Overcoming Limitations in Computer Worm Models
by

Frank S Posluszny 111

A Thesis
Submitted to the Faculty of
WORCESTER POLYTECHNIC INSTITUTE
In partial fulfillment of the requirements for the
Degree of Master of Science
in

Computer Science

January 2005

APPROVED:

Professor Fernando C Coléon Osorio, Thesis Advisor

Professor Micha Hofri, Thesis Reader

Professor Michael Gennert, Head of Department

Abstract

In less than two decades, destruction and abuse caused by computer
viruses and worms have grown from an anomaly to an everyday occurrence. In
recent years, the Computer Emergency Response Team [cer04] has recorded
a steady increase in software defects and vulnerabilities, similar to those ex-
ploited by the Slammer and Code Red worms.

In response to such a threat, the academic community has started a set
of research projects seeking to understand worm behavior through creation of
highly theoretical and generalized models. Staniford et. al. created a model
to explain the propagation behaviors of such worms in computer network
environments. Their model makes use of the Kermack-McKendrick biological
model of propagation as applied to digital systems. Liljenstam et. al. add a
spatial perspective to this model, varying the infection rate by the scanning
worms’ source and destination groups. These models have been shown to
describe generic Internet-scale behavior. However, they are lacking from a
localized (campus-scale) network perspective.

We make the claim that certain real-world constraints, such as bandwidth
and heterogeneity of hosts, affect the propagation of worms and thus should
not be ignored when creating models for analysis. In setting up a testing
environment for this hypothesis, we have identified areas that need further
work in the computer worm research community. These include availability
of real-world data, a generalized and behaviorally complete worm model, and
packet-based simulations. The major contributions of this thesis involve a
parameterized, algorithmic worm model, an openly available worm simula-
tion package (based on SSFNet and SSF.App.Worm), analysis of test results

showing justification to our claim, and suggested future directions.

Contents

Introduction

Background

2.1 Worm Propagation o000

2.2 Related Work

Approach

Worm Design

4.1 Propagation

4.1.1 Target Acquisition L.

41.2 Sendinga Scan oo

4.1.3 Infection Vector (IV)

4.2 Self Preservation

4.3 Goal-Based Actions

Implementation

5.1 Current state of SSF.App.Worm

5.2 Framework

Testing, Results and Analysis

6.1 Experimental design o0 L.

6.2 Establishing a baseline 000

6.3 Parameter variations

Conclusions and Future Work

A WPI Topology for Simulation

il

12
12
14
16
16
16
17

17
18
19

21
21
23
27

35

38

A1 wpireferencedml oL 39

B Using the Simulator 60
B.1 Specific modifications oL oL 60
B.2 Experience with SSFNet 0000 63
B.3 Current state of the simulator’s capabilities. 63
B.4 Proposed road-map for further implementation 64

C Selected communications 65

il

List of Figures

10
11

Abstraction levels from Liljenstam et. al. [LNBGO3] 6
Time slots 0 through 7d, where one scan occurs in one time slot. . . . 10
Creating a baseline - LAN infections versus time 24
Varying number of susceptible - Infections versus time. 29
Varying up-link capacity - LAN’s outgoing scan rate 30
Varying up-link capacity - Internet infection rate 31
Varying up-link capacity - LAN infection rate 31
Vary in scanning strategy - 50% local bias 32
Vary in scanning strategy - split susceptible 33
Vary in scanning strategy - Local bias with feedback 34
Campus Network Topology [wpiO4], 38

List of Tables

Confidence intervals for time to infection in the LAN. 22
Confidence intervals for rate of infection in the LAN. 22
Slammer epidemic parameter settings. 24
Simulation parameter settings 27

v

1 Introduction

A computer virus is a program that propagates itself by injecting its own code into
another program or file. As this host file is shared among friends, colleagues, and
other individuals, the virus is carried along with it. When the host is executed or
viewed, the virus code is executed as well and finds other host files within the new
system. In this way, the virus itself has no direct control over its propagation.

A computer worm, on the other hand, is a self-contained program whose main
purpose is to propagate (copy itself)[wor04]. The ’host’ for a worm becomes an
individual machine. However, unlike a virus, the worm has choice over how it
propagates to other systems, though it still depends on having its code executed
on a remote machine through some means. Some worms take advantage of humans
to facilitate propagation, through such simple tasks as reading e-mail or playing
a downloaded game. However, a worm may spread more rapidly, and thus will be
more dangerous, if it exploits a vulnerability in the network or system it is attacking
as a vehicle for replication. The worm may take advantage of such a vulnerability
and execute its code remotely, without any human interaction. One real-world
example of such a worm is the SQL Slammer, which hit the Internet in January
of 2003 [MPS*03]. Slammer caused Internet-scale congestion, effectively shutting
down many e-commerce websites, ATMs, and the networks of some federal agencies
[sla04]. In this thesis, and due to the significant damage potential of Internet worms,
we focus our attention solely on worms and worm behavior and ignore viruses.

In general, a worm can be considered to contain two parts or main functions.
These are: (1) the propagation mechanism used, and (2) a set of actions, usually
referred to as ”everything else.” The propagation mechanism refers to the method

used by the worm to infect vulnerable hosts. Examples of a worm’s propagation

mechanism include sending itself as an e-mail attachment to everyone on your con-
tacts list or exploiting a vulnerability in a common file-sharing program. All of
the other set of actions that a worm may take, commonly called the payload, is
composed of everything the worm does besides propagate. Some worms will simply
propagate and do not contain any payload. In other instances, worms have been
found that perform Denial of Service (DoS) attacks against specific websites, in-
stall trojan or back-door programs on the infected system, and even un-install other
worms [Inc04a, Inc04b, Inc03]. We believe that these other actions may be further
broken down into a self-preservation module and other goal-based actions (GBA)
modules. Self-preservation could be as simple as disabling anti-virus software or
adding itself to the host machine’s startup scripts. GBAs are included in the worm
based upon the authors ordered set of goals. Further discussion of this may be found
in Section 4.

As worms become more prolific and carry more dangerous payloads, there be-
comes an obvious need for more accurate and timely detection and prediction meth-
ods. Detection methods may be used to help mitigate an oncoming or ongoing
attack. Predictive methods may be used to forecast how a theorized or recently
discovered worm will act in the wild, unrestrained on the Internet. They may also
be used to calculate limits on what is possible for a worm to accomplish, which may
be utilized in such a sector as Electronic Insurance where the probability of a worm
affecting a particular network and causing damage can be calculated. Known worms
are detectable with today’s signature-based anti-virus tools, however these methods
are based upon knowing specifics of what the particular worm looks like, thus the
need for updating worm libraries or databases whenever a new threat emerges. If
one were to look not at what a particular worm’s code is, but rather at the behavior

of the program, then one would be able to detect "new” worms through their ac-

tions. We choose to focus on this behavioral-detection, specifically with respect to
propagation from host-to-host within a localized network. While other behavioral
aspects may provide useful detection data as well (such as actions taken within a
host or resource utilization), the study of such behaviors is outside the scope of this
thesis.

The remainder of this thesis is organized as follows. Section 2 provides back-
ground material to help in understanding worm propagation and the previous work
that has been accomplished in this area. Section 3 describes our approach to test-
ing the hypothesis, including initial problems encountered and the final directions
taken. The design of a parameterized, algorithmic worm model is covered in Section
4. Simulations are described in Section 5, with testing, results and analysis in Sec-
tion 6. A summary and final conclusions are given in Section 7, along with suggested
directions for future work. Appendices follow with more detail explanations of the

simulation design and usage.

2 Background

This section describes the concepts of computer worms and their network prop-

agation, as well as the related work of other researchers.

2.1 Worm Propagation

As has been mentioned, a worm propagates by sending itself to a remote system and
having that system execute its code. The methods for accomplishing this can be split
into two broad categories, those which require user intervention and those which do
not. Chat programs, e-mail, and file-sharing programs such as Kazaa and Gnucleus

are all examples of propagation medium which traditionally require user interaction.

For file-sharing programs and e-mail, a human must download or view the file in
order for the code to be executed on the system. Chat programs are similar, except
that they tend to provide links to infected web pages, which cause code to be
executed when viewed. The alternative method, not requiring user intervention,
is for a worm to take advantage of a technical weakness or vulnerability present
in a network protocol or a system itself, including the operating system. As they
do not depend on the timeliness of human response, worms effecting this method
are capable of spreading very quickly. However, this method also tends to be more
difficult for worm authors. It requires intimate knowledge of how a vulnerability
can be used to remotely execute code and of how to program an exploit for the
vulnerability.

In this thesis, we choose to focus on propagation methods which do not require
user intervention. These may provide an upper-bound on the propagation speed
of a worm. This is because it is not required to wait for user interaction. Also,
the modeling of non-interactive worms would be somewhat easier than interactive
ones. This is because a model for an interactive worm would require attention to be
focused on the sociological aspect of certain details. Examples of sociological aspects
would include understanding interconnections of people on-line, in a mathematical
sense, and various user-dependent wait times.

One major aspect which requires detail in modeling is how a worm finds the
vulnerable hosts in a network. E-mail propagation worms use addresses found on
the infected computer, while those that propagate through file-sharing programs
use the inherent nature of those programs. Non-interactive worms, those which do
not require user interaction such as by opening an email attachment, may choose
to search for host names or IP addresses on the infected host, however this is a

sub-optimal method. These worms, then, have two choices: either carry a hit-list

of IP addresses, or use an algorithm to choose a set of addresses to scan. The hit-
list approach is a more efficient method, as each iteration of the worm may divide
a portion of its work among its children. However, this also brings with it many
more bytes of data, and thus a larger footprint. Algorithm-based scanning leads
to a more stealthy, smaller worm. Many different scanning methods may be used,
however most fall into one of three categories: Sequential, Random, and Biased.
The sequential scanning method selects the potential target host by sequentially
scanning the address space of all vulnerable hosts, starting at a pre-selected or
otherwise chosen unique address. The random scanning method chooses any one
of the available hosts with equal probability, 1/232 in the case of IPv4. The biased
scanning method chooses a particular subnet or domain with higher probability.
In practice, the biased method is a variant of random scanning, with a certain
percentage of the scans being sent to addresses in the infected host’s local subnet.

All of this scanning and transfer of worm code will naturally create network
traffic, which may be detectable as an anomaly. If this traffic can be studied and
a pattern formed, then early warning systems could be built. To do this, we would
need a pattern, or model, of how this propagation traffic differs from or affects
normal traffic. With a well designed and realistic model, we can both detect current
worm activity and predict future trends.

Worm propagation has previously been studied through three forms: modeling,
simulation, and analysis of live events. Actual worm propagation is often difficult
to analyze, as it requires a near-to-complete view of the Internet during the time of
propagation and may suffer from interference of other worms [SPW02]. Simulation
suffers from the need to have a basic model with which to work, although does not
require that model to be of a closed form. However, given the expansive nature of

the Web and its associated complexity, accurate simulation is difficult. Recently,

macroscopic model of worm spread "in the whole Intemet”

k‘_ﬁﬁﬁ Epidemic model r//,)

host infectichs

i . connect vity
scan tiaffic inkensity

Y Network model

detailed "microscopic” network model (certain networks)
meodels specific hosts, routers, ete.

Figure 1: Abstraction levels from Liljenstam et. al. [LNBGO3]

several authors [LNBGO03] have introduced mixed-mode simulations as an effective
tool to understand worm and virus propagations. As shown in Figure 1, particular
subnets are simulated in detail (at the packet level), while the Internet as a whole
is simulated only from its aggregate behaviors. Specifically, hot-spot subnets, where
viruses are present and propagating at a rapid rate, are simulated in detail.

For these reasons, most researchers [SPW02, ZTGC03, ZTG03, Vog03] in this
area start by creating models with different levels of complexity before attempt-
ing simulation. This is then followed with an iterative process of: (1) validating
the models through simulation, and (2) working in realistic scenarios that more
accurately reflect the true nature of the Internet.

Unfortunately, both the models and simulations used in the past have had a
number of weaknesses. Specifically, they do not take into account several important
real-world parameters, such as network topology and bandwidth. This thesis reme-
dies these limitations by first using the well-known epidemic model in [SPWO02] as

the basis for our research, while incorporating the real-world complexities of band-

width limitations and taking into account the heterogeneous nature of the Internet.
That is, not all nodes are equally likely to be infected given a particular virus. Also,
not all nodes run the same operating environment and set of applications. We then
make changes to a chosen simulator for incorporating our model and a more realistic

worm algorithm.

