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Abstract
The Modular Package for Autonomous Driving (mPAD) allows any user to implement

autonomous driving to various scaled vehicles with the appropriate hardware components. The

need for this project comes from a lack of flexible and affordable educational tools as well as a

limited supply of autonomous driving software packages available for non-commercial use. The

technical design objectives considered were to develop a robust, modular, and intuitive package

to be used in an academic setting by engineering students with minimal prior software

development, electrical engineering and hardware design  knowledge. mPAD V1 included a

package that enabled self-driving capabilities through lane detection, and an online dashboard

was used to display sensor readings and control the speed and steering of the car. However, the

platform crashed frequently and it was difficult to operate due to insufficient documentation.

To address the drawbacks of mPAD V1, our team improved the performance of the

backend by updating the sensor package, reducing network traffic and revamping the

communication system between the car, server, and client. We also improved the dashboard by

including a tutorial walkthrough, hardware component testing, a manual driving mode, power

level indicators, and the ability to change various advanced settings related to the car. Finally, we

developed a comprehensive setup guide for our system that also includes troubleshooting

suggestions.

We have advanced mPAD to be capable of ensuring that the remote controlled car is

capable of performing at least 5 laps without any manipulation. It is modular as the system is

composed of entirely off-the-shelf components and is intuitive as the system is easy to set up and

operate with little background knowledge.
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1. Introduction
Automation has been a key factor of technology growth and innovation throughout

history. In today's day and age, a vehicle is the fastest and most convenient way to get from point

A to B. The introduction of this technology to vehicles is the obvious next step in the world of

automation. Major manufacturers have already begun to implement some of these features. Lane

departure warning and adaptive cruise control are becoming more and more common in vehicles

every year. Additionally, fully autonomous vehicles are under development by many major car

manufacturers. Tesla, who has one of the more advanced forms of autonomous vehicle

technology on the road today, has a ‘Full Self Driving’ feature that allows the vehicle to drive

practically fully autonomously on its own already. While these innovations are impressive, this

technology is far from complete.

Autonomous vehicles in 2022 are expensive and not readily available to the average

consumer. Even if someone is able to obtain an autonomous vehicle, information on how the

system actually works is often not available to the person as it is intended only for use instead of

development. The need for this project comes from a lack of flexible and affordable educational

tools as well as a limited supply of autonomous driving software packages available for

non-commercial use. With this in mind, the Modular Package for Autonomous Driving Version 2

(mPAD V2) was created to be an educational tool that can be used to implement autonomous

driving on a Remote Controlled (RC) sized vehicle.

There were three main concerns when considering the design of mPAD V2. First we

wanted the software package to be robust and scalable. This would be demonstrated by a vehicle

consistently completing multiple laps around the track. Additionally, the package should be able

to function properly on RC vehicles of all different shapes and sizes.

Second, the package needs to be modular so users still have flexibility for their own

creativity and modifications. In fact, a variety of hardware and sensors that can enhance the

package are not essential for basic self-driving functionality. As such, users should be able to add

or remove various parts of the package based on their needs and interests.

Finally, the package needs to be intuitive and easy for an inexperienced user to set up and

run. A detailed setup and troubleshooting guide should be included that details the first time

setup process and to help the user identify and resolve common issues. In order to increase the
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ease-of-use of the system, an intuitive dashboard that allows a user to interface with the vehicle

should also be included.

During the WPI’s 2020-2021 academic year, Giglio de Azevedo et al. created the first

iteration of mPAD (henceforth referred to as mPAD V1), which includes a package that enables

self-driving capabilities through lane detection, and an online dashboard that is used to display

sensor readings and control the speed and steering of the car (Giglio de Azevedo et al., 2021).

Unfortunately, our team determined that mPAD V1 did not meet the criteria outlined above. As

such, we did work to improve the reliability of the system and accuracy of the self-driving code

to improve the robustness of the system; introduced a tutorial, various testing features features,

manual driving, and the ability to change some advanced software settings to improve the

intuitiveness; and implemented additional cameras and sensors to aid in object detection

capabilities while also improving the modularity of the system.

The report begins by giving some background information in the form of a literature

review. After the necessary background information is given we move into our initial preliminary

design and analysis chapter where we carefully analyze the current state of mPAD and develop

our project objectives. Following that we move into our testing and results portion of the report

beginning with our dashboard updates. After dashboard changes we discuss the changes made to

the sensor package and self-driving package in mPAD V2 as well as some object detection

testing results. Finally we move into discussions, conclusion, and recommendations for the

project moving forward.
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2. mPAD V1 Summary
This chapter will analyze the sensor, dashboard, and self-driving implementation of

mPAD V1 by Giglio de Azevedo et al. The purpose of this analysis was to help us understand the

reasoning behind the decisions made by the past two teams and to help us continue to build upon

the foundations they provide and avoid any mistakes the previous team made during

development. This analysis speeds up the early design process allowing us more time to

implement new features.

2.1 Sensor Implementation
Figure 2.1 shows where the sensors would be situated on the car. As you can see two

temperature sensors were used to monitor the temperature of the motor and battery, an IMU was

connected to the PCB board for the acceleration and orientation, a hall effect sensor was hooked

up to the motor to measure the RPM, and seven ultrasonics were used to measure distance

between the car and obstacles. The purpose of each sensor and why it was chosen will be

discussed in this section. Also included in this diagram are the location of the camera which was

used for the self-driving implementation and the PCB board which was used to read the data

from the sensors. Sensor cost and specifications can be found in Appendix Section 13.1 of this

report.
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Figure 2.1: Sensor Locations mPAD V1

(Giglio de Azevedo et al., 2021)

2.1.1 ELEGOO Mega 2560

When designing the sensor package the first design decision made by last year’s team

was to use a separate board for the sensors to reserve more processing power on the Raspberry Pi

for autonomous driving. The secondary board is the ELEGOO Mega 2560, chosen because of its

price and compatibility with Arduino IDE, as shown in Figure 2.2.

Figure 2.2: ELEGOO Mega 2560
reproduced as if from link

https://ubuntumakers.com/shop/electronics/development-platforms/arduino/mega-2560-r3-smd-board-with-logo/
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2.1.2 HC-SR04 Ultrasonic Sensors

Ultrasonic sensors are used for object detection. In last year’s implementation, a total of

five sensors were used. All of the sensors are installed on the front of the car using a custom 3D

printed bumper. Additionally, the past team suggested adding an additional two ultrasonic

sensors on each side of the RC car. The reason so many sensors are used is that their detection

range is only within a cone of 30°. Three of the sensors are side by side on the front bumper and

the final two are on each end of the bumper oriented at a 45° angle to allow a broader detection

cone in front of the vehicle. The ultrasonic sensor chosen was the HC-SR04, which can measure

a range of 2cm to 400cm. This sensor - an example of which can be seen in Figure 2.3 - was

selected because of its low price and because of the team’s previous experience with the sensor.

Figure 2.3: HC-SR04
reproduced as if from link

2.1.3 DHT11 Temperature Sensors

To monitor the temperature of the RC car the previous team chose to use the DHT11

temperature sensor, as shown in Figure 2.4. This component is extremely cheap in price, and in

turn is not the most accurate. The team decided accuracy was not a desired trait because the

temperature sensor is there mainly to keep the temperature of the RC car under a certain

threshold. In total, three of these sensors are used on the car. One is near the motor and the other

two are near the batteries.

https://www.instructables.com/ULTRASONIC-SENSOR-HC-SR04/
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Figure 2.4: DHT11
reproduced as if from link

2.1.4 BNO055 IMU

The IMU gives the current position and orientation of the RC. This information allows

the car to drive autonomously up and down an incline. Figure 2.5 shows the BNO055, which was

chosen as the IMU for the project. This specific IMU model was chosen due to its ease of use

and great compatibility with DHT11 temperature sensors having the same manufacturing

company in Adafruit.

Figure 2.5: BNO055
reproduced as if from link

2.1.5 KY-003 Hall Effect Sensor

The hall effect sensor measures the RPM of the Motor. The RPM is measured by

attaching a magnet to a rotating gear and placing the sensor in the path of the rotating magnet.

https://components101.com/sensors/dht11-temperature-sensor
https://learn.adafruit.com/adafruit-bno055-absolute-orientation-sensor
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RPM is determined based on how frequently the magnet is detected as it rotates proportionally to

the speed of the motor. The hall effect sensor used is the KY-003 - pictured in Figure 2.6 - chosen

for its low cost and accurate readings.

Figure 2.6: KY-003
reproduced as if from link

2.2 Dashboard Implementation
Giglio de Azevedo et al. set some goals and requirements for their dashboard

implementation. The team wanted the data collected from all the sensors to be displayed in

well-labeled graphs within 500ms of reading from the car’s sensor array. These readings were to

be polled every 1000ms or less. Car controls such as starting and stopping autonomous driving,

adjusting the throttle, and adjusting the steering aggressiveness were set as requirements for the

dashboard. They also wanted to display a live camera feed of at least 10 frames/second with a

latency of no greater than 500ms. Users should be able to click the camera’s live feed for the lane

color picker, then the user clicks as many times as they want on the camera feed with each click

adding the color of the selected pixel to the car’s lane color range. An example of what the

mPAD V1 dashboard looks like can be seen below in Figure 2.7.

https://arduinomodules.info/ky-003-hall-magnetic-sensor-module/
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Figure 2.7: mPAD V1 Web Dashboard

(Giglio de Azevedo et al., 2021)

2.2.1 Technologies

In order to stream to and from a Raspberry Pi 4, Giglio de Azevedo et al. utilized

SocketIO, which enables streaming content of any kind, including video and sensor data.

Through this, a socket can be instantiated on a web page, giving users real-time views of the

car’s camera and sensor data. JavaScript was utilized to display the video stream and render the

detailed sensor data graphs. Last year’s team also wrote the underlying server framework in

Python since SocketIO is a Python library and utilized the Flask framework.

The dashboard application is reserved so that only a car configured with the team’s

self-driving module will be able to communicate and register to the application. Once the

Raspberry Pi is powered on the RC car will automatically register to our server and begin

streaming camera and sensor data. From our experience, we have noticed that it takes about 90

seconds for the car to appear as an option in the dropdown menu. The front-end of the website

was designed using HTML, JavaScript, and vanilla CSS. The front-end libraries utilized by last
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year’s team were all open source and well documented. They utilized ChartJS for the sensor data

charts and SocketIO for the live video feed stream.

When a car connects to and is registered in the application, a unique ID (UUID) is

generated to keep track of each car’s individual configuration. When the user makes a change, an

API request is sent from the dashboard to the server with the car’s UUID. The server then makes

the change and sends the change to the car through WebSocket. The user can make changes to

the car’s settings while it is autonomously driving since a Streamer class was used in the

implementation.

2.2.2 Lane Selection Process

There is also the Lane Selection Tool on the dashboard which allows the user to choose

what color will serve as the car’s street borders. When there are no large gaps and there are clear

white lanes in the right frame, the user can be certain that they have properly set the lane

boundaries. The camera reads the data in HSV format (Hue, Saturation, Value), a set of three

integers representing a pixel’s color. Two arrays known as color channels are created for the

HSV values, one array starts as the maximum ([255, 255, 255]), the other starts as the minimum

([0, 0, 0]). This creates a black image. When the user clicks on the lane, it will adjust a value in

the lower channel array if the hue, saturation, or value is lower than what it previously was, and

vice versa for the higher channel array. As the user clicks, they will see the lane start to form in

white as the camera inputs these new HSV values.
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Figure 2.8: mPAD V1 Lane Selection Page

(Giglio de Azevedo et al., 2021)

It is very important to select lane colors anywhere on the track where there is different

lighting. As can be seen in the top right of Figure 2.8, there is a button to reset the color channels

if the user selects a pixel that they did not intend to. Any selection that is not on the lane will

create noise and highlight background elements that will disrupt the driving algorithm since the

color channels are output to the car and used in the driving code. Lane colors need to be set

before the car starts driving and cannot be changed while the car is driving.
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2.2.3 Structure of mPAD V1 Web Application

Figure 2.9: Block Diagram of mPAD V1 Layout

(Giglio de Azevedo et al., 2021)

Figure 2.9 showcases how the individual components of mPAD V1 communicated with

one another across the system. The key on the right side shows what the different color

groupings in the diagram represent. The sensor data and camera feed are processed on the

Arduino and sent to the Raspberry Pi, which then sends that information to the Users (in pink) on

the web dashboard through the Heroku Server. A Python script bundles all of the data into a

JSON format. HTTP POST Requests currently do not have any security or passwords required.
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Figure 2.10: mPAD V1 Web Application System Architecture

(Giglio de Azevedo et al., 2021)

Figure 2.10 has a brief description of what occurs throughout mPAD V1’s  web

application. The dashboard application is currently limited by the server’s request handling

capabilities. Heroku is used as a server and all communication and data go through it, but one of

the major drawbacks is with the free version’s performance. Redis, a Heroku add-on, is used for

storage, it is an in-memory key-value data store (similar to a cache) that is much faster than an

external database alternative.

The startup scripts for the Raspberry Pis were written in Bash and all of them are already

pre-configured for WPI’s Network. Two scripts are executed on startup, the sensor-reading script

and the master startup script for the car’s controls. The sensor reading script captures the serial

data present in the /dev/ttyACM0 buffer and puts the most recent reading into a text file in the

/etc/selfdriving-rc directory. The master startup script establishes  a connection to the server to

get the car’s status. From here, it continually polls the server every 500ms to check if any control

updates are necessary. Once it detects that the car should be driving, it starts the self-driving

algorithm as a child process. By opening both the serial feed on the Pi and the web dashboard,

we can see the flow of data from the Arduino.

Dashboard Controls:

1. ‘Start/Stop’ - the command that signals a vehicle to start/stop autonomously driving.
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2. 'Top Speed' - change your vehicle's speed from 0-100 percent of full throttle. The team placed

a warning on this option, as driving at high speeds can cause mechanical damage if the car

crashes.

3. 'Steering Aggressiveness' - a slider to change the car’s steering aggressiveness from 50-200

percent of normal steering. This is to help accommodate cars that are consistently

over/understeer.

4. 'Direction' - a toggle button to change the direction a car will drive upon ‘Start’. This feature is

necessary to accommodate motor placement.

5. 'Lane Color Selection' - a tool that allows a team to set the color of the lanes that the car needs

to follow. View the following Section 2.3 for more information.

