss: 0.2433 - accuracy: 0.9062101/101 

 [==============================] - 4s 41ms/step - loss: 0.2065 - accuracy: 0.9331 - 
 val_loss: 0.5808 - val_accuracy: 0.8142 
 Epoch 2/20 
 101/101 [==============================] - 4s 41ms/step - loss: 0.1813 - accuracy: 
 0.9418 - val_loss: 0.5669 - val_accuracy: 0.8374 
 Epoch 3/20 
 101/101 [==============================] - 4s 40ms/step - loss: 0.1585 - accuracy: 
 0.9504 - val_loss: 0.5985 - val_accuracy: 0.8310 
 Epoch 4/20 
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 101/101 [==============================] - 4s 44ms/step - loss: 0.1397 - accuracy: 
 0.9565 - val_loss: 0.6027 - val_accuracy: 0.8374 
 Epoch 5/20 
 101/101 [==============================] - 5s 46ms/step - loss: 0.1428 - accuracy: 
 0.9529 - val_loss: 0.5916 - val_accuracy: 0.8490 
 Epoch 6/20 
 101/101 [==============================] - 5s 45ms/step - loss: 0.1185 - accuracy: 
 0.9611 - val_loss: 0.5629 - val_accuracy: 0.8606 
 Epoch 7/20 
 101/101 [==============================] - 6s 55ms/step - loss: 0.1176 - accuracy: 
 0.9655 - val_loss: 0.6007 - val_accuracy: 0.8542 
 Epoch 8/20 
 101/101 [==============================] - 6s 58ms/step - loss: 0.1064 - accuracy: 
 0.9683 - val_loss: 0.6920 - val_accuracy: 0.8387 
 Epoch 9/20 
 101/101 [==============================] - 6s 63ms/step - loss: 0.1221 - accuracy: 
 0.9655 - val_loss: 0.6516 - val_accuracy: 0.8555 
 Epoch 10/20 
 101/101 [==============================] - 6s 57ms/step - loss: 0.0933 - accuracy: 
 0.9703 - val_loss: 0.6829 - val_accuracy: 0.8361 
 Epoch 10: early stopping 

 After saving the model, the procedure of which may be seen in Figure 20A, it will appear 
 in the relevant folder as seen in Figure 20B. This saved model will be loaded into the main 
 Python command recognition file called main.py for use in command recognition. 

 Figure 20A: Saving Model                            Figure 20B: Saved Model 

 5.4.4.5  Command Identification 
 Command identification was put in place to ensure that the user is saying “open” or 

 “close” as an actual command, rather than saying either of these words in a regular sentence. In 
 order to diminish the rate of false positives, we tuned the command identification system to work 
 best with our model. This ensures that the system does not assume a command that it is not sure 
 of for the sake of returning a value (AssemblyAI). 
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 Figure 21 shows the terminal output produced when printing the command recognition 
 “prediction”. As an example, it shows the confidence rating per word for when “open” is said 
 two times and for when no word is said two times. It shows the results specifically when the 
 confidence parameter is chosen to be greater than 4. This was tuned heuristically based on what 
 resulted in the most accurate prediction, however it may be changed based on factors such as 
 background noise, speaker, microphone quality, and any changes in data quality. 

 As shown in Figure 21, “open” is the second confidence value listed (4.62… or 4.73…) 
 and, because these values are above 4 and greater than the confidence values for “not open”, is 
 therefore reported to be the correct command. Below this, all confidence values are under 4, and 
 therefore no command is reported. 

 Figure 21: Confidence Value Example and Unorganized Output of Command Recognition 

 5.4.4.6  Creation of Configuration File 
 The research team created a practice representative  config file called ‘config.ini’ for the 

 purpose of accessibility to relevant variables. Config parser is a tool that allows Python to read in 
 config files. We used ConfigParser to open config.ini and navigate through it (Python 
 Documentation). With this, the team is able to identify and iterate through our classes, variables, 
 and values of these variables for use in our code. 

 The variables included in this code include commands that may be identified, confidence 
 values, the sampling rate of the recording, and the time in seconds of each recording. 

 5.4.5  Updated Pipeline 
 During testing, we decided that centering the speech  signals around spoken words and 

 including non-vocal background noise in our training data was necessary for optimizing the 
 performance of our command recognition model. These changes led us to develop an updated 
 voice command pipeline layout and test it for the command “open”. 

 The first of two changes we made was to instead record 2-second audio clips and replace 
 command detection by cutting them down to 1-second centered around the largest instance of 
 detected speech. Since each 2 second audio clip overlaps 1 second with the next and each audio 
 signal is clipped down to 1 second, it will take no more than 1 second from the end of the 
 command for it to be fully recorded. 

 The second change was making our command recognition model more robust by 
 augmenting the existing data and adding about 40 instances of data collected in very windy 
 conditions as well as roughly 300 1-second clips recorded during a conversation in a noisy room 
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 to the training set. This includes 10 instances of open said in windy conditions and 42 instances 
 of it said in a noisy room. 