2.2 Related Work

In recent years several attempts have been made to model the propagation behavior
of worms and viruses. The basic approach, as introduced by Staniford and Paxson
et. al. [SPWO02], describes the propagation behavior in terms of a simple epidemic
model. Equations 1 and 2 describe the change in number of susceptible and infected
hosts, respectively, over time. In these equations, (is the infection rate for a single

WOrII.

ds(t) :

d(t) = —Bxs(t) xi(t) (1)
di(t :

o = Bxs)xi(t) (2)

In order to arrive at this model, Staniford and Paxson made the following as-

sumptions about topology and lifetimes:

e All hosts are equally likely to infect any of the other hosts that have not been

infected thus far;

e Infection rate model ignores the presence of firewalls, network address trans-

lation (NAT), and other forms of trust or protection; and

e No countermeasures are taken, thus once a system is infected, it remains in-

fected.

The Spatial Epidemic model [LNBGO03| attempts to address the topology and
countermeasures problems with the Simple Epidemic model. Spatial Epidemic fol-
lows the susceptible-infected-removed (SIR) pattern, whereby a host is in one of
those three states and transitions from susceptible to infected and from infected to

removed, as shown here in Equations 3 and 4:

T~ Bas(t)i(t) =y i) (3)
PO~ i (1

In Equations 3 and 4, ~ represents the removal rate of worms as caused by
patching or quarantining. Here, 7(t) represents the population so far removed,
patched, or quarantined. It also takes into account groupings by modeling different
infection rates between and within groups. In the traditional biological sense, this
is analogous to different infection rates within and between countries or provinces.
In a network sense, this is a simplistic partitioning into subnets or domains.

Subsequently, Zou et. al. [ZTGCO03] studied the standard epidemic model with
random scanning. In their work, they showed that the simple epidemic model holds
for a population of uniformly distributed hosts and a worm that applies a divide-
and-conquer scanning algorithm, where a worm splits its IP scanning space among
its children. In addition, Zou et. al. showed that for all considerations of uniformly
distributed hosts, the models converge to the standard epidemic model. Finally,
in their research they considered a local-preference scanning technique with the

assumption that vulnerable hosts are not uniformly distributed. In this latter case,

no closed analytical solution was possible. Nevertheless, using the ”"law of large
numbers”, they rationalize that averages over the entire population will lead back
to the original epidemic model.

Tom Vogt [Vog03] focused on simulation based on the original epidemic model,
however provided suggestions for a more expanded study. In his paper, he suggests
that network structure and topology has an impact on real propagations. He also
calculates the bandwidth consumed by a particular worm spreading in his models.
However, he does not consider this bandwidth calculation as a constraint in his

model or simulations.

3 Approach

The stated hypothesis of this thesis is that real-world constraints, such as band-
width and heterogeneity of hosts, greatly affect the propagation of worms. This
work first attempted to address the claim by making changes to the mathematical
models used in previous research. After problems were encountered, a new direction
was taken, focusing on creating a generalized algorithmic worm model. This model
was then coded into a network simulator [ssf04] for testing and analysis.

As mentioned, the first attempt to address the above claim was to try and work
bandwidth and topology considerations into the classic epidemic model' used by
other researchers [SPW02, ZTGC03, ZTG03, Vog03|.

In the Simple Epidemic model, it is assumed that all hosts are universally con-
nected, and thus the probability of any infected host contacting and infecting another

host is:
EXY
Q

IThe SIR (Susceptible-Infected-Removed) model as used in biological infection studies.

p=1-—(1-Q)™ = s for Q2 >>1 (5)

where 7 is the number of scans an infected host sends per unit time, 7 * ¢ is the
number of scans an infected host will send in time §, and €2 is the total number of

hosts including susceptible and non-susceptible. This follows from:
. . S . 1
pi = P(not contacting live host in time slot i) =1 — q (6)

and the product of time slots 0 through 7 * §, as is evident in Figure 2.

- 2 3 & 5B F 4 ae nd slots

Figure 2: Time slots 0 through 7nd, where one scan occurs in one time slot.

We proposed an extension to the Simple Epidemic model that adjusts for band-

width considerations and non-uniform infection probabilities. Whereby:

Bij = g (7)

and the simple probability, p, is refined for group-to-group and host-to-host interac-
tions, in the form of p;;. We made note that although it is ideal to find a closed-form
solution for these equations, it is not necessary to gain necessary insights through
simulation.

To adequately test such changes to the model, real-world data of bandwidth
constraints and hosts’ software needed to be gathered; specifically, in support of

these questions:
1. What is the range and average up-link bandwidth for hosts on the Internet?

2. What is the percentage and connectivity of hosts on the Internet that have

10

certain operating systems and server software installed?

Network research mailing-lists, individuals, and companies were contacted in
seeking this information, but with little results. Responses from individuals and
the mailing lists included no direct knowledge of this information, however provided
pointers to organizations such as IANA, ICANN, NLANR, and CAIDA. Of these,
only NLANR? and CAIDA? seemed to be collecting network information, but did
not provide the necessary bandwidth statistics. Telegeography*, a company which
creates and sells reports of Internet statistics, responded to our inquiries with a
statement that they do not collect inter-network link bandwidths and do not know
of anyone else who does. For operating system usage, The Gartner Group and the
Network Operations of WPI were contacted. The Gartner Group had statistics for
how many PCs are sold with different operating systems on them, but not on actual
usage. WPI Network Operations reported that they do not collect such information.
While there are a few particular instances of some operating system and software
usage statistics on-line®, often their breadth, and sometimes accuracy, are lacking.

These problems, coupled with the mathematical difficulties of forming a com-
plete and closed model, led to a reassessment of the claim put forth and approach to
be taken toward it. During this reassessment, a few realizations were made concern-
ing the state of current worm research. First, it became obvious that most, if not
all, of the research on worm propagation had been concerning the effects of worms
on the Internet as a whole and not on particular segments of subnets. Secondly,
there is a lack of tools available to test new worm actions and propagation routines

without releasing them to the wild or in a completely controlled, small-scale, set-

2NLANR’s AMP and PMA projects

3CAIDA’s Skitter project

“http:/ /telegeography.com/

5Many websites provided statistics of their users, including operating system and browser used.
Netcraft, http://www.netcraft.com/, provides statistics of web server proliferation.

11

ting. To address both of these issues in the scope of the original hypothesis, a new
approach was chosen that considered creating a parameterized, algorithmic worm
model and a worm simulation tool capable of simulating a campus-sized network

and its interactions with the Internet as a whole.

4 Worm Design

In order to build a realistic simulator for any type of worm imaginable, a component-
based architecture was developed to be easily varied and extended to form all sorts
of worm instances. In this section, we described the proposed architecture, its
components, and the set of parameters being used to simulate a worm instance
within a local corporate network environment.

By definition, a worm is a self-contained, self propagating program. Thus, in
simple terms, it has two main functions: that which propagates and that which
does "other” things. We propose that there is a third broad functionality of a
worm, that of self-preservation. We also propose that the ”other” functionality of
a worm may be more appropriately categorized as Goal-Based Actions (GBA), as
whatever functionality included in a worm will naturally be dependent on whatever
goals (and subgoals) the author has.

The work presented by Weaver et. al. in [WPSC03] provides us with mainly
an action and technique based taxonomy of computer worms, which we utilize and

further extend here.

4.1 Propagation

The propagation function itself may be broken down into three actions: acquire

target, send scan, and infect target. Acquiring the target simply means picking a

12

host to attack next. Sending a scan involves checking to see if that host is receptive
to an infection attempt, since IP-space is sparsely populated. This may involve
a simple ping to check if the host is alive or a full out vulnerability assessment.
Infecting the target is the actual method used to send the worm code to the new

host. In algorithm form:

propagate() {
host := acquire_target()
success := send_scan(host)
if(success) then
infect (host)

endif

In the case of a simple worm which does not first check to see if the host is available

or susceptible (such as Slammer), the scan method is dropped:

propagate() {
host := acquire_target()

infect (host)

Each of these actions may have an associated ”cost” to its inclusion and execution,
such as increased worm size and CPU or network load. Depending on the authors
needs or requirements, these become limiting factors in what may be included in the

worm’s actions. This is discussed further after expanding upon these actions below.

13

4.1.1 Target Acquisition

The Target Acquisition phase of our worm algorithm is built directly off of the
Target Discovery section in [WPSCO03]. Weaver et. al. taxonomize this task into 5

separate categories. Here, we further extend their work through parameterization.

Scanning Scanning may be considered an equation-based method for choosing a
host. Any type of equation may be used to arrive at an IP address, but there are
three main types seen thus far: sequential, random, and local preference. Sequential
scanning is exactly as it sounds: start at an IP address and increment through
all the IP space. This could carry with it the options of which IP to start with
(user chosen value, random, or based on IP of infected host) and how many times
to increment (continuous, chosen value, or subnet-based). Random scanning is
completely at random (depending on the chosen PRNG method and its seed value).
Local preference scanning is a variance of either Sequential or Random, whereby
it has a greater probability of choosing a local IP address over a remote one (for

example, the traditional 80/20 split).

Pregenerated Target Lists Pregenerated Target Lists, or so called ”hit-lists”,
could include the options for percentage of total population and percentage wrong,
or just number of IPs to include. Implicit to this type is the fact that the list is
divided among a parent and its children, avoiding the problem of every instance

hitting the exact same machines.

Externally Generated Target Lists Externally generated target lists depend
on one or more external sources that can be queried for host data. This will involve
either servers that are normally publicly available, such as gaming meta-servers, or

ones explicitly setup by the worm or worm author. The normally available meta-

14

servers could have parameters for rates of change, such as many popping up at night
or leaving in the morning. Each server could also have a maximum queries/second
that it would be able to handle. The worm would also need a way of finding these

servers, either hard-coded or through scanning.

Internal Target Lists Internal Target Lists are highly dependent on the infected
host. This method could parameterize the choice of how much info is on the host,
such as ”all machines in subnet”, ”all windows boxes in subnet”, particular servers,

number of internal /external, or some combination.

Passive Passive methods are determined by ”normal” interactions between hosts.
Parameters may include a rate of interaction with particular machines, internal /external

rate of interaction, or subnet-based rate of interaction.

Any of these methods may also be combined to produce different types of target
acquisition strategies. For example, the a worm may begin with an initial hit-list of
100 different hosts or subnets. Once it has exhausted its search using the hit-list, it
may then proceed to perform random scanning with a 50% local bias.

It is important to note, however, that the resource consumption of each method
is not the same. Different methods may require the worm to be large, such as
the extra bytes required by a hit-list, or to take more processing time, such as by
searching the host for addresses of other vulnerable hosts. Further research and
analysis should be performed in this area to determine associated costs for using
each method. The costs could then be used in determining design trade-offs that
worm authors engage at. For example, hit lists provide a hight rate of infection, but

at a high cost of worm payload size.

15

4.1.2 Sending a Scan

The send_scan function tests to see if the host is available for infection. This can be
as simple as checking if the host is up on the network or as complex as checking if
the host is vulnerable to the exploit which will be used. The sending of a scan before
attempted infection can reduce the scanning rate if the cost for failing an infection
is greater than the cost of failing a scan or sending a scan plus infection. One
important parameter to this would be the choice of transport protocol (TCP/UDP)
or just simply the time for one successful scan and time for one failed scan. Also,
whether or not it tests for the host to be up or if it is a full test for the vulnerability

(or for multiple vulnerabilities).

4.1.3 Infection Vector (IV)

The particular infection vector used to access the remote host is mainly dependent on
the particular vulnerability chosen to exploit. In a non-specific sense, it is dependent
on the transport protocol chosen to use and the message size to be sent. Section 3 of
[WPSCO03] also proposes three particular classes of IV: Self-carried, second channel,
and embedded.

4.2 Self Preservation

The Self Preservation actions of a worm may take many forms. In the wild, worms
have been observed to disable anti-virus software or prevent sending itself to certain
antivirus-known addresses. They have also been seen to attempt disabling of other
worms which may be contending for the same system. We also believe that a time-
based throttled scanning may help the worm to ”slip under the radar”. We also

propose a decoy method, whereby a worm will release a few children that ”cause a

16

lot of noise” so that the parent is not noticed. It has also been proposed [WPSCO03]
that a worm cause damage to its host if, and only if, it is ”disturbed” in some way.
This module could contain parameters for: probability of success in disabling anti-
virus or other software updates, probability of being noticed and thus removed, or

“hardening” of the host against other worms.

4.3 Goal-Based Actions

A worm’s GBA functionality depends on the author’s goal list. The Payloads section
of [WPSCO03] provides some useful suggestions for such a module. The opening of
a back-door can make the host susceptible to more attacks. This would involve a
probability of the back-door being used and any associated traffic utilization. It
could also provide a list of other worms this host is now susceptible to or a list of
vulnerabilities this host now has. Spam relays and HTTP-Proxies of course have an
associated bandwidth consumption or traffic pattern. Internet DoS attacks would
have a set time of activation, a target, and a traffic pattern. Data damage would

have an associated probability that the host dies because of the damage.

