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Abstract

This work is part of an effort to develop an unstructured, three-dimensional,
direct simulation Monte Carlo/particle-in-cell (DSMC/PIC) code for the simulation of
non-ionized, fully ionized and partially-ionized flows in micropropulsion devices.
Flows in microthrusters are often in the transitional to rarefied regimes, requiring
numerical techniques based on the kinetic description of the gaseous or plasma
propellants. The code is implemented on unstructured tetrahedral grids to allow
discretization of arbitrary surface geometries and includes an adaptation capability.

In this study, an existing 3D DSMC code for rarefied gasdynamics is
improved with the addition of the variable hard sphere model for elastic collisions
and a vibrational relaxation model based on discrete harmonic oscillators. In addition
the existing unstructured grid generation module of the code is enhanced with grid-
quality algorithms. The unstructured DSMC code is validated with simulation of
several gaseous micronozzles and comparisons with previous experimental and
numerical results. Rothe’s 5-mm diameter micronozzle operating at 80 Pa is
simulated and results are compared favorably with the experiments. The Gravity
Probe-B micronozzle is simulated in a domain that includes the injection chamber and
plume region. Stagnation conditions include a pressure of 7 Pa and mass flow rate of
0.012 mg/s. The simulation examines the role of injection conditions in micronozzle
simulations and results are compared with previous Monte Carlo simulations. The

code is also applied to the simulation of a parabolic planar micronozzle with a 15.4-



micron throat and results are compared with previous 2D Monte Carlo simulations.
Finally, the code is applied to the simulation of a 34-micron throat MEMS-fabricated
micronozzle. The micronozzle is planar in profile with sidewalls binding the upper
and lower surfaces. The stagnation pressure is set at 3.447 kPa and represents an
order of magnitude lower pressure than used in previous experiments. The simulation
demonstrates the formation of large viscous boundary layers in the sidewalls.

A particle-in-cell model for the simulation of electrostatic plasmas is added to
the DSMC code. Solution to Poisson's equation on unstructured grids is obtained
with a finite volume implementation. The Poisson solver is validated by comparing
results with analytic solutions. The integration of the ionized particle equations of
motion is performed via the leapfrog method. Particle gather and scatter operations
use volume weighting with linear Lagrange polynomial to obtain an acceptable level
of accuracy. Several methods are investigated and implemented to calculate the
electric field on unstructured meshes. Boundary conditions are discussed and include
a formulation of plasma in bounded domains with external circuits. The unstructured

PIC code is validated with the simulation of a high voltage sheath formation.
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Nomenclature

ST units were used throughout this work. When a symbol corresponds to more than
parameter, the variable of interest will be made clear by the context. Boldface
denotes vector or matrix (tensor) quantities. The magnitude of a vector is denoted
using the same symbol without boldface type. Parameters not listed here are denoted

explicitly in the text.

A area

B magnetic flux density

C capacitance

C speed of light in free space
D electric displacement

d molecular diameter

E electric field
E energy

e elementary charge (1.602177x10" coulombs)

F force vector
f distribution function
g relative velocity

H magnetic field

h (local) characteristic mesh spacing; also, Planck’s constant
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current

current density

Boltzmann’s constant (1.38065 8x10% J/K)
Knudsen number

inductance

mass

number of nodes

number of neighbors of node i

unit normal vector (outward, where applicable)
number density; also, time-step counter
total charge

electric charge

resistance

(radial) distance

Reynolds number

temperature

time

velocity vector

position vector

characteristic temperature
fraction of inelastic collisions
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average degrees of freedom

O (electric) scalar potential

o thermal accommodation coefficient

€ electric permittivity; also, angle between collisional plane and local x-y plane
€o permittivity of free space

0 (impact) angle

A mean free length; also, wavelength

u magnetic permeability

o permeability of free space

v variable hard sphere exponent; also, frequency

p density (of mass or charge)

c molecular cross section; also, surface charge density
X molecular scattering angle

® viscosity temperature exponent

Subscripts

*

nozzle throat (sonic) condition; also post-collisional values
c capacitor
cm center of mass
conv convective

De Debye

Xii



ref

rot

tr

vib

electron

ion
momentum
reference
rotational
surface

total
translational
volume
vibrational
X-component
y-component

z-component
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Chapter 1

1.1 Introduction
The increasingly prolific nature of microspacecraft has motivated interest in

smaller propulsion systems. As electronics continue to be manufactured with greater
capabilities at smaller sizes, new space missions are conceived of consisting of
capable spacecraft with minimal weight. Micropropulsion is a mission enabling
technology for microspacecraft, providing precision maneuvering necessary for the
nature of such craft. Missions consisting of constellations of microspacecraft have
been conceived of where the precision maneuvering and communication among the
spacecraft lead to collective capabilities, such as an antenna with an aperture equal
the diameter of the constellation (Schilling et al., 2000). Manufacturing techniques
similar to those used in MEMS (Micro Electro Mechanical Systems) have enabled the
precision manufacture of very small propulsion systems.

Microthrusters typically have thrusts in the millinewton range and are
applicable for use as precision manuevering propulsion for spacecraft up to 100 kg
and as primary propulsion for smaller spacecraft. Table 1 summarizes the classes of
microspacecraft and applicability of micropropulsion (reproduced from Mueller,

2000).



Table 1: Classication of Microspacecraft (from Mueller, 2000)

Designation Spacecraft mass, Spacecraft power, Spacecraft
kg w dimension, m
Microspacecraft 10-100 10-100 0.3-1
(Air Force/European
definition)
Class I microspacecraft 5-20 5-20 0.2-0.4
(<10 kg, nanosat)
Class I microspacecraft 1-5 1-5 0.1-0.2
Class I1I microspacecraft <1 <1 <0.1
(picosat)

Micropropulsion was considered to some degree during the 1960s and earlier.
Early efforts involving low-thrust propulsion were mainly concerned with station-
keeping, as the miniaturization of electronics at this phase of space exploration had
not matured to allow microspacecraft in the modern sense of the word. It is worth
mentioning that Explorer I would fit into the category of microspacecraft, having a
mass of 14.5 kg (Ketsdever and Micci, 2000). A modern focus in microspacecraft
research involves the complete integration of technologies in a light but highly
capable package. Towards this end, new manufacturing techniques are being
developed, some similar to those used for the manufacture of MEMS.

Micropropulsion may be classified by the dominant thrust production

mechanism as cold-gas, chemical, electrothermal, electrostatic, or electromagnetic.

Cold-gas microthrusters derive all of their energy from this thermodynamic
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expansion. An example of a cold-gas microthruster is shown in Figure 1 (courtesy of
Robert Bayt). Chemical reactions may also be used to increase thrust levels —
however, only a few chemical microthrusters have so far been investigated due to the
complexity of regulating a chemical reaction reliably on such a small scale. Electrical
microthrusters appear more promising as electrical energy may in principle be
converted to mechanical thrust with no limit on power supply (save weight and
thermal considerations) . The efficiency of the propulsion system is of concern both
in terms of energy and in the velocity imparted to a unit mass of propellant (specific
impulse). A thruster with high energy-efficiency and specific impulse minimizes the

size and weight of the power supply (for electric micropropulsion) and propellant.

Figure 1. MEMS Micronozzle, 19 micron throat, 5.4:1 expansion ratio (from

Bayt, 1999)



The optimization of micropropulsion systems is an issue of increasing
concern. Currently, many micropropulsion devices have low efficiencies in terms of
directed kinetic energy versus potential energy (thermal, chemical, and electrical) due
to a lack of understanding of the flows in such devices. In order to improve
micropropulsion techniques, the flows of such devices must be modeled in order to
gain insight into the driving thrust mechanisms. With accurate models of
microthrusters, engineers may improve the operation of such devices through
minimization of loss mechanisms and corresponding increase of thrust and specific
impulse. The optimization of micro propulsion system will enable better performance
per unit mass and lead to enablement of microspacecraft systems.

The continuum assumption commonly used in gas and plasma dynamics
breaks down at smaller densities and/or characteristic dimensions of flow. The
Knudsen number is the ratio of the mean free path of gas molecules to a characteristic
dimension of flow. As the Knudsen number becomes larger, the collision rate
becomes too low to maintain local thermodynamic equilibrium. Furthermore, the
expansion of a propellant from chamber conditions to vacuum often involves flow
regimes from continuum to transition to free molecular, though the smallest devices
may not have any component in the continuum regime. The transition and free-
molecular regimes need to be modeled using kinetic theory. From a computational
point, particle-base methods must be used to accurately model transitional

micropropulsion flows.



The objective of this thesis is the development of a computational method for
the simulation of rarefied and transitional flows in gaseous and plasma
micropropulsion devices. The computational model will be based on stochastic
particle simulation methods and contain the necessary algorithms for three-
dimensional simulations of neutral and fully ionized microflows in arbitrary
geometries. This computational method is applied to internal flows of cold-gas

microthrusters and electrostatic plasma simulations.

1.1.1 Cold-Gas and Chemical Micropropulsion

In this section, we review the previous work and state of the art of cold-gas
and chemical microthrusters. The small thrust levels in traditionally machined
nozzles are achieved through use of a low plenum pressure. The use of a low
pressure corresponds to low Reynolds number and large boundary layers in the
nozzle. In contrast, MEMS nozzles such as shown in Figure 1 use plenum pressures
often greater than one atmosphere, minimizing the viscous effects and leading to
higher nozzle efficiencies.

Rothe’s experiments (Rothe, 1971) demonstrated the qualitative difference
between high and low Reynolds number nozzle flows. Rotational temperature and
number density along the nozzle centerline were measured using analysis of electron-
beam fluorescence by two spectrometers. Two graphite nozzles, as shown in Figure 2
(2.5 and 5.1mm throat diameters), were used by Rothe. The test gas was nitrogen at a

stagnation temperature of 300K at chamber pressures from 88-2000 Pa. Electron



beams were passed through small holes in the nozzle and reflected to the
spectrometers downstream. For higher Reynolds numbers, the temperature decreased
along the centerline was monotonic. For more rarified flows, the temperature reached
a minimum and increased again, due to the broadening of the viscous boundary layer

at low densities.
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Figure 2. Schematic of Rothe’s nozzle with 5.1 mm throat diameter (from Rothe

1971)

The Gravity Probe-B (GP-B) spacecraft considered cold-gas micropropulsion
as mission-enabling technology. GP-B is scheduled for launch in Septemeber. 2002
(Mullins, 2000) and is designed to investigate the relativistic precession of an Earth
orbiting gyroscope in a drag-free environment. By monitoring the drag-makeup
thrust, detailed information may be obtained about the variations of density and winds
of the atmosphere at the orbital altitude of 600 km. The nullification of the drag force

is to be accomplished with cold gas thrusters operating in the milli-Newton range.



The experiments on board must be cryogenically cooled, and the boil-off helium used
for attitude control and drag correction. The Knudsen number in the nozzle at these
conditions is 0.01-1 corresponding to stagnation pressures of 7-930Pa (Boyd et al.,
1994). The fluid effects and thermal non-equilibrium of this regime lead to
experimental (Jafry et al., 1992) and computational (Boyd et al., 1994) investigations
of a prototype nozzle and comparison to theories for this flow regime.

Mass flow measurements of the GP-B prototype nozzle were performed by
Jafry and Vanden Beukel (1992) using a helium mass spectrometer in a vacuum
facility. The stangation temperature was maintained at 286K. The throat diameter of
the prototype nozzle used is 2.5mm and the exit diameter is Smm. Mass flux relative
to centerline values are given in ten-degree increments 2.38 cm from the nozzle exit.
The far field plume shape was also observed. Results were compared with free
molecular and continuum (Boynton-Simons) models and a good comparison was
found with both models.

The most recent advance in micronozzles is their manufacture by techniques
used for MEMS. Etching technology as used in the production of integrated circuits
may be used to create micropropulsion devices. Isotropic etching may be achieved by
wet chemical etching, while anisotropic etching may be achieved with ion etching
(Bayt et al., 1997). Use of deep reactive ion etching allows the creation of several
two-dimensional micronozzles on a single chip. The development of boundary layers
on the sidewalls decreases the effectiveness of 2-D MEMS nozzles, however. Three-

dimensional nozzles may be created with anisotropic etching of a single silicon
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crystal to create converging-diverging with a square cross-section. Laser machining
may also be used to create nozzles of arbitrary shape (Janson et al., 1999). The use
of new manufacturing techniques has facilitated the creation of smaller nozzles than
possible with traditional machining techniques. The ability to manufacture smaller
nozzles permits lower thrust for higher chamber pressures and Reynolds numbers,
which may minimize viscous effects associated with low thrust nozzles (/vanov et al.,
1999).

Several geometries (conical, bell, and trumpet) of two-dimensional ion etched
micronozzles were investigated experimentally and computationally by Bayt et al.
(1997). The throat diameter of the nozzles studied was about 30 microns, compared
to an etch depth of 370 microns. Nitrogen was used as a propellant at chamber
pressures from 1-150 psia (6895-1.03x10° Pa), exhausting into an atmospheric or 5
torr (667 Pa) background pressure. Mass flow rates were determined as a function of
chamber pressure. At Re = 1000, the Knudsen number was found to be 0.001 at the
throat and 0.005 inside the nozzle at the lip. This is well into the velocity slip regime.
A two-dimensional finite volume approximation of the Navier-Stokes equation was
used to model the micronozzles. The code included velocity slip effects, present in
this regime.

Bayt and Breuer (/998) measured the discharge coefficients of 2-D nitrogen
ion-etched micronozzles. Throat widths were from 18 to 37.5 microns with
expansion ratios from 5.4:1 to 17:1. Mass flow rates were measured with a 0-1000

sccm flow meter and thrust measurements were taken on a thrust stand accurate to 1



mN over the range of 1-20 mN. The stagnation pressure was varied between 35,000-
689,000 Pa with a constant stagnation temperature of 295.65K (Bayt, 1999). A two-
dimensional finite volume Navier-Stokes solver was used similar to that used in Bayt
et al, 1997. Numerical and experimental results increasingly diverged as the
Reynolds number decreased. The effects of sidewall boundary layers on thruster
performance are discussed and cited as a reason for the disagreement of experiment
and two-dimensional numerical calculations. As the Reynolds number drops, the
boundary layer thickness increases, decreasing thruster performance.

The ability to batch manufacture several thrusters on a single wafer using
MEMS fabrication techniques has enabled the concept of digital microthruster arrays.
Each thruster is packaged with propellant and can only be fired once. Chemically
reacting propellants are most often recommended for this application, and the
disposable nature of such devices eliminate many of the reliability concerns of other
chemically propelled microthrusters. The failure of a single thruster is negligible
compared to the number of thrusters in the array. The use of digital microthruster
arrays is recommended for station keeping and attitude control due to the small
impulse bits. Control algorithms for thruster firing must be developed taking into
account the thruster position and impulse bits. The advantages of digital
microthruster arrays are their simplicity and small discrete impulse bit.

Decomposing solid thrusters using heated filament or laser ignition were
fabricated using MEMS manufacturing techniques (deep etching) and tested by de

Groot et al. (1998). Expansion ratios from 1-25 were considered. The throat width
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was 0.3mm and the throat height was 0.55mm. Fuel pellets of C,H4sN¢O; reside in
each two-dimensional chamber and were ignited to produce nitrogen, hydrogen and
carbon monoxide. Screens within the chamber were machined to prevent throat
blockage by incompletely decomposed chunks of solid propellant. With an array of
similar thrusters, a single laser could be used for ignition of the array. Chamber
pressures from 0.22 to 0.1 MPa were achieved with thrusts of the order of Newtons
for durations of a few hundred milliseconds. The initial temperature of decomposition
was 440-465K and the stagnation temperature was estimated at around 1000K. Laser
ignition was not successful; the data for pressure, temperature and thrust reflect only
the heated wire ignition. De Groot et al. recommend research into alternative solid
fuels, as C,H4N¢O, proved unsatisfactory due to poor ignition characteristics from

lasers and incomplete decomposition of the propellant.

1.1.2 Electric Micropropulsion

In general, electric propulsion offers an increased specific impulse over cold
gas or chemical propulsion. The three types of electric propulsion are electrothermal
propulsion (electrically heats the propellant), electrostatic propulsion (derives thrust
from the gE force), and electromagnetic propulsion (derives thrust from the jxB
force). It is to be noted that more than one thrust mechanism many be present in a
single device. The drive of electric propulsion devices to smaller sizes has been
enabled by the miniaturization of power supplies and capacitors as well as MEMS

fabrication techniques.
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Field emission electric propulsion (FEEP) is an electrostatic propulsion
technique offering high specific impulses (~10,000 s) and thrust levels ranging from
micro-Newtons to milli-Newtons. These characteristics make FEEP an attractive
option for very spacecraft requiring precise control. Liquid metal is fed from a
reservoir to a needle-like emitter that is biased to a positive potential relative to an
accelerator electrode. A conductor with a small aperture opposite and near to the
emitter is biased to a negative potential. Due to the high electric field, the liquid
metal forms cusps. At a local electric field strength of 10° V/mm, the electrons are
stripped off the liquid metal surface through field emission (Mueller, 2000). The
walls collect the electrons and the ions serve as the propellant. The beam must be
neutralized as in an ion thruster to avoid spacecraft charging. A downside of FEEP
thrusters is potentially high power requirements due to low thrust to power values
(Mueller, 2000). As with any propulsion system, trade-off studies must be conducted
to determine whether the benefits of FEEP thrusters outweigh the penalties for a
particular mission.

The Austrian Research Centre Seibersdorf has investigated FEEP thrusters for
space applications including in-orbit operations. Fehringer et al. (1999) have
experimentally investigated indium FEEP thrusters in attempt to improve their
operational efficiency and minimize their weight. The mass efficiency (ratio of
ionized mass emitted to total mass emitted) was determined and optimized with
improved emitter design. The ionized mass emitted was determined by current

collection assuming that all ions were singly ionized. The total mass emitted was
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determined from precision weighing. The optimizations substantially improved mass
efficiency, especially at higher currents. A 12kV power converter with a maximum
current of 1mA was used as the power supply. A 500-microampere current for the
optimized thruster corresponds to a thrust of 55 micro-Newtons. The needle diameter
was 50 microns at the tip. A compact electron emitter was developed for
neutralization of the emitted ions. The effectiveness of the neutralization was tested
through use of external current collection in a vacuum facility. The experiments
demonstrated charge neutralization of the ion beam. The Austrian program as well as
an Italian program using Cesium demonstrate the applicability of FEEP technology to
micropropulsion.

Field emission cathodes utilize a large electric field to allow electrons to
tunnel off the cathode surface into a vacuum. Field emission cathodes appear
promising for use in electric microthrusters, as they may be fabricated using MEMS
techniques and have much smaller size and weight than hollow and other thermionic
cathodes. In addition, field emission cathodes have a lower power requirement than
thermionic cathodes for comparable emission currents.