6. ‘Export Data’ - downloads a .csv file containing all collected sensor data to the user's browser.

7. ‘Terminate’ - shutdown the Raspberry Pi and terminate the web connection.

8. 'Disable/Enable Video - a feature that toggles the video stream. The team added this feature

since disabling streaming can improve the car’s driving performance. Because we are using a

free version of Heroku for our server, multiple video feeds can create a backup of requests.

2.3 Self-Driving Implementation
2.3.1 Lane Following

The previous MQP team used a variety of different Python libraries in order to facilitate

the self-driving aspect of each RC car. Namely, they used the Adafruit_servokit library in order

to control the motors present on the RC car, the OpenCV library to capture video input from the

camera, and for the processing of said input for the self-driving logic, the Numpy Library (in

conjunction with the two previously mentioned libraries) for the self-driving logic itself.

Once the OpenCV library successfully captures the video input from a Raspberry Pi

Camera V2 attached to the Raspberry Pi of the car, the frames of the input are processed such

that only two small portions of the original input are visible to the program. Thus, the program is

able to have a clear view of the lane without any potential noise (e.g. objects colored similarly to

the lanes located in irrelevant parts of the frame), thus decreasing the likelihood of getting a false

positive in lane detection. Figure 2.11 below shows an example of how the crop forms the view

of the system. The lane detection logic itself is relatively simple. Namely, a color filter is applied

to the cropped frames which turns pixels with the correct RGB values to turn white, with
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everything else turning black. The program then finds the horizontal value of the white pixels,

and adjusts their position in code to reflect that of their real world positions. It then determines

the position of each lane by finding the mean of the horizontal positions of white pixels in each

frame.

Figure 2.11: Camera view of the Raspberry Pi

(Giglio de Azevedo et al., 2021)

After the lanes are detected, the self-driving code attempts to drive the car while keeping

it within the bounds of the lines. It achieves this by equalizing the car’s distance to the position

of both lanes, which was determined by the lane detection logic. After the distance between the

car and both sides of the lane is determined, the program finds the percentage value of the

difference between the distances of the car from the left and right sides of the lane. It then uses

this percentage difference to set the angle of the wheels, with an upper and lower bound to

prevent accidentally damaging the car. It achieves this through using the Python library for the

Adafruit Servo Shield that is attached to the car.

2.3.2 Obstacle Avoidance

In addition to self-driving capabilities, the previous year’s MQP team also gave the RC

cars basic obstacle avoidance. This is achieved through an array of ultrasonic sensors which are
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controlled by an Arduino microcontroller, which is in turn connected to the Raspberry Pi 4 used

to control the RC car’s self-driving capabilities.

In order for obstacle avoidance to work properly, it is important to know what pixels in

the Raspberry Pi’s camera input correspond with what part of the ultrasonic sensor array. Thus,

the RC car will know where to drive with both the lane and any potential obstacles in mind. As

such, the previous MQP team built a tool to calibrate the ultrasonic sensors that was present in

the source code on cars but for some unexplained reason was left out of the dashboard.

Once the ultrasonic sensors are installed and calibrated, the extra information obtained

from them is used in addition to the information provided by the camera in order to enable the

car to avoid any detected obstacles. Namely, if the ultrasonics detect an object that is closer to

the car than the lane is, it will consider the object as the new lane until it is no longer detected by

the ultrasonic sensor array. This logic, in addition to the existing lane-following logic described

in Section 2.3.1, will allow the RC car to maneuver around the obstacle.
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3. Background
The following section provides a background understanding of the various systems and

principles that the team researched to develop this project. It also takes into account the

recommendations from Giglio de Azevedo et al. about potential technologies that could be

incorporated into the Autonomous Car. The topics discussed in this chapter include Alternative

Self-Driving Systems for RC Cars and Sensors for Object Detection.

3.1 Alternative Self-Driving Systems for RC Cars
There are many platforms that can be applied to an RC car to provide autonomous

driving capabilities. Some examples of these platforms are DonkeyCar, AWS DeepRacer, and the

OSOYOO Robot Car ("Donkeycar: a python self driving library," n.d.; "AWS DeepRacer," 2022;

"OSOYOO Robot car kit Lesson 1: Basic Robot car," 2018). While all these kits offer different

functionality, one common trait among them is that they were developed with machine learning

approaches in mind. Machine learning is robust and potentially makes adding complex behaviors

to an RC car less logically complex.

However, a major shortcoming of machine-learning based approaches to an autonomous

platform is the length of time it takes to train a car to the point where it is able to reliably drive

autonomously. Using DonkeyCar as an example, users must record 10-20 efficient laps around

their intended track before training a model for upwards of 5 hours. Additionally, the model

trained is specific to the car and track that the data was recorded on, and as such the entire

process must be repeated should the users wish to use a different car or track. As such, the length

of time it would take to provide enough data for and train a model capable of supporting a

modular system is extremely time prohibitive, making a logic-based computational approach like

mPAD more favorable.

The shortcomings of a machine learning model approach to self-driving were made

evident during WPI’s 2019-2020 academic year. A MQP team utilizing the DonkeyCar system

ran into several issues related to their self-driving system that they could not overcome by the

end of their project (Kim et al., 2020). Specifically, Kim et al. point out models being unique to

their hardware and quality training data being difficult to obtain, among other things, as issues to

be addressed in any future work with their project. However, many of the proposed changes -
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such as standardizing hardware across cars - would decrease the modularity of the system and

thus are undesirable.

3.2 Obstacle Detection
When testing the ultrasonic sensors from the previous year’s team, it was found that they

only provide measurements from a max distance of 50cm and at a sampling rate of 1Hz.

Theoretically speaking, if the car is going any speed higher than 0.5m/s (or 1.12 mph), it will just

have enough time to detect an obstacle, but will not have enough time to avoid it. You could

compare 1mile-per-hour to a slow walking speed, which could be considered reasonable for a

small scaled RC car. However, this hinders the future development of the car on any larger scaled

vehicles. Thus, the team searched for a better alternative for obstacle detection.

3.2.1 RPLiDAR

The first alternative that was studied was the Slamtec RPLiDAR, a Light Detection and

Ranging (LiDAR) sensor designed for the Raspberry Pi, that can provide a 360° mapping of the

surrounding 2D environment (Huang, n.d.). If used in conjunction with an IMU sensor, it could

even provide a 3D mapping of the environment in front of the car, allowing the car to see objects

or even change in terrain.

Figure 3.1 Slamtec RPLiDAR
reproduced as if from link

The RPLiDAR, shown in Figure 3.1, has an average sampling rate of 5.5 full 360° scans

per second and a max range of 12m, which is five times faster and 24 times longer-range than

our current ultrasonic setup. In theory, this should mean that the RPLiDAR is capable of

https://www.adafruit.com/product/4010?gclid=Cj0KCQjw4eaJBhDMARIsANhrQABg9NWzROSKeZVHOAwG_qdvT0OVGlrhhFWuB1bVNeDZEzvIyR1vZnUaAhZ0EALw_wcB
https://www.adafruit.com/product/4010?gclid=CjwKCAjwjZmTBhB4EiwAynRmD3G7he9txHlbgwfQ6VGpPHREciwsQwvb4547E0qgbvfJeKrRtksz9hoCg9UQAvD_BwE
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detecting obstacles up to speeds of 66m/s (147mph). The module is split up into two systems, the

laser and the motor. The laser requires a standard power supply of +5V DC and 100mA, the

motor +5V DC, 500mA startup current and 300mA working current. Additionally, the module

uses Universal Asynchronous Receiver-Transmission (UART) to communicate with the

Raspberry Pi. Compared to the PixyCam and HuskyLens, this component is the largest in size

and probably the most difficult to implement mechanically, without getting in the way of other

components. Due to the nature of its measurement recording function, the team speculates that it

must be placed on top of the car, and will most likely need to be tilted at an angle to get a better

reading of the surface in front of the car.

Initial research and testing was done to find the feasibility of using the RPLIDAR in

mPAD. The RPLiDAR is a 2D LiDAR that can detect walls and obstacles on a single plane. It

collects distance in mm, angle in degrees, it checks whether a point belongs to a new scan, and

the quality of the current measurement. When it comes to obstacle avoidance, the advantage it

has over the ultrasonic sensors is that it can detect obstacles in a much wider range and can help

avoid collisions with walls much more effectively. It can also detect objects as small as 1mm

(specification says .05mm but during testing this did not prove to be the case). It is not sufficient

for low hanging obstacles or short obstacles on the ground since it can only detect in a 2D plane -

as shown in Figure 3.2. It makes 1400 measurements per second so in total it will take about 700

microseconds to process the data. The Arduino may be a bit slow to process this amount of data

each loop. We concluded that the RPLIDAR system would be an improvement to the current

ultrasonic system in place. However, we did not pursue the completion of the object detection

implementation using the LiDAR in the interest in completing high priority tasks.
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Figure 3.2: RPLiDAR displaying data on a 2D plane

3.2.2 PixyCam

Figure 3.3: PixyCam2
reproduced as if from link

Another alternative that was considered was the PixyCam2. This module is a vision

sensor with an integrated chip to process color and line data received from the lens. This allows

the sensor to detect objects, track lines, and read bar codes, based on specified color values

(PIXY2, n.d.). These are all functions that would improve the functionality of mPAD. The

https://docs.pixycam.com/wiki/doku.php?id=wiki:v2:overview
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PixyCam2 can be used with the Raspberry Pi or Arduino, and can communicate via Arduino

ISPC, SPI SS, I2C, UART, analogX, analogY, and LEGO SPI.  The integrated processor helps

the module to send only the data that the microcontroller needs in order to minimize

computations and allow the microcontroller to use processing power for other tasks. The

PixyCam2 can sample at a rate of 60fps, which is much faster than both the ultrasonic sensor

system and the RPLiDAR. It can be powered with +5V by USB or 6-12V from an unregulated

source, and usually consumes around 140mA. However, it cannot pass video footage to the

microcontroller, and will need to be used in conjunction with a USB camera for the mPAD

system. The PixyCam2 can be purchased on Amazon for $59.99, which is more appropriate for

our budget. Overall, the PixyCam2 is a promising option that we may consider using to improve

the obstacle avoidance function of our vehicle. An example of the hardware of the PixyCam2 can

be seen in Figure 3.3.

3.2.3 HuskyLens

Figure 3.4: HUSKYLENS
reproduced as if from link

The team also did research on the Gravity: HUSKYLENS AI Machine Vision sensor.

This is another vision sensor module with a much more powerful integrated chip in comparison

to the PixyCam2. It includes more functions to detect all different things such as color

recognition, object tracking, object recognition, line tracking, tag recognition, and face

recognition. The module includes a 2-inch screen to allow the user to configure the sensor

without needing a computer. It can be used with many different microcontrollers including the

Raspberry Pi and Arduino. The power requirements of this device is standard at +3.3V, 320mA

https://store-usa.arduino.cc/products/gravity-huskylens-ai-machine-vision-sensor
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or +5V, 230mA. It communicates with the microcontroller via UART or I2C. Compared to all the

other alternatives for obstacle avoidance, this option is the cheapest at $44.90. Just like the

PixyCam2,, it cannot pass video footage to the microcontroller, and will need to be used in

conjunction with a USB camera for the mPAD system. The hardware of the HUSKYLENS

system is shown in Figure 3.4.
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4. Initial Package Review and Analysis
During A-term we conducted a review and analysis of the work of the previous MQPs.

Using cars from coursework we analyzed the electronic hardware and sensors, self-driving code,

and general system design of the previous mPAD teams. The purpose of this section is to discuss

some of the issues we came across during testing and our solutions to these issues.

4.1 Network Connectivity Issues
The project by Giglio de Azevedo et al. used a cloud platform called Heroku as a server

to host the dashboard. This platform enabled communication and transmission of data between

the dashboard and the various components on the car. Thus, the Raspberry Pi required a stable,

continuous connection to WPI’s wireless network to interact with the Heroku server and

successfully perform autonomous driving.

However, this implementation’s reliance on the internet posed several issues. Firstly, the

WPI network can have “dead spots” around the campus which are zones where the Raspberry Pi

would not be able to connect to the WiFi. Thus, the car would be unable to drive autonomously

as the bridge for communication between the various parts would be interrupted. Secondly, there

were issues with initial remote connection to the Raspberry Pi on startup. This is because remote

connection to the Pi uses the SSH protocol and the Pi’s IP address. However, the Raspberry Pi’s

IP address would change frequently. Thus, the user would have to connect the Raspberry Pi

physically to a monitor and keyboard, run a command to find the IP address of the given

Raspberry Pi, and then connect remotely using this IP address. This process is very inconvenient

especially for novice users with limited experience using Linux’s terminal. Thirdly, with Heroku

hosting the dashboard, all Raspberry Pis running the code would be connected to the same

server. Thus, the user may unintentionally connect to the dashboard controlling a Raspberry Pi

other than the one they intended. Finally, the internet connection needs to be powerful and

consistent enough to facilitate continuous data transfer between the components.

During testing, our team found the performance of the system was negatively affected by

the inconsistency of the Heroku platform. Thus, the team evaluated the possibility of using local

servers as an alternative to Heroku. The team discovered that the Raspberry Pis themselves were

capable of launching their own servers. We were then faced with two potential solutions. Each

car could be equipped with two Raspberry Pis, one which would host the server and another that
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would be responsible for processing the self-driving code. The other solution would be using a

single Raspberry Pi to host the server and dashboard as well as to run the self-driving code. We

ultimately chose the latter to reduce the physical load on the driving system of the RC cars. We

were able to launch a local server from the Raspberry Pis by running the dashboard code and

hosting it on the Pi’s IP address or hostname. This was accomplished through the use of a script

that runs on the Pi’s startup. It executes a series of command line instructions to acquire the IP

address, then host the dashboard at that address. This local implementation also has the added

benefit of the Pi being able to continue running the self-driving code even if internet connection

is interrupted.

We then resolved the connection issues posed by the dynamic IP addresses of the Pis. We

discovered that although the IP addresses tend to change on startup, the Pis’ autoreg hostnames

are static. Thus, we made note of all the Pis’ hostnames and used them to connect remotely via

SSH rather than using the IP addresses. Also, since each Pi is now hosted independently from the

others using its unique IP address, this resolved the issue of the user potentially connecting to an

unintended Pi. Using these local servers also reduced overall network traffic of the system

compared to when the Heroku platform was being used for all cars at the same time. This

improved the efficiency of communication in the parts of the system that used the network.