5 Implementation

This section describes the implementation of our algorithmic model defined in
Section 4. Requirements for choosing a simulator are presented, along with the
design of the framework.

In order to test our hypothesis, that bandwidth and heterogeneity of hosts affect
worm propagation, a network-based simulator was sought that would allow effec-
tive and easy incorporation of our algorithmic model. The reason for choosing a

network-based simulator is because such a tool allows the level of detail, specifically

17

packet-level, to show worm traffic effects with network-based constraints. Different
simulator options were considered before choosing the one that best fit the needs of
this research.

The ns2 network simulator [ns2] was considered because of prior experiences and
general community knowledge of it. ns2 is a fully packet-level network simulator
written in C++ and OTcl. It is both fast, for a packet-level simulator, and very
scriptable. It provides constructs for simple hosts and routers that have different
networking protocols for sending send packets between each other. It has mainly
been used in the past for analyzing changes to routing algorithms, the TCP/IP
protocol, and active queue management algorithms.

The Network Worm Simulator (NWS) [nws| was briefly considered, and men-
tioned here, mainly due to its name. This is a simulator written in Perl from the
ground-up. It is based on the idea of message-passing between hosts, however is not
on the level of network packets or any form of IP stack. For this reason, NWS was
not chosen for this project.

The Scalable Simulation Framework (SSFNet) [ssf04] was utilized within the
work of Liljenstam et. al. in [LYPN02, LNBGO03]. SSFNet is a packet-level sim-
ulator, much like ns2, written in Java and utilizes a Domain Modeling Language
(DML) specifically developed for writing simulations in SSFNet. Michael Liljenstam
has begun creation of a worm framework (SSF.App.Worm [ssf]) within the SSFNet
simulator. For this reason, the SSFNet simulator was chosen, specifically to build

off of the SSF.App.Worm framework currently in place.

5.1 Current state of SSF.App.Worm

While reading through [LYPNO02] and [LNBGO3], it seemed that the current state

of the SSF.App.Worm framework included worm packets being created on the LAN

18

level. However, upon further investigation, it became uncertain that this was truly
the case. The creator of the framework, Professor Michael Liljenstam, was contacted
for confirmation and further guidance. He provided much clarification and further
help, as may be found in Appendix C, including the providing of beta code which
was currently under development. Professor Liljenstam stated that this new code
(SSF.App.Worm v0.6) provides for packet-level simulation of worm flows. However,
it was determined that learning the capabilities of the new code and then extending
for our purposes might not provide for timely completion. Thus, it was decided to
utilize SSF.App.Worm’s iterative capabilities on the macroscopic level and build our
own framework for the packet-level and for translating between the two.

As mentioned above, the SSF.App.Worm framework currently takes epidemic
model parameters (initial number susceptible, initial number infected, infection rate)
and runs a time-stepped iteration over the Epidemic equations. These equations are
used to calculate when particular susceptible hosts within LANs become infected,
as well as track the total infection population, number of incoming scans to LANSs,
and number of outgoing scans from LANs. This capability was utilized within our
new code, while further extending it and creating both the packet-level LANs and

translation between packet and macroscopic levels.

5.2 Framework

A framework was constructed that incorporates the algorithmic model of Section 4
into the SSFNet simulator.

Similar to the ideas of [LYPNO2], there needed to be an Internet-level module
which keeps track of the worm spreading throughout the Internet as a whole. This
is on a very high level, being simply equation-based and not packet-based. The

abstraction is both necessary, for scalability, and reasonable. It has been shown

19

[SPW02, ZTG03, LYPNO02] that epidemic models can be created to model the spread
of worms on such a high level.

The next two key components are on the LAN-level of simulation: Hosts and
Gateways. A Gateway is simply the gateway router that provides the up-link from
the LAN to the Internet. Hosts are individual hosts within a LAN that are made
up of multiple components themselves. Hosts have a particular operating system
version installed and are of a single architecture (such as x86 or alpha). They also
run particular software which may provide network services, such as web (HTTP)
or email (SMTP).

The third key component is the Worm itself, which builds on the algorithmic
model of Section 4 and thus described in brief here. The three parts of a Worm are
the propagation mechanism, the Goal-Based Actions (GBAs), and self-preservation
techniques. The propagation is broken down into targeting and infecting, with an
optional scanning in between. Targeting is the method by which the worm chooses
an IP address of its next target. Infecting is the sending of the actual infection
vector (IV). Scanning may be anything from a simple ping-check of the host to a
full vulnerability check. GBAs are actions based on the goals of the worm author,
such as installing a spam relay or DoS attack. Self-preservation techniques may
involve such things as delaying a worm’s infection rate to make it more stealthy or
disabling anti-virus software on the infected host.

Many changes needed to be made to the simulator to incorporate this designed
framework, the most important of which was the translation between Internet level
equations and packet level LANs. Specifics of these changes may be found in ap-

pendix B.

20

6 Testing, Results and Analysis

This section describes the testing procedures used, results obtained, and anal-
ysis thereof. The hypothesis being tested is that real-world constraints affect the

propagation of a worm, particularly within a LAN environment.

6.1 Experimental design

All of the following simulations were run multiple (10) times, with the data from
each then averaged and shown below. The reason for multiple runs of the same
simulation was to produce an average behavior for analysis, rather than dealing
with statistical aberrations from analyzing a single run. We also wished to have a
certain degree of confidence to guarantee that our ten runs were sufficient.

A simple confidence metric to use when sampling data is to test if most values
fall within two standard deviations (2 o) of the mean. To accomplish this, we must

compute the sample variance:
0% = (% — Tmean)”/(n — 1) (8)

where o is the standard deviation, z; is the i sample value, Z,,eqn is the mean over
all z;’s, and n is the number of samples. We must then compute the averages and
confidence factors (2 x o) for both the times to infections in the LAN and the rate
of infection®. These averages and confidence factors may be found in Tables 1 and
2. All data values fell within the confidence interval (mean +/- 2 x ¢), which led
us to reason that the ten runs of each simulation were sufficient to analyze their
aggregate, average behavior and perform meaningful analysis.

It is important to note that in order to obtain varying simulation results, the

6The rate of infection is equivalent to the slope of the graph.

21

% Infected in LAN

Average time to reach %

Confidence Factor

10

85.3890755

33.4283144158765

20 98.0671414 30.333730906725

30 107.0233175 27.3126402818765
40 115.8380135 21.2708501069923
20 121.5869975 17.1973449459653
60 126.3956217 13.3913031857912
70 132.1420465 13.3404478406287
80 139.69174 12.9847895768754
90 148.60002 17.3014541445587
100 171.992899 38.6074394331288

Table 1: Confidence intervals for time to infection in the LAN.

% Infected in LAN

Average Rate of Infection

Confidence Factor

10-20

12.6780659

15.698609116824

20-30 8.9561761 19.6927089049045
30-40 8.814696 14.5981915075843
40-50 5.748984 5.86531587335395
50-60 4.8086242 7.52210120758779
60-70 5.7464248 7.47088397351632
70-80 7.5496935 10.7342101089244
80-90 8.90828 12.3830007750231
90-100 23.392879 44.3957923584191

Table 2: Confidence intervals for rate of infection in the LAN.

22

PRNG seed value specified in the DML configuration file was changed for each run,
thus producing different sequences of random numbers.

The worm chosen to simulate was SQL Slammer [MPS*03]. This worm was
of interest to us for two reasons. It propagated so quickly and caused so much
network traffic that it utilized the entire up-link bandwidth of many LANs. Also,
Slammer has only a propagation method, no GBAs. Also, that propagation method
consisted solely of choosing a target IP address and sending a single, 376 byte UDP
packet to that target. This simplicity made coding of the worm in the simulator
much easier. The framework, however, provides for more complicated worms to be
encoded, as is evident by our adjusting the original Slammer propagation function
to use a locally-biased target acquisition method.

For all simulations involving the new code, a LAN topology was created based on
that of the Worcester Polytechnic Institute network. This involved approximately
1700 hosts separated into various subnets by routers. All subnets were either directly
or indirectly connected to a backbone network of six routers with gigabit links
connecting them in a ring topology, with one of the routers providing an up-link to
the Internet. Further details of this topology, as well as the DML configuration file,

may be found in Appendix A.

6.2 Establishing a baseline

The first step to testing a new claim is to create a baseline with which to compare
results. This often involves reproducing prior research tests and then running vari-
ations on those tests. Since this work both built heavily off of the SSF.App.Worm
simulations and introduces a new extension, the first step was to run the chosen
worm, Slammer, with the original SSF.App.Worm code and then with the newly

introduced code.

23

Since the original SSF.App.Worm code iterates over the epidemic model equa-
tions, it required the epidemic parameters take on those values associated with the
Slammer worm [ZGTO03], as specified in Table 3. s.0 is the number of initially
susceptible hosts in the Internet, i_0 the number of initially infected hosts in the
Internet, and [the infection rate. The LAN topology used is based on the WPI
campus network and more fully explained in Appendix A. The results from this
simulation are shown in Figure 3 as the original code data line. The first infection

within the LAN occurs at 204 seconds, with the last at 249 seconds.

Parameter | Value

5.0 75000

10 10

153 9.313e — 7

Table 3: Slammer epidemic parameter settings.

Baseline - LAN Infections vs. Time

100

L T T T T T T T
original code —+—

new code
90 / —
80 —

70 | } .

60 |- / .
/
/

% infected

50 - { -

40 - / i
30 + i

20 | ; .

10 1 1 1 1 1 L/ 1 1
80 100 120 140 160 180 200 220 240 260

time [seconds]

Figure 3: Creating a baseline - LAN infections versus time

24

The new SSF.App.Worm code, which includes the worm framework as described
in Section 5, both utilizes the original iterative mechanism and introduces new
parameters. The original mechanism is used for the global infection rate, while
the new parameters are specific to the LAN being simulated at the packet level.
Important parameters introduced are: up-link capacity, number in LAN susceptible,
number in LAN initially infected, and scanning strategy. In creating a base-case,
these parameters for the LAN were set as detailed in the first row of Table 4. The
results from this simulation are shown in Figure 3 as the new code data line. On
average, the first infection within the LAN occurs at ¢t = 85.4, with the last at
t=172.0

Two observations may be made from the data in Figure 3. First, once the initial
infection occurs within the LAN, the rate of propagation between original code
and new code is similar. Second, the first infection within the LAN occurs sooner
with the new code than with the original code. We believe this difference of initial
infection time to be due to the differing methods in which the new code and the
original code calculate when a susceptible host becomes infected.

The original code infects the LAN susceptible hosts using solely the mathematical
epidemic equations. For each time step, it calculates how many new global infections
there were since the last time step. Then, with probability based on the number
of LAN susceptible hosts versus the number of globally susceptible hosts, one of
the LAN susceptible hosts is chosen to become infected. Mathematically, this is
equivalent to:

. . . Snet
P—an€Ctoriginal = (lttl - Zold) * = (9)
Sglobal

where iy is the total number of global infections at time ¢, 7,4 is the total number
of global infections at time t — 1, s, is the number of susceptible in the LAN at

time ¢, and Sgope is the number of susceptible in the Internet at time ¢.

25

Our new code infects the LAN susceptible hosts using a combination of the
epidemic equations and sending of simulated scan packets on the network. We
assume that the number of scans created at a time, ¢, is based on the number of
infected hosts at that time. The probability that a LAN susceptible host becomes
infected is based on the total number of new scans created globally, the probability
that those scans are sent to the LAN, and the probability that those scans sent to

the LAN will reach a susceptible host. Mathematically, this is equivalent to:

lan_space Snet
Pinfectnew = i * 23 % B %

10
232 lan_space (10)

where i;; and s, are as in Equation 9, 232 is the total IP space for IPv4, 3 is the
infection rate as described in the standard epidemic model, and lan_space is the
total IP space for the LAN.

To simplify and compare Equations 9 and 10, we substitute an equivalent equa-

tion for ittl y

di)
% = ﬁ * Sglobal * tglobal (11)
iy = loa t+ di (12)
and arrive at

. . S

P—aneCto'riginal = B * Sglobal * Told * net (13)
Sglobal

= /8 * iold * Snet (14)
P_’I:nfectnew = ittl * ﬁ * Spet (15)
= (iold + ﬂ * Sglobal * iold) * ﬁ * Snet (16)
= iold * ﬂ * Spet + /62 * Sglobal * Snet * iold (17)

26

As may be seen, the probability of infecting a susceptible host within the LAN

is slightly greater for the new code. It should be understood that the calculation of

the number of scans to send causes those scans to be created at the network level

and sent across the 30ms link to the LAN. This small up-link delay causes a host to

become infected almost instantaneously when its IP address has been selected for a

scan packet. We believe that this difference between Equations 9 and 10 may be due

to the time step involved, and would be further tested by decreasing the resolution

of the time step from one second to a value on scale with the LAN’s up-link delay.

