
Rigs of Color
Tool Development: Maya Auto-Rigging Tool

A Major Qualifying Project submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements

for the degrees of Bachelor of Art and Bachelor of Science

in Interactive Media and Game Development

and for the Degree of Bachelor of Science

in Computer Science

Project Team

Terry Deng (IMGA),

Paloma González Gálvez (IMGT/CS),

Patrick Luck (IMGA),

Sophia Marcus (IMGA)

Advisors

Professor Farley Chery

Professor Mark Claypool

This report represents the work of WPI undergraduate students submitted to the faculty as evidence of

completion of a degree requirement. WPI routinely publishes these reports on its website without

editorial or peer review. For more information about the projects program at WPI, please see :

http://www.wpi.edu/academics/ugradstudies/project-learning.htm

1

http://www.wpi.edu/academics/ugradstudies/project-learning.html

Acknowledgements

We would like to thank our advisor, Professor Farley Chery, for being the creator

behind the Rigs of Color project and whose input and ideas were necessary to complete this

project. We would also like to thank our advisor, Professor Mark Claypool, whose

professionalism and expertise allowed us to improve this project immeasurably. We would

like to offer special thanks to Laurie Mazza, Tim Marshall and Lisa Liao for laying the

groundwork for this very ambitious tool. Finally, we would like to thank all of our test

participants who provided invaluable feedback on our project.

2

Abstract

Hand rigging 3D models is a challenging task. However, existing auto-rigging tools

often restrict a user’s creative freedom. The goal of this project was to design and implement

an auto-rigging tool for Autodesk Maya that allows users to automatically rig bipedal 3D

characters, while maintaining a large degree of creative freedom. We created a series of

Python 3 systems that create guides which rig the arms, legs, torso and face of the characters,

as well as a graphical user interface that connects these systems and integrates the tool into

Maya. A user test assessing the time efficiency and usability of the tool found it sped up

rigging by a factor of 3.40 times and showed a high user satisfaction rate.

3

Table Of Contents

Acknowledgements 2

Abstract 3

1. Introduction 5

2. Background 7
2.1 Remap Value 11
2.2 Matrices 14

3. User Interface 17

4. The Guide System 23

5. The Upper Body Structure 26

6. The Lower Body Structure 29
6.1 Enhanced Inverse Kinematics 34
6.2 Auto-Hip and Other Hip Systems 38

7. The Ribbon 41

8. The Face Structure 44

9. Evaluation 47
9.1 Objectives 47
9.2 Procedure 47
9.3 Results 50

9.3.1 Time Efficiency 50
9.3.2 Usability 51

10. Future Work 56
10.1 Short Term Goals 56
10.2 Medium Term Goals 57
10.3 Long Term Goals 58

11. Conclusion 59

12. References 60

13. Appendices 62
Appendix A: Informed Consent Agreement 62
Appendix B: Usability Survey Questions 67
Appendix C: Usability Survey Responses 69
Appendix D: Code 74

4

1. Introduction

Rigging is a technique used in 3D animation consisting of creating a bone structure

for a 3D model (Petty). This set of bones is then manipulated (moved, scaled, or rotated) in

order to animate the character. Rigging is an essential process in the entertainment industry

because complex 3D characters must be rigged before animations can be created.

Currently, Autodesk Maya is the industry standard rigging software. Maya has a set of

rigging tools that allow users to create their own rigs by hand. Hand-rigging is a highly

technical skill with a complex learning curve. It is a time consuming process and is largely

inaccessible to new users. Additionally, it is a tedious and repetitive procedure that leads to

human error even at the hand of experienced riggers.

In order to address the challenges posed by hand-rigging, other developers have

created auto-rigging tools that attempt to improve or eliminate the rigging process entirely

(Mixamo). Yet these tools often prevent the user from having full creative freedom when

creating rigs, providing a series of pre-generated rigs and animations. Additionally, much of

this software is inaccessible to many riggers due to steep prices.

The process of hand-rigging is largely complex, tedious and inaccessible to most

users, while current auto-rigging tools are costly and eliminate creative freedom. We created

a set of Python 3 scripts that provide most riggable elements in a 3D character. We use the

PyQT framework to create the user interface for the tool that connects the scripts to the

interface. We conducted user testing with riggers of varying experience levels to provide

confidence in the usability and efficiency of the tool. The result of this project is an extensive

auto-rigging tool developed for use in Autodesk Maya that solves many of the problems

found in hand-rigging and other auto-rigging tools.

5

Chapter 2 provides further background on hand-rigging in Maya, as well as available

auto-rigging tools. Chapter 3 provides an overview of the user interface design process; from

prototyping to implementation. Chapters 4 through 8 describe the process of creating rigging

scripts for the main parts of the body. Chapter 9 details the user testing and evaluation

process. Chapter 10 outlines future work and recommendations. Finally, chapter 11 provides

the summary and conclusions to the project.

6

2. Background

The auto-rigging tool MQP was first formulated by Professor Farley Chery. The

necessity for the project began through observing a resistance among the Interactive Media

and Game Development (IMGD) body from taking on projects that would require high

quality 3D models and rigs, limiting game development teams to 2D side scrollers and visual

novels (Marcus). These genres are generally lower scope and provide the teams with time to

focus on other aspects of their game. A solution needed to be devised that would allow teams

to consider 3D rigs and animation to not spend an arduous amount of time creating them.

Autodesk Maya is the game industry standard when it comes to both animation and

rigging. This is due to the wide library of tools that are unique and optimized to Maya’s

workflow. One feature that puts Maya’s rigging workflow above many other popular

software, like 3D Studio Max and Blender, is the Python 3 integration. Riggers can create

Python scripts that can be run within Maya that can call upon the Maya API to do manual

actions with the benefit of Python functionality such as for loops, lists, and library features.

This allows users to create tools that take actions, like creating a cube and making it red, have

Python handle all those actions needed in one button click and remove any manual

interaction.

Though Autodesk Maya is the industry standard, Maya rigging is a deep skill that has

no universal ways of doing it. There are standard practices and concepts, but the way to

accomplish these concepts varies from rigger to rigger. If rigging artists can be thought of as

the people who make the puppets for the puppeteers, then one puppet maker may believe 3

strings are enough to manipulate an arm while another insists on using 5. Meanwhile, one

artist may prefer to use twine or another may prefer to use cotton strings.

7

This looseness poses a challenge when creating a general tool because there needs to

be some form of cohesion in how different features mesh together, what shape of controller

that will be used, what colors should the controllers be, and should the tool make the user

select the vertices, edges, or faces in their mesh. It can go even deeper into whether or not the

infrastructure should be converted from constraints to matrices. Constraints, despite having a

greater depth of knowledge and used mostly in the code infrastructure, can have speed and

stability issues. On the other hand, matrix constraints are efficient, newer, and quickly

becoming the new industry standard. Agreeing on these aspects allows the tool to feel

homogenous rather than a collection of unrelated features that do not fit together.

However, for even the most basic matrix structures, matrices can still contribute more

stability and speed because direct connections are always more efficient. The idea to utilize as

much of Maya’s internal positional and rotational data directly with the use of matrix nodes

can go a long way to preventing potential infinite cycling with regular constraints. Simple

matrix constraints can always be made with this method and can easily be replicated with

Python code. Much more complicated constraints, like parent and aim constraints, require

much more advanced knowledge to replicate their behaviors, and can be worth the hassle of

recreating to get rid of two memory heavy functions. Flexibility with matrix data can also

become a great boon for new rigs. Most notably, the proper use of blending matrix data

together can result in a smoother output that the user cannot get with traditional constraints.

For instance, a matrix aim constraint can have a multitude of layers that all work together to

mimic a real aim constraint. In addition, local transformations on the object being aim

constrained can still be reused in other parts of the rig (Marcus). Finally, matrices can prevent

any user from accidentally breaking delicate, complicated rigs because matrices work

internally within Maya, and thus prevents any possibility of users accidently editing

8

transformation values. Once further understanding of matrices is achieved, they are

invaluable to making any rig setups work smoothly and quickly.