Pulsed plasma thrusters are unsteady electric propulsion devices that are
powered by exposing the propellant to a short-duration current discharge (from a
capacitor) in pulses. Pulsed plasma thrusters (PPTs) achieve propellant acceleration
from both electrothermal and electromagnetic means. Though gas-fed PPTs have
been experimented with, use of Teflon as a propellant for micro-PPTs is more

attractive due to the simple feed mechanism and high reliability. To maximize the

12



efficiency of PPTs, high current discharges across the propellant in each pulse,
leading to electromagnetic acceleration as the current increases to the point where
maximum inductance is achieved (Jahn, 1968). This is similar to the acceleration
mechanism of a railgun. Another mode of operation for the PPT is the current arc
remaining stationary over the discharge that accelerates the plasma (Keefer et al.,
1997). The discharge also heats the propellant, leading to thermal (gasdynamic)
acceleration. The relative contributions to electrothermal and electromagnetic forms
of acceleration depend on the thruster configuration, mass ablated, and characteristics
of the circuit.

Keefer and Rhodes (/997) present an analytical and computational study of
the acceleration mechanisms of a Teflon coaxial pulsed plasma thruster. A model is
developed of the maximum possible component of electromagnetic acceleration and
compared to the MHD code MACH2. Two ablated masses were considered for the
MACH2 simulation: 7.3 and 73 micrograms, where the higher mass is consistent
with that of a laboratory PPT model (Kamhawi et al., 1996). For the high-mass case,
the PPT received most of its thrust from electrothermal acceleration. The MACH2
simulation also showed the current being concentrated near the base of the PPT for
the duration of the pulse, similar to a MHD accelerator. For the low-density case, the
thruster received substantial electromagnetic contributions to its thrust. The
simulation illustrated the current sheet accelerating down the PPT, pushing the

propellant in a manner similar to railgun acceleration. The lower density PPT
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simulation showed a higher specific impulse and a different mode of acceleration than
the higher density case.

The Air Force Research Lab (AFRL) conducted studies of Teflon coaxial
Micro-PPTs for use on microsattelites (Gulczinkski et al., 2000). Instead of a
sparkplug triggering mechanism used traditionally in PPTs, the AFRL designs
featured pulsed discharge initiation by semiconductor switches or alternatively a self-
triggered design where voltage is applied to a capacitor until the voltage breaks down
across the propellant face and the discharge is initiated. Three different propellant
diameters were studied: 2.21, 3.58, and 6.35mm. Maximum capacitor energy ranged
from 3.3 to 15.2 J for a capacitance of 0.1-0.31uF. The semiconductor switch
triggered microPPT produced more consistently repeatable impulse bits than the self-
triggered device. Several designs for the self-triggered PPT were considered before
finding a configuration that did not fail over 16000 seconds of testing with a firing
rate of about 1 Hz. For this configuration, the ablation rate was 1.3 micrograms per
discharge with 2.4 J expended per discharge (average). Thrust measurements of the
self-triggered PPT were made in a vacuum facility with the thruster was fired in
resonance with a thrust stand so that large deflections could be observed. Measured
thrusts ranged from 20 to 80 micro-Newtons.

Cassady et al. (2000) studied a small rectangular Teflon PPT for use on
sattelite constellations in the 10-20 kg regime. The impulse bits produced by the PPT
was 70 puN s and its total mass was 3.8 kg. A modular test unit was developed to

allow the testing of a wide variety of configurations of electrodes and capacitors. The
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dimensions of the propellant bar was 0.76 cm by 3.05 cm, the longer length being the
distance between the electrodes. Several capacitors were tested to determine which
one produced the short duration high currents required by the PPT: an oil-filled
capacitor, a ceramic capacitor, a mica capacitor, and a metallized film capacitor.
Current waveforms presented show that all capacitors discharge in under 10 pus. The
research presented by Cassady et al. (2000) continues in the selection of an

appropriate capacitor and miniaturization of the power supply for the PPT.

1.2 Modeling of Gaseous Microthrusters

Microthrusters involve the expansion of a propellant into vacuum. As the
collision rate falls off in the expansion and flow temperatures freeze (relaxation time
>> residence time), the continuum assumption commonly used in Navier-Stokes
based CFD codes fails and the accuracy of results suffers. Consequently, particle-
based codes such as direct simulation Monte Carlo (DSMC) for gas dynamics and
particle in cell (PIC) codes for ionized flows must be used in the portion of the
domain where the continuum description breaks down or throughout the flow.
Additionally, particle based methods can provide a prediction of backflow and plume
impingement on spacecraft. As device scales draw near to the characteristic length of
particle interaction, breakdown of the continuum assumption occurs further inside the
device and a kinetic description becomes increasingly necessary.

The direct simulation Monte Carlo (DSMC) method for gasdynamics (Bird,
1994) is based on a kinetic description and is applicable to flows where local

equilibrium breaks down. A number of computational particles are used to
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approximate the phase space of the gas. The DSMC method uses the dilute gas
assumption that the time of collisions is much less than the time between collisions.
The motion and collisional processes are uncoupled in time and it can be shown that
the DSMC method is a first-order solution in time to Boltzmann’s equation (Nanbu,
2000). Collisions are modeled probabilistically using models of molecular cross-
sections. Internal energies, chemical reactions, and other behaviour important to the
modeling of gases may also be included (Bird, 1998). The DSMC method has been
applied to many nozzle flows of in the transition regime.

The effects of nozzle geometry and stagnation temperature were studied using
the DSMC method by Zelesnik et al. (1993) for low Reynolds number nozzle flows.
The variable hard sphere molecule was used as the collisional model and the nozzle
walls were assumed to be diffusely reflecting. Particles entered the region
downstream of the throat according to the results of a Navier-Stokes code. The code
was first verified against numerical and experimental results of Boyd et al, 1992. The
geometries considered were conical, trumpet shaped and bell shaped, chosen with the
same throat radius (0.5mm) and area ratio (104.04). Nitrogen was used with
stagnation temperatures of 300 K and 1000 K, with stagnation pressure of 1109.6 Pa.
Data available in the study were the pressure at the exit plane, temperature fields,
velocity vector fields, and Mach contours. The trumpet nozzle proved the most
efficient at low temperatures, though the conical nozzle produced the most thrust as it

had the highest mass flow rate. For the heated case (1000 K stagnation temperature),
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both the trumpet and bell nozzle had comparable efficiencies, 6.5% above that of the
conical nozzle.

The Gravity Probe-B prototype cold-gas nozzle was modeled by Boyd, et al.
(1994) using the DSMC method and compared to experimental results. The
simulation was performed on non-uniform, structured, 2-D grids and the nozzle
surface was assumed have full thermal accommodation. The calculated angular
distribution of mass flux compared well with experiment, as did the plume centerline
mass flux and nozzle discharge coefficient. Mach contours interior to the nozzle were
presented, as well as velocity profiles along the plume centerline. The effect of back
pressure on calculations was shown by comparing simulation results at vacuum to
those with a back pressure of 8.7x10™ Pa. This study illustrated the application of
DSMC to supersonic micro-flows and confirmed the experimental and theoretical
data used in the Gravity Probe-B mission.

Piekos and Breuer (/996) presented results for the application of the DSMC
method to helium MEMS flows in a micro-channel and micronozzle. The DSMC
method used unstructured 2D grids for the benefit of handling arbitrary geometries.
The outlet Knudsen numbers in the channel flows was between 0.05 and 0.44.
Boundary conditions for these subsonic cases came from the method of
characteristics using a weighted time average of flow statistics. The interior of a 2-D
parabolic micronozzle was also simulated with a 15.4 micron throat height and a
nozzle length of 92.6 microns. An equilibrium free-stream at atmospheric conditions

was used upstream and vacuum conditions were used downstream. Mach and
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temperature contours were presented, and a Mach number for the velocity component
tangential to the wall at the exit exceeding 0.5 was observed.

Rothe’s nozzle (Rothe, 1971) was modeled by Ivanov et al. (1997) with a
stagnation pressure of 474 Pa using a parallel, axisymmetric, DSMC code. The
calculated density and rotational temperatures agreed with the experimental data. A
multizone approach was used where a Navier-Stokes code was used when Bird’s
breakdown parameter was sufficiently small, the DSMC was used in the transition
region, and a test-particle Monte Carlo (TPMC) was used in the free-molecular
regime. This multizone approach features optimal computational efficiency as only
the necessary computation for each region is performed. This approach was applied
(Ivanov et al., 1997) to the study of plume interaction with surfaces similar to the
ESA’s XMM satellite. The calculations showed that 15% of the total thrust of two
thrusters is lost due to plume interaction and impingement on the satellite.

The role of surface conditions in DSMC is shown with respect to a free-
molecular micro-resistojet (FMMR) by Ketsdever et al., 1998. The design utilizes a
surface covered by a thin heated film, which is arranged to be the last surface to
contact the propellant. Argon was used as the simulation gas for simplicity, though
the authors recommended ammonia or water as a propellant for future investigation.
The throat diameter was 0.1mm and the wall temperature was kept at 300 or 600 K.
The effects of expansion geometry were studied using surfaces with fully diffuse

reflection. The specific impulse was studied as a function of surface accommodation
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using the Maxwell model and two forms of the Cercignani-Lampis-Lord model.
Favorable comparison between DSMC results and free-molecular theory was found.
Spacecraft contamination and the induced environment due to cold-gas
attitude control thrusters were studied by Gatsonis et al. (1999). The Environmental
Monitor Package (EMP) spacecraft carried a pressure sensor which collected data
from the firings of eight attitude control thrusters. The EMP spacecraft has a 0.56 m
diameter base and a length of 0.52 m. The thrusters used produced thrust from 1.2 to
3.3 N with an exit diameter 4.8-5.6 mm and a throat diameter of 0.9-1.6 mm. The
flow inside the thrusters had a Knudsen number in the order of 1.5x10° at the throat
(Reynolds number ~ 650,000) and 7x10” at the exit (Reynolds number 26,000-
60,000). As the flow is initially continuous, a Navier-Stokes code was used until the
breakdown of the continuty assumption according to Bird’s breakdown parameter
(Bird, 1970). The Navier-Stokes solution then provided input into a three-
dimensional, unstructured DSMC code which is used to simulate the rarefied portion
of the plume. The grid for the DSMC code was sized to accurately capture the
surface geometry and the flow physics. The DSMC results at the location of the
pressure sensor entrance were used to determine the presure inside the sensor
according to the theory of Hughs and de Leeuw. The simulation results for the
pressure sensor chamber pressure showed good agreement with the experimental
measurements for the pitch and yaw thrusters. Agreement with the roll thrusters is
less good, but it is demonstrated that this is due to lack of knowledge of the exact

thruster configuration, as two orders of magnitude difference is observed by slight
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(2.5 cm) changes in the radial position in the roll thrusters. This study illustrates the
value of unstructured DSMC and Navier-Stokes codes to predict complex flow
configuations with transitions from continuous to rarefied flow.

The breakdown of the Navier-Stokes equations and equilibrium in
micronozzles was studied numerically by Ivanov et al. (1999) using a Navier-Stokes
solver (GASP) and the DSMC method. The studied focused on characterizing the
performance of nozzles based on the two techniques. A conical helium nozzle was
considered with a sharp throat (radius: 27 microns) that diverged at a 15 degree angle
to an exit diameter of 81.3 microns. Two stagnation pressures, 10 and 1 atm, were
studied at a constant stagnation temperature (297K) to assess the effects of
breakdown. GASP used first order extrapolation at the nozzle exit, as is common in
nozzle flow modeling (Ivanov et al., 1999). The DSMC code featured the majorant
cell and free cell schemes, adaptation, different time steps, and radial weighting.
These contribute to the efficiency and accuracy of the calculations. The two inlet
DSMC boundary conditions on velocity (uniform and Poiseuille profiles) produced
similar results. An area slightly outside the nozzle was also modeled with DSMC for
accuracy. The DSMC code showed the sonic isoline touching the nozzle lip, while the
Navier-Stokes calculation showed it removed from the wall an increasing distance
with increasing rarefaction. While properties from both calculations agreed near the
nozzle centerline, as equilibrium breaks down near the nozzle lip pressure and Mach
contours produced by the different methods diverged. Breakdown of equilibrium

occurred further inside the nozzle for the lower chamber pressure case. The Navier-
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Stokes prediction for specific impulse were higher than the DSMC ones for both
pressures, and for the lower pressure the N-S results showed a specific impulse higher
than that of an ideal nozzle. The DSMC results illustrated a decrease in specific
impulse for higher expansion ratios for very low Reynolds number nozzle flows.
Rothe’s nozzle was also studied for Re = 270 and Re = 120. Both simulations
compared well with the centerline values of temperature and density found by
experiment. The DSMC method compared more favorably to experimental values
near the nozzle exit wall. The lower Reynolds number case accentuated this
behavior, and additionally illustrated a breakdown of equilibrium of translational and
rotational temperature, which the DSMC code accurately predicted and the Navier-
Stokes code did not. This study illustrates the importance of outflow boundary
conditions and the breakdown of the continuum assumption near the nozzle lip.

The role of the nozzle lip in backflow was studied numerically (Ivanov and
Markelov, 2000) using the DSMC method with respect to contamination issues
associated with micronozzle plumes. Navier-Stokes calculations were also performed
for the sake of comparison. It was found that a thick lip (five radii of the nozzle exit)
can reduce contamination but not eliminate it altogether. Bird’s breakdown
parameter along with density and temperature was plotted in the region near the
nozzle lip of a bell nozzle previously studied (Ivanov et al, 1997). The loss of
efficiency when scaling small traditionally machined thrusters to microthrusters is
chiefly due to increased viscous boundary losses. In order to reduce these losses, the

slip velocity at the wall must be increased. Ivanov and Markelov introduce a fraction
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of helium (0.1) into the chamber of Rothe’s nitrogen nozzle in order to study the
effect. Being a lighter gas, helium is forced to the wall and provides an effective
gasdynamic lubrication. Velocity profiles at the exit show that the introduction of
helium decreases the boundary layer thickness and provides a higher exit velocity
than either nitrogen or helium alone.

Three-dimensional modeling of microthruster flows is still a developing art.
The shear magnitude of three-dimensional particle simulation has only been recently
accessible with modern high-speed computers. Surface interaction models have not
been completely studied either empirically or computationally, and often play an
important role in microthruster simulations. Injection conditions and chemical
kinetics appropriate to micronozzle flows are other outstanding issues that have only
been partially addressed in DSMC modeling. For high temperature flows, vibrational
degrees of freedom must also be considered. Many micronozzle geometries, such as
planar MEMS micronozzles, result in fully three-dimensional flows that must be
modeled appropriately. If spacecraft interaction is to be considered, complex flow
geometry must be simulated as well. Gasdynamic modeling of microthrusters useful
to engineering applications continues to be investigated and improved as

understanding of issues important to micronozzle flows increases.

1.3 Modeling of Plasma Microthrusters

When ionization become important, it is necessary to include electric effects
when modeling microthrusters. Plasma modeling performed in the continuum regime

utilizes the magnetohydrodynamic equations. As the flows in electric
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micropropulsion devices may deviate far from equilibrium and the density level is
low, a kinetic description is most appropriate for the treatment of these flows.

The particle-in-cell (PIC) method uses weighted particles to represent a
distribution function, similar to the DSMC method for gasdynamics. There are
several levels of approximation in PIC, each of which may be used to treat different
types of plasma flows. Flows may be modeled as electrostatic and collisionless. The
flow may be modeled as electrostatic with collisions included probabilistically, in
which case the the simulations are PIC/DSMC models. The flow may also be
modeled as electromagnetic (EM-PIC), both with and without collisions. If collisions
are included then Boltzmann’s equation is stochastically solved; if collisions are

neglected then the PIC methodology reproduces Vlasov’s equation (Nanbu, 2000).

1.3.1 Electrostatic Models

Electrostatic PIC codes are the most widely used and developed, both because
of their well-studied computational properties and their application to many problems
of engineering interest. Despite the neglect of time-varying magnetic fields, the
electrostatic formulation is accurate for most electrically driven flows.

Electrostatic codes are usually based upon a solution to Poisson’s equation
(Birdsall, 1991) but may be also derived from the current balance equation (Gatsonis
and Yin, 1997a; Gatsonis and Yin, 1997b) or Gauss’s law for simple geometries. In

both the former cases, electrons may be described as fluids through the inclusion of
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fluid operators as part of the charge density, making the resulting matrices
algebraically non-linear.

A 3-D PIC model was applied to the study of field emission cathodes with
respect to application in electric microthrusters (Marrese et al., 2000). A planar field
emission array was modeled as if attached to a spacecraft surface. The area of the
field emitter array was 0.22 cm’, and the domain was loaded initially with ambient
ions and electrons in a Maxwellian distribution. Thermal particles were also injected
from the open boundaries, and the field emission cathode array emitted particles in a
cold beam. The current density was varied from 34 to 236 mA/cm®, and at lower
values of current density, potential contours closely resembled planar behavior
(especially near the center of the array). At higher values, a more spherical sheath is
seen.

Several outstanding computational issues exist in electrostatic plasma
modeling. Development of arbitrary circuit boundary conditions for three dimensions
remains to be done for arbitrary geometries. In partially ionized flows, a
methodology for appropriate interaction between neutral and charged particles has
been developed (Nanbu, 2000) but is not yet widely applied. Appropriate electric
flux and particle-surface interaction boundary conditions have not been widely
developed. Further development of appropriate boundary condition models and
particle collision models is important to accurate electrostatic modeling of

micropropulsion devices.
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1.3.2 Electromagnetic Models

When the physical problem includes time-varying fields, it becomes necessary
to turn to a solution of the full or partial set of Maxwell’s equations:

VxH:J+a—D
ot

OB
VxE=—— 1.1
o (1.1)

VeB=0
VeD=p

In these equations, H is the magnetic field; J is the current density; D is the
electric displacement; E is the electric field; B is the magnetic-flux density; p is the
charge density (Jackson, 1999). In a linear medium, D and E are related according to
D=¢E, and B and H are related according to B=pH, where € and p are the permitivity
and permeability of the medium, respectively.

Yee (1966) proposed a computational method for electromagnetic wave
propagation and scattering on two staggered Cartesian grids. The method is based on
the Ampere-Maxwell law and Faraday’s law. The magnetic flux density and electric
displacement vector are linearly discretized and a leap-frog method is used to advance
the fields in time for second-order accuracy. The method is based upon the integral
representation of the Maxwell equations and that the edges of one mesh correspond
and are orthogonal to the faces of its dual, and vice versa. The fields are updated on a
face by taking the sum of contributions from the alternate field along the edges of the

face, including contributions of current when updating the magnetic field. This is a
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discretized approximation of Stoke’s theorem relating the curl of a field normal to a
surface to the line integral around the surface.

Yee’s lattice method may be generalized in principle to any polyhedral mesh
and a suitable dual using the method of discrete surface integrals (Hermeline, 1993;
Madsen, 1995). The discrete surface integral (DSI) method is based on the duality of
edges and faces of two meshes and uses a discrete approximation to Stoke’s theorem
for the Ampere-Maxwell law and Faraday’s law. The DSI method becomes Yee’s
method on a Cartesian mesh.