We note, however, that it is apparent in Figure 3 that the rate of infection is not

affected by this discrepancy, and thus we may gain insights through analysis of test

results with the new code.

6.3 Parameter variations

ID | Up-link capacity | LAN Susceptible | Scan Strategy Feedback?
1 45Mb 10 random No
2 45Mb 20 random No
3 45Mb 5 random No
4 15Mb 10 random No
5 15Mb 10 random Yes
6 5Mb 10 random Yes
7 | 45Mb 20 50%, 8-bit local bias | No
8 | 45Mb 20 50%, 16-bit local bias | No
9 | 45Mb 20 50%, 8-bit local bias | Yes

Table 4: Simulation parameter settings

Table 4 describes the main parameter variations between each simulation run

in this section. The ID is simply an identifier for that run, such as referring to

ID =1 as the first simulation and ID = 4 as the fourth simulation. Up-link

capacity is the capacity of the LAN’s sole link to the Internet, across which all

27

Internet-to-LAN and LAN-to-Internet scans must traverse. LAN Susceptible is
the number of susceptible hosts in the LAN. Scan Strategy is the target acquisition
method used by the worm. Feedback is whether or not the simulation incorporates
a feedback mechanism, further described below. All simulations were run with no
initial infections in the LAN, thus the first LAN infection occurs due to an incoming
Internet-to-LAN scan, as is normally the case but for the LAN where the worm is
released.

We believed that each of these parameters would show effects as predicted by
our hypothesis. In particular, we reasoned that the up-link capacity for a LAN
should throttle the propagation of a worm within that LAN. Differing the number
of susceptible hosts in the LAN allowed us to test the hypothesis that the number
of hosts affects the observed rate of infection. Differing the scanning strategy was
also believed to show how a worm’s simple epidemic parameters were not adequate
to describe localized, corporate LAN scale, propagation. The feedback mechanism
was worked into the mix in order to further show how bandwidth constraints can
affect not only the localized propagation, but the global as well.

The first set of variations were aimed at testing a change in the number of
susceptible in the LAN. These simulations were equivalent to an increase of twice
as many susceptible and a decrease to half as many susceptible. Figure 4 shows
the number of infections in the LAN over time, comparing these simulations with
the base-case (ID = 1). As can be seen, the initial infection occurs sooner for
the simulation with 20 susceptible and later for the simulation with 5 susceptible.
This follows logically, as the probability that one host will be chosen in a single
scan is one over the total IP space, or 1/232. Thus with 20, 10, and 5 susceptible,
the chance that one of the susceptible will be chosen to infect is 20/232, 10/232,

and 5/232, respectively. Similar reasoning may be made for the tail of the curves.

28

Variable #of susceptible - LAN Infections vs Time
20 T T T T T T

#of infected
o
T
\
\
1

60 80 100 120 140 160 180 200
time [seconds]

Figure 4: Varying number of susceptible - Infections versus time

The number infected at t = 150 is approximately half the base-case with half the
number of susceptible, and approximately twice the base-case with twice the number
of susceptible. While we admit that these results are entirely expected, they help
to verify appropriate behavior of the simulator.

The next set of variations, simulations four through six, were run to show the
effects of a throttled bandwidth on the worm’s scan traffic and infection rate. Figure
5 shows the outgoing scan rate from the LAN for each of these simulations, plus
the base-line. The important thing to note here is that the steady-state reached by
the outgoing scans should be equivalent in all cases, as the total number of worm
infections is the same. However, as can be seen, the baseline (with a 45Mbps up-
link) has approximately a three-times greater steady state than the 15Mbps case,
and that the 15Mbps case has approximately a three-times greater steady state than

the 5Mbps case. This shows that there is truly throttling of outgoing scans due to

29

Variable uplink with feedback - Outgoing Scans vs Time

14000 T T
15Mb uplink w/ feedback —+— iy
5Mb uplink w/ feedback il
15Mb uplink *ﬁﬁ
12000 }+ baseline o i
[m]
o
10000 8 i
]
]
@ 8000 - o]
3 :
— |
o]
* 6000 [i i
]
]
[n]
6]
4000 wﬁ .
2000]
0 1 1 1

150 200 250 300

time [seconds]

Figure 5: Varying up-link capacity - LAN’s outgoing scan rate

the up-link capacity. Why this is important will become clear shortly.

We now introduce the concept of a feedback mechanism into the simulations.
By feedback, we mean that the outgoing scan-rate from the LAN should affect the
global propagation rate. Specifically, the proportion of scans successfully traversing
the LAN’s up-link line, versus those attempting to traverse the LAN’s up-link line,
should be proportional to a change in the global infection rate, 8. This mecha-
nism was developed and encoded into the simulator in part to test the claim that
bandwidth constraints should be considered when constructing worm propagation
models. A major assumption of this feedback method is that the proportion of suc-
cessfully outgoing scans is the same across all LANs. While this may not provide
eractly correct proportions, it is a reasonable abstraction to make in order to show

that there is indeed necessity to create worm propagation models with bandwidth

constraint considerations.

30

% infected

% infected

Variable uplink with feedback - Internet Infections vs Time

100

90

80 -

50 |

Pl

15Mb uplink —+—
15Mb uplink w/ feedback
5Mb uplink w/ feedback ------

150 200 250 300
time [seconds]
Figure 6: Varying up-link capacity - Internet infection rate
Variable uplink with feedback - LAN Infections vs Time
100 " T T T —— T
15Mb uplink —+— _—
15Mb uplink w/ feedback _—
90 | 5Mb uplink w/ feedback ------ — * i
80 | * .
70 o R
60 - b
50 b
40 E
30 T
20 - T
10 Il Il Il
80 100 120 140 160 180 200

time [seconds]

Figure 7: Varying up-link capacity - LAN infection rate

31

As we hypothesized, the global infection rate and LAN infection rate do indeed
change when the feedback mechanism is introduced, shown in Figures 6 and 7,
respectively. As may be seen for both the Internet and the LAN, infection rate is

effectively slowed, so that 100% infection takes more time.

Local Bias - LAN Infections vs. Time
100

LI T T T T T
baseline —+—
50% local bias

20 | E

80 E

70 1

50 | / .
40 // -
30 | .

0 Il Il Il Il Il Il
60 80 100 120 140 160 180 200

time [seconds]

% infected

Figure 8: Vary in scanning strategy - 50% local bias

The final set of simulations were concerned with varying the scanning strategy
of the worm. While Slammer itself used only a random target acquisition method,
we thought it appropriate to see how a change to a locally-biased strategy would
affect the propagation of the worm.

The first simulation run was that of a simple 50%, 8-bit local bias, with param-
eters set according to row six of Table 4. As can be seen in Figure 8, as soon as the
first host becomes infected within the LAN, all of the other susceptibles are nearly
immediately infected. This is because half of the scans for that infection are now

being sent to the 255 hosts within its class C address space, which all of the other

32

Varying scanning strategy with split susceptibles - LAN Infections vs. Time

100 T T T T ——
random —+—) R
local class C bias .-
0 local class B bias ------ |
80 | i
70 4
60 |- i
©
2
[$]
2 50 4
£
B
40 | i
30 4
20 i
10 +/;< |
+ - x
0 1 1 1 1 1 1
60 80 100 120 140 160 180 200

time [seconds]

Figure 9: Vary in scanning strategy - split susceptible

susceptibles are in.

After seeing these results, we were curious to know what would happen when the
susceptible population is broken up, as is the case in a realistic LAN topology. We
then separated ten susceptible hosts from the initial class C subnet, placed them in
a different subnet within the LAN, and re-ran the simulations. Since the susceptible
hosts were now spread across the campus, we also felt it appropriate to see what
would happen when we changed the idea of locality from class C address space to
a class B address space (a 16-bit mask on the infected host’s IP address). Results
from these simulation are displayed in Figure 9.

We can see that the initial infections in the LAN occur similarly to that in
Figure 8; as soon as the first host is infected, all susceptible hosts in its proximity
are immediately infected. However, it takes some time before the next set of hosts

become infected. While still allowing the worm to propagate faster in the LAN, we

33

believe this disconnect provides an opportunity for mitigation. There will naturally
be an unusual traffic pattern produced by the worm, which may be noticed within
the initial subnet and cause blocking of the worm or that service across the entire
LAN, thus preventing the remaining susceptible hosts from becoming infected. This

may particularly be useful when utilizing honeynets [hon04].

Local Bias with feedback - Internet Infections vs Time
120

T
15Mb uplink —+—
15Mb uplink w/ feedback
5Mb uplink w/ feedback ------
15Mb, bias, feedback &

100

80

60

% infected

40

20

0 50 100 150 200 250 300 350
time [seconds]

Figure 10: Vary in scanning strategy - Local bias with feedback

Another question arose from these local-bias simulations, that of how the pro-
posed feedback mechanism would affect the propagation. After enabling the feed-
back mechanism and re-running the simulations, Figure 10 was formed. In this
graph, we see the global infection of the worm. There are four plots: (a) a 15Mb
up-link capacity and no feedback mechanism, (b) a 15Mb up-link capacity with
feedback, (c¢) a 15Mb up-link capacity with feedback and a locally-biased worm, and
(d) 5Mb up-link capacity with feedback. All plots follow the traditional S-curve, as

defined by the epidemic model. However, variations are seen in between when there

34

is a small percentage of infected hosts and when the maximum is reached.

The similarities between the plots, for the initial and maximal infection, may be
easily explained. The feedback mechanism, which effectively only adjusts £ in the
epidemic model, does not take effect until there is throttling of outgoing scans in
the local LAN. Since the first infection occurs around ¢ = 100, then the feedback
will not start to affect the infection rate until this time, as seen in the graph.
Each plot then eventually reaches the 100% mark and stays there. As there are no
removals occuring in the system, this is the natural steady-state that all infections
are expected to reach, as seen in the graph. As expected, the feedback mechanism
causes the global infection rate to slow down from plot (a) to (b). There is a slight
slow-down even further, from plot (b) to (c). Since the change is to a locally-biased
worm, it can be assumed that the quicker local infection rate, as shown in Figure 8,
causes the up-link to be saturated sooner. This then causes the feedback mechanism
to take effect sooner, thus showing a slightly slower propagation rate. When the up-
link capacity is shrunk even further, to 5Mbps in plot (d), the up-link is saturated

even sooner, thus causing the slower infection rate.

7 Conclusions and Future Work

This thesis set out to test the claim that real-world parameters, such as up-link
capacity, topology, and worm scanning strategy, do affect both the propagation of
worms within a LAN and their effects on that LAN. Problems were identified for the
worm research community, with respect to lack of data and appropriate tools. An
algorithmic worm model was developed, specifically proposing the concept of Goal-

Based Actions (GBAs) that affect the combination of various worm functions. A

35

simulation framework was developed” to allow for testing of different parameters of
the worm algorithm. This simulation framework was then used to test the proposed
hypothesis. Variations of up-link bandwidth and scanning strategy showed that
there is an impact on the local network and the rate of outgoing scans. A feedback
mechanism was introduced to allow changes in the LAN outgoing scan rate to affect
the global infection rate. This feedback showed that both the global and local
propagation are affected by bandwidth constraints. We believe these results present
reasonable justification for the hypothesis.

Future work will include further testing to verify the results obtained in Section
6. In particular, the results shown in Figure 9 should be verified by running more
variations on the parameters of locality (number of bits in the scanning strategy
net-mask), percentage of bias, and LAN topology. The results from these variations
may then be used to gain further insight into how a worm’s locally-biased target
acquisition strategy propagates differently or similarly on different LANs. The con-
cept of feedback should also be further studied. While in this work it was adequate
to approximate the throttling imposed by a LAN’s up-link capacity, further analy-
sis and thoughtful inspection should lead to possible changes in the epidemic model
equations. For instance, we could make a change in the global 8 based on an as-
sumed global bandwidth limitation. This global bandwidth limitation would require
either research and simulations of various different LAN topologies to gain insight of
the average throttling of outgoing scans. While the strategy used in this thesis® was
adequate to show that a feedback behavior exists, it is flawed because the simulation
was of a single type of LAN configuration.

The next step would naturally involve simulating more types of worms, especially

"The framework will be open available for researchers through the WPI System Security Re-
search Lab, http://wssrl.wpi.edu/
8That of calculating the percentage of successfully sent scans at the up-link router.