Basic understanding of Inverse Kinematics (IK) and Forward Kinematics (FK) are

essential parts of the system. IK provides the basis of motion for some of the tool’s features,

like the leg, while other features actively allow animators to swap between the two systems.

An FK system basically means that in order for an arm joint chain to go from resting at the

side of the hip to pointing diagonally away from the body, the user would first need to move

and rotate the shoulder joint into place, then the elbow, and then the wrist. FK is similar to

how an action figure is posed. On the other hand, IK accomplishes the same task and would

be the same as starting from that resting position and simply moving the wrist into position.

The elbow and shoulder joints are adjusted as needed.

Figure 1. FK systems shows shoulder then elbow, IK system shows wrist moving and

the elbow and shoulder moving to compensate

9

There is also an enhanced variant of the IK system which is another joint system that

has a pole vector ride on top of a different IK Handle on the elbow or knee. Acting as almost

the grandparent of these joints, it can move them and provide a stability fix to the pole vector.

All its data is transferred to a normal IK system through matrix connections. There are pros

and cons to both FK and IK systems, but it ultimately comes down to the animator’s

preference which is important for the tool to provide.

A significant change in Maya based Python rigging occurred when the latest update of

Maya, version 2022, implemented Python 3 into its API. This took place mid way through

production, but it was essential to upgrade the project to ensure that it was a tool that could be

iterated upon in the future. Code had to be reworked to ensure it complied with Python 3. The

main issue was analyzing any part of the code that no longer fit with the new Python syntax.

Systems that relied on being deprecated in the new version. Some scripts were only minorly

affected while scripts that utilized many of these deprecated features were set back

significantly. Fully repairing all of the code took several months.

There are several auto-rigging tools in existence that inform the features the tool

should have. Other tools either enhance the rigging process with quality of life changes or

take out all of the options of the rig artist for full automation.

A notable reference is Mixamo; a well-known and beginner-friendly auto-rigging tool

stating that they allow users to “Upload your custom character to Mixamo and get an

automatically rigged full human skeleton, custom fit to your model and ready to animate.

Customize your rigging options with optimizations for mobile performance” (Mixamo). The

focus of Mixamo is to take any model, use their own guide system, and create a rig that only

works with their in-house motion capture data library. This allows for people with no rigging

or animation experience to create simple animated characters quickly. For those who are

10

familiar with rigging and animation concepts, Mixamo can become restricting. In order to

make edits to existing animations, the user needs to be familiar with animation layers or

animation retargeting. Users are also restricted to using the animations provided by Mixamo

unless their library resources are not utilized. In this case, the rig will have a mesh bound to a

skeleton but missing any controllers or advanced features that the tool provides.

2.1 Remap Value

The use of Maya’s remap value nodes comes into all aspects of every individual rig

set up this tool creates. Their functionalities are similar to set driven keys, except remaps can

take it another step forward in advanced ways with its ability to ratio (Marcus). The node

works by taking an inputted value, for example 5, and ratios or “remaps” the input value to a

number between an output minimum and an output maximum. The input min and max refer

to the acceptable values that the node would take. The graph within the remap attribute page

is what the input value will be ratioed by a certain percentage from 0 to 100. This ratio is

based on the output min and the output max. All these attributes can be changed freely and do

not have to always function as a one to one linear ratio. The value graph can be changed into

multiple curves which can go up, down, and even be set to interpolate differently on the

graph as a cubic or flat line.

11

Figure 2 : Remap Value and their settings

The example above is a simplification of the node. To give some perspective as to how this

works, imagine another object is feeding an input value. This input value can go infinitely,

but the remap node will only accept the input range from -10 and 10. Then, based on the

percentage of the input value in relation to its specified maximum and minimum, the value is

ratioed to fit properly into the specified output from -50 to 50. In Figure 2, the input value is

0. 0 is 50% between the interval of -10 to 10, or it fits in the position of 0.5 in the graph. So at

50%, it will extract the selected value, or the second ratio 0.25. Finally, the value will change

to output 25% between the interval from -50 to 50. The result would give us an output of -25.

This simple idea to ratio transformation numbers can be applied in multiple ways that

function much more smoothly that a condition node. Additionally, remap value nodes have

the advantage of being able to change their conditions and offer much more flexibility than a

one time set-driven key. For instance, a multitude of remap nodes can mix their outputs to

create a state machine similar to Unreal and Unity state machines (Marcus). These remap

nodes can all take the same exact value, but then all have different input and output values

that only activate when the input value reaches the specified intervals. Much of the automated

systems use multiple nodes to make smoothing cleaner which ultimately leads to a final

system less prone to popping or flipping.

12

Figure 3 : Example of the remap system for the foot.

A system of remaps to achieve a state machine state for the foot. At certain points using the

controller’s rotations, the foot will rotate differently based on one of the three remaps: a

regular static pivot on the ball, a tilting side pivot, or a tilting up pivot.

Figure 4 : Example of the auto-clavicle remaps

A simpler state machine of two remap nodes. Taking the translations of the left clavicle, it

will either automatically go vertically up when the user raises or lowers the arm, or will

automatically move horizontally when the arm is moved forwards and backwards.

13

2.2 Matrices

Maya matrices were always a part of the Maya foundation for storing values in 3D

space, but only recently it was introduced for the public to use with matrix nodes. Its addition

into the tech art industry is a great concept for new tech artists to learn because the efficiency,

speed, and flexibility of matrices is appealing for anyone looking to create complicated rig

systems. Maya matrices and all objects store information in a 4 by 4 grid known as an

identity matrix or the default state of the object (Lesterbanks, “Understanding”). The first 3 x

3 area in the top left corner of the identity matrix is where Maya calculates rotational and

scale values. With some basic applied matrix math, it is possible to grab a child object’s

world position and its local position. To calculate a child object’s world position, the child’s

local matrix is multiplied with its parent’s world matrix . To calculate a child object’s local

position, the child’s world matrix is multiplied with its parent’s inverse matrix. Using this

basic idea, any object is able to grab relevant positional or rotational data. This can be used as

a way to create custom constraints, or simply used to replicate the standard Maya constraints

already present.

The process behind making matrix constraints is relatively simple. First, the object’s

matrices must be extracted and multiplied together with a multiply matrix node. Then, the

matrix sum of this node must be decomposed into a usable data format that can be outputted

as a translate, rotate, scale, and shear value. Each major attribute correlates to a basic Maya

constraint. The “output translate” values can create a point constraint, while the “output

rotate” values can create an orient constraint.

14

Figure 5 : Difference between a point constraint versus a matrix point constraint

Figure 5 illustrates the potential of matrix nodes and its ability to recreate constraints.

The comparison between a simple basic point constraint versus its matrix counterpart is

obvious. Not only are there way less connections, there is no risk of the matrix constraint

having a chance to infinitely cycle and break.

There are other matrix nodes that are noteworthy for new riggers to understand. The

pick matrix node can be used to specify a matrix and only extract information that it is set to.

A blend matrix can output values that blend matrix values together with the addition of

having an inbuilt pick matrix option (Love, “Custom”).

15

Figure 6 : The pick matrix can pick whatever matrix values to use and apply them.

Lastly, it is very important to note how delicate matrix math can be. For new riggers

trying to experiment with matrix nodes, the ordering of adding what matrix goes first or last

is to prevent strange math outputs too complicated for a newcomer to understand.

Additionally, it is vital that all extracted object matrices must always start from the [0]

position to decrease the likelihood of unintentional miscalculations. Finally, the

acknowledgement of creating proper offsets will prevent any difficulty in trying to replicate

behaviors. While transformation negation, the act of inverting a transformation value to

prevent double scaling (Love, “Transform”) through multiplication, can be used with applied

matrix math, not applying the offset’s matrix value into a multiply matrix node can still skew

results. Using a hold matrix to store offset information is a great way to have a static offset.