4.2 Camera Issues
At the beginning of the academic year, the system was extremely inconsistent and often

would not start up as intended. As such, we monitored the terminal output of the system - a

process that was time consuming and difficult to discover how to do due to the lack of

documentation provided to the team - for any error messages that would give the team hints as to

what the problem may be. The terminal quickly revealed an error message stating that OpenCV,

the vision library used by the system, could not detect a camera connected to the system - despite

the fact that the camera was clearly connected to the Raspberry Pi. At first we thought this was

an issue related to faulty hardware, so we tested the system with components that we confirmed

were working, but we encountered the same problem. The team then decided to isolate the issue

and disconnect everything else from the Raspberry Pi to see if something else was interfering

with the connection. Starting the system after removing all other components resulted in the

camera being detected. However, as the system requires other components to be connected to the
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Raspberry Pi - such as the servo shield and arduino - to achieve full functionality, this did not

provide a solution. Reconnecting the servo shield and arduino after only plugging in the camera

module yielded limited success, as sometimes all the components would be detected and the

system would run without issue, and other times a component would not be found and the system

would fail to start. More details on the team’s efforts to troubleshoot and fix the issues related to

the Raspberry Pi camera are discussed in Section 8.1.

Due to the problems being caused by the proprietary Raspberry Pi camera and the fact

that we wished to make mPAD more modular, we decided that it was more effective to switch to

using USB webcams. Doing so completely eliminated all consistency issues we were

encountering due to the Raspberry Pi camera, and also made the system capable of using any

USB webcam to self drive. More details on the process of implementing the USB webcam can

be seen in Section 8.2.

4.3 Sensor Power Issues
While testing the car on the Heroku server, the team was having difficulty getting sensor

data displayed on the dashboard. This was hindered by the camera issues mentioned before,

however the team still decided to take a deeper look into the sensor package circuitry. The first

step was to run test code on the Arduino IDE to see if the sensor package was outputting data to

the Raspberry Pi correctly. Upon run, it was found that data was being output, however no data

was being read from any sensors, all reading blank results. The team next tested each of the

different sensors individually to make sure that there is no weak link in the chain. It was found

here that all sensors were working properly by themselves, which means there is a problem when

they are all connected together. In further investigation, it was found that the Arduino Mega +5V

port is sometimes not able to output enough current to the sensor package. All of the sensors,

with only one temperature sensor included, need at least 530mA, while the Arduino is only

capable of putting out 500mA. Additionally, the Arduino Mega is known for having poor power

output when powered by USB. The team was able to solve this by avoiding the use of the

Arduino port, and instead attaching an Elegoo power module, which is powered by a 9V battery,

and supplies the desired +5V and 700mA. This implementation fixes the power issue, but also

adds an additional battery and weight to the vehicle. This issue was later resolved, and the power

module was not needed for reasons that could not be explained by the team.
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4.4 Temperature Sensor Issues
One issue that was noticed with the temperature sensors is that they do not display

independent temperature measurements. When testing the DHT11 components, it was found that

the temperature is only able to be read from one sensor at a time. When running the code from

the previous year’s team, an increase in temperature recorded by one sensor, would also be read

by another sensor. It was determined that the temperature sensors only generate a collective

temperature value rather than independent values that are associated with a certain area of the

car. If we did want our system to record different temperatures at different parts of the car, then

we will certainly have to look into upgrading the DHT11 temperature sensors. There is another

sensor called the DHT22, which is a more powerful and accurate version of the DHT11, however

it has a smaller sampling rate and is a little more expensive. This is another issue to be solved

throughout the next term.

4.5 Sensor Dashboard Display Issues
Another issue related to the sensor package was that data from the attached sensors was

not being displayed on the dashboard, despite the fact that the page had charts and graphs - as

well as logic - clearly intended for showing sensor readings. However, even though we had

discovered the problem, we did not yet know why it was occurring. As such, we needed to

investigate where in the software package the problem originated from. There were three

potential points of failure for this particular issue, which are as follows:

1. The self-driving script is failing to send sensor information to the dashboard

2. The server is failing to correctly receive and store the sensor information sent to it

3. The logic for the dashboard is failing to correctly receive or display the sensor data once

it is obtained by the server.

To investigate the first potential point of failure, we simply added some debug statements

to the server logic that would print a debug message and the sensor string to the console upon

receipt of a sensor string. We then ran the self-driving script to see if the server console printed a

message, which indicates it is receiving a message from the script. The console did not print

anything and as such we knew that the self-driving script was failing to send the sensor

information to the dashboard.



32

We then examined the second potential point of failure by utilizing Raspbian’s ‘curl’

command and sending a sample sensor string to the server. Sending a sample sensor string that

we knew was valid to the server from the terminal would show us whether it was correctly

handling the string upon receipt. As a result, the debug message added during the investigation

of the first point as well as the valid sensor string was printed to the console, but unfortunately

the information in the string failed to display on the dashboard, which showed that there was in

fact a problem related to the dashboard correctly receiving or displaying the sensor data.

The first problem was easily solved by modifying the driving logic to include code to

send a POST request containing the sensor string to the server. However, the second problem

was a bit tricker to solve. After a significant period of time testing and reviewing the logic for

displaying the sensor data on the dashboard, we realized that the problem did not stem from an

issue with the code. For some reason, even though the logic for both sending the data from the

server to the dashboard and displaying said data were correct, the dashboard was not correctly

receiving the sensor string from the server. Eventually, we noticed that whenever we would stop

the driving logic on the Raspberry Pi, the application would not actually stop. This discovery led

us to realize that the system was being started twice by the Raspberry Pi on boot- once via cron

and the other using Raspbian’s included systemctl feature. The two instances of the system

would interfere with each other and caused its communication with the server to be inconsistent,

which in turn caused the sensor data to fail to display. Disabling the cron job and relying solely

on systemctl fixed the issue, thus enabling the system to correctly display sensor data on the

dashboard without any problems.

4.6 Car Hardware Issues
During preliminary testing of mPAD we used RC cars built by students in an ME course

here at WPI as seen in Figure 4.1. Initially, testing went seamlessly as we received the vehicles in

good condition already set up to run and test the system. However, quickly we found that the

vehicles were not exactly built to hold up. Failure mostly began with 3D printed components

after extended use. Parts on various vehicles were either completely stripping or shearing as seen

in Figure 4.2. Early on in this project, progress was hindered by these mechanical troubles as the

team had to wait until repairs were completed before changes could be tested. The solution to
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this problem was to purchase commercial, off-the-shelf RC cars that we knew would hold up

much better under consistent wear and tear. These vehicles are shown in Figure 4.3

Figure 4.1: Vehicles used for early testing of mPAD V2

Figure 4.2: Damages to Rear Wheel Hub

Figure 4.3: Vehicles used for later testing of mPAD V2
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To hook up mPAD V2 to these new vehicles, we removed the plastic shell on top of the

RC cars and decided to add a top plate that could be used to place the hardware on. We did this

by laser cutting ¾” birch wood. We had 4 separate vehicles, but 2 of them were the same model.

With this in mind we designed three top plates. They all had the same simple design. Thin in the

front to prevent the wheels from hitting the plate while steering, and the same width past the

wheels to the rear of the plate. One of the CAD models is shown in Figure 4.4. Additionally, the

holes cut into the plate were used to mount the plate onto the RC car the same way the pegs are

used to hold the plastic shell in place. These plates made adding electronic hardware to the small

vehicles much cleaner and easier. Figure 4.5 and Figure 4.6 show before and after the top plate

was added to the RC cars.

Figure 4.4 CAD Model of Top Plate for RC Cars
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Figure 4.5: Before Adding the Top Plate Figure 4.6 After Adding the Top Plate

4.7 Track Issues
The track used for testing mPAD is located in the basement of WPI’s Higgins Laboratory,

consisting of colored tape that snakes in a loop around the hallways as shown below. A sketch of

the track can be found in Figure 4.7.

Figure 4.7: mPAD Testing Track in Higgins Laboratory
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Figure 4.8: mPAD Testing Track in Higgins Laboratory

Throughout the course of the project, the team ran into many issues where the track was

not being detected in certain locations. There are some parts of the track where the lighting

makes the track brighter or dimmer. As can be seen in Figure 4.8, there is a larger window that

emits natural light. Depending on the time of day, this light can greatly impact the brightness of

the track and mPADs detectability. There are also moments where this lighting brings out other

colors within the environment that are similar to the track and confuses mPAD. To combat this,

the team laid down a new set of blue tape to revive the old faded blue, and also added another

yellow tape track next to the blue, which can be used when the blue is not the most optimal

choice. At some points the blue works better, and at others the yellow works better. An example

of the two-colored track can be seen in Figure 4.9 below.
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Figure 4.9: mPAD Testing Track with Blue and Yellow Tape
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5. Initial Software Analysis and Development
The Raspberry Pi serves as the center for communication between the key components in

mPAD V2. The device stores the code needed to run our program and handles the processing that

allows the software to interact with the hardware of the system. As we were building off the

work done by Giglio de Azevedo et al., the team naturally had to first perform a complete

analysis of the mPAD V1 software, then make improvements based on what was discovered.

5.1 Software Analysis of mPAD V1

Upon first inspection of mPAD V1, the team faced several challenges trying to get the

software running. The documentation from Modular Package for Autonomous Driving (MPAD)

(Giglio de Azevedo et al, 2021) states that the mPAD software should startup automatically once

the Pi is booted up. Once the Raspberry Pi was turned on, the self-driving program would run

automatically dashboard  features such as the cameras and sensors were not working correctly.

We could not fix these problems as we were not able to identify where the error logs were or

where exactly the self-driving program was being run on the Raspberry Pi.  To overcome this

challenge, we had to figure out how to disable the automatic startup of the self-driving program

and debug the error messages sequentially. We researched the various steps taken to start

processes automatically on the Raspberry Pi operating system (Raspbian) and discovered that the

systemctl command can be used to manage the background processes and tasks running on the

Pi. Using this command feature, we were able to determine that the process was being run in the

background and disabled it using the systemctl disable command.

Once we disabled the automatic startup of the self-driving program, we were able to

manually activate the program and view the error messages displayed on the console. The errors

were being caused by the camera, temperature sensor and power going to the sensors. There

were also issues with getting the sensor data to display on the system’s dashboard. These issues

and solutions were addressed in detail throughout sections 4.1 to 4.5 of this report.

After resolving the initial issues with the mPAD V1 software, the team wanted to make

sure we knew how to set up the system on any new cars we had to test. Thus, we had to figure

out how to do a complete setup of the software suite on a new Raspberry Pi. We started by

installing a fresh copy of Raspbian onto a Raspberry Pi. We did this by connecting a Secure

Digital (SD) card to a personal laptop, then using the Raspberry Pi Imager tool to format the card
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and installing the 32-bit version of Raspbian onto it (“Introducing Raspberry Pi Imager, Our New

Imaging Utility,” 2020). Next, we had to connect the newly formatted Pi to the WPI Wireless

network. This proved to be challenging as we initially tried using the native Raspberry Pi

network software to connect, but were unable to do so due to the fact that WPI’s wireless

network requires a valid network certificate for any device that wishes to connect to it. By

searching through WPI’s technical support pages, we discovered that we needed to install a

separate “network manager” software onto the Pi, then follow detailed instructions laid out by

WPI to connect the device (“Connect to Wpi Wireless Using a Raspberry Pi with Gui”, 2021).

Now that the Raspberry Pi had a fresh operating system and was connected to the

internet, our next task was to test the self-driving program. We were able to download the mPAD

V1 codebase from GitHub but encountered new issues when we tried to run it. We received error

messages indicating that several parts of the code refused to execute due to missing

dependencies. We had to use the sudo apt install command to download and install each

dependency that was missing from the system. We took note of these dependencies and compiled

them into a script that would download and install them automatically for the user. We were now

able to run the code completely but ran into even more errors. We got messages saying that some

of the hardware components were not connected, even though all the wiring was correct. After

researching this problem, we noticed that the relevant interfaces were not enabled on the Pi,

meaning the hardware components were unable to communicate with the software. We then used

the sudo raspi-config command to bring up a menu containing configuration options for the

Raspberry P, as shown in Figure 5.1 (“Enable I2c Interface on the Raspberry Pi,” 2014). To

enable the relevant interfaces, we navigated to the Interfacing Options menu and enabled the I2C

Bus and the camera, as shown in Figure 5.2 (“Enable I2c Interface on the Raspberry Pi,” 2014).

The camera had to be enabled since it is used for lane detection in autonomous driving. The I2C

Bus was enabled to connect to the servo shield on the car so that the Raspberry Pi could send

instructions controlling its throttle and steering. We also enabled the SSH option to be able to

connect remotely to the Raspberry Pi from our personal laptops to make software development

and debugging easier.
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Figure 5.1: Raspberry Pi Software Configuration Tool

Figure 5.2: Raspberry Pi Software Configuration Tool Interfacing Options
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Once these underlying issues were resolved, the system was finally able to run the

autonomous driving program without any software errors related to missing dependencies. Next,

the team had to learn to start the program in the background automatically again. Since we had

previously learned about the systemctl command utility, we were able to create a new system

service that would run the mPAD startup script once the Raspberry Pi is booted up.

5.2 Developing a Software Setup Script for mPAD V2

Through the comprehensive analysis of the mPAD V1 software, the team was able to gain

an understanding of the software development lifecycle of this project. In line with our objective

of developing an intuitive package, our next main goal was to ensure that the setup and

activation process of mPAD V2 would be as simple as possible. To achieve this goal, we used the

startup script from Giglio de Azevedo et al. as a basis to create a new startup script that could

automate most steps of the process we went through in section 5.1

The first task the new startup script should be able to perform is to install all of the

required dependencies discovered during the analysis phase above. The directory storing code

for the dashboard and server is separate from the directory containing code for the self-driving

program, so they relied on different dependencies. Thus, a script was created for each directory

to execute sudo apt install and pip3 install commands that install the necessary packages and

python libraries. The main startup script was then made to run those two new scripts in order to

perform a full installation of all directories.

The second objective of the startup script was for it to set up the system correctly,

regardless of where the codebase is stored on the Raspberry Pi. In its current state, the code runs

correctly no matter where it is stored, when it is run manually. However, the startup script needs

to be able to determine where the code is stored in the filesystem in order for it to start the

system properly. To implement this feature, the startup script uses the pwd command, which

returns the full path of the current working directory. Then, the sed command is used to set the

location of the startup script to the current working directory. Next, the systemctl command is

used to enable the service that runs the startup script once the Raspberry Pi is turned on.