 Figure 22: Updated Pipeline Flowchart 

 5.5  Connecting to the HOPE Hand 

 5.5.1  State Machine For Identifying Open and Close 
 The first step in the HOPE Hand GUI integration is setting up the state machine, which 

 will identify which state the hand is in (open or closed) and follow a different procedure 
 depending on the state. The flowchart below describes the state machine’s theoretical 
 functionality, when the state is open, it will use one AI model which looks for the command 
 “close” and when the state is closed, it will use a second AI model which looks for the command 
 “open”. Each individual model will be trained with different data categories. 

 The “open” model, for example, will be trained with two categories of data: “open” and 
 “not open” (which will contain the word “close” as well as other words that are not open). In 
 future iterations, there may be a “noise” folder as well, to ensure the algorithm can identify what 
 noise that may be found in locations the hand is used in might sound like. 
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 Figure 23: State Machine Organization Flowchart 
 The state machine is implemented in the code through two functions, each called in the 

 Python file main.py. These functions, readopen(), and readclose() are shown in Figures 24, 25, 
 and 26. The confidence values for each function are individually customizable, and the words 
 that the models expect to hear (‘open’ vs ‘notopen’ or ‘close’ vs ‘notclose’) are also 
 customizable. 
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 Figure 24: Code Description of readopen() 

 Figure 25: Code Description of readclose() 

 These functions are called by the main function in the main file. As can be seen in Figure 
 20, if the state is open, the model is set in a certain way. This is customizable independently from 
 the identified closed state model. Then, the readopen() function will be called and the state will 
 be set to close. 
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 Figure 26: readopen() and readclose() Called in Main 

 5.5.2  GUI Communication 

 Figure 27: Image of GUI 

 The MATLAB GUI is an interface created by the creators of the HOPE Hand that allows 
 for communication between code and the exoskeleton. This interface has slider settings for 
 position indicators and controls for different joints on the exoskeletons and the option for 
 customizing these positions for a “Flex” or “Extend” state. More information about the 
 MATLAB GUI can be found in Appendix A. 
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 We identified the need for the command recognition system to communicate with the 
 HOPE Hand. The options for communication were identified as importing MATLAB functions 
 (bypassing the GUI), serial communication (on two laptops), virtual serial ports (on one laptop), 
 IP address communication (on one laptop), or file writing and reading or other hard-coded 
 messaging system (on one laptop). The Python code sends the state to the MATLAB GUI, which 
 physically opens or closes the exoskeleton. 

 Preferably, the established GUI would be used, and for lack of ease of access to 
 resources, serial communication via two laptops would be difficult. Because of these reasons, we 
 explored IP address communication and hard-coded messaging. 

 5.5.2.1  File Reading/Writing 
 The current successful procedure used is the file reading/writing system. This allows for 

 communication on the same laptop without using the MATLAB engine. Each time a command is 
 recognized and there is a change in state, the Python code clears all text files from this folder and 
 then writes a .txt file to the folder that the GUI is located in. The GUI will call a function written 
 in MATLAB intermittently which will check for the existence of said text file, and then it will set 
 the flex/extend states appropriately. 

 The code in Figure 25 and 28 describes the part of this communication in Python. The 
 readclose() function, shown in Figure 25, calls “createcommandfile(state)”. This function then 
 looks for the correct file location (the folder that holds the GUI file) and clears text files. It then 
 creates a text file called either “open.txt” or “close.txt” depending on the state. 

 Figure 28: Creating .txt File Based on Command 

 The MATLAB function called in the Main GUI file sets Flex and Extend as global 
 functions and then checks for a file called ‘open.txt’ or ‘close.txt’ in the relative file path. Should 
 it find one of these files, it sets the Flex and Extend variables to true or false. True indicates that 
 the hand should be in said state, and False indicates that the hand should not be in that state. As 
 the Main GUI file is already set to read these variables in its functionality, the hand will continue 
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 as normal, opening or closing based on slider differences, “Flex” or “Extend” button presses, or 
 voice commands. 

 Figure 29: GUI Code to Extend or Flex HOPE Hand 

 In the Main GUI file, the function call shown in Figure 29 is placed in a try/catch loop 
 preceding when the hand checks the values of the Flex and Extend variables. It consistently takes 
 under 1 second to iterate through this process (as indicated by the GUI while running the code). 

 5.5.2.2  IP Address Communication 
 Using the local IP address on one laptop to communicate between the command 

 recognition code and the MATLAB GUI did not end up a viable solution to solve the problem of 
 integrating our code into HOPE Hand functionality. However, it proved helpful for conceptual 
 understanding of the problem at hand and is promising as a possible solution moving forward. 