16

3. User Interface

In order to access the rigging tool through Maya, a user interface is created. The

interface allows users to interact with the tool and generate all the aspects needed to rig a

character. The creation of the user interface followed three distinct stages: prototyping,

implementation, and script connection.

During the prototyping stage, the user interface design went through many iterations.

Initially, several possible designs were prototyped on paper and tested among members of the

team. These paper prototypes were simple and quick to iterate on. When any changes needed

to be made due to user feedback, new ones were created almost instantly. Paper prototyping

allowed the team to be able to narrow down different interface design possibilities quickly;

learning what worked and what didn’t for the tool.

Once an initial design had been decided on, a digital, interactive prototype was

created. This prototype was designed in Adobe XD, and it allowed the team to test the design

of the tool in a more accurate fashion to the final product. The digital prototype features

labels for each part of the body the tool can handle, as well as checkboxes that toggle

advanced features on and off, and individual rigging buttons for each body part. Additionally,

this prototype, as shown in Figure 7, separates the face into its own submenu which would

pop open when the “Open Menu” button was clicked.

17

Figure 7. Digital prototype of the User Interface.

While the digital prototype helped finalize the interface, upon further testing and

organizing the code, a final design (Figures 8 and 9) was settled on. When looking at some of

Maya’s native tools and submenus, the UI was divided into two subtools: the head and body.

However, instead of creating a separate pop-up menu for the face, a two-tab system was

created where one tab houses all of the body’s features while the other tab houses the face’s.

Additionally, the code was restructured in a way where only one rigging function was needed.

The interface reflected this change by including only one guide generation and one rig button,

which take care of all the body parts that need to be rigged. In terms of the face, a more

18

complicated set of buttons were used because the face’s features require more advanced

guides and setup.

Figure 8. Final design for the User Interface, body subtool.

Figure 9. Final design for the User Interface, head subtool.

19

Once the final design was settled on, implementation began. Specifically using the

PyQT framework, the user interface was scripted in Python 3. PyQT is the Python version of

the QT framework; a common code library utilized to create user interfaces for interactive

projects. Autodesk uses PyQT to develop Maya’s native user interface (Zurbrigg). Therefore,

in order to stay consistent aesthetically and functionally within Maya, PyQT was used for the

tool.

The biggest implementation challenge when working with PyQT was determining

how to group buttons, checkboxes and labels into layouts. In QT, a Layout is a set of Widgets

(buttons, checkboxes, labels, etc.). There are two types of Layouts used in this interface:

HBoxLayout, a type of layout where its widgets sit horizontally next to one another, and

VBoxLayout, where the widgets are stacked on top of one another. To create this interface, a

combination of both layout types were used. Layouts are also able to contain other layouts

and widgets. So typically, a horizontal layout was created with any buttons or features that

needed to be side by side, and those were then nested within vertical layouts in each of the

two tabs of the interface. Figure 10 provides an example of nested layouts.

Figure 10. Nested layouts within the head subtool.

20

Finally, once the blank buttons and checkboxes were implemented, the scripts that run

the rigging features needed to be connected into the interface. In QT, each button has an

attribute buttonname.clicked.connect(buttonfunction()) that will execute

the function buttonfunction() as soon as the button is clicked. Since there are two

main buttons in the interface, two button functions were created: createGuides(), and

createRig(). On the back end, all of the functions that execute the actual guide

generation for each body part are collected in a file. This file was then imported into the user

interface file and its functions were able to be called.

In createGuides(), the checkbox attributes must first be checked for all three of

the body features. This was done by using the QT isChecked() attribute for each

checkbox and storing each in a variable. Once the checkbox variables were created, they were

passed into all of the individual guide generation functions. For example, for the leg guide

generation, the function holds three attributes: mirror, autoVector, and autoHip.

Mirror is a boolean value that simply allows the left and right legs to be generated, while

autoVector and autoHip are checkbox variables. Therefore, when generating the leg

guides, the function must be called twice inside createGuides(), with opposite values of

mirror, as well as passing in the checkbox variables. This process was followed for the arms

and the torso and the createGuides() function was then linked to the “Create Guides!”

button. In contrast, createRig() followed a much more simple process. On the back end,

there is only one function that needs to be called in order to generate the final rig for all the

guides that exist in the Maya scene. This meant that in the createRig() function, only

one function had to be called once in order to generate the final rig. Finally, createRig()

was connected to the “Rig!” button.

21

The last few paragraphs describe how the scripts that create the body rigs were

connected to the user interface. Due to extra complexity in setup and lack of time, the face

features were not able to be implemented into the user interface. All of the code required to

create an advanced face rig has been completed. However, setup needs to be finalized in

order for the face guides and rig functions to be ready to be connected to the rest of the tool.

22

4. The Guide System

In order to set up an automated rig, the tool needs a large amount of information about

each different part of the model’s body. To do this, a custom guide system was designed that

the user can position in the scene manually before the rigging process begins. First, the user

moves the various guides into the proper positions along the model’s body. Then, the tool

creates a joint at the location of each guide to generate a skeleton. As it does this, the guide

stores metadata through the use of message attributes into the joints for later use. From there,

the automated rigging system uses this information to actually rig the generated skeleton.

Figure 11; Guide default layout

23

Each guide serves two purposes: storing positional data and the data of related body

parts. Guides are defined in code using a dictionary variable that defines a guide’s name,

position, and the generated joint’s name and parent. The guides also use a message attribute

to help identify other important guides in the rigging process. A message attribute is

essentially an empty attribute that only exists for the purposes of identifying connected

objects. With the message attributes, the rig system can find all of the necessary joints

through their guides to find all the joints’ relevant information. The benefits of using message

attributes is that users do not have easy access to them so they can not accidentally break

them, and if the user changes the name of the object in the scene, it is still locatable through

the message attribute. Guides are designed to be easy to use for both users and for coders

while still being sturdy enough that they won’t break easily.

Figure 12; Message attribute system in node editor

24

Guides are defined in groups; each group being a different limb or segment of the

body. They are further defined into three distinct types of guides: base guides, standard

guides, and sub-guides. Standard guides are the most common of the bunch and are the

simplest to explain. These guides act normally, storing positional information relevant only to

the joint it represents. Sub-guides are similar to standard guides except in one way, they move

automatically when the user moves a nearby guide. Sub-guides are designed to make the

process of setting up the guide skeleton in the scene easier on the user. Finally, base guides

act the same as standard guides, but they store a significant amount of extra information in

them. Base guides store both the information of the joint they represent, and also various

other connections to related guides and joints. Each guide group has one base guide which is

used to help the rigging tool find which guides are relevant to its rigging. For example, under

the arm guide group, the clavicle is the base guide and connects to the shoulder, elbow, and

wrist guides. When rigging begins, the clavicle guide sends a list of all the guides needed for

arm rigging to the tool which then uses the information stored in each of the returned guides

to perform the rigging process. The way that the system locates the base guides is through an

object in the scene called the guide finder. The guide finder is a dummy object whose only

purpose is to connect to all base guides through message attributes. From these message

attributes, the script can locate the base guides from whom it can then locate all other relevant

guides. The guide system is set up so that each guide is easy to locate and necessary

information is easy to access throughout the automated rigging process.

25

5. The Upper Body Structure

The arms are rigged with optional inverse kinematics, forward kinematics, an

inverse/forward kinematic switch, automated clavicle, and stretchy arm. The user selects

what options they want for the arm before generating the guides, and the tool rigs only what

the user wants after the guides are in place.

The inverse kinematic and forward kinematic options are relatively simple in design.

First, a separate control skeleton is generated from the skin skeleton. Then, the control

skeleton is connected to a controller for whatever form of kinematics the user wants. Finally,

the skin skeleton is parent constrained to the control skeleton. In the case that the user wants

both inverse and forward kinematics, the system creates two separate control skeletons with

one being controlled via forward kinematics and the other via inverse kinematics. The skin

skeleton is parent constrained to both of them. Then a switch is created and connected to the

two parent constraints so that they can each be switched from one to the other. This allows

the user to use either form of kinematics and also be able to switch between them willingly.