36

TCP-based ones. Data should be gathered to effectively form methods for properly
encoding the worms into the simulator. Of particular note will be the method
of translating between global- and packet-level network traffic. Data from past
worms should also be collected, modeled, coded into the simulator, and used to
verify ”realistic” results from the simulator. Once proper realism has been verified,
mitigation techniques should also be looked into. Again, this should begin with
gathering data from current mitigation techniques, coding those techniques into
the simulator, and verifying "realistic” effects of the mitigation mechanism. From
there, new mitigation techniques or variations / combinations of current ones may
be simulated and analyzed. Further enhancements to the simulator, including these

future directions, may be found in Appendix B.4.

37

A WPI Topology for Simulation

Described here is the topology used for all simulations in this thesis. It is based

in part on [wpi04] and communications with the Network Operations group at WPL.

DR /' W . -
E ‘F"H 2 Sk Byl - 18 %

.. WAT ATH/!Skpk 40l Revkher = Eim il -

Y

i y halal
'.T-\.Joc-il'ld'\:.l‘"lb\d.-ci Clurfal 34 W e o sl
=

Figure 11: Campus Network Topology [wpi04]

Provided below is the basic DML configuration file used for all simulations.
Such things as up-link bandwidth and worm parameters were varied. However, the
structure remained the same.

The main part of the WPI LAN is a modeled as a ”backbone” consisting of six
routers connected in a ring topology, four lgig lines between each. One of these
routers is then connected to the modeled ”Internet” network. The other five have
a single network connected to each. Two of these networks consist of 200 hosts,
one of 800 hosts, one of 245 hosts, and one of 270 hosts. This is equivalent to 1715

hosts in the total modeled WPI LAN. For most of the simulations, the subnet of 270

38

hosts also contains the total susceptible population. For the simulations with split
susceptible population, the other half of the susceptible hosts were in the subnet of

245 hosts.

A.1 wpi_reference.dml

wpi.dml
Author: frank p - fspoz3@cs.wpi.edu

Configuration file used for my thesis. It models a worm infection using
the mixed-abstraction mode as proposed by Liljenstam et. al. and
initially encoded into the SSF.App.Worm code.

A single LAN is simulated on the packet level, while the worm epidemic
in simulated more abstractly (iterating over the epidemic equations) on
the Internet level.

HOoH H OH O H H H H R H

for validation
_schema [_find .schemas.Net]

Net [
frequency 1000000000 # 1 nanosecond time resolution
these are needed, from what I can tell.
AS_status boundary
ospf_area 0
worm parameters
worm_model [
Epidemic [

_extends .dictionary.worm_model.Slammer

Required Attribues:

#s_0 20 # inital number of suscepible hosts

in the whole of the Internet.
#i_0 1 # initial number of infected hosts.
#beta 1.2e-9 # infection parameter.

]
Optional Attributes:

39

delta_t 1 # set the time step size (in seconds).

stratified_on false # stratified model (true or false).

#as_graph ex_as_topology.adj # name of AS graph file (connectivity).
Required for stratified model.

debug true # debug output for global epidemic process?

For the MobileCode add-on, part of my thesis (optional):
#useTarget SSF.App.Worm.WormLocalBias # enable for a local bias
#TargetAcquisition [# May be used by the TargetAcquisition class
What percentage is local bias?
localBias 0.5 # used by WormLocalBias, default 0.5
What is the sence of locallity? This is how many bits to
mask the infected host’s ip address by, and thus how many bits
to use in picking a random number to add to the masked address.

netmask 8 # used by WormLocalBias, default 8

#]

#lan_affect_global true # enable for LAN feedback to Internet
]

the PRNG seed value is specified by the ’stream’ parameter here
randomstream [

generator "MersenneTwister"

stream '"seedstartingstringl1234567890"

reproducibility_level "timeline"

]
the LAN being modelled on the packet level
Net [id O
Net [id O
_extends .networks.backbone.Net
]
Net [id 1
_extends .dictionary.net2dorm100
]

link [attach 0:1(9) attach 1:0(0) delay 0.0005]

Net [id 2
_extends .dictionary.net2dorm100

]
link [attach 0:0(9) attach 2:0(0) delay 0.0005]

40

Net [id 3
_extends .networks.net8dormi00
]
link [attach 0:5(9) attach 3:0(0) delay 0.0005]

Net [id 4
_extends .networks.ak240
]
link [attach 0:2(9) attach 4:0(0) delay 0.0001]

Net [id 5
_extends .networks.fuller
]
link [attach 0:3(9) attach 5:0(0) delay 0.0001]

uplink router for connecting to the Internet
router [id O
_find .dictionary.wormRouterGraph.graph
uplink to Internet
interface [id 0 buffer 8000 _extends .dictionary.15Mb
monitor [
this monitor is required for LAN feedback to Internet
use SSF.App.Worm.WormMonitorInterfaceUtil
probe_interval 1.0
debug true

]
link to LAN
interface [id 1 buffer 8000 _extends .dictionary.15Mb
monitor [
this monitor is good extra info to have
use SSF.App.Worm.MonitorInterfaceUtil
probe_interval 1.0
debug true

]
link [attach 0:4(9) attach 0(1) delay 0.0001]
] # end of packet-level LAN

the Internet network

Net [id 100
_extends .networks.thelnternet

41

]

connect LAN to Internet with a 30ms delay on the wire
link [attach 100:0(0) attach 0:0(0) delay 0.03]

] # end of Net configuration
a dictionary of entities for referencing / including
dictionary [

worm models

worm_model [
Epidemicl [

s_0 359999
i 0 1
beta 1.235e-9

]

Epidemic2 [
use SSF.App.Worm.StochasticWormEpidemic
_extends .dictionary.worm_model.Epidemicl

]
Slammer [

s_0 75000

i_0 10

beta 9.313e-7 # for n=4000/s, b=n/(2"32)
]

standard network interfaces
10BaseT [
bitrate 10000000
latency 0.0001
]
100BaseT [
bitrate 100000000
latency 0.0001
]
45Mb [
bitrate 45000000
latency 0.0001
]
50Mb [
bitrate 50000000

42

latency

]

15Mb [
bitrate
latency

]

10Mb [
bitrate
latency

]

iMb [
bitrate
latency

]

300Kb [
bitrate
latency

]

100Mb [
bitrate
latency

]

20Mb [
bitrate
latency

]

1Gb [
bitrate
latency

]

some tcp initialization

tepinit[
ISS 1000
MSS 1000
RcvWWndSi
SendWndS

SendBufferSize 128

MaxRexmi

TCP_SLOW_INTERVAL 0.5
TCP_FAST_INTERVAL 0.2

MSL 60.0
MaxIdleT

0.0001

15000000
0.0001

10000000
0.0001

1000000
0.0001

300000
0.0001

100000000
0.0001

20000000
0.0005

1000000000
0.000001

0

ze 32
ize 32

tTimes 12

ime 600.0

parameters, as taken from an SSFNet example

#
#
#
#
#
#
#
#
#
#

initial sequence number

maximum segment size

receive buffer size

maximum send window size

send buffer size

maximum retransmission times before drop
granularity of TCP slow timer
granularity of TCP fast(delay-ack) timer
maximum segment lifetime

maximum idle time for drop a connection

43

delayed_ack false # delayed ack option

fast_recovery true # implement fast recovery algorithm

show_report true # print a summary connection report
] # end of tcpinit

a router

router3 [
_find .dictiomary.routerGraph.graph
interface [id 0 buffer 8000 _extends .dictionary.100BaseT]
interface [idrange [from 1 to 2] buffersize 16000]
#nhi_route [dest default interface 0]

a network with two hosts connected individually to a router
net2 [
router [id 0
_extends .dictionary.router3
]
host [id 1
_extends .dictionary.nonsusceptibleHost
route [dest default interface 0]
]
host [id 2
_extends .dictionary.nonsusceptibleHost
route [dest default interface 0]
]
link [attach 0(1) attach 1(0) delay 0.001]
link [attach 0(2) attach 2(0) delay 0.001]
] # end of net2

a network with one router and 100 hosts. The hosts are in two groups
of 50, with the groups connected to one segment with an interface on
the router.
net100 [
router [id 0
_extends .dictionary.router3

]

host [
idrange [from 1 to 50]
2004-07-28: frankp - we need ’nhi_route’ instead of just ’route’
here because we are specifying a next hop... because there’s more
than one interface attached to the same link

44

_extends .dictionary.nonsusceptibleHost
nhi_route [dest default interface 0 next_hop 0(1)]
]
host [
idrange [from 51 to 100]
nhi_route [dest default interface 0 next_hop 0(2)]
_extends .dictionary.nonsusceptibleHost

]

link [delay 0.0005
attach 0(1)
attach 1(0) attach 2(0) attach 3(0) attach 4(0) attach 5(0)
attach 6(0) attach 7(0) attach 8(0) attach 9(0) attach 10(0)
attach 11(0) attach 12(0) attach 13(0) attach 14(0) attach 15(0)
attach 16(0) attach 17(0) attach 18(0) attach 19(0) attach 20(0)
attach 21(0) attach 22(0) attach 23(0) attach 24(0) attach 25(0)
attach 26(0) attach 27(0) attach 28(0) attach 29(0) attach 30(0)
attach 31(0) attach 32(0) attach 33(0) attach 34(0) attach 35(0)
attach 36(0) attach 37(0) attach 38(0) attach 39(0) attach 40(0)
attach 41(0) attach 42(0) attach 43(0) attach 44(0) attach 45(0)
attach 46(0) attach 47(0) attach 48(0) attach 49(0) attach 50(0)

]

link [delay 0.0005
attach 0(2)
attach 51(0) attach 52(0) attach 53(0) attach 54(0) attach 55(0)
attach 56(0) attach 57(0) attach 58(0) attach 59(0) attach 60(0)
attach 61(0) attach 62(0) attach 63(0) attach 64(0) attach 65(0)
attach 66(0) attach 67(0) attach 68(0) attach 69(0) attach 70(0)
attach 71(0) attach 72(0) attach 73(0) attach 74(0) attach 75(0)
attach 76(0) attach 77(0) attach 78(0) attach 79(0) attach 80(0)
attach 81(0) attach 82(0) attach 83(0) attach 84(0) attach 85(0)
attach 86(0) attach 87(0) attach 88(0) attach 89(0) attach 90(0)
attach 91(0) attach 92(0) attach 93(0) attach 94(0) attach 95(0)
attach 96(0) attach 97(0) attach 98(0) attach 99(0) attach 100(0)

] # end of net100

a network with one router and 20 hosts. The hosts are in two groups
of 10, with the groups connected to one segment with an interface on
the router.
net20 [
router [id O
_extends .dictionary.router3d

45

host [
idrange [from 1 to 10]
2004-07-28: frankp - for some reason, we need
’nhi_route’ instead of just ’route’ here...
nhi_route [dest default interface 0 next_hop 0(1)]
_extends .dictionary.nonsusceptibleHost

]

host [
idrange [from 11 to 20]
nhi_route [dest default interface 0 next_hop 0(2)]
_extends .dictionary.nonsusceptibleHost

]

link [delay 0.0005
attach 0(1)
attach 1(0) attach 2(0) attach 3(0) attach 4(0) attach 5(0)
attach 6(0) attach 7(0) attach 8(0) attach 9(0) attach 10(0)

]

link [delay 0.0005
attach 0(2)
attach 11(0) attach 12(0) attach 13(0) attach 14(0) attach 15(0)
attach 16(0) attach 17(0) attach 18(0) attach 19(0) attach 20(0)

]

] # end net20

a router connected to two routers with connections to 100 hosts each
net2x100 [
router [id O
_extends .dictionary.router3d

]

Net [id 0
_extends .dictionary.net100

]
Net [id 1
_extends .dictiomnary.netl100

link [attach 0(1) attach 0:0(0) delay 0.001]
link [attach 0(2) attach 1:0(0) delay 0.001]
] # end net2x100

46

#
net2dorm100 [
router [id O
_extends .dictionary.router3

]
Net [id 0

_extends .networks.dorml00
]
Net [id 1

_extends .networks.dorm100
]

link [attach 0(1) attach 0:0(0) delay 0.001]
link [attach 0(2) attach 1:0(0) delay 0.001]
] # end net2dorm100

used for monitoring an interface
probeSession [
ProtocolSession [name probe use SSF.0S.ProbeSession
file "rtr_queuedata"
stream rtrstream

the protocol graph for a standard router
routerGraph [
graph [
ProtocolSession [name ip use SSF.0S.IP]
ProtocolSession [name ospf use SSF.0S.0SPF.s0SPF]
]
] # end routerGraph
the protocol graph for a LAN’s gateway router, that which connects
to the Internet and all Internet-LAN traffic must cross through
wormRouterGraph [
graph [
ProtocolSession [
name GatewayProtocolSession
use SSF.App.Worm.GatewayProtocolSession
this works since there is one gateway router
gateway_id_from_id true