 For this approach, there are three actors: the Python command recognition code (server), 
 which will recognize the command and send it as a string over MATLAB engine to the 
 MATLAB function (in this case, it is called practicefunc2()), the MATLAB function (client), 
 which will identify the data sent by the server and set the variables “Flex” and “Extend” to true 
 or false, and the MATLAB GUI, which will periodically call practicefunc2() in order to receive 
 information from the server. This code is based on the MATLAB documentation for TCP clients 
 and socket functions (MATLAB). 

 An IP Address connection requires an IP address, which is variable to the machine used 
 and location. In this case, a local address “127.0.0.1” is used, and a port is identified as 65432. In 
 Python, these are used in the creation of a sender socket, which identifies the connection, binds 
 the host to the port, and uses “conn.sendall()” to send a byte message over the connection. In this 
 case, the state, identified as “open”, will be transferred into bytes and sent to the 
 practicefunction2 using the MATLAB engine. This can be seen in Figure 30. This code is called 
 when a command is recognized and the state is changed. 
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 Figure 30: Socket Communication from Python 

 The MATLAB client uses a tcp client to receive data. The tcp client is defined as 
 tcpclient("127.0.0.1", 65432), using the same IP address and port as before. Practicefunction2 
 then reads the data from the data stream and sets the “Flex” and “Extend” variables as seen in 
 Figure 31. 

 Figure 31: Socket Communication from MATLAB (MATLAB) 
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 In the Main file for the GUI, the connection is identified and practicefunction2 is called 
 in the loop before the hand checks the variables “Flex” and “Extend”, similarly to the file 
 reading/writing procedure. Unfortunately, this system takes a long time to function. The 
 connection has to be started and stopped each time communication is to occur because IP address 
 communication is meant to act as an interrupt or a messaging system, not a perpetually open 
 means of communication. This means that, while a functional communication method, it was 
 taking about 12 seconds to loop through the code each time, and the connection to the orthosis 
 was timing out and closing. 

 Either way this is implemented in the final project, the overall idea is to have a messaging 
 system available to both the GUI and the command recognition code. This system must be 
 appropriately quick to allow for communication between the code and the exoskeleton without 
 timing out or causing the commands to back-up. 

 5.6  Documentation 
 To ensure our work on the voice control system for  the HOPE Hand can be continued, we 

 provided a document outlining the signatures and purpose for every Python/MATLAB function 
 our team writes. The functions themselves will also have detailed comments breaking them down 
 to make it easier for others to understand and update them in the future. Researchers furthering 
 work on the HOPE Hand can also refer to our “Future Work” section to get a sense of what 
 added functionality we would add to the system if we had more time, and how we would go 
 about making those changes. 

 While the documentation is intended to be for an audience of researchers working on this 
 project, a manual will likely be used by individuals using the HOPE Hand. This manual will 
 outline setup instructions and how to interact with the physical and virtual interfaces. The setup 
 instructions cover connecting the virtual interface with the minicomputer on the HOPE Hand, 
 enrolling your voice into speaker verification. The physical interface instructions cover how to 
 enable and disable the voice control and go over the details of issuing a command. These 
 instructions will also include an explanation on how researchers working with the voice control 
 system can efficiently add data, retrain, and run tests in order to update the speaker verification 
 and command recognition algorithms with more data. This manual has not yet been developed, 
 but is necessary in the final implementation of this project. 

 6  Results 

 6.1  Database Curation 

 Source  Collection Type  Aphasia or Typical  Vocalizations Collected 
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 AphasiaBank  Curated  Aphasia  “Open” 
 “Close” 
 Sentences 

 Interviews  Recorded over Zoom  Aphasia  “Open” 
 “Close” 
 Words that sound like “open” 
 Words that sound like 
 “close” 
 Sentences 

 Team Vocalizations  Recorded live  Typical  “Open” 
 “Close” 
 Words that sound like “open” 
 Words that sound like 
 “close” 

 Google Mini Speech 
 Commands 

 Curated  Typical  “Yes” 
 “No” 
 “Go” 
 “Stop” 
 “Left” 
 “Right” 
 “Up” 
 “Down” 

 Mozilla Commonvoice  Curated  Typical  Sentences with “open” and 
 “close” 

 Source  Clip Length  Clip Sampling 
 Rate 

 Number of Files 
 Available 

 Number of Files 
 Used in Training 

 Final Models 

 AphasiaBank  Continuous speech, 
 clipped to 1 second 

 16 kHz  > 400  0 

 Interviews  Continuous speech, 
 clipped to 1 second 

 Modified to 16 kHz  235  235 

 Team Vocalizations  1 second  Modified to 16 kHz  270  270 

 Google Mini Speech 
 Commands 

 1 second  16 kHz  8000  0 

 Mozilla 
 Commonvoice 

 Sentences, clipped to 
 1 second for testing 

 32 kHz, modified to 
 16 kHz 

 >100,000  0 

 Our team was able to curate a database using a combination of collected data from 
 individuals with aphasia, team collected data, aphasic speech from AphasiaBank, and typical 
 speech from Mozilla Common Voice and Google speech commands. For testing and training of 
 the command recognition algorithm, data was split into sections “open”, “notopen”, “close”, and 
 “notclose”. Within the “open” and “close” folder were instances of both healthy and aphasic 
 speakers saying the words open and close. Within the “notopen” and “notclose” folder were 
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 instances of both healthy and aphasic speakers saying words similar to open and close, and a 
 large variety of other random words. 