Finally, to prove the modularity and consistency of our startup script, we reset three

Raspberry Pis and performed a complete setup. As intended, the script started automatically once

the Pi turned on and installed all required dependencies. Then, it took about two minutes to fully
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launch the dashboard and connect to the car. The script worked seamlessly on all three Pis, with

each car having the full functionality of the mPAD V2 package without showing any error

messages.
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6. Dashboard Changes
There were a number of new features added to the front-end dashboard of mPAD V2 to

further improve the useability of our system. Our goal was to make it easier for users to utilize

mPAD with any RC car without having to make changes in the code. Some of the new features

include servo angle adjustment, servo/motor channel selection, a comprehensive tutorial

walkthrough, manual driving, hardware component test scripts, inverse steering and throttle

switches, LiPo battery level indicator, and a number of UI/UX updates. Figure 6.1 shows mPAD

V1’s dashboard beside Figure 6.2 which showcases the new and improved mPAD V2 dashboard.

In this section, we will discuss how these features were implemented in further detail and the

reasoning behind why we believed these features were necessary.

Figure 6.1: Front-End Dashboard of mPAD V1

(Giglio de Azevedo et al., 2021)
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Figure 6.2: Front-End Dashboard of mPAD V2 with New Features (1: Tutorial

Walkthrough Button, 2: LiPo Battery Level, 3: Hide/Show Buttons, 4: Advanced Settings

Dropdown and Invert Switches)

6.1 Technologies
The primary integrated development environments (IDE) that were used to build the

dashboard were JetBrains’ WebStorm and PyCharm IDEs. WebStorm was utilized to build the

JavaScript, HTML, and CSS files in the project while PyCharm handled all of our Python files.

Our development team utilized GitHub and would develop on different feature branches to

ensure our feature was working as desired prior to merging into our main code. Our team would

also use Glitch to preview some of these features. Glitch is an online IDE that supports HTML,

JavaScript, and CSS. This IDE is integrated with Git, so our changes would auto-deploy and we

could easily preview them. Glitch made it easy to share previews of features with our advisors as

they have shareable links where developers can share their projects with others.

6.2 Servo Shield Adjustment
An issue the team noticed while testing mPAD was that the score was not capable of

driving in a straight direction without veering off at a slight angle. Our team noticed that this was

due to the fact that the 90° servo angle we had set up in the software did not always correlate
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with the wheels facing perfectly forward in the hardware of the servo. Figures 6.3 and 6.4

demonstrate the feature.

Figure 6.3: Servo at 90° (Wheels Straight) Figure 6.4: Servo offset at 110° (Wheels

Turned 20° to the Right)

As such, an offset tool was developed to combat this problem. This tool can be accessed

by opening up the Advanced Settings dropdown circled in Figure 6.2. Figure 6.5 shows what the

Servo Shield Adjustment slider looks like. This new feature allows users to use a wider variety of

servos with mPAD which furthers our goal of modularity.

Figure 6.5: Servo Shield Adjustment Slider

The slider has a minimum of -40° and a maximum of 40°. When the slider is set, a HTTP

POST request is sent and a variable named servo_adjustment in drive.py’s initial_configs JSON

is updated and added to the servo steering angle value. The vehicle’s steering angle is then

adjusted by the value the user sets on the Speed Slider. This feature was tested with cars with

offset servos. Originally, driving straight with these vehicles while utilizing mPAD would cause
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them to veer off, but after using our new feature and adding a couple of degrees of adjustment,

the car was able to drive in a perfectly straight direction.

6.3 Servo/Motor Channel Selection
This feature furthers mPAD’s modularity by allowing users to plug the servo and servo

controller into any of the 16 channels on the servo shield. The servo controls the vehicle’s

steering while the servo controller is connected to the vehicle’s motor and controls its throttle, as

seen in Figures 6.6 and 6.7. When the user hovers over the dropdown button (shown in Figure

6.8), options of Channels 0 through 15 pop up and the user is free to select any channel. By

default, the servo motor’s channel is set to Channel 0 and the ESC Motor Channel is set to

Channel 1. The dashboard does not allow the user to select the same channel for both

dropdowns.

Figure 6.6: Hardware Setup of the Electronic Speed Controller
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Figure 6.7: Hardware Setup of the Servo

Figure 6.8: Servo & Motor Channel Selection Dropdowns

When a new channel is selected on the dashboard, the text on the button is parsed

utilizing substring() to only get the number showcased on the button. This value is then sent

through an HTTP POST request and updates the JSON values for servo_channel and

esc_channel. This feature was tested on a number of cars. We tested it by plugging the servo and

servo controller into different channels on the servo shield and testing to see what the effect was
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on the car. The steering and throttle would only work if they were plugged into the same

channels that are selected on the dashboard.

6.4 Comprehensive Tutorial Walkthrough
In order for us to simplify mPAD’s front-end dashboard and make it easier for users to

learn the controls, our team added a comprehensive 18 step tutorial walkthrough for every button

and function on the dashboard. For the user to start the tutorial walkthrough, they must click the

green “Tutorial” button in the top right corner of the webpage. To accomplish this, we utilized

Intro.js, a JavaScript library for creating step-by-step and powerful website tours (Mehrabani).

This made it very easy to implement a clean and modern looking overlay for each button’s

description.

Figure 6.9: Different steps being showcased throughout the tutorial walkthrough

Our team simply utilized the introJs().setOptions() method through the Intro.js library

(Mehrabani). In terms of styling we picked the “Modern” Intro.js theme and customized the

tutorial to show a progress bar and disable interactions with the dashboard buttons while the

tutorial was enabled. Examples of our tutorial walkthrough’s style can be seen in Figure 6.9.

6.5 Manual Driving
Our manual driving feature allows the user to control the vehicle using the arrow keys on

their keyboard if they have the dashboard webpage open. The necessity for this feature was to

ensure that the user had wired the car properly and that the components were behaving as

desired. In order to test the mechanical hardware, the user would have to disconnect mPAD and
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connect the car’s commercial transmitter. Integrating a manual driving feature into mPAD avoids

that requirement and allows manual testing to occur. Without this feature, troubleshooting

different areas of mPAD would be more difficult for novice users, since they would not be able

to drive the vehicle. The manual driving also works without the camera, so mPAD could still be

used if a user is missing a compatible camera. This feature was tested on multiple RC cars, either

commercial or 3D printed, and is essentially the first step our team takes after setting up mPAD

to ensure it was wired properly. Once the dashboard loads up, the user should switch the car into

manual driving and ensure that the vehicle is capable of going in all directions.

During the tutorial walkthrough, the user will learn how to enable manual driving and

that it is controlled using the arrow keys on their keyboard. The user simply needs to toggle the

Autonomous switch, and they will be in manual driving mode. When the user disables the

Autonomous switch, they also disable the ability to start autonomous driving.

Figure 6.10 showcases the conditional logic behind the manual driving code. The up

arrow will throttle the motor in the forward direction at whatever rate the Speed Slider is set to.

The left arrow will set the servo to 150° plus what the Servo Angle Adjustment is set to,

ultimately turning the vehicle leftwards. The right arrow will set the servo to 30° plus the Servo

Angle Adjustment as well, ultimately turning the vehicle rightwards. The down arrow will

throttle the motor in the backwards direction at the value set by the Speed Slider. Section 13.3 in

the Appendix showcases a code snippet with the logic for the manual driving in Python as well.

Figure 6.10: Diagram Showcasing Manual Driving Logic
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6.6 Hardware Component Test Scripts
One of our goals was to add a way for the user to run certain test scripts on the vehicle

via the dashboard. These test scripts allow the user to individually test the servo and motor

throttle on the vehicle. If one of the scripts are not executing behavior on the vehicle, then that is

a sign to the user that something is wired improperly. At the bottom of the dashboard webpage,

our team added a Test Script Menu (that can be seen in Figure 6.11) that allows the user to ensure

that they properly wired up mPAD and the motor and servo are behaving as desired. When the

Servo Angle test is run, the front servo is set to an angle of 90°, which should appear straight

forward, then an angle of 60° is set, which should appear as a right turn, then the angle is set to

120°, which should appear as a left turn, and finally an angle of 90° is set again as a default. The

Servo Throttle test waits for 3 seconds, then throttles the motor in the forward direction at 15%

for 2 seconds, and stops. If one of the tests is doing the opposite, so either turning in the opposite

direction or throttling backwards, then that is a sign to the user to utilize the Invert Throttle and

Invert Steering switches.

Figure 6.11: Front-End Dashboard Test Script Menu

Once either button is pressed, a HTTP GET request is sent to the car where a Python

method is run that sleeps for 2-3 seconds and sets the servo angle or throttles the motor. This

feature helped us with our goal of having a system that is intuitive. The purpose of the test scripts

is to make it easy for all users to troubleshoot mPAD and check whether they made a mistake

during hardware setup.



51

6.7 Invert Steering/Throttle Switches
One problem our team would run into when using commercially bought RC cars was that

certain motors were improperly interpreting our software with mPAD. Our software is written

with the intention that a positive value on the servo would move the vehicle in the forward

direction, while a negative value would move the vehicle in the backwards direction. However,

certain cars were driving backwards when it was intended to go forward because the motor had

the opposite interpretation. In order to combat this and further reach our goals of robustness and

modularity, we added an Invert Throttle and Invert Steering switch, as shown in Figure 6.12. If a

car's steering or throttle is working the opposite of how our software intends, the user can simply

flip the invert switch and the car would behave as desired with mPAD. This feature gives users

more freedom of design as mPAD is now compatible with a wider variety of servos and motors.

Figure 6.12: Servo & Motor Channel Selection Dropdowns

The user will know that the throttle needs to be inverted if the vehicle is driving

backwards when it is intended to go forward and going forwards when it is intended to go

backward. Flipping the Invert Throttle switch will combat this issue. The user will know if the

steering needs to be inverted when the car is turning right when it should be turning left, and

turning left when it should be turning right. Simply clicking the Invert Steering switch will solve

the problem.

6.8 LiPo Battery Level Indicator
Another feature that was desired by our team was warning the user when it was time to

charge the LiPo batteries used in mPAD. The LiPo battery is responsible for powering the ESC

and motor of the system. We wanted the user to always have an accurate representation of how

much battery life is left in the system. To accomplish this, our team added a new sensor to the

sensor package to constantly collect the voltage available in the LiPo battery. As shown in Figure
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6.13, the current voltage in the battery is displayed and consistently updated while connected.

The code is written in Arduino and parsed through via Python and displayed on the dashboard

via JavaScript. The voltage available in the LiPo battery will only be displayed when the sensor

package is connected, otherwise, the battery will not display a value.

Figure 6.13: LiPo Battery Level Feature

Figure 6.14: LiPo Battery Level Feature Indicating Charge or Replacement

When the voltage is below 6.5V the battery displayed on the dashboard will turn bright

red and warn the user that it is time to charge or replace the LiPo battery, an example of which

can be seen in Figure 6.14. The circuit utilized to detect the amount of voltage in the LiPo battery

is further explained in Section 7.2.

6.9 UI/UX Updates
There were a number of UI/UX updates implemented to our version of mPAD. As

mentioned in previous sections show/hide buttons were added to provide the option to hide the

data being displayed. Using these buttons, which can be seen in Figure 6.15, the user can easily

show or hide the data charts from the sensors or the test script menu depending on whether they

are being utilized or not.
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Figure 6.15: Hide/Show Buttons for Data Charts and Testing Table

Figure 6.16: Data Chart Descriptions
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Figure 6.17: Data Chart Descriptions & Advanced Settings Dropdown

As a team, we also made the dashboard more intuitive and added descriptions to each of

the sensor data charts, as shown in Figure 6.16. The user can simply click on any of the charts to

be shown a brief description and learn more. Figure 6.17 shows an Advanced Settings dropdown

that was added within the Vehicle Controls menu to hide settings that are not necessary for users

at all times. Settings such as Servo Shield Adjustment, Servo Motor Channel Selection, and ESC

Motor Channel Selection are hidden under the Advanced Settings dropdown. Once these settings

are set after the initial set up, users will not need to change them, so they are given the option to

hide these settings from the dashboard GUI. If users want to learn more about these settings, they

can refer to the comprehensive tutorial walkthrough that is always available.
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7. Updated Sensor Package
There have been two updates to the sensor package in this iteration of the design. The

first update addressed issues with the hall effect sensor. The Arduino code was updated so that

the RPM can be correctly calculated and displayed on the dashboard. The second update was the

addition of a LiPo Battery charge detection circuit.

7.1 Hall Effect Sensor Update
Each RC car is equipped with a KY-003 hall effect sensor that is used to measure the

RPM of a wheel or gear on the car. The sensor is placed near a wheel/gear of the car, in a

position where it can read the magnetic pulses emitted by a small magnet attached to the

wheel/gear. Each time the wheel or gear completes a rotation, the sensor receives a magnetic

pulse and sends this information to the Arduino. The code on the Arduino counts the number of

pulses and divides this number by the time taken, yielding the RPM of the wheel/gear. This RPM

value is then collated with the readings from the other sensors on the car and sent as a string to

the Raspberry Pi.

While testing the sensor systems on the cars, we noticed that no value was being output

for the RPM. Initially we thought that this was due to a malfunction in the sensors, but they

showed no sign of physical damage. Thus, we tested the hall effect sensors individually and we

were able to record readings from magnetic pulses. Next, we decided to inspect the code on the

Arduino for any errors or bugs related to the hall effect sensor. We noticed that the string of data

values being sent to the Raspberry Pi did not include the calculated value for RPM. We also

realized that the RPM calculation implementation was not properly implemented. This was the

reason it would not properly display on the dashboard. After this fix, the calculated RPM value

was added to the output string and sent to the Raspberry Pi. We then ran tests to ensure the code

and the sensor worked as intended.

7.2 LiPo Battery Charge Detection
The team made a new addition to the sensor package to allow mPAD to monitor the

charge of the RC car’s LiPo battery. It should be noted that this feature only works with 2S (two

cell) LiPo batteries, since this is what the team has been working with all year. The voltage

charge of a 2-cell LiPo battery can be measured from the three little wires hanging off the side of
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a LiPo Battery, as circled in Figure 7.1. A measurement between any two consecutive pins will

show the charge of one of the LiPo cells. A measurement between the two farthest pins will

show the charge of both LiPo cells combined.