47

#

_extends .dictionary.routerGraph.graph
_extends .dictionary.probeSession
debug true

]

] # end wormRouterGraph

socket communication protocol graph
sockCommGraph [
ProtocolSession [name socket use SSF.0S.Socket.socketMaster]
ProtocolSession [name tcp use SSF.0S.TCP.tcpSessionMaster
warn false

]
ProtocolSession [name udp use SSF.0S.UDP.udpSessionMaster
_find .dictionary.udpinit
warm false
]

ProtocolSession [name ip use SSF.0S.IP]
] # end sockCommGraph
initialization parameters for the udp protocol

udpinit [
max_datagram_size 1024
debug false

1] # end updinit

protocol graph for Internet-level worm responder
inetResponderGraph [graph [
ProtocolSession [
name malware_responder
use SSF.App.Worm.InternetWormResponder

debug true
_find .dictionary.wormConfig.Slammer.protocol
_find .dictionary.wormConfig.Slammer.port
]
_extends .dictionary.sockCommGraph
] 1 # end inetResponderGraph

protocol graph for Internet-level worm infecter
inetInfecterGraph [graph [
ProtocolSession [
name mobilecode_infecter
use SSF.App.Worm.InternetWormInfecter

48

debug false
_find .dictionary.wormConfig.Slammer.protocol
_find .dictionary.wormConfig.Slammer.port
]
_extends .dictionary.sockCommGraph
] 1 # end inetInfecterGraph

configurations for worms
wormConfig [

Slammer [
wormProto [
name W32fp
use SSF.App.Worm.SoftwareProtocolSession
debug false
version 1.0
config a
classname SSF.App.Worm.WormProcess
]
protocol udp
port 1434
size 376

]

1 # end wormConfig

the default interface and protocol graph for a non-susceptible host
nonsusceptibleHost [

interface [id 0 _extends .dictionary.10BaseT]

graph [_extends .dictionary.sockCommGraph]

]

the default interface and protocol graph for a susceptible host
susceptibleHost [
interface [id 0 _extends .dictionary.10BaseT]
graph [
cpudelay true
ProtocolSession [
name infectable_service
use SSF.App.Worm.SoftwareProtocolSession

debug false
version 1.0
config a

classname SSF.App.Worm.NetServiceProcess
net_service [

49

_find .dictionary.wormConfig.Slammer.port
_find .dictionary.wormConfig.Slammer.protocol
]
]
ProtocolSession [_extends .dictionary.operatingSystems.winNT4SP6x86]
ProtocolSession [
name worm
use SSF.App.Worm.WormProtocolSession
debug false
]
_extends .dictiomnary.sockCommGraph
]
] # end susceptibleHost

operating system specifications
operatingSystems [
winNT4SP6x86 [

name o0s
use SSF.App.Worm.OSProtocolSession
debug true

type Windows

version NT4SP6

architecture x86

the default interface and protocol graph for an initially infected host
infectedHost [
_find .dictionary.susceptibleHost.interface
graph [
ProtocolSession [_extends .dictionary.wormConfig.Slammer.wormProto]
_extends .dictionary.susceptibleHost.graph
]
]

1 # end of dictiomary

similar to dictionary, a set of networks for reference / including
networks [

based on the Fuller Laboratories at WPI

20

a network with four subnetworks (equiv to four floors)
fuller [
router [id 0
interface [id 0 _extends .dictionary.1Gb]
interface [idrange [from 1 to 5] _extends .dictionary.1Gb]
_find .dictionary.routerGraph.graph

]

server room
Net [id 0
_extends .networks.fuller_servers.Net
]
link [attach 0(5) attach 0:0(0) delay 0.0001]

Net [idrange [from 1 to 3]
_extends .networks.ak80
]
second + third floors
link [attach 0(1) attach 1:0(0) delay 0.0001]
first floor + basement
link [attach 0(2) attach 2:0(0) delay 0.0001]
subbasement
link [attach 0(3) attach 3:0(0) delay 0.0001]
]
the Fuller Labs server room
fuller_servers [
Net [
router to connect to
router [id 0
interface [id 0 _extends .dictionary.1Gb]
interface [idrange [from 1 to 5] _extends .dictionary.100Mb]
_find .dictionary.routerGraph.graph
]
main ccc machines
host [idrange [from 1 to 10]
_extends .dictionary.nonsusceptibleHost
nhi_route [dest default interface 0 next_hop 0(1)]
]
link [delay 0.0001
attach 0(1)
attach 1(0) attach 2(0) attach 3(0) attach 4(0) attach 5(0)
attach 6(0) attach 7(0) attach 8(0) attach 9(0) attach 10(0)

o1

initially infected machine
#host [id 11
_extends .dictionary.infectedHost
nhi_route [dest default interface O next_hop 0(4)]
#]
other services
host [idrange [from 11 to 20]
_extends .dictionary.susceptibleHost
nhi_route [dest default interface 0 next_hop 0(4)]
]
link [delay 0.0001
attach 0(4)
attach 11(0) attach 12(0) attach 13(0) attach 14(0) attach 15(0)
attach 16(0) attach 17(0) attach 18(0) attach 19(0) attach 20(0)

atwater kent

240 hosts (though 480 in reality?)

split by three floors of 80 each, with one router on each floor

all machines on floor connected to floor router

floor routers connected to building router

ak240 [

router [id O

interface [id 0 _extends .dictionary.1Gb]
interface [idrange [from 1 to 4] _extends .dictionary.1Gb]
_find .dictionary.routerGraph.graph

]

Net [idrange [from 1 to 3] _extends .networks.ak80]
Net [id 4 _extends .networks.ak_servers |

link [attach 0(1) attach 1:0(0) delay 0.0001]
link [attach 0(2) attach 2:0(0) delay 0.0001]
link [attach 0(3) attach 3:0(0) delay 0.0001]
link [attach 0(4) attach 4:0(0) delay 0.0001]

] # end ak240

the AK server room

ak_servers [

52

router [id O
interface [id 0 _extends .dictionary.1Gb]

interface [idrange [from 1 to 5] _extends .dictionary.1Gb]

_find .dictionary.routerGraph.graph

]

host [idrange [from 1 to 5]
_find .dictionary.nonsusceptibleHost.graph
interface [id 0 _extends .dictionary.100Mb]
route [dest default interface 0]
]
link [attach 0(1) attach 1(0) delay 0.0001
link [attach 0(2) attach 2(0) delay 0.0001
link [attach 0(3) attach 3(0) delay 0.0001
link [attach 0(4) attach 4(0) delay 0.0001
link [attach 0(5) attach 5(0) delay 0.0001
]
a set of 80 hosts
ak80 [
router [id 0
interface [id 0 _extends .dictionary.1Gb]
interface [id 1 _extends .dictionary.1Gb]
_find .dictionary.routerGraph.graph

—_

]

host [idrange [from 1 to 80]
_extends .dictionary.nonsusceptibleHost

nhi_route [dest default interface 0 next_hop 0(1)]

]

link [delay 0.0001
attach 0(1)

attach 1(0) attach 2(0) attach 3(0) attach 4(0) attach 5(0)

attach 6(0) attach 7(0) attach 8(0) attach 9(0) attach 10(0)

attach 11(0) attach 12(0) attach 13(0) attach
attach 16(0) attach 17(0) attach 18(0) attach
attach 21(0) attach 22(0) attach 23(0) attach
attach 26(0) attach 27(0) attach 28(0) attach
attach 31(0) attach 32(0) attach 33(0) attach
attach 36(0) attach 37(0) attach 38(0) attach
attach 41(0) attach 42(0) attach 43(0) attach
attach 46(0) attach 47(0) attach 48(0) attach
attach 51(0) attach 52(0) attach 53(0) attach

23

14(0)
19(0)
24(0)
29(0)
34(0)
39(0)
44(0)
49(0)
54(0)

attach
attach
attach
attach
attach
attach
attach
attach
attach

15(0)
20(0)
25(0)
30(0)
35(0)
40(0)
45(0)
50(0)
55(0)

attach 56(0) attach 57(0) attach 58(0) attach 59(0) attach 60(0)
attach 61(0) attach 62(0) attach 63(0) attach 64(0) attach 65(0)
attach 66(0) attach 67(0) attach 68(0) attach 69(0) attach 70(0)
attach 71(0) attach 72(0) attach 73(0) attach 74(0) attach 75(0)
attach 76(0) attach 77(0) attach 78(0) attach 79(0) attach 80(0)
]
] # end ak80

14 frat networks, of 20 hosts each.

two routers (id 0, id 1) with 20Mb interfaces (id 0) open for

external connection

netl4xfrat20 [

router [idrange [from O to 1]

interface [id 0 _extends .dictionary.20Mb]
interface [idrange [from 1 to 14] _extends .dictionary.20Mb]
_find .dictionary.routerGraph.graph

]

Net [idrange [from 0 to 13]
_extends .networks.frat20

]

link [attach 0(1) attach 0:0(0) delay 0.0005]
link [attach 0(1) attach 1:0(0) delay 0.0005]
link [attach 0(1) attach 2:0(0) delay 0.0005]
link [attach 0(1) attach 3:0(0) delay 0.0005]
link [attach 0(1) attach 4:0(0) delay 0.0005]
link [attach 0(1) attach 5:0(0) delay 0.0005]
link [attach 0(1) attach 6:0(0) delay 0.0005]
link [attach 1(1) attach 7:0(0) delay 0.0005]
link [attach 1(1) attach 8:0(0) delay 0.0005]
link [attach 1(1) attach 9:0(0) delay 0.0005]

link [attach 1(1) attach 10:0(0) delay 0.0005]
link [attach 1(1) attach 11:0(0) delay 0.0005]
link [attach 1(1) attach 12:0(0) delay 0.0005]
link [attach 1(1) attach 13:0(0) delay 0.0005]

] # end netl4xfrat20

o4

frat20 [
Net [
router [id 0
interface [id 0 _extends .dictionary.20Mb]
interface [idrange [from 1 to 25] _extends .dictionary.10Mb]
_find .dictionary.routerGraph.graph

]

host [

idrange [from 1 to 25]

_find .dictionary.client100Mb.interface

_find .dictionary.client100Mb.graph

nhi_route [dest default interface 0 next_hop 0(1)]
]

link [delay 0.001
attach 0(1)
attach 1(0) attach 2(0) attach 3(0) attach 4(0) attach 5(0)
attach 6(0) attach 7(0) attach 8(0) attach 9(0) attach 10(0)
attach 11(0) attach 12(0) attach 13(0) attach 14(0) attach 15(0)
attach 16(0) attach 17(0) attach 18(0) attach 19(0) attach 20(0)
attach 21(0) attach 22(0) attach 23(0) attach 24(0) attach 25(0)

]
] # end frat20

This is the "dorms" network. There are 8 dorms of 100 hosts each,
which does not match the WPI network, but approximates it.
One router (id 0) has an open interface (id 0) for external connection.
It also has an interface for connection to the frat network, to simulate
the wireless connection that they have.
net8dorm100 [
main external connection router, with interface O open,
interface 1 to 8 for internal networks,
and interface 11 open for frat connection
router [id 0
interface [id 0 _extends .dictionary.1Gb]
interface [idrange [from 1 to 8] _extends .dictionary.1Gb]
interface [id 11 _extends .dictionary.100Mb]
_find .dictionary.routerGraph.graph

]

95

Net [idrange [from 0 to 7]
_extends .networks.dorm100

]

link [delay 0.0001 attach 0(1) attach 0:0(0) 1
link [delay 0.0001 attach 0(2) attach 1:0(0) 1
link [delay 0.0001 attach 0(3) attach 2:0(0)]
link [delay 0.0001 attach 0(4) attach 3:0(0)]
link [delay 0.0001 attach 0(5) attach 4:0(0)]
link [delay 0.0001 attach 0(6) attach 5:0(0) 1]
link [delay 0.0001 attach 0(7) attach 6:0(0) 1]
link [delay 0.0001 attach 0(8) attach 7:0(0) 1]
]
routers 0 thru 5, attached in a ring formation.
each router is connected to two other routers by four
interfaces each.
this leaves interfaces 9 thru 15 on each router open for
attachment to other nets.
backbone [
Net [

router [idrange [from 0 to 5]
interface [idrange [from O to 11] _extends .dictionary.1Gb]
#_find .dictionary.routerGraph.graph
_find .dictionary.routerGraph.graph
route [dest default interface 0]