 The command recognition models we trained make use of 168 instances of “open”, with 
 80 of those being aphasic and 88 typical speech, as well as 168 instances of “close”, with 87 of 
 those from people with aphasia and 81 from typical speech. For miscellaneous words, we got 
 169 different audio files, with 68 being aphasic speech and the remaining typical. Figure 32 
 below shows some of the data in the “notopen” and “notclose” folder, where the naming 
 convention is the speaker (anonymized) along with the word and instance number of that word, 
 as some were repeated many times. 

 Figure 32: Example speech data used for command recognition training. 

 For the command recognition model data, each recorded word is roughly one second 
 long, and in the format of .wav. The sampling rate of each audio file in the set is also at 16kHZ, 
 and any audio that was originally larger than this (44.1kHZ or 48kHZ) was downsampled in 
 order to be consistent and work with the algorithm created. Any future data added to to improve 
 the model must be consistent with the above parameters. 

 6.2 Second Phase of Interview 

 We were able to conduct a second interview with one  person under IRB #24-0082 
 focusing not on vocalization collection, but on their expected experience with the HOPE Hand. 
 They were asked questions about their personal preferences for the device and the anticipated 
 circumstances of its use, for example, their preferences for how to turn the device on and off, and 
 in what instances or environments they might look forward to using the hand. Notably, they 
 spoke about using the HOPE Hand for video games and hunting, and explained how it might 
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 have changed how they worked at their old job. They also noted that they would prefer the 
 microphone to be clipped to their shirt, or closer to their face, and that they would be willing to 
 try using the exoskeleton if there was a high risk of it accidentally opening or closing. They 
 indicated a preference for an activation key being used to power the device on or off, and would 
 be willing to spend at least thirty minutes calibrating the HOPE Hand upon receiving the device. 

 During this interview, we also spoke to the interviewee’s physical therapist. They noted 
 that, in general, their patients have shared with her that they are enthusiastic to participate in 
 research such as the HOPE Hand. They also discussed how combining speech related tasks like 
 issuing a command with physical feedback could help users overcome plateaus in the 
 progression of their physical therapy. 

 Though our sample size is too small to draw conclusions about the preferences of the 
 intended user population for the HOPE Hand, this conversation gave insight into one person’s 
 experience with their hand impairment and aphasia and how this might interact with the 
 exoskeleton. In the future, it is imperative that conversations be had with stakeholders such as 
 this interviewee. Consideration to their lived experience will make the design requirements for 
 the hand more effective and will help future teams working on this project avoid negative 
 impacts. 

 6.3  Pipeline Metrics 

 The final results of each aspect of our voice control  pipeline are shown in Table 4 below. 

 Part of Pipeline  Accuracy  Recall  Specificity  Avg. Time Taken 

 Command Detection  Not Measured  98%  45%  17ms 

 Speaker Verification  Not Measured  97%  60%  Not Measured 

 Command Recognition 
 (Open State) 

 62%  45%  69%  26ms 

 Command Recognition 
 (Closed State) 

 66%  42%  78%  24ms 

 Table 4: Reported Metrics for Voice Control Pipeline 

 6.3.1  Command Detection Accuracy 
 The goal of command detection is to sort out audio recorded during a conversation. This 

 helped to prevent the voice control system from reacting when the user does not intend for the 
 words spoken to actuate the hand. Success for command detection would allow all spoken 
 commands to pass on to the next stage of the pipeline, removing any audio from a conversation. 
 Our team tested command detection on 25 commands and 10 sentences that we collected from 
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 ourselves and aphasic speakers in order to train the command recognition model. The sentences 
 had to be cut into 1 second clips since that is how they would be input to command detection in 
 our current voice control pipeline. For healthy speakers, the command detection algorithm was 
 able to detect commands 100% of the time and weeded out 50% of sentences. When testing 
 command detection on vocalizations from our study participants with speech aphasia, it correctly 
 detected 96% of commands and recognized 39% of sentences as not being commands. 

 6.3.2  Speaker Verification Accuracy 
 Speaker verification is implemented to ensure that only the user of the HOPE Hand can 

 issue commands that actuate the exoskeleton. Success for the speaker verification would allow 
 all of the user’s speech to pass onto the next stage of the pipeline but not speech from any other 
 speaker. Speaker verification was also tested with the same commands we recorded during data 
 collection, but not full sentences. For healthy speakers, the system recognized an enrolled user 
 98% of the time, but allowed unenrolled users to issue a command 20% of the time. When 
 vocalizations from our study participants with aphasia were enrolled into speaker verification, 
 the system recognized the user 96% of the time, but allowed unenrolled users to issue a 
 command 60% of the time when tested on 25 commands from the enrolled speaker and 25 
 commands across 5 unenrolled users. 

