
Integration of Heterogeneous Databases:

Discovery of Meta-Information and

Maintenance of Schema-Restructuring

Views

by

Andreas Koeller

A Dissertation

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

in

Computer Science

by

December 14, 2001

APPROVED:

Prof. Elke A. Rundensteiner
Advisor

Prof. Carolina Ruiz
Committee Member

Prof. Dr. rer. nat. habil. Gunter Saake
External Committee Member
University of Magdeburg

Prof. Nabil I. Hachem
Committee Member

Prof. David C. Brown
Committee Member

Prof. Micha Hofri
Head of Department

i

Abstract

In today’s networked world, information is widely distributed across many

independent databases in heterogeneous formats. Integrating such informa-

tion is a difficult task and has been adressed by several projects. However,

previous integration solutions, such as the EVE-Project, have several short-

comings. Database contents and structure change frequently, and users of-

ten have incomplete information about the data content and structure of

the databases they use. When information from several such insufficiently

described sources is to be extracted and integrated, two problems have to

be solved: How can we discover the structure and contents of and inter-

relationships among unknown databases, and how can we provide durable

integration views over several such databases? In this dissertation, we have

developed solutions for those key problems in information integration.

The first part of the dissertation addresses the fact that knowledge about

the interrelationships between databases is essential for any attempt at solv-

ing the information integration problem. We are presenting an algorithm

called FIND2 based on the clique-finding problem in graphs and k-uniform

hypergraphs to discover redundancy relationships between two relations.

ii

Furthermore, the algorithm is enhanced by heuristics that significantly re-

duce the search space when necessary. Extensive experimental studies on

the algorithm both with and without heuristics illustrate its effectiveness on

a variety of real-world data sets.

The second part of the dissertation addresses the durable view prob-

lem and presents the first algorithm for incremental view maintenance in

schema-restructuring views. Such views are essential for the integration of

heterogeneous databases. They are typically defined in schema-restructur-

ing query languages like SchemaSQL, which can transform schema into data

and vice versa, making traditional view maintenance based on differential

queries impossible. Based on an existing algebra for SchemaSQL, we present

an update propagation algorithm that propagates updates along the query

algebra tree and prove its correctness. We also propose optimizations on our

algorithm and present experimental results showing its benefits over view

recomputation.

iii

Acknowledgements

I would like to thank my advisor, Prof. Elke A. Rundensteiner, for her

guidance, advice and support during my time at WPI. Thanks also to the

other members of my dissertation committee, Prof. Carolina Ruiz, Prof.

David Brown, Prof. Nabil Hachem, and Prof. Gunter Saake, who provided

valuable feedback and suggestions during my research that were useful in

guiding my work.

My colleagues in the DSRG group, in particular Kajal Claypool, Li Chen,

and Xin Zhang, with whom I have shared an office for the past four years,

contributed to my work and progress of this dissertation in many ways.

Prof. Micha Hofri gave me the opportunity to teach at WPI, which

provided valuable experience to me and also a welcome occasional distraction

from the research that I was doing. I also would like to thank the other

faculty in the CS department at WPI, in particular Profs. Stanley Selkow,

George Heineman, and Kathi Fisler, for valuable discussions and help with

many issues over the past few years. Michael Voorhis and Jesse Banning

provided technical support and (unfortunately necessary) backups of my

machine.

iv

Finally, I want to thank my fiancée Hajira Begum, for her love and

support and the great amount of understanding she showed whenever I can-

celled yet another weekend plan in the final phase of dissertation writing. I

can’t promise that I’ll stop going to school, but I promise that I won’t write

another dissertation anytime soon.

v

Contents

I Information Integration 1

1 Introduction 2
1.1 Information Integration—Background 2
1.2 Some Issues in Information Integration 4
1.3 Problem Definition . 9

1.3.1 Discovery of Inclusion Dependencies 9
1.3.2 Incremental View Maintenance 11

1.4 Approach and Contributions 12
1.4.1 Discovery of Inclusion Dependencies 13
1.4.2 Incremental View Maintenance 16

1.5 Organization of this Dissertation 18

2 The Evolvable View Environment 20
2.1 Maintenance of Views Under Schema Changes 20
2.2 The EVE-System–Overview 22

2.2.1 A Model for Information Source Description 23
2.2.2 A Preference Model for View Evolution 27
2.2.3 View Synchronization Strategies. 29
2.2.4 Cost Model for Evolved View Definitions 33
2.2.5 Maintenance of Materialized Views after Synchroniza-

tion . 35
2.2.6 ViewMaintenance Under Concurrent Schema and Data

Updates . 36
2.2.7 EVE-Implementation 36

II Discovery of Inclusion Dependencies 37

3 Introduction and Background 38

CONTENTS vi

3.1 Introduction . 38
3.1.1 Significance of Inclusion Relationships 39

3.2 Background . 41
3.2.1 Notation . 42
3.2.2 Inclusion Dependencies 43
3.2.3 Related Work on Other Dependencies 50

4 Algorithm FIND2 for the Discovery of Inclusion Dependen-
cies 53
4.1 Finding Inclusion Relationships across Databases 53

4.1.1 Assumptions . 54
4.1.2 A Three-Staged Solution to the IND-Finding Problem 55
4.1.3 Comparing two Databases 58

4.2 INDs between Two Relations 60
4.2.1 Complexity . 60
4.2.2 Solution Approach for Finding INDs Between Two Re-

lations . 62
4.2.3 Mapping to a Graph Problem 65
4.2.4 The Clique-Finding Problem 70
4.2.5 Finding Hypercliques 72
4.2.6 An Algorithm to Find Inclusion Dependencies 86
4.2.7 Correctness of Algorithm FIND2 101
4.2.8 Complexity of Algorithm FIND2 103

5 Heuristic Strategies to Find Inclusion Dependencies 111
5.1 Comparing two Attribute Sets 111

5.1.1 Simple IND-Testing 112
5.2 Finding Inclusion Dependencies Using Heuristics 115

5.2.1 Accidental INDs . 115
5.2.2 Heuristics for IND-Validity Testing 122
5.2.3 Heuristic: Domains . 125
5.2.4 Heuristic: Attribute Names 126
5.2.5 Heuristic: Number of Distinct Values 129
5.2.6 Heuristic: Attribute Value Distribution (AVD) 131
5.2.7 Summary . 135
5.2.8 False Negatives and the Clique-Merging Heuristic . . . 136

5.3 Incorporating Heuristics into the IND-Testing Algorithm . . . 138
5.4 Further Runtime Reductions 142

5.4.1 Restricting the Size of Graphs in Algorithm FIND2 . . 143
5.4.2 Determining INDs Using Sampling 145

CONTENTS vii

6 Experiments and Evaluation 150
6.1 Implementation . 150
6.2 Experimental Setup . 152
6.3 Experiments . 154

6.3.1 Experiment 1: Number of Unary and Binary INDs . . 155
6.3.2 Experiment 2: Performance and Quality Effects of

Heuristics . 158
6.3.3 Experiment 3: Effect of Low Numbers of Distinct Val-

ues in Data Set . 160
6.3.4 Experiment 4: Accuracy of the χ2-Test and the At-

tribute Value Heuristic 162
6.3.5 Experiment 5: Effect of Data Set Size on Runtime . . 164
6.3.6 Experiment 6: Effect of Noise on the Correctness of

Algorithm FIND2 . 166

7 Related Work 168

8 Conclusions 178

III Incremental Maintenance of Schema-Restructuring Views
180

9 Introduction and Background 181
9.1 Introduction . 181

9.1.1 Motivating Example 183
9.1.2 Contributions . 185

9.2 Background . 186
9.2.1 Notation . 186
9.2.2 SchemaSQL . 187

10 Propagation of Updates in a SchemaSQL View 195
10.1 The SchemaSQL Update Propagation Strategy 195

10.1.1 Classes of Updates and Transformations 195
10.1.2 SchemaSQL Update Propagation vs. Relational View

Maintenance . 196
10.1.3 Overall Propagation Strategy 198
10.1.4 Propagation of Updates through Individual Schema-

SQL
Operators . 200

CONTENTS viii

10.1.5 Update Propagation Example 208
10.1.6 Grouping Similar SchemaSQL Updates in Batches . . 211

10.2 Correctness . 215

11 Implementation and Evaluation 222
11.1 Implementation . 222

11.1.1 SchemaSQL Query Engine 222
11.1.2 Incremental Update Propagation 224

11.2 Performance Evaluation . 225
11.2.1 Experimental Setup 225
11.2.2 Deleting Base Relations of Different Sizes 228
11.2.3 Deleting Tuples from Base Relations 230
11.2.4 Deleting Tuples Leading to Schema Changes 232
11.2.5 View Selectivity . 234

12 Related Work 236

13 Conclusions 239

IV Conclusions and Future Work 241

14 Conclusions and Future Work 242
14.1 Results and Contributions of this Dissertation 243
14.2 Ideas for Future Work . 246

14.2.1 Discovery Across Multiple Databases 246
14.2.2 Interactivity in the Discovery Process 247
14.2.3 Adaptive Discovery . 248
14.2.4 Schema-restructuring Views 249
14.2.5 Query Optimization and Implementation of View Main-

tenance . 250
14.2.6 Discovery and Maintenance in Non-relational Data . . 250

A The Bron/Kerbosch-Algorithm 252

B A Brute-Force Algorithm to Find Hypercliques 255

ix

List of Figures

1.1 Tasks in Information Integration 4
1.2 Solutions in Information Integration 14

2.1 The Framework of the Evolvable View Environment (EVE). . 24
2.2 Example Information Source Content Descriptions 26
2.3 A Containment Constraint in the Example Information Space 26
2.4 A Typical E-SQL View . 28
2.5 A Possible Rewriting for a View. 30

3.1 Functional and Inclusion Dependencies in a Database 45

4.1 The Three Stages of Inclusion Dependency Discovery 57
4.2 A Simple Algorithm simpleFIND2 for the Two-Relation IND-

Finding Problem. 64
4.3 Validity of All Derived INDs Is Not a Sufficient Validity Test. 65
4.4 A 3-hypergraph with 6 edges. 66
4.5 Mapping a Set of INDs to a Graph 69
4.6 Algorithm HYPERCLIQUE for Finding Cliques in a k-Uniform

Hypergraph . 77
4.7 Clique Candidate Generation for k-Hypergraphs 79
4.8 Phase 1 of Algorithm HYPERCLIQUES: Growing hypercliques 81
4.9 Phase 2 of Algorithm HYPERCLIQUES: Reducible Graphs . . 83
4.10 An Irreducible Graph. 84
4.11 Splitting an Irreducible Graph. 85
4.12 The Running Example for the IND-Finding Problem. 88
4.13 Algorithm FIND2 for Finding a Generating Set of INDs Be-

tween Two Relations . 89
4.14 A Graph G2 constructed by Algorithm FIND2. 92
4.15 Generating Higher-Arity Member of the Generating Set G(Σ)

in Algorithm FIND2 . 94

LIST OF FIGURES x

4.16 Invalid INDs Generated by the Clique-Finding Algorithm in
Fig. 4.15. 96

4.17 An Example for the Complete Algorithm FIND2. 101

5.1 Determining the Validity of an IND by a MINUS-Query . . . 112
5.2 Determining the Validity of an IND by Two COUNT-Queries 113
5.3 A Simple Algorithm to Check for IND Validity 114
5.4 Accidental INDs Introduced by Encoding Data 117
5.5 Number of Maximal Cliques in Almost Complete Graphs . . 137
5.6 The Heuristic IND-Checking Algorithm CHECKH 140
5.7 Flowchart for the CHECKH Algorithm. 141
5.8 Flow of the Overall Discovery Algorithm 142

6.1 Overview of System Architecture 151
6.2 Number of Unary INDs in Data Set INSURANCE 156
6.3 Number of Binary INDs in Data Set INSURANCE 156
6.4 Performance of Algorithm FIND2 Using CHECK and CHECKH 158
6.5 Quality of Algorithm FIND2 Using CHECKH 159
6.6 Relative Size of Largest IND Discovered, Data Set INSURANCE161
6.7 Quality of Heuristic Algorithm for Subsets Generated Through

Predicates . 164
6.8 Effect of the Size of Data Sources on Performance of FIND2 . 165
6.9 Effect of Noise on the Quality of FIND2 167

9.1 A Schema-Restructuring Query in SchemaSQL. 184
9.2 The Four SchemaSQL Operators Unite, Fold, Unfold,

Split. 189
9.3 The Algebra Tree for the Example in Fig.9.1 194

10.1 The SchemaSQL View Maintenance Algorithm 199
10.2 Propagation Rules for Q=Unfoldap,ad

(R) 204
10.3 Propagation Rules for Q=Foldap,ad,A∗(R) 205
10.4 Propagation Rules for Q=Splitap(R) 206
10.5 Propagation Rules for Q=Uniteap(R1, R2, . . . , Rn)1 207
10.6 Propagation of add-tuple(∆R) through an Unfold-Operator 209
10.7 Update Propagation in the View from Figure 9.2. See Sec-

tion 10.1.5 for explanation. 210
10.8 Batched Update Propagation Rules for Q=Unfold ap,ad

(R) . 215
10.9 Batched Update Propagation Rules for Q=Fold ap,ad,A∗(R) . 216
10.10Batched Update Propagation Rules for Q=Split ap(R). Note

that A∗ = {q1, q2, . . . , qk} is the set of output relation names. 216

LIST OF FIGURES xi

10.11Batched Update Propagation Rules for
Q=Unite ap(R1, R2, . . . , Rn) 217

10.12A SchemaSQL Algebra Tree. 218

11.1 The architecture of the SchemaSQL View Maintenance System225
11.2 View Maintenance and Recomputation Times vs. Size of

Deleted Base Relations . 229
11.3 Deleting Tuples from the Input Schema 232
11.4 Base Updates lead to Data Updates or Schema Changes . . . 233
11.5 Update Propagation under Views of Different Selectivities . . 235

B.1 Brute-Force Algorithm to Find Cliques in a k-Uniform Hy-
pergraph . 256

1

Part I

Information Integration

2

Chapter 1

Introduction

1.1 Information Integration—Background

One important use of computer technology has always been the storage,

processing, retrieval and presentation of data and information. While sev-

eral different definitions of information exist, we will refer to data as dis-

crete objects stored in a computer system, while information is data that

has meaning to a human user. Information is typically stored as data in

databases, while database management systems provide services to access

databases [EN94].

Due to changing requirements, advances in database theory and com-

puter technology, and the tendency of users to retain legacy databases, a

large number of different principles for the organization of data in database

systems are in existence. Examples include the historic hierarchical and

network data models [EN94], the commercially most successful relational

model [Cod70], and the later approaches of object-oriented (e.g., [LAC+93]),

1.1. INFORMATION INTEGRATION—BACKGROUND 3

object-relational [Ram97], and semistructured data models [Abi97, BDT98,

BPSM97].

While all these data models have advantages and are used to different

extents, there is a common inherent difficulty to all: modelling information

for a database (i.e., creating a schema for a given set of information) is not

trivial. There are typically many ways of finding an appropriate schema

for a given application, and the range of possible schemas varies with the

expressiveness of the underlying data model [Hul86, MIR94]. Many mod-

elling languages (e.g., [Che76, EWH85]) and methodologies [HK87, Eic91]

have been proposed to obtain a schema for a given application. However,

the process remains difficult for any data model, and an “algorithm” (i.e.,

an automatic procedure free from human interference) for modelling has not

been found [MIR93, LSS96].

Advances over the last decade in networks and general computing tech-

nology have made it possible to access data from different, possibly remote,

data sources and view and/or combine them in a single location. The in-

creasing desire to access data from different sources in a uniform way thus

led to a large field of research: information integration. This term refers

to the process of building database systems that access data from multiple

sources that may differ in data, schema, and even data model. In addi-

tion to the difficulties in using one data model or schema, there are now

problems of integrating different databases with one another, see for ex-

ample [AMM97, BRU97, GRVB98]. Thus, a widely studied problem in

the area of database systems is the schema integration problem, i.e., the

question how related databases can conceptually be used together in an

1.2. SOME ISSUES IN INFORMATION INTEGRATION 4

application [BLN86, SL90, PBE95, HZ96, RB01].

1.2 Some Issues in Information Integration

Figure 1.1 gives an overview over some of the important issues in informa-

tion integration and introduces some terminology used in this dissertation.

We are not concerned with physical integration but exclusively with logical

integration, as defined in the figure.

Resource

Identification

and Discovery

Identification of

access patterns,

schema,

data model

Identification of

Meta Data;

Source Relationships

Conversion and

Reconciliation of

Incompatible Data

Query decomposition;

Obtaining and

combining results

bandwidth;

security;

availability;

network protocols

Maintenance of

Correct Results;

A to IS

changes

daptation

Data IntegrationSchema Integration

Logical IntegrationPhysical Integration

Information Integration

Figure 1.1: Tasks in Information Integration

The process of logical information integration (i.e., building a database

system integrating other source databases) involves two essential phases

(Fig. 1.1): (1) setting up an organizational structure (model, schema, data

objects) for the integrated database (“schema integration”), and (2) actually

providing data to a user (“data integration”).

In the first phase, two tasks arise:

1.2. SOME ISSUES IN INFORMATION INTEGRATION 5

• Obtaining (by human input or automatic discovery) as much schema

information as necessary about the sources, for example through man-

ual input [BLN86, RB01], inference from existing meta-information

[PSU98, LNE89], or data-driven discovery [DP95, LC00]. This is nec-

essary to find a good global structure for the integrated database.

• Performing the actual integration, i.e., identification of ways to trans-

late data models [GMHI+95, TRV96, RS97, GRVB98] and schemas

[SL90, LSS96] of each source to fit into the global data view that is

presented to the user.

For the second phase of data integration, important steps include break-

ing down global queries for the information sources, converting data, and

maintaining consistency of the results. Different approaches to data integra-

tion have been taken, most notably mediators [Wie92, HGMN+97, LYV+98,

TRV96, BRU97] and (materialized) views [EN94].

In the latter approach, data is provided as a view, i.e., a result of a query,

called a view definition. View-based information integration is characterized

by the following features:

• security: Views make it possible to give users access only to certain

data elements (e.g., through export schemas [SL90]).

• performance: Views can be materialized (i.e., their view extents

can be replicated at the location of the view) to minimize access to

the sources [EN94]. Materialized views are closely related to Data

Warehouses [Rou98].

1.2. SOME ISSUES IN INFORMATION INTEGRATION 6

• durability: Views can be incrementally updated when data sources

change [BLT86, ZGMW96, NLR98]. This process is referred to as

view maintenance. Even view definitions (as opposed to only the view

extent) can be adapted to changing source, for example when sources

change their schema or become unavailable [NLR98] (“view synchro-

nization”). The EVE-System, described in Sec. 2, provides for view

maintenance under both data and schema changes.

• uniformity: Depending on the view definition language, differences

in schema and model of underlying sources can be made transparent

to some extent. Differences that can be made transparent range from

simple translation of data types to more complex issues of schema

heterogeneity [SL90, LSS96].

However, there are important unsolved problems in both phases of in-

formation integration.

One problem that has recently become more and more important arises

from the fact that data sources that are to be integrated have often been

developed independently from one another [LSS96]. While such sources may

be storing related data, they are often schematically heterogeneous, which is

the situation in which “one database’s data (values) correspond to metadata

(schema elements) in others” [KLK91].

Such databases are also usually maintained by independent entities,

meaning that changes in their data or even schema can occur at any time and

cannot be controlled by operators or users of the integrated database system.

Clearly, there is a need for integration methodologies that can (1) transform

1.2. SOME ISSUES IN INFORMATION INTEGRATION 7

schemas [LSS96], (2) “survive” schema changes in the sources (i.e., adapt to

such changes without becoming undefined) [LNR01], and (3) incrementally

update views defined over such sources [AESY97, NR98, NLR98]. While

some solutions have been proposed for each phase, there is so far no com-

prehensive solution for the entire process of maintaining a view over hetero-

geneous databases.

Another problem is that the schemas of databases are often not fully

known or understood when databases are to be integrated. Reasons for the

absence of schema information include, for example, a lack of cooperation

by providers (e.g., when Web sites are used as information sources) or a

lack of documentation of the sources (e.g., when companies merge and in

the process need to integrate legacy databases with one another). One field

of research in which solutions for the gathering of additional information

about the structure of a database have been developed is known as knowledge

discovery in databases (KDD) [FPSS96, FPSSU96, Fay97, PF91].

A related issue is redundancy across data sources. Different data sources

may be partly or completely redundant, for example if independent data-

bases contain data about the same real-world entities or if partial or com-

plete backup data is available for some database [LNR01, Dus97, KLSS95].

Redundancies in databases, if known to a user, can be helpful in provid-

ing higher availability of integrated databases [NR98]. Knowledge about

redundancies can also help with integrating databases in general, for exam-

ple when different entities collecting similar data are combined, as is the

case with many company-mergers. As such knowledge about the relation-

ships between databases is very useful, it is important to find strategies to

1.2. SOME ISSUES IN INFORMATION INTEGRATION 8

discover such knowledge if it is not available.