Hermeline (1993) proposed a method for Maxwell’s equations on the
Delaunay mesh and its Voronoi dual in two and three spatial dimensions with field
components represented in three dimensions. It is shown that there are two separate
methods as the electric and magnetic fields may be associated with either mesh.
Attention is given to particle and current weighting procedures, which use a
combination of piecewise linear functions and the least squares method. Since the
piecewise linear charge distribution and current density do not exactly satisfy charge
conservation locally, it is desirable to introduce a correction scheme for the electric

field based upon deviation from the divergence equation:

V-(E—V(/))=g£ (1.2)

In this equation, ¢ is the correction potential and p is charge density (in
coulombs). Since the charge density electric field is known, this leads to a

formulation for Poisson’s equation:
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Vp=V-E-£ (1.3)

&

Once the correction potential is obtained, the gradient of this value is added to
the electric field. Hermeline (1993) also notes that since all that is needed in the DSI
formulation is the product of current integrated over the area of the control volume. If
this current is obtained using particles (via the PIC method) then the enforcement of
the discretized Gauss law remains a consequence of the discretized Ampere’s law and
it is unnecessary to correct the electric field. However, it is noted that this method
provides noisy results. Calculations, with error analysis, are presented for the case of
eigenmodes of a square cavity on 2-D Cartesian and unstructured meshes. The error
was comparable for the two meshes and in both cases negligible. Radiation from a
dipole was also modeled and results of the two methods were similar. A thermal
cathode and photo-injector were also modeled in two dimensions.

The discrete surface integral method was presented for non-orthogonal
staggered polyhedrons by Madsen (1995). Previous approaches to electromagnetics
in irregular domains, such as stair-stepping Cartesian grids, finite elements, and two
finite volume formulations, are reviewed and found inadequate. Madsen presented an
algorithm for the finite difference time domain method for non-orthogonal polyhedral
grids with a dual constructed through joining the barycenters of primary cells. This
led to one-to-one correspondence between nodes, edges, faces, and cells of the
primary grid to cells, faces, edges, and nodes of the dual grid. It was noted that

solution accuracy degenerates when primary edges and faces do not intersect with
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their dual faces and edges. Though electric currents were not taken into account in
this paper, their effects could be added in a manner similar to cases for Cartesian
grids (Birdsall and Langdon, 1991) or the Voronoi-Delaunay dual (Hermeline, 1993).
The components of a field (for example, E) normal to the surface may be updated
using an integral around the edges of the face of the complement field (B in this
example). The field at the nodes may be obtained through a 3x3 system of equations
based on the values calculated at the faces of the grid bordering the edge of interest.
This leads to several values of the field which are interpolated to the face either by a
vector sum average, a partially volume weighted averaged, or a fully volume
weighted average. The field obtained at the face due to the updating of its derivative
is projected onto the edge to update the complementary field in a similar manner. It
was noted that this algorithm is charge conservative. It was also noted that if the
grids used are orthogonal, the averaging procedure may be avoided entirely and the
algorithm reduces to the general finite-difference time domain technique.

Madsen (1995) presented tests and error analysis for the DSI algorithm on
distorted grids. In a grid constructed by mapping a square to a circle, it was shown
that all methods are conditionally stable. The simple vector sum provided the lowest
level of stability and the fully volume weighted method the highest stability. A
rectangular wave-guide was modeled with a sinusoidal driving signal using
orthogonal and skewed grids composed of hexahedra, tetrahedra, pyramids, and
hybrid meshes. This problem was chosen for the availability of an analytic solution.

Error in all cases was comparable and the most accurate solution was obtained on
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tetrahedral grid derived from the division of skewed hexahedra. Comparison of
results for scattering of a Gaussian pulse from a conducting sphere showed that
discretization of the sphere into a non-orthogonal surface provides a better
comparison to analytic data than a comparable stair-stepped approximation of the
sphere. The three-dimensional DSI algorithm also showed favorable comparison to
radiation from a dipole on a mostly orthogonal grid. As a final example, a twisted
wave-guide was modeled using DSI. The electric field time history for the twisted
and straight wave-guides were essentially identical, showing a good validation for the
model where no analytic solution is known and methods based on Cartesian grids do
not apply.

A three-dimensional EM-PIC method was presented by Wang, et al. (1997)
using a non-orthogonal grid of hexahedral cells and the discrete surface integral
method to update the electric and magnetic fields. Particle location was tracked in
Cartesian logical space while the velocity was kept in physical coordinates. The code
takes advantage of the fact that if charge is rigorously conserved, both globally and
locally, then the fields may be updated by the Maxwell curl equations alone. Tri-
linear interpolation was used to map logical coordinates to physical coordinates.
Current deposit was done in logical space by use of Villasenor and Buneman’s (1992)
rigorously conservative algorithm based on area and volume weighting. Particle
movement was done using the standard leap-frog technique with the addition of a

rotation matrix that maps physical and logical space.
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Fields were updated in Wang, et al. (1997) using the discrete surface integral
method for non-orthogonal grids. The fields were found at the vertices from
knowledge of their normal components at the three faces within the cell that share the
node. Three methods were considered in weighting the results at each node among
the cells that share it: simple vector weighting, full volume weighting, and one-sided
volume weighting. In one-sided volume weighting, the vector associated with the
face is split into two components from the centers of the cells to the center of the face.
The components associated with each side of the cell are averaged separately. Once
the field components are updated, their values at the vertices are computed using a
similar method involving the solution at the three faces of interest for each cell
containing the node.

Analysis of error for the EM-PIC method is presented in Wang, et al. (1997).
The particle pusher was accurate as long as grid distortion is not too great due to its
dependence on a rotation matrix. EM wave propagation was studied on distorted
grids all three weighting schemes studied lead to non-physical instabilities despite the
fact the Courant condition is satisfied. The simple vector weighting method was
shown to be the most stable and one-sided volume weighting the least. Greater grid
distortion increased the growth rate of error. Results on a skewed grid were always
numerically stable. Properties of the weak instabilities of the DSI method on non-
orthogonal grids were discussed and recommendations given on how to deal with this
source of error. Energy conservation was monitored for the unstable configuration of

two opposing relativistic electron streams. It was found that error did not exceed 2%
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even for highly distorted grids. The EM-PIC code was shown to be highly
parallelizable, as only local information must be exchanged.

The finite difference time domain (FDTD) method (Yee’s lattice (/966) on
Cartesian meshes and DSI on general meshes (Heremline, 1993; Madsen, 1995)
require knowledge of the electric current if free currents are considered in the
problem, as is the general case with particle methods. In general, finite difference
time domain electromagnetic solutions satisfy the Maxwell divergence equations for
electric and magnetic fields if they were satisfied initially and charge is rigorously
conserved (Birdsall and Langdon, 1991). It was advised that a potential correction
based on Poisson’s equation be used to ensure conservation of charge in particle
methods (Birdsall and Langdon, 1991). However, weighting procedures that
rigorously conserve charge may allow electromagnetic calculations to be performed
without the computational cost of a Poisson solve at every electromagnetic step
(Villasenor and Buneman, 1992; Wang et al., 1997). If the Poisson correction is not
used, the FDTD method is a purely local method -- this has several conceptual and
computational advantages.

Villasenor and Buneman (1992) developed a rigorous charge conservation
scheme for electromagnetic particle simulation methods based on area weighting.
The particle was considered a cloud with charge uniformly distributed over the area
of a Cartesian cell (a square shaped particle, in 2-D). The formulation was given for
two and three dimensions, for an arbitrary number of boundaries being affected by the

particle. It was assumed that the computational particle would cross no more than a
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single boundary within a time-step, as implied from the Courant condition. It was
found that area weighting, identical to that used to weight currents, eliminated self-
force during the field-to-particle weighting procedure. The scheme was tested
through the assignment of a charge distribution and electric field that satisfied
Poisson’s equation for electrostatics. It was shown that the magnetic field remained
zero, as the electric field was initially curl-free. Villasenor and Buneman (1992)
compared this result to that obtained to the potential correction method used to
ensured conservation of charge, and it was found that the two methods agree to within
round-off.

Electromagnetic plasma modeling is generally more computationally
expensive and not as well developed than electrostatic modeling. Appropriate
boundary conditions for circuit elements have been developed with limiting
assumptions, but further work is needed. Modeling of arbitrary boundary conditions
for electromagnetics is still developing. A charge conserving routine similar to that
of Villasenor and Buneman (1992) has not been developed for arbitrary geometries.
In order to accurately model electromagnetic micropropulsion devices, adequate
study of appropriate boundary conditions and particle interaction models must be

done.

1.4 Objectives and Approach

The goal of this work is to further develop a particle-based code appropriate to
the modeling of partially ionized flows with application to micropropulsion devices.

Specifically, an unstructured tetrahedral DSMC-PIC code will be developed in order
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to characterize and assess the gasdynamic and plasmadynamic effects in micro
thrusters. Much of the work for the DSMC kernel and the code of grid generator has
been developed through previous efforts (Kovalev, 2000). The specific objectives for
this work are:

o Development of a simple triangular surface generator to characterize domains
of engineering interest for aid in mesh generation.

J Addition of quality assessment and control techniques to the unstructured
tetrahedral generator. = Higher quality grids lead to greater accuracy and
computational efficiency for both particle and field solvers.

o Implementation of techniques to minimize and prevent lost particles
encountered in particle movement.

o Addition of the variable hard sphere model for molecular cross-sections. The
use of variable hard spheres offers much more accurate characterization of molecules
than hard spheres and without much additional computational cost.

o Validation of molecular rotational degrees of freedom and addition of discreet
vibrational degrees of freedom. In the continuum regime, it may be assumed that
rotational degrees of freedom may be relaxed, but this does not hold as collisions
grow more infrequent. Vibrational degrees of freedom are rarely fully excited and
must be treated as discrete levels.

o Implementation and validation of an electrostatic solver based on Poisson’s

equation for electric potential.
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o Application of the DSMC code to gaseous microthruster simulations and
comparison with experimental and computational results.
o Preliminary application of the unstructured PIC to electrostatic plasmas.

This thesis is organized as follows: in Chapter 2, the grid generator, DSMC,
and PIC methodologies and their implementation on unstructured grids are presented.
In Chapter 3, the DSMC and PIC simulations are presented. In Chapter 4, the

conclusions of the work are outlined along with recommendations for future work.
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Chapter 2

DSMC-PIC Methodology, Implementation, and

Validation

2.1 Overview
This chapter summarizes the methods used and implemented for the DSMC-

PIC solver on unstructured grids. The methodology for grid generation is presented
with application to particle modeling. The models for molecular cross-section and
internal energy exchange are presented with application to the DSMC solver. A
finite-volume electrostatic solver is presented with applications to plasma modeling.
Validation examples are presented with the computational methods used to illustrate

their accuracy and applicability.

2.2 Unstructured Tetrahedral Grids and Application to
DSMC-PIC Modeling

Flows encountered in the study of micropropulsion devices are often three-
dimensional. The microthruster may have a geometry that itself gives rise to a three-
dimensional flow, such as a planar MEMS nozzle or a rectangular PPT. In the study
of plume-spacecraft interaction, the thruster plume may impinge upon the spacecraft
in such a way that the flow is three-dimensional. In order to study such flows, a grid
methodology must be applied that accurately captures surface geometry.

An unstructured tetrahedral Delaunay mesh generator is utilized in this work

in order to satisfy these requirements. The full methodology of the grid generator
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used in this work is available in Kovalev, (2000), where the algorithms are presented
in some detail. A surface triangulation of the relevant geometry is used as input to
the mesh generator, which produces a Delaunay triangulation of the surface geometry
with spacing values that match the input triangulation. Due to the deficiencies of the
grid generator by Kovalev, (2000), meshes were generated with poor grid quality for
certain geometries of interest. To correct this, heuristic optimization is implemented
in this work to increase grid quality.

In order to generate meshes for engineering use, a mesh generator is utilized
based on Watson’s algorithm for point insertion (Watson, 1981). Watson’s algorithm
creates a new Delaunay mesh from an existing one by meshing the new node to the
facets of the cells whose circumspheres contain the new node, checking that
tetrahedra with positive volumes are created. Delaunay triangulations have several
properties that make them useful for purposes of mesh generation and scientific
computations. A perspective in Delaunay triangulations with respect to bounded
mesh generation is available in Baker, (1989). In the mesh generator used herein and
presented by Kovalev, (2000), the Delaunay triangulation starts with a cube divided
into six tetrahedra to generate a background mesh, into which the boundary points are
inserted. Constrained edges and faces are then recovered. New points are generated
by the exponential division of edges (Borouchaki and George, 1997), which
generates points with good spacing values for the numerical methods considered here.
It is necessary to filter the generated nodes to examine if they are too close to existing

nodes.
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2.2.1 The Delaunay Triangulation and Voronoi Tessellation
A Delaunay triangulation of a set of points in N dimensions divides the set

into simplex elements of N + 1 points such that the N circumsphere of each element
does not contain points from any other element. In two dimensions the circumcircle
of each triangle element contains no other points save its three defining points.
Similarly, in three dimensions the circumsphere of each tetrahedron contains no other
points save its four defining points. The Delaunay triangulation of a set of points is
unique if no set of more than N + 1 points lies on the same N circumsphere.

The Voronoi diagram is formed by the set of points (lines in two dimensions,
faces in three dimensions) equidistant to a point and its nearest neighbor. The points
inside a Voronoi cell are nearer to the node defining the cell than any other.

Examination of the Delaunay triangulation and Voronoi diagram shows that
the two are natural duals. In three dimensions, there is a one-to-one correspondence
between Delaunay nodes, edges, faces, and cells to Voronoi cells, faces, edges and
nodes, respectively. In the case of other dimensions, a similar hierarchy of
associations may be found. Edges of one mesh are orthogonal to the face of the other.
These properties of the Delaunay triangulation and the Voronoi tessellation make

them favorable for computational use.

Construction of Voronoi Dual from the Delaunay Triangulation

The Voronoi mapping is complex in terms of variations in structure from cell
to cell. However, the finite volume formulation on the Voronoi mesh is essentially

identical in computational efficiency to a standard finite difference scheme — the
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coefficient matrix simply has a variable number of coefficients per row depending on
the valence of the node. In order to obtain an acceptable level of accuracy, the mesh
used must have a high orthogonality (or alternatively, use a more complex
formulation with more coefficients) and enforce properties at the boundaries.

The Voronoi mesh is constructed as follows. The circumcenters of each
tetrahedral cell are found. The boundaries of the tetrahedral mesh are enforced while
preserving important properties of the Voronoi dual. The Voronoi dual of each
tetrahedral edge is found and relevant properties (associated area and volume) are
determined.

The circumcenters of each cell are found according to the equation for a
sphere, which may be uniquely determined from four non-degenerate cells. An
example of a two-dimensional Delaunay triangulation and associated Voronoi
diagram is shown in Figure 3. Characteristics appropriate to the Delaunay and
Voronoi meshes will be illustrated in two-dimensions, as three-dimensional examples

cannot be adequately presented in two-dimensional figures.
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Figure 3. Example of a bounded 2-D Delaunay triangulation (red) and its
Voronoi dual (green).

Care must be taken in enforcement of the boundary to preserve the
characteristics of the Voronoi mesh. The general methodology is to map any Voronoi
node laying outside of its boundary component to its Voronoi equivalent in the next
lower geometric dimension. The circumcenters are found for each triangular face that
is on the boundary for purposes of electric calculations. If these circumcenters lay
outside the face, as for a poorly formed element, they are moved to the nearest edge

midpoint, which is the one-dimensional Voronoi equivalent. The orientation of the
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circumcenters in boundary tetrahedrons may be determined by the dot product
concerning the outward normal of the boundary faces. If the circumcenter is outside
the grid, it is moved to the circumcenter of the boundary face (the two-dimensional
Voronoi equivalent). The Voronoi dual of a boundary edge (a planar polygon)
consists of the edge midpoint, the circumcenter of one of the boundary faces
containing the edge, the circumcenter of the tetrahedral cells containing the edge, and
the circumcenter of the second boundary face containing the edge. This boundary
enforcement scheme preserves the properties of orthogonality and equidistance of
Voronoi faces from boundary edge nodes, which are important properties of the
Voronoi tessellation for purposes of finite volume accuracy. Complex boundary
edges (formed by the intersection of three or more boundary faces) are not treated
here algorithmically, but the scheme is essentially the same. It is also noted that these
types of boundary surfaces are rare for engineering applications and usually may be

avoided without any loss of important geometric information.

2.2.2 Surface Grid Generation

In general, boundary conditions must be applied at surfaces defining the
domain. Surfaces may also be specified internal to a flow in order to apply boundary
conditions there. For neutral particles, surfaces may serve the role as exhausting
particles into vacuum, injection of new particles from a prescribed distribution, or a
material boundary that interacts to rebound or absorb the incident particle. For

charged particles, a surface may be a conductor or a free boundary, or have the
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normal component of electric field applied. Details on the implementation of
boundary conditions for the charged particle case are given in section 2.6.

Triangulation of the surfaces of the domain is the first step in generation of a
tetrahedral grid using Watson’s algorithm. Triangulation of the surface may be done
analytically for simple surfaces, or using mesh generation techniques for more
complicated surfaces.

A simple surface generation scheme was developed with respect to issues of
particle modeling. The surface generator constructs triangulations of axial and box-

like domains according to user-specified spacing.

Surface Generator Implementation

A surface generator was written for axially symmetric objects and box-like
objects (objects that are definable by bi-linear elements). From the definition of
control points suitably connected by lines, arcs, or upward downward facing
parabolas and appropriate spacing values at these points, a two-dimensional topology
may be made (also useful for two-dimensional grid generation) according to the
spacing value with edges having an attribute specified by connection. Assuming
appropriate spacing values, this topology may be tiled about an axis analytically to
create a high-quality axisymmetric surface. For bi-linear surfaces, only the first two
edges of a bi-linear element may be created with arbitrary spacing values. The
spacing values for the second two edges of an element are inferred from the

requirement that the opposing edges have the same number of nodes. Care must be
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taken in selection of spacing values as well as creation order of bi-linear elements and
objects to ensure a high quality triangulation. After axially symmetric or bi-linear
objects are created, they may be rotated and added to a group of objects, if the
simulation domain includes multiple objects. If the object is represents an internal
boundary, a virus point (see Kovalev, 2000 for definition) must be included that lies
within the object’s interior. An object or group of objects may be output to a file that
is used by the grid generator.

It is possible to triangulate many other surfaces of engineering interest, as well
as to triangulate surfaces using Watson’s algorithm, with respect to an analytic
definition of the surface or sharp edges. There are also several commercial CAD

programs that contain this feature.

2.2.3 Grid Quality Issues for DSMC and PIC Modeling

The role of the grid in particle modeling is to provide discrete cells of physical
space for selection of collision partners and sampling purposes. For unstructured
grids, particle movement involves complex calculations to determine the intersection
point of the particle at the face. In order to generate acceptable results, the effect of
grid quality should be considered in the context of stochastic particle modeling.

As long as the longest cell dimension is less than the local mean free length
(the smallest mean free path, or length of where gradients of macroscopic quantities
may be treated as linear), the sampling and collisional procedures should not suffer as

long as enough particles are included in the cell to accurately represent the
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distribution. In practice, it is desirable to have a high quality grid in all cases, as low
quality grids will have more cells and faces than high quality grids and require
subsequently more computational time for the same physical problem. Poor quality
grids are more computationally expensive, as there will be more cells for given
spacing values with corresponding lower volumes. More particles must therefore be
used to obtain an accurate representation of velocity space in each cell. Also,
sampling and collisional procedures may suffer in accuracy from grid biases on poor
quality grids. The particle movement routine may break down as cell quality
worsens, and the issue of losing particles becomes important on grids of questionable
quality.