Figure 7.1: LiPo Battery

This circuit is based on a tutorial found online that uses a voltage divider to measure the

voltage across one LiPo cell (Gus, 2022). The circuit designed for mPAD, shown in Figure 7.2,

uses a voltage divider that uses 200Ω of extra resistance to split the voltage drop across two cells

in half. This produces a voltage value that the Arduino can read on pin A0. The Zener diode also

helps to protect the Arduino as well, by making sure that the voltage does not exceed 5.1V.

Figure 7.2: LiPo Charge Detection Circuit
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Just like the other sensors’ data, the LiPo charge is transmitted to the Raspberry Pi, where

it can be displayed on the top right corner of the mPAD Dashboard, as mentioned previously in

Section 6. When any cell on a LiPo battery falls below 3.0V, the battery’s life starts to decay

(Alex, 2015). Thus, when the total voltage falls below 6.5V, to be safe, the battery icon on the

dashboard turns red in order to notify the user that the LiPo battery needs to be charged. The

team tested and fine-tuned this circuit by comparing its values to that which was read across a

multimeter and a handheld LiPo Battery Charge device.

7.3 Power by LiPo Battery
The previous mPAD system contains two batteries, a LiPo Battery and a portable power

bank. These are both bulky batteries that add a lot of cargo weight, especially when attaching

mPAD to a smaller scale vehicle. So the team decided to look into a solution that would power

everything from just the LiPo Battery.

7.3.1 Current Power Circuit

The current schematic, as shown in Figure 7.3 below, can be split into two sections that

feed power from two different power sources. The ESC takes 7.4V, 60A from the LiPo Battery,

and the Raspberry Pi takes 5V, 3A from the power bank. The Raspberry Pi then powers the

Arduino with 5V, and the Arduino powers the sensors with 5V.
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Figure 7.3: Current Circuit Design

7.3.2 LiPo Power Circuit

The team designed a new circuit, as shown in Figure 7.5, which powers everything from

the LiPo Battery. The iFlight Micro BEC, Figure 7.4, was chosen to regulate the power coming

from the LiPo battery, into a signal that can power the Raspberry Pi. It is a device commonly

used in drones to convert the power from a 2-8 cell LiPo battery into +5V DC, 3A.

Figure 7.4: iFlight Micro BEC
reproduced as if from link

https://shop.iflight-rc.com/micro-2-8s-bec-5v-12v-output-pro747
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A parallel splitter is used to split the 7.4V from the LiPo battery between the ESC and the

iFlight Micro BEC. The Micro BEC drops this down to +5V, 3A for the Raspberry Pi, and the

Raspberry Pi powers the Arduino and sensors just as before.

Figure 7.5: LiPo Power Circuit Design

7.3.3 LiPo Power Circuit Testing

Upon assembling the first LiPo power circuits, they were tested using a multimeter, and

then with a Raspberry Pi. The multimeter read the intended +5V, but for some reason only

showed a current of 500mA. These results are shown on the multimeter in Figure 7.6 below.
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Figure 7.6: LiPo Power Circuit Multimeter Testing

However, when testing with the Raspberry Pi, it was successfully able to boot up the Pi

and run the mPAD system. It was able to drive manually, but then failed in the autonomous

mode. At this point in the project, there were some errors within the Raspberry Pi code causing

the autonomous drive to malfunction. Thus it is unknown whether this failure was due to the

LiPo Power Circuit or other problems present within the mPAD code.
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8. USB Camera Implementation and Autonomous Driving Testing
As mentioned in Section 4.2, we switched from the Raspberry Pi camera to a USB

webcam in order to solve the instability issues present in mPAD V1. This change also increased

the overall modularity of the system as it is now able to use any available USB webcam instead

of a proprietary one. The following gives an in-depth description of the entire process that the

team undertook in order to switch the system over to a USB camera and ensure that autonomous

driving was consistent with it.

8.1 Attempted Fixes for the Raspberry Pi Camera
Before switching to using an off-the-shelf USB webcam, the team took a number of steps

in order to attempt to fix the instability issues that the Raspberry Pi Camera was creating. As

mentioned in Section 4.2, while the Raspberry Pi camera would be consistently detected if it was

the only device plugged into the Raspberry Pi, connecting other devices would render the

detection of all connected peripherals inconsistent.

Initially, the team attempted to find an order for which components should be connected

to the Raspberry Pi to ensure that each would be detected by the system. To do this, we cycled

through every different possible order of connecting the camera, servo shield, and Arduino to the

Raspberry Pi and tested whether or not the system would consistently detect all components by

starting the system five times for each configuration. If the system successfully detected all

connected components at least four out of said five times for a configuration, we would consider

it as “stable”. Unfortunately, none of the configurations met our desired criteria.

It was at this point that the team decided to start investigating alternative camera

solutions that would potentially sidestep the problems occurring because of the Raspberry Pi

camera. There were two main alternatives: a different camera that utilized the same ribbon

connector as the Raspberry Pi camera, or a camera that would connect to the Raspberry Pi via a

USB cable. We decided to test the system with a team member’s webcam, then test an alternate

ribbon connector camera if the system did not work well with a USB webcam.

8.2 USB Camera Implementation
Fortunately, initial testing with the team member’s USB webcam yielded promising

results. Switching the software to detect and utilize the USB camera instead of the Raspberry Pi
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one was a relatively simple process, and upon running the system with the USB webcam

attached to it we encountered none of the component detection issues described in Section 4.2,

no matter what order each component was connected in. The camera we tested with was an

Angetube streaming webcam and had a resolution of 1080P, an attached ring light that could be

turned on in low-light situations, autofocus, and a 78° field of view ("Angetube Streaming 1080P

HD Webcam Built in Adjustable Ring Light and Mic. Advanced autofocus AF Web Camera for

Google Meet Xbox Gamer Facebook YouTube Streamer," n.d.). We tested the solution with

multiple different hardware configurations (e.g. different Raspberry Pis, servo shields, arduinos,

etc. of the same model) and found that each time every connected component would be detected

without issue.

Figure 8.1: USB Camera and mPAD Mounted to RC Car

8.3 Testing Self-Driving with the USB Camera
Changing the camera hardware meant that the team had to rediscover the optimal

mounting position and angle of the camera in order for the system’s self-driving to work. As

such, the team decided the system has consistent self-driving if it is capable of autonomously

driving for at least five laps around a test track. The car we used for the majority of our

self-driving testing - shown in Figure 8.1 - was a commercial RC car purchased from Amazon
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with the mPAD system attached to it. The car is a 1:18 scale model equipped with a brushed

motor, four-wheel drive, a spring suspension, a servo for turning, and is compatible with 7.4V

LiPo batteries ("VCANNY Remote Control Car, Terrain RC Cars, Electric Remote Control

Off-Road Monster Truck, 1: 18 Scale 2.4Ghz Radio 4WD Fast 30+ mph RC Car, with 2

Rechargeable Batteries," n.d.). The car did not have the sensor package attached to it for most of

the testing in order to ensure that issues we encountered could be easily attributed to camera and

self-driving aspects of the system. Additionally, we found that mounting the camera to the front

of the car using a rubber band was sufficient to keep it in place, as we could still adjust the angle

of the camera if needed but did not need to worry about the camera falling off the platform while

testing the car.

Figure 8.2: Example Dashboard Camera View

Initially, the team mimicked the position and angle of the original Raspberry Pi camera

with the new USB camera by placing it roughly eight inches off the ground and at a 60° angle

relative to the face of the car (Giglio de Azevedo et al., 2021). Unfortunately, the self-driving

logic failed to keep the car consistently within the lanes with this setup. Afterwards, the team

adjusted the camera height and angle slightly and retried the self-driving, repeating the process

until an angle and height at which the car could self-drive consistently was found.

Namely, we found that keeping the camera near the car and anywhere from 4.5 to 5.5

inches off the ground and angling it so that the edges of the lane leaves the camera view slightly

above the vertical center of the frame produced the most consistent self-driving, which can be

seen above in Figure 8.2. A diagram of the recommended configuration can be seen below in

Figure 8.3. However, even with the new camera in its most optimal position, the system still was

only able to complete up to a few laps at a time before, much less achieve the team’s definition
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of consistent driving. Videos documenting the car’s performance at this time can be found in

Section 13.4.2 of the Appendix. Thus, with the hardware aspect of self-driving optimized, it was

time to optimize the autonomous driving software of the system.

Figure 8.3: Camera Height and Position Diagram

8.4 Self-Driving Logic Adjustments and Testing
The team’s work on adjusting the self-driving logic of mPAD started with an in-depth

examination of the part of the codebase that the autonomous driving feature relies on. This

involved both checking the code for glaring logical errors as well as reviewing the report by

Giglio de Azevedo et al. from WPI’s 2020-2021 academic year to confirm that the system was,

in fact, able to drive autonomously consistently. Neither the self-driving logic nor the paper

suggested that there should be any issue with the behavior of the self-driving system, and

examining them gave us an intimate knowledge of how the system should behave in a given

situation. As such, instead of simply evaluating the overall performance of the system like we

did while testing the hardware, we instead examined a car’s behavior in a situation and compared

it to the expected behavior of the self-driving logic. While testing with this new strategy, we

noticed that the car would sometimes behave unexpectedly. Namely, sometimes the car would

perform as if it did not detect the lanes even though it does detect them, and other times the car

would steer in response to the track even though no track was selected yet. This unexpected

behavior suggested that the problem lay in one of two places:

1. The car steering logic
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2. The color filtering logic

We examined the color filtering logic first as we had already gone through the steering

logic during our earlier review of the self-driving logic, the details of which can be found in

Section 2.3. During said examination, we realized that the values being used to filter the color of

the lanes appeared to be hardcoded, and the variable that held the true color values obtained from

the dashboard was left unused in the driving logic.

Thus, we switched the hardcoded values to the variable set by the dashboard, and once

again tested the self-driving functionality. We then once again ran self-driving while both

evaluating its overall performance and examining whether it reacted to its environment as

expected. During each of these runs, we observed that while at first, the car would behave as

expected, once it left the general vicinity of its original position on the track it would behave as if

it did not see the track again. As such, we checked to see if the software was correctly detecting

the lane once the car left its original area. It was not, and as such simply selecting the lane so that

it could be detected in the new area again mostly solved the problem. Due to this, we realized

that the problem stemmed from differences in the lighting on different parts of the track. When

setting up the car, we simply needed to ensure that the lane color filter created via the dashboard

lane color selected accounts for the difference in appearance of the track in different lighting

conditions.

Figure 8.4: Effects of Lighting on Different Parts of Test Track

Left: Brighter Lighting

Right: Dimmer Lighting

We then once again tested the system to see if it met our standards for consistency. Initial

results were promising, with our test system successfully completing over five laps around our

test track. However, within roughly half an hour on subsequent trials we noticed that the car
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would often fail to successfully complete a turn where it had previously been able to do so.

We attributed this problem to the possibility that the system was overheating its host

Raspberry Pi due to the fact that the computer was hosting both the server and self-driving

portions of the software. We tested this by stripping out as much of the server communication as

possible (e.g. camera display on the dashboard, live sensor data, etc.) and then autonomously

driving the platform over a longer period of time to see if we would run into the same issue.

Cutting out unnecessary server communication seemed to delay the performance issues,

but not completely eliminate them. We were able to have our test car self-drive for nearly an

hour before it failed due to lag. As such, we added logic to the system that would disable the

camera feed from being displayed on the dashboard (but still utilized for the self-driving logic

itself) in order to avoid overheating the Raspberry Pi as quickly. Unfortunately, any further work

on solving or mitigating the performance issues with the system could not be completed due to

time constraints, and as such our suggestions for further work on the topic will be outlined in

Section 11.1.4. Despite said performance issues, however, our system was now able to meet our

definition of consistent self-driving. Namely, it was able to complete more than five laps around

our test track multiple times. Footage of testing at this stage of development can be found in

Section 13.4.3 of the Appendix.

Figure 8.5: mPAD on Display at Touch Tomorrow



67

This was demonstrated during 2022’s Touch Tomorrow event, where after some initial

issues we eventually were able to run self-driving consistently on a different track, which can be

seen above in Figure 8.5. These issues initially consisted of suboptimal conditions created by

lighting problems generated by pedestrian traffic occurring between the track and the windows -

which initially let in a large amount of light due to the time of day. The windows also washed out

the image whenever they entered the camera’s view the light was so bright it would effectively

blind the camera. In an effort to minimize the effects, we placed several obstacles to block the

track from the unwanted lighting, which succeeded in solving the problem related to pedestrian

traffic but failed to completely fix the bright window problem. As such, the team was forced to

make the camera face more towards the ground in order to correctly see the lane without any

interference. Unfortunately, the track featured a sharp turn that the cars were unable to complete

correctly due to this change of camera angle, which we fixed by making the turn less abrupt.

After these problems caused by the suboptimal conditions at Touch Tomorrow were mitigated,

we were able to have several cars consistently self-drive at the event.

8.5 Self-Driving Setup Paradigm
As mentioned previously, a certain amount of setup is needed in order to enable an RC

car equipped with mPAD to self-drive consistently. Namely, the camera needs to be mounted at

the correct angle and the lane color filter needs to account for any potential lighting differences

around the track. As such, the team developed a paradigm for finding the correct software

settings for the car to autonomously drive consistently. The paradigm is as follows:

1. Set speed, steering, and servo adjustment values.

2. Adjust the camera angle so that the edges of the track exit the view around the middle of

the frame.

3. Select lane color

4. Start self-driving and continue until the car fails to correctly follow the lane

5. Stop self-driving and place the car at the location where it failed to follow the lane

6. Repeat steps 3 to 5 until self-driving behaves consistently

While we had previously tested the system and ensured that it could meet our definition

of consistently self-driving by being able to drive around our test track more than five times, we

still needed to test the system’s consistency when it is set up using the paradigm. As such, we ran
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several more trial runs, this time making sure to set up the software by following the paradigm,

and noted the overall performance of the system during each run. With the exception of the last -

which likely failed due to the performance issues - the test car was able to successfully complete

five laps around the track without failure during each trial. Additionally, during the Touch

Tomorrow event mentioned in Section 8.4, the team used this paradigm to get the cars

self-driving. Footage of the paradigm at work on various systems can be seen in Section 13.4.4

of the Appendix.
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9. Object Detection Testing
The team started to explore three new object detection devices, the RPLiDAR,

PixyCam2, and the HuskyLens, as explained in Chapter 3. The team performed testing on all

three of these devices to pinpoint the one that will have the best impact on mPAD. The

PixyCam2 and HuskyLens are very comparable due to the type of data collected. As shown in

Figures 9.1 and 9.2, they both utilize a camera to draw boxes around detected objects, and return

the coordinates and size of those boxes.