 6.3.3  Command Recognition Accuracy 
 After creation of our command recognition model, our team did live testing of the system 

 by testing it with our own typical speech directly into the microphone. It was found that the 
 model was able to recognize “open” and words that are not open with an accuracy of 62% and 
 recognized “close” and words that were not close with an accuracy of 66%. The open accuracy 
 was found by having each of the four team members say open 25 times each (total of 100 times), 
 different words similar to open 100 times total, and different words not similar to open 100 
 times, and calculating how many times it predicted each correctly. Similarly, the close accuracy 
 was found by each member saying close 25 times for a total of 100 times, words similar to close 
 100 times, and words not similar to close 100 times. 

 This way of testing helped show how accurate the command recognition system was at 
 predicting “open” and “close”, how many times similar words could trip up the system, and how 
 many times random words may be predicted as open or close. The recall shows the percentage of 
 time the system predicted “open” or “close” correctly, which was 45% for open and 42% for 
 close. These values are lower, but if the algorithm was specifically designed to be a bit more 
 likely to predict that the command is not open or close, as false positives where the hand is 
 opened or closed by accident could cause more problems. This is shown with the specificity, 
 where the open state machine was able to recognize words that were not open 69% of the time, 
 and the close state machine was able to recognize words that were not closed 78% of the time. 
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 6.3.4  Updated Command Recognition 
 While conducting the original test for the command recognition model we noticed a few 

 points for improvement. The results with the updated pipeline outlined in section 5.45 improved 
 significantly from the original pipeline. Command verification was tested with the same speaker 
 who added 32 of the new noisy “open” data samples. Those samples were recorded using the 
 same command centerization from the updated pipeline, so they were the same sort of signal 
 command recognition would be supplied during live testing. In order to achieve the same 
 accuracy with users, they may have to record around 30 instances of them saying commands 
 over background noise. With the updates, command recognition correctly identified commands 
 24 out of 25 times, or a recall of 96%. It also correctly ignored 24 out of 25 random non-open 
 words, or a specificity of 96%. With words that sound like open, it rejected an unimpressive 
 13/25 or 52%. Over the ten sentences in the 1st Harvard Sentences List and 5 sentences that 
 included the word “open”, it did not falsely activate once, even when open was said in a 
 sentence. 

 6.4  Connecting the Voice Control System to the HOPE Hand 
 The voice control system connected to HOPE Hand as described in the methods. The 

 communication time between the MATLAB GUI and the HOPE Hand averaged around 5000 
 milliseconds ∓ 1000 milliseconds, however it reached as low as below 200 milliseconds. TCP IP 
 was tried to connect the Python script and the MATLAB GUI, but the connection was not 
 permanent and would need to be reestablished after each message. It was determined that 
 reconnecting would take longer than the allotted time between user input and actuation so this 
 method of communication was abandoned. The txt files that are now used to communicate 
 between the Python script and the MATLAB GUI are blank because the system would take 
 longer to find, open, and read a file than it would to search for two separate files. The position 
 that the HOPE Hand opens and closes to is controlled in the MATLAB GUI for the index, 
 middle, and thumb fingers, but is hard coded for the ring and pinky fingers. 

 7  Discussion 
 There are many existing hand exoskeletons in literature  with varying control systems 

 (Alhamad et al., 2023; Casas et al., 2021; Guo et al., 2022; Schabowsky et al., 2010). However, 
 none of the control systems commonly used are practical for individuals with speech aphasia in 
 addition to hypertonicity and spasticity in the hand (Meier, 2019). This project lays the 
 groundwork for a voice control system that is practical for use with the HOPE Hand exoskeleton 
 and users with speech aphasia in addition to hypertonicity and spasticity. 

 7.1 Pre-Processing 
 The pre-processing section of the pipeline includes the command verification and speaker 

 recognition. These two sections of the pipeline were within the goal range for the recall statistic. 
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 This allows most of the intended user’s commands to get through. The specificity of these 
 sections of the pipeline did not meet the goals set previously in the paper. This means that many 
 non-commands or other speakers may be passed on into the next stage of the pipeline. The 
 balance of a high recall and low specificity was decided upon to minimize user frustration and 
 with the idea that other sections of the pipeline would help to reduce undesirable inputs. 

 7.2 Command Recognition 
 The command recognition system did not meet the 90% ∓ 10% accuracy goal established 

 earlier in the paper. This had a cascading effect that meant the voice control system did not meet 
 the goals established to ensure the voice control system was assistive for the potential users of 
 the HOPE Hand. The command recognition model did however show promise that with more 
 training and proper preprocessing of the audio input, the voice control system may be practical 
 for use in  activities of daily life. 