The automated clavicle makes it so that the clavicle can be made to move naturally on

its own from the shoulder’s motion. First, a separate control skeleton identical to the

kinematic ones is generated. These control skeletons are not controlled by the clavicle, and

thus are independent of its motion. A small target is parented along the length of the shoulder

on these control skeletons which the auto clavicle parent group is aimed constraint at. This

causes the clavicle to move in the same direction as the shoulder whenever the arm moves.

However, this causes unnatural movement, so the motions of the automated clavicle need to

be tuned. First, the shoulder is rotated to its extremes by the tool and the rotation of the

automated clavicle is recorded for each extreme. These extremes are then fed into a remap

node which converts them into more natural values. These remapped values are then fed into

26

a separate automated clavicle group which actually drives the clavicle, causing the clavicle to

move in a natural way whenever the shoulder moves. Finally, this automated clavicle system

is hooked into an attribute within the clavicle controller so it too can be turned on and off.

The clavicle can also be adjusted manually whether the automated clavicle system is turned

on or off, so users still have control over the system. The automated clavicle is designed to

make animation easier and more streamlined as it takes care of the important but often

overlooked clavicle motion.

Figure 13; Auto Clavicle reacting to shoulder rotation.

The stretchy arm system makes it so the user can stretch the arm out if they push the

controllers beyond what would normally be the arm’s length’s limit. This is useful for more

cartoony animations, or for when an animator needs to better push a motion. The way the

stretchy arm works is by first measuring the exact length of the arm. Then, a measurement

27

tool is created which checks to see what the distance between the shoulder and the arm

inverse kinematic controller is. If this distance is less than or equal to the maximum length,

nothing happens and it works as normal. But if the length exceeds the maximum length,

several things happen. First, the measured distance is divided by the maximum length

through the use of a multiply divide node. Then, this value is fed into the x scale of each of

the control joints, causing them to lengthen by a ratio such that the arm perfectly matches up

with the position of the controller. This makes it so the arm stretches whenever the controller

is pushed past the arm’s limit, but also makes it so the arm acts as normal under regular

circumstances. Finally, the stretchy arm system is plugged into an attribute under the arm’s

controller so it can be turned on and off. The stretchy arm is a simple system that creates an

interesting animation effect.

28

6. The Lower Body Structure

When approaching the lower body structure the first body part addressed was the leg.

Especially in regards to Inverse Kinematic (IK) setups, it is generally one of the first

structures riggers learn to rig when learning character rigging . While it is a relatively simple

task, it has a wide variety of features that can be added on top of it to make the animation

process much easier. The first requirement was to take care of basic features that most

animators expected from their IK Leg rig. These features include attribute controlled ball roll

and toe tap, stretchy leg, and a vector calculated pole vector.

The vector calculated pole vector is not a common setup that many beginner riggers

encounter due to there usually not being a need for it if the leg joints all line up on one axis

while facing down another. In most cases, the leg lines up on the x-axis and points down the

z-axis. In general the rigger can just put a locator down right in front of the knee and

constrain it to the IK Handle on the leg. The problem occurs when the joints have separate

coordinates along that x-axis. When attempting to constrain the locator to this askew leg,

Maya will try to have the joint chain associated with the IK Handle and form fit to the

location of the locator by pointing the central part of the joint chain towards it, taking the rest

of the leg chain with it.

29

Figure 14. Example of a misaligned leg joint chain compensating to point at the locator

during a pole vector constraint between the IK Handle and the Locator

The solution is to utilize the Maya vector system to measure points along the leg in

order to figure out where a locator should be placed without the user having to create one. We

utilized a video tutorial from rigger Greg Hendrix. He explains that all of the needed

functions are provided in the OpenMaya API (Hendrix). By measuring the length of each

segment of the leg, it is possible to calculate a spot for the locator to be generated so that the

leg remains unaffected and movement with the locator controller goes smoothly (Hendrix).

The Maya vector measurement system ended up being a valuable fix for the stretchy

leg system. During production, these systems were being produced alongside each other so

utilizing Maya’s vector math systems were not the instant go to for the stretchy leg. When

creating the stretchy leg it is important to have the measurements of leg, not the distance from

the thigh joint to the ankle joint, but the distance from the thigh to knee plus the distance

from the knee to the thigh. This gives the actual length of the leg while extended. Typically in

a stretchy leg system, users move the leg down until it is fully extended and manually note

the leg length from there. Since everything is being handled automatically, without user input

30

at this point, that luxury is not relevant to the tool; hence the need for measurements.

Recording the measurements allows the tool to know when the leg should begin stretching.

Without this, the leg begins to appear as if it is just scaling rather than stretching. This is due

to the system scaling the joints on the x-axis which is its length-wise scaler by default. Once

the leg is fully extended, it gives the illusion that it is stretching, but without knowing the full

length of the leg it becomes obvious that the leg is simply scaling.

Figure 15. Example of why knowing the full leg length is necessary for stretchy leg

Before discovering the usefulness of OpenMaya’s vector math, the tool utilized the

built-in Maya distance tool to handle the leg measurements. While an archaic way of

handling things by Maya rigging standards, it generally met the needed requirements. The

problems took place where the leg would need to be scaled. Distance node tools generate a

little line gizmo that constantly measures the point between two spots that the user specifies.

Usually, this is via locators that the distance tool is attached to. The issue is that the distance

tool only measures in world space even when it is in the local space of another object while

parented to it. Since the tool referred to the distance tool to determine the leg’s length, if the

system was scaled, that fully extended leg length measurement would change due to it being

31

scaled down in world space. The solution was to find a way to just get a static measurement

once and something that the tool could generate at the very start. This is where OpenMaya, a

MayaAPI library, came in which allowed the script to take that one measurement and plug it

into the system. There were no scaling and measurement issues going forward.

The attribute controlled ball roll and toe tap utilizes remap nodes and was designed by

the user crackjack (“Adaptive”). Essentially these nodes allowed the tool to tell parts of the

joint chain to move once a certain condition was met. This was mapped to the value of a

custom attribute that was attached to the foot controller with a set minimum and maximum

value. The toe tap aspect of this feature was maintained, but the team opted for the much

more efficient and advanced vector ball roll system.

The advanced vector ball roll is a setting that users can opt into during rig generation.

Originally designed by Perry Leijten and readapted to fit with matrices, the foot rig is

enhanced to always have some form of contact with the edge of any foot mesh (Lesterbanks.

“Check”). In a more simplistic interpretation to describe its functionality, the vector foot roll

is a continuously changing pivot that allows tilting and rotation along a Maya NURBS curve.

With that changing pivot, a much more complicated remap system is created that can act as

the new toe pivot, ball pivot, or heel pivot. Whenever the user rotates their vector controller,

it will move the foot’s changing pivot’s location and switch to function like any of the pivots

types with the additional functionality to blend between all of them. This is done with two

critical steps: convert 3D rotations into 2D translations, and then use those 2D translations to

alter the pivot’s new location on a pre-generated oval NURBS curve.

The first step is handled with a vector product of the controller’s rotations and a

locator, known as the target, that shows us visually which vector direction it is pointing to in

space. Essentially, the vector product node converts the 3D nature of the controller’s

rotational data to become a 2D-output. No other operations are applied because Maya “uses

32

Matrix math to calculate exact linear position and orientation for points in 3D space

(Autodesk, “Matrix”)”. The vector product is a simple way to extract that data. Once

connected to a target locator’s translations, users can visually see what kind of output the

vector product will give. This can be used as a way to see how a pivot is changing in real

time.

The second step is using a curve that takes advantage of the 2D output. The curve is

generated with a simple circle that is shaped based on the foot’s length. Having a more

symmetrical curve tends to give better results for the side tilting. Then using this curve and

the target locator’s translations, another Maya node is used called the nearest point on the

curve (nPCI) to allow any object to stick onto the closest point on the curve. Another locator

is used for this interaction so users can visually see it matched on the curve. All together, this

system gives us a continuously changing locator that moves along a curve.