In summary, database technology in a networked world would benefit

greatly from a solution to the following information integration problem:

Given a set of databases that may be semantically related but

may differ in data model and schema, provide a view over those

databases such that the greatest amount of information relevant

for the user is extracted from the available data. To find the

best possible views, it will generally be necessary to exploit the

interrelationships and redundancies between data sources.

A general automated solution to this problem does not seem within

reach, however many interesting proposals have been made [EW94, KLSS95,

GMHI+95, TRV96, GKD97, RS97, AKS96, LNR01]. Previous work in which

the author of this dissertation participated includes a solution to some of

the problems mentioned above. The EVE-Project ([NLR98] and others,

Sec. 2) defines a materialized view management system that, among other

features, is able to maintain views under schema changes of underlying in-

formation sources. While this is an important contribution to the field of

information integration from independent sources, there are shortcomings of

the EVE-approach. Two important shortcomings are the fact that (1) only

data sources that can be queried together in one SQL-query can be inte-

grated, and (2) that in order to maintain views under schema changes, the

system need meta-information about the relationship between sources that

is not generally available. In this way, the EVE-Project provided some of the

motivation for the problems tackled in this dissertation. A brief overview

1.3. PROBLEM DEFINITION 9

of the EVE-System and its significance in our context can be found in the

next chapter.

1.3 Problem Definition

1.3.1 Discovery of Inclusion Dependencies

Usually, meta information about sources, such as the semantics of schema

objects, functional dependencies, or relationships between different data

sources, is not explicitly available for an integration effort. Often, only

the schema is known (or can be queried) and data can be queried through

some kind of interface (e.g., using a query language such as SQL). However,

many other kinds of meta information about sources would be beneficial to

perform meaningful information integration.

One important class of meta information is the class of constraints that

restrict the possible states of an information source. Such constraints are

useful in the determination of relationships between sources [LNE89] and

thus for information integration. Some integration systems perform a semi-

automatic integration using such constraints (e.g., [GKD97, KLSS95]). Such

approaches, as well as manual or (hypothetical) fully automatic integration

systems, would benefit greatly from the availability of as much meta-infor-

mation as possible about the sources to be integrated. The manual search

for such constraints is tedious and often not possible. This is true in par-

ticular when many related information sources are available or when large

relations (with many attributes) are to be compared for interrelationships.

Therefore, the question of whether it is possible to automatically discover

1.3. PROBLEM DEFINITION 10

meta-information in otherwise unknown data sources is important and has

been approach by a number of authors,e.g., [SF93, LNE89, KMRS92].

Clearly, the existence of a constraint cannot be inferred from an inspec-

tion of the data, as any suspected constraint may only hold temporarily or

accidentally. However, it is possible to gather evidence for the existence of

a suspected constraint (a process usually referred to as discovery) by the

determination of patterns in source data. The assumption underlying this

discovery is that if a large part of a database supports a hypothesis about

a constraint and there is no evidence to refute the hypothesis, then this

constraint is likely to exist in the database.

While some types of constraint discovery have been studied to some

extent (for example, functional dependencies [SF93] and various key con-

straints [LNE89]), one important class of constraints, namely inclusion de-

pendencies, has received little attention in the literature thus far. Inclusion

dependencies express subset-relationships between databases and are thus

important indicators for redundancies between data sources. Therefore, the

discovery of inclusion dependencies is important in the context of informa-

tion integration.

While inference rules on such dependencies have been derived in the lit-

erature [CFP82, Mit83], the discovery of inclusion dependencies has not yet

been treated thoroughly. A paper by Kantola et al. [KMRS92] provides

some initial ideas and a rough complexity bound. It has also been argued in

the literature [LV00] that a new database normal form based on inclusion de-

pendencies (IDNF) would be beneficial for some applications. Furthermore,

there is some work on the discovery of relationships between web sites, in

1.3. PROBLEM DEFINITION 11

which web sites with their hyperlinks are modelled as graphs [CSGM00].

1.3.2 Incremental Maintenance of Schema-Restructuring Views

It is known [MIR94, GLS96, GLS+97] that, in any data model, there is no

unique or even “best” database schema for a given application. As a conse-

quence, there are many databases in the “real world” that can store the same

data (i.e., whose databases states can be mapped by an isomorphism) but

that may use incompatible schemas. Such databases are referred to as se-

mantically equivalent [MIR93], but schematically (or syntactically [LSS96])

heterogeneous.

Incompatibility (or schematic heterogeneity) is generally defined with

respect to some query language, i.e., two databases are incompatible (or

schematically heterogeneous) if the query language used to query them can-

not produce identical query results even if the two databases contain iden-

tical information. With respect to SQL (as well as OQL and its variants),

semantically equivalent databases are often incompatible [LSS96, LSS99].

Incompatibility with respect to SQL is due to the limited query capabilities

of SQL, such as the requirement that elements of the SELECT-clause be con-

stants, that aggregation can only occur over single attributes, that attribute

and relation names (“schema”) are treated in a fundamentally different way

from values in tuples (“data”), or that in SQL there is no support for any

kind of loop through schema elements. Lakshmanan et al. [LSS96] have

proposed a query language called SchemaSQL that overcomes many of those

restrictions. Data and schema of relational tables are treated in a uniform

way (i.e., there is no distinction between schema values such as attribute

1.4. APPROACH AND CONTRIBUTIONS 12

names and data values), with the effect that a larger number of databases

can be restructured into one another, removing much of the incompatibility.

However, SchemaSQL (and other such proposals, such as MSQL

[LAZ+89] or XSQL [KKS92]) have only been defined as query languages,

not view definition languages. So far, no incremental view maintenance

schemes have been developed in the literature. While there is much work in

incremental view maintenance for the standard relational data model, such

as [BLT86, ZGMW96, AESY97], it is not possible to simply adapt that

work to schema-restructuring views. One problem is that traditional SQL

view maintenance assumes that data updates have a particular schema and

that any change to the view can be expressed as a delta-relation (i.e., a set

of tuples describing the difference between old and updated view). These

assumptions do not hold for SchemaSQL and other schema-restructuring

languages. Furthermore, view maintenance traditionally only takes data

updates into account, whereas in schema-restructuring languages data up-

dates may be transformed into schema changes, and vice versa.

1.4 Approach and Contributions

In this dissertation, we propose solutions for the two problems in

information integration described in Sec. 1.3: a comprehensive,

fully automatic, methodology for the discovery of inclusion de-

pendencies in databases and a framework including an algorithm

for the incremental maintenance of schema-restructuring views.

Fig. 1.2 gives a general overview of related solutions in the field of infor-

1.4. APPROACH AND CONTRIBUTIONS 13

mation integration, based on the classification given in Fig. 1.1. It includes

the author’s previous contributions to the EVE project (Sec. 2) and places

this dissertation’s solutions in the overall information integration context.

In the following sections, we give a brief overview over the assumptions

made for the two major information integration solutions provided in this

dissertation and describe the scope of the solutions provided.

1.4.1 Discovery of Inclusion Dependencies

Inclusion dependencies are rules between two tables R and S of the form

R[X] ⊆ S[Y], with X and Y attribute sets. The discovery of inclusion de-

pendencies is an NP-complete problem, as Kantola et al. [KMRS92] have

shown. The number of potential inclusion dependencies between two tables

is exponential in the number of attributes in the two relations. However, the

number of interesting inclusion dependencies (i.e., such dependencies that

are not subsumed by others or that actually express some semantic relation-

ship between tables) is often quite small. Therefore, the problem of finding

those “interesting” dependencies is difficult, but solvable as we will show.

In this dissertation, we propose an automated process for the discovery

of inclusion dependencies in databases under three assumptions:

• The data model of the databases in question must include the concept

of attributes (“columns” of data), cannot have complex objects (such

as nested relations), and cannot have pointers or cross-references be-

tween data objects. The relational data model, currently the most

widely used, satisfies this requirement. For other data models, such

1.4. APPROACH AND CONTRIBUTIONS 14

R
e

so
u
rc

e

Id
e

n
tif

ic
a

tio
n

a
n
d

D
is

c
o

v
e

ry

Id
e

n
tif

ic
a

tio
n

o
f

a
c

c
e

ss
p

a
tt
e

rn
s,

sc
h
e

m
a

,

d
a

ta
m

o
d

e
l

Id
e

n
tif

ic
a

tio
n

o
f

M
e

ta
D

a
ta

,

So
u
rc

e
R
e

la
tio

n
sh

ip
s

C
o

n
v
e

rs
io

n
a

n
d

R
e

c
o

n
c

ili
a

tio
n

o
f

In
c

o
m

p
a

tib
le

D
a

ta

Q
u
e

ry
d

e
c

o
m

p
o

si
tio

n
,

O
b

ta
in

in
g

a
n
d

c
o

m
b

in
in

g
re

su
lts

M
a

in
te

n
a

n
c

e
o

f

C
o

rr
e

c
t
R
e

su
lts

;

A
to

IS

c
h
a

n
g

e
s

d
a

p
ta

tio
n

Sc
h
e

m
a

-R
e

st
ru

c
tu

rin
g

Q
u
e

ry
La

n
g

u
a

g
e

s

E
v
o

lv
a

b
le

V
ie

w
E
n
v
iro

n
m

e
n
t
(E

V
E
)

In
c

r.
V
M

o
f
Sc

h
e

m
a

-R
e

st
ru

c
tu

rin
g

V
ie

w
s

D
is

c
o

v
e

ry

P
re

v
io

u
s

w
o

rk
b

y
a

u
th

o
r

C
u
rr
e

n
t
D

is
se

rt
a

tio
n

M
e

d
ia

to
rs

R
e

la
te

d
w

o
rk

M
a

te
ria

liz
e

d
V
ie

w
s

Sc
h
e

m
a

In
te

g
ra

tio
n

P
ro

je
c

ts

Sc
h
e

m
a

In
te

g
ra

tio
n

D
a

ta
In

te
g

ra
tio

n

F
ig
ur
e
1.
2:

P
re
vi
ou

s
an

d
C
ur
re
nt

So
lu
ti
on

s
in

In
fo
rm

at
io
n
In
te
gr
at
io
n.

D
ar
ke
r
Sh

ad
in
g
in

a
B
ox

R
ep
re
se
nt
s
a

M
or
e
C
om

pr
eh

en
si
ve

So
lu
ti
on

.

1.4. APPROACH AND CONTRIBUTIONS 15

as object-oriented models or semi-structured models (XML), slight re-

strictions must be imposed on possible data sources.

• The data sources must provide the names and perhaps the types of

their schema elements (i.e., the schema must be available).

• The data sources must support the testing of a given inclusion depen-

dency, for example through some query language.

No further requirements are made of the data sources.

Under these assumptions, our algorithm, named FIND2, will discover in-

clusion dependencies between two given data sources (see box labeled “Dis-

covery” in Fig. 1.2). Since the general problem is NP-complete, a full solu-

tion cannot always be found. Therefore, the FIND2 algorithm will first at-

tempt to discover all such dependencies, if the problem size is small enough.

For problems that exceed a certain size it will apply heuristics to either dis-

cover the largest inclusion dependency between the data sources or at least

find some large dependency for very large problems. The algorithm will

report whether it has found the complete or only a partial solution.

Our approach uses a mapping of the inclusion dependency discovery

problem to the clique-finding problem in graphs and k-uniform hypergraphs.

As the clique finding problem itself is also NP-complete [GGL95], additional

heuristics are used when the problem size exceeds certain limits to restrict

the size of the graphs involved and find a partial or complete solution to the

problem.

The contributions of this work are as follows:

1. We give a complete theory of the discovery of inclusion dependencies.

1.4. APPROACH AND CONTRIBUTIONS 16

2. We present an algorithm for an exact solution of the problem for

smaller problem sizes (relations with fewer than 30–40 attributes).

3. We propose heuristics that can be applied for large problem sizes (up

to about 100 attributes).

4. We have implemented all algorithms and heuristics.

5. We have performed extensive experiments on our implementation of

the FIND2 algorithm over relational databases. The experiments show

the feasibility of the approach and prove that even for relations of 80

attributes and 100, 000 tuples, the discovery of inclusion dependencies

is possible within reasonable time (on the order of magnitude of a few

hours on a standard 400-MHz-Pentium-PC).

1.4.2 Incremental Maintenance of Schema-Restructuring Views

A schema restructuring view is a view defined in a schema-restructuring

query language like SchemaSQL [LSS96]. Incremental view maintenance

in such views is fundamentally different from traditional incremental view

maintenance. One important reason is that it is necessary to handle schema

changes in addition to data updates. Furthermore, due to the conversion

between data and schema elements that is a main feature of schema-re-

structuring query languages, the computation of updates to a view based

on source updates becomes much more complicated compared to standard

relational view maintenance.

In this dissertation, we give an algebra-based solution for incremental

1.4. APPROACH AND CONTRIBUTIONS 17

view maintenance in schema-restructuring views, under the following as-

sumptions:

• The data sources must be relational (this is a requirement of the class

of query language used, in particular SchemaSQL).

• We must have access to the data sources through a query language

(e.g., SQL)

• Data sources must notify the view maintenance system about their

updates, i.e., we do not study the problem of change discovery itself.

We solve the issues that arise in incremental view maintenance for sche-

ma-restructuring views, using SchemaSQL as an example for the view def-

inition language (see the box labeled “Incr. VM of Schema-Restructuring

Views” in Fig. 1.2). We observe that, due to the possible transformation of

“schema” into “data” and vice-versa, we must not only consider data up-

dates (DUs) for SchemaSQL, but also schema changes (SCs). A consequence

is that, as shown in this work, using the standard approach of generating

query expressions that compute some kind of “delta” relation ∆ between

the old and the new view after an update is not sufficient. Our algorithm

thus transforms an incoming (schema or data) update into a sequence of

schema changes and/or data updates on the view extent.

The contributions of this part of our work are as follows:

1. We identify the new problem of schema-restructuring view mainte-

nance.

2. We give an algebra-based solution of this view maintenance problem.

1.5. ORGANIZATION OF THIS DISSERTATION 18

3. We prove this approach correct.

4. We develop a prototype implementation of a query engine and incre-

mental view maintenance system for SchemaSQL.

5. We describe performance experiments showing the improvements of

this approach over recomputation.

1.5 Organization of this Dissertation

This dissertation is organized into four parts. Part I includes this introduc-

tion (Chapter 1) and reviews problems and solutions in information inte-

gration, in particular the EVE-Project (Chapter 2) to which the author has

made contributions and which has provided some of the motivation for the

work in this dissertation.

Part II describes the discovery of inclusion dependencies. Chapter 3

introduces the problem and reviews background. Chapter 4 describes algo-

rithm FIND2 which finds the exact solution to the problem for smaller-size

problems. Chapter 5 introduces heuristics and supplements algorithm FIND2

by algorithm CHECKH, adding heuristics to find partial or complete solu-

tions for larger problems. Chapter 6 shows our experimental results and

Chapter 7 reviews related work.

Part III deals with the incremental maintenance of schema-restructuring

views. Chapter 9 introduces the topic and reviews background. Chap-

ter 10 introduces our incremental view maintenance strategy for schema-

restructuring views, including detailed rules for update propagation for both

1.5. ORGANIZATION OF THIS DISSERTATION 19

single and batched updates. Chapter 11 gives summaries of our performance

experiments and Chapter 12 reviews related work.

Finally, Part IV concludes the dissertation. Chapter 14 summarizes our

results and lists starting points for future work. Two additional algorithms

that were used in the discovery work are presented in Appendices A and B,

respectively.

20

Chapter 2

The Evolvable View

Environment (EVE)

2.1 Maintenance of Views Under Schema Changes

In this chapter, we will give a brief overview of the EVE project, as it

provides additional motivation for the importance of the issues approached

in this dissertation. Shortcomings of the EVE work led us to tackle the

problems solved in this dissertation.

The focus of this dissertation lies on information integration. While this

has been an important field of research for a long time, newer developments,

such as the World Wide Web, have increased the importance of integration.

An important feature of the WWW is the inherent independence of data

producers from data consumers. Independent data producers or providers

have control over the capabilities (schema) of their information sources which

raises the question of the influence of schema changes (deletions, renames,

2.1. MAINTENANCE OF VIEWS UNDER SCHEMA CHANGES 21

and additions of attributes or relations in underlying databases) on a view.

In traditional views (as introduced in the literature, e.g., [BLT86, ZGMW96,

AESY97]), schema changes can render a view definition undefined.

Two general approaches that can address this problem have been pre-

sented in the literature. One approach taken by Levy et al. [LSK95], as

well as Arens et al. [AKS96] is to create a global domain model, i.e., an

a-priori defined schema fixed in time that defines all possible attributes and

relations in a given domain (“world view”). Over such a domain model,

information providers define views that specify which part of the world’s

data they provide. Consumers also query the domain model. An algorithm

then rewrites a consumer’s query in terms of the providers’ views currently

available and thus provides the consumer with whatever data happens to

be available at the moment. Changes would then only be possible in the

views, while the domain model never changes, and could be accommodated

by query rewriting algorithms that rewrite queries using views.

The inverse approach, explored by the author and others in a number

of publications in the context of the EVE project [RLN97, NLR98, NR98,

KRH98, KR99, LKNR99b, KR00] neither relies on a globally fixed domain

nor on an ontology of permitted classes of data—both strong assumptions

that are often not realistic. Instead, views are built in the traditional way

over a number of base schemas and those views are adapted to base schema

changes by rewriting them using information space redundancy and relax-

able view queries [RLN97, RLN97, NLR98, NR98, KRH98, Nic99]. The

benefit of this approach is that no pre-defined domain (which is hard to

establish and to maintain) is necessary, and a view can adapt to changes in

2.2. THE EVE-SYSTEM–OVERVIEW 22

the underlying data by automatically rewriting user queries (without human

intervention).

In the EVE-Project, the author of this dissertation and others have

defined algorithms that can rewrite a view definition under schema changes

(in particular deletions) of underlying sources and retain all or a part of the

view extent in the new rewritten view. The notion of non-equivalence of view

rewritings has been defined [NLR98], and a model for a numeric assessment

of the quality and cost of such rewritings has been presented [LKNR99b].

However, the EVE-Project has several important shortcomings that pro-

vided the motivation for some of the work presented in this dissertation. We

will give a brief overview over the work done in the EVE-project and its sig-

nificance in general and for this dissertation in particular.

2.2 The EVE-System for Synchronization of Ma-

terialized Views

The Evolvable View Environment (EVE), to which the author of this disser-

tation made several contributions [KRH98, KR99, LKNR99b, KR00, KR01],

is a materialized view maintenance framework that is able to maintain views

over dynamic distributed data sources. Source updates include both the

commonly studied data updates and the previously unexplored update class

of schema changes (deleting, renaming, and adding relations and attributes).

EVE consists of several modules (Fig. 2.1) that accomplish the tasks de-

scribed below.

The EVE-Middleware integrates data sources through wrappers and sup-

2.2. THE EVE-SYSTEM–OVERVIEW 23

plies data specified through view queries to a user. Its major components

are a Multidatabase Query Engine that collects data and handles the prop-

agation of updates and maintenance queries, as well as a Materialized View

Evolver that tracks schema changes in underlying sources and keeps the

MKB synchronized with source schemas. To support those components,

EVE keeps two meta-data stores. The View Knowledge Base contains

the definitions of user views in an SQL-like language. The Meta Know-

ledge Base, similar to the University of Michigan Digital Library system

[NR97a, NR97b], stores information about source schemas and source re-

lationships. The Meta Knowledge Base (MKB) is a resource that can be

exploited when searching for an appropriate substitution for the affected

components of a view in the global environment. The structure of VKB and

MKB data is discussed below.

Several modules fulfill subtasks in the general EVE-System. The View

Synchronizer rewrites views if otherwise a view would become undefined

after a source schema change. The View Maintainer adapts view extents

incrementally after view rewritings, reducing the amount of data requested

from the sources. The QC-Computation and View Selection module com-

pares different possibilities for view rewritings and chooses a desirable one.

The Concurrency Control module resolves concurrency issues between data

updates and/or schema changes in the information sources.