 While conducting live tests of the command recognition model our team noticed two 
 patterns that suggested the system had specific flaws. First we noticed that we could get the 
 model to recognize a command reliably if we said the command at the right timing after the last 
 command line output from the last command. This suggested that it was crucial to have the 
 command centered properly in the 1-second mic clip that was being fed to command recognition. 
 The other pattern we noticed was that non-vocal noise could produce outlier confidence values 
 when input into command recognition; while normal speech would almost always return 
 confidence values between -5 and 5, noises like a chair squeaking or wind would produce 
 confidence values ranging from -60 to 60. This suggests the training data for our model lacks 
 non-vocal background noise data. These patterns informed the changes which lead to the updated 
 voice command pipeline described in section 5.45. 

 Limited results for command recognition in the updated pipeline suggest it is sufficient to 
 meet our original goal of 95% recall, 90% specificity for words that don’t sound too similar to 
 commands. The system was only successful at rejecting words that sound like commands half of 
 the time, but the user will not likely say those words very often outside of sentences, so this is 
 not much of a concern. The updated pipeline was only formally tested on one person, so further 
 research is necessary. The results when the updated command recognition is used on sentences 
 suggests that command detection is not necessary in this pipeline since the updated model does 
 not recognize open in a sentence often. 

 7.3  Limitations 
 It is important to highlight the limitations of this work to contextualize the voice control 

 system described in this work. The command recognition system was limited by the lack of 
 training available to the authors at the time of the work. As this work was done over the course 
 of 8 months as a senior capstone project, there was a limit on the time the participants could be 
 recruited and data could be collected. 
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 The authors were not able to test the voice control system and the subsections of the 
 pipeline with live participants with speech aphasia. It was assumed that recorded audio files, not 
 used for training the models, played through a phone or computer next to the microphone used 
 for testing was a sufficient substitute for the lack of live participant data. 

 7.4  Future Work 
 Further improvements to the voice control system can be made. Potential future work 

 include an increase in data used to train models, practical testing of the system with aphasic 
 participants, an activation word to interchange when the system should and should not listen to 
 user commands, and tests on MRI compatibility. 

 7.4.1  Increase in data 
 Collecting more good typical and aphasic audio and using it to train the models would 

 likely result in higher accuracies, as there would be more data for the algorithm to learn from. In 
 particular, getting more speech data from individuals with aphasia who will use this HOPE Hand 
 would be highly useful. This would help the algorithms be more individualized to each user, thus 
 becoming more adept to successfully predict commands spoken. Any new data added into the 
 database must have a sampling rate of 16KHz and be mono audio in order to work correctly with 
 our current algorithms. If the data is not initially recorded with these specifications, they must be 
 converted. We also suggest replaying audio after conversions to ensure it sounds correct, and 
 using the algorithm to test how the waveforms of added audio look like if needed. 

 7.4.2  Practical testing 
 Our team has tested out the accuracy of the voice control in speaker verification and 

 command prediction, but to get a better idea of how it will perform in  activities of daily life, 
 more practical testing would be useful. One user test that simulates  activities of daily life is the 
 box and block test. This test requires a participant to grab and move as many wooden blocks as 
 possible from one compartment to another of equal size in 60 seconds (Figueiredo, 2011). To 
 evaluate the effectiveness of the HOPE Hand and its voice control system, the user would first be 
 asked to complete this test without using the exoskeleton and then repeat it using the device. The 
 way in which a user is able to move the blocks with assistance from the voice-controlled 
 exoskeleton relative to without assistance will give insight into how the aid may improve their 
 ability to complete tasks in their everyday life. In other words, this kind of evaluation technique 
 will give insight into the functionality of the voice-control system, both in relation to the user 
 and the exoskeleton. 

 In addition to a user’s ability to grab and drop objects in a timely fashion, a goal of the 
 HOPE Hand is to allow the user to hold a variety of different objects. One downfall of the box 
 and block test is the homogeneous nature of the blocks. Therefore, other pick and place tasks 
 should be implemented and tested to ensure the exoskeleton with voice control is able to assist 
 users in working with numerous objects in their  activities of daily life. One test that has been 
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 used in the past is having 7 different objects (1 inch block, 2 inch block, 3 inch block, baseball, 
 marble, pen, key) and giving users 30 seconds to pick each object up and place it into a bin 
 (Casas et al., 2021). These objects help simulate common real life objects and require individuals 
 to use different types of grasps and finger movements (Casas et al., 2021). Similarly to the box 
 and blocks test, to evaluate the effectiveness of the voice-controlled HOPE hand, the user will 
 first attempt this test without assistance and then repeat with assistance from the hand 
 exoskeleton. The difference between these two tests would provide more evidence into how 
 effective this system is. It will also provide useful information just seeing how the user interacts 
 with the voice control while simulating  activities of daily life. 