Figure 16. Showcasing the complete vector foot system. Two locators will move an invisible

pivot point which is attached to the yellow’s curve shape.

33

The final step is to connect the locator’s position to an actual movable pivot point by

using the locator’s world location in the form of a matrix. Once this was established, all the

toe pivot, ball pivot, and heel pivot groups were parented under the new pivot system.

6.1 Enhanced Inverse Kinematics

After the IK Legs are completed with or without the vector system, the creation of an

Enhanced Inverse Kinematics (EIK) is needed for future automation. This enhanced variant

of the IK is designed to solve the flaws that a regular IK system has whenever the user

attempts to raise a leg in an extremely harsh position. Due to the inconsistencies of a pole

vector constraint, regular IK rigs may unintentionally have the pole vector point the knee in

the wrong direction. Snapping occurs whenever the pole vector transitions from the front of

the knee to behind it. This is all due to the pole vector always aiming the leg’s knee joint to

itself, but does not know the points where the leg could snap into a positive (in front of the

knee) or negative space (behind the knee) unless the user corrects this manually. During the

splining process of animation, the pole vector will smooth its translations or rotations from

one point to another. A single instance of the pole vector being in the wrong location during

interpolation is extremely likely and makes it tedious to fix. The EIK system solves this

problem by automatically moving the pole vector to always be in its positive space as the leg

moves around. We also begin to utilize Maya matrices a lot more here to improve the speed

of automation.

The first part of this system recreates the exact same leg joint structure created by the

user. In addition, the tool will also create a two joint structure for our EIK Handle system that

is an important foundation for the stability of the IK handles that is added to the copied leg.

Using this EIK Handle, we recreate a new pole vector constraint onto this handle, except we

34

specify how far the EIK’s pole vector can automatically go to prevent it from ever snapping

and entering a negative space.

Figure 17. The positive space represented in the green is the area the pole vector is

constrained too so it never causes the leg to snap

In the diagram, the dotted line represents the threshold where a pole vector will enter

the leg’s negative space. A multi-layered aim constraint group always tells this EIK pole

vector to always remain in this infinite 2D positive space even while the leg is rotating

around. In a 3D context, think of this 2D area becoming an infinite semi-sphere. Another IK

handle is also created for the copied leg (referred to as the CIK) so it can later be influenced

by this relationship. Figure 18 points to every important layer function and explains what

35

they do to stabilize the EIK leg, and how it gets connected to the real leg.

Figure 18. The Hierarchy of the EIK Leg System.

The direct pole vector matcher (DPVM), is the EIK’s output we are using as a visual

aid to see if the other layers work together to stabilize the EIK leg with a moving pole vector.

Once the EIK leg works as intended, the actual leg is then connected to the EIK system so the

real leg can drive the EIK leg to move around. All of the calculations end up trying to keep

both the ankles of the real leg and EIK leg to move exactly the same based on the ankle’s

location.

36

Figure 19. Visual representation on how data is transferred between the two legs. The

pink locator feeds data into the red locator which is then fed into the teal locators for

calculating the correction rotations necessary to automate the real pole vector.

At the ankle’s location is where the automatic pole vector will get the proper

positional data from its real leg, and rotational data will come from one of the multi-layered

aim constraints. The rotational data is what keeps the pole vector in front of the leg, while the

transitional data is what moves the pole around with the leg’s position. Even when the user

twists or ball rolls the real leg, the multiple layers of the aim constraint group handles each

situation through the use of matrices acting as a point or orient constraint to allow rotational

data still being fed correctly back to the real leg.

37

6.2 Auto-Hip and Other Hip Systems

The hip system takes the currently existing EIK systems and adds more functionally

to a whole, entire automated lower body. Stability is maintained in a similar way to how the

EIK system works. The tool builds a miniature version of the EIK system that automates the

hip’s rotation in an extremely similar fashion to how the EIK rotates its pole vectors.

The only difference is we did not have to account for the pole vector anymore as this is

already done with the legs. Instead, this hip EIK only uses a single aim pointer system that is

visualized with a cube. The hip EIK grabs the rotational data from the leg EIK to move itself

when the leg lifts. Then based on the hip EIK’s position, all of its translational data from the

hip EIK’s knee group is remapped and recalculated to be fed into all the hip’s rotations in the

Y, X, and Z axis respectively as rotational data.

Figure 20. Flowchart of the Hip’s EIK way to send automated rotations.

On top of this hip’s EIK system, several other minor systems are added and blended

into the system. The tweaker controller where a user is able to move the hip into more

38

extreme up and down positions utilizes the hip EIK system to influence a controllable aim

constraint that moves the hip’s XY rotations or its ups and downs.

The on and off switch for the auto hips uses a blend color node and matrices to

smooth the transitioning of an on and off state which works much better over remapping.

Figure 21. Using matrices with blend colors to create the Auto-Hip Switch

Finally, there is an auto-twist feature for the leg’s pole vector that adds the hip’s

influence to the already existing automatic pole vector that was created earlier. Similarly to

all other systems where translational data is converted into rotation, the auto-twist feature

does the same process. The tool takes advantage of linear projections from Maya’s own

matrix system and blends their world matrices together to output a smoother rotation. This

process was only recently discovered and managed to solve many problems trying to transfer

rotational data from the leg EIK system.

39

Figure 22. The Blend Matrix Setup

The blend matrix setups allow the pointer to move a certain distance based on the

matrix locations of the hip EIK joint and auto pole vector joints. Essentially, there’s a

feedback loop that changes how the aim pointer will behave. The envelope is a float value

from 0 to 1, and functions like a remap node by using much more complicated matrix data.

The pointer can then blend between the translate matrices of the auto pole vector joint which

is only determined by the cubeZ remap value.

40

7. The Ribbon

Ribbon splines are used throughout the rig. Ribbon splines are a ribbon-like surface

that sits on a series of joints. These joints are pinned to the surface of the ribbon such that

whenever the ribbon’s shape is deformed, the joints move with the surface. Ribbon splines

are useful for twisting, stretching, and bending deformations. The tool generates these ribbon

splines automatically, and with the full functionality needed.

The ribbon spline’s surface is first created with the number of spans the user wants.

Alternatively, the user can create their own surface and plug that into the system to be used

instead. Then, surface pins are placed along the length of the ribbon, or in specific locations

along the ribbon if the user inputs specific coordinates. Joints are then parented under these

pins so that they move with the surface of the ribbon. Finally, the ribbon generates all

necessary deformers and control systems the user chooses. These ribbons are then placed

along the lengths of the limbs and spine to give proper deformation support to the various

parts of the body. The various deformers are set up so that they act independent of one

another and stack their motions.

The wire deformer is used to bend and move the ribbon around. The way the wire

deformer is generated is as follows: first a NURBS curve is generated along the center of the

ribbon, then this NURBS curve is rebuilt to give it 3 control vertices (CVs), and finally a wire

deformer is generated on the ribbon with the NURBS curve as the controller. The various

CVs are then put into clusters which are parented under controls so that the user can move the

wire around to control the ribbon’s deformation. The system generates three controllers; one

for the top, one for the middle, and one for the bottom. This allows the user to bend limbs and

spines in cartoony and stretchy ways.

41

The twist deformer is used to allow the ribbon to twist along its length. This is done

by first creating a duplicate of the ribbon shape. The twist deformer is then applied to this

duplicate. Next, the twist deformer handle is connected to attributes within the controllers of

the ribbon so that the twisting can be controlled by them. Finally, the duplicate is made into a

blend shape of the ribbon so that any deformations done to the duplicate get replicated into

the ribbon. Using a blend shape makes it so that even if the ribbon is bent and deformed in

various other ways, the twisting will still be along its length. Otherwise, the deformation

would not work properly if the ribbon was deformed in other ways. The blend shape, along

with the twist deformer handle, is hidden and placed into a hidden ribbon deformer group.

The twist deformer allows twisting motions to be easy and natural without requiring much

work from the animator.

Figure 23; Twist deformer and Wire deformer affecting ribbon.