2.2.1 A Model for Information Source Description

The purpose of view synchronization in EVE is to preserve useful view

information in terms of the view interface as well as the view extent, to

2.2. THE EVE-SYSTEM–OVERVIEW 24

M
a

te
ri
a

liz
e

d
V
ie

w
E
v
o

lv
e

r

V
ie

w

Sy
n
c

h
ro

n
iz

e
r

C
o

n
c

u
rr
e

n
c

y

C
o

n
tr
o

l

V
ie

w
U
se

rs

(C
lie

n
ts

)

R
D

B
M

S

E
x
te

rn
a

l

D
a

ta
X

M
L

sc
h
e

m
a

c
h
a

n
g

e

n
o

tif
ic

a
tio

n
s

V
ie

w
K
n
o

w
le

d
g

e

B
a

se

M
e

ta
K

n
o

w
le

d
g

e
B

a
s
e

u
p

d
a

te
n
o

tif
ic

a
tio

n
s

q
u
e

rie
s/

q
u
e

ry
re

su
lts

EVE-Middleware

p
a

rt
ia

ls
e

m
a

n
tic

o
v
e

rla
p

M
u
lt
id

a
ta

b
a

se
Q

u
e

ry
E
n

g
in

e

In
c

re
m

e
n
ta

l

V
ie

w

M
a

in
te

n
a

n
c

e

(S
W

E
E
P,

P
S
W

E
E
P
)

Q
C

-C
o

m
p

u
ta

tio
n

&

V
ie

w
Se

le
c

tio
n

V
ie

w
V
e

rs
io

n
s

V
ie

w
D

e
fi
n

e
r B

e
st

V
e

rs
io

n

Tr
ig

g
e

r
V
ie

w

M
a

in
te

n
a

n
c

e

V
ie

w

M
a

in
ta

in
e

r

Q
u
e

ry

B
re

a
kd

o
w

n
a

n
d

R
e

a
ss

e
m

b
ly

V
ie

w
S
yn

c
h
ro

n
iz

a
ti
o

n

A
lg

o
ri
th

m
s

(P
O

C
,

C
V
S
,

..
.)

V
ie

w
s

m
e

ta
-d

a
ta

G
lo

b
a

lN
e

tw
o

rk

(e
.g

.,
In

te
rn

e
t)

F
ig
ur
e
2.
1:

T
he

Fr
am

ew
or
k
of

th
e
E
vo
lv
ab

le
V
ie
w

E
nv

ir
on

m
en
t
(E

V
E
).

2.2. THE EVE-SYSTEM–OVERVIEW 25

the largest degree possible. This requires us to be able to find alternative,

ideally semantically equivalent, replacements for components of a view def-

inition that may be no longer available from one of the information sources

(ISs). To accomplish this task, EVE contains a model for the description

of both the capabilities of each IS as well as interrelationships between ISs.

The availability of such type of knowledge is a critical resource that can be

exploited when searching for appropriate substitutions for the affected com-

ponents of a view in the global environment. While several different types

of meta-information are used in EVE, the most important form of useful

information is knowledge about containment between relations or their pro-

jections. However, such information is not always explicitly provided by

information providers, in particular when the sources to be compared be-

long to independent or competing providers.

Here, an automated way of “mining” some containment information

about information sources would be very helpful in filling the EVE MKB

with useful data. In fact, this requirement of the EVE system provided some

of the motivation for the work discussed in Part II of this dissertation. Our

solution of the inclusion dependency discovery problem presented in this

dissertation can be used to discover containment information in databases.

We will briefly review containment constraints, which serve as the tool for

modeling containment in EVE, to point out their similarity to the inclusion

dependencies discussed in Part II of this dissertation.

A containment constraint between two relations R1 and R2 states that

a (horizontal and/or vertical) fragment of R1 is semantically contained or

equivalent to a (horizontal and/or vertical) fragment of R2.

2.2. THE EVE-SYSTEM–OVERVIEW 26

Consider the containment constraint shown in Figure 2.3 which is defined

over the example information space in Fig. 2.2. This containment constraint

shows that the projection on the Holder and Age attributes of relation Insur-

ance forms a superset of the projection on attributes Name, Age of relation

BackBay for all tuples in Insurance whose Amount is over 1, 000, 000 and

whose Age is under 50.

IS 1: Flight Information
Customer(Name,Address,PhoneNo,Age)
FlightRes(PName,Airline,FlightNo,Source,

Dest,Date)
IS 2: Insurance Information
Insurance(Holder,Type,Amount,Age)
PreferredCust(PrefName,PrefAddress,

PrefPhone)
IS 3: Tour Participant Information
Participant(Name,TourID,StartDate,Location)
Tour(TourID,TourName,Type,NoDays)

Figure 2.2: Example Information Source Content Descriptions

CCCustomer,Insurance =(
πInsurance.Holder, Insurance.Age(σ(Insurance.Amount>1,000,000)Insurance)

) ⊆
πCustomer.Name,Customer.AgeCustomer

Figure 2.3: A Containment Constraint in the Example Information Space

It is clear that containment constraints are closely related to inclusion

dependencies (INDs) which are the focus of Part II of this dissertation.

In fact, INDs are simply a special case of containment constraints, with a

set relationship of “⊆” or “⊇” and no selection conditions. Therefore, the

discovery of INDs between relations would provide very valuable information

2.2. THE EVE-SYSTEM–OVERVIEW 27

that could be used to form containment constraints for the EVE-System.

2.2.2 A Preference Model for View Evolution

View definers themselves need to be able to control the view evolution pro-

cess, as they are knowledgeable about the extent to which the different com-

ponents of a view are critical or dispensable. For example, a view definer

may know that one attribute (say the attribute Name) is indispensable to

the view, whereas another attribute (say the attribute Address) is desirable

yet can be omitted from the original view definition, if keeping it becomes

impossible, without jeopardizing the utility of the view.

While on the one hand we do desire user input to inform our system of

preferences about the most desirable view synchronization, we must face the

problem that the original view definer may no longer be around when a view

becomes affected by changes of its underlying sources. In addition, it may

not be practical to disable the view and to stop all applications dependent on

it until the original view definer (or other knowledgeable users of the view)

are available to help with this process. For this purpose we developed a view

definition language, called Evolvable-SQL (E-SQL)[RLN97], that incorpo-

rates evolution parameters into the SQL view definition language. E-SQL

allows the view definer to specify criteria based on which the view will be

evolved by the system. A typical E-SQL view is given in Figure 2.4.

The view-extent parameter VE ∈ {⊆,⊇,≡,≈} expresses the relationship
between the original and rewritten query as required by the view definer. For

instance, VE =“⊇” requires any query rewriting Vi for the current view V

to compute a superset of the original view extent (i.e., Vi ⊇ V). The value

2.2. THE EVE-SYSTEM–OVERVIEW 28

CREATE VIEW Asia-Customer (VE = “⊆”) AS
SELECT Name (AR = true), Address (AD = true)
FROM IS1.Customer C (RR = true), IS1.FlightRes F
WHERE C.Name = F.PName (CR = true) AND (F.Dest = ‘Asia’)

Figure 2.4: A Typical E-SQL View

VE =“≈” means no restrictions for the extent are given. Also, for each

element in the view definition’s SELECT-, FROM- and WHERE-clause, re-

spectively, two boolean values determine whether that view element is (1)

dispensable from the view definition and/or (2) replaceable with a meaning-

ful alternative from the information space. Those parameters are named

attribute-dispensable (AD), attribute-replaceable (AR), relation-dispensable

(RD), relation-replaceable (RR), condition-dispensable (CD), and condition-

replaceable (CR). For a full description of the E-SQL language, the reader

is referred to [LNR97].

The semantics of the query in Fig. 2.4 are as follows: Any rewriting of

the view query is acceptable as long as the new view extent is a subset of

the old one (expressed by VE = “⊆”); the attribute Address is dispensable

(expressed by AD = true) and attribute Name can be replaced from an-

other source (AR = true); the relation Customer (but not FlightRes) can be

replaced with another relation (RR = true) and the user will still have use

for the view even if the first WHERE-condition has to be replaced with a

similar one (CR = true).

2.2. THE EVE-SYSTEM–OVERVIEW 29

2.2.3 View Synchronization Strategies.

One of the primary objectives of EVE is to design alternate strategies (al-

gorithms) for evolving views transparently according to users’ preferences

as well as available information in the environment. Based on this solution

framework of E-SQL and the information source descriptions, we introduced

strategies for the transparent evolution of views. Our proposed view rewrit-

ing process, which we call view synchronization, finds a new view definition

that meets all view preservation constraints specified in the original view

definition, i.e., the preferences noted in the E-SQL definition. Furthermore,

it identifies and extracts appropriate information from other ISs as replace-

ment of the affected components of the view definition and produces an

alternative view definition. Important algorithms for view synchronization

are POC/SPOC [NR98], CVS [NLR98], as well as GRASP [KRH98] and

History-Driven View Synchronization (HD-VS) [KR00]. The later two are

by the author of this dissertation.

The POC Algorithm

Due to its simplicity, the most widely used algorithm in the EVE project

is the Project-Containment (POC) Algorithm. POC uses information from

containment constraints to rewrite views after source schema changes. De-

pending on the view evolution parameter specified by a user (see Fig. 2.4)

and the available containment information, POC replaces deleted attributes

or relations by alternatives found through containment constraints. The

constraint given in the view evolution parameter is kept valid by choosing

2.2. THE EVE-SYSTEM–OVERVIEW 30

only replacements that satisfying that parameter. In that process, it might

be necessary to introduce additional constraints in the WHERE-clause of

the view query.

Example 2.1 We define an information space (Meta Knowledge Base) ac-

cording to Figures 2.2 and 2.3. We consider the view Customer-Passengers in

Figure 2.4 and show how to apply the POC algorithm and find a replacement

under the schema change delete relation(Customer).

The POC algorithm uses containment constraints in the MKB that con-

nect the new relation to the remaining relations in the existing query. Here,

we can replace the attribute Customer.Age by the similar attribute Insur-

ance.Age in relation Insurance and join the new table with FlightRes using

the containment constraint from Figure 2.3. Then all view elements (i.e.,

attributes and WHERE-clauses) that depend on the old relation are replaced

by view elements using the new relation. A possible rewriting of the query

in Figure 2.4 using this substitution is given by the query in Figure 2.5.

CREATE VIEW Asia-Customer’ (VE = “⊆”) AS
SELECT I.Holder (AR = true)
FROM IS2.Insurance I (RR = true), IS1.FlightRes F
WHERE I.Holder = F.PName (CR = true)

AND (F.Dest = ‘Asia’)
AND (I.Amount>1,000,000)

Figure 2.5: A Possible Rewriting for a View.

This view rewriting will have no Address-attribute, as no address infor-

mation is available after the deletion of relation Customer. However, names

of customers are still available, as long as those customers had a large enough

2.2. THE EVE-SYSTEM–OVERVIEW 31

insurance policy, and will now come from information source IS2, from re-

lation Insurance.

History-Driven View Synchronization

All earlier view synchronization algorithms (i.e., SVS, POC/SPOC, CVS,

GRASP) are single-step algorithms and perform synchronization only after

delete-schema changes. They react to a single schema change in the underly-

ing relations with a single view synchronization step. The synchronized view

definition is then used as the basis for any further synchronization steps.

In particular, after the deletion of an underlying relation that has been

used by a view, the view is rewritten to not refer to that relation any more.

Even if the same relation is later added back to the information space (for

instance, after a temporary unavailability due to a network problem), it will

never be used by the view again since without a global domain model the

view synchronization algorithm cannot determine in what relationship a new

data element stands to other previously available elements.

As a solution to this problem, the author of this dissertation proposed

history-driven view synchronization (HD-VS) [KR00, KR01]. This is a pro-

cess capable of handling a more comprehensive set of information source

schema changes, namely adds, renames, and deletes of attributes and rela-

tions. Also, it is capable of rewriting views as necessary under changes of

constraints across the source databases (such as a containment relationship

defining that IS1.Hotels contains IS2.BostonHotels). The main contribution

of the HD-VS work is the use of additional available meta data to keep

views as close to their original definition as possible, under a sequence of

2.2. THE EVE-SYSTEM–OVERVIEW 32

meta data changes that occurs over time. We will give a brief overview of

the HD-VS algorithm for History-Driven View Synchronization.

• As in one-step synchronization (e.g., [NR98]), a synchronization occurs

after each meta data change for an affected view. However, now input

data are not only the current but also all previous states of MKB and

VKB as well as the meta data changes that occurred, i.e., the complete

history.

• If a view can be rewritten, the algorithm rewrites a valid view on

the old information space into a valid view on the new information

space. In certain cases, the algorithm falls back on the one-step view

synchronization algorithms (e.g., POC).

• Now, not only deletes and renames but also all adds of meta data are

considered. Meta data includes both schema such as relations and at-

tributes, as well as other constraints such as containment constraints.

• If a view is rewritten, its quality (usefulness to a user, Sec. 2.2.4) may

increase over the previous version (whereas the one-step algorithms

could never improve on quality), depending on the meta data change

that caused the synchronization.

• If a meta data item is deleted, the algorithm tries to compensate the

deletion with a previous add and vice-versa (“cancellation”). That

means that temporary unavailability of data can be accounted for.

The algorithm is capable of returning to a previous view definition if

appropriate.

2.2. THE EVE-SYSTEM–OVERVIEW 33

HD-VS uses three main concepts: backtracking in the history of a view,

re-applying a part of a meta data update sequence from that history, and

reconstructing part of the view’s history graph in the process of re-appli-

cation of meta data changes.

2.2.4 Cost Model for Evolved View Definitions

Unlike in traditional query processing research, we may need to construct

alternate view definitions as solutions that no longer are equivalent to the

original view, i.e., the view interface (set of attributes) may be reduced or the

number of tuples returned may not correspond to the original extent. EVE

thus contains a formal model of correctness for view synchronization that

characterizes what are “correct” view rewritings for a given view definition,

as well as what are measures that allow us to evaluate the quality of alternate

solutions. It is important to note here that existing cost measures of query

rewritings are only partially applicable to our problem domain, as we must

take relative quality of the amount of view preservation into account. It

is not sufficient to assess only the cost of synchronizing or maintaining the

view.

For this purpose the author of dissertation and others have developed

the QC-Model [LKNR99b] to estimate the quality and cost of the rewrit-

ings. Each legal query rewriting will in general preserve a different amount

(extent) and different types (interface) of information, which we refer to as

the quality of the view. Also, each new view query will cause different view

maintenance costs, since in general data will have to be collected from a

different set of ISs. With these two dimensions, the QC-Model can compare

2.2. THE EVE-SYSTEM–OVERVIEW 34

different view queries with each other, even if they are not equivalent. This

comparison is accomplished by assessing five different factors as outlined

below (full algorithm in [LKNR99b]).

• Quality Factors: Quality refers to the similarity (vs. divergence)

between an original view V and its n-th rewriting V (n) and is expressed

for an original view V by Q(V (n)).

– The Degree of Divergence in Terms of the View Interface deter-

mines how different the view interfaces of the two queries are.

This can be expressed numerically by counting the common and

non-common attributes in both queries and computing a percent-

age. For the purpose of this current work, we will abstract from

further details and instead refer to [LKNR98].

– The Degree of Divergence in Terms of the View Extent is deter-

mined by the relative numbers of missing and additional tuples in

the extent of a view rewriting (as compared to the extent of the

original view). In order to estimate the overlap between old and

new views, containment constraints are used, since they make

statements about relationships between relations. Again, the ac-

tual formulas can be found in [LKNR98].

• Cost Factors: Cost factors measure the (long-term) cost associated

with future incremental view maintenance after the view has been re-

written and the extent has been updated. The factors are Number of

Messages between data warehouse and information sources, Number

of Bytes Transferred through the network, and Number of I/Os at

2.2. THE EVE-SYSTEM–OVERVIEW 35

the ISs. Cost factors are combined into a single value using tradeoff

factors, and the combined cost value of a view rewriting is denoted by

C(V (n)).

Normalizing and then combining these factors yields the QC-Value for a

given rewriting QC(V (n)), a real number between 0 (bad) and 1 (good) that

can be used to assess the value of a given query rewriting for a particular

user (in terms of that user’s E-SQL query evolution preferences).

This Quality-and-Cost Model (QC-Model) [LKNR99b, LKNR99a] has

been developed in part by the author of this dissertation.

2.2.5 Maintenance of Materialized Views after Synchroniza-

tion

To assure minimal impact of view evolution on users of a view, we have

explored incremental techniques for updating the view extents after the def-

inition of a view has been synchronized. Our goal is to achieve the level

of efficiency needed to make the overhead for view synchronization minimal

from a user’s point of view. Previous work on view maintenance assumed

that only data updates were done on the underlying ISs instead of schema

updates [NR99]. This problem provides another motivation for this disserta-

tion. In Part III, we propose the first incremental view maintenance scheme

that can maintain views under both data updates and schema changes. We

demonstrate the principle of view synchronization under schema changes at

the example of SchemaSQL, but our concept can be used in the context of

the EVE-System as well.

2.2. THE EVE-SYSTEM–OVERVIEW 36

2.2.6 ViewMaintenance Under Concurrent Schema and Data

Updates

In general, ISs are not aware of and do not cooperate with the integrating

data warehouse in handling schema changes and data updates. Due to

the independence of the ISs, concurrent schema changes and data updates

may occur at any time in any order. The SDCC-System [ZR99] and the

Dynamic Data Warehouse (DyDa) system [CZC+01] are extensions of the

EVE-System and address those issues.

2.2.7 EVE-Implementation

To verify the feasibility of our proposed approach, we have implemented

a prototype of the EVE system and have demonstrated it at major confer-

ences [KLZ+97, RKL+98, RKZ+99, CZC+01]. The EVE system as depicted

in Figure 2.1 is implemented using Java. ISs in EVE are either stored in an

Oracle or an MS Access database, and communication between EVE mod-

ules and the ISs occurs through JDBC. The EVE graphical user interface,

written in Java, communicates with the underlying system via RMI.

37

Part II

Discovery of Inclusion

Dependencies

38

Chapter 3

Introduction and

Background

3.1 Introduction

In this work, we are concerned with the discovery of meta-information

(i.e., information about the syntax and semantics of data) in databases.

In this work, we use the relational data model, in which data (atomic simple

values such as numbers or strings) is stored in attributes (columns) that

are grouped in relations (tables), but other data models also support our

concepts. Rows in relational tables are referred to as tuples. In the rela-

tional model, a number of constraints have been defined [EN94] that impose

several useful restrictions on a table. Examples are keys (uniqueness con-

straints on attributes), functional dependencies (dependencies of the values

in one attribute on the values in the same tuple in other attributes), and

inclusion dependencies, explained below.

3.1. INTRODUCTION 39

3.1.1 Significance of Inclusion Relationships

Fagin [Fag81] suggests that inclusion dependencies (INDs) express an im-

portant relationship between relations. For example, he shows that relations

whose only intra-relational dependencies are functional dependencies can be

restructured into relations that have only INDs as inter-relational depen-

dencies. More specifically, a relation that has as its only constraints a set of

functional dependencies can be equivalently composed into a set of relations

that have only key constraints and inter-relational inclusion dependencies.

Fagin also presents a normal form for relational databases (DK/NF for

domain-key normal form) that attempts to use only INDs as inter-relational

dependencies.

In the context of data integration, INDs can help to solve a very com-

mon and difficult problem: discovering redundancies across data sources.

Due to the nature of data and its generation, information is often stored in

multiple places, with large amounts of redundancy. When trying to inte-

grate data sources that are likely to be (even partly) redundant, a method

to discover such redundancies would be very beneficial. One example in

which redundancy discovery would be helpful is the Evolvable View En-

vironment (EVE) [NLR98, KRH98] which is concerned with maintaining

views under schema changes by replacing deleted information sources with

partly redundant alternative sources. In general, the discovery of INDs will

be beneficial in any effort to integrate unknown databases. A reliable algo-

rithm to discover INDs will enable an integration system to incorporate new

data sources that would previously would not have been used since their

3.1. INTRODUCTION 40

relationships with existing data was not known. Examples of systems in

which our technology could be used to improve efficiency include data ware-

houses [Gar98], multidatabase systems such as Infomaster [GKD97], schema

integration systems such as ARTEMIS [BBC+00] or SemInt [LC95, LC00],

or other schema matching approaches like Clio [MHH00]. Many other uses

are conceivable in the field of data and schema integration, in which our tool

can be useful to a human integrator as a decision support tool.

In summary, whenever sufficient meta-information about data is not

available (i.e., whenever the constraints that exist in a database are not

known to a user), an algorithm that discovers candidates for INDs (since

dependencies as such cannot be “discovered” from a single state of the data-

base) would be very helpful in extracting such meta information. A tool

that solves this problem does not exist to date. Also, a manual extraction of

inclusion dependencies by domain experts does not seem feasible due to the

large number of information sources in the world, the potential high number

of attributes in real-world relations (50–100 attributes are common), and a

widespread lack of reliable meta-information about legacy databases. This

work deals with the efficient extraction of candidate sets for INDs from a set

of relations. We will show in the following that the discovery of such redun-

dancies is possible and feasible by way of establishing and testing inclusion

dependency candidates between given data sources.

As shown in the literature [KMRS92], the problem of finding even one

maximal inclusion dependency for two given relations is inherently NP-hard.