 7.4.3  Activation Keyword 
 Our team has had various discussions on the idea of using some type of activation 

 keyword for the voice control system in the future. An example application using an activation 
 word in the real world is “Hey Siri” while using Apple’s Siri. Having some way for users to turn 
 on and off the voice control could be useful in numerous scenarios. If one wanted to keep their 
 hand closed around an object like a drink for a longer period of time, temporarily shutting off the 
 voice control system to ensure it does not accidentally have an unintended open would be useful. 
 When asked about this idea, a participant with aphasia stated that they think this would be 
 helpful in the future and that “On” and “Off” would be good keywords to use for this. If this idea 
 were to be implemented in the future, it would require more audio data on the word(s) used as 
 activation keywords. 

 7.4.4  MRI Compatibility 
 Ensuring that the voice-controlled HOPE Hand is MRI safe would provide more benefits 

 for its users. Magnetic resonance imaging (MRI) is a medical imaging modality that allows for 
 three dimensional representation of the body. MRI tracks the change in polarity alignment of 
 hydrogen atoms in the imaging space to render a black and white, density map (Nycz, lecture, 
 2023). MRI machines use powerful magnets to change the alignment of the hydrogen atoms 
 magnetic field, and inductors to sense the relaxation of these fields (Kern et al., 2007). These 
 magnets can cause serious problems when ferrous materials are present in the imaging room 
 because the magnets can displace the objects, or the objects might cause distortions in the image 
 by distorting the magnetic field (Kern et al., 2007). However, MRI can be a useful tool for 
 monitoring brain function during assigned activities (Radiological, 2022). Functional MRI 
 (fMRI) is a form of MRI that can track the blood flow density in the body, typically this method 
 is used to map brain activity. By aligning all the hydrogen ions in the blood before the blood 
 enters the brain and monitoring the change in alignment as the blood flows through the brain 
 fMRI can detect where the blood is flowing in the brain (Radiological, 2022). Many exoskeleton 
 studies use fMRI to examine the effects of the exoskeletons on brain function (Adans-Dester et 
 al., 2022). 
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 MRI results, in summary, hold applications to understand rehabilitation for people with 
 neurological impairments (Radiological, 2022), which will allow for further research into 
 providing greater rehabilitation for individuals with similar neurological disabilities. The HOPE 
 Hand being tested to be MRI safe would allow for brain activation to be studied to further 
 determine the therapeutic effect of the hand. 

 8  Conclusion 
 This paper describes the creation of a voice control system for the HOPE Hand 

 exoskeleton. The authors were able to create the groundwork for a database that has instances of 
 typical and aphasic speech saying “open”, “close”, and other miscellaneous words. This was 
 done by using audio files from open source data sets, collecting vocalization data from aphasic 
 participants, and collecting audio from our team. The collection of aphasic vocalizations was 
 necessary to address the lack aphasic “open” and “close” vocalizations available to the authors. 
 A voice control pipeline with command detection, speaker verification, and command 
 recognition was also created for this project. These models were trained using the audio files in 
 our created database. From there, we were able to connect this voice control system to the HOPE 
 Hand, allowing it to interact with the hand and cause the hand to open and close based on one's 
 command. To aid future researchers a manual describing our code and the decisions made by the 
 authors in creating the voice control system was made. 

 Although the final voice control system did not fully reach the recall, specificity, and 
 accuracy scores specified in the design requirements, this system does still give a strong start to 
 making the voice-controlled HOPE Hand usable for individuals with speech aphasia and hand 
 impairments. Between the initial database created, algorithm developed with models connected 
 to the HOPE Hand, and manuals for future researchers, the system is in a good place with lots of 
 room to improve and become more usable if the future work is followed. 
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 Appendix A: Voice Recognition Description of Files, 
 Libraries, and Resources 

 The purpose of this Appendix is to provide an overview of the files relevant to the 
 finalized voice recognition pipeline and the resources that impact their functioning (such as 
 libraries and other imports). 

 Relevant software includes code-editors that run Python and MATLAB. Visual Studio 
 Code and MATLAB version R2023b was used for this project. 
 GITHUB Link 

 See repository under the following link for relevant files: 
 https://github.com/aprozear/Voice-Control-of-the-HOPE-Hand-Exoskeleton.git 
 Library Directories 

 Configparser 
 This module allows for the live communication between a configuration file and a Python 

 file. For more information, visit:  https://docs.python.org/3/library/configparser.html 
 IPython 
 While this library performs several functions, it is implemented in this project through its 

 display feature, which organizes data to be displayed. For more information, visit: 
 https://ipython.readthedocs.io/en/stable/ 

 Itertools 
 This library provides looping methods for working with iterables. For more information, 

 visit: https://docs.python.org/3/library/itertools.html 
 Matlab  .engine 
 This API allows for the live communication between MATLAB and Python functions. 