Several algorithmic procedures were added to monitor and delete lost
particles. It was observed that cells with poor dihedral angles were primarily
responsible for loss of the particles. Elimination of these cells, by quality grid
generation or cell removal if the cell was on a boundary, proved to minimize or even
eliminate lost particles entirely. Care must be taken when removing boundary cells to

ensure boundary conditions and flow physics are satisfied.

Implementation of Heuristic Optimization for Unstructured
Tetrahedral Grid Generation

Mesh generation diagnostics showed that the cells where particles were lost
had poor quality minimal dihedral angles and solid angles. Examination of the poor-

quality elements showed them to be known types of “slivers” (Cheng et al., 2000).
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It is provable that for a decent-quality surface triangulation, it is possible to
generate a conformal Delaunay mesh of high quality (Li, 2000). A simple
optimization method was used in this work which improved quality of the
triangulation to the extent that it proved good for the particle and field computations
of interest. More robust optimization methods (Li, 2000, Cheng et al., 2000) could be
implemented if the existing method proved to be inadequate for computations.

The minimum allowable dihedral angle is defined by a user in an input file.
Typically, only the cells with the lowest minimum dihedral angles cause
computationally invalid results. Nodes are generated according to the exponential
spacing technique of Borouchaki and George (1997). The nodes are filtered to see if
they are too close to other nodes, according to the local spacing criteria. The
remaining nodes are checked to see if they improve mesh quality according to the
minimum dihedral angle. If they do not, and their minimum dihedral angle lies under
the user defined minimum, they are not inserted into the mesh. Care must be taken in
selection of the minimal value, as selecting too high of an allowable minimum
dihedral angle may result in a mesh with poor spacing criteria.

Figure 4 illustrates a cross-section of a closed rectangular geometry with the
optimization method applied. The interior triangles shown in the cross-section all
have good quality, visually illustrating the effectiveness of the method. In Figure 5,
the distribution of minimum dihedral angle in a cell is shown versus number of cells
for the same rectangular geometry with and without optimization. The minimum cut-

off angle for the optimized case was chosen to be 0.3 rad. The presence of fewer
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cells in the optimized case is due to more efficient tessellation of the domain. In
Figure 6, the normalized distribution function of minimum dihedral angle in a cell is
shown for the Gravity Probe-B thruster surface triangulation. Both optimized and
non-optimized cases are shown, with the minimum cut-off angle for the optimized
case being 0.3 rad. The optimized curve has significantly fewer low minimal dihedral

angles and a greater amount of higher quality dihedral angles.
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Figure 4. Cross-section of mesh for a closed rectangular geometry using a cut-off

dihedral angle of 0.3 rad.

Implementation of the heuristic optimization method proved to vastly reduce
the number of lost particles. In all cases presented in this work, less than one percent
of the mass flow rate of particles is lost, and in many cases no particles are lost.
Heuristic mesh optimization such as presented here is adequate for many numerical
methods so long as the computational routines used are written for general geometries

such that only round-off error and local grid biases contribute to computational error.
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Figure 5. Effect of choosing a cut-off dihedral angle (0.30) on the dihedral angle

distribution.
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Figure 6. Normalized minimum dihedral distribution for the Gravity Probe-B

surface triangulation with zero cutoff angle and a cutoff angle of 0.30 rad.

2.3 Gasdynamics via Direct Simulation Monte Carlo

2.3.1 Overview of DSMC Methodology

The Direct Simulation Monte Carlo (DSMC) method stochastically models
dilute gases through the uncoupling of movement and collisional processes. A
number of particles are alternatively moved and sampled for collisions. Collisional
procedures are based upon the molecular cross section of each species included and
the fact each computational molecule represents a large number of real molecules.

The fundamental assumption of DSMC is that the time between collisions is much
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greater than the duration of collisions, a condition applicable to gases of low to
moderate densities.

Most DSMC implementations divide the domain of interest into cells for
purposes of selection of collisional partners and flow-field sampling. This is done for
computational efficiency and convenience. The cell size should be less than the mean
free path of the gas as well as small enough to capture the physics of the flow-field.
A sufficient number of particles must be present in each cell to accurately
characterize the velocity distribution function. On average, a particle should not cross
a whole cell during the time step so that it has a chance to collide with physically
valid collision partners.

The no time counter scheme (Bird, 1998) is used for collisional sampling.
The total number of collisions N,4, per unit time per unit volume between molecules
of species p and g, is:

Ny =101 2.1)
where n, and n, are the number densities of species p and g, o7, denotes the total
cross-section, and g,, is the relative speed. The average value is obtained by
integration over the velocity distribution function.

However, evaluation of the average of the product of relative speed and
collisional cross-section requires calculations of the order of the number of particles
per cell squared. The no time counter methodology greatly reduces the computational
load by taking advantage of the probabilistic acceptance-rejection procedure. The no

time counter scheme is such that
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pairs = 2_NquFNAt{(O-Tg)

c

MAX } Pq

(2.2)

where N, pairs are selected from the cell for consideration to be collided. In Eq.

(2.2), V. is the volume of the cell, N, and N, are the number of computational
particles in the cell, At is the time step, and Fly is the particle weight. These pairs are
chosen at random from the particles in the cell and the collision probability P of a

chosen pair is evaluated as

P — O-Tg
{(O-Tg)MAX }pq

(2.3)
Each sampled pair is checked for collision using the acceptance-rejection
method. It is most efficient if the maximum probability of collision is almost one. In
this case, only one random number must be used to determine if the pair of molecules
collide or not. A random fraction is chosen from zero to one, and if it is less than the
collision probability of Eq. (2.3) for the chosen pair, the collision occurs. Otherwise,
the collision is rejected. The colliding particles are scattered according to the
appropriate molecular cross-section model.
The DSMC code has also been modified to include the effects of internal
energies, chemical reactions, radiation, and other collisional events important to low-
density gasdynamics (Bird, 1998). The DSMC method makes no assumptions other

than those already implied by the Boltzmann equation (Nanbu, 2000). Being a
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stochastic method, DSMC may produce noisy results as the number of particles used

is typically far fewer than the number of actual molecules.

2.3.2 Neutral Particle Loading

Particle loading is the first procedure in the process of a DSMC simulation.
The cells are to be populated according to the local density number and particle
weight. From a computational point of view it is more convenient to set initially the
total number of computational particles. In this case, the particle weight can be

calculated by integration throughout computational domain

Jns(r)dV

s
N

where F, is the particles weight of species s, N is the total number of computational
particles and n, is density number of real atoms or molecules of gas. Usually the

numerical value of particle weight is very high, and N; is very small in comparison
with number of real gas molecules in the gas system to be modeled. Each particle is
characterized by its position vector r and velocity v.

It is assumed that the distribution of particles inside each cell is uniform and
the number of computational particles inside the cell is calculated in accordance to
the volume of the cell and total particle weight. Particles are randomly distributed
within a cell with initial velocities based on the assumption of thermal equilibrium
and independence of particle velocity components. Therefore, the distribution

function for one component of thermal velocity is
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fu—\/;ep(

) (2.5)

where [ = 1/21% Due to the independence of the velocity components, the

distribution function that describes u, v, and w is a product of type (2.5) functions as
given by
_ ﬂ ’ 2(. 2 2 2
f ——36Xp(—ﬂ (? +v* +w )) (2.6)
2
Sampling from the Maxwellian follows standard procedures described by Bird

(1994).

2.3.3 Neutral Particle Injection

The injection boundary condition is an important part of the DSMC
methodology. It allows a free-stream to enter the domain with prescribed conditions
(herein, from a drifting Maxwellian distribution). The injection boundary condition is
useful in modeling external flows of a body moving relative to the gas velocity or in
modeling internal flows such as a nozzle where gas is injected into the system from
near equilibrium conditions.

The number of particles to be adding into the simulation can be evaluated
based on analysis of molecular flux across a surface element. Without loss of
generality, we can choose such a coordinate system where two of coordinate axes are
in the injection plane. A coordinate system is chosen in such a way when the surface
element lies in yz-plane, and mean flow velocity of injected particles is in xy-plane.
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The inward number flux N can be defined by integration of the velocity

distribution function
Ny =n[ [ ufdudvdw (2.7)

In this coordinate system, particle velocity can be expressed in terms of a

mean flow velocity ¢, and a thermal molecular velocity (u’, v’, w’).
u=u'+c,cos(6)

v =v'+c,sin(6) (2.8)

w=w'

Equation (2.7) can be rewritten as

NS =n, ﬂ}; f:f:f:cos(g)(u’ + cocos(H))exp(—ﬁ2 (u’2 N i ))dudvdw (2.9)

Va

After integration, this expression becomes (Bird, 1998)

N, = 255 p (exp(—s2 cos’(6)) + \/;scos(e){l +erf (scos(@))}) (2.10)

erf denotes the error function. The molecular speed ratio s is given by

s=f (2.11)

The value of N, can be interpreted as number of gas molecules of the species
of interest crossing a unit area surface element per unit time with mean flow velocity
¢,. The number of computational particles to be added AN, during a time At is given
by

S

AN, =

SAt (2.12)
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where F, is the particle weight and § is the area of the surface element.

While the number of new computational particles is known, each particle
must be characterized by position and velocity vectors. The position vector can be
easily generated if we assume uniform distribution over surface element. The

velocity vectors are distributed according to
f o (u" +cyc08(6) Jexp(—B7u’? ) (2.13)

To apply the acceptance-rejection method to this distribution, it is necessary

to obtain the maximum value by evaluating

i o exp(—7u'? [ 1-28°u'(u’ + c,c08(8))| = 0 (2.14)

ou
The most probable thermal speed, which corresponds to the maximum value
of the distribution function can be found as solution of the quadratic equation

1-28%u'(u' +c,co8(6)) = 0 (2.15)

The above has two solutions

B —ﬂzcocos(é’) + ﬁ\/,é’zcgcos2 (6?) +2
= 25

!

u

(2.16)

Due to the choice of coordinate system, u' must be greater than zero and

therefore the solution may be written as

L \/cocos (9)+22/ﬂ — c,cos(0) @17

Taking into account the last expression, the ratio of probability to the
maximum probability used in the acceptance-rejection method is given by
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P _ 2(u’ +¢, cos(é’))
B \/cgcosz (0)+2/ B —c,co8(6)

<ol 1+ L o) [ @)

(2.18)

The v’ and w’ velocity components are generated following the same

procedure that was used for particle loading.

2.3.4 Collisional Methodology

Hard Sphere Model

Though molecular interactions often depend on complex quantum mechanical
considerations, it is convenient to treat them through consideration of a
phenomenological collisional cross section defined by their interaction potential. In
general, neutral molecules exert collisional forces by spherically symmetric fields
which are weakly attractive at large distances and strongly repulsive at short
distances. Classical kinetic theory generally assumes hard sphere or Maxwell
molecules for ease of calculation and since real gases exhibit behavior between these
limits. The hard sphere molecular model assumes molecules of a constant size with
scattering determined through the mechanics of two hard spheres colliding.
However, the hard sphere model does not accurately characterize molecular
interaction. Highly accurate models, such as the Lennard-Jones potential model

1

K K

T e

[from Bird, 1998]), the Sutherland model (which adds

an inverse power attractive potential to the hard sphere model), and inverse power
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law may be applied to the DSMC method. However, these methods are generally
more computationally intensive than hard spheres. It is desirable to use a method that
is both computationally efficient and accurately reproduces the behavior of real gases.
In the hard sphere molecular model, all real molecules and atoms are presented as
rigid spheres with a symmetric force field specified by its radii and masses. While
mass of the computational particle directly corresponds to mass of the real particle,
the radius of the computational particle represents the characteristic length of the
interaction force between real gas particles.

In elastic binary collisions as shown in Figure 7, the kinetic energy and

momentum of the pair of particles must be conserved:

mvi +mvi = my () +my (V) (2.19)

MYV, + MV, =myv, +m,v,

The subscripts / and 2 denote the particle numbers and m and v are mass and
velocity of corresponding particle. Post-collision values of velocities are marked by
superscript *. It is convenient to describe collision process in the center of mass
system of reference moving with velocity

_ myv, +m,v,

Von (2.20)
m, +m,
Particle velocities in this frame of reference are
m,
vV, =v,_, +
m, +m,
(2.21)
m
V2 = ch -
m, +m,
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where g = v, — v, is the relative velocity.

Figure 7. Interaction of Hard Sphere Molecules (from Bird, 1998)

It is convenient to evaluate the post-collision relative velocity in a coordinate
system (x’, y’, z’) where X’ is in the direction of the pre-collision relative velocity g.

The components of the post-collision relative velocity g* are given as

g =geos(x)
g, = gsin(y)cos(¢) (2.22)
g. = gsin(y)sin(¢)
where y is the scattering angle and ¢ is the angle between the plane of collisions
(where the pre-collisional and post-collisional relative velocities lie) and the x-y

plane. Transformation into the initial system of coordinates (x, y, z) gives the

components as
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g, = g.cos(y)+sin(y)sin(e)\/g, + g’
g, =g,cos(y)+ sin(;()(ggzcos(g) -g.8, )/1 lg+g! (2.23)
g, = g.cos(z)-sin(z)(gg.cos(¢)-g.8,)/ g + &

Finally, the pair of the post-collision velocities is given by

* m, *
vl = ch +
ml + m2
(2.24)
* ml *
V2 = ch -
ml + m2

The collisional process is expressed in terms of a differential collisional cross

section o and a total collisional cross-section o, , where subscript p and g denote

particular species. The collision cross section is an atom specific quantity and is a
function only of the kind of interaction potential involved in the collision and the

relative particle speed. If one considers the situation where there are n, molecules
per unit volume with velocity v, and n, molecules per unit volume with velocity v, .
Consider collisions between molecules of these two classes for which the relative
velocity g~ after collision lies in the solid angle d2 centered about the direction
specified by the angles y and &. The differential cross section o, is defined such
that the number of collisions per unit volume of the above type pre unit time is
mn,o, gdCQ). The cross-section has dimensions of area and is proportional to the
probability that a collision at a relative speed g will result in a deflection y. The

differential cross-section is given by
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= il 2.25
Tra sin(;g)‘@;( (2.25)

If the molecules are represented as elastic spheres of diameter d , the angle of

incidence is equal to the angle of reflection and the impact angle € is related to y as

1
9:5(,[_;() (2.26)
The impact parameter is given by
b=dsin(0)=d cos(% 7) (2.27)

and

‘ /d sin /Z) (2.28)
The differential cross-section is then (Bird, 1998):
o = (2.29)

For the case of species with different diameters, it is necessary to replace d by d;,

where
1
d,= E(dl + dz) (2.30)

The total cross-section may be obtained by integration of the differential cross-section
over all solid angles. Since the interaction potential is spherically symmetric, this

becomes:

o, =270, sin ydy (2.31)
0
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Integrating, the total cross-section becomes (Bird, 1998)
Oy = 7ds . (2.32)

Similarly, a momentum transfer (or diffusion) cross-section may be defined:
oy =27Z'J.qu(1—COS y)sin ydy (2.33)
0

Integration reveals that for the hard sphere model, the momentum transfer cross-

section 1s the same as the total cross-section:
2
Oripg = Orpg = d,, (2.34)

The total cross-section may be used to determine the number of collisions in a
cell and for the probabilistic selection of collision partners in the no time counter
methodology. Since the differential and total cross-sections are independent of
scattering angle, the post-collision value of relative velocity is isotropic with respect
to the center of mass frame of reference. That is, all directions are equally likely for
g". If a pair is selected to undergo a collision using the no-time counter methodology,
the direction of the post-collision relative velocity is selected randomly. The
velocities of each of the particles are then updated with respect to conservation of

momentum and energy for the pair of particles using Equation (2.24).

Variable Hard Sphere Model

Bird (/980) proposed a model in which molecular scattering is performed
identically to the hard sphere model, but the diameter of the molecule involved varies

according to an exponent which may be set in order to attempt to match the
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collisional behavior of real gases. This is the variable hard sphere model (VHS) and

the diameter of a molecule of interest is given by:
gre 14

where d,..r and g, are reference values chosen to provide the appropriate interaction
potential based on empirical data and v is the VHS exponent, also chosen to best
match the interaction potential of known empirical data. The general behavior of

VHS diameter as a function of temperature can be seen in Figure 8 for nitrogen.

Nitrogen Variable Hard Sphere Diameter
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Figure 8. Variable hard sphere diameter for nitrogen gas molecules with mean
relative speed as a function of temperature (v=0.24).
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The cross-sections for molecular interaction are determined as one would for
hard spheres, as is the scattering angle. The total cross section (Eq. (2.31)) and the
momentum transfer cross section (Eq. (2.33)) for interaction between molecules / and

2 are identical, as in the hard sphere case and given by

2
op =0, =7d, = %(dl,ref '[gi;fj +dy '(g?:fj J (2.36)

In order to sample collisions in the no time counter scheme, the product of the

total cross-section and the relative speed of the potential collision pair is needed. For

the VHS model, the appropriate expression is:

2
_ 2 7T gl,ref 1 g2,rejf ’
(0,8)=mgd,” = Z[dw R +d,y s J (2.37)
4 -V i .5-v, vy 2
(O-Tg) = Z <g0.5 (dl,refgl,ref ) + gO ’ (dz,refgz,ref )) (238)

2.3.5 Internal Degrees of Freedom

For monatomic gases, the energy of the molecule is purely translational,
except at very high temperatures when the electronic energies must be considered.
For diatomic or polyatomic molecules, the effects of rotational and vibrational
energies must also be considered. While a detailed treatment of energy transfer
between internal degrees of freedom is a problem of quantum mechanics, a
phenomenological description may be developed that is computationally efficient and

accurate for engineering purposes.
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Quantum mechanics expresses the energy in discrete energy levels. Sensible
energy is measured above the ground state, which all particles would reach at
absolute zero (ignoring quantum fluctuations). If the energy levels are closely spaced
in the regime of interest (i.e. if the characteristic temperature of level transition is
sufficiently low compared to the energies of interest) then energy may be treated as a
continuum. If energy levels are widely spaced in the regime of interest then this must

be taken into account.

Larsen-Borgnakke Model

The Larsen-Borgnakke model (Borgnakke and Larsen, 1975; Bird, 1980,
Bird, 1998) is a phenomenological model for the exchange of internal and
translational energies of a gas molecule. In the Larsen-Borgnakke model, a fraction
of the collisions are regarded as completely inelastic and new values of internal and
translational energies are sampled from a distribution based upon the effective
temperature of the collision. The fraction of inelastic collisions is known for gases

from relaxation rates.

Rotational Degrees of Freedom in a Gas Mixture

Gases in general have characteristic temperatures of rotation near absolute
zero. When the overall temperature is much higher than this, as is the case in near-
field plumes where collisional effects dominate, the rotational levels are very closely
spaced and may be regarded as continuous (classical treatment). The Larsen-

Borganakke model redistributes energy between different energy modes (rotational,
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translation, etc.) from a Maxwellian distribution based on the effective temperature of
the collision.