In the worst case, there is an exponential number of such dependencies for

a given set of attributes in two relations. We will show that despite this

3.2. BACKGROUND 41

inherent complexity, the discovery of inclusion dependencies is tractable

for real-world databases. The limits of applicability for our algorithms are

relations of approximately 100–150 attributes, while the extent size (number

of tuples) of each relation is only a linear factor for performance. The size of

tractable problems depends on a number of properties, such as the number of

distinct values in each attribute, and the solution found by our algorithms

is not always complete for large problems. However, the algorithm will

always will first attempt to find all INDs, then fall back to finding the

largest inclusion dependency, and if that is not possible either, will find large

inclusion dependencies that are not necessarily maximal. The algorithm can

be adapted to the available amount of computing time and will find better

solutions given more time. It also provides a measure of quality of the

solution.

3.2 Background

As explained above, we are concerned with discovering meta-information

about interrelationships between separate databases. We will focus on re-

lational databases, but our methodology is applicable to all data models in

which inclusion dependencies can be defined (i.e., in which simple values are

organized in attributes and some higher level such as relations).

The problem of discovering information and meta information from large

amounts of data is widely studied, in particular in the fields of KDD (Know-

ledge Discovery in Databases) [FPSS96] and AI (Artificial Intelligence) [RN95].

Most efforts in information discovery are concerned with the derivation of

3.2. BACKGROUND 42

patterns from the data available. Often, algorithms look for patterns which

suggest some kind of constraint between database objects. Naturally, con-

straints cannot be “discovered”. However one can detect data patterns that

would be allowed (or not allowed) under an assumed constraint and thus

accept or reject certain hypotheses about data patterns. Sometimes, this

process is called “constraint discovery” [LH97]. The term “dependency dis-

covery” seems to be more correct and is more widely used [KMRS92, BB95a].

We will first discuss inclusion dependencies and their theory and then

review additional dependencies whose theory is related to our problem in

Section 3.2.3.

3.2.1 Notation

For clarity, we review the notation used in this work. The notation is

similar to [CFP82], from which the following section has been adapted.

Throughout this work, we will denote set variables by capital letters and

variables that denote elements of a set by small letters. By “k-subset of X”

we mean a subset of X with cardinality k, while a “k-set” is simply a set

with cardinality k.

A value is an atomic element of data that is stored in a relation’s extent.

Examples include “Stanley Kubrick”, 1984, or 04/19/1972. A domain D is a

finite set of values.

An attribute is a bag (multiset) of values. A relation schema is a pair

(Rel, U) where Rel is the relation name and U = (a1, . . . , am) is a finite

ordered m-tuple of labels, which are called attribute names.

A relation is a 3-tuple R = (Rel, U,E) with Rel and U as above and

3.2. BACKGROUND 43

E ⊆ D1 ×D2 × . . .×Dn the relation extent. The sets D1, . . . ,Dn are called

the domains of R’s attributes. A tuple in relation R = (Rel, U,E) is an

element of E. An operator t[a1, a2, . . . , ak] returns the projection of t on the

attributes named a1, a2, . . . , ak. To be more specific about our definition

of attribute, we can define an attribute Ai as a bag constructed as follows:

Ai = {t[ai]|t ∈ E} or, in short, Ai = E[ai].

We write Rel[U] or Rel[a1, . . . , am] when referring to the projection of a

relation on a set of attributes. Note that the construct Films[Title,Director],

according to this definition means “the relation whose name is ‘Films’, with

two attributes whose names are ‘Title’ and ‘Director’”. In this case, “Films”,

“Title”, and “Director” are constants (values), not variables.

For the remainder of this work, and if not stated otherwise, we will use

the generic constants R and S for relation names and X and Y as symbols

for sets of attribute names.

3.2.2 Inclusion Dependencies

There are interesting data patterns to discover when given a set of relations

rather than a single relation. The most common and useful pattern that

can be derived across two relations are inclusion dependencies, introduced

by Fagin [Fag81]. Inclusion dependencies are formally defined below.

Definition 3.1 (IND) Let R[a1, a2, . . . , an] and S[b1, b2, . . . , bm] be (pro-

jections on) two relations. Let X be a sequence of k distinct attribute

names from R and Y a sequence of k distinct attribute names from S, with

1 ≤ k ≤ min(n,m). Then, an inclusion dependency (IND) is an asser-

3.2. BACKGROUND 44

tion of the form R[X] ⊆ S[Y].

Note that so-called “referential integrity constraints”, asserting an im-

plication between values across two attributes in two different relations, are

simply a special case of an IND where both sides are projections on a single

attribute each. Also, one can define equivalence dependencies [Fag81] in the

following way: R[X] ≡ S[Y]⇐⇒ (R[X] ⊆ S[Y]) ∧ (S[Y] ⊆ R[X]).

Example 3.1 We are introducing a running example. Consider the rela-

tions defined in Fig. 3.1. An IND would be, for example,MyMovies[T itle, Style] ⊆
Movies[Genre, T itle]. Note that “IND” does not imply “valid in the data-

base”. Rather, validity is a feature of INDs that will be defined shortly. Some

other INDs are listed in the figure.

Definition 3.2 (valid) An IND σ = (R[ai1 , . . . , aik] ⊆ S[bi1 , . . . , bik]) is

valid between two relations R = (r, (a1, . . . , an), ER) and S = (s, (b1, . . . , bm), ES)

if the sets of tuples in ER and ES satisfy the assertion given by σ. Otherwise,

the IND is called invalid for R and S.

Example 3.2 All INDs listed in Fig. 3.1 are valid INDs.

MyMovies[T itle, Style] ⊆ Movies[Genre, T itle], as mentioned in Exam-

ple 3.1, is an invalid IND. Note that in order for this IND to be valid, My-

Movies.Title would have to be a subset of Movies.Genre and MyMovies.Style

would have to be a subset of Movies.Title

An inclusion dependency is merely a statement about two relations which

may be true or false. A valid IND describes the fact that a projection of

3.2. BACKGROUND 45

Movies
Title Genre Director Year
Dune Sci-Fi David Lynch 1984
Titanic Drama James Cameron 1997
Titanic Drama Jean Negulesco 1953
Dr. Strangelove Satire Stanley Kubrick 1963
A.I. Sci-Fi Steven Spielberg 2001
Shrek Animation Andrew Adamson 2001
2001–A Space Odyssey Sci-Fi Stanley Kubrick 1968

MyMovies
Title Style
Dune Sci-Fi
Titanic Drama
Dr. Strangelove Satire
A.I. Sci-Fi
Shrek Animation

Movies2001
Title Director
A.I. Steven Spielberg
Shrek Andrew Adamson

Some Functional Dependencies:
Movies[Title,Year−→Director]
Movies[Title,Director−→Year]
Movies[Title−→Genre]
Valid Inclusion Dependencies (INDs):
MyMovies[Title,Style] ⊆ Movies[Title,Genre]
Movies2001[Title,Director] ⊆ Movies[Title,Director]
Movies2001[Title] ⊆ MyMovies[Title]
The data supports a possible
Referential Integrity Constraint
between MyMovies.Title and Movies.Title

Figure 3.1: Functional and Inclusion Dependencies in a Database

3.2. BACKGROUND 46

one relation R forms a subset of another projection (of the same number of

attributes) of a relation S. Note that INDs are defined over sequences of

attributes, not sets, since the order of attributes is important (INDs are not

invariant under permutation of the attributes of only one side).

We will also define an important feature of INDs that we will call arity.

Definition 3.3 (arity of an IND) Let X and Y be sequences of k at-

tributes, respectively and σ = R[X] ⊆ S[Y] be an IND. Then k is the arity

of σ, denoted by |σ|, and σ is called a k-ary IND.

Example 3.3 Genres[Title,Genre] ⊆ Movies[Title,Genre] is a 2-ary or bi-

nary IND. Likewise, Genres[Title] ⊆ Movies[Title] is a unary IND.

Casanova et al. [CFP82] have provided some important insights into

the IND problem. They have described a complete set of inference rules for

INDs, in the sense that repeated application of their rules will generate all

valid INDs that can be derived from a given set of valid INDs (i.e., those

rules form an axiomatization for INDs). The rules are given below.

Axiom 3.1 (reflexivity) R[X] ⊆ R[X], if X is a sequence of distinct at-

tributes from R.

Axiom 3.2 (projection and permutation) If R[A1, . . . , Am] ⊆ S[B1, . . . , Bm]

is valid (by Def. 3.2), then R[Ai1 , . . . , Aik] ⊆ S[Bi1 , . . . , Bik] is valid for any

sequence (i1, . . . , ik) of distinct integers from {1, . . . ,m}.

Note that permutation refers to “synchronous” reordering of attributes

on both sides, i.e., R[X,Y] ⊆ S[X,Y] =⇒ R[Y,X] ⊆ S[Y,X], but

¬(R[X,Y] ⊆ S[X,Y] =⇒ R[Y,X] ⊆ S[X,Y])

3.2. BACKGROUND 47

Axiom 3.3 (transitivity) If R[X] ⊆ S[Y] and S[Y] ⊆ T [Z] are both valid

(by Def. 3.2), then R[X] ⊆ T [Z] is valid.

Definition 3.4 (derived INDs) A valid IND σ can be derived from a

set Σ of valid INDs, denoted by Σ |= σ, if σ can be obtained by repeatedly

applying the above axioms on some set of INDs taken from Σ.

Example 3.4 Some valid INDs that can be derived from the valid INDs

stated in Fig. 3.1 are Movies[T itle] ⊆ Genres[T itle], Movies[Genre] ⊆
Genres[Genre], and Movies2001[Director] ⊆Movies[Director].

Casanova et al. [CFP82] consider the following decision problem:

“Decide whether Σ |= σ, i.e., decide whether a particular IND σ

can be derived from a given set Σ of INDs”.

They show that this decision problem is decidable for finite databases

but PSPACE-complete. The reason for this complexity is the exponential

number of potential inclusion dependencies that can be derived from a set

of INDs.

Since INDs are invariant under synchronous permutation of both sides

(by Axiom 3.2), we will now define equality of INDs (which applies to both

valid and invalid INDs).

Definition 3.5 (equality of INDs) Two INDs R[a1, . . . , am] ⊆ S[b1, . . . , bm]

and R[ci1 , . . . , cim] ⊆ S[di1 , . . . , dim] are equal if and only if there is a se-

quence (i1, . . . , im) of distinct integers 1, . . . ,m such that a1 = ci1 ∧ a2 =

ci2 ∧ . . . ∧ am = cim ∧ b1 = di1 ∧ b2 = di2 ∧ . . . ∧ bm = dim .

3.2. BACKGROUND 48

Note that equality according to this definition is an equivalence relation

on INDs. It is also clear that equivalence preserves validity, i.e., in a set of

equal INDs, the elements are either all valid or all invalid.

Example 3.5 In Fig. 3.1, a valid IND Genres[Title,Genre] ⊆ Movies[Title,Genre]
is listed. This IND would be equal to Genres[Genre,Title] ⊆Movies[Genre,Title]
but not to an IND Genres[Title,Genre] ⊆Movies[Genre,Title].

One very important observation on INDs is that a k-ary IND with k > 1

naturally implies a set of unary INDs. Let σ = R[X] ⊆ S[Y] be a k-ary

IND. Let Σ1 be the set of all unary INDs R[x] ⊆ S[y] with x ∈ X and y ∈ Y .

Then, there clearly is a close relationship between σ and Σ1, as formalized

in Corollary 3.1.

Corollary 3.1 Let Σk be the set of all possible k-ary INDs between two

given relations R and S. Let Σk
1 be the set whose elements are all k-sets of

unary INDs between R and S. Then, there is an isomorphism between Σk

and Σk
1. We say that Σ

k
1 is implied by Σk.

This isomorphic mapping is possible since INDs are invariant under per-

mutations of their attribute pairs (such that there are exactly as many k-ary

INDs as there are k-subsets of unary INDs), and each pair of single attributes

in a k-ary IND σ corresponds to one unary IND implied by σ. Note that the

isomorphism does not hold for valid INDs since clearly the existence of k

unary valid IND does not imply the existence of any higher-arity valid INDs

(i.e., only the direction Σk =⇒ Σk
1 holds for valid INDs, not the converse,

see Sec. 4.2.2).

3.2. BACKGROUND 49

Validity of INDs is preserved under projections and permutation, by Ax-

iom 3.2. In order to describe all inclusion information between two relations

it is therefore not necessary to list all INDs between two relations. Rather,

a small set of INDs from which all others can be generated will suffice, as

formalized with the following definition.

Definition 3.6 (generating set of INDs) Consider a set of valid inclu-

sion dependencies: Σ = {σ1, σ2, . . . , σn}. A generating set of Σ, denoted

by G(Σ), is a set of valid INDs with the following properties1:

1. ∀σ ∈ Σ : G(Σ) |= σ

2. ∀σ ∈ G(Σ) : ¬((G(Σ) \ σ) |= σ)

In words, the generating set G(Σ) contains exactly those valid INDs

from which all valid INDs in Σ can be derived. The set is not empty for

any Σ, since it can be constructed by first including all σ ∈ Σ into G(Σ)
and then removing all σ for which property 2 does not hold. The set is

minimal since removing any IND σ from a G(Σ) for which property 2 holds

would by definition violate property 1. Therefore, generating sets contain

all information about inclusion dependencies between relations in a minimal

number of INDs.

If all INDs in Σ are defined between exactly two different relations, i.e.,

∀σ ∈ Σ : σ = (R[a1, a2, . . . , ak] ⊆ S[b1, b2, . . . , bk]), the transitivity rule

(Axiom 3.3) does not apply. Then, the set G(Σ) is also unique for a given Σ.

If there were two distinct generating sets G1(Σ) and G2(Σ) for a Σ, at least
1The symbol \ stands for “set-difference”.

3.2. BACKGROUND 50

one IND in G2(Σ) that does not exist in G1(Σ) would have to be derivable

from G1(Σ), which contradicts property 2. If the transitivity rule is used

(Axiom 3.3) the generating set as defined above may not be unique.

3.2.3 Related Work on Other Dependencies

We have now defined inclusion dependencies, whose discovery is the focus

of this chapter. In this section, we are looking at related work in knowledge

discovery in databases that may be useful as starting points for a solution

to the IND discovery problem.

One important notion which has many real-world applications and is

studied widely is the pattern of association rules [AS94], giving information

about approximate dependencies between values in so called transactional

data. Association rules are often used in commercial “market basket” re-

search, where a database is mined for information of the form: “Which

articles do customers buy together in one transaction?” Discovering such

rules is usually accomplished by generating rule candidates based on value

frequencies in a database and then growing candidate sets attribute by at-

tribute, as long as some minimum support for the rule is maintained. The

concepts used in association rule mining (in particular the apriori-Strategy

described above) are related to our problem but not directly applicable since

association rules are probabilistic in nature [AS94], whereas we are generally

looking for constraints, i.e., exact dependencies. Even when we weaken our

requirements and no longer look for exact dependencies, the apriori mecha-

nism used in association rule mining does not provide a feasible solution for

our problem, as its computational complexity is too high for our purposes.

3.2. BACKGROUND 51

Another important class of related work is the class of functional de-

pendencies. A functional dependency is a constraint on a set of attributes

(A1, A2, . . . , Ak,X) in a relation R, specifying that for any two tuples t1 and

t2 from R, the following conditions holds:

t1[A1, A2, . . . , Ak] = t2[A1, A2, . . . , Ak] =⇒ t1[X] = t2[X].

The derivation of functional dependencies through inference rules has been

treated extensively [Mit83, KMRS92, CFP82, MG90]. The problem of find-

ing evidence for functional dependencies from the extent of relations has also

been considered. Several projects deal with the question how to efficiently

find candidates for functional dependencies from among the attributes of a

relation [BB95a, SF93].

Functional dependencies and inclusion dependencies are related but have

some important differences. In particular, functional dependencies generally

are defined only within one relation, whereas the natural purpose of inclu-

sion dependencies is to define relationships across two different relations.

Mitchell [Mit83] also considers inclusion dependencies within one rela-

tion. Functional and inclusion dependencies are related in the sense that

they both constrain possible valid database states and are thus helpful in

database design. However, for our purpose of discovering information about

relationships across unknown databases the case of inclusion dependencies

is more useful.

Commercial database systems also define referential integrity constraints.

Such constraints ensure that any value in an attribute A in relation R exists

3.2. BACKGROUND 52

in an attribute B in relation S. Clearly, those are unary inclusion dependen-

cies. The practical use of such constraints is to ensure that after database

normalization, dependent relations will contain in their (foreign) keys all

values necessary for a join (Fig. 3.1). Referential integrity constraints are

typically defined on those attributes between which a functional dependency

held before normalization. So in turn, discovering inclusion dependencies

between relations might provide some information about a database that

suggests the existence of a referential integrity constraint.

However, the existing functional dependency algorithms (e.g., [BB95a,

SF93]) cannot be used to derive inclusion dependencies (or to deduce in-

clusion dependencies from functional dependencies), as the complexity of

our problem is much higher than the complexity of functional dependency

discovery. A few rules for the deduction of INDs from functional depen-

dencies and other INDs are given in [Mit83], but the are only applicable

in very specific cases. Functional dependencies that are defined within one

relation (which is true for most such dependencies) cannot directly help in

the detection of general (inter-relation) inclusion dependencies.

53

Chapter 4

Algorithm FIND2 for the

Discovery of Inclusion

Dependencies

4.1 Finding Inclusion Relationships across Data-

bases

We can now state our problem in a concise manner:

Given a set of relations R∗ = {R1, . . . , Rn} stored in one or more
DBMS, find the generating set of inclusion dependencies (INDs)

between any two relations in R∗.

Note that we are not looking for all INDs but for a (minimal) generating set.

Since all other INDs can be derived from the generating set by projection

4.1. FINDING INCLUSION RELATIONSHIPS ACROSS
DATABASES 54

and permutation, it is sufficient to consider only this set. As we will see

shortly, trying to generate all INDs is impractical due to their large number

while a generating set can be found more efficiently.

4.1.1 Assumptions

For the discovery of INDs, we will assume that INDs can be defined in

the underlying data model. That is certainly true for the relational model,

but object-oriented models and to a certain extent semi-structured models

also have a notion of data inclusion. We furthermore require that the data

model must include the concept of attributes (“columns” of data), cannot

have complex objects (such as nested relations) and cannot have pointers or

cross-references between data objects.

Throughout this dissertation, we will assume that equality between tu-

ples is a binary function, i.e., two tuples (and thus each matching pair of

their values) are either equal or they are not equal. There is some work

on the value-matching problem, which asks for “approximate” equality be-

tween values across two attributes [Coh98]. In this work, we will not focus

on that problem and rather assume that we can compare two tuples and

decide whether they are equal or not.

Furthermore, we will restrict ourselves to databases that are queryable

with some kind of query language, for example SQL. The language should

support the following types of queries (for relational databases):

1. find the set of names of all relational tables in the database

2. find the names and types of all attributes in a table

4.1. FINDING INCLUSION RELATIONSHIPS ACROSS
DATABASES 55

3. decide if a given IND holds in the database (form a set difference

between two projections of relations and decide whether the set is

empty).

The first two types of queries access the data dictionary of a database.

Those queries are supported by all commercial SQL-database systems (as

well as by wrappers like JDBC). Deciding whether the tuples in a set of at-

tributes in one relation form a subset of the tuples in another set of attributes

in another relation is supported by the standard SQL-minus-statement. A

query to that effect can be formulated in SQL (see Sec. 5.1)

4.1.2 A Three-Staged Solution to the IND-Finding Problem

The problem as given above asks for complex relationships among databases.

Relational databases have an inherent three-layer hierarchy: databases con-

sist of relations, which in turn consist of attributes. Analogous layers exist

for other data models as well, such as database-object-attribute in object-

oriented databases. Some additional restrictions may be necessary for such

more expressive data models to support the concept of inclusion dependen-

cies. For example, the semi-structured data model as used in XML allows

for different multiplicities of attributes, which is difficult to map to the con-

cept of INDs. In order to discover INDs in such databases, our approach

requires that no attribute occurs more than once in any one data object.

The existence of such layers suggests a three-layered strategy to dis-

cover relationships between databases: compare attributes, compare rela-

tions, and, finally, compare databases. It is clear that two relations whose

4.1. FINDING INCLUSION RELATIONSHIPS ACROSS
DATABASES 56

attributes are not related cannot in turn be related, and likewise a relation-

ship between databases requires relationships between their relations. Thus,

there are three necessary stages in any algorithm that could solve the above

problem:

1. FINDn: finding valid INDs between a set of given relations in a set of

databases (the general problem)1,

2. FIND2: finding valid INDs between a pair of given relations,

3. CHECK: determining whether a given IND is valid.

A general overview over our approach is shown in Fig. 4.1. Those stages

do not necessarily need to be executed separately, but treating them sepa-

rately helps to gain insights into the nature of the problem.

A simple algorithm (i.e., pairwise comparison) for the first stage could

express the general problem for n relations as
(
n
2

)
problems on pairs of

relations. Improvements are possible for example by using the transitiv-

ity property of INDs (Section 4.1.3). Some ideas are given as future work

(Sec. 14.2).