Figure 9.1: Pixy Cam Color Detection Testing

Figure 9.2: HuskyLens Object Recognition Testing
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The RPLiDAR, on the other hand, is a little different as it just provides 360°

two-dimensional coordinate points of physical objects in its environment as shown as red lines in

Figure 9.3. These red lines could represent any physical object within the LiDARs range such as

a wall or a vehicle. It could be better compared to the ultrasonic implementation that Giglio de

Azevedo et al. had put together in 2021.

Figure 9.3: RPLiDAR Data Display

9.1 Vision Sensor Selection for Obstacle Detection

Power consumption was one factor considered due to the issues relating to power that

were experienced during the beginning of our project. It can be noted that the RPLiDAR

consumes the most since it requires power to both the laser and the motor spinning the laser. This

is the reason the LiDAR was not chosen. These values are summarized below in Table 9.4.
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Table 9.4: Power Requirement Summary for Researched Devices

Component Start-up Voltage Start-up Current Operating Voltage Operating Current

RPLiDAR (motor) +5V 500mA +5V 300mA

RPLiDAR (laser) +5V 100mA

PixyCam2 - - +5V 140mA

HuskyLens - - +5V

(or 3.3V)

230mA

(or 320mA)

Another factor that was heavily considered was the compatibility with mPADs current

design. It must be programmable via a Raspberry Pi or Arduino, and provide data that can be

used in the drive algorithm. Table 9.5 shows a comparison chart for the feasibility of the systems

in question.

Table 9.5: Feasibility Summary for Researched Devices

Component Price Compatibility Functionality

RPLiDAR $99.99 Raspberry Pi 360° Coordinates

PixyCam2 $59.99 Raspberry Pi, Arduino ● Color Detection

● Line Tracking

● Barcode Detection

HuskyLens $44.90 Raspberry Pi, Arduino ● Color Recognition

● Object Tracking

● Object Recognition

● Line Tracking

● Tag Recognition

● Face Recognition

Between the two vision sensor modules, the HuskyLens was determined to be the most

optimal choice because it has better recognition functions and a cheaper price. The PixyCam2
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can only detect objects based on their color, which could cause some confusion for the device if

seeing other objects that are of similar color to what is intended on being seen.

9.1.1 Software Comparison

The PixyCam’s Python software library has very little documentation

("Charmedlabs/pixy2," n.d.). The extent of it is a small instructional page on how to install the

library on a Linux system and a set of scripts to demonstrate how each different function works.

Additionally, the functions the library offers are barebones and lack quality-of-life features such

as changing the settings for what the user wants it to detect.

Table 9.6: Python Library Feature Comparison for PixyCam and HuskyLens

Device/Feature Switch Object Being
Tracked

Train to Track a New
Object

Get Position
Information of
Tracked Object

PixyCam No No Yes

HuskyLens Yes Yes Yes

In contrast, the HuskyLens Python software library provides interested parties with a

large amount of documentation on its GitHub page (Prast, 2020). These differences can be seen

in Table 9.6 above. Like the PixyCam library, the HuskyLens library (Prast, 2020) also provides

an example script to show how each of its functions work in practice. Finally, the number of

functions allow the user to utilize the entirety of functionality of the vision sensor through code,

instead of having to use the GUI like with PixyCam.

9.2 HuskyLens Road Sign Detection

The team started to move towards utilizing the HuskyLens for road sign detection. If

mPAD could gain the ability to read road signs, it could react better to the road in front of it. For

example, if there is a sharp turn ahead that the car may need to slow down for, a sharp turn sign

would help signify this. This would also apply better to real-life autonomous driving, by

allowing the car to follow speed limits and stop at stop signs.
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In order for the HuskyLens to recognize objects, it needs to be taught said objects using

the learn function on the HuskyLens. This can be done using the learn button located on the top

of the HuskyLens device, as circled below. Learning can also be done programmatically using

the Python or C/C++ library.

Figure 9.4: HuskyLens Learn Button

The team trained the HuskyLens using both of these methods, however it should be noted

that the programmatic method is best practice in order to make the HuskyLens configurable on

the mPAD Dashboard. The user points the HuskyLens camera at an object, and presses the learn

button to teach this object to the recognition algorithm.

The HuskyLens was trained using a 3D printed stop sign that was placed at different

locations around the testing track, and also outdoors on WPI campus. In order to improve the

versatility of the algorithm, the HuskyLens was also trained using pictures of various stop signs

on Google Images.
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Figure 9.5: Google Images Stop Signs

After training, the HuskyLens was able to recognize stop signs while driving by, as

shown in Figure 9.6. However, the HuskyLens also produced false positive values when seeing

things such as someone with a red backpack (Figure 9.8), or lights on the ceiling (Figure 9.7). It

is believed that this confusion for the lights on the ceiling is due to all of the pictures learned to

the device which included the stop sign and the lights.

Figure 9.6: HuskyLens Correctly Detecting

Road Sign

Figure 9.7: HuskyLens Falsely Detecting

Ceiling Lights as Road Sign
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Figure 9.8: HuskyLens Falsely Detecting Red Backpack as Road Sign

Perhaps, these errors could be improved upon with more training data for the HuskyLens.

There are several different AI control settings that can be tampered with to receive different

results, including NMS Threshold, Recognition Threshold, light exposure and more. These

settings affect the reliability of the HuskyLens to accurately detect a learned object. On one end

of the spectrum, these settings can detect objects very well, but produce many false positive

results. On the other end of the spectrum it can detect learned objects less frequently, and in turn

becomes more accurate with less false positive results. If the HuskyLens were built into the

mPAD Dashboard as a chart, these settings could be tested and fine tuned to make the

HuskyLens object recognition more reliable.
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10. Discussion
The development of the second version of the mPAD is meant to accomplish the

technical design objectives of being more robust, modular and intuitive than its predecessor. This

selection outlines the process of achieving the previously stated objectives as well as the broader

reaching impacts of our project.

10.1 Make mPAD More Robust
As stated earlier, one of the core objectives of mPAD V2 was to make the system more

robust. Namely, the system software needs to be stable enough that crashes are a rarity and

consistent enough to drive a minimum of five laps on any track under optimal conditions. As a

result, a large amount of work went towards improving the stability of the software package and

increasing the consistency of the self-driving.

One of the major changes made to mPAD aimed at increasing the stability of the system

by implementing a new USB camera. The camera that Giglio de Azevedo et al. used for mPAD

V1 produced stability problems that would often cause the system to fail to start. Changing the

system to use an USB camera largely solved this issue, making the system very stable and

resistant to crashing. As such, most of our further work focused on increasing the self-driving

performance of mPAD V2.

Our changes aimed at increasing the performance of mPAD V2 were twofold. Firstly, we

noticed a number of bugs related to the lane detection logic, and as such made changes to the

code to address them. We then developed a paradigm for a user to follow in order to obtain the

correct settings to be able to autonomously drive the car and meet our definition of consistency.

Next, we attempted to address performance issues that negatively impacted the consistency of

the system by cutting out unnecessary communication between the server backend and the

self-driving logic. While these changes did increase the amount of time that could elapse before

the system started suffering from performance issues, they did not eliminate them completely.

Overall, the changes made - which are described in more detail throughout Section 8 -

ultimately helped the team meet our goal for making mPAD more robust. Despite the fact that

performance issues related to the backend systems overloading the Raspberry Pi are still present,

the work done to improve the consistency of both the software itself and its self-driving had

tangible effects on the system as a whole, allowing it to drive a minimum of five laps on multiple
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tracks under optimal conditions. This was demonstrated both through the team’s in-lab testing of

the system after we had made the software changes to it, videos of which can be seen in

Appendix Section 13.4.3, and through the Touch Tomorrow 2022 event, where multiple cars

equipped with mPAD were able to complete over five laps on a track that had been set up earlier

that day.

10.2 Make mPAD More Scalable
Another key objective of mPAD V2 was to make the system more scalable. The end goal

would be to see if mPAD could be scaled up to a full sized vehicle. To achieve this long term

goal the team set an objective to test mPAD V2 on vehicles of different sizes. The largest size

being a toddler vehicle as shown in Figure 10.1.

Figure 10.1: Size reference image: Toddler Vehicle for Scalability testing of mPAD V2
reproduced as if from link

One aspect of scalability in mPAD V2 is the freedom to pick and choose which hardware

and software components to use. This is especially important to the smaller vehicles as they may

not have enough space to fit the entirety of mPAD V2 due to lack of room on their chassis. To

run the self-driving code the only hardware necessary is the vehicle, a Debian based system that

has USB ports, wireless connectivity, and an i2c bus (in this case the Raspberry Pi), a power

source for said device, the ESC, and a servo shield. Being able to adapt the hardware based on

the user’s needs was a design intention carried over from mPAD V1, and expanded upon in this

https://luxe.digital/lifestyle/cars/best-kids-electric-cars/
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version. This was done by testing on vehicles of different sizes and testing the system using

specific components and features of the package. Initial testing was done on vehicles created by

students. Some examples of cars used early on are shown in Figure 10.2. These vehicles were all

different sizes and could only accommodate certain features of mPAD V2. For example, the

middle vehicle in Figure 10.2 was a large vehicle with enough real estate on its body to fit every

component of the sensor package, while the right most vehicle was much smaller and could not

accommodate the ultrasonic sensors. During testing with these vehicles we found that mPAD V2

can work on vehicles of different sizes, however we were limited by the hardware used to build

the vehicles, since after only brief amounts of testing the hardware components of most of the

vehicles would fail. This encouraged the team to find another alternative to continue testing.

Further testing was done, as seen in Section 8, on small purchased RC vehicles as seen in Figure

10.3. Through our testing with RC cars of various shapes and sizes we discovered that mPAD

could still successfully autonomously drive and be adapted to the users needs.

Figure 10.2: Vehicles used for early testing of mPAD V2

Figure 10.3: Vehicles used for later testing of mPAD V2
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Currently, mPAD V2 successfully works on RC scaled vehicles. One component that we

did not test was how well the system would perform if we were to scale the package up. The

team had the intention of purchasing a toddler sized vehicle and testing the software package on

a vehicle of that size. Unfortunately, the team was unable to achieve this goal due to time

devotion in what the team felt were more important aspects of the project.

10.3 Make mPAD More Intuitive
The third portion of the team’s objective was to make mPAD more intuitive so that

students of all skill levels can assemble and run the autonomous driving package. The team

accomplished this by creating a simple, easy-to-follow setup guide for the construction of

hardware and installation of software. This setup guide was designed to look like an instruction

manual that you might find for a LEGO set or children’s toy, using colors and arrows. Some

pages of the guide can be seen in Figure 10.4 below and the complete guide can be found by

following the link in Appendix Section 13.2.

Figure 10.4: Setup Guide Screenshot
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The setup guide steps through each hardware component and shows exactly where and

how to wire it. It even includes warnings in areas where critical errors are commonly made.

Besides this, the setup guide also shows how to install the code to the Raspberry Pi using the

github link and startup script, which can be done in just a couple lines of code on the Linux

terminal.

As mentioned in Section 6, the team also implemented a tutorial that walks the user

through each button and chart on the mPAD dashboard. This can be accessed by pressing the

“Tutorial” button at the top right corner of the dashboard page. Chapter 6 also mentions some

additions to the dashboard that will allow students to troubleshoot the car better and recognize

where things might be going wrong. Two buttons were built into the bottom of the dashboard to

initiate throttle and steering test programs. Using these, students can evaluate whether the car’s

motors are functioning properly. A LiPo Battery charge monitor was also built in to notify

students when the car’s battery needs to be charged if the compatible sensor hardware was

attached to the system. Finally, a manual driving feature was added to make trivial things such as

moving the car when not self-driving less difficult. As a result of these changes, the team

believes that we have sufficiently made the setup process much smoother and straightforward.

10.4 Broader Impacts
The following section will cover several broader impacts that are outside the scope of the

project.

10.4.1 Engineering Ethics

Throughout the project, the mPAD team took every course of action with consideration to

the IEEE Code of Ethics. This includes holding honesty to the quality and competency of the

product designed, ensuring that the results were safe and sustainable for all human beings and the

environment, and taking into account awareness for the inclusion and emotions of other persons.

Even more so, each team member was encouraged by each other to uphold these values.

10.4.2 Societal and Global Impact

Our project has impacts on society from an educational perspective. One of the main

goals of this project is for it to be used by students in classrooms at the collegiate level. Due to
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the interdisciplinary nature of this project, it can teach students about concepts in fields such as

Computer Science, Electrical and Computer Engineering and Mechanical Engineering. Further

analysis and development of this project can also show students the ways in which different

majors intersect and can encourage cooperation between students with different specialities. It is

important that students get exposed to this technology as they may be designing cars in the future

that apply these concepts.

Also, this project can have a major impact on elementary and high-school level education

as well. We showcased mPAD V2 at a science fair for young students called “TouchTomorrow

2022” and noticed that several students were fascinated by the practical aspects of our project. If

the package is employed in early education, it can be used to stimulate interest in STEM and

encourage more students to pursue education in engineering fields.

10.4.3 Environmental Impact

Our project does not have any major impacts on plants or animals, but it does have a

significant impact on the environment. The idea of autonomous driving and electric vehicles as a

whole has an enormous positive impact on the climate in comparison to cars that run on gas.

mPAD runs on a LiPo battery and it is important for mPAD users to properly recycle or dispose

of their LiPo batteries, so that they do not end up having a negative impact on the environment

due to being improperly disposed of.

10.4.4 Codes and Standards

The SAE Levels of Driving Automation defines a series of levels from 0-5 that denote

the capability of a self-driving vehicle ("SAE Levels of Driving Automation™ Refined for

Clarity and International Audience," 2021). Figure 10.5 below provides details on the expected

functionality of each Level. mPAD V2 most closely meets SAE Level 1, as while it does not

have the ability to adjust its speed depending on its surroundings, the system does have the

capability to center itself in a lane due to its lane-following logic.
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Figure 10.5: SAE Levels of Driving Automation

("SAE Levels of Driving Automation™ Refined for Clarity and International Audience," 2021)

10.4.5 Economic Factors.

Budget was not a large consideration for this project. However, there were not a lot of

very expensive purchases. Overall the total cost of mPAD V2 was calculated in Appendix 13.1.