]

router 0 attach to router 1

link [attach 0(0) attach 1(4) delay 0.0001]
link [attach 0(1) attach 1(5) delay 0.0001]
link [attach 0(2) attach 1(6) delay 0.0001]
link [attach 0(3) attach 1(7) delay 0.0001]
router 1 attach to router 2

link [attach 1(0) attach 2(4) delay 0.0001]
link [attach 1(1) attach 2(5) delay 0.0001]
link [attach 1(2) attach 2(6) delay 0.0001]
link [attach 1(3) attach 2(7) delay 0.0001]

router 2 attach to router 3
link [attach 2(0) attach 3(4) delay 0.0001]

26

link [attach 2(1) attach 3(5) delay 0.0001]

link [attach 2(2) attach 3(6) delay 0.0001]
link [attach 2(3) attach 3(7) delay 0.0001]
router 3 attach to router 4

link [attach 3(0) attach 4(4) delay 0.0001]
link [attach 3(1) attach 4(5) delay 0.0001]
link [attach 3(2) attach 4(6) delay 0.0001]
link [attach 3(3) attach 4(7) delay 0.0001]
router 4 attach to router 5

link [attach 4(0) attach 5(4) delay 0.0001]
link [attach 4(1) attach 5(5) delay 0.0001]
link [attach 4(2) attach 5(6) delay 0.0001]
link [attach 4(3) attach 5(7) delay 0.0001]
router 5 attach to router 0

link [attach 5(0) attach 0(4) delay 0.0001]
link [attach 5(1) attach 0(5) delay 0.0001]
link [attach 5(2) attach 0(6) delay 0.0001]
link [attach 5(3) attach 0(7) delay 0.0001]

]
] # end of backbone

A dorm with four lans of 25 hosts each with 10Mb connections
and a 1Gb external comnector
dorm100 [
router [id 0

interface [id 0 _extends .dictionary.1Gb]
interface [id 1 _extends .dictionary.1Gb]
interface [idrange [from 2 to 5] _extends .dictionary.100Mb]
_find .dictionary.routerGraph.graph

]

host [
idrange [from 1 to 25]
_find .dictionary.nonsusceptibleHost.interface
_find .dictionary.nonsusceptibleHost.graph
nhi_route [dest default interface 0 next_hop 0(2)]
]
host [
idrange [from 26 to 50]
_find .dictionary.nonsusceptibleHost.interface

o7

_find .dictionary.nonsusceptibleHost.graph
nhi_route [dest default interface 0 next_hop 0(3)]
]
host [
idrange [from 51 to 75]
_find .dictionary.nonsusceptibleHost.interface
_find .dictionary.nonsusceptibleHost.graph
nhi_route [dest default interface 0 next_hop 0(4)]
]
host [
idrange [from 76 to 100]
_find .dictionary.nonsusceptibleHost.interface
_find .dictionary.nonsusceptibleHost.graph
nhi_route [dest default interface 0 next_hop 0(5)]
]

link [delay 0.0007
attach 0(2)

attach 1(0) attach 2(0) attach 3(0) attach 4(0) attach 5(0)

attach 6(0) attach 7(0) attach 8(0) attach 9(0) attach 10(0)
attach 11(0) attach 12(0) attach 13(0) attach 14(0) attach 15(0)

attach 16(0) attach 17(0) attach 18(0) attach 19(0)
attach 21(0) attach 22(0) attach 23(0) attach 24(0)
]
link [delay 0.0007
attach 0(3)
attach 26(0) attach 27(0) attach 28(0) attach 29(0)
attach 31(0) attach 32(0) attach 33(0) attach 34(0)
attach 36(0) attach 37(0) attach 38(0) attach 39(0)
attach 41(0) attach 42(0) attach 43(0) attach 44(0)
attach 46(0) attach 47(0) attach 48(0) attach 49(0)
]
link [delay 0.0007
attach 0(4)
attach 51(0) attach 52(0) attach 53(0) attach 54(0)
attach 56(0) attach 57(0) attach 58(0) attach 59(0)
attach 61(0) attach 62(0) attach 63(0) attach 64(0)
attach 66(0) attach 67(0) attach 68(0) attach 69(0)
attach 71(0) attach 72(0) attach 73(0) attach 74(0)
]
link [delay 0.0007
attach 0(5)
attach 76(0) attach 77(0) attach 78(0) attach 79(0)

28

attach
attach

attach
attach
attach
attach
attach

attach
attach
attach
attach
attach

attach

20(0)
25(0)

30(0)
35(0)
40(0)
45(0)
50(0)

55(0)
60(0)
65(0)
70(0)
75(0)

80(0)

attach 81(0) attach 82(0) attach 83(0) attach 84(0) attach 85(0)
attach 86(0) attach 87(0) attach 88(0) attach 89(0) attach 90(0)
attach 91(0) attach 92(0) attach 93(0) attach 94(0) attach 95(0)
attach 96(0) attach 97(0) attach 98(0) attach 99(0) attach 100(0)
]
] #end dormi00

The MobileCode stuff needs an "Internet" net to act as the tramslation
Dbetween macroscopic level and packet level.
theInternet [
the connecting router
router [id O
interface [idrange [from O to 2] _extends .dictionary.100Mb]

_find .dictionary.routerGraph.graph

]

host which sends infections into the LAN
host [id 1
interface [id 0 _extends .dictionary.100Mb]
route [dest default interface 0]
_find .dictionary.inetResponderGraph.graph

]

host which receives infections from the LAN
host [id 2
interface [id 0 _extends .dictionary.100Mb]
route [dest default interface 0]
_find .dictionary.inetInfecterGraph.graph
graph [_extends .dictionary.sockCommGraph]

]

linking the hosts to the router

link [attach 0(1) attach 1(0) delay 0.0001]
link [attach 0(2) attach 2(0) delay 0.0001]

] #end thelnternet

29

B Using the Simulator

The simulator used in this work was based on SSFNet [ssf04], a packet-level net-
work simulator maintained by the Renesys Corporation, with contribution of the
original SSF.App.Worm framework by Michael Liljenstam. The latest versions
of both may be found on their respective websites, http://www.ssfnet.org and
http://www.crhc.uiuc.edu/fili/research/ssf/worm/. The code extensions men-

tioned here were developed using SSFNet v2.0 and SSF.App. Worm v0.6.

B.1 Specific modifications

The following files were created or modified to incorporate the worm framework as

described in Section 5.2.

WormEpidemicState.java Added a variable for affecting the infection rate. This

is used by the feedback mechanism described in this work.

DeterministicWormEpidemicState.java and StochasticWormEpidemicState.java
Added adjustment to the calculation of BetaJ in the update() function, BetaJ* =
infection_adjuster, to use the WormEpidemicState variable for affecting the infec-

tion rate.

MacroscopicModelConfigurator.java Added variables and code for obtaining
and setting new DML attributes in the Epidemic section. Specifically, for the use-
Target, TargetAcquisition, and lan_affect_global parameters. Also, bugfix for obtain-

ing the randomstream seed in the DML configuration file.

MacroscopicModel.java Added code for organizing the interaction between the

Internet level and the packet level. Of particular note, one of the changes to the reg-

60

isterBorderRouter() function assumes that the GatewayProtocolSession is installed
on the router that connects the LAN to the Internet, and that the particular router

is in the top-level Net for that LAN.

SSF/Net/lanLinkLayer.java Added an IndexOutOfRange check to print out
an error instead of causing an Exception. This was done so that the simulations
would still run even with this error every once in a while. Further investigation of

the cause for this error is necessary.

InternetWormlInfecter.java Implements the protocol session that creates actual
packet worm scans from the Internet level to the LAN level. The code assumes there

is one instance of this.

InternetWormResponder.java Implements the protocol session that receives
the packet worm scans from the LAN level to the Internet level. The code assumes

there is one instance of this.

WormMonitorInterfaceUtil.java Modeled on SSF.App.Worm.MonitorInterfaceUtil.
Used to monitor the gateway router’s drops and provide feedback for the Macro-
scopicModel, in order to adjust the ”Internet” scanning rate. This should be set as

a monitor on the interface that connects the LAN’s gateway router to the Internet.

OSProtocolSession.java A pseudo-protocol that models an operating system,
such as the type and version, as well as the architecture. Also handles instantiating

different software upon ”boot” and upon infection.

SoftwareProtocolSession.java Converts the DML configuration into an instance

of a SoftwarePackage and registers it with the hosts OSProtocolSession.

61

SoftwarePackage.java Represents an installed software package on a system.
It is separate from an actual instance of the software running on the system, as

represented by the SoftwareProcess class.

SoftwareProcess.java The instance of a SoftwarePackage running on a host.
This is the base class that all software should extend. For instance, NetServicePro-

cess and WormProcess both extend this class.

NetServiceProcess.java A specific instance of SoftwareProcess that allows set-
ting of a port and specific protocol to listen for incoming worm connections. When
a particular worm is transfered to this service over the network, that worm is passed

to the OSProtocolSession and ”executed” on the host.

WormProcess.java A running instance of a particular worm.

WormTarget Acquisition.java The base class for a worm’s target acquisition
method. This class implements the random scanning method. Other target acqui-

sition types should extend this class, such as the WormLocalBias class.

WormLocalBias.java Extends WormTargetAcquisition to provide for a certain
local bias in the worm’s scanning strategy. May be configured through the Targe-
tAcquisition parameter block in the Epidemic block of the DML configuration file.
May be provided with a certain bias, between zero and one, and a bit mask, which
enables varying the idea of locality. The default values are localbias = 0.5 and

netmask = 8, equivalent to a 50% local bias within the local class C subnet.

WormlV.java The method used to attempt transfer of the worm code to the

chosen host. The default is to use Slammer’s strategy of sending a single 376 byte

62

UDP packet.

B.2 Experience with SSFNet

Problems were encountered while working with the SSFNet simulator. In partic-
ular, the error messages were often non-descript Java exceptions. The examples
and user documentation on the SSFNet website [ssf04] were sometimes difficult to
follow and seemingly incomplete. A single mailing list? was found for community
support, however did not seem very developed. Overall, the SSFNet simulator and
the community around it seems to be in need of further maturing before widespread

use will become plausible.

B.3 Current state of the simulator’s capabilities

Many simulation capabilities were proposed in this work. However, due to time
constraints and the need to show a proof-of-concept working structure, some details
were left out of this first implementation.

Currently, the Slammer worm is implemented within the simulator. This means
that the UDP communication, random IP selection, and simple infection vector are
implemented and have been tested. There has also been implementation and testing
to allow for a local bias IP selection. Also, implementation for a TCP communicating
worm, however without testing. It is important to note that some of the Slammer
characteristics, such as worm size within the NetServiceProcess, have been hard-

coded into the system and should be abstracted out to DML configuration options.

https://list.eecs.harvard.edu/mailman/listinfo/ssfnet

63

B.4 Proposed road-map for further implementation

We believe the creation of a simulation tool for worm propagation is an important
next-step for the worm research community. The framework developed here is a first
step toward such an effort. As such, there are many more steps to take in making

the currently developed code-base suitable for general use. For example,

1. Move code to SSF.App.MobileCode for separation and easier packaging. The
files that were created for this project should be moved out of the SSF.App.Worm
tree and into a new tree. I believe that MobileCode is an appropriate name,
since it is a framework for code that can propagate over a network. The
files which were changed should also be sorted through to see what may
be taken out of the SSF.App.Worm tree and put into its own files in the
SSF.App.MobileCode tree.

2. The code needs to be cleaned up, especially in terms of removing hard-coded

values such as worm size and creating DML configurable parameters.

3. Perform proper verification of the simulator. This should involve gathering in-
formation on Slammer propagation within a particular network and the topol-
ogy of that network. It should also involve more accurate coding of Slammer’s

”faulty” target acquisition method.

4. Implement and test a simple TCP worm. This should involve the proper

verification methods used in the prior task.
5. Implement a scanning strategy.

6. Implement and test simple mitigation techniques. This should involve proper

verification of each mitigation technique functionality by setting up a real-

64

world scenario, gathering data, doing the same in the simulator, and compar-

ing.
7. Brainstorm and implement Goal-Based Actions (GBAs).

8. Brainstorm and implement mitigation techniques.
Version 2.0 should encompass the following functionality:

1. Allow for more general parameters, such as number of susceptible hosts and
their distribution in the network. This will involve dynamically ”installing”
software on hosts at configuration time, which should be tedious but not dif-

ficult.
2. Allow for background traffic.
3. Allow for traffic on the same port as the susceptible NetService(s).

4. Allow multiple worms / epidemics at once

C Selected communications

Provided here are selected e-mail communications obtained while conducting this
thesis. We believe the information provided may be useful for future work or refer-

ence.

