

Providing Potable Water to Peruvian Informal Settlements

Julien Ataya (ECE), Greg Kashmanian (ME), Jeremy Koen (ME), Gavin Sabol (ME), Joseph Yuen (CS) Advisors: Professor Elisabeth Stoddard (SSPS) and Professor Derren Rosbach (CE)

Goal

To provide potable water to the slums of Manchay, Peru

Children in Manchay

Problem

Manchay, Peru

WATER & SCARCITY

50% Live in poverty

Per Person Per Day

Technology Analysis = Good = Medium = Bad **Energy Usage** Initial **Water Production** Maintenance Tech Cost (\$) (kW/day) (gal/day) Cost (\$) River **Filtration System Electrostatic** Membrane **AWG** Solar **Powered AWG** Waterseer

Atmospheric Water Generator

Solar Panels

- Eliminates the need for electricity
- Stored thermal energy can be recycled into the system

Membrane

- Reduces energy requirements
- Removes pollutants in the collected air

Underground Condenser

- Reduces energy requirements
- Uses underground temperatures to assist in the cooling and condensing process

Our Plan

STEP 1

ANALYZE

- Research the issue
- **Identify solutions**
- Learn culture

STEP 2

PITCH

- Find investor Discuss with
- church and government

STEP 3

DESIGN

- **Build technology** from previous research
- Test product

STEP 4

Receive approval

Install technology

responsibility

Give

STEP 5

DISTRIBUTE MAINTAIN

- Survey technology efficiency and satisfaction
- Plan expansion

Acknowledgements

References

Dreifuss-Serrano, C. (2015). Sustainability through Informality. European Journal of Sustainable Development EJSD, 4(2). doi:10.14207/ejsd.2015.v4n2p