Consider a collision between molecules of type 1 and type 2. Following the
notation of Bird (1998), let = denote the average number of degrees of freedom in a
collision. =, and =), denote one group of degrees of freedom with energy to be
distributed and the remainder of the degrees of freedom for a particular collision,
respectively. E, represents energy to be assigned to the first group of modes and £},
the energy to be assigned to the remaining modes. The Larsen-Borgnakke result for
the distribution of energy between the two groups is (Bird, 1998)

Ea
E,+E,

a

E I'e +& E = _ E =
)= = eI E) B e B a50)
E +E, T(E)E,) E +E, E +E,

a

f(

where f is the distribution function of the appropriate quantity and /" is the gamma

function,
T(j) =[x exp(-x)dx. (2.40)
0

Since the sum of the total energy in the collision is constant, it can be shown

that the average value of £, is

—

E —Z¢ _(E +E,) (2.41)

a(average) = —
+E,

[1]

This shows that the Larsen-Borgnakke model leads to equipartition of energy
(Bird, 1998).
For the special case of a mode with two degrees of freedom, =,=/ and the

expression for the distribution of E,:
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E _ E, s
‘) =E,(1- )=
E +E, E +E,

a a

f(

(2.42)

It can be shown (Bird, 1998) that for the two degrees of freedom case, this
distribution may be sampled using

Ze =1-R/® (2.43)
E,+E,

In this equation, Ry denotes a random fraction from zero to unity. If energy for
a number of degrees of freedom other than two is up for redistribution, then the
acceptance-rejection method must be used to find an appropriate value (Bird, 1998).

The Larsen-Borgnakke method, while completely phenomenological, has
several strengths that lend to its usefulness for engineering computations. Energy is
conserved and equipartition of energy is preserved on average. The method is based
on the effective temperature of the collision, precluding any bias from local flow
conditions. The Larsen-Borgnakke method allows arbitrary groups of energy to be
redistributed, which may be taken advantage of in serial redistribution of molecular

degrees of freedom.

Harmonic Oscillator Model for Vibrational Energy Exchange

Gases usually have characteristic vibrational temperatures in excess of 1000K,
so vibrational levels cannot be considered closely spaced. In addition, as the
temperature becomes higher, dissociative and ionization effects become important as
well. In general, detailed modeling of vibrational degrees of freedom involves energy

transfer between translational and rotational modes to the vibrational mode of
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interest. For most engineering applications, the above approach is unnecessary unless
there is sufficient non-equilibrium to warrant the detailed treatment.

The Larsen-Borgnakke model may be extended to be applicable to discrete
energy levels suitable for modeling vibrational energy transfer. Vibrational energy
levels are generally anharmonic, as the space between energy levels becomes smaller
as energies become larger. If it is necessary to model the anharmonic nature of
vibrational energy levels along with dissociation, a scheme presented in Bird, 1998
may be used.

Vibrational energy levels are often modeled as harmonic oscillators with
evenly space discrete energy levels. The harmonic oscillator approximation is good if
only the first several vibrational energy levels are of interest and the effective
temperature of the molecular collision is typically far beneath the characteristic
temperature of dissociation (usually in excess of 30,000 K).

Bergemann and Boyd (1993) developed a computationally efficient form of
the Larsen-Borgnakke model for vibrational energy exchange using the discrete
harmonic oscillator approximation. The equilibrium energy distribution for harmonic

oscillator vibrational energy levels i in a gas is
fon(E Q)= L[1 —ex (—9)]ex (—%)5(E —ik®);i=0..00  (2.44)
vib vib kT p T p kT vib 4 . .

where J is the Dirac delta function and E,; is the vibrational energy. The
characteristic temperature of vibration is

hv
0, = 7, (2.45)
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where v is the characteristic frequency of the oscillator and / is Planck’s constant.
The energy of level i of a particular mode is

E,; =ikO,, (2.46)

Since the Larsen-Borgnakke model allows the serial redistribution of energy
from multiple groups, vibrational energy redistribution may be done after
redistributing rotational energy (Bergemann and Boyd, 1993) or before (Bird, 1998).
The method presented here redistributes vibrational energy prior to rotational energy
exchange following Bird. The normalized distribution function for post-collision

vibrational level is:

Sy AR (2.47)
fmax E( collision)

where ®,, is the temperature exponent of viscosity for molecules of type / and 2.

The distribution function f'is a function of the collisional energy and the post-
collision vibrational energy level number i. Since the collision energy is known, i
may be sampled using the acceptance-rejection method. At first an integer is
randomly selected from the possible values of post-collisional vibrational energy
level according to the total collision energy. It is known that f,,, lies at i=0. The
acceptance-rejection procedure is applied until i is determined. The collision energy
is appropriately reduced to ensure energy conservation.

The methodology for discrete harmonic oscillators is an implementation of the
generalized Larsen-Borganakke model and shares its advantages. The vibrational
mode of interest may be redistributed serially with rotational or other vibrational
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modes. In the case of two particles with internal energies, the Larsen-Borgnakke

model may be applied to each particle in turn.

Validation of Larsen-Borgnakke Model for Rotational Relaxation

The relaxation of a rotational temperature is considered in order to validate the
continuum form of the Larsen-Borgnakke model for rotational degrees of freedom.
For known initial values of translational and rotational temperatures, an otherwise
unperturbed gas will relax towards an equilibrium temperature. The formulation of
the Larsen-Borgankke allows an analytical expression for the temperatures of rotation
and translation (from Bird, 1998):

T,=T,—(T,-T,,)exp(-vAr) (2.48)

In this equation, 7;is the temperature of internal modes, 7, is the equilibrium
temperature of the gas, and 7;, is the initial temperature of internal modes. The
collision frequency, v, may be determined from the molecular model, either hard
spheres or variable hard spheres. To test rotational relaxation, nitrogen is used with
the translation temperature set initially to 500 K and the rotational temperature set to
0 K. The rotational collision number (which is the typical number of collisions
before rotational energy is redistributed), //4, was set to be 5, typical for nitrogen.
The analytical expressions for translational and rotational temperature become:

T, =300+200exp(—vt/5) (2.49)

T

rot

=300{1 —exp(—vt/5)} (2.50)
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These analytic results are compared with DSMC computations in Figure 9 of a
gas with no energy transfer to the boundary in terms of the product of collision rate
and simulation time. The scatter shown is well within statistical scatter for such a
small number of particles (20,000). The results are comparable to those in Bird,
1998. The VHS exponent for the case is 0.24 (viscosity temperature exponent ~
0.74). The HS calculations lies within the bound of the theoretical equations and the

VHS calculations match the theory almost exactly, as in Bird.

Rotational Relaxation (HS) Rotational Relaxation (VHS)

400 i 400

Temperature
n (]
[=) (=)
o o

Temperature
n (9]
(=] Q
(=] (=]

100 100

Figure 9. Analytic (solid lines) and computed (dashed lines) values of
translational and rotational temperature (upper and lower contours,
respectively) [K] graphed against the product of collision frequency and

simulation time. HS and VHS molecular models.

Several different formulations have been considered in other works as
attempts to improve on the Larsen-Borgnakke method. Energy may be distributed

internally based upon collision pairs instead of considering each molecule in a pair
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individually. By comparison with the analytical results above, the relaxation for the
formulation based on collision pairs happens more slowly.

One criticism of the Larsen-Borgnakke model is that it is physically
unrealistic in as far as only a fraction of the collisions are considered inelastic.
Another formulation distributes a fraction A of the calculated change in rotational
energy at each collision. As Bird (1998) points out, this does not satisfy detailed
balancing and the result does not lead to the analytic temperature distribution for
rotational energy. These procedures are avoided and the Larsen-Borganakke model is
accepted for what it is — a phenomenological method that accurately predicts transfer
of energy to internal modes for situations where the concept of an effective
temperature of a collision is valid. If it is highly desirable to accurately model
translational energy transfer or if the assumption of random molecular orientation is
far from valid, more accurate transfer models may be used at the expense of higher
computation time. The Larsen-Borgnakke model has shown good results in
comparison with empirical data for flows of engineering interest, including those

where equilibrium of translational temperature breaks down.

Validation of Larsen-Borgnakke Model for Vibrational Relaxation

The discrete Larsen-Borgnakke model for vibrational energy may be validated
by comparison with computational results of known validity. As the method of
redistribution is identical to Bird’s methodology, we turn to his handbook (Bird,

1998) that provides an excellent example for comparison. Again, the general scheme
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is to examine relaxation times versus temperature for a gas with internal degrees of
freedom initially set to zero vibrational temperature and a high translational
temperature.

The DSMC simulation took place in an adiabatic box using a diatomic gas
with a single vibrational mode with a characteristic temperature of 2000K. Variable
hard spheres were used as the molecular model. The translational temperature was
initially 5000K and the rotational and vibrational temperature was initially 0K. The
collision numbers for rotational and vibrational energy exchange were both set to be
5. Though five is unrealistically high for a collision number for vibrational exchange,
it allows the behavior of the rotational and vibrational energy exchange to be
compared. The vibrational temperature of the gas was determined from the near
equilibrium equation:

T,=0,/In(N,/N,) (2.51)
where N, and N; are the number of molecules in the ground and first excited state,
respectively.

The results shown in Figure 10 agree well with Bird, both qualitatively and
quantitatively. The discrepancy between vibrational temperature evolutions may be
due to different values of the variable hard sphere exponent between this simulation

and that of Bird, as the VHS exponent is not given by Bird for this simulation.
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Figure 10. Comparison of calculated rotational, vibrational relaxation with
Bird’s results. Eqn. 11.31 in Bird is the results if vibrational energy was

continuous rather than discrete.

2.3.6 Boundary Conditions for Gas-Surface Interaction

The details of gas-surface interaction are not generally known for an arbitrary
surface. When a gas molecule strikes a surface, it may be absorbed, react with the
surface, or be reflected. Unless surface mechanics are important in the problem of
interest, it is standard practice in DSMC to assume that all gas molecules impinging

on a surface are reflected.

71



When a gas molecule strikes a surface, some or all of its momentum and
energy may be transferred to the surface. Similarly, the thermal (vibrational) motion
of the surface molecules may transfer momentum and energy to the gas molecule.
Determining how much momentum and energy is transferred in a gas-surface
collision is a detailed problem based primarily on surface roughness and the gas
adsorbed on the surface. A qualitative model of gas-surface interaction may be
developed by the specification of accommodation coefficients — for energy (thermal),
normal and tangential momentum. The accommodation coefficients expresses the
ratio of the quantity transferred between the gas molecule and the wall over the
quantity available for transfer.

The thermal accommodation coefficient (Wachman, 1992) is defined as the
difference in temperature (equivalently, energy) between the impinging molecule and
the reflected molecule over that between the impinging molecule and the wall,
according to

E,

_ chident - T;'eﬂected _ incident - E reflected (2 52)

T " E

incident surface

incident — ™ surface

where Eguquce 15 the energy that would be carried away by the molecule if it had
totally equilibrated to the surface temperature.  The limits of the thermal
accommodation coefficient, zero and unity, correspond to a molecule reflecting with
no energy exchange to the wall and total thermal accommodation with the wall,

respectively. These correspond to specularly and diffusely reflecting boundaries.
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For specularly reflecting boundaries, no momentum or energy is exchanged
with the wall. Specular reflection may be used to model either rigid surfaces or
planes of symmetry. If a particle strikes a specularly reflecting surface, the normal
component of the particle’s velocity changes its sign.

For diffusely reflecting boundaries, the temperature of reflected particles is
given as the wall temperature. After the particle strikes the boundary, a new velocity
must be prescribed to the particle, which is generated through the equilibrium
distribution with the wall’s temperature. This is similar to the injection of particles
from a surface element using the Maxwellian distribution with zero mean flow
velocity.

As most engineering surfaces have sufficient microscopic roughness and
adsorbed gas molecules near the surface, using diffuse reflection is a good
characterization of the boundary. Conditions where this assumption is questionable

are given in Bird, 1998.

2.3.7 Neutral Particle Motion

The DSMC method is a stochastic solution to Boltzmann’s equation:

of 1 of j
i veVf+—FV, =L 2.53
8t v f m Vf ( at collisions ( )

where fis the velocity distribution function and Vv is the del operator with respect to
velocity space coordinates. Since the DSMC method uncouples collisional and

movement operations, the particle motion phase of computations corresponds to
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solution of the collisionless Boltzmann equation. The equations of motion for a

neutral particle are

mﬂ =F (2.54)
dt

dx

—=vV 2.55

7 (2.55)

For a non-constant (or non-uniform) body force, an integration scheme must
be used to update the equations of motion. However, the only forces on neutral
particles is the collisional force and gravity. Collisions are dealt with using the
molecular cross-section concept. As gravity is constant, no accuracy is lost in the
application of the force either before or after the particle motion phase of
computations.

Particles are moved between adjacent tetrahedral cells using a particle tracing
technique. The intersection of a particle with the plane defined by a triangular cell
face is expressed as a system of linear equations involving two edges of the face, the
current particle position, and velocity. Solution of these equations yields the time of
intersection and point of intersection in a skewed coordinate system defined by the
edges used in the calculation. Intersections occurring outside the face or in negative
time are ignored. If the particle does intersect the face, its position and owning cell
are updated. Small displacements are made relative to the face dimensions if the
intersection occurs near the edges of the face, in order to avoid intersecting near an
edge that may lead to an incorrect solution with any finite precision. Each face of the

current cell is checked in turn for intersection.
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Figure 11. Skew local coordinate system used for particle tracing for face ABC.

Following Figure 11, the intersection of a particle with initial position r, and

velocity v with face ABC is
r +vri=adB+ fAC (2.56)

In this equation, AB and AC are the vectors from point 4 to points B and C,
respectively, 7 is the time elapsed in moving from the initial point to the plane defined
by points 4, B, and C; a and f define the point of intersection in the skewed
coordinate system of face ABC. If the time 7 is negative, an intersection does not
occur. If a or /5 are less than zero or greater than unity, an intersection does not occur
within the face. If the sum of a and g is greater than unity, then the intersection
occurs outside the face.

The linear system of equations does not necessarily have good characteristics
and may be ill-conditioned if the cells and corresponding faces are badly shaped or
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velocity is very large. In practice, the former is more severe than the latter as the

latter may be prevented by using a smaller global time-step.

2.4 Plasmadynamics via the Particle in Cell Method

The necessary equations for expression of the electrostatic condition are
available from two of Maxwell’s equations:

_ OB _
ot

VxE= 0 Faraday's Law (2.57)

vV.E=L Gauss’s Law (2.58)

This limit assumes the magnetic field induced by currents in the domain of
interest is negligible, though a external magnetic field, B, (nearly) constant in time is
still permitted in the approximation. In the electrostatic approximation, the electric
field may be expressed as the gradient of a scalar potential:

E=-VO (2.59)

Gauss’s law then becomes Poisson’s equation for the case of electrostatics:

Ni
2.4 +4.n,
— _ =l
& & (2.60)
In the above, the total charge density in the volume of interest is p; €, is the
permitivity of free space; NV; is the number of ionized species; ¢ is the charge per
particle, and # is the number density. The subscripts i and e denote ion and electron

species, respectively.
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The differential form of Gauss’s law may be applied over a closed surface S

with outward unit normal n which and results in the integral form of Gauss’s law:

e, §pEhda=[[[ pav =0 (2.61)

where Q is the total charge enclosed.

2.4.1 Charged Particle Loading

The loading of the domain with charged particles is accomplished in a manner
identical to the loading of neutral particles described in Section 2.3.2. Particle
velocities are sampled from a drifting Maxwellian distribution function. Positions are
randomly assigned such as to maintain the necessary density. As the leap-frog
method is used for the integration of the equations of motion for charged particles, it
is necessary to move the velocities back half a time step using the force field values at

the initial time. This is done after all particles are loaded into the domain.

2.4.2 Charged Particle Injection

The injection of charged particles into the domain is accomplished in a
manner identical to the injection of neutral particles described in Section 2.3.3.
Particle velocities are sampled from the portion of the Maxwellian equilibrium
distribution function that correspond to particles which could physically cross an
open surface with the prescribed drift velocity. As the leap-frog method is used for
the integration of the equations of motion for charged particles, it is necessary to

move the velocities back half a time step using the force field at the current time.
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This is done after each particle is moved into the domain a random fraction of a time

step using the initial velocity sampled from the equilibrium distribution function.

2.4.3 Charged Particle Motion

In a plasma, the equation of motion of a particle is coupled with the
electromagnetic fields. The equations of motion for non-relativistic particles in

vector form are:

mﬂ =F (2.62)
dt

dx

2y 2.63

7 (2.63)

The leap-frog method shown schematically in Figure 12, obtains second-order
accuracy in time through use of a velocity that is staggered at half time-steps relative
to the particle position. The particle position and velocity derivatives are discretized

using a linear finite difference form:

n+1/2 n-1/2
A\ -V

m————=F" 2.64
Y (2.64)

X -x (2.65)

where n is the time-step counter. The time centered property of the discretized
equations is what gives second order accuracy, as can be seen from examination of
the Taylor series. The leap-frog method requires minimal information to be stored

with respect to velocity and position, as the new values of velocity and position may
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be updated directly from previous values and only one set of velocity and position

components need be stored.

/
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position
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Figure 12. Schematic of leap-frog integration method (from Birdsall, 1991).

In the case of PIC, the force on a charged particle is due to the Lorentz force:

N _9(g4vxB) (2.66)
dt m

This may be discretized by using a time-centered average for the magnetic term,

consistent with the leap-frog formulation. The discretized form of the equation is:

n+l1/2 n—1/2 n+l1/2 n—1/2

q n V n
=—(E'+—xB 2.67
Y -t 5 ) (2.67)

\%

Since the previous velocity is known, the above represent a set of three
equations and three unknowns for the velocity at the new time step. However,
computationally faster methods have been developed to obtain the new velocity. The
methodology discussed here is from Birdsall et al., (1991) following a method

developed by Boris, (1970).
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The magnetic and electric forces may be separated completely from the

substitution of two new variables into the discretized force equation:

v =y —%% (2.68)
Vn+1/2 — V+ + qE g (269)

m 2
Contributions from the electric field cancel entirely, which leaves just a

rotation due to the magnetic field:

ViV g
=— (V" +v )xB 2.70
A 2m( ) (2.70)

Half of the electric impulse is added to the initial velocity to obtain v, the
rotation is performed to obtain v', and then the second half of the electric impulse is
added to v".

The magnitude of the angle of rotation can be evaluated from construction of

the vectors v' and v according to

v glB|ar @.71)
|VI+V1| m 2 )

0
tan—

2

The velocity components in this equation are perpendicular to the magnetic
field and @ is the angle between the velocity vectors.

Several steps are necessary to implement the rotation due to the magnetic field
efficiently. First, v~ is incremented to produce a vector v' which is perpendicular to
both (v" — v~ ) and B according to

vi=v +v xt (2.72)
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The vector t is defined from the requirement that the angle between v~ and v"

is 6/2 according to

(= 4B A Q2.73)
m 2
Since v' — v~ is parallel to v'xB, v' can be found from
Vi =V +vV'xs (2.74)

The vector s is parallel to B and its magnitude is determined by the requirement that
the square of the velocities (kinetic energy) is unchanged by the rotation according to

g2
1+¢

(2.75)

This algorithm, from Boris (/970), may be made relativistic if necessary for
the simulation.

Updating of particle positions is performed identically to that of the neutral
case, using the particle tracing technique for unstructured tetrahedral grids.

Consideration of grid quality for PIC computations has the same issues as for DSMC.