42

Finally, the ribbon spline is generated with optional squash and stretch. When an

object is squashed or stretched, the inside of the object tends to bulge inward if stretched or

outward if squashed. The way the ribbon replicates this is through another deformer. First,

another duplicate of the ribbon is created. For each pin on the ribbon, a pair of pins is

generated along the length of this duplicate; one in the same spot as the pin on the ribbon, and

another along the edge of the ribbon. Next, measure tools are created to measure the distance

between the pins along the center of the duplicate and the pins along the edge of the

duplicate. Then, a squash deformer is placed on the duplicate, which allows it to bulge inward

and outward. When the duplicate bulges, the distance between the pins in the center and their

pairs along the edge changes. This new measurement is fed into a multiply divide node as

well as their original lengths. This ratio is then fed into a scaling group above the joint. This

causes the joints along the ribbon to grow and shrink according to the squashing and

stretching of the duplicate. Finally, the squash deformer handle is connected to the ribbon

controllers so they drive the deformation. All of these different deformers make it so the

ribbon splines allow for a wide variety of freedom for animators.

Figure 24; Squash deformer measurement tool example.

43

8. The Face Structure

The face is a notoriously difficult part of the body to rig due to its complexity and the

face typically being the easiest thing for general audiences to critique. Human minds are so

used to seeing faces daily. In addition to human nature, there are a multitude of ways to go

about rigging a face. When using joints, there is a large amount of eye joints that need to be

kept track of, NURBS curves, locators, etc. Creating, naming, and keeping track of all these

components is a huge undertaking if done from scratch with no tool assistance.

The tool takes this process and leaves it up to the program to figure out. The main

feature that handles this is the Face Emoter system. The system is based on the manual

rigging tutorial series created by Marco Giordano that focused on the creation of a cartoon

face eye rig (Giordano). This is what creates the foundation for the lid joint and controller

system. A big challenge in creating this face emoter system is figuring out what sorts of user

inputs are needed to make this an accessible feature while also not trying to automate the

entire feature. The latter of which was considered, but would have required the tool to detect

nearby vertices and make a decision on how to set up the eye.

The auto detection system ended up being too high scope and would require an

egregious amount of testing a multitude of models in order to feel confident enough to ship it.

It was decided that the user would choose landmarks of the feature they were trying to rig via

vertex selection. Once they were selected, the rest of the setup would be taken care of by the

tool. The user is required to use 5 vertices minimum, but the tool does allow them to select an

unlimited amount of vertices after the meeting the minimum. This allows for more natural

deformation on higher polycount rigs.

44

Figure 25. The Face Emoter system being applied to the minimum 5 user selected vertices

(verts). Generates the joints and controllers automatically after selection

Interestingly, the process of creating this face emoter system was applied to other

parts of the face. Before this point, the feature was only going to be used on the eyelids, but

the functionality that the system provided worked well for manipulating parts of the face like

the eyebrows and the lips. So long as there was a parent joint to use as a base, the Face

Emoter system could be applied to anywhere that had enough polygons to meet the vertex

requirement.

Figure 26. Face Emoter system applied to the brow

45

Figure 27. Face Emoter system applied to the upper lip

After settling on how the face emoters were set up, the need for a proper eye look

system arose. The system needed a controller that could move the eyeballs freely and also

allow for the animator to move both eyes individually should that be needed. This also relied

on the existing guide joint system for its positional data and reference to the parent joint. An

“EyeLook” joint was created on top of the parent “Eye” joint and parented to it in order to be

a part of the skeletal system while also not messing up the Face Emoter side of things. The

“EyeLook” joints were then aim constrained to a set of controllers that the tool generated, one

for the left and right eye. These controllers are parented under another controller allowing the

users to move both eyes uniformly.

46

9. Evaluation

Testing was needed to ensure that the tool was efficient in the hands of both an

experienced and novice rigger. A test that was both stable and relatively beginner friendly

was needed in order to test a wide variety of rigging experiences.

9.1 Objectives

IRB approved user testing was held with participants of varying rigging experience

levels. The objective of the evaluation was to determine the efficacy and time efficiency of

the tool, as well as its usability and user friendliness. Users were asked to perform a rigging

test, both with and without the assistance of the tool, and a survey was administered

following the test to collect user feedback.

9.2 Procedure

Users were asked to create an Inverse Kinematics (IK) based leg rig within Autodesk

Maya 2022. Half of the user pool was asked to begin by performing the manual test, while

the other half began by using the tool. After the first test was completed, the first group was

provided with the tool while the second group was instructed to rig manually. Both tests were

performed using a premade leg model, already loaded into the Maya scene by the team. The

tests were timed and the times for each user were recorded.

47

Figure 28. The leg model provided to participants

For the manual test, users were instructed to perform the following procedure:

1. Create a basic leg joint structure that matches the provided leg model. The joint

structure must include the following: thigh, knee, ankle, toe, and toe nub. The joints

must be named accordingly in Maya.

2. Create an IK tool connection between the thigh joint and the ankle joint.

3. Create a basic NURBS controller.

4. Orient constrain the NURBS controller to the ankle joint.

5. Point constrain the NURBS controller to the IK handle generated in step 2.

6. Create a locator and snap it to the knee joint by holding “V” and dragging it to the

knee.

7. Move it out in front of the knee on one axis.

8. Freeze the transformation.

9. Constrain the IK handle to the locator by using the pole vector constraint.

10. Skin the leg with the now created joints.

48

For the tool test, users were asked to:

1. Open the tool menu.

2. Press the “Generate Guides!” button

3. Line up the guides with the leg mesh provided by moving the gizmos in the scene.

4. Under the “Legs” section, check the “Auto Vector” checkbox.

5. Press the “Rig!” button.

6. Skin the leg with the now created joints.

Figure 29. The body tab of the User Interface

While the manual test goes over concepts like creating an IK Handle, constraining

controllers and pole vector constraints, the tool test handles even more features. In just this

test alone, stretchy leg, vector calculated pole vector, and vector ball roll, which were all

mentioned in previous sections, are applied to this leg for this test. The main purpose of the

added features is to showcase the tool’s ability to accomplish tasks required of the manual

setup while also adding on more advanced features, all faster than doing the basic setup by

hand.

49

After both tests were administered and user times were recorded, participants were

asked to fill out a Google Forms survey consisting of 11 questions regarding their rigging

experience as well as the functionality and usability of the tool.

9.3 Results

The following section discusses the results obtained during user testing of the tool.

The test results are divided into two categories: those dealing with the efficiency of the tool

compared to manual rigging, and those dealing with the usability of the tool.

9.3.1 Time Efficiency

When performing user testing, as previously discussed, users were asked to perform a

rigging test once manually and once utilizing the tool. Times were recorded for both of these

tests. Users were also categorized into one of three subgroups based on rigging experience:

professional for users whose job it is to rig, comfortable for users who rig occasionally (2-5

times a month), and beginner for those who had rarely or never rigged before. In Figure 30,

regardless of the user’s level of rigging experience, the tool performed between 2.03 and 6.34

times faster than users following the manual test. Additionally, even when testing the tool

with a professional rigger, it performed 4.11 times faster than the user could manually.

Figure 30. User speedup comparison between their manual setup time and their tool setup

time. Sorted by level of rigging experience

50

On average, users performed the rigging test 3.40 times faster when using the tool.

The average time for the test to be completed when using the tool was 1:49 minutes, while

the average for manual rigging was 5:43 minutes. Using this data, a 90% confidence interval

of [1.85, 4.95] of the average was calculated.

Figure 31. Average, standard deviation and variance of tool rigging data.

This data suggests that the auto rigging tool will consistently outperform manual

rigging, regardless of the user’s level of rigging experience.

9.3.2 Usability

Following the rigging test, users were administered a usability form where they rated

certain aspects of the tool, as well as Autodesk Maya’s current rigging features.