 For more information, visit: 
 https://www.mathworks.com/help/matlab/matlab-engine-for-python.html 

 Matplotlib 
 This library provides functions to create graphs, plots, and other visualizations from data. 

 For more information, visit: https://matplotlib.org/stable/index.html 
 Numpy 
 This library provides many mathematical functions. For more information, visit: 

 https://numpy.org/doc/ 
 OS 
 This module provides access to operating system functionality. For more information, 

 visit: https://docs.python.org/3/library/os.html 
 Pathlib 
 This module allows for the organization and manipulation of file paths. For more 

 information, visit: https://docs.python.org/3/library/pathlib.html 
 Pyaudio 
 This library provides methods for recording and manipulating audio. For more 

 information, visit:  https://pypi.org/project/PyAudio/ 
 Pydub 
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 This module allows for audio handling. For more information, visit: 
 https://pypi.org/project/pydub/ 

 Scipy 
 This library allows for the use of certain algorithms and mathematical functions. For 

 more information, visit:  https://scipy.org/ 
 Seaborn 
 Similar to Matplotlib, this library provides functions to create graphs, plots, and other 

 visualizations from data. For more information, visit: https://seaborn.pydata.org/ 
 Sys 
 This module provides functionality specific to the system. For more information, visit: 

 https://docs.python.org/3/library/sys.html 
 Tensorflow 
 This library provides many resources and functions relevant to the development of 

 artificial intelligence. For more information, visit: https://www.tensorflow.org/api_docs 
 Wave 
 This library allows for the interfacing with WAV files (opening, closing, reading, writing 

 WAV files). For more information, visit: https://docs.python.org/3/library/wave.html 
 Jupyter Notebook 

 The jupyter notebook file vr_w_application.ipynb imports libraries tensorflow, os, 
 pathlib, matplotlib.pyplot, numpy, seaborn, layers from tensorflow.keras, models from 
 tensorflow.keras, display from IPython, and AudioSegment from pydub. 

 Once the models are saved, there are several different relevant python files for command 
 recognition. 
 Python Files 

 Main.py applies the convolutional neural network models to a live feed of audio and 
 sends a message to a MATLAB HOPE Hand GUI to change the position of the hand. This file 
 imports the libraries numpy, sys, os, tensorflow, models from tensorflow.keras, configparser, and 
 matlab.engine, as well as certain helper functions from peripheral files such as record_audio, 
 record_audio2, and preprocess_audiobuffer from recording_helper.py, recording_helper2.py, and 
 tf_helper.py respectively. 

 In main.py, a commands array is instantiated and filled with respect to inputs from the 
 configuration file. The state of the hand is also instantiated as “open”, as the HOPE Hand GUI 
 always initially opens the exoskeleton upon connection. Function createcommandfile takes the 
 input of an intended command and produces a text file for the purpose of communicating with 
 the GUI. 

 In relation to reading audio, the Python code records for one second. However, in order to 
 decrease the chance of the audio ending its recording while someone is speaking and missing the 
 command, there are two recorders implemented. They begin recording in a staggered manner, so 
 there is always a recording beginning each second. Main.py function prediction takes the input of 
 an integer 1 or 2, indicating which of the alternating predictions the function will expect. It then 
 applies the appropriate model based on the state of the hand and prints a prediction. 

 62 

https://pypi.org/project/pydub/
https://scipy.org/
https://docs.python.org/3/library/sys.html


 Function readopen and readclose identify the state and call the two other functions to 
 create a prediction and send a signal to the GUI. 

 Helper files recording_helper.py and recording_helper2.py use libraries pyaudio, numpy, 
 wave, os, itertools, configparser, wavfile from scipy.io, and scipy.signal. These files each record 
 live audio, in alternating fashion, every second, as explained in section 5.41. They also resample 
 these recorded audio files to 16 kHz, as to be compatible with the models. Helper file 
 tf_helper.py uses the libraries numpy and TensorFlow, and sets up the creation of the 
 spectrograms used by vr_w_applicatio.ipynb. 
 MATLAB GUI 

 The current GUI in use is an application run through the Guide program in MATLAB, 
 This program communicates with the HOPE Hand exoskeleton via FTDI connection. To use this, 
 one must connect to the hand by entering the appropriate COM port and pressing “Connect to 
 Orthosis”. Once connected, the hand’s status will show on the log file and each encoder and ball 
 screw positions will be graphed. There are four motors (motor 1 is the thumb and motor 4 is the 
 pinky and ring fingers combined). There are flex and extend sliders which control these motors, 
 as well as settings where the motor values can be numerically set. For our purposes, the flex 
 settings for the index finger is 2300 and the middle is 2500. For extend, the index is 1000 and the 
 middle is 800. The pinky and ring fingers also have a set value of 2300 and 1000 for flex and 
 extend, though this value is not changeable via the GUI. 
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