2.4.4 Validation of Leap-Frog Integration for Particle Motion

A simple test was performed to ensure that leap-frog integration was
implemented correctly and that sufficient accuracy is achieved for particle velocity
and position versus time. A single ion was placed randomly in a domain with a
steady electric field (1000 V/m) resulting from the monotonic decay of potential

between two infinite conducting plates 0.1 m apart. The force should be steady on
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the particle — velocity is expected to increase linearly and position quadratically. The

particle was monitored until it hit a surface.
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Figure 13. Particle velocity in x-direction versus time. The line indicates analytic

results and the symbols are calculated results.

Computational results shown in Figure 13 and Figure 14 are nearly identical
to analytic results. It was noted in preliminary results of this test when runs were
made with multiple particles and a very large time step that some particles escaped
the domain, despite the precautions taken to detect and eliminate lost particles. These
particles contributed physically unrealistic values of charge due to use of the
Lagrange weighting procedure outside of the domain. This illustrates the importance

of using a time-step appropriate to the simulation of interest.
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Figure 14. Particle position versus time. The line indicates analytic results and

the symbols indicate calculated results.

2.4.5 Finite Volume Method for Poisson’s Equation in Delaunay

Tetrahedral Domains

The finite volume method separates the domains into discrete control
volumes. In each control volume, the differential equation is discretized. When
applicable, integrals over volume involving gradients are transformed into integrals
over surfaces using the divergence theorem. Similarly, integrals over surfaces may be
transformed into integrals around closed contours and back using Stokes’s theorem.
Quantities in a single cell, face, or edge may be considered constant or vary
depending on the formulation or accuracy desired.

The order of error for a finite difference or finite element formulation is given
as the highest derivative kept from a Taylor series expansion. Using two evenly

spaced points about the point of interest, one may obtain an expression second-order
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accurate in space for the first derivative. Considering the direction x to be the

direction that the points are collinear:

a—”j = Dt "o O(Axy (2.76)
ox ), 2Ax

Overall accuracy may be increased by considering more points in the Taylor series or
using small values of spacing.

In this work, advantage is taken of the Voronoi dual of the Delaunay
triangulation in order to formulate a finite volume method for Poisson’s equation with
accuracy adequate for engineering calculations. The Voronoi cell corresponding to
each Delaunay node contains the set of points closer to that point than any other.
Also, the facets of the Voronoi cell are orthogonal to the lines joining the tetrahedral

nodes.

Finite Volume Formulation

If one considers a node-centered finite-volume scheme with finite volume i
associated with node i with a number of faces Ny that is (in theory) small enough to

accurately capture the physics, the semi-discrete equation form of Gauss’s law is:

Np,i
D EA,, = 9 (2.77)
k=1 &,

In the above, Q; is the total charge enclosed by volume i, 4; is the area of the
face k of associated with volume i, and the summation is over all the faces of the

finite volume as shown in Figure 15 for a 2-D case. Using the electric potential ®:
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qu"(ﬁfl) =§:(A8£j -2 (2.78)

ik k=l on

where Ai=(An)ix is the magnitude of the area of the face k for the volume
associated with node i multiplied by the unit outward normal vector. In deriving Eq.
(2.78), we used the definition of the gradient,

v =22 (2.79)
on

As the planes defined by the faces of the Voronoi dual are orthogonal to the
edges of the tetrahedral grid and contain the midpoint of each edge, an expression for
the derivative at the faces of the Voronoi dual may be obtained from the central
difference method which is second-order accurate with node spacing.

o0) @, -d, .
— | ==L 0(h?). 2.80
6’11 7 (h7) (2.80)

Here, io (equivalent to i-/ in a standard finite difference lattice) denotes the index of
the node in the Voronoi cell of interest, i+/ is the index of the node at the opposing
end of the edge, and L is the distance between the nodes. Note that switching places
of the index counters switches the sign of the derivative, which may be taken
advantage of during computations. The local value of node spacing (in this case, one

half the edge length) is denoted as 4.
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Figure 15. Example of 2-D Delaunay mesh (red lines)and its Voronoi dual (green

lines) used in electrostatic computations.

An approximation of the electric flux into a cell containing node i across a

Voronoi face corresponding to an edge with nodes k and i is:

%V‘D'(ﬁA),-,k = %(Cbk -®) (2.81)

ik
In the above, L; is the distance from node i to node £&. Summing over all faces k£ of a
Voronoi cell corresponding to node i, a system of linear equations may be formed

assuming the charge inside the volume, 0, is known. The system is

& A, 4

(D, -D );”‘:Q. (2.82)
i k L £

k=1 ik o

It is noted that this method reduces to the standard 2" order finite-difference method
on Cartesian meshes.

The matrix form of this equation is:
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R1,1 Rl,z R1,3 o Rl,N q)l Q1

Rz,l Rz,z R2,3 o R2,N (1)2 1 Qz

R3,1 R3,2 R3,3 o R3,N (1)3 = g_ Q3 (2~83)
_RN,I sz,z RN,3 e RN,N i o, Oy

N is the number of nodes in the mesh. R;; is the coefficient, which is determined by

Np, A
R, =Y~ fori=, (2.84)
k=1 ik
R .= —i if j is adjacent to i (2.85)
ML ’ '
]
R, ; =0 otherwise. (2.86)

—%/ is the ratio of the area of the Voronoi face between nodes i and j to the distance

i
between nodes i and j if the nodes.

The resulting symmetric matrix equations may be solved for using any standard
solution technique. The sparse matrix was stored in compressed row storage (CRS)
format that is computationally efficient both in terms of storage and matrix

operations. Details of the CRS format may be found in Hammel (2001).

Electric Field Evaluation

The divergence theorem may be used to construct the electric field (negative
of the gradient of the potential) in a volume of interest. For a volume V" bound by a

surface S composed of # faces F;, the divergence theorem is expressed as

jv-YdV = SBY.dA (2.87)
14 N
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where Y is a vector and dA4 is an outward normal differential surface element. A

formula for the gradient can be constructed through use of a constant vector &,

jv.(cbk)dV = gScpk.dA . (2.88)

Since k is arbitrary and constant, it may be taken outside of the integral and

divided out according to

ke j VOV = k-gS(DdA (2.89)
4 S

jvqadV = gSoDdA . (2.90)
vV S

To this point, the formulation is arbitrary and exact. If one assumes that the
gradient varies only slightly over the control volume and the potential is constant for

a given face, a discrete formulation of equation (2.90) may be constructed as follows:
VO = %ZQSi (2.91)
i=1

where S; is the outward normal vector of face i with a magnitude equal to the area of
the face.

Since the potential is known at the nodes and not the faces of either the
Delaunay or Voronoi mesh, averaging must be done to obtain the potential at the
faces. It is worth noting that this is a general method for finding the gradient on

unstructured meshes with minimal information.
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Another method of finding the gradient of a scalar function known at the
nodes on general meshes is the least squares algorithm. A locally linear variation of
the potential is assumed, such that

D, +VDAr =P, (2.92)
where, Ar is the vector from node 0 to node /. For a point with J neighbors, this may

be written in Cartesian coordinates considering the neighbor point j as

Ax.aﬂ +Ay.6£ +Az.a£ =@ -, (2.93)
J ax . J ay i J aZ , J
In matrix form, this is expressed as
Md = AD (2.94)
where, ﬁ is the J x3 matrix:

Ax, Ay, Az

= | Ax, A Az

M= y > (2.95)
Ax, Ay, Ax,

In Equation (2.94), d is the components of the gradient at node 0:

.
o
od
o
od

=

(2.96)

o

and A® is the length J vector of differences in ®:
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° (2.97)

This linear system contains J equations and three unknowns. Since in practice
J will be larger than three, this is an over-determined system. Physically, this means
that we cannot assume a linear profile for the potential around point 0 such that
exactly reconstructs the known solution at all of its neighbors. It is necessary to
search for a solution that fits this data in the best possible way.

The least squares method gives a way to find a solution to this system that
minimizes the root mean square value of error. The error in the reconstructed value
for pointj is given by

oo, o

oD
Rf :ij_ 5 J

+ Ay

o

(D, -D,) (2.98)

[

Ox 1574

The square of the error over all the neighbors of point 0 is

2
oD oD oD
R=SR>’=N|Ax.—| +Ay, —| +Az. —| —(® . - D 2.99
;J Z|: jaxo y]ayo j@zo (j o):| ( )

It is desired to find the derivatives of the potential such that the error is minimized.
The standard way is the differentiate R with respect to the derivatives of the potential
and set the result equal to zero:

_R___y (2.100)
a(@@

ox J
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OR

2 o (2.101)
8[8@ J
oy |,
_R___ (2.102)
oD
a el
(62 0]

This set of equations is the same as that obtained by multiplying the matrix

equation for M , d, and 4® by the transpose of M:

]

=T
M Md=M AD (2.103)
This is a set of three equations and three unknowns that may be solved for by

a standard linear algebra technique.

Implementation of Gradient Calculations on Unstructured Meshes

Several methods of calculating the gradient were studied in order to assess
their relative accuracy. Both the control volume approach (from the divergence
theorem) and least-squares approach gave an approximation of the gradient usable in
calculations.

The least squares approach was implemented using the neighbors of the node
sharing an edge of the Delaunay mesh. For the divergence approach, two different
control volumes studied produced acceptable gradients: a tetrahedron (cell-centered
gradient) and the volume of all tetrahedra which share the node of interest (node-

centered scheme). The schemes are assessed here for applicability.
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It is highly desirable to use the same particle weighting function as force
weighting function (Birdsall, 1991). Use of different weighting functions represents
different particle shapes for charge accumulation and field calculation and may lead
to non-physical instabilities (Birdsall, 1991). Use of the same weighting function for
charge accumulation and field distribution also eliminates the self-force and
conserves momentum (Birdsall, 1991). Therefore, if it is desired to use linear
Lagrange polynomials to accumulate charge at the node, the same function should be
used to weight the electric field (and magnetic field, when applicable) back to the
particles. Use of a tetrahedral cell-centered scheme is, in general, inappropriate to
this type of weighting. Averaging techniques could be used to obtain the value at the
node from the value at the cell, but it would be difficult to formulate an average that
conserved all the relevant quantities of interest as well as was identical to the linear
Lagrange function. Therefore, it is desirable for purposes of calculating the electric
field from the electric potential to use a method that gives the gradient at the node.
Cell-centered methods, if desirable, could be used for other purposes involving the
calculation of the gradient on unstructured meshes.

It is noted that the cell-centered tetrahedral method and the node-centered
method using all the cells bordering a node give equivalent results. It is obvious that
the results obtained using the explicit node-centered control volume approach
correspond to results at the node, while this is not necessarily obvious for the
tetrahedral cell-centered method. The control volume for an interior node i is shown

in Figure 16.
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Figure 16. Volume used for interior node i for the calculation of the gradient

using the divergence theorem.

Another method to calculate the gradient is the differentiation of the linear
Lagrange function which can be used to approximate the potential in a node. At the
nodes, this method is identical to the control volume method applied to the volume of
all tetrahedra that contain the node. However, this method has the conceptual
advantage that the field is applied directly to the particle and is consistent with using
the same function to accumulate charge as to interpolate the electric field.

Each method studied is weakest at the boundaries of the domain, as
information about the derivative is not available in the direction into the boundary. It
is possible to correct the field at the boundaries of the mesh by using the imposed

boundary conditions. For Neumann boundary conditions, the normal component of
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the electric field is known and may be applied directly to the calculated gradient. For
conductors, the electric field is normal to the boundary and its magnitude may be may
be computed from the surface charge density:

E|=2t (2.104)
&

An expression for the surface charge density may be obtained to the discretized

Gauss’s law:

& Ai k
go z(q)z _q)k) L : _Q(plasma)i
o =—2 y ok (2.105)

(boundary)i

Correcting for the potential at the boundary proved to slightly increase the accuracy
of the node-centered method.

The accuracy of the methods was studied numerically for problems of
engineering interest. Accuracy of the methods was observed to be less than that
obtained on Cartesian meshes, but could be acceptable for engineering calculations.
The least squares method and both the tetrahedral cell-centered control volume
method and node-centered control volume method share about linear accuracy. For
the cell-centered method, values were obtained at the nodes by straight volume
averaging over the cells sharing the node. It was noticed that all three methods
exhibited problems in the same geometric regions, which indicates that spacing in
these regions may need to be refined and that these methods suffer from some

geometric biases. The best method was shown to be grid dependent, as least-squares
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proved better on some meshes and the control volume method proved better on

others.

One test used imposed a monotonic decay of potential between two infinite

parallel conductors. For such a case, the value of the gradient should be a constant

vector. All of the methods were accurate to within 7% for the component of electric

field perpendicular to potential lines.
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Electric Field Using Node-Centered Control
Volume Approach (no correction at boundaries)

Nofp-

Figure 17. Electric field at grid points using the node-centered control volume

method.
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Electric Field Using Least Squares
Approach (no correction at boundaries)
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Figure 18. Electric field at grid points using least-squares method.

Electric Field Using Control Volume Approach
(electric field correction at boundaries)
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Figure 19. Electric field using the node-centered control volume approach using

field corrections at the boundaries.
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Electric Field Using Least Squares Approach
(electric field correction at boundaries)
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Figure 20. Electric field using the least squares approach using field corrections

at the boundaries.

The results of the gradient calculations are shown in Figures 16-19. The
analytical value for the field is 43,333 V/m, shown in solid black lines. Figures 16
and 17 illustrate the value of the electric field using the node-centered control volume
approach and the least squares approach. Figures 18 and 19 illustrate the effect of
correcting the electric field using boundary conditions. Figure 18 illustrates the
node-centered control-volume approach and Figure 19 illustrates the least-squares
approach. As seen in the illustrations, all methods have similar accuracy and suffer in
accuracy in the same locations. Correcting for boundary conditions slightly improves
the electric field near the boundaries. The electric field accuracy should be sufficient
for most computations of engineering interest, but attention should be paid to

locations and conditions where the electric field accuracy is questionable.
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2.4.6 Boundary Conditions for PIC Methodology

In a bounded domain, a solution to Poisson’s equation may be specified
uniquely by piece-wise continuous Dirichlet and Neumann boundary conditions
(Jackson, 1999). Dirichlet boundary conditions involve the specification of the
voltage on the boundaries, as with a system of conductors. Neumann boundary
conditions involve the specification of the component of the electric field normal to
the surface. It is to be noted that a domain enclosed by only Neumann boundary
conditions has an arbitrary (unspecified) zero potential, but as only the gradient of
potential is of interest anyway, this should not be an issue of concern. The solution to
a problem with the arbitrary specification of both @ and 0 @ /0n (Cauchy boundary
conditions) does not exist for a bounded domain since the piece-wise specification of
mixed boundary conditions determines the problem uniquely (Jackson, 1999).

Since the boundaries of the Delaunay mesh are forced to coincide with the
boundaries of the tetrahedral mesh during the construction of the Voronoi mesh, the
implementation of boundary conditions is straightforward and requires no special
technique. Specification of voltage on the boundaries is considered a strong
condition: the voltage is placed on the right hand side of the matrix and the
corresponding row zeroed with a one placed on the diagonal. Fluxes due to the
Neumann boundary condition are added to the flux formulation for the Voronoi cell
corresponding to the boundary node. Dirichlet boundary conditions have precedence
over Neumann boundary conditions in the case when a node is in the interface

between boundary condition types.
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To enforce a Dirichlet condition, the coefficient for the node of interest on the
diagonal is set to unity and the rest of the row is zeroed. To enforce a Neumann
condition, the value of the inward normal electric field multiplied by the boundary
area is added to the right hand side of the node of interest.

This is illustrated in matrix form for the boundary shown in Figure 21. Node 1
is a node on a Dirichlet boundary with potential @,. Node 2 is a node on a Neumann
boundary with associated inward flux Ey.Ay,. Nodes 3 and N are interior nodes (not

shown in figure). R;; are the coefficients from Equations (2.84) to (2.86).

! 0 o - 0 D, D,

R, R,, R; - R, ||®D, 1 0,+¢,E,,4,,

R, Ry, R, Ry 1D, = 8_ 0, (2.106)
_RN,I sz,z RN,3 e RN,N | o, Oy

VAN
[T =111

Figure 21. Illustration of enforcement of boundary conditions on Voronoi dual

for nodes 1 and 2. Node 1 is on conducting boundary with potential @ (black

line). Node 2 is on a Neumann boundary with inward normal electric field Ey

(blue line). The control volume associated with node 1 is shown as a dotted line.
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2.4.7 PIC Simulation of Bounded Plasmas

- PLASMA .

— R L C

Figure 22. A plasma in series with an RLC circuit.

In general, the conductors of a plasma device system are not held at an
independent potential but may interact with the plasma and an external circuit. The
plasma serves as a conducting medium that may deposit charge on electrodes and is
driven by their time-dependent potential. A bounded plasma is illustrated in Figure
22. In order to model the electrostatic behavior of a plasma correctly, the circuit and

the plasma must be solved in a coupled manner.
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It is possible to model an arbitrary system of conductors and circuit elements
in conjunction with a plasma through the discretization of Maxwell’s equations
(Thomas et al., 1994). However, in general it is necessary to explicitly model the
devices external the plasma including geometric details. For the application of an
electrostatic code, another approach is taken. The standard equations for an external
circuit are solved in conjunction with Poisson’s equation for electrostatics using the
assumption that a conductor is at a constant potential and the standard circuit
equations apply.

Assume that a system of conductors bounding a plasma includes one driven
and one grounded electrode as shown in Figure 22. The potential on the driven
conductor is unknown and is a function of circuit and plasma parameters. Other
conductors with explicitly specified potentials may be present, though it is assumed
that their potentials are independent of the plasma and the circuit, as if connected to
an ideal battery with a very thin wire. The potential on the grounded conductor is
asserted to be zero so that at least one Dirichlet boundary condition is present. To

obtain the potential on the driven conductor, it is useful to apply Gauss’s law:

gog’;ﬁE-ds =—gog€j>vq>-ds = m pdV+q;50dS:Q (2.107)

where, Q is the total charge enclosed in the volume of interest (in Coulombs) and it is
assumed that the permittivity in the volume is that of free space, and ¢ is the surface

charge density on the conductor.
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The surface charge density may be associated with the boundary faces or the
boundary nodes. It is convenient to associate the surface charge density with the
nodes for the node-based scheme described in the development of the finite volume
approach. A semi-discrete expression for Gauss’s law is available directly from the

finite volume discretization of Equation (2.82):

g, EN,iAN,i + Z(q)i _q)k)%
T .

ik

= Q(plasma)i + J1"'4(110m1dwy)i (2 108)

The expression here is evaluated at the Voronoi volume corresponding to
boundary node i. The outward electric flux due to Neumann boundary conditions into
the node’s corresponding Voronoi volume is designated by En;Ay;, if any. The sum
is taken over all neighbors of node i. There will be no contribution from neighbor
nodes k£ on the same conducting boundary since their potential will be the same as
potential at i. The boundary area associated with node i is A poundaryi and  Qpiasmayi 18

the charge due to the plasma weighted to node i:

O piana = ||| PAV (2.109)
V

The electric field inside a perfect conductor in electrostatics is zero, so it is
unnecessary to include a flux term that would correspond to flux into the conductor.
This is equivalent to saying that all current in the driven electrode is perpendicular to
the surface.