Date: Tue, 31 Aug 2004 10:04:40 -0500
From: Michael Liljenstam

To: frank p <fspoz3@WPI.EDU>

Subject: Re: worm propagation data

Parts/Attachments:
1.1 0K 82 lines Text
1.2 Shown 73 lines Text
2 286 KB Application

65

Hi Frank -

Sorry about that. It slipped into the background and disappeared. Thanks
for reminding me.

The attached tarball replaces the src/SSF/App/Worm directory code. So
make sure to move and save any code you’ve modified before putting this
in place. It should be expanded in the ssfnet root directory and also
replaces a couple of files of the core ssfnet classes (these classes have
been slightly modified).

Look at the GatewayRouterSession code where I look at the inflow of scans
to generate ICMPs.

Some comments below on what we discussed before.
Hope that helps,
/Michael

Date: Wed, 15 Sep 2004 09:40:42 -0500 (CDT)
From: Michael Liljenstam

To: frank p <fspoz3@WPI.EDU>

Subject: Re: worm propagation data

Hi Frank -
On Tue, 14 Sep 2004, frank p wrote:

> First, thanks for the beta code. Do you have anyone actively working on
> this right now? I’m thinking that I may be able to contribute to the
> codebase by the end of my thesis in December.

It’s just me working on this code base, and I tend to get busy working on
other things. So I certainly wouldn’t mind if you want to contribute :)
We have a grad student also working on worm modeling, but he’s using
another code base built on top of the C++ version of SSFNet (iSSFNet)
using fluid traffic modeling, so it’s a bit different; and I’d like to
keep this code going ’cause it has some features the other code lacks.

> Second, a query on the calculation of "outbound scan rate" from gateway

66

routers. I’m seeing an outbound rate greater than zero even before any
hosts within the network (AS) behind the router are infected. It may be
that I do not have a complete understanding of how the network relates to
an AS and how the infected machines are calculated. In any case, I’m
really perplexed by this, so any light you can shed would be much
appreciated.

vV V V V V V

I’11 have to check this and get back to you. Possibly it’s the case that
the "outbound scand rate" also includes "transit" scans, just passing
through. But I really can’t remember. Otherwise, it doesn’t sound right.

/Michael

Michael Liljenstam, Post-Doctoral Research Associate

Center for Reliable and High-Performance Computing, Coordinated Science Lab.
University of Illinois at Urbana-Champaign, 1308 W. Main St., Urbana, IL 61801
http://www.crhc.uiuc.edu/"mili

Date: Fri, 17 Sep 2004 19:49:36 -0500 (CDT)
From: Michael Liljenstam

To: frank p <fspoz3@WPI.EDU>

Subject: Re: worm propagation data

Hi Frank -

On Thu, 16 Sep 2004, frank p wrote:

> keep this code going ’cause it has some features the other code lacks.

Just out of curiosity (and ’cause it might look nice to list in my thesis
report), which features make the SSFNet code unique/useful to you?

vV V V V

Two things come to mind right away:

- SSFNet has quite good routing models, OSPF and BGP. The worm model has
hooks into the routing layers so it will find out when routes change and
can interact with the routing dynamics (it can influence the routing).
We’ve used this to attempt to model how worms might affect BGP dynamics.
- It has some code to dump packets in tcpdump format that we’ve used to
generate attack traffic traces for worm detection system testing.

> > > Second, a query on the calculation of "outbound scan rate" from gateway
> > > routers. I’m seeing an outbound rate greater than zero even before any

67

hosts within the network (AS) behind the router are infected. It may be
that I do not have a complete understanding of how the network relates to
an AS and how the infected machines are calculated. In any case, I'm
really perplexed by this, so any light you can shed would be much

> appreciated.

Hopefully to help clarify (and reduce the time needed looking into it),

I’m specifically referring to the "two_as_traffic" test in the tests/
directory. It seems to show an outgoing scan rate from each router the

host behind it becomes infected.

V V V V V
V V V V

VvV V V V V V V V V

Oh, ok, this is quite simple and just has to do with the assumptions of

the model. So, it uses a stratified deterministic epidemic model that spreads
a large the vulnerable population over _all_ ASes. So, think of this as

those two hosts that you see in the two ASes there are just part of a

larger population of vulnerable hosts (supposing that you’re particularly
interested in if/when those hosts get infected for some reason). Hence,

there are other hosts that are getting infected in those ASes that are not
explicitly modeled (they’re just modeled through a number that describes

the size of the population).

Hope that clarifies things a bit.
Regards,
Michael

Date: Fri, 24 Sep 2004 11:03:22 -0500
From: Michael Liljenstam
To: frank p <fspoz3@WPI.EDU>
Subject: Re: worm propagation data
Parts/Attachments:

1 OK 39 lines Text

2 Shown 42 lines Text

Hi Frank -

frank p wrote:

> So the starting Epidemic Model parameters (#of susceptible,
> #of infected)

> are split evenly between all of the ASes? Or does each AS
> have a copy of

> the parameters as set in the DML? Is there any way to

68

> explicitly set
> parameters for one AS and different params for another?

You can accomplish this, but not through DML alone. When writing the code
I recognized that the initial distribution of susceptible/infected hosts
might be a very compilicated function of several factors, so I thought it
would be difficult to have a flexible enough pure DML description. Hence,
the initializer abstract class and different subclasses that implement
different initial distributions. So, you would need to write some code to
implement your own initializer class, modeled after, say, the uniform
initializer.

Try to take a look at the code. It might not be so obvious what it should
do, but you’re welcome to come back with more questions and I’1l try to
help you along.

Regards,

Michael

Date: Mon, 25 Oct 2004 10:54:11 -0500 (CDT)
From: Michael Liljenstam

To: frank p <fspoz3@cs.WPI.EDU>

Subject: Re: worm simulation questions

Hi Frank -

On Mon, 25 Oct 2004, frank p wrote:

I have a few questions about the simulator, but first wanted to ask if
you’ll be attending the ACM CCS conference in DC this week. My advisor
here at WPI is funding one student from my research group to attend, and
it looks like I’m the lucky one :+)

If you’ll be there and have some time, I’d love to sit down and talk with
you about worm simulation for a few minutes.

V V V V Vv V

Unfortunately, I can’t make it.

Now, my questions are more of a general than specific nature. Basically,
I’d 1ike to know if you think this makes sense, and how much work it might
take to make SSFnet simulate something like this:

- There is an Internet AS, with a bunch of susceptibleand infected hosts.
- There is one or more subnet ASes that are explicitly defined by the DML
network structure. This means that the only susceptibles are the hosts
which include the WormProtocolSession, and the choice of initially

VvV V V V V V VvV

69

> infected can either be excplicit (flag in each WormProtocolSession) or
> random (given a set number of initially infected, of course) .

Sounds straightforward.

> - The interactions between each AS and the Internet are only through the
> GatewayProtocolSession routers, allowing the instantiation of pkts when
> scans come in and inverse when scans go out.

Yes. The only tricky part here is to come up with a reasonable packet

arrival process, i.e. to decide packet arrival instants from the fluid
rate. Shouldn’t be much coding work though. There’s something similar

to this in the 0.6 code.

What I’m trying to do is create a worm algorithm that can be used to try
different combinations of worm parameters (target discovery method,
infection method, propagation rate limitting, etc.) and show how they
affect the propagation of a worm within a campus-sized network. The
assumption is that there are also incoming infection scans from "The
Internet", but that the rate of these can be handled by the abstract
epidemic models.

V V V V V V VvV

S0, are you planning to simulate scans at packet level within the AS then?
In one AS it should be ok, but there are some minor details that one will
have to deal with. We mentioned some of that in our 2002 paper on mixed
abstraction modeling. Try googling for '"packet level simulation of worm"
for a recent paper by Perumalla where he also discusses some of those
things.

Cheers -
Michael

Date: Fri, 07 Jan 2005 13:06:50 -0600
From: Michael Liljenstam
To: frank p <fspoz3Qcs.wpi.edu>
Cc: ssfnet@eecs.harvard.edu
Subject: Re: [SSFNet] random numbers reproducibility_level
Parts/Attachments:
1 OK 39 lines Text
2 Shown 35 lines Text

frank p wrote:

70

Can anyone give a good description of what the
"reproducibility_level" of

SSFNet random numbers means? I’ve read the description on
this page:

http://www.ssfnet.org/InternetDocs/ssfnetDMLReference.html

and it seems to me to be saying that there will always be a
level of
reproducibility.

Yes. "Controlled randomness" is usually what one wants.
The SSFNet "level of reproducibility" lets you control how many random
streams you use to generate your random variates. Most textbooks will
tell you to use a separate random number stream per distribution you’re
sampling from. This will tend to be a _lot_ of streams. This config
setting lets you share the same stream over all variates in a protocol,
on a host, or in a timeline if you prefer.

Or is there a way to run a simulation that will not

produce the same output every time? Maybe I’m not seeing it,

but I’d even

settle for telling the simulation to seed the PRNG with the

current time.

Usually you want to pick a new seed for each replication in some
structured fashion. You set it in the DML. If you get some unexpected or
strange result from one of your replications, you want to know that you
can reproduce it. Thus, picking "current time" or similar is usually
avoided. But, as always, it depends on what you want to do...

Hope that helps.

/Michael

71

References

[cer04] Cert coordination center. http://www.cert.org/, December 2004.

[hon04] The honeynet project. http://project.honeynet.org/, December
2004.

[Inc03] Network Associates Inc. Description of w32/nachi.worm.
http://vil.nai.com/vil/content/v_100559.htm, August 2003.

[Inc04a] Network Associates Inc. Description of w32/bagle.p.
http://vil.nai.com/vil/content/v_101098.htm, March 2004.

[Inc04b] Network Associates Inc. Description of w32/mydoom.
http://vil.nai.com/vil/content/v_100983.htm, February 2004.

[LNBGO03] Michael Liljenstam, David M. Nicol, Vincent H. Berk, and Robert S.
Gray. Simulating realistic network worm traffic for worm warning sys-

tem design and testing. In Proceedings of the 2003 Workshop on Rapid
Malcode (WORM) Washington, October 2003.

[LYPNO2] M Liljenstam, Y Yuan, BJ Premore, and D Nicol. A mixed abstraction
model of large-scale internet worm infestations. In Proceedings of the
Tenth IEEE/ACM Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems (MASSCOTS), October
2002.

[MPST03] David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart
Staniford, and Nicholas Weaver. The spread of the saphire/slammer
worm. Technical report, A joint effort of CAIDA, ICSI, Silicon Defense,
UC Berkeley EECS and UC San Diego CSE, 2003.

[ns2] The Network Simulator - ns-2 Project =~ Homepage:
http://www.isi.edu/nsnam/ns/.

[nws] The Network Worm Simulator - NWS Project Homepage:
http://www.users.qwest.net/ eballenl/nws/.

[sla04] Internet attack. http://www.cnn.com/2003/TECH /internet/01/25/internet.attack/,
March 2004.

[SPWO02] Stuart Staniford, Vern Paxson, and Nicholas Weaver. How to Own the
internet in your spare time. In Proceedings of the 11th USENIX Security
Symposium (Security 02), 2002.

[ssf] A Network Worm Modelling Package for SSFNet Project Homepage:
http://www.crhc.uiuc.edu/ mili/research/ssf/worm/index.html.

72

[ssf04]
[Vog03]

[wor(4]

[wpi04]

[WPSC03]

[ZGT03)]

[ZTGO3]

[ZTGC03]

Scalable simulation framework. http://www.ssfnet.org/, March 2004.

Tom Vogt. Simulating and optimising worm propagation algorithms.
http://web.lemuria.org/security/WormPropagation.pdf, Septem-
ber 2003.

Computer worm. http://en.wikipedia.org/wiki/Computer worm/, Oc-
tober 2004.

Wpi network operations - network infrastructure.
http://www.wpi.edu/Admin/Netops/infrastructure.html, March
2004.

Nicholas Weaver, Vern Paxson, Stuart Staniford, and Robert Cunning-
ham. A taxonomy of computer worms. In Proceedings of the ACM
Workshop on Rapid Malware (WORM), 2003.

Clift C. Zou, Weigo Gong, and Don Towsley. Worm propagation model-
ing and analysis under dynamic quarantine defense. In ACM Workshop
on Rapid Malcode, 2003.

Clift C. Zou, Don Towsley, and Weibo Gong. On the performance of
internet worm scanning strategies. Technical Report TR-03-CSE-07,
University of Massachusetts, Amherst, 2003.

Cliff C. Zou, Don Towsley, Weibo Gong, and Songlin Cai. Routing worm:
A fast, selective attack worm based on ip address information. Technical
Report TR-03-CSE-06, University of Massachusetts, Amherst, 2003.

73