The second stage needs to find maximal valid INDs (i.e., a generating

set for each pair of relations considered) with a minimal number of single

IND checks. The focus in this stage is not how to check the validity of INDs

against a database state, but in finding a generating set of INDs with a

minimal number of checks. Each check is assumed to take unit time, and

we will consider ways to reduce that time in the third stage below. We will
1FIND stands for Find Inclusion Dependencies.

4.1. FINDING INCLUSION RELATIONSHIPS ACROSS
DATABASES 57

FINDn

FIND2

CHECK

?⊆?⊆

?⊆?⊆

?⊆

Figure 4.1: The Three Stages of Inclusion Dependency Discovery

show in Sec. 4.2 that the problem of finding a generating set of INDs is NP-

hard for the general case (based on well known complexity results for related

problems). In fact, the number of possible (valid or invalid) INDs between

two relations of k attributes is very high so that an exhaustive search of all

INDs is intractable even for relations with 7 or 8 attributes. For example,

there are 1, 441, 728 possible INDs between two relations with 8 attributes

each, without considering permutations, see Sec. 4.2. However, it is not

likely that many distinct valid INDs exist between two real-world relations.

Therefore, the number of maximal INDs (i.e., the size of the generating

set of existing INDs) is likely to be small for real-world data, and giving a

solution to the general problem remains possible.

The third stage (checking a particular IND), which has to be executed

4.1. FINDING INCLUSION RELATIONSHIPS ACROSS
DATABASES 58

for every IND generated in Step 2, involves querying one or two database

systems in order to determine an inclusion between two sets of attributes

across two relations. When the relations exist in the same database, they

can be queried with an SQL-minus-query. Relational database systems us-

ing external sorting may effectively answer such queries in linear time in

the size of input databases (Chapter 6). There are many approaches for

improvements here that we will discuss in Section 5.1. If the relations are in

two different database systems, a single SQL query is not sufficient. In that

case, other techniques can be applied. Some ideas are given in Section 5.1

as well.

Overall, the stage with the highest complexity is the stage of finding

valid INDs between two relations. Therefore, we expect the greatest im-

provements in runtime for a general algorithm at this stage. This is therefore

the problem upon which we focus our attention.

It is possible to make use of additional information about the databases

in question in order to reduce the amount of necessary work. Some concepts

that we will explore further in this text are heuristics on the meaning of

attribute and relation names (ontologies) and other properties of data in

relations, such as data types and value distribution histograms.

4.1.3 Comparing two Databases

As stated in Section 4.1, we are looking for a generating set of INDs among

a set of relations, meaning that the output of our algorithm should be only

those INDs that cannot be derived from other INDs. In particular, this ex-

cludes INDs that can be obtained from other INDs by transitivity (Sec. 3.3).

4.1. FINDING INCLUSION RELATIONSHIPS ACROSS
DATABASES 59

However, note that transitivity cannot be universally applied to our prob-

lem. For example, consider an IND finding problem in which two valid

maximal INDs have been found: R[A,B] ⊆ S[C,D] and S[C,D] ⊆ T [E,F].

Those two INDs together are not sufficient to reason about the validity of

a third IND R[A,B,X] ⊆ T [E,F,X], even though it may also be valid and

maximal. That means that even if a new IND is found by transitivity, there

is no guarantee that this IND is maximal and thus part of the generating

set. Therefore, it seems necessary for the time being to exhaustively search

all pairs of relations in a database for inclusion dependencies. Transitivity

can help with reducing the search space somewhat, but all relations under

consideration will have to be accessed. For a set of n relations, that means

that
(n
2

)
pairs of relations have to be considered. All INDs found must then

be tested for mutual dependencies, and those INDs that can be derived from

others must be removed from the solution.

Thus, a simple algorithm to solve the general IND-finding problem is as

follows 2:

FINDn(Database D1,Database D2)
Set INDs ← ∅
forall (R ∈ D1)

forall (S ∈ D2)
if (R �= S)

INDs ← INDs ∪ FIND2(R,S) //defined in Sec. 4.2
removeDerivableINDs(INDs)

2For all pseudocode in this dissertation, we use a C-like syntax, i.e., variables are defined
by writing their type before their name. The symbol← is used to denote assignment. The
scope of complex statements is marked by indentation.

4.2. INDS BETWEEN TWO RELATIONS 60

If algorithm FIND2 is assumed to run at unit cost, the algorithm FINDn

runs in O(n2) in the number of relations in the database. Thus, we did

not pursue optimizations on this algorithm further since the potential sav-

ings in runtime at this stage are small compared to the possible optimiza-

tions in the discovery of INDs between two given relations. Missaoui and

Godin [MG90] presented an algorithm for the efficient computation of the

closure of INDs under transitivity (for relation schemes with many relations).

The authors give simple algorithms for polynomial-time computation of clo-

sure and computation of a minimal cover of INDs for a multi-relation IND

inference problem using transitivity only.

4.2 Finding Inclusion Dependencies between Two

Relations

In this section, we consider the problem of finding inclusion dependencies

between two given relations:

Consider two relations R and S. Find a generating set G(Σ)
of valid inclusion dependencies Σ = {σ1, σ2, . . . , σn} of the form
R[AR] ⊆ S[AS] with AR a subsequence of attributes from R and

AS a subsequence of attributes from S.

4.2.1 Complexity

We will consider the worst-case complexity of the problem as a function of

the number of attributes in both relations. The maximum number of distinct

4.2. INDS BETWEEN TWO RELATIONS 61

INDs between two relations can be computed as follows. For two relations

R and S with kR and kS attributes, respectively, one can form kR ·kS unary

INDs. It is possible for all such INDs to be valid at the same time, namely

when all attributes in both relations have exactly the same data (which is

not likely to occur in practice). The number of k-ary INDs in general is

determined by the number of pairs of k-ary subsets of the attributes in each

relation. For each such pair, there are k! INDs, since each permutation of

one side of an IND, while keeping the other side unchanged, gives a new

IND (i.e., an IND not equal to any previously generated IND). Permutations

of both sides do not lead to new INDs (see Def. 3.5), as this process would

generate INDs equal to previously generated ones. Therefore, the number

of k-ary INDs, denoted by Ik, is

Ik(kR, kS) =
(
kR

k

)
·
(
kS

k

)
· k! (4.1)

Assuming without loss of generality that kS < kR, the total number of

INDs between R and S, denoted by I, is

I(kR, kS) =
kS∑
i=1

(
kR

i

)
·
(
kS

i

)
· i! (4.2)

=
kS∑
i=1

kR! · kS !
(kR − i)! · (kS − i)! · i!

A näıve brute-force IND-finding algorithm for a pair of relations could

first generate all possible INDs and then test each of them for validity. It

would thus have a complexity in at least O(I(kR, kS)), even if IND-testing

4.2. INDS BETWEEN TWO RELATIONS 62

could be done in constant time. Clearly, since this number grows extremely

fast, it is not meaningful to test for or even generate all IND candidates for

a pair of relations, even if those relations have a small number (say < 10)

of attributes. Also, as I(kR, kS) �∈ O(kR
n · kS

m) for any finite n,m, the

problem cannot be solved in polynomial time since its solution cannot be

enumerated in polynomial time. It is possible to find a generating set of valid

INDs without enumerating all INDs, but even that problem is NP-hard, as

we show in Sec. 4.2.8.

4.2.2 Solution Approach for Finding INDs Between Two Re-

lations

In order to improve the runtime of any algorithm for this problem, it is

necessary to reduce the problem space. In this section, we will concentrate

on how to reduce the number of individual IND-checks, rather than on ways

to speed up such checks. Databases carry additional information about their

data (such as data domains, database statistics, indices, attribute name

ontologies), and such information can be used to avoid testing all INDs for

any non-trivial problem. That is, not all possible INDs that our system

considers will have to be checked against the database, but rather many

IND checks can be answered in very short time. We will give details on the

possibilities of such search-space reductions in Section 5.1.

We now describe a general framework for the solution of the IND discov-

ery problem. Recall from Axiom 3.2, p. 46 that a k-ary valid IND implies

certain i-ary valid INDs, for i < k. We observe that the Axiom 3.2 does not

change if we allow only ordered sequences of integers to serve as indices for

4.2. INDS BETWEEN TWO RELATIONS 63

generated sub-INDs (due to the definition of equality, Def. 3.5).

Note that since we are concerned with INDs between two given relations

only, Axiom 3.2 in the form of the above observation also states the only

derivation rule (out of the complete axiomatization system given by the three

Axioms in Section 3.2.2) that can be used to derive new INDs (see Def. 3.4).

Thus, the set of INDs obtained from an IND σ0 through projection only is

equivalent to the set {σ| σ0 |= σ}.
We also make an observation about the number of INDs that can be

derived as projections,i.e.,, subsets of other INDs.

Lemma 4.1 A k-ary valid IND implies
(k
m

)
m-ary valid INDs, for any

1 ≤ m ≤ k.

Let us assume a hypothetical IND-finding strategy that generates all

possible INDs, and then tests each IND and marks it as either valid or

invalid. In such a strategy, one would define a data structure that holds

INDs plus a state from the set {unknown,valid,invalid} for each IND.

1. Check high-arity IND candidates. If a valid k-ary IND σ0 is found,

mark all INDs derivable from σ0 (i.e., all elements of the set {σ|σ0 |=
σ}) as valid. Note that all those INDs have arities < k.

2. Check low-arity IND candidates. If an invalid k-ary IND σ0 is found,

mark all those INDs σ as invalid from which σ0 would be derivable if

it were valid (i.e., all elements of the set {σ|σ |= σ0}).

This strategy would still require to generate explicitly or implicitly all

INDs, which is not feasible. However, it suggests algorithm simpleFIND2 in

4.2. INDS BETWEEN TWO RELATIONS 64

Fig. 4.2. It solves the IND discovery problem for two relations R and S with

k attributes, respectively.

ALGORITHM simpleFIND2 for two relations with k attributes each

1. Set (a local variable) m = 1. Generate all unary INDs. There are exactly
k2 such INDs. After testing each of them, retain only the valid INDs
(generally much fewer than k2) and store them in a set Σ1.

2. Increase m by 1.

3. Generate only those m-ary INDs whose implied (m− 1)-ary INDs are all
members of Σm−1 (i.e., from which no IND not in Σm−1 can be derived).

4. Test these m-ary INDs and retain only the valid ones in a set Σm.

5. Repeat from step 2 until m = k.

Figure 4.2: A Simple Algorithm simpleFIND2 for the Two-Relation IND-
Finding Problem.

Clearly, this algorithm still has very high complexity as the number

of INDs potentially to consider is prohibitively high. We will describe an

optimization on this algorithm in the next section. In order to assess the

correctness of algorithm simpleFIND2, consider the following observation.

Observation 4.1 The validity of all (m − 1)-ary INDs that are derivable

from an m-ary IND σ is a necessary but not a sufficient condition for the

validity of σ.

Counterexamples can easily be obtained (e.g., Fig. 4.3). However, note

that in order for this situation to occur, a total of
(m
m−1

)
= m tuples in a

relation S (in an IND-finding problem between relations R and S) have to

4.2. INDS BETWEEN TWO RELATIONS 65

be related to each other in a certain way. More specifically, for each tuple

in an m-set of tuples from S, m− 1 of that tuple’s attributes have to have

the same value as the corresponding attributes in one fixed tuple in R. In

Fig. 4.3, this condition is satisfied by the tuple (3, 6, 9) ∈ R and the set of

tuples {(3, 6,−1), (−1, 6, 9), (3,−1, 9)} ⊂ S. This situation seems unlikely

in practice. Of course, any algorithm for finding INDs must nonetheless

take this “degenerate” case into account. That means that the testing step

(Step 4) in algorithm simpleFIND2 is necessary to ensure the correct solution.

R
A1 A2 A3

1 4 7
2 5 8
3 6 9

S
B1 B2 B3

1 4 7
2 5 8
3 6 -1
-1 6 9
3 -1 9

R[A1, A2] ⊆ S[B1, B2] is valid.
R[A2, A3] ⊆ S[B2, B3] is valid.
R[A1, A3] ⊆ S[B1, B3] is valid.
R[A1, A2, A3] ⊆ S[B1, B2, B3] is not
valid.

Figure 4.3: Validity of All Derived INDs Is Not a Sufficient Validity Test.

4.2.3 Mapping to a Graph Problem

With the ideas from the previous section as a starting point, we propose a

mapping of our problem into a more tractable graph problem. This will also

give us additional insights into the inherent complexity of the problem. For

clarity, we will give brief definitions of the concepts used.

Definition 4.1 (k-hypergraph) A k-uniform hypergraph (or k-hypergraph)

is a pair G = (V,E) of the set V of nodes and the set E of edges. An el-

ement e ∈ E is a set with cardinality k of pairwise distinct elements from

4.2. INDS BETWEEN TWO RELATIONS 66

V , denoted by {v1, . . . , vk}. An element e ∈ E is called a k-hyperedge. k is

called the rank of graph G.

Example 4.1 An example for a 3-hypergraph is given in Figure 4.4. This

graph has 6 edges: {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {2, 3, 4}, and {3, 4, 5}.
Each edge is drawn as three lines, connected by a full circle •.

Figure 4.4: A 3-hypergraph with 6 edges.

Clearly, an undirected graph is a special case of k-hypergraph with k =

2. Note that the requirements that elements of edges are pairwise distinct

disallows self-loops. The above definition extends the concept of undirected

graphs to k-hypergraphs. However note that we treat edges as sets of nodes

rather than a sequence (tuple) as the edges are not “directed”.

As k-hypergraphs are undirected, they can be stored in memory effi-

ciently using an extension of the concept of adjacency matrix in graphs. We

impose an order on the nodes in V . For a (regular) graph, only the upper

triangle of the adjacency matrix is stored (i.e., those edges {v1, v2} for which

4.2. INDS BETWEEN TWO RELATIONS 67

v1 < v2), while for k-hypergraphs analogously, only those edges are stored

whose nodes are listed in increasing order.

Definition 4.2 (Clique) Let G = (V,E) be a graph. A clique C is a set

C ⊆ V such that ∀v1, v2 ∈ C : {v1, v2} ∈ E. A single node with no adjacent

edges is a clique of cardinality 1.

Thus, a clique is a set of nodes, not a graph. This is a common definition

as there is no need to speak of the set of edges in a clique. The edges of a

clique C are thus trivially defined as the set of edges in the complete graph

induced by the set of nodes C.

Definition 4.3 (hyperclique) Let G = (V,E) be a k-hypergraph. A hy-

perclique is a set C ⊆ V such that for each k-subset S of distinct nodes

from C, the edge implied by S exists in E. The cardinality of a hyperclique

C is the number of nodes in C. A single node with no adjacent edges is a

hyperclique of cardinality 1.

Note that a k-hypergraph (with k > 2) cannot have hypercliques with

cardinalities 2 . . . k − 1. A (hyper)clique is either a node with no edges or

it must have at least as many nodes as there are nodes in an edge, i.e.,

k. Since a hyperclique is simply a set of nodes, there is no need to speak

of k-hypercliques as long as it is unambiguous in the context. Thus, we

sometimes speak of cliques when both cliques and hypercliques are meant.

Analogous to the case for cliques, if k is known, the edges of a hyperclique

C are defined as the set of all possible undirected edges (k-sets of nodes) in

the complete k-hypergraph induced by C.

4.2. INDS BETWEEN TWO RELATIONS 68

Corollary 4.1 Consider a k-hypergraph G = (V,E). A set C ⊆ V is a

hyperclique if the k-hypergraph GC induced by C has
(|C|

k

)
edges.

Proof: This property follows from the observation that the nodes of a k-

hypergraph GC form a hyperclique C if all possible edges between these

nodes exist in G (by Def. 4.3). There are exactly as many possible distinct

edges in such a k-hypergraph as there are k-subsets of |C| elements, such

that the number of possible edges is
(|C|

k

)
. q.e.d. �

Example 4.2 Consider the 3-hypergraph in Fig. 4.4. The set of all its

nodes does not form a hyperclique, since for example the edge {1, 3, 5} is
missing. However, the set of nodes {1, 2, 3, 4} forms a hyperclique (to be
exact: a 3-hyperclique with cardinality 4). Further hypercliques are the sets

{1, 2, 5} and {3, 4, 5}

Again, a clique is a special case of a hyperclique in a 2-hypergraph. We now

define the concept of degree of a node in a k-hypergraph.

Definition 4.4 (degree of a node) The degree of a node v ∈ V in a k-

hypergraph G = (V,E) is the number of edges that have v as element. More

formally, deg(v) = |{e ∈ E|v ∈ e}|.

This definition applies to both graphs and k-hypergraphs.

Example 4.3 In Fig. 4.4, nodes 1, . . . , 4 each have degree 4, while node 5

has degree 2. Note that node 5 is “adjacent” to all nodes 1–4, such that the

number of “adjacent” nodes is not its degree.

4.2. INDS BETWEEN TWO RELATIONS 69

Mapping the Set of Inclusion Dependencies to a Graph. Consider

the problem of finding inclusion dependencies between two relations R and

S. Let R have kR attributes and S have kS attributes and assume without

loss of generality that kS < kR. The mapping is given in Fig. 4.5.

1. Create a set V whose elements are all unary valid INDs between R and
S (i.e., all INDs of the form R[ai] ⊆ S[bi]).

2. Create a graph (2-hypergraph) as follows:

(a) Create a set E2 whose elements are all binary valid INDs between
R and S. Note that each binary valid IND σ can be seen as a set
of exactly two unary valid INDs σ1 and σ2, by Corollary 3.1.

(b) Create a graph G2 = (V,E2). Note that its nodes are all unary
valid INDs between R and S, while its edges are all binary valid
INDs between those relations.

3. Create hypergraphs as follows:

(a) For i = 3, . . . , kS , create the set Ei to be composed of all i-ary valid
INDs, respectively. As per the assumption stated in the text, kS is
the maximal arity for an IND in this problem.

(b) For each i = 3, . . . , kS , create one i-Hypergraph Gi = (V,Ei).

Figure 4.5: Mapping a Set of INDs to a Graph

The IND-finding problem can now be expressed as the problem of construct-

ing the above graphs. Note that this mapping does not yet support the no-

tion of generating set (Def. 3.6) but rather expresses all valid INDs between

two relations. However, a slight change in the mapping (by simply keeping

only valid INDs not implied by higher-arity valid INDs) would correspond

to this refined notion.

Now recall that, by Lemma 4.1, a k-ary valid IND implies
(k
m

)
m-ary

INDs (with m ≤ k). We observe the following theorem.

4.2. INDS BETWEEN TWO RELATIONS 70

Theorem 4.1 Given the relations R and S, with kR and kS attributes,

respectively, consider a collection of k-Hypergraphs {G2, G3, . . . , GkS
} rep-

resenting the INDs between R and S (as defined in Fig. 4.5). Furthermore,

let σk be a k-ary valid IND between R and S. For a number m, with m < k,

construct a set Em of all the m-ary INDs implied by σk, which are all m-

hyperedges in Gm. Then the set of all nodes that are elements of any edge in

Em forms an m-Hyperclique in Gm, or alternatively, Em is the set of edges

of an m-Hyperclique in Gm.

Proof: By Definition 4.3, the set of edges of a hyperclique C in an m-hyper-

graph Gm = (V,E) correspond to exactly all m-subsets of nodes from C.

Also, the m-ary INDs implied by an IND σk (with m < k) are exactly all

m-subsets of the set of nodes implied by σk. If C is the set of nodes implied

by σk, clearly there is a trivial isomorphic mapping between the edges of C

and the m-ary INDs implied by σk. q.e.d. �

We have now reduced the problem of finding INDs to the problem of finding

hypercliques in a collection of k-hypergraphs.

4.2.4 The Clique-Finding Problem

The Clique-Finding Problem [GGL95] (also called the Maximum Clique

Problem) is a well known graph problem. It is usually defined as follows:

Clique-Finding Problem: For a graph G = (V,E), find all

subsets of V that form complete subgraphs in G and are maximal

with respect to that property.

4.2. INDS BETWEEN TWO RELATIONS 71

We observe the following properties:

1. The Clique-Finding Problem is NP-complete in the number of nodes

|V |. A proof is given, for example, in [GJ79].

2. The Clique-Finding Problem extends naturally to k-hypergraphs, and

must be at least as hard as the Clique-Finding Problem for graphs,

such that it is also NP-hard.

3. The Clique-Finding Problem is closely related to the IND-finding prob-

lem discussed in this work, when mapped as described in Theorem 4.1.

We will elaborate on this point in the next section.

There is substantial research on the Clique-Finding Problem. Important re-

sults include that finding a maximum clique is NP-hard [GJ79] and that even

the approximation of the problem (finding a clique whose size is larger than

a constant fraction of the size of the largest clique) is NP-hard [ALM+92].

This complexity is mainly due to an exponential number of possible cliques

in a graph. The worst case for the number of cliques is given by so called

Moon-Moser-Graphs [MM65], which are graphs with 3k nodes (for k ∈ N)

and are constructed as the complement of k disjoint 3-cliques [BK73]. They

contain 3k cliques.