The first of these questions concerned users rating Maya’s native rigging toolset on a

scale of 1 (poor) to 5 (ideal). The results were scattered, with 50% of users rating Maya’s

rigging tools at a 4, 16.7% of our users rating them as a 3, and 33.3% of our users rating them

as a 2. This showed that there is not a consistent opinion among users about Maya’s native

rigging tools.

51

Figure 32. Users (y-axis) rating (x-axis) of Mayas current rigging toolset (1 = poor, 5= ideal)

The following question asked users to rate how the auto-rigging tool blends

functionally into Maya, on a scale from 1 (poorly) to 5 (really well). In this case, the majority

of users (66.7%) rated the tools functionality a 5, while the rest of the users (33.3%) rated it a

4.

Figure 33. Users (y-axis) rating (x-axis) of the tool’s functional blend into Maya (1 = poorly,

5 = really well)

52

Users were also asked to rate how the tool aesthetically blends into Maya, on a scale

from 1 (poorly) to 5 (really well). In this case, 83.3% of our users rated the aesthetics of the

tool as a 5, while the remaining 16.7% rated it as a 4. These results, as well as those of the

above question, show how users believe the tool blends almost seamlessly into Maya’s native

user interface.

Figure 34. Users (y-axis) rating (x-axis) of the tool’s aesthetic blend into Maya (1 = poorly, 5

= really well)

Finally, users were asked to rate the overall usability of the auto-rigging tool on a

scale from 1 (poor) to 5 (great). 100% of our users deemed their experience with the tool

great.

53

Figure 35. Users (y-axis) rating (x-axis) of their experience with the tool (1 = poor, 5 =

great)

These results are promising, and show consistent satisfaction from the initial user pool

with the usability of the auto-rigger. Overall, users consistently rated the tool positively in

terms of both time efficiency and usability.

54

10. Future Work

10.1 Short Term Goals

In the short term, the tool requires clean up in order to be considered cohesive. There

should be consolidation in naming conventions. In addition to this, the one feature that

consistently works and is hooked up properly into the user interface is the leg script which

handles features like basic IK setup, stretchy leg, vector calculated pole vector, and vector

ball roll. The rest of the features like the face, spine, arm, as well as anything utilizing the

ribbon system are close to being implemented into the UI as they can be applied with a

simple function call.

After applying these features to the UI, additional testing needs to be taken care of.

The leg side of the tool was the only part subject to user testing, which, while an essential

part of rigging, was not indicative of all the features the tool can provide. With this in mind,

different tests would need to be created to evaluate features like the ribbon and the face.

These tasks are not beginner friendly, and it would be unrealistic to expect users to perform

them by hand due to it creating a large time commitment compared to the 20 minute total test

for the leg.

Furthermore, testing on whether or not our rigs are efficient for the animators is also

important. All testing up until this point has been to see how convenient it is to set up for the

rig artist, but it would also be valuable to know what animators think of the rigs generated by

the tool. This will help fine tune additional User Inputs, future long term features that could

be included at the request of testers, and whether or not an existing feature needs to be

modified to make it more user friendly. Leveraging the input of those taking animation

classes, particularly in 3D Animation I and II, would be helpful as the user base would at the

very least be familiar with basic to intermediate Maya animation. At the moment those

55

classes utilize third party rigs that are found online, so it would be a good metric to see how

our generated rigs compare to those.

10.2 Medium Term Goals

In regards to the face structure, the system needs systemic interaction. At the moment

the Face Emoter and Eye Look system are both functional, but do not interact in any way.

This is simply not the case when it comes to how the human eye actually functions. When

people look up or down, their eye lids tend to follow.

Figure 36. Eye look interaction with eyelid, real life example

The thought would be to have the eye look and face emoter systems interact, so that

when the eye look controller aims up, the eyelids will automatically move up to as well as

shown in Figure 36. The easiest way to approach connecting these two systems is through the

main guide joint that both systems are parented to. The necessary controls needed to make

this a reality are named after that base joint with a specific suffix, so it is very possible to find

the needed components via string name search utilizing the name of the parent joint plus

something similar to “_CTRL” at the end. Once assigned to a variable, this controller can

now be utilized within the eye look system. The problem occurs where the user would need

to be restricted from using the eye look before the eye face emoter for this specific method to

work.

56

10.3 Long Term Goals

The long term goal would be to apply the tool to future IMGD MQP projects at WPI.

In addition to this, the tool will continue to be used on sets of characters created by the Rigs

of Color - Character Development team each year. MQPs and the Rigs of Color characters

will be utilized to properly bug test the tool. This will inform the next tool development team

on what features still need to be added and what edge cases still exist. The plan is to release

the fully rigged characters resulting from Rigs of Color to the public so that there are more

diverse and high quality rigs on the market. The tool will continue to be proprietary to WPI

for the foreseeable future.

57

11. Conclusion

Rigging is an essential process in the field of 3D animation. However, manual

rigging, often done in Autodesk Maya, is a tedious, time consuming and highly technical

skill. Errors during hand rigging are common, even for advanced riggers, due to the repetitive

and data heavy nature of the process.

To fix the problems that arise with hand-rigging, auto-rigging tools that automate or

eliminate the rigging process have been created. Unfortunately, these tools often limit the

user’s creative freedom by providing a set of premade animations with little room for

modifications.

In order to address the issues with hand-rigging and auto-rigging tools, we created a

set of Python 3 scripts inside of Maya that provide most riggable elements in a 3D character,

such as the face and body, with a graphical user interface to connect them. The scripts also

allow users to rig any bipedal character with freedom to modify the rig guides.

User testing with participants of varying rigging levels showed that the tool, on

average, outperforms manual rigging by being 3.40 times faster. Additionally, testing showed

a high satisfaction rate among users, with 100% of participants rating their experience with

the tool 5 out of 5.

58

12. References

Autodesk. “Matrix math in Maya.” Autodesk Support, 02 Feb 2022,

https://knowledge.autodesk.com/support/maya/learn-explore/caas/CloudHelp/cloudhelp/2022

/ENU/Maya-Basics/files/GUID-FE14C377-BD15-4BE3-8656-2A01CCF25D76-htm.html

“Adaptive Foot Roll Using Utility Nodes.” Adaptive Foot Roll Using Utility Nodes - Page 1 -

Free Character Tutorials for Maya, Highend3D,

https://www.highend3d.com/maya/tutorials/character/c/adaptive-foot-roll-using-utility-nodes.

Chery, Farley. “Motion Flow Rigging in Maya.” Pluralsight, 15 June 2011,

https://www.pluralsight.com/courses/motion-flow-rigging-maya-73.

Giordano, Marco. “MAYA TUTORIAL: Cartoon eyeLid rigging” YouTube, 11 June 2015

https://www.youtube.com/playlist?list=PLqTYlr4mV7LeCo7q3uqfzO99oYSBidY3a

Hendrix, Greg. “Maya Applied Math - Placing Pole Vectors” YouTube, 13 Jan. 2018

https://youtu.be/bB_HL1tBVHY

Lesterbanks. “Check out This Unique Foot Roll That Always Has Contact.” Lesterbanks, 14

Feb. 2020,

https://lesterbanks.com/2020/02/check-out-this-unique-foot-roll-that-always-has-contact/

Lesterbanks. “Understanding the Basics of Matrix Math in Maya.” Lesterbanks, 2 July 2017,

https://lesterbanks.com/2017/07/understanding-basics-matrix-math-maya/.

59

https://knowledge.autodesk.com/support/maya/learn-explore/caas/CloudHelp/cloudhelp/2022/ENU/Maya-Basics/files/GUID-FE14C377-BD15-4BE3-8656-2A01CCF25D76-htm.html
https://knowledge.autodesk.com/support/maya/learn-explore/caas/CloudHelp/cloudhelp/2022/ENU/Maya-Basics/files/GUID-FE14C377-BD15-4BE3-8656-2A01CCF25D76-htm.html
https://www.highend3d.com/maya/tutorials/character/c/adaptive-foot-roll-using-utility-nodes
https://www.pluralsight.com/courses/motion-flow-rigging-maya-73
https://www.youtube.com/playlist?list=PLqTYlr4mV7LeCo7q3uqfzO99oYSBidY3a
https://youtu.be/bB_HL1tBVHY
https://lesterbanks.com/2020/02/check-out-this-unique-foot-roll-that-always-has-contact/
https://lesterbanks.com/2017/07/understanding-basics-matrix-math-maya/

Love, Jarred. “Custom maya matrix node constraint *UPDATED* rig tip” YouTube, 10 Dec.