The total cost of the system currently ignoring the inflated price of the raspberry in era post

COVID-19 is $325. Of course, because of COVID-19, there are shortages of some widely used

electrical components. Luckily for mPAD V2, the only item that has really been affected is the

Raspberry Pi 4. This is due to manufacturing being outsourced to international locations, which

are closed to trade for a variety of reasons due to factors related to the COVID-19 pandemic.

Overall a smaller price tag supports that goals of this project even if it was not intended. The

purpose of this package is for educational use, so many parts of this package may be purchased

in bulk, since having multiple vehicles may have benefits in this type of environment.
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11. Conclusion
As suggested in the Discussions section, the team believes that we have successfully met

the objectives for mPAD V2. Namely, we have improved the robustness, scalability, and

intuitiveness of the system by introduce changes including but not limited to implementing a new

camera, enhancing the self-driving code, increasing support for different sensors, testing the

system on cars of varying sizes, adding quality of life features to the dashboard, and introducing

a comprehensive setup guide for the system. Unfortunately, despite our best efforts, there is still

much work to be done in improving the overall performance of the system as well as in

implementing object detection and avoidance into the self-driving logic, both of which the team

wishes we were able to implement.

Additionally, our definitions for robustness, modularity, and intuitiveness were somewhat

vague, which makes it difficult to evaluate just how well we met our goals. Our definition of

robustness was that the system could be capable of running at least five times around a track.

However, we do not mention what track we are measuring this with. The project’s definition of

modularity similarly runs into an issue - we state that the system should be able to work on

multiple scale RC cars, but fail to state any specific hardware requirements like size and shape to

measure our progress against. Finally, we also fail to specify any way to measure the

intuitiveness of our system and instead rely on a general sense of ease of use to inform our

progress on improving the intuitiveness of mPAD.

Despite the above issues, however, there are tangible improvements to mPAD V2 when it

is compared to mPAD V1, and as such we are comfortable with claiming that we have largely

met our goals for the project.

11.1 Future Work
The following recommendations include recommended work that Giglio de Azevedo et

al. recommended in their report, but we did not have time to implement this year. Also included

are recommendations from our team for future teams moving forward. The recommendations

from last year's team that we were able to accomplish were the implementation of a battery

detection circuit, local hosting for the Raspberry Pis, and alternative server solutions for the

Heroku dashboard in the form of the local hosting. The recommendations that the team did not
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reach were the implementation of cloud computing, switching to using 5G, implementation of

LiDAR, and the implementation of algorithm switching for the self-driving code.

11.1.1 Machine Learning Approach to Line Detection Via Simulator

One of the strong suites of an algorithmic approach in comparison to a machine learning

approach for lane following is its flexibility. An algorithm will work with most compatible tracks

without much setup. However, implementing advanced features such as object detection and

varying behaviors for said object detection is complex and difficult to implement.

As such, a machine learning approach that keeps the flexibility of an algorithmic

approach but does not have the development complexity of one could be an avenue worth

pursuing. Namely, developing a tool that simulates a track - and any potential obstacles - and

training a machine learning model on it will allow developers to make a flexible and feature-rich

system without needing a huge computer science or math background.

11.1.2 Road Sign and Object Detection

One of the key features that our team was hoping to improve upon mPAD was object

detection. The goal of this feature was to have the system identify objects in its path to avoid.

Eventually this also spawned ideas for mPAD to detect road signs as well, which would direct

the car to do different things such as stop the vehicle, change the vehicle’s speed, or raise

warning flags. It is highly recommended that the HuskyLens be used for this, due to its many

object recognition capabilities. As explained in Chapter 9, the HuskyLens was tested for road

sign detection, but was never fully implemented.
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Figure 11.1: HuskyLens Learning Dashboard Page Design

Above is an initial design that was put together to allow users to control the HuskyLens

from the dashboard. As you can see, a “Learn Objects” button was added to the regular

dashboard page and clicking this button brings the user to a learning page for the HuskyLens.

This way the user can learn different custom objects with ease. The “Learn New Object” button

will give the user the option to name the object and will create this object in the HuskyLems

data. Afterwards, the “Rename” button would call the HuskyLens setCustomName() function

and the “Learn” button would call the HuskyLens learn() function to be used to train the device
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overtime. The final “Reset Algorithm” button would call the HuskyLens forget() function and

would clear the saved data on the HuskyLens.

Figure 11.2: HuskyLens Learning Dashboard Page that was built but never implemented

Our team was able to build the following page, but was never officially implemented into

the backend of mPAD. There is still code to be written to handle the requests being sent between

the server and HuskyLens. The work was left in progress on one of our developer feature

branches named “huskylens”.

11.1.3 5-wire Servo Compatibility

The mPAD design is currently only compatible with 3-wire servo motors, due to the

nature of the Adafruit Servo Shield. However, there are some RC cars that are instead equipped

with 5-wire servos. On some of the RC cars used for mPAD testing, the team had to replace the

5-wire servo that the car came packaged with, for one of our own 3-wire servos. In order to make

mPAD truly modular, it would be of best interest for the team to look into a way for making the

system compatible with both 3-wire and 5-wire.

Figure 11.3: 5-wire Servo vs 3-wire Servo
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11.1.4 Further Performance Improvements

As mentioned in Section 8.4, mPAD V2 currently still has some performance issues

related to it despite changes made to the backend of the system to reduce the load of the system

on its host computer. As such, further work will need to be done in the area in order to continue

to improve the performance and consistency of mPAD. There are a number of potential

approaches interested parties can take, which are outlined below.

Move Server Backend to a Remote Hosting Service

One of the first things our team did was move the server from a Heroku webapp to be

hosted locally in order to increase the consistency of the platform and decrease the system’s

reliance on having an internet connection. However, after other issues that were causing

consistency issues were fixed, the team realized that moving the server to be hosted on the same

hardware as the self-driving logic introduced other performance issues that were difficult to

mitigate. As such, with other aspects of the system modified to be more stable, we suggest

moving the server portion of mPAD back to a remote hosting service, such as Heroku or even

simply a different Raspberry Pi located on the same wireless network as the one that is running

the self-driving code.

Figure 11.4: Potential Services to Host the Server Portion of mPAD
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Combine Server and Self-Driving Backend

Another, much more involved, option to fix the performance issues in the system that are

present while running both the server and driving logic portions of mPAD on the same hardware

is to revamp the backend and combine the server and self-driving aspect of the car. Currently, the

system communicates using GET and POST requests, as well as SocketIO in order to convey

commands and data between the server and the self-driving logic. This is much more inefficient

than communicating using variables stored in memory. As such, switching over to this system

will decrease the amount of computing power used by the system.

Cloud Computing

A third potential option to reduce the strain on the host system is to move the majority of

both the server and self-driving backend off of the Raspberry Pi and into the cloud. This would

completely resolve any performance issues related to overloading the computing power of the

host hardware, as all that would be running on it is a lightweight script to send and receive

information from a server. Unfortunately, this would also make the system entirely dependent on

having a sufficiently fast connection to the server doing the majority of the processing.

11.1.5 Testing Scalability of mPAD

As mentioned in section 10.2 our team did not have the chance to see if mPAD would

operate on a system scaled any larger than a RC car. The team intended to implement mPAD on a

toddler size vehicle and run it on a larger track that could handle the increase in size of the

vehicle. One track that was considered for testing was the track around WPI’s football field. We

wanted to learn if the self driving code would work on a larger vehicle. Continued scaling and

testing should be done to see how large a vehicle mPAD could accommodate.

11.1.6 Multiple Vehicles Driving Around the Track with Collision Detection

Finally, we recommend that future teams implement a system where multiple vehicles

can drive around the track autonomously while successfully being able to sense one another on

the track and avoid collisions. Currently, object detection is done via seven ultrasonic sensors

connected to a bumper; refer to section 2.1. Over the course of this project additional object
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detection avenues were explored in the form of the PixyCam, HuskyLens, and RPLiDAR.

However, no proper collision detection was implemented. This was a result of unforeseen issues

with implementing other areas of our project, skewing our projected timeline for project

completion, however some initial research and testing was still achieved as seen in Sections 3.2

and 9 of this report. Our team recommends that this system be explored either using some form

of LiDAR or another alternative option.

11.2 Project Experience
Throughout the development of the mPAD V2, we learnt several lessons as a team and as

individuals. Collectively, we came in with a wealth of individual knowledge, and over the course

of the term we learned how to leverage each other’s skills to make the team more than the sum of

its parts. The following sections detail our individual backgrounds before working together, the

skills we have gained through the project and overall reflections of the project experience.

11.2.1 Bryan Lima

During A Term 2021 I took CS4241: Webware: Computational Technology for Network

Information Systems. Throughout this course, I was able to learn a lot about web design and how

to utilize HTML, JavaScript, and CSS. This allowed me to add new features to our web

dashboard and give the mPAD user more creative freedom in design. In C Term, I also took

CS4731: Computer Graphics, which also helped further my HTML and JavaScript knowledge.

I had little to no Python background coming into this project and relied heavily on some

of my teammates’ assistance in order to implement certain features. However, working on mPAD

and working alongside my teammates helped me improve my programming in Python. I learned

how to write different functions in Python and was able to build features on my own towards the

tail end of our project. This project and team were awesome to be a part of. It felt that it was

more of a hobby to tinker with than an assignment to be working on.

11.2.2 Anthony LoPresti

This project was a great learning experience for me. I was a member of both sides of this

project, the hardware and the software and there was a lot to learn from both sides. On the

hardware side of things I learned to collaborate properly on a large scale CAD assembly. Also I
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learned to work on a large scale additive manufacturing project. I learned a ton about 3D printing

and 3D modeling that will surely help me tremendously further on in my career. The software

side of the project was a lot of problem solving. Early on it was a lot of bug fixing both code and

hardware issues. I also had the opportunity to learn more about LiDAR and other obstacle

detection technology. Another large aspect of the software side of the project was learning to

communicate engineering work in a simple manner that is easy to understand and follow. Overall

I feel like I have developed a lot more as an engineer and I hope to put my skills to the test in the

future.

11.2.3 Thomas Riviere

As an Electrical and Computer Engineering major, I was able to understand the electrical

layout of mPAD with ease and used this as an asset for my team, while they put their efforts into

more of the programming side of things. My previous experience with Arduino surely helped to

ensure that our sensor package was finely tuned. My graphic design skills became very handy

when putting together the setup guide. I would say however, due to COVID, my hands-on

experience with ECE has been hindered up until this point. While working on this project, I

learned how to solder on small devices, and how to debug hardware that was notdoing what was

intended. I also learned a lot of new things that I never really knew that I would need, even as

simple as using zip ties and velcro to clean up wires.

11.2.4 Lindberg Simpson

This project was an amazing opportunity for me to apply my practical experience in

Computer Science to work in an interdisciplinary team on a physical project. Through previous

projects and classes, I had experience with many aspects of the software side of this project. I

was already familiar with many of the programming languages used in the previous iteration of

mPAD such as Python, HTML, javascript and CSS. However, I had very limited experience

working with Linux-based operating systems, command line interfaces (CLIs), electrical systems

and sensors. Throughout the course of developing mPAD V2, I was able to employ the skills I

already possessed to help the team in various parts of the software analysis and development

phases of the project. I also became more familiar using the CLI, working with a team in GitHub

and gained a better understanding of  how sensors work with physical, electrical systems. I wish
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I had more experience in Electrical and Computer Engineering before doing this project so that I

could offer more help on the hardware side as well. In general, this project was an incredible

learning experience for me and a great capstone project to conclude my 4 years at WPI.

11.2.5 William Yang

Coming into this project, most of my CS background lay in software application

development and the Unix terminal, which I utilized extensively while working on the dashboard

and Raspberry Pi’s respectively. However, I learned a lot about working with SocketIO and

servers in Python, which is something I had very little experience with before working on the

project. I definitely wish I had known about these topics before the project, as I was the main

contributor towards the server backend and had to learn everything on short notice. Overall,

though, I believe the project was a positive experience for me, as I learned a lot from it.
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13 Appendix

13.1 Hardware Cost and Specifications

Component Cost Specifications

ELEGOO MEGA R3 Board

ATmega 2560

$22.99 https://www.elegoo.com/prod

ucts/elegoo-mega-2560-r3-bo

ard

Raspberry Pi 4 $75 - out of stock

$192.89 - inflated price on

amazon

https://www.raspberrypi.com/

products/raspberry-pi-4-mode

l-b/specifications/

HobbyWing 1060 Electronic

Speed Controller (ESC)