However, there are algorithms that will take polynomial time for the

generation of each clique, such that the complexity can be expressed by a

polynomial in the number of cliques.

Finding all Cliques of an Undirected Graph. In order to find cliques

in the special case of a 2-hypergraph (i.e., in a regular graph), an algorithm

4.2. INDS BETWEEN TWO RELATIONS 72

by Bron and Kerbosch [BK73] can be used. The algorithm finds all

maximal cliques in a given graph G and uses a backtracking strategy and

several heuristics. The complete Bron/Kerbosch algorithm is given in

Appendix A.

Essentially, the Bron/Kerbosch algorithm performs a depth-first tree

traversal of a tree of all clique candidates, backtracking when one of several

conditions for cliques does no longer hold. The nodes of that search tree are

taken from the nodes of the input graph, and the tree is then constructed

by ensuring that higher-degree nodes are closer to the root. In particular,

the algorithm makes use of the property that in a fully connected graph

with k nodes, all nodes must have degree k − 1, which is a necessary and

sufficient condition for full connectivity (proven below for the general case

of k-hypergraphs, Thm. 4.2).

The algorithm tends to find larger cliques first and achieves a runtime

behavior that is dependent on the number of cliques in a graph, but not on

the number of nodes. We give a complexity analysis in the context of our

hyperclique finding algorithm in Section 4.2.8.

4.2.5 Finding Hypercliques

While the Bron/Kerbosch-algorithm is efficient for graphs, it makes use

of a property of such graphs that does not extend to k-hypergraphs. The

algorithm relies on the following fact.

Corollary 4.2 Let C be a clique in a graph G = (V,E). Let v be a node

with v �∈ C and ∀vi ∈ C : ∃{vi, v} ∈ E. Then, C ∪ {v} is a clique.

4.2. INDS BETWEEN TWO RELATIONS 73

The low complexity of the Bron/Kerbosch algorithm is due to the

fact that cliques can be “grown” very efficiently by simply checking the

connected-property of a new node to each node of a previously found sub-

clique. That is, given a clique, adding a node to this clique that is connected

to each clique element will create a larger clique. Given a candidate node,

this property can be tested in a time linear in the number of nodes in the

graph.

On the other hand, this is not true for k-hypergraphs with k > 2 as

the concept of “connected” is more complex for k-hypergraphs. Growing

hypercliques in the same way requires to test for the existence of an edge

between the new node and any k − 1-subset of the nodes of the existing

clique, which is exponentially more expensive. A further complication arises

from the fact that the Bron/Kerbosch algorithm keeps a counter for each

node v tracking the number of nodes not connected to v (variable nod in

the algorithm in Appendix A). Clearly, this “non-connectedness” property

is more complex for k-hypergraphs. Therefore, a direct extension of the

Bron/Kerbosch algorithm would lead to an algorithm with intractable

complexity.

A näıve hyperclique-finding algorithm, which would enumerate all pos-

sible subsets of nodes in a graph and test each for the clique property, is

also clearly not feasible, as it is exponential in the number of nodes in the

graph.

However, it is possible to find a better algorithm. The following clique-

criterion, which is a generalization of the same criterion for graphs, can be

used to find cliques in k-hypergraphs.

4.2. INDS BETWEEN TWO RELATIONS 74

Theorem 4.2 A k-hypergraph Gk with n nodes is a hyperclique if and only

if each of its nodes has a degree of
(n−1
k−1

)
.

Proof: We have to show that the condition is necessary and sufficient. First,

we show necessity.

Recall that we define an edge in a k-hypergraph as a set of nodes. By

Cor. 4.1, a fully connected k-hypergraph with n nodes has
(
n
k

)
edges. (To

see this, set C = V in Cor. 4.1.) Each edge is a set of k nodes, and edges

in a k-hypergraph are pairwise distinct (Def. 4.1). Since there are exactly(
n
k

)
subsets of size k over a set of size n, there is one edge for each possible

combination of k nodes from n nodes, such that all nodes must be members

of an equal number of edges, i.e., must have the same degree.

Now, note that all edges together contain a total of
(n
k

)·k (not necessarily

distinct) nodes. Since there are only n different nodes, and all nodes have

the same degree, each node must have a degree of
(n
k

) · k/n =
(n−1
k−1

)
.

For sufficiency, note that the existence of n nodes each with degree d =(
n−1
k−1

)
implies the existence of e = n · d edges. Each edge connects exactly

k nodes. Since all edges are distinct, there must be at least e/k edges.

Now e/k =
(n−1
k−1

) · n/k =
(n
k

)
, which is the condition for a hyperclique (by

Corollary 4.1) q.e.d. �

Example 4.4 Consider the induced subgraph of the hypergraph in Fig. 4.4

which has only the nodes 1, 2, 3, 4. Each node of that subgraph has degree(4−1
3−1

)
= 3. This subgraph is fully connected (since the nodes in each 3-subset

of its four nodes are connected by a 3-hyperedge).

4.2. INDS BETWEEN TWO RELATIONS 75

The above proof subsumes the proof for the analogous clique-criterion on

traditional cliques (i.e., 2-Hypercliques). We have now established a simple

criterion for a hyperclique, in that a minimal degree is required for a node

to be part of a hyperclique of a certain size (number of nodes). Thus, the

degree of a node gives us an upper bound on the size of any clique in which

this node is involved.

Note that it is not sufficient for a subset of nodes in a graph to have a

certain minimum degree in order to be a clique. Theorem 4.2 applies only if

the entire set of nodes of a graph forms a clique.

When storing a k-hypergraph Gk = (V,E) simply as a list of its edges,

determining the degree of a node takes time in O(|E|) (if set membership

can be tested in constant time), as opposed to the more efficient O(|V |)
for regular graphs stored as adjacency matrices. The number of edges in

a k-hypergraph is in O(|V |k) (since
(
n
k

) ∈ O(nk)), such that storing the

graph or determining its node degrees may not be feasible for large graphs.

However, we will see that for our purpose, the size of graphs will usually be

manageable, and in fact, in our implementation we used a list of edges as

the storage principle.

Algorithm HYPERCLIQUE to Find Cliques in k-Uniform Hyper-

graphs

With the background given, we can now describe an algorithm to find hy-

percliques in k-hypergraphs. Algorithm HYPERCLIQUE uses several branch-

and-bound strategies to reduce a graph to smaller subgraphs, while finding

cliques. It quickly finds some cliques in relatively large graphs by removing

4.2. INDS BETWEEN TWO RELATIONS 76

edges from a graph that can no longer contribute to cliques. In some cases,

this strategy finds all cliques, especially if the graph is sparse. However, the

heuristics may fail on certain graphs, as explained below. Then, a recur-

sive strategy is used that reduces the graph by removing certain edges and

working on subgraphs. The algorithm will always find all cliques in a given

hypergraph. The algorithm has exponential worst-time complexity but will

finish quickly on a much larger class of graphs than the näıve algorithm. For

comparison, such a näıve algorithm that can also be used for this problem

is given in Appendix B

Fig. 4.6 gives a summary of algorithm HYPERCLIQUE in pseudo code.

In the following section, we explain the details of this algorithm. We proceed

from bottom to top, first explaining the algorithm’s main functionality, then

introducing two search-space reducing steps to reduce the size of the hyper-

graph, and finally concluding with a description of the entire algorithm.

Overall Strategy of Algorithm HYPERCLIQUE The HYPERCLIQUE

algorithm applies a number of branch-and-bound strategies to find cliques in

less time than brute-force enumeration would allow. The basic algorithm will

find some hypercliques very fast, and for relatively sparse graphs will find

all hypercliques in a graph. Augmented by branch-and-bound strategies,

algorithm HYPERCLIQUE then applies a recursive procedure that reduces

the size of the input graph. In all cases, algorithm HYPERCLIQUE finds all

hypercliques in a given k-hypergraph.

In order to explain the algorithm, we first make a number of observations

about k-hypergraphs.

4.2. INDS BETWEEN TWO RELATIONS 77

ALGORITHM HYPERCLIQUE

INPUT:
k-Uniform Hypergraph Gk = (V,E)

OUTPUT:
Set result , containing all cliques in Gk

function findHypercliques(Graph Gk)
result ← ∅ //result is a variable global to this function
Set S //a clique candidate
reducible ← false
do

E∗ ← ∅ //edges that are element of more than one clique
forall (e ∈ E) //E is set of edges in Gk

S ← generateCliqueCandidate(Gk, e)
if (S is clique) //Thm. 4.2

if (S is not subset of any element of result)
result ← result ∪ {S}

reducible ← true
else

E∗ ← E∗ ∪ {e}
if (¬reducible)

do
e← a random edge from E
S ← generateCliqueCandidate(Gk, e)
G1(V1, E1)← subgraph of Gk induced by S
G2(V2, E2)← (V,E\e)

while (|V1| �= |V |) //end of do-while-loop
result ← result ∪ findHypercliques(G1)
result ← result ∪ findHypercliques(G2)

Gk ← (V,E∗) //reduced graph Gk

while (Gk �= ∅ ∧ reducible) //end of do-while-loop

Figure 4.6: Algorithm HYPERCLIQUE for Finding Cliques in a k-Uniform
Hypergraph

4.2. INDS BETWEEN TWO RELATIONS 78

Lemma 4.2 Consider a k-hypergraph Gk = (V,E) and a set Vk of k nodes

v1, . . . , vk from Gk. Consider another node v ∈ V \Vk. If there is any (k−1)-

subset Vk−1 of Vk such that Vk−1∪{v} does not form an edge in E, then the

set Vk ∪ {v} does not form a clique.

This formalizes the concept of a “missing edge” between a new node

and any existing node in the clique candidate for k-hypergraphs. See Corol-

lary 4.2, p. 72, for the analogous property on regular graphs.

We define an auxiliary procedure on graphs that we will call clique can-

didate generation. Starting from an edge in a k-hypergraph, this procedure

will generate one candidate set for a clique. For any given edge e0, gener-

ateCliqueCandidate will return the union of the set of nodes in e0 and the

set of nodes that are connected by a k-hyperedge each with k−1 nodes in e0

(this is a concept analogous to the concept of connected in regular graphs).

The intuition behind this procedure is that it either finds the (only) clique

that contains edge e0 or the union of all nodes of all cliques that contain

edge e0. The algorithm in Fig. 4.7 gives pseudo code for this procedure.

Theorem 4.3 Let Gk = (V,E) be a k-hypergraph and e0 ∈ E an edge in Gk.

Construct a set S as the output of procedure generateCliqueCandidate(Gk , e0),

Fig. 4.7. Denote by Cmax(Gk) the set of maximal cliques in graph Gk. If S

is a clique, then

Cmax(G∗
k) ⊇ Cmax(Gk)\{S},

with G∗
k = (V,E\{e0}). That is, the set of maximal cliques in the graph

obtained by removing edge e from Gk is a superset of the set of maximal

cliques in Gk without clique S. In other words, if S is a clique, then it is

4.2. INDS BETWEEN TWO RELATIONS 79

function generateCliqueCandidate(Graph Gk(V,E),Edge e0)
S ← nodes of e0 //an edge is a set of nodes, thus S is a set
forall (v1 ∈ V \S)

f ← true //a flag
forall (v2 ∈ e0)

if (({v1} ∪ (e0\{v2})) �∈ E)
f ← false

if (f)
S ← S ∪ {v1}

return S

Figure 4.7: Clique Candidate Generation for k-Hypergraphs

the only maximal clique in Gk that contains edge e0. The removal of edge

e0 may introduce smaller cliques in graph G∗
K that are sub-cliques of S and

have to be removed by algorithm HYPERCLIQUE.

Proof: The theorem states that edge e0 is an edge only in clique S and not

in any other clique from Cmax(Gk). Consider procedure generateClique-

Candidate(Gk, e0). It finds all nodes “connected” to all nodes in edge e0.

No node that is not connected to all nodes in e0 can be a member of a clique

that contains edge e0. Therefore, the set S this procedure returns must be

a superset of the union of nodes in all cliques of which edge e0 is a member.

Now if S is a clique, which is a premise in our theorem, and S contains all

nodes that could possibly be members of cliques containing e0, S must also

be the only clique that contains edge e0. �

With this theorem, we can state that any set of nodes returned by pro-

cedure generateCliqueCandidate(Gk, e) that induces a complete graph

is a maximal clique. Furthermore, retaining only the edges E∗ for a graph

4.2. INDS BETWEEN TWO RELATIONS 80

G∗
k (see Fig. 4.6) will produce a correct result for the clique finding problem

in graph Gk, since all cliques that contain edges not in E∗ have already been

found.

Procedure generateCliqueCandidate(Gk, e) is used to check which

edges of Gk can be safely removed (since they only contribute to one clique

each, which is returned by the corresponding call to this function). For our

algorithm HYPERCLIQUE (Fig. 4.6), removing edges in this way is the major

strategy to achieve better performance. With the brute-force procedure and

the main heuristic (Thm. 4.3) in place, we can now explain the algorithm

itself.

The algorithm HYPERCLIQUE starts by generating one clique candidate

for each edge in the input graph Gk and collects all those clique candidates

that pass a test for the clique property in a set result (forall-loop in Fig. 4.6).

The following example shows this procedure.

Example 4.5 In order to illustrate this procedure, consider Figure 4.8,

which is broken down into four stages. Stage 1 shows a 3-hypergraph Gk

(this is the same graph as in Fig. 4.4). Procedure generateCliqueCan-

didate is now called on all e ∈ E. Stage 2 shows edge e = {1, 2, 3} being
selected. Initially, set S in function generateCliqueCandidate (Fig. 4.7)

contains nodes 1,2, and 3, which are the nodes in e. Node 4 is added to S

since edges {1, 2, 4}, {2, 3, 4}, and {1, 3, 4} all exist. Node 5 is not added,
since, for example, there is no edge {1, 3, 5}. That is, function gener-

ateCliqueCandidate returns the set S = {1, 2, 3, 4} to algorithm HYPER-

CLIQUE (Fig. 4.6). This set is now tested for the clique property, and tests

4.2. INDS BETWEEN TWO RELATIONS 81

Figure 4.8: Phase 1 of Algorithm HYPERCLIQUES: Growing hypercliques

true (Stage 3). That means that S is a maximal clique (by the definition of

function generateCliqueCandidates) and furthermore that edge {1, 2, 3}
cannot be part of another clique that includes nodes other than 1,2,3, and

4 (by Thm. 4.3). Thus, S is included in set result. This process is now re-

peated for all other edges in E. Clique {1, 2, 3, 4} is found three more times
(and thus not added to the final result). Subsequent calls to procedure gen-

erateCliqueCandidate on edges {1, 2, 5} and {3, 4, 5}, respectively (Stage
4), find cliques {1, 2, 5} and {3, 4, 5}, respectively. Since cliques have been
found for all edges in E, and each edge is member of exactly one clique (by

Thm. 4.3), all cliques must have been found. Note that in algorithm HY-

PERCLIQUE, set E∗ is now empty and the graph Gk is reduced to an

empty graph, terminating the algorithm.

4.2. INDS BETWEEN TWO RELATIONS 82

However, this procedure might fail. It may occur that the function gen-

erateCliqueCandidate(Gk, e) returns a set that is not a clique. In this

case, edge e must be a member of two or more maximal cliques that cannot

be merged into one clique. Therefore, a new graph Gk = (V,E∗) is con-

structed that contains all edges for which no cliques were generated before.

In most cases, repeating our algorithm on Gk, we will find more cliques, and

eventually reduce our graph to an empty set. We give an example of that

case.

Example 4.6 For an example, refer to Fig. 4.9. The graph shown is a 2-

hypergraph, as it is difficult to visualize the problem for higher-rank graphs.

Cliques in that graph are {0, 1, 2}, {1, 2, 4}, {1, 3, 4}, and {2, 4, 5}. The three
edges shown by bold lines ({1, 2}, {2, 4}, {1, 4}) are all members of more
than one maximal clique, while all other edges are members of only one

clique each. Function generateCliqueCandidate, used on any of those

three edges, would return set of nodes that does not have a clique property,

such that we would miss clique {1, 2, 4} in the solution. We do find each
of the other cliques when considering one of the thinly drawn edges in the

figure. Thus, we have to reduce this graph to include only those edges E∗ for

which no clique was found in the first iteration (those are exactly the edges

drawn in bold in the figure). Then, we call our algorithm again with only this

subgraph Gk = (V,E∗). Again, by Thm. 4.3, we will not miss any cliques

when using this procedure. Some sub-cliques of previously discovered cliques

may be found, which have to be removed from the solution (however not in

this example). In this example, we would find all cliques in this graph within

4.2. INDS BETWEEN TWO RELATIONS 83

two loops of algorithm HYPERCLIQUE: cliques {0, 1, 2}, {1, 3, 4}, {2, 4, 5}
in the first run and clique {1, 2, 4} in the second.

Figure 4.9: Phase 2 of Algorithm HYPERCLIQUES: Reducible Graphs

In certain cases, this procedure might fail, namely when set E∗ = E (we

will call such a graph irreducible). Algorithm HYPERCLIQUE in Fig. 4.6 uses

a flag reducible to keep track of that property. That situation occurs when

each edge in a graph is part of more than one maximal clique, i.e., when

function generateCliqueCandidate never returned a clique for any of the

edges in E. For example, the 9-node Moon-Moser-Graph (see Sec. 4.2.4)

has this property. Each edge in that graph is a member of three cliques

(Fig. 4.10).

In this case, we apply the following strategy. From the irreducible graph

G = (V,E), we take a random edge e ∈ E and call procedure generate-

CliqueCandidate on e. This will return a set S that is not a clique, but

the nodes of all cliques that e is a member of will be elements of S. Now,

we split G into two graphs: graph Ge which is the subgraph of G induced

by S, and graph Gē, which is identical to G, except that it does not contain

4.2. INDS BETWEEN TWO RELATIONS 84

Figure 4.10: An Irreducible Graph.

edge e.3 We then call algorithm HYPERCLIQUES (Fig. 4.6) on Ge and Gē,

separately. The intuition behind this strategy is that removing edge e from

the graph G will make the graph reducible. In order to still generate all

cliques, we need to consider graph Ge separately. This heuristic leads to an

increase in complexity that can be severe for dense graphs. However, since

the input graphs in our IND-finding problem are quite sparse (as we find in

our Experiments in Chapter 6), the algorithm’s performance is sufficient for

our purpose.

Example 4.7 Refer to Fig. 4.11 for an example of the split procedure. The

graph from Fig. 4.10 is being split at edge {0, 8} into two graphs Ge and Gē.

Note that graph Gē in Fig. 4.11 is identical to the graph in Fig. 4.10, except

that edge {0, 8} is missing.

In very large hypergraphs, a final problem may occur that we call strong

irreducibility. A graph G may not be reducible such that it can be split,
3This is not a partition as some edges exist in both Ge and Gē.

4.2. INDS BETWEEN TWO RELATIONS 85

Figure 4.11: Splitting an Irreducible Graph.

and the graph Ge split off from G may actually be identical to G. In this

case, infinite recursion occurs. We detect such cases and repeat the split

with a different edge from G (inner do-while-loop in Fig. 4.6). This loop

will eventually terminate since the graph cannot be strongly irreducible for

every one of its edges. If this were the case, the graph itself would have

to correspond to a hyperclique, and the inner do-while-loop would not have

been reached.

It is clear that for most graphs, there will be a significant performance

benefit in applying algorithm HYPERCLIQUE rather than the simple

brute-force algorithm, since a smaller number of cliques (compared to the

brute-force algorithm) actually has to be considered. In most cases, the

size of the graph is quickly reduced by removing edges, which reduces the

problem size. Our experiments (Chapter 6) have shown that algorithm

HYPERCLIQUE finishes in a short time in all cases, even when algorithm

FIND HYPERCLIQUES BRUTE FORCE takes a prohibitively long time or

4.2. INDS BETWEEN TWO RELATIONS 86

fails to finish altogether.

4.2.6 An Algorithm to Find Inclusion Dependencies

After describing algorithms to find cliques, we now present the algorithm

FIND2 which uses those clique-finding algorithms (Bron/Kerbosch and

HYPERCLIQUE) to find inclusion dependencies. FIND2 takes as input two

relations R and S, with kR and kS attributes, respectively and returns a

generating set of inclusion dependencies between attributes from R and S.

The schema of both relations must be known, and it must be possible to

perform a test for validity for any inclusion dependency between two given

sets of attributes from R and S. R and S do not necessarily have to have

the same number of attributes.

Overview

We first establish the relationship between hypercliques and the generating

set of IND that we are trying to find. Intuitively, Thm. 4.4 shows that a

clique-finding algorithm is a sensible approach to finding maximal INDs be-

tween relations. More specifically, we show that the INDs generated through

a clique-finding algorithm are a (relatively small) superset of the generating

set G(Σ) and are thus a starting point for a complete and fast solution of

the IND-finding problem.