It is necessary to develop an expression that constrains the potential to be

constant on a conductor in accordance with the principles of electrostatics.
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The time variation of the total surface charge density (the surface charge
density integrated over the conductor divided by its area) can be obtained from the
law of charge conservation following Vahedi and DiPeso, (1997):

4 do,
dt

=I(t)+4j,,, (2.110)

In the above, [ is the external current, j.., is the convected plasma current

density arriving at the electrode, and 4 is the total area of the electrode:

A = Z A(boundary)i (21 1 1)

(boundary)i
A discrete form of the charge conservation at the boundary which is first order

accurate in time is following Vahedi and DiPeso (1997):

Aoy —0,")=0'-0"+0,, (2.112)

The superscript integral counter ¢ indicates the time step number. In Equation
(2.112), Q is the total charge on the capacitor and Q.. 1s the charge deposited on the
electrode during the time interval (¢-1, ¢). Using Equation (2.108) and summing over

all the boundary nodes gives an expression for the total charge at the current time.

O-; z A(boundary)i = zaitA'(boundwy)i = Zgo [EN,itAN,i + Z (thi - (Dt A7 L ] Q (plasma)i
i i i k z,
(2.113)
Applying charge conservation (Equation (2.112)), Equation (2.113) becomes
AO-T 1‘10‘;l +Q Qt ! +Qconv Zg [E N’ANz +Z(‘Dt CDI fk Qt(plasma)[
i,k
(2.114)
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If we constrain the potential to be a constant value @, for all boundary nodes i

on the conductor, then Eq. (2.114) becomes

g, ZEfN,,-AN,,. + Zk:(qa'g —~ @’k)% = Aoy + Q' =07+ 0 + DO (plasmari (2.115)

ik i

l[140-7["71 + Qt - QF1 + ct’onv + ZQt(plasma)i] + z _EZN’iAN,i + zq)tk ﬁ
(D[ — 80 i i k L[,k
’ Ay
220,

i

(2.116)
In general, the value of Q' comes from the circuit equation of the external circuit and
is a function of the potential @,. In effect, the wall is treated as a single unknown
node, with connections to all of the adjacent nodes and appropriate geometric
quantities.

The linearity of Maxwell’s equations allows the total field to be considered as
contributions of fields from separate sources. This is the principle of linear
superposition. Similarly, the electrostatic potential may be seen as the superposition
of the potential due to the plasma charge density with zero boundary conditions, the

potential due to an imposed the electric field, and the potential due to the electrodes.
t t
q) = ((I)plaxma + (I)E*ﬁeld + (I)elec‘trodes ) (21 17)

The potential due to the imposed electric field comes from Neumann
boundary conditions. The potential due to the (driven and grounded) electrodes needs
only to be solved initially using Laplace’s equation in absence of any space charge.

The potential on the driven electrode is normalized to unity, such that the potential
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field at an arbitrary time due only to the potential drop from the driven electrode may

be obtained as the initial potential field multiplied by a constant.

D =0,y D, (2.118)

plasma i
In this equation, @p,sm. denotes the potential due to the volume (plasma) charge

distribution, the imposed electric field, and independently biased conductors. The
potential due to the driven conductor is ®,'®,, ., where @y is the normalized time-

independent potential profile obtained initially due to the driven and grounded
conductors and @,' is the potential on the driven conductor at time z. If K
independent external circuits are considered (with either a common ground or
grounds specifically provided by constant Dirichlet boundary conditions) this

equation becomes:

K
q)it = zq)o,ktq)NL,ik + q)plasma,it (21 19)

k=1
Note that Laplace’s equation must be solved once for each driven electrode.
A value may be obtained explicitly for the driven electrode potential by substituting
this solution for neighbors j of the electrode into the expression for potential from

consideration of Gauss’s law near the boundaries:

1 B B .

7[/10-;- ! + Qt - Qt ! + Qct’unv + ZQt(plasma)i] + z —EIN,[ANJ + Zﬂq)t(plasma)k

o' = &, i i k Li,k
P—

ZZ?I{(I _(DNL,k)

i

(2.120)
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Once the potential on the conductor is known, the total charge on the
conductor, A7, may be calculated from Gauss’s law (Equation (2.108). The new
value of charge on the capacitor may be obtained from the discretized Kirchoff’s

current loop law:

Q'=A(c,-o,H+0"' -0 (2.121)

Floating conductor

A conducting boundary is floating if it cannot exchange charge via an external
circuit. This is equivalent to an open circuit. Floating boundary conditions are useful
in modeling electrostatic (Langmuir) probes, spacecraft charging, and other
phenomenon of engineering interest.

A floating conductor may be modeled as above by simply removing the Q' terms.

Then Equations (2.114) and (2.120) become

A' t
L;J{] - Q (plasma)i} (2 122)

i ik

4oy = Ao} +0),, = Z{i[E’N,fAN,,- +2(®,~®)
k

A
140‘;—71 + Qéonv + ZQt(plasma)i] + Z|:—EtN,iAN’[ + Z Ll’k
i j k

ik

—I
&

q)t(plasma)k :|
@tu = 2

i ’ (2.123)
zle’k (1 _CDNL,k)
i kA

ik

Capacitative Circuit

A simple type of external circuit useful in plasma simulations is an ideal

voltage source and capacitor in series with the plasma with a grounded electrode.
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This circuit type is useful for analysis of capacitative discharges (Vahedi and DiPeso,
1997). The circuit analysis presented above is applied here to the capacitative circuit.
The voltage across the capacitor is available from Kirchhoff’s voltage loop law:
V.=rV(@®-o, (2.124)
In this equation, V. is the voltage across the capacitor, V(z) is the time-
dependent ideal voltage source, and @, is the potential at the driven electrode. The
charge on the capacitor, Q', is (Vahedi and DiPeso, 1997)
O'=CV.=C(V(t)-D,) (2.125)

Equation (2.120) for the potential @, becomes

1. ] 4
?[Ao-lt' : + CV(t) - C(I)o - Qt 1 + Qct'onv + ZQ(plasma)i] + Z _EN,iAN,i + ;T,kq)(plasma)k

(1)0: 0 i,k
STy Ao,

(2.126)

Lo ] 4,
;[Ao-lt" 1 + CV(t) - Qt : + Qct’unv + ZQ(plasma)i] + Z_EN,iAN,i + ijq)(plasma)j
cD _ o i i J ij

0 C A,'j j
go"'zl:;LU(l q)NL,J')

(2.127)

Series RLC Circuit

Many plasma discharges, including the pulsed plasma thruster, are initiated by
and coupled with a series RLC circuit. The equation for an RLC circuit with a voltage

drop @, across a plasma is
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L@Luu+ijhh=mﬂ—®o (2.128)
dt c

where, V() is the applied voltage. This equation may also be cast in terms of the

charge on the capacitor Q:

2
Ld§+R£Q+Q=Vm—®O (2.129)
dt dt C

It is desirable to obtain a backwards difference expression in order to evaluate this

circuit. A representation of the derivatives of interest is (taken from Verboncoeur et

al., 1993):

(d_th _ 3Qt _4Qt—l +Qz—2 (2 130)
dt 2At '
sz 4 _ 2Qt _SQt—l +4Qt—2 _Qt—3 @.130)
dr’ AL '

These expressions are second order accurate in time (Verboncoeur et al.,
1993). A slightly more accurate second order expression for the second derivative
may be obtained by substituting (dQ/dt)’ for Q into the finite difference expression for
the first derivative, but this results in a five-point expression. It is generally
preferable to use as few points as possible in a finite difference scheme unless
significant gains in accuracy are achieved.

The four-point finite difference equation for the RLC circuit may be solved to
obtain the current charge on the capacitor as a function of the driven electrode
potential, voltage source, and charge on the capacitor at previous time steps. This is

given by
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V(1) -0, + (v Hygn (Mg Ry g
t_ At 2At At 2At At 2.132
Q= 2L 3R 1 (2.132)
72 + - JE—
A" 2At C
The equation for the potential on the driven electrode is
o, - 1
1 1 A,
o 2L, 3R 1|22y 07w
AP 2At C '
. V(t)+[ZLZ+4R}Q”—[4L2+ R}Q’2+L2Q’3
-1 2 2At At®  2At At -1
- AO—T + 2L 3R 1 - Q + QL‘(mv + 2 Q(p]u.ymu)i +
80 — + — 4 — i
At 2At C
4,
Z _EN,iAN,i + ZL_‘(D(plaxmu)j
L i J ij i
(2.133)

Initialization of External Circuits and Stability Considerations

For circuits dependent on more than one previous value of charge on the
capacitor, it is necessary to obtain these values in starting the simulation.
A method was adopted from Verboncoeur et al. (1993) for obtaining the initial circuit
parameters. The circuit equation is solved for the potential on the electrode in
absence of plasma in the region. If the method is stable, the initial conditions will be

damped with time (Verboncoeur et al., 1993).

External Circuits and Neumann Boundary Conditions

The capacitance matrix concept (Haus and Melcher, 1989; Jackson, 1999)

used here is typically presented for a system of conductors using only Dirichlet
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boundary conditions. It is possible to implement Neumann boundary conditions as
well (Vahedi and DiPeso, 1997), but care should be exercised in doing so.

The method for circuit solution implemented here uses only the no-flux
Neumann boundary conditions such that the imposed electric field normal to the
boundary is zero (Ey,;=0). The implementation of the no-flux condition requires no
additional computational effort, only that both Laplace’s equation for the capacitance
matrix and Poisson’s equation for plasma potential are solved with the no-flux
Neumann boundary condition (Vahedi and DiPeso, 1997). As this is trivially
implemented in this finite volume approach (zero is added to the right hand side of
the appropriate linear equation), the method can be used without alteration.

It can be seen that the implementation of the no-flux condition is done
trivially for the capacitance matrix method for circuit electrodes. When the
normalized potential profile (obtained from Laplace’s equation) is multiplied by the
value of the potential at the current time, the effect is that the gradient of the potential
field is multiplied by this value. As the slope of the potential normal to the no-flux
boundary is zero, it will remain zero when multiplied by any number. The total
potential profile is obtained from the sum of all potential profiles (including that due
to the plasma). As each potential profile will be flat normal to the no-flux surface,
their sum will also be flat normal to this surface. Thus the no-flux condition is

trivially satisfied.
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2.4.8 Validation of the Electrostatic Solver

Electrostatics is a well-studied field. Many analytic solutions are available for
comparison, both with and without free charges. In order to validate the electrostatic
solver, comparison is made to both types of these cases.

One classic problem is a grounded conducting sphere immersed in a uniform
electric field. Jackson (1999) gives the potential far from a conducting sphere at the
origin as

3

®=—E,(r—)cosd (2.134)
r

where, E, is the imposed electric field strength, a is the radius of the sphere (in
meters), 7 is the distance from the sphere, and 6 is the angle from the imposed electric
field vector.

This problem was simulated in a cylindrical domain 7 meters long and 7
meters in radius. The sphere radius was one meter. About 60,000 elements were
used to discretize the domain, with spacing concentrated near the sphere where high
gradients were expected as shown in Figure 23. The analytic solution is plotted in
Figure 24 and the numerical result in Figure 25. Figure 26 plots the absolute value of
the analytic minus the numerical results. Figure 27 illustrates the electric field as
calculated using the control volume approach, and Figure 28 illustrates the

orthogonality of the potential and electric field lines in the vicinity of the sphere.
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Figure 23 Domain and boundary conditions used for grounded sphere in

imposed electric field problem.

Figure 24. Analytic solution for potential around a grounded sphere in a

uniform electric field (from Jackson, 1999)
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Figure 25. Computed solution for potential around grounded sphere.
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Figure 26. Absolute value of error in volts.
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In general, agreement was excellent between calculated and numeric potential.
The values of electric field at the boundaries also matched the prescribed conditions.
Slight disagreement is shown in Figure 26 near the boundaries (though small
compared to the value of potential there), but this is due to the imposition of a finite
domain on what is, in principle, an unbounded problem. This example illustrates the

validity of the electrostatic solver for a variety of boundary conditions.

Figure 27. Electric field lines and contour plot of x-component of electric field
(V/m). The discrepancy near the boundary may be caused by sensitivity to
boundary conditions and poorer resolution in this region, and does not seems to

affect the general field shape.
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Figure 28. Close-up showing orthogonality of electric field lines and potential
contours. The spacing between electric field lines and potential contours is not

to scale.

Another problem of interest is that of a uniform charge distribution between
two infinite grounded conducting plates at x = -//2 and x=I[/2. Poisson’s equation in

one dimension is:;

== (2.135)

An exact formulation proceeds from the imposition of boundary conditions.
Imposing @=0 at x = -I/2 and x = [/2 and d®/dx=0 at x=0 (from symmetry) leads to

an analytic formulation for the potential:
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(2.136)

This problem was simulated with the electrostatic solver in a cylindrical
domain and the results compared to the analytic formulation. The distance of plate
separation was 0.1 m and the ion number density (#;) was 10'° m™, using parameters
similar to Lieberman and Lichtenberg (1994). One million singly-charged particles
were used on grids ranging from 12,000 to 25,000 cells. On average, about 50
particles resided in each cell, which is a similar number to simulation parameters.
Variation in the number of particles per cell to as low as about 10 did not seriously
affect the outcome. The charge weighting used in this and subsequent simulations is
based on linear Lagrange polynomials, as nearest grid point weighting proved
inadequate. Figure 29 illustrates the potential contours with the projection of the
background mesh shown. Figure 30 shows the potential as a function of x and y with

contour levels.

116



Y
2.25E+405
ZA0E+05
1.95E+0%
1.B0E+05
1.65E+0%
1.20E+0%
1.35E+0%
1.20E+0%
1.05E+0%
9.00E+04
7.E0E+04
G.00E+04
4.50E+04
3.00E+04
1.20E+04

Q.04

Q.03

Q.02

-0.01

-0.0Z2

-0.03

-0.05 - 0.025 0.05

b L}

Figure 29. 2-D view of potential lines and background mesh for uniform charge

distribution between infinite grounded conducting plates.

Figure 30. Potential between two infinite grounded conducting plates for a

uniform charge distribution.
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Figure 31. Comparison between calculated and analytic potential for a uniform
charge distribution between two infinite parallel grounded conducting plates.

(X: distance (m); Y: volts)

This simulation assesses several important aspects of the electrostatic solver.
The general accuracy of the algorithm may be seen through the good comparison with
analytic data in Figure 31, as well as the accuracy of the boundary conditions for a
grounded exterior boundary and the no-flux condition. Also, the charge weighting
routine was verified and shown to be robust. The only location where error was
numerically considerable compared to the voltage was near the conductor boundary,
where the gradient of the potential is large. Use of a smaller characteristic spacing

near this boundary would have corrected for this error. Deviation from smoothness
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shown on the two-dimensional mesh cross-section is due to the interpolation
algorithm of Tecplot and is present in both numerical and analytic data.

Particle weighting and loading procedures and discretization scale is assessed
in the next simulation involving the monotonic decay of potential between two
conductors. This simulation illustrates the importance of using a discretization
smaller than the Debye length, as well as the need for improved weighting

procedures. It is known (Birdsall, 1991) that even a Maxwellian distribution may be

numerically unstable using a cell length / such that (1, //)<0.3. The Debye length

is the scale over which significant charge separations may be seen and is the
characteristic length scale of a plasma dominated by electrostatic interaction. For a
plasma in equilibrium, the Debye length is given as (Lieberman and Lichtenberg,

1994)

gT 1/2
A, =| Lo (2.137)

en

where, n, is the bulk plasma density. For singly ionized species and quasi-neutral
plasma, n,=n.=n;.

A simulation domain similar to the interior of the LES-6 PPT (Vondra, 1970)
was used. The two opposing electrodes were set 3.0 cm apart, one biased to 100 V
and the other grounded. No-flux boundary conditions were used on remaining
domain walls. An equal number of electrons and positive ions were randomly

distributed throughout the domain such that the plasma should be neutral everywhere.

The spacing value used in the discretization of the domain was 1.14x10” m.
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While the velocity components are not important in this simulation (as only
the initial electric and potential fields are desired), the Debye length was calculated
according to an assumed electron temperature of 10 eV. It is noted that if the voltage
drop across the electrodes was of the order of that of the plasma electron temperature,
a much more detailed resolution would be necessary as the thermal noise would be of

the order of the potential of interest. A minimum of 15 particles per cell was used.
Two different bulk plasma densities were used: 1.77x10" and 1.0x10' m™.
This corresponds to Debye lengths at electron temperatures of 10 eV of 5.68x10™ m

and 2.34x10™ m, respectively. The discretization length was 2.0 and 4.9 times larger
than the Debye length. Though normally it is desirable to use values of discretization
spacing smaller than Debye length, these values were chosen to numerically
characterize the error induced by using too large of a spacing value.

For the case where a spacing value twice the Debye length is used, the
potential shown in Figure 32 drops evenly over the domain and the electric field lines
are such that a physical simulation could progress with these initial conditions. For
the case where the discretization spacing is 4.9 times the Debye length, the potential
shown in Figure 33 does not drop evenly and considerable error is seen in the electric
field lines. An analytically neutral reference (no particles) is shown in Figure 34.

While the temperature used (10 eV) is arbitrary, the case where the Debye length for

the 1.0x10"® m™ case is set to equal the Debye length of the 1.77x10"” m™ case

illustrates the context of this temperature. The electron temperature for the first case

would be equal to 56.4 eV. Since the voltage drop over the domain is 100 V,
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statistical fluctuations in electron behavior for a temperature of 56.4 eV would be
considerable. In order to properly resolve this case with the existing implementation,
it is desirable to use a smaller discretization scale and many more particles. If it is
important to load particles such that no biases are introduced, the quiet start method
(Birdsall, 1991) may be used. The quiet start method produces a phase space that is

initially ordered. An improved weighting procedure would also improve accuracy

considerably.
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Figure 32. Potential contours and electric field lines for a discretization spacing

of twice the Debye length. Contours shown every 10 V.
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Figure 33. Potential contours and electric field lines for a discretization of 4.9

times the Debye length. Contours shown every 10 V.
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Figure 34. Potential contours and electric field lines with no charged particles

(analytically neutral). Contours are shown every 6.25 V..

Though these simulations possess symmetries not found in fully three-
dimensional problems, the unstructured solver is unbiased by these symmetries and
the validation provided by these examples can be considered general. Few fully

three-dimensional analytic solutions exist for electrostatic problems.
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Chapter 3

DSMC and PIC Simulations

Gasdynamic thrusters are considered for micropropulsion for the role of
attitude control as well as primary propulsion. These devices derive their thrust from
thermal energy in the plenum being transformed to kinetic energy as the gas expands
through the nozzle. These neutral thrusters may use a cold gas for simplicity, or
derive additional energy from electric heating or exothermic chemical reactions.
The transformation of thermal energy into directed energy his is most often
accomplished with a converging-diverging nozzle.

In this chapter we present simulations using the DSMC/PIC code. The
internal and external flow of the Gravity Probe-B thruster prototype is simulated and
compared with data from Boyd et al. (1994a, 1994b). Rothe’s nozzle was simulated
at low pressures. A two-dimensional planar MEMS nozzle was simulated and
compared to DSMC simulations on structured meshes. A three-dimensional MEMS
nozzle was simulated to assess the effect of side walls. To assess the PIC code, high

voltage sheath formation was simulated.