2021

https://youtu.be/7A98wukXsJQ

Love, Jarred. “Transform negation *UPDATED* Maya tutorial” YouTube, 10 Dec. 2021

https://www.youtube.com/watch?v=HqXhNM0R8vo

Marcus, Sophia B, and Farley J Chery. “Farley Chery MQP Interview.” 27 Apr. 2022.

Mixamo, Adobe, https://www.mixamo.com/.

Petty, Josh. “What Is 3D Rigging For Animation and Character Design?” Concept Art

Empire, 5 Oct. 2018, conceptartempire.com/what-is-rigging.

Zurbrigg, Chris. “PySide2 for Maya.” Zurbrigg,

zurbrigg.teachable.com/p/pyside2-for-maya-vol-1. Accessed 26 Apr. 2022.

60

https://youtu.be/7A98wukXsJQ
https://www.youtube.com/watch?v=HqXhNM0R8vo
https://www.mixamo.com/

13. Appendices

Appendix A: Informed Consent Agreement

Informed Consent Agreement for Participation in a Research

Title of Research Study: Auto Rigging Tool

Introduction
You are being asked to participate in a research study. Before you agree, however, you must
be fully informed about the purpose of the study, the procedures to be followed, and any
benefits, risks or discomfort that you may experience as a result of your participation. This
form presents information about the study so that you may make a fully informed decision
regarding your participation.

Purpose of the study:

The purpose of this study is to compare the time it takes to rig a basic inverse-kinematic (IK)
leg compared to the time it takes for our tool to accomplish a similar but more complex task.

Procedures to be followed:

You will be taking one of the following tests that should have been specified before
viewing this document. PROCEDURE A, the rigging timed test and PROCEDURE B,
the animation test and ease of use comparison.

See Procedures Below:

PROCEDURE A: Rigging Test

This procedure should take no longer than 30 minutes.

In this study, you will be responsible for creating an inverse-kinematic (IK) based leg
rig within Autodesk Maya 2022, both manually and then with our Tool. You will
utilize a Maya scene with a premade Leg model already in the scene. You will be
timed for both tests. We will be responsible for both the starting and ending of the
timer. Once you are done rigging your leg in both tests please let us know when you
are finished so we may record the time.

For the Manual test, you will:

1. Create a basic leg joint structure that matches the provided leg model which
includes the following: thigh, knee, ankle, toe, toeNub. Please name the joints

61

in the Maya scene accordingly.
○ (Rigging Toolbar: Skeleton > Create Joints)

2. Create an IK Tool connection between the thigh joint and the ankle joint
○ (Rigging Toolbar: Skeleton > Create IK Handle)

3. Create a basic NURBS controller
○ (Create > NURBS Primitives > Circle)

4. Orient constrain the NURBS controller to the ankle joint
○ (Rigging Toolbar: Constrain > Orient)
○ Maintain offset must be on

5. Point constrain the NURBS controller to the IK handle generated in step 2
○ (Rigging Toolbar: Constrain > Point)

6. Create a locator and snap it to the knee joint by holding “V” and dragging it to
the knee

○ (Create > Locator)
7. Move it out in front of the knee on one axis
8. Freeze the transformation

○ (Modify > Freeze Transformations)
9. Constrain the IK handle to the Locator using the Pole Vector constraint

○ (Rigging Toolbar: Constrain > Pole Vector)
10. Be sure to skin the leg with the now created joints

○ (Rigging Toolbar: Skin > Bind Skin)

For the Tool test, you will:

1. Open up our tool (we will inform you of its location before testing)
2. Press the “Generate Guides!” Button
3. Line up guides with the leg mesh provided by moving the leg gizmos in the

scene
4. Under the “Legs” section, check the “Auto Vector” checkbox
5. Press the “Rig!” button
6. Be sure to skin the leg with the now generated joints (Be sure to select the

joints created in the Viewport and not the existing guides)
○ (Rigging Toolbar: Skin > Bind Skin)

After both of these tests, we will provide you with a google form so you can provide
feedback on your experience with our tool.

62

PROCEDURE B: Animation and Ease of Use Test

This procedure should take no longer than 1 hour

For this test we will start by showing you a short video comparing the features
between a rig generated by our tool and a 3rd party rig. Both rigs will only feature
the pelvis and legs. NO upper body animation will be displayed.

Once you are informed on all the needed features, you will be tasked with creating a
simple walk cycle twice. Once with the 3rd party rig specified in the video and again
with a rig that has been generated using our tools.

You will be provided with two Autodesk Maya 2022 Maya ASCII files to use as a
base.

Animation Requirements:

● The animations must be 24 frames per second
● There must be Ball Roll included in both animation

If you have any questions on the requirements please let us know before beginning.

You will not be timed.

Risks to study participants:

There will be no physical risk to the participant during this research study.

Benefits to research participants and others:

This research study will provide Interactive Media & Game Development Playtesting
Credit.

Record keeping and confidentiality:

We will be keeping two trial times. One of how long it takes for you to create an IK Leg
manually without our tool and another of how long it takes to create an IK Leg with our tool.
All of these times will be recorded on a Google Spreadsheet. To maintain confidentiality, the
only information we will keep on record is your times specified above. These times will be
shown to others and utilized in our data analysis, but they will not be attached to a name.

Records of your participation in this study will be held confidential so far as permitted by
law. However, the study investigators, the sponsor or its designee, and, under certain
circumstances, the Worcester Polytechnic Institute Institutional Review Board (WPI IRB)
will be able to inspect and have access to confidential data that identify you by name. Any
publication or presentation of the data will not identify you

63

Compensation or treatment in the event of injury:

This research study does not involve any actions that would bring harm to the user.
Compensation and medical treatment will not be available in the case of an injury during
testing. With this in mind, you do not give up any of your legal rights by signing this
statement.

For more information about this research or about the rights of research
participants, or in case of research-related injury, contact:

IRB Manager

Ruth McKeogh, Tel. 508 831- 6699, Email: irb@wpi.edu

Human Protection Administrator

Gabriel Johnson, Tel. 508-831-4989, Email: gjohnson@wpi.edu

Student Researchers

Sophia B Marcus, Email: sbmarcus@wpi.edu

Paloma González Gálvez, Email: pgonzalezgalvez@wpi.edu

Patrick Luck, Email: prluck@wpi.edu

Terry Deng, Email: tdeng2@wpi.edu

Your participation in this research is voluntary. Your refusal to participate will not result
in any penalty to you or any loss of benefits to which you may otherwise be entitled. You
may decide to stop participating in the research at any time without penalty or loss of other
benefits. The project investigators retain the right to cancel or postpone the experimental
procedures at any time they see fit.

By signing below, you acknowledge that you have been informed about and consent to be
a participant in the study described above. Make sure that your questions are answered to
your satisfaction before signing. You are entitled to retain a copy of this consent
agreement.

___________________________ Date: ___________________ Study Participant
Signature

64

mailto:irb@wpi.edu
mailto:sbmarcus@wpi.edu
mailto:pgonzalezgalvez@wpi.edu
mailto:prluck@wpi.edu
mailto:tdeng2@wpi.edu

Study Participant Name (Please print)

____________________________________ Date: ___________________ Signature
of Person who explained this study

65

Appendix B: Usability Survey Questions

Below are the questions asked in the usability survey.

66

67

Appendix C: Usability Survey Responses

Below are the responses to our usability survey.

68

69

70

71

72

Appendix D: Code

Use the following link to access the Python code for the project:

https://github.com/prluck/Maya_Rigging_Tool_2022

73

https://github.com/prluck/Maya_Rigging_Tool_2022