Theorem 4.4 Consider the IND finding problem between relations R[A]

and S[B] with solution G(Σ) (i.e., generating set of valid INDs). Let V

be the set of unary valid INDs between R and S. Let Ek, with 1 < k ≤

4.2. INDS BETWEEN TWO RELATIONS 87

min(|A|, |B|), be the set of k-ary valid INDs between R and S. Recall that

the elements of Ek can then be seen as edges in a k-Hypergraph Gk(V,Ek),

by Thm. 4.1.

Now consider the set C of all maximal cliques in the k-hypergraph Gk,

obtained by the above clique-finding algorithms (Bron/Kerbosch and HY-

PERCLIQUE). The following properties hold for any c ∈ C:

1. If the IND σc corresponding to c is valid, it is part of the generating

set G(Σ) of INDs between R and S.

2. If σc is not valid, some of its subsets are part of G(Σ).

3. Furthermore, all elements σ ∈ G(Σ) are subsets of or equal to some σc

as above.

Proof: By Thm. 4.1, a valid IND implies a k-hyperclique in a k-hypergraph

Gk constructed for this IND-finding problem. Also, a correct clique finding

algorithm returns a set of maximal cliques. Property (1) must hold since

if there was an IND larger than σc, a clique corresponding to that larger

IND would have been found. Property (2) is true since we assumed valid

unary and k-ary INDs to make up graph Gk. If σc is not valid but its unary

and binary sub-INDs are, then some sub-INDs of σc must be part of G(Σ).
Property (3) holds since any IND implies some (not necessarily maximal)

complete subgraph of Gk, and by the definition of a clique, all such complete

subgraphs are subsumed by the set of cliques found in Gk. �

Due to the high complexity of the problem, enumerating INDs is not

feasible, as we have seen in Sec. 4.2.1. By way of the graph-mapping of

4.2. INDS BETWEEN TWO RELATIONS 88

the IND-finding problem (Sec. 4.2.3) and using clique-finding algorithms,

we avoid generating most INDs and rather concentrate only on those that

are generated by a clique-finding approach. Since the clique property is only

necessary but not sufficient for an IND to hold, we also need to deal with

invalid INDs thus found, in a way that will be explained in this section.

Example 4.8 We introduce a running example that we will refer to through-

out this section. Fig. 4.12 shows two relations R and S. The following

maximal INDs hold between R and S: R[A,B,C,D,E] ⊆ S[A,B,C,D,E],

R[D,F,G] ⊆ S[D,F,G], R[E,F] ⊆ S[E,F], R[E,G] ⊆ S[E,G]. Our algo-

rithm has to discover this generating set of INDs for R and S.

R
A B C D E F G

1 2 3 4 5 6 7
8 9 10 11 12 13 14

S
A B C D E F G

1 2 3 4 5 0 0
0 0 0 4 0 6 7
0 0 0 0 5 6 0
0 0 0 0 5 0 7
0 0 0 0 0 6 7
8 9 10 11 12 13 14

Figure 4.12: The Running Example for the IND-Finding Problem.

Algorithm FIND2 in pseudo code is given in Fig. 4.13. It proceeds in three

steps: finding unary and binary INDs, finding higher-arity IND candidates

from those, finding further IND candidates. In the following sections, we

discuss these three phases of the FIND2 algorithm and explain them, as well

as the overall algorithm, in detail.

4.2. INDS BETWEEN TWO RELATIONS 89

ALGORITHM FIND2

INPUT:
Relations R,S with kR, kS attributes (kS ≤ kR)

OUTPUT:
Set result , containing a generating set of INDs for R and S

01 : Set V ← generateValidUnaryINDs(R,S)
02 : Set E ← generateValidBinaryINDs(R,S, V)
03 : Graph G2 ← (V,E)
04 : Set I ← generateCliquesAndCheckAsINDs(G2)
05 : Set result ← {c ∈ I ∧ |c| = 1}
06 : for m← 3 . . . kS

07 : KHypergraph Gm ← (V, ∅)
08 : Set Ctmp ← ∅
09 : forall (c ∈ I)
10 : if (c is valid ∧ |c| ≥ (m− 1)) result ← result ∪ c
11 : if (c is invalid ∧ |c| ≥ m) Ctmp ← Ctmp ∪ c
12 : Em ← generateKAryINDsFromCliques(m,Ctmp)
13 : if (Em = ∅) return result
14 : result ← result ∪ generateSubINDs(m,Em, result)
15 : Graph Gm ← (V, validINDs(Em))
16 : I ← generateCliquesAndCheckAsINDs(Gm)
17 : return result

Figure 4.13: Algorithm FIND2 for Finding a Generating Set of INDs Between
Two Relations

4.2. INDS BETWEEN TWO RELATIONS 90

Finding Unary and Binary INDs

In Fig. 4.13, this phase corresponds to lines number 01 and 02. As explained

in Sec. 4.2.1, there is a total of I1(kR, kS) = kR · kS unary (not necessarily

valid) INDs between R and S. To establish the set of nodes upon which all

subsequent k-hypergraphs will be built, all those INDs have to be validated.

This requires a generation of all kR · kS unary INDs and their subsequent

testing. Methods for efficient testing are covered in Section 5.1. Bell

and Brockhausen [BB95b] present a slightly improved algorithm for the

discovery of unary INDs which relies mainly on finding maximal and minimal

attributes values for numeric domains, as well as on the availability of foreign

key constraints in a database. We consider those assumptions to be quite

strong given the performance benefits of the algorithm, such that we will not

discuss this approach here further. If foreign keys are available, a number of

unary database queries can be saved by their approach. Much more widely

applicable heuristics that do no rely on outside constraints but solely on

the values in an attribute (as well as its name and domain) are discussed in

Section 5.1.

Example 4.9 In our running example (Fig. 4.12), the valid unary INDs

found are R[A] ⊆ S[A], R[B] ⊆ S[B], R[C] ⊆ S[C], R[D] ⊆ S[D], R[E] ⊆
S[E], R[F] ⊆ S[F], and R[G] ⊆ S[G].

Once the valid unary INDs are established, we create from them a set of

nodes V which will be used for all subsequent graph mappings (by simply

creating a node for each valid unary IND). We can now proceed to generate

candidates for binary INDs. In principle, there are
(kR
2

) · (kS
2

) · 2 such INDs

4.2. INDS BETWEEN TWO RELATIONS 91

(by Eqn. 4.1), or when multiplied out :

I2(kR, kS) =
kR(kR − 1) · kS(kS − 1)

2
INDs.

While this number can be quite large for relations with dozens or hun-

dreds of attributes, many of those INDs do not have to be generated or

tested since they would imply invalid unary INDs. In general, the number

of binary INDs is bounded by a function quadratic in the number of unary

INDs.

Also, by our definition of INDs (Def. 3.1), we do not allow duplicate

attribute names on either side of an IND. Thus, when several unary INDs

hold for the same attribute (e.g., R[a, d] ⊆ S[b, e] and R[a, d] ⊆ S[c, e] could

be valid at the same time), not all combinations of their attributes have to

be tested as binary INDs.

After finding unary and binary INDs, we can then construct graph G2

as defined in Section 4.2.3, p. 69 (Line 03 in FIND2).

Example 4.10 The binary INDs valid between relations R and S in Fig. 4.12

are:
R[A,B] ⊆ S[A,B] R[A,C] ⊆ S[A,C] R[A,D] ⊆ S[A,D]

R[A,E] ⊆ S[A,E] R[B,C] ⊆ S[B,C] R[B,D] ⊆ S[B,D]

R[B,E] ⊆ S[B,E] R[C,D] ⊆ S[C,D] R[C,E] ⊆ S[C,E]

R[D,E] ⊆ S[D,E] R[D,F] ⊆ S[D,F] R[D,G] ⊆ S[D,G]

R[E,F] ⊆ S[E,F] R[E,G] ⊆ S[E,G] R[F,G] ⊆ S[F,G]

Graph G2 is depicted in Fig. 4.14. The nodes represent unary INDs (labeled

with index numbers) and the edges represent the binary INDs listed above.

4.2. INDS BETWEEN TWO RELATIONS 92

unary INDs:

binary INDs
(only indices shown)

12 13 14 15 23 24 25 34 35 45 46 47 56 57 67

4

6

3

7

1

5

2
c1={1,2,3,4,5}

c2={4,5,6,7}

σ1=R[A]⊆S[A] σ2=R[B]⊆S[B] σ3=R[C]⊆S[C] σ4=R[D]⊆S[D]

σ5=R[E]⊆S[E] σ6=R[F]⊆S[F] σ7=R[G]⊆S[G]

Figure 4.14: A Graph G2 constructed by Algorithm FIND2.

Generating Candidates for Higher-Arity INDs

We now run the Bron/Kerbosch algorithm on the graph G2 (Line 04

in FIND2). The algorithm generates a set I (see Fig. 4.13), containing all

maximal cliques in G2. We denote the number of nodes in each clique c ∈ I

by kc. Any clique with kc = 1 (single unconnected nodes in G2) will be part

of the solution and is thus added to the variable result of FIND2 (Line 05).

To understand the remainder of the algorithm, consider a collection of

k-hypergraphs with k = 3, . . . ,max(kc) (i.e., G3, . . . , Gmax(kc)) obtained by

storing each k-subset of each clique c ∈ I (with k ≤ kc) as an edge in Gk.

Together with the mapping from INDs to k-hypergraphs from Section 4.2.3,

we observe the following property.

Theorem 4.5 Let Ek be a k-set of nodes from V . If the edge ek whose set

of nodes is exactly Ek does not exist in Gk, the IND σk corresponding to ek

4.2. INDS BETWEEN TWO RELATIONS 93

cannot be valid.

Proof: We prove by contradiction. Assume a valid k-ary INDs that does not

correspond to an edge in the k-hypergraph Gk. The validity of σk implies

the (existence and) validity of
(k
2

)
binary INDs that are edges in G2. By

Theorem 4.1 (with m = 2) those binary INDs form a clique c.

However, the Bron/Kerbosch clique finding algorithm guarantees that

all cliques in G2 are found. Furthermore, any subset of a clique is also

a clique. Thus, we would have found a subset ck of some clique c that

corresponds to σk and stored it as an edge in the appropriate k-hypergraph.

This contradicts the above assumption. �

However, the converse of the above proposition is not true. The exis-

tence of an edge in Gk does not imply the existence of a k-ary IND in the

database. To see why, refer to Fig. 4.14. In that example, a clique-finding

algorithm would find a clique c2 = {4, 5, 6, 7}, but the corresponding IND

R[D,E,F,G] ⊆ S[D,E,F,G] is not valid in the database from Fig. 4.12.

Therefore generating graph G2 is not enough. Rather, we must also test

INDs that are implied by cliques that do not correspond to valid INDs (see

Property (2) in Thm. 4.4).

Making use of the property described in Theorem 4.5, the maximum

number of INDs to consider for testing is determined by the number of

cliques generated by Bron/Kerbosch. This is much smaller than the

total number of INDs. For a real-world problem, the number of cliques is

likely to be manageable (see Chapter 6). Hence, this results in significant

performance benefits of the FIND2 algorithm over the näıve algorithm. We

4.2. INDS BETWEEN TWO RELATIONS 94

also use heuristics to limit the number of cliques when too many (spurious)

cliques do occur, as explained later in Sec. 5.1.

Determining Higher-Arity INDs

So far, only unary and binary members of the generating set G(Σ) have

been generated. We now show how to write an algorithm using the idea of

Thm. 4.4. A first step in finding higher arity-INDs is the checking of all

IND candidates (cliques) generated by the previous steps. INDs that are

valid will become part of the solution. However, if an IND generated by the

clique-finding algorithm tests invalid, nothing can be said about the validity

of any other INDs. IND-finding then proceeds as shown in Fig. 4.15.

Main loop of algorithm FIND2

1. Set m = 3. Let I be the set of cliques in G2 created earlier.

2. Test all cliques in the set I as INDs for their validity and collect invalid
INDs in a set Ctmp. All valid INDs are added to the set of solutions.
Now, for each σ ∈ Ctmp, add to a set Em all m-ary INDs implied by σ.
(Lines 09–12 in FIND2, Fig. 4.13)

3. Test all INDs σ ∈ Ctmp against the database as they are generated and
store the valid ones as edges in an m-Hypergraph Gm (Line 15).

4. Run algorithm HYPERCLIQUE (Fig. 4.6) to find m-hypercliques in Gm

(Line 16) and store the result in the set I to be used in the next iteration
of the loop. If no cliques with more than m nodes (i.e., nontrivial cliques)
are found, FIND2 will terminate in the next loop and return the solution.

5. Increment m and repeat from step 2.

Figure 4.15: Generating Higher-Arity Member of the Generating Set G(Σ)
in Algorithm FIND2

4.2. INDS BETWEEN TWO RELATIONS 95

After iterating through the main loop and terminating, the solution set

contains all valid INDs that have been found as cliques or hypercliques of

lower-arity INDs. However, some maximal INDs may have been missed in

this process. Consider set I as generated by algorithm FIND2 (Line 16). For

a given m, the set I (Figure 4.13) contains cliques that were found from a

(m− 1)-hypergraph. All those cliques correspond to INDs in the database,

but not all those INDs are necessarily valid. In Fig. 4.16 this situation is

depicted for m = 3, where clique c2 = {4, 5, 6, 7} is not valid.

If an IND σ thus found is invalid, it is still possible that some of its

implied sub-INDs are valid. We will find most of those in subsequent hyper-

graphs (for higher m). However, some sub-INDs of σ with arity m−1 could

be maximal, i.e., part of the solution. The FIND2 algorithm as described so

far would not find those. In Fig. 4.16, three implied 3-ary INDs of clique

c2 (labeled 456, 457, and 567) are invalid. Therefore, some of their implied

2-ary INDs (which we know to be valid) are maximal and thus part of the

generating set. Therefore, we need to generate all maximal sub-INDs σm of

the invalid INDs in I.

For the given m, we thus form all implied m-ary INDs of all invalid

INDs in I (i.e., all invalid INDs implied by any clique) and test each one for

validity. We observe the following properties of any such implied IND σm:

1. If σm itself is valid, it is a (not necessarily proper) subset of an IND not

yet discovered (and vice-versa it cannot be a subset of any undiscovered

IND if it is invalid)

2. If σm is invalid, some or all of its (m−1)-ary sub-INDs may be maximal

4.2. INDS BETWEEN TWO RELATIONS 96

46 47 56 57 67

5-ary INDs 12345
maximal INDs (generating set)

unary INDs:

binary INDs
(only indices shown)

12 13 14 15 23 24 25 34 35 45

3-ary INDs 456

4-ary INDs
4567

(valid)

(invalid)

(invalid)
567467457

(invalid)(valid)(invalid)

c1

c2

σ1=R[A]⊆S[A] σ2=R[B]⊆S[B] σ3=R[C]⊆S[C] σ4=R[D]⊆S[D]

σ5=R[E]⊆S[E] σ6=R[F]⊆S[F] σ7=R[G]⊆S[G]

Figure 4.16: Invalid INDs Generated by the Clique-Finding Algorithm in
Fig. 4.15.

valid INDs and thus part of the generating set of INDs.

We further observe the following properties of any (m− 1)-ary sub-IND

σm−1 generated from any σm:

1. σm−1 is valid in the database (since it is a hyperedge in the (m− 1)-

Hypergraph Gm−1 which has previously been formed)

2. if σm is valid, σm−1 is not maximal

3. if σm is invalid and σm−1 is not a subset of any other valid σ of arity

m as well as not a subset of any larger valid IND already part of the

result, σm−1 must be a maximal IND.

4. as m will grow during subsequent executions of the outer for-loop in

FIND2, and no k-hypergraph can contain cliques of sizes 2 . . . (k − 1)

(p. 67), no further cliques of size m−1, and thus INDs of size m−1, can

4.2. INDS BETWEEN TWO RELATIONS 97

be discovered after this step. That means that the procedure described

here will finally find all maximal INDs of arity m and smaller.

These properties suggest an algorithm to generate all maximal INDs

that have not been discovered by clique-finding, which is stated in the next

section (function generateSubINDs). We now give a concrete example of

this procedure for our running example problem.

Example 4.11 In Fig. 4.16, algorithm FIND2 found a clique {4, 5, 6, 7} in
graph G2. For k = 3, this clique is part of set I (see Fig. 4.13). As the

IND implied by this clique (R[D,E,F,G] ⊆ S[D,E,F,G]) is invalid in the

database (Fig. 4.12), the four implied 3-ary INDs have to be checked. One

of them (R[D,F,G] ⊆ S[D,F,G], labeled 467) is valid in the database, the

other three are not. Thus, INDs R[D,F] ⊆ S[D,F], R[D,G] ⊆ S[D,G],

and R[F,G] ⊆ S[F,G] (labeled 46, 47, and 67, respectively) are not maxi-

mal, while the remaining binary INDs implied by the invalid INDs may be

valid (those are R[D,E] ⊆ S[D,E], R[E,F] ⊆ S[E,F], R[E,G] ⊆ S[E,G],

labeled 45, 56, 57, respectively). R[D,E] ⊆ S[D,E] (labeled 45) is implied

by the valid R[A,B,C,D,E] ⊆ S[A,B,C,D,E] (labeled 12345), which is

already in the solution. Thus it is not maximal. The remaining two INDs

(R[E,F] ⊆ S[E,F], R[E,G] ⊆ S[E,G], labeled 56, 57) are maximal and are

thus included in the solution. Note that there is no need to check any binary

IND for validity anymore, since all binary INDs that are considered in this

step are edges in G2 (and must thus be valid).

With these observations, we can state that algorithm FIND2 generates all

maximal INDs that hold between two given relations. We will give a proof

4.2. INDS BETWEEN TWO RELATIONS 98

in Section 4.2.7.

Subroutines of FIND2

The following subroutines are used in algorithm FIND2.

generateValidUnaryINDs(R,S). This function generates all kR·kS unary

INDs and checks them against the database. It returns the set V of

the INDs valid in the database, which are the nodes for all subsequent

graphs and hypergraphs.

generateValidBinaryINDs(R,S,V). This function generates all those

INDs whose implied binary INDs are elements of E, as explained in

Sec. 4.2.6. The function then checks all those INDs against the data-

base and returns the set E of all those valid binary INDs.

generateCliquesAndCheckAsINDs(Gk). This function accepts a k-

hypergraph. It returns a set of all hypercliques in Gk, together with a

Boolean value for each element in the set in the following manner:

For k > 2, this function calls algorithm HYPERCLIQUE on Gk. If

k = 2, the Bron/Kerbosch-algorithm is run. The function then tests

each generated (hyper)clique’s implied IND against the database. It

returns a set of all those INDs with more than k nodes (i.e., at most one

IND for each clique discovered), regardless of their validity, but marks

each IND as valid or invalid according to its state in the database.

generateKAryINDsFromCliques(k,E). This function accepts a num-

ber k and a set of INDs E. Input set E is assumed to be composed

4.2. INDS BETWEEN TWO RELATIONS 99

of invalid INDs and to correspond to cliques found by a clique finding

algorithm on a (k − 1)-Hypergraph. This function now generates all

k-ary INDs implied by each IND in E, tests each one of them, and

returns the union of those INDs for all elements of E. Similarly to

function generateCliquesAndCheckAsINDs(), both valid and in-

valid INDs are returned, and each IND is marked as valid or invalid

according to its state in the database.

generateSubINDs(k,E,result). This function accepts a number k, a set

of (valid or invalid) INDs E, and set result , which is the set of INDs

already included in the solution earlier (lines 05 and 10 in Fig. 4.13).

The function now generates all INDs σ that satisfy the following three

conditions (derived from the conditions on p. 96):

1. σ is a k-subset of an invalid IND from E

2. σ is not a subset of any valid IND from E

3. σ is not a subset of any IND already in result.

The function returns the set of all σ that meet the above conditions.

Note that subset testing can be done very efficiently when sets are

stored as bit fields (by simple bit operations).

validINDs(E). Given a set of INDs marked as valid or invalid, this function

simply returns the valid INDs from E.

Also note that the set result of solutions is built through set-union op-

erations (Lines 10 and 14 in Fig. 4.13). That will prevent INDs that have

been found multiple times from being added to the solution more than once.

4.2. INDS BETWEEN TWO RELATIONS 100

The first four functions in the above list (generateValidUnaryINDs,

generateValidBinaryINDs, generateCliquesAndCheckAsINDs, and

generateKAryINDsFromCliques all test INDs against the database. In

the FIND2 algorithm as described in this section, we accomplish this by

database queries, as explained in Sec. 5.1.1. Faster and more comprehensive

methods of checking INDs are explored in Sec. 5.2.2.

Example 4.12 We demonstrate algorithm FIND2 by way of our running ex-

ample. FIND2 first finds unary and binary inclusion dependencies (Fig. 4.17).