3.1 Gravity Probe-B Thruster Prototype
The Gravity Probe-B (GP-B) thruster prototype is described by Jafiy and

Vanden Beukel (1992). Mass flow rates for this thruster range from 0.012-3.6 mg/s

corresponding to thrust forces from 0.02 to 4.5 mN and Knudsen numbers ranging
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from 1.1 and 0.01, respectively. The experiment obtained mass flux profiles via a
mass spectrometer in a vacuum facility. The mass flux profiles were normalized to
centerline flow at three points in the plume in angular increments of 10 degrees. The
GP-B thruster prototype was numerically modeled using the DSMC method on
structured grids by Boyd et al. (1994a, 1994b). These DSMC calculations compared
favorably with the mass spectrometer measurements of mass flux when diffuse
reflection with full thermal accommodation was used as the surface interaction model
for the nozzle wall. Cases were considered zero and finite background pressure
corresponding to experimental conditions.

The unstructured DSMC code is used to model this nozzle for validation and
also in order to study the characteristics of the rarefied nozzle flow. In addition, the
GP-B thruster chamber is at the stagnation conditions at the chamber and therefore, it
can serve as a case-study for proper application of subsonic boundary conditions in
DSMC simulations. The mass flow rate considered is 0.012 mg/s = 1.2x10™® kgs.
For this flow, stagnation conditions are taken from Boyd et al. as P,=7 Pa and
T,=286K.

The surface is discretized with care taken to make sure the local mean free
paths are greater than the average cell spacing. The computational grid is shown in
Figure 35 and a close-up of the nozzle in Figure 36. The spacing of the grid interior
to the nozzle is approximately 0.35 mm, which is about ten times smaller than the
mean free path for equilibrium stagnation conditions. Several sizes of bounding

cylinders external to the nozzle were used to obtain plume flow data. The largest
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bounding cylinder was set to be 11 cm in radius and extended 20 cm from the nozzle.
The grid spacing on this boundary is about 34 mm, which is much smaller than the
mean free path of ~10 m evaluated using the background density. The calculations of
Boyd et al. (1994a, 1994b) show that the density near the boundary for a domain of
this size is essentially the same as the background value. The increase in spacing
from the nozzle to the exterior domain was chosen as some approximation of flow

diffusivity.

0.1

0.05

-0.05

-0.1

Figure 35. Cross-section of computational grid used for GP-B thruster

simulations. Nozzle located at 0, 0.
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Figure 36. Cross-section of GP-B grid, close-up of nozzle region.

Boundary conditions were prescribed to the various surfaces. The exterior
domain was set to a free boundary. The nozzle surfaces were set to be diffusely
reflecting with a temperature equal to the stagnation temperature. To ensure a correct
mass flow rate, two approaches were investigated. First, injection was implemented
from an orifice in the back of the chamber wall. In this case boundary conditions
were set such that particles could not leave across this orifice. The orifice size and
injection flow velocity were set such that the correct mass flow rate was ensured. The
second approach involved prescribing the back and side walls of the chamber as free
boundaries, injecting with some finite stream velocity from the back wall and

allowing diffusion across the side wall. The stream velocity was assigned such that
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the incoming mass flux was close to the flux of particles escaping back across the
boundary in an iterative process.

The first injection condition was found to match mass flow rate, far field
temperature, and stagnation temperature. This injection condition also showed the
unity Mach number contour intersecting the lip as well as other Mach contours
intersecting the wall at appropriate locations. Number density was up to 50% higher
than the stagnation value, but only at a small location near the injection orifice. Mach
contours for this injection condition are shown in Figure 37 and are compared with
the results of Boyd et al. In the bulk of the flow, the results compare well. The
results shown in Figure 37 were obtained on a coarser grid than that shown in Figure
36, and resulting in the poor resolution of Mach contours near the wall. However, the
chamber used matched stagnation conditions and the Mach contours of Boyd et al.
better. Number density contours for this injection condition are shown in Figure 38.

The second injection condition matched mass flow rate as well. However,
stagnation temperature was low (~265 vs. 286 K). The unity Mach contour did not
intersect the lip but remained upstream of it. Other Mach contours did not compare
well with the results of Boyd et al. Stagnation number density matched experimental

data within numerical accuracy of the DSMC solver.
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Figure 37. Gravity Probe-B Mach contour comparison. Current results: shaded

contours; Boyd’s: dotted lines.
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Figure 38. Plume shape (number density contours) for Gravity Probe-B

prototype nozzle.

3.2 Rothe’s Nozzle

Rothe (1/971) presented experimental investigations of two graphite nozzles
with throat diameters of 2.5 and 5.1 mm. Reynolds numbers ranged from 100 to 1500
with stagnation pressures as low as 80 Pa. Electron beams were used to determine the
centerline rotational temperature and density as well as radial number density
profiles. Rothe showed a qualitative difference in the behavior of flows as the
Reynolds number dropped: for higher values of Re and chamber pressure,

temperature decreased monotonically along the centerline; for lower values of Re,
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temperature initially decreases but then rises again due to the dominance of viscous
behavior. This result is important to micronozzles design, because viscous losses
should be minimized to obtain maximum efficiency.

Rothe’s 5-mm nozzle is modeled using our DSMC code on unstructured
tetrahedral grids in order to validate the code and demonstrate the behavior of small
nozzles at low Reynolds numbers. Only the lowest pressure (80.3 Pa) is simulated
with a stagnation temperature of 300 K. The nozzle walls are modeled as diffusely

reflecting and a constant value of relaxation collision number is used.

The simulation did not converged, even for a simulation time of 9.0x10™
seconds. From the interim results, the formation of a viscous boundary layer on the
diverging nozzle side-walls is observed. Contours of translational and rotational
temperature are presented in Figures 39 and 40, respectively. Notice that the
rotational temperature falls out of equilibrium with translational temperature due to
the lack of collisions as the flow becomes increasingly rarefied. Number density

contours are shown in Figure 41.
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Figure 39. Translational temperature for Rothe’s nozzle (K).The time is 9.0x10*
s.
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Figure 40. Rotational temperature for Rothe’s nzzle (K). The time is 9.0x10™ s.
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Nitrogen Number Density
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Figure 41. Nitrogen number density contours for Rothe’s nozzle (1/m%). The

time of the simulation is 9.0x10™ s.

3.3 Parabolic MEMS Nozzle
Piekos and Breuer (1995, 1996) presented two-dimensional DSMC studies of

flows in micro pipes and a planar parabolic nozzle chosen to be similar in flow
regime to MEMS micronozzles. The inlet condition for their studies was atmospheric
and a perfect vacuum was assumed at the exit plane. The width of the throat was 15.4
microns and the nozzle walls were modeled as diffusely reflecting. Piekos and
Breuer (1995,1996) illustrated important kinetic effects associated with flows in this
flow regime, such as thermal and velocity slip at the wall.

This parabolic nozzle is modeled in two dimensions using our DSMC code on
an unstructured grid. In order to model only half the flow field, the plane of

symmetry was modeled as a specularly reflecting wall. The flow conditions are
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identical to those used by Piekos and Breuer (7995, 1996). In our simulation we

added a small surface outside of the nozzle that includes a lip.
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Figure 42. Two-dimensional grid used for modeling of planar parabolic nozzle.

The chamber is located at left.

Results of the simulation on unstructured grids agree with the results of Piekos
and Breuer (1995, 1996). A comparison of Mach number contours is shown in
Figure 43. Disagreement in the chamber is probably due to insufficient simulation

time in both models, though this should not significantly affect supersonic results.
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Figure 43. Comparison of Mach number contours. The results of Piekos and

Breuer are shown above, and our results are shown below.
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3.4 Planar MEMS Nozzle

Our direct simulation Monte Carlo code was applied to the study of a
micronozzle manufactured using deep reactive ion etching (Bayt and Breuer, 1998).
These nozzles are planar in profile with side walls binding the upper and lower
surfaces. The ion etch is highly anisotropic with a depth of 308 microns. The flow
field including the entrance was solved numerically by Bayt et al. (1998) using a

Navier-Stokes finite volume code. These nozzles were tested experimentally at

chamber pressures from 3.45x10* to 6.895x10°Pa with thrust on the order of
milliNewtons. At lower pressures and corresponding mass flow rates, experimental
results for the coefficient of discharge fall significantly below results predicted by the
Navier-Stokes code. Bayt et al. (1998) attribute this to viscous losses due to
increasing boundary layers on the side walls at low pressures, which were not
modeled in the two-dimensional code.

The nozzle chosen for our DSMC study has a 7.1:1 expansion ratio and a 34
micron throat (Bayt et al., 1998). In order to assess sidewall effects, a fully three-
dimensional discretization was performed of the domain of interest as shown in
Figure 44. Advantage may be taken of planes of symmetry, which may be modeled
as specularly reflecting surfaces, in order than only one quarter of the nozzle may be
modeled. High grid quality may be ensured by taking advantage of the planar nature
of the nozzle and mapping a two-dimensional triangular grid to a tetrahedral grid. In
general, if this discretization is inadequate then adaptation may be used to further

enforce grid spacing requirements.
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A stagnation pressure of 3447.4 Pa, one-tenth of the lowest stagnation
pressure studied by Bayt and Breuer (Bayt, 1999, Bayt et al, 1998), was chosen for
the three-dimensional simulation. The use of this stagnation pressure represents the
limit of very low thrust required for highly sensitive missions and results in a much
faster computation time than higher pressures, as larger cells and a smaller number of
computational particles may be used than for the high pressure case. As the Reynolds
number is lower in this case than in Bayt and Breuer’s study, sidewall effects will be
heightened as the boundary layers will be thicker and more prominent as the viscous

behavior becomes more important.

z

A

5E-D
0.0001
0.000 N
) 0.0002
BE-05 0.00025

Figure 44. Computational mesh for MEMS 7.1:1 micronozzle (3447 Pa

stagnation pressure). The white line designates the location of the lip.
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The chamber in the simulation is not geometrically identical with the physical one,
but is intended to give representative chamber conditions. The nozzle lip of the side
wall is assumed to be infinitesimally thin in order to more easily construct the
computational mesh.. The effect of the nozzle lip on flow parameters is well known
but it is believed that this assumption will not significantly affect flow parameters
internal to the nozzle except in the vicinity of the lip. In actuality, the nozzle lip of
the MEMS thruster has considerable thickness.

The nozzle walls, including the side wall, are modeled as diffusely reflecting
with a temperature equal to the stagnation temperature of the gas. The planes of
symmetry are specularly reflecting. Particles are injected from the back wall of the
chamber at equilibrium conditions with the same temperature as the wall temperature.

The results of this simulation heighten the concerns of the sidewall at this
plenum pressure. The temperature contours shown in Figure 45 illustrate a hot
viscous boundary layer on the side wall. The retardation of the flow may be seen in
Figures 46 and 47, which present directed velocity and Mach numbers, respectively.
The expansion of the gas is dampened by the viscous boundary layer formed on the
side wall. It can be seen that the boundary layer is much thicker than in Markelov et
al. (2000), as expected due to the corresponding lower pressure. This illustrates the
importance of both high etch anisotropy and high plenum pressure in the

minimization of viscous losses.
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Figure 45. Temperature (in K) contours interior to MEMS nozzle.
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Figure 46. Effect of sidewalls on directed velocity (m/s). The top plane is a plane
of symmetry, the bottom plane is the sidewall (diffusely reflecting).
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Figure 47. Mach contours of MEMS nozzle. The sidewall is at the top. The
middle section is the plane of symmetry dividing the nozzle width-wise. The
lower portion is the plane of symmetry dividing the nozzle height-wise.

Planar MEMS micronozzles operate at high nozzle efficiencies for large
plenum pressures and highly anisotropic etches. As plenum pressures become lower
or the etch depth becomes smaller, boundary layers formed on the side wall become
important loss mechanisms. The DSMC method with the added flexibility of
unstructured grids with adaptation can be used to aid in the understanding of viscous

loss mechanisms and help in their elimination.
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3.5 High Voltage Sheath
When the sheath drop is much larger than the plasma potential (both in volts),

Child’s law is observed. Simulation was done of the initial process of sheath
formation in a domain bounded by two infinite planar electrodes with a voltage drop
of 100 V. No current is injected into the domain, so the simulations differ from
Child’s law in this respect. However, the process of sheath formation remains much
the same.

The domain was a thin cylindrical region 10 cm long with a diameter of
about 0.1 cm. This extreme aspect ratio was used in order to have few enough cells
to tackle this one-dimensional problem in three dimensions. The domain was initially
loaded with a neutral plasma with a density of 1.0x10” m™ and an electron and ion

temperature of 1 eV. The simulation results were compared with the code xpdpl

(http://ptsg.eecs.berkeley.edu). For the first 1.0x107"s, the phase space results were

nearly identical as shown in Figure 48. Electric field and potential profiles also
compared favorably. However, after this time the results diverge, as the electrons in
the unstructured code are not prevented from entering the sheath around the cathode
as they are in the xpdpl simulation. It is believed that this is caused by artificial
heating of the plasma due to a poor quality gradient calculation and poor weighting
procedures. As the gradient calculation suffers near the boundaries, the overall
quality is poor on this mesh which has a high surface area to volume ratio. In order to
simulate long-term behavior of a plasma, the accuracy of these procedures must be

increased.
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Chapter 4

Conclusions and Recommendations

4.1 Conclusions
This thesis involved the development of a DSMC/PIC solver on unstructured

grids. A surface generator was developed for the design of surfaces of engineering
interest in the study of microthrusters. Grid quality was heuristically optimized to
reduce lost particles and increase computational efficiency. Several improvements
were made to the DSMC solver. First, the variable hard sphere model was added to
the DSMC code in order to increase the accuracy of collision modeling. Second,
internal degrees of freedom were added and verified. The implementation of these
modules allowed us to perform DSCM simulations of micropropulsion devices.

A particle-in-cell program for the simulation of electrostatic plasmas was
implemented on unstructured meshes. The code uses a finite volume approach for the
solution of Poisson’s equation. Several methods were investigated and implemented
to evaluate the electric field on unstructured meshes. The integration of the particle
equations of motion is done via the leap-frog method. Particle gather and scatter
operations use volume weighting (linear Lagrange polynomials) to obtain an
acceptable level of accuracy. Simulations were performed to assess the accuracy of
the solution method and to gain insight into the gas dynamics of micropropulsion

devices.
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The DSMC solver was used to characterize flows in micronozzles. It was
shown that as the chamber pressure decreased or the throat diameter increased,
viscous losses increasingly reduced total nozzle thrust. Boundary conditions for such
flows were assessed for the Gravity Probe-B nozzle, showing that it is important for
simulation accuracy to match subsonic boundary conditions in the plenum.

The electrostatic PIC code was used to model a high voltage sheath. The
accuracy of the electric field solver (discrete gradient operator) proved inadequate for
long-term plasma simulations (for instance, comparable to a few microseconds
necessary for the simulation of a micro-PPT). The numerical noise artificially heated
the plasma, leading to increasingly inaccurate results with the procession of time.

More work is needed to remedy this problem.

4.2 Recommendations for Future Work
1. Using a multiple domain approach with time steps and weights variable

between domains may considerably increase computational efficiency, as each
domain needs only to be resolved to local conditions. This is in contrast to global
time-steps and weights over the entire flow field. Areas requiring high spatial and
temporal resolution may be modeled separately and matched to their neighbors only
in time increments. Also, areas with few computational particles under the single-
weight system may achieve more accurate resolution of phase-space through use of a
lower weight. The use of multiple domains also lends itself to parallelization of the

program, which is required for any large-scale simulation.
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2. In continuum conditions, such as a nozzle plenum, DSMC is computationally
inefficient as very small cells and time steps must be used with a corresponding large
number of particles. The use of a Navier-Stokes solver for neutral flows may greatly
reduce this inefficiency. The Navier-Stokes equations (with or without velocity slip
conditions at the wall) are solved in the continuum region and flow-field information
is communicated to the DSMC flow solver. The location where the transition
between the two numerical methods is made may be decided based on evaluation of a
breakdown parameter (Bird, 1970) or chosen conservatively such that the continuum
assumption is satisfied (/vanov et al., 1997). The latter approach has the advantage of
avoiding a complicated shape that bridges the regions, though care must be taken to
ensure the cut-off breakdown parameter is not exceeded. Similarly, the test particle
Monte Carlo method (Bird, 1998) may be used when collisions are not important and
the flow is free-molecular. This method is illustrated in the context of thruster plume
studies by Ivanov et al. (1997). The test particle Monte Carlo method is applicable
also to ionized flows as long as close-range Coulomb collisions have little effect and
the Lorentz force law is applied. The magnetogasdynamic (MGD) equations may be
applied to ionized flows in the continuum regime, but only with the realization that
there are multiple length and time scales in a plasma and the smallest scales must be
satisfied. While a definitive semi-empirical breakdown criterion for gasdynamic
flows has been defined by Bird, the author is unaware of any such universal criteria
being defined for plasma flows. The application of a PIC-MGD solver must be done

with care in order that kinetic effects are minimal in the region where the MGD
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equations are applied. A region of overlap between the PIC and MGD methods may
be necessary to ensure that the system is in quasi-equilibrium in the MGD solution
region.

3. The primary advantage of unstructured tetrahedral grids is that any surface of
engineering interest may be represented and meshed by a single grid generator.
However, as noted in this study and elsewhere, a large percentage of the time is spent
moving particles using ray-tracing techniques. In contrast, updating particle cell
ownership and position on Cartesian grids is semi-automatic: in absence of boundary
interactions, a particle is added to the cell determined through indexing of the
particle’s new position through division of the grid spacing. Drawing from the
literature on finite element and finite volume methods, an approach may be used
where a tetrahedral mesh is used near the boundaries and a Cartesian mesh, either
structured or unstructured (Bird, 1998) is used in as much of the interior as possible.
The location and direction to the nearest boundary is stored in each cell and particle
location and cell ownership are updated semi-automatically when applicable. This
would greatly increase computational efficiency in the flow far from the boundaries.
This would require modification of the grid generator to mesh appropriate grids and
the flow solver to take into account the type of cell for calculation purposes.

4. Local coordinates may be used to update particle position instead of global
coordinates. The use of local coordinates may speed up particle motion as well as
help prevent lost particles. The relevant data can be calculated once for each cell and

stored to minimize running computation time. In addition, the weighting procedures
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associated with linear Lagrange polynomials (volume weighting), which now
consume much of the time in each electrostatic iteration, would become trivial.

5. Improved boundary conditions could be implemented for dielectrics,
especially considering the external circuit case. Currently, only a constant-valued
Neumann condition may be implemented and only the no-flux condition for circuit
cases. The capacitance matrix may be formulated in terms of charge instead of
voltage, and using this formulation a complete picture of the electrostatic potential
could be developed in conjunction with the circuit methodology. In order to correctly
model dielectrics, particle-surface interactions appropriate to the physics must also be
implemented.

6. An improved method of obtaining the electric field is also desirable.
Currently, field accuracy may be poor and may artificially heat the plasma. One
possibility that avoids grid biases is the use of radial basis functions to compose the
potential and differentiate these functions to obtain electric field components at the
nodes.

7. A matrix solver based on a Krylov sub-space could be used to speed up the
solution of the CRS matrix for Poisson’s equation.

8. The use of the quiet start method reduces the initial noise and produces an

ordered phase-space and should be implemented as well.
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