$27.83 https://www.hobbywingdirect

.com/products/quicrun-10-esc

-2-3s-brushed

HiLetgo PCA9685 Servo

Shield

$9.19 https://cdn-shop.adafruit.com/

datasheets/PCA9685.pdf

HC-SR04 Ultrasonic Sensor 5 sensors for $8.79 https://www.electroschematic

s.com/hc-sr04-datasheet/

DHT11 Temperature Sensor 2 sensors for $6.69 https://components101.com/s

ensors/dht11-temperature-sen

sor

BNO055 IMU Out of Stock - older

technology, so can be

replaced with a newer model

in the future

Similar product cost $35-40

https://learn.adafruit.com/adaf

ruit-bno055-absolute-orientati

on-sensor?gclid=CjwKCAiA

1JGRBhBSEiwAxXblwc3yA

1iUJsOr1YVBK7-6wKu3kx9

x0iSY7Zr-2ZmN4MlQVvCb

https://www.amazon.com/s?k=mega+2560&gclid=CjwKCAiA1JGRBhBSEiwAxXblwZqiZ8PTyWCLEWkYx3LthPKAKxJrMBGu_pGLJ9-n2yWrP3RED6jEYBoCMRMQAvD_BwE&hvadid=174252714412&hvdev=c&hvlocphy=9004566&hvnetw=g&hvqmt=b&hvrand=18321963704508892675&hvtargid=kwd-27264791361&hydadcr=8779_9622295&tag=googhydr-20&ref=pd_sl_5jqz1dba1i_b
https://www.elegoo.com/products/elegoo-mega-2560-r3-board
https://www.elegoo.com/products/elegoo-mega-2560-r3-board
https://www.elegoo.com/products/elegoo-mega-2560-r3-board
https://www.adafruit.com/product/4564
https://www.amazon.com/Raspberry-Pi-Computer-Suitable-Workstation/dp/B0899VXM8F/ref=sr_1_3?keywords=raspberry+pi+4+8gb&qid=1646591972&sprefix=raspberry%2Caps%2C89&sr=8-3
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://www.eurorc.com/product/7871?currency=USD&cc=USD&change_country=US&gclid=CjwKCAjw9qiTBhBbEiwAp-GE0SY8Ny48GoPRukyjgBlD2hP7FJdYzHvhSOJOHS0LYg6ftMiP4bD6lBoC_84QAvD_BwE
https://www.hobbywingdirect.com/products/quicrun-10-esc-2-3s-brushed
https://www.hobbywingdirect.com/products/quicrun-10-esc-2-3s-brushed
https://www.hobbywingdirect.com/products/quicrun-10-esc-2-3s-brushed
https://www.amazon.com/HiLetgo-PCA9685-Channel-12-Bit-Arduino/dp/B01D1D0CX2/ref=asc_df_B01D1D0CX2/?tag=hyprod-20&linkCode=df0&hvadid=312106042452&hvpos=&hvnetw=g&hvrand=14425716726102239115&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9001847&hvtargid=pla-439629573722&psc=1&tag=&ref=&adgrpid=62821668875&hvpone=&hvptwo=&hvadid=312106042452&hvpos=&hvnetw=g&hvrand=14425716726102239115&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9001847&hvtargid=pla-439629573722
https://cdn-shop.adafruit.com/datasheets/PCA9685.pdf
https://cdn-shop.adafruit.com/datasheets/PCA9685.pdf
https://www.amazon.com/HiLetgo-HC-SR04-Ultrasonic-Distance-MEGA2560/dp/B00E87VXH0/ref=sr_1_7_sspa?keywords=hc-sr04+ultrasonic+sensor&qid=1646592599&sprefix=hc-sr%2Caps%2C101&sr=8-7-spons&psc=1&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUEyQVFIVjRXRklJMTg3JmVuY3J5cHRlZElkPUEwNTc2MTkzMkg5VjlJWUc5WkxFNyZlbmNyeXB0ZWRBZElkPUEwMjk2OTQ5MTczVlkwTEFVVVYyNCZ3aWRnZXROYW1lPXNwX210ZiZhY3Rpb249Y2xpY2tSZWRpcmVjdCZkb05vdExvZ0NsaWNrPXRydWU=
https://www.electroschematics.com/hc-sr04-datasheet/
https://www.electroschematics.com/hc-sr04-datasheet/
https://www.amazon.com/Temperature-Humidity-Digital-3-3V-5V-Raspberry/dp/B07WT2HJ4F/ref=asc_df_B07WT2HJ4F/?tag=&linkCode=df0&hvadid=416696275833&hvpos=&hvnetw=g&hvrand=17747939365903702881&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9004566&hvtargid=pla-904874943043&ref=&adgrpid=96633977889&th=1
https://components101.com/sensors/dht11-temperature-sensor
https://components101.com/sensors/dht11-temperature-sensor
https://components101.com/sensors/dht11-temperature-sensor
https://learn.adafruit.com/adafruit-bno055-absolute-orientation-sensor?gclid=CjwKCAiA1JGRBhBSEiwAxXblwc3yA1iUJsOr1YVBK7-6wKu3kx9x0iSY7Zr-2ZmN4MlQVvCbdcYDHRoC2gMQAvD_BwE
https://learn.adafruit.com/adafruit-bno055-absolute-orientation-sensor?gclid=CjwKCAiA1JGRBhBSEiwAxXblwc3yA1iUJsOr1YVBK7-6wKu3kx9x0iSY7Zr-2ZmN4MlQVvCbdcYDHRoC2gMQAvD_BwE
https://learn.adafruit.com/adafruit-bno055-absolute-orientation-sensor?gclid=CjwKCAiA1JGRBhBSEiwAxXblwc3yA1iUJsOr1YVBK7-6wKu3kx9x0iSY7Zr-2ZmN4MlQVvCbdcYDHRoC2gMQAvD_BwE
https://learn.adafruit.com/adafruit-bno055-absolute-orientation-sensor?gclid=CjwKCAiA1JGRBhBSEiwAxXblwc3yA1iUJsOr1YVBK7-6wKu3kx9x0iSY7Zr-2ZmN4MlQVvCbdcYDHRoC2gMQAvD_BwE
https://learn.adafruit.com/adafruit-bno055-absolute-orientation-sensor?gclid=CjwKCAiA1JGRBhBSEiwAxXblwc3yA1iUJsOr1YVBK7-6wKu3kx9x0iSY7Zr-2ZmN4MlQVvCbdcYDHRoC2gMQAvD_BwE
https://learn.adafruit.com/adafruit-bno055-absolute-orientation-sensor?gclid=CjwKCAiA1JGRBhBSEiwAxXblwc3yA1iUJsOr1YVBK7-6wKu3kx9x0iSY7Zr-2ZmN4MlQVvCbdcYDHRoC2gMQAvD_BwE
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dcYDHRoC2gMQAvD_BwE

KY-003 Hall Effect Sensor 10 sensors for $5.99 https://arduinomodules.info/k

y-003-hall-magnetic-sensor-

module/

USB Camera $59.85 - price may vary Only important spec is wide

angle lens, which is

extremely common in almost

every purchasable USB

camera

HuskyLens $54.90 https://shop.pimoroni.com/pr

oducts/huskylens-an-easy-to-

use-ai-machine-vision-sensor

?variant=31603336282195

RPLidar $95 https://www.seeedstudio.com/

RPLiDAR-A1M8-360-Degre

e-Laser-Scanner-Kit-12M-Ra

nge.html

Total Cost of mPAD V2

(Cost did not include

RPLiDAR and the pre

COVID-19 pricing of the

Raspberry Pi 4)

$325

13.2 mPAD V2 Setup Guide
https://docs.google.com/presentation/d/1rBzo-pQz23uOcFlPZBSbfsVc6GUMW2yvpQrB

V4xP6dw/edit?usp=sharing

https://learn.adafruit.com/adafruit-bno055-absolute-orientation-sensor?gclid=CjwKCAiA1JGRBhBSEiwAxXblwc3yA1iUJsOr1YVBK7-6wKu3kx9x0iSY7Zr-2ZmN4MlQVvCbdcYDHRoC2gMQAvD_BwE
https://www.amazon.com/DAOKI-KY-003-Effect-Magnetic-Arduino/dp/B07X97JXHT/ref=sr_1_2_sspa?crid=2J80RIIC5IHZA&keywords=KY-003+Hall+Effect+Sensor&qid=1646593210&sprefix=ky-003+hall+effect+sensor%2Caps%2C85&sr=8-2-spons&psc=1&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUFOQjE4QzU2TEVPRFcmZW5jcnlwdGVkSWQ9QTAzODEzODkxM0ZXWTVOQk9VMExEJmVuY3J5cHRlZEFkSWQ9QTA0MDk2OTUyVUdPOE1CQ0NSSVlHJndpZGdldE5hbWU9c3BfYXRmJmFjdGlvbj1jbGlja1JlZGlyZWN0JmRvTm90TG9nQ2xpY2s9dHJ1ZQ==
https://arduinomodules.info/ky-003-hall-magnetic-sensor-module/
https://arduinomodules.info/ky-003-hall-magnetic-sensor-module/
https://arduinomodules.info/ky-003-hall-magnetic-sensor-module/
https://www.amazon.com/gp/product/B07RXYG295/ref=ppx_yo_dt_b_search_asin_title?ie=UTF8&psc=1
https://www.amazon.com/DFROBOT-HUSKYLENS-Arduino-Raspberry-LattePanda/dp/B085NL4XCB/ref=sr_1_2?gclid=CjwKCAiA1JGRBhBSEiwAxXblwQz6iYrDR_zetNu4O_uQP9Mo9fEpI8VdvGrWzU0dyLo_901xL8Xw6xoCHgcQAvD_BwE&hvadid=557600592221&hvdev=c&hvlocphy=9004566&hvnetw=g&hvqmt=e&hvrand=15459403122736312341&hvtargid=kwd-914327098042&hydadcr=6322_13186006&keywords=huskylens&qid=1646593296&sr=8-2
https://shop.pimoroni.com/products/huskylens-an-easy-to-use-ai-machine-vision-sensor?variant=31603336282195
https://shop.pimoroni.com/products/huskylens-an-easy-to-use-ai-machine-vision-sensor?variant=31603336282195
https://shop.pimoroni.com/products/huskylens-an-easy-to-use-ai-machine-vision-sensor?variant=31603336282195
https://shop.pimoroni.com/products/huskylens-an-easy-to-use-ai-machine-vision-sensor?variant=31603336282195
https://www.amazon.com/youyeetoo-Scanning-Obstacle-Avoidance-Navigation/dp/B0923RYT8V/ref=sxts_rp_s_a1_0?cv_ct_cx=rplidar&gclid=CjwKCAiA1JGRBhBSEiwAxXblwcJ0jRfFzKuWjKZs_nmxNTzom3hTwpg_yCS27cAkVzboqyKijThCbxoChuoQAvD_BwE&hvadid=241644132916&hvdev=c&hvlocphy=9004566&hvnetw=g&hvqmt=e&hvrand=10148421405844676991&hvtargid=kwd-191600988485&hydadcr=26612_9892188&keywords=rplidar&pd_rd_i=B0923RYT8V&pd_rd_r=79d25f48-6d49-4d08-85a9-c3b05b029282&pd_rd_w=BM0xm&pd_rd_wg=DG95B&pf_rd_p=ef09fc8b-f6fe-450c-ac89-05f354bc6e1d&pf_rd_r=NQJT9GV7G5KWCYZMWE7Y&psc=1&qid=1646593352&sr=1-1-5985efba-8948-4f09-9122-d605505c9d1e
https://www.seeedstudio.com/RPLiDAR-A1M8-360-Degree-Laser-Scanner-Kit-12M-Range.html
https://www.seeedstudio.com/RPLiDAR-A1M8-360-Degree-Laser-Scanner-Kit-12M-Range.html
https://www.seeedstudio.com/RPLiDAR-A1M8-360-Degree-Laser-Scanner-Kit-12M-Range.html
https://www.seeedstudio.com/RPLiDAR-A1M8-360-Degree-Laser-Scanner-Kit-12M-Range.html
https://docs.google.com/presentation/d/1rBzo-pQz23uOcFlPZBSbfsVc6GUMW2yvpQrBV4xP6dw/edit?usp=sharing
https://docs.google.com/presentation/d/1rBzo-pQz23uOcFlPZBSbfsVc6GUMW2yvpQrBV4xP6dw/edit?usp=sharing
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13.3 Manual Driving Python Code Snippet

if not streamer.drive:

# code to manual drive

manual_driving = False

# if up arrow is depressed

if UP_ARROW:

kit.continuous_servo[MOTOR_CHANNEL].throttle = streamer.direction *

(max_speed*(speed/100))

manual_driving = True

# if down arrow is depressed

if DOWN_ARROW:

kit.continuous_servo[MOTOR_CHANNEL].throttle = -(streamer.direction *

(max_speed*(speed/100)))

manual_driving = True

# if left arrow is depressed

if LEFT_ARROW:

if streamer.servo_direction == 1:

kit.servo[SERVO_CHANNEL].angle = 150 + servo_adjustment

manual_driving = True

if streamer.servo_direction == -1:

kit.servo[SERVO_CHANNEL].angle = 30 + servo_adjustment

manual_driving = True

# if right arrow is depressed

if RIGHT_ARROW:

if streamer.servo_direction == 1:

kit.servo[SERVO_CHANNEL].angle = 30 + servo_adjustment

manual_driving = True

if streamer.servo_direction == -1:

kit.servo[SERVO_CHANNEL].angle = 150 + servo_adjustment

manual_driving = True

# if no forward or backward

if not UP_ARROW and not DOWN_ARROW:
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kit.continuous_servo[MOTOR_CHANNEL].throttle = 0

# if no left or right

if not LEFT_ARROW and not RIGHT_ARROW:

kit.servo[SERVO_CHANNEL].angle = 90 + servo_adjustment

13.4 Self-Driving Videos
13.4.1 mPAD (Modular Package for Autonomous Driving) - Testing Compilation

The following Youtube link shows a video demonstrating various parts of the self-driving testing

process:

https://youtu.be/XrY1tMupUrU

13.4.2 Early-Stage Self-Driving Testing Video

The following link holds videos that showcase early-stage testing of the self-driving platform.

Early-stage testing consists of self-driving tests done on an RC car equipped with an USB

camera before any software changes were made to the mPAD package.

https://drive.google.com/drive/folders/1DdrZyGnDJGI-ZZxaTP2ZL28UminwRd0M?usp=sharin

g

13.4.3 Late-Stage Self-Driving Testing Video

The following link holds videos that showcase late-stage testing of the self-driving platform.

Late-stage testing consists of self-driving tests done on an RC car equipped with an USB camera

after software changes regarding lane detection and self-driving were made to the mPAD

package.

https://drive.google.com/drive/folders/1Z0uKUk7WZND330wvKSbkOtPurIibDq5-?usp=sharing

13.4.4 Testing mPAD on Other Cars

The following link holds videos that showcase testing the mPAD platform after the

aforementioned software changes were made on new RC cars that mPAD had yet to be run on.

https://youtu.be/XrY1tMupUrU
https://drive.google.com/drive/folders/1DdrZyGnDJGI-ZZxaTP2ZL28UminwRd0M?usp=sharing
https://drive.google.com/drive/folders/1DdrZyGnDJGI-ZZxaTP2ZL28UminwRd0M?usp=sharing
https://drive.google.com/drive/folders/1Z0uKUk7WZND330wvKSbkOtPurIibDq5-?usp=sharing
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These tests were performed to ensure that mPAD worked correctly on hardware that the team

wasn’t testing on during development.

https://drive.google.com/drive/folders/1qUCKzSicKKEYiIqXChFBFWSqXUeO9zE1?usp=shari

ng

https://drive.google.com/drive/folders/1qUCKzSicKKEYiIqXChFBFWSqXUeO9zE1?usp=sharing
https://drive.google.com/drive/folders/1qUCKzSicKKEYiIqXChFBFWSqXUeO9zE1?usp=sharing
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