For INDs of arity higher than 1, we only show the indices of unary INDs

that they imply. The algorithm then proceeds to find cliques from the discov-

ered valid binary (and unary) INDs, from which we have formed a graph

(Thm. 4.1). The cliques found in this graph are c1 = (1, 2, 3, 4, 5) and

c2 = (4, 5, 6, 7). A test against the database of those two cliques yields that

the IND induced by c1 is valid while the IND induced by c2 is false (invalid).

Now, algorithm FIND2 proceeds to generate four 3-ary INDs from the invalid

IND induced by c2. Those INDs ((4, 5, 6), (4, 5, 7), (4, 6, 7), and (5, 6, 7)) are

tested against the database and only (4, 6, 7) is found valid. That implies that

any 2-ary IND induced by (4, 6, 7) is not maximal while any 2-ary IND im-

plied by the other three INDs may be maximal. In fact, two of them are

((5, 6) and (5, 7)), while (4, 5) is subsumed by (1, 2, 3, 4, 5) and is therefore

not maximal. The only edge in the newly formed 3-Hypergraph G3 is now

(4, 6, 7), such that the only clique in that graph is also (4, 6, 7), which is then

the last remaining maximal IND. This implies that the generating set for all

INDs between R and S is {(1, 2, 3, 4, 5), (4, 6, 7), (5, 6), (5, 7)}.

4.2. INDS BETWEEN TWO RELATIONS 101

46 47 56 57 67

5-ary INDs 12345

maximal INDs (generating set)

134 never generated

unary INDs:

binary INDs
(only indices shown)

12 13 14 15 23 24 25 34 35 45

3-ary INDs 456

4-ary INDs
4567

(valid)

(invalid)

(invalid)
567467457

(invalid)(valid)(invalid)
123 124 125 134 135 145 234 235 245 345

c1

c2

σ1=R[A]⊆S[A] σ2=R[B]⊆S[B] σ3=R[C]⊆S[C] σ4=R[D]⊆S[D]

σ5=R[E]⊆S[E] σ6=R[F]⊆S[F] σ7=R[G]⊆S[G]

Figure 4.17: An Example for the Complete Algorithm FIND2.

4.2.7 Correctness of Algorithm FIND2

Correctness of Functions Called by FIND2

To show the correctness of algorithm FIND2, we first assume that the func-

tions called by it are correct. All functions called, except for generate-

SubINDs whose soundness we have motivated beginning on page 95, are

fairly straightforward and easy to prove so that their correctness will not be

shown here.

The clique-generating function (generateCliquesAndCheckAsINDs) uses

the Bron/Kerbosch-algorithm for k = 2 and a similar hyperclique algo-

rithm for k > 2. Both algorithms are also assumed to run correctly (i.e.,

find all maximal cliques in the given graph or k-hypergraph).

4.2. INDS BETWEEN TWO RELATIONS 102

Correctness of the Overall Algorithm

It remains to show that the algorithm FIND2 finds the generating set

(Def. 3.6) of INDs between two relations R and S. We have to show that

the result set is complete, i.e., that all INDs between R and S can in fact be

derived from the INDs in the set result and that the set result is minimal

with respect to this property.

First, we show that all INDs are in fact found. Consider the graph G2

whose nodes are valid unary INDs and whose edges are valid binary INDs

between the relations in question. By Thm. 4.4, all elements σ ∈ G(Σ) of

the generating set, i.e., all solutions to the IND-finding problem, are either

elements or subsets of the set of cliques found by the clique algorithm for

k = 2. We consider the INDs that have not been found directly as cliques in

G2 (property (2) in Thm. 4.4). Let us denote this set of not-yet-discovered

INDs by Σ2 ⊆ G(Σ). Now there are two cases:

1. INDs σ2 ∈ Σ2 with |σ2| = 2 are found by the function generate-

SubINDs, line (14) in algorithm FIND2 (Fig. 4.13)

2. INDs σ2 ∈ Σ2 with |σ2| > 2 are not found by function generate-

SubINDs. Rather, 3-ary INDs are created as subsets of those cliques

in G2 that correspond to invalid INDs, and used as edges in a 3-

hypergraph G3. This set of 3-ary INDs is necessarily equal to or a

superset of the set of 3-ary sub-INDs of elements of Σ2 (i.e., the set of

as-yet undiscovered INDs, by Thm. 4.4).

We now show that all INDs are found. For 3 ≤ i ≤ min(|R|, |S|), the
clique-finding algorithm is called for Gi. By Thm. 4.4, some new INDs may

4.2. INDS BETWEEN TWO RELATIONS 103

be found from (hyper)cliques. However, function generateSubINDs does

generate all i-ary INDs, analogous to the case of i = 2 described above. For

each i, a new set Σi with the not-yet-discovered INDs is formed as above.

Since all INDs must have arity lower than or equal to min(|R|, |S|), and all

(missing) i-ary INDs are found at step i, Σi must be empty after calling

function generateSubINDs for i = min(|R|, |S|). That means, all INDs must

have been found.

It remains to show minimality. There are three places in the algorithm

FIND2 where discovered INDs are added to the result, in lines 5, 10, and

14 (Fig. 4.13). First, the result is initialized with the single-node cliques.

Those correspond to nodes in the initial graph G2 which have degree 0, such

that their implied INDs cannot be part of any higher-arity IND (i.e., they

are maximal). In lines 5 and 10, we add INDs that have been generated

by a clique algorithm, which must be maximal (since clique algorithms find

maximal cliques). INDs added in line 14 are maximal as shown in the

previous section. Since only maximal INDs are added to the result, the

result set is a generating set, as long as all INDs are included. We have

proved that all INDs are included. Thus the set is indeed a generating set,

and therefore minimal, by the definition of generating sets in Sec. 3.2.2.

q.e.d.

4.2.8 Complexity of Algorithm FIND2

In this section, we will consider the complexity of algorithm FIND2. We

will show the complexity of each function called by it, and the complexity

of the complete algorithm. Throughout the section, we will assume that

4.2. INDS BETWEEN TWO RELATIONS 104

IND-testing can be done in constant time. We will also assume the variable

names from algorithm FIND2, Fig. 4.13.

Generating Unary and Binary INDs

The runtime of function generateValidUnaryINDs is in O(kR·kS) and returns

a set V . Function generateValidBinaryINDs runs in O(|V |2) time, which,

in the worst case is bounded by (kR · kS)2. However, for real-world data,

the value is normally much smaller than that number (see our experiments

in Chapter 6). The maximum is only reached for the special case of two

identical relations with only attributes with identical values.

Generating Cliques in Graphs

The function generateCliquesAndCheckAsINDs finds cliques in k-hypergraphs.

As mentioned earlier, the decision problem of whether there is a clique of a

certain minimum size in a graph is NP-complete [GJ79]. Thus, finding all

cliques in a graph is NP-hard. The maximal number of cliques in a graph

is in O(3
n
3) with n the number of nodes [MM65]. The problem of finding

all hypercliques in a k-hypergraph is a generalization of the clique-finding

problem and thus also NP-hard. However, the problem is tractable in prac-

tice, since we expect a small number of cliques only, and graphs with few

cliques can be searched for cliques efficiently.

We now show that the Bron/Kerbosch-algorithm (Appendix A) is

capable of finding the set of cliques C in a graph G = (V,E) in a time poly-

nomial in the number of cliques.4 The algorithm is a backtracking algorithm
4This complexity results is suggested but not proven in [BK73].

4.2. INDS BETWEEN TWO RELATIONS 105

that keeps a stack of candidate nodes for a clique. It essentially traverses a

tree T of clique candidates, cutting off a branch when the addition of another

node to the contents of the current stack cannot lead to a clique. Assuming

that no clique is discovered more than once (for which the algorithm takes

special precautions, see below), each path in this tree T corresponds to a

clique, while the tree has exactly as many leaves as there are cliques in the

graph G. The number of recursive calls in Bron/Kerbosch is equal to the

number of edges e in this clique tree T . There is an obvious (loose) upper

bound for e, related to the size of the largest clique cmax = max(|c| : c ∈ C),

namely e < cmax · |C|. The number of different large cliques is normally

very small, such that the actual number for e is much smaller than that.

cmax is bounded by the number of vertices in G, which is a (small) constant

that does not depend on |C|. That is, the number of recursive calls is in

O(|V | · |C|).
For each recursive call, Bron/Kerbosch executes two steps:

1. finding the degrees of all nodes in a graph G′(V ′, E) (constructed as

the graph induced by G(V,E) in some set V ′ ⊂ V), which is done in

O(|V ′|2) time and

2. finding a set of nodes in G′(V ′, E) connected to a special node (the

fixpoint, variable fixp in Appendix A) which is done in O(|V ′|) time.

No graph G′ can have more nodes than G. Therefore, combining those

two steps, the runtime of Bron/Kerbosch has an upper bound of O(|V |3 ·
|C|) where |V | is the number of nodes in G and |C| the number of cliques.

4.2. INDS BETWEEN TWO RELATIONS 106

A more careful analysis shows that the algorithm sometimes starts find-

ing the same clique several times, but since it keeps a history of nodes that

have already served as starting points for cliques, it never re-discovers more

than one node of an already discovered clique. This will not slow down the

algorithm by more than a factor of cmax · |C| (our upper bound for the num-

ber of edges in search tree T), which gives the whole algorithm a complexity

of O(|V |4 · |C|2) as a very loose upper bound.

To complete the analysis, it remains to evaluate the number of cliques

generated in this step. In our experiments, we have found that depending

on the number of attributes in the underlying tables, the number of cliques

at any step in the algorithm does not exceed a few thousand. This number

poses no problem for our algorithm. For problems in which the number of

cliques becomes too large, we apply heuristics explained in Sec. 5.1.

Generating Cliques in Hypergraphs

Algorithm HYPERCLIQUE (Sec. 4.2.5) generates all cliques in a k-hyper-

graph Gk. HYPERCLIQUE is more difficult to analyze than the Bron/Ker-

bosch-algorithm. The worst case complexity is clearly exponential, which

occurs in the case when the entire graph is strongly irreducible, such that

brute-force clique finding has to be used. The complexity of the brute-force

algorithm is in the order of the number of possible subsets of the nodes in

the input graph, which is O(2n) in the number of nodes n.

In the best case, the algorithm will find one clique for every edge in the

graph during the first loop through all edges and then terminate, such that

its complexity is determined by the number of cliques and the time it takes

4.2. INDS BETWEEN TWO RELATIONS 107

to generate clique candidates and test them. An analysis of the average

runtime complexity did not seem feasible, but that we will discuss some

complexity issues of certain steps in the algorithm.

Two important functions that algorithm HYPERCLIQUE needs to sup-

port are generating clique candidates and checking a set for the clique prop-

erty.

In order to generate the clique candidate for an edge e (Function gener-

ateCliqueCandidate(Gk , e) in algorithm FIND2), the algorithm needs to cycle

through (almost) all nodes in Gk, and for each node ν determine whether

for all possible sets S of k − 1 nodes not containing ν, there is an edge in

e that connects S with ν. This involves searching for the correct edge once

for each node in e, i.e., k times. Since the edges can be stored in a sorted

list, searching is done in logarithmic time. Thus, the complexity of function

generateCliqueCandidate(Gk , e) is in O(|V | · k · log(|E|)).
Testing clique candidates in k-hypergraphs is accomplished by checking

node degrees, using Thm. 4.2. In k-hypergraphs, the finding of node degrees

is more complex than in regular graphs. Instead of simply iterating through

one row of the adjacency matrix, one now has to go through all edges (which

are sets) and test for set membership of a node in that edge. For graphs

with few nodes (less than the word size of the processor), the time for testing

set membership is constant, such that a node degree can be determined in

O(|E|) time. Thus, testing whether a graph is reducible involves generating

the clique candidate and testing it for each edge in Gk, such that reducibility

testing runs inO(|E|·(|V |·k·|E|+|E|)) = O(|V |·k·|E|2) time. For completely

reducible hypergraphs (i.e., hypergraphs in which no hyperedge is a member

4.2. INDS BETWEEN TWO RELATIONS 108

of more than one maximal clique), the algorithm HYPERCLIQUE terminates

after one iteration through all edges, such that it also runs in O(|V | ·k · |E|2),
which is small for the sparse hypergraphs likely to occur in our environment.

However, the runtime is mainly dependent on the number of edges in Gk,

which is an important observation for our heuristics in Sec. 5.1.

As irreducible graphs are being split and treated separately, a complexity

blowup can occur. To solve this problem, we will introduce in Chapter 5

some heuristics that restrict the size of the graphs involved.

Generating IND Subsets

Generating subsets (functions generateKAryINDsFromClique and generate-

SubINDs in algorithm FIND2, Fig. 4.13) is simple to analyze. The runtime of

the generating algorithm is bounded by the number of subsets to generate,

i.e., by
(|c|
k

)
for a clique c in the case of generateKAryINDsFromClique and

|Ek| ·
(k
k−1

)
in the case of generateSubINDs. The first number can become

very large when k is not very small and is not close to |c|.
Therefore, we need to look at likely values that k can assume. In algo-

rithm FIND2, k will grow as long as there are new non-empty k-hypergraphs

Gk constructed. A hypergraphGk will be non-empty if and only if there were

cliques in the (k − 1)-Hypergraph Gk−1 that corresponded to invalid INDs.

Let us assume the IND-finding problem between relations R and S. Assume

that algorithm FIND2 has found a clique c with n nodes in a k-hypergraph

Gk and that c corresponds to an invalid IND σc = R[Ac] ⊆ S[Bc]. This

implies that there is a set Ik of valid k-ary INDs with |Ik| =
(
n
k

)
, namely the

ones that were used to construct c to begin with.

4.2. INDS BETWEEN TWO RELATIONS 109

For those conditions to hold, each tuple tR ∈ R must either exist in S

or the following condition must hold for tR (and there must be at least one

such tuple):

∀t ∈ S[Bc] : tR[Ac] �= t ∧

∀(σi = R[Ai] ⊆ S[Bi]︸ ︷︷ ︸
a sub-IND of σc

) ∈ Ik : ∃t ∈ S : tR[Ai] = t[Bi]

In words, while tuple tR[Ac] itself must not exist in S[Bc], S[Bc] must contain

at least one tuple for each possible projection of tR[Ac] on any k attributes.

Note that this puts a constraint on the values of r(k+1) tuples in S, for some

number 1 ≤ r ≤ |R|. While it is simple to construct an example where these

conditions hold (Fig. 4.3), it seems unlikely in practice that such conditions

occur accidentally or by design. Thus, we do not expect the value of k to

grow very large in our algorithm. In our experiments, k did not grow beyond

5 or 6.

Complexity of the Entire Algorithm

A useful general bound for the complexity of algorithm FIND2 is difficult to

give. Furthermore, giving tight bounds for the general case seems impossible

due to the complexity of the problem. Therefore, and due to the fact that

a subproblem of FIND2 is NP-hard, we will not give a complexity bound

but rather refer to our experiments. In cases when our original algorithm as

shown in Fig. 4.13 runs too slowly, we restrict the search space by applying

heuristics (Sec. 5.1). Those heuristics allow us to adjust the runtime of

4.2. INDS BETWEEN TWO RELATIONS 110

FIND2 to a user’s needs, while still being able to control the errors that the

algorithm produces.

111

Chapter 5

Heuristic Strategies to Find

Inclusion Dependencies

5.1 Comparing two Attribute Sets

In Chapter 4, we discussed algorithm FIND2 which finds the generating set

of inclusion dependencies between two given relational tables. That algo-

rithm relies on being able to test any given inclusion dependency against the

database. In this chapter, we will discuss how such inclusion dependencies

are tested, what the issues and problems are and how the testing can be

optimized.

Thus, we consider the following problem:

Consider a relation R, a list of attributes A1, . . . , Ak from R, a

relation S, and a list of attributes B1, . . . , Bm from S. Decide

whether the IND σ = R[A1, . . . , Ak] ⊆ S[B1, . . . , Bm] is valid in

5.1. COMPARING TWO ATTRIBUTE SETS 112

the database, i.e., whether the projected extents of relations R

and S stand in the set relationship asserted by σ.

An answer to this question can simply be found by formulating a data-

base query, as suggested in the following section, but such a procedure will

not necessarily be optimal for algorithm FIND2, as we show in this chapter.

Rather, we introduce a more sophisticated way of testing inclusion depen-

dencies, by making use of heuristics that extract additional information from

attribute sets beyond simple inclusion.

5.1.1 Simple IND-Testing

In the previous section, we treated the testing of INDs as an atomic operation

whose runtime is constant. We will now look more closely at the complexity

of this operation.

There are at least two different ways to determine the validity of an

IND using SQL: the direct computation via a MINUS-query, or comparing

the results of two COUNT-queries. For example given an IND R[A1, A2] ⊆
S[B1, B2], those SQL queries would be formed as shown in Figs. 5.1 and 5.2.

select count(*)
from (select A1,A2

from R
minus
select B1,B2
from S)

Figure 5.1: Determining the Validity of an IND by a MINUS-Query

In the first case of MINUS-queries (Fig. 5.1), the IND is valid if and only

5.1. COMPARING TWO ATTRIBUTE SETS 113

select count(distinct R.A1, R.A2)
from R,S
where R.A1=S.B1 and R.A2=S.B2;

select count(distinct A1,A2)
from R;

Figure 5.2: Determining the Validity of an IND by Two COUNT-Queries

if the number returned by the query is 0. In the second case of count-queries

(Fig. 5.2), the IND is valid iff the numbers returned by the two queries are

equal 1. It is also possible to use an outer join, which is slightly faster than

a count of a natural join, but still significantly slower than computing the

set difference (in our implementation, Chapter 6).

Computing the set difference between two projections involves sorting

both relations by the attributes in the projection and then making an addi-

tional run through all tuples to compare them. Assuming two equal-size re-

lations R and S with n tuples, the complexity of the MINUS-query (Fig. 5.1)

is in O(n · log(n)+n) = O(n · log(n)) in main memory or in O(n) in terms of

I/O-cost for relational databases, given sufficient buffer sizes (since external

merge-sort can be used to sort data [EN94]). Since comparing two tuples

may not be trivial, the runtime may depend on the number of attributes

in the IND and their data types, depending on the implementation of the

database system used.

The second method (Fig. 5.2) involves joining two tables and thus runs

in O(n2); clearly slower than the first query. This query becomes extremely

slow when two large relations with many duplicates in the join attribute
1This method was suggested by Bell and Brockhausen [BB95b].

5.1. COMPARING TWO ATTRIBUTE SETS 114

are considered, since the join result before duplicate removal can have up to

|R||S| tuples.
If relations R and S do not reside in the same database, those queries

are not applicable. In that case, the queries have to be broken down for the

two databases and the results have to be combined, for example by using a

local database. For example, such an algorithm could proceed as in Fig. 5.3

(in JDBC-like syntax).

function CHECK(Relation R,AttribList A,Relation S,AttribList B)
RelationExtent ER, ES

ER ← executeQuery(select distinct A from DB1.R)
insert ER into localDB
ES ← executeQuery(select distinct B from DB2.S)
insert ES into localDB
c ← executeQuery(select * from localDB.E R

minus select * from localDB.E S)
if (c = 0) return true //IND is valid
else return false

Figure 5.3: A Simple Algorithm to Check for IND Validity

A possibly improved method for IND-testing involves first computing

ER, and then iterating through tuples from ER and searching these tuples

in ES . At best, one could iterate through tuples in ER and find the IND in

question to be invalid as soon as a tuple in ER is not found in ES. However,

the worst-case complexity is not better than in function CHECK when using

this method. In any case, a large amount of tuples has to be transferred

through the network, such that the complete computation of the validity of

INDs should be avoided when possible.

5.2. FINDING INCLUSION DEPENDENCIES USING HEURISTICS115

As IND testing is expensive, we propose in the remainder of this chapter

several heuristics for an improvement on this part of IND discovery. We

focus on two strategies: reducing the runtime for a single IND check, and

reducing the number of IND checks algorithm FIND2 has to perform against

the database.

5.2 Finding Inclusion Dependencies Using Heuris-

tics

Algorithm FIND2 as described so far finds the complete and correct solution

to the IND-finding problem for two given data sets. However, since several

of the algorithms involved have high complexity, FIND2 does not finish for

large problems. The problem size for which complete solutions can be found

depends on the number of distinct values in each attribute of the data sets

tested, as we explain in Section 5.2.1. However, we have established a num-

ber of heuristics that help to reduce the sizes of the graphs involved at the

expense of the completeness and/or correctness of the solution. The large

increase in the size of problems that are tractable using heuristics justifies

the errors introduced, as we argue in the section below.

5.2.1 Accidental INDs

Algorithm FIND2 (Section 4.2) works by generating and checking low-arity

INDs and then deducing higher-arity INDs based on the results. However,

this process is very sensitive to the number of low-arity INDs in the prob-

lem, as all graph algorithms used are NP-hard. We now define a notion of

5.2. FINDING INCLUSION DEPENDENCIES USING HEURISTICS116

“specious” or “accidental” INDs that are valid in the database but do not

contribute to a fast solution found by FIND2.

Definition 5.1 (Accidental IND) Consider the IND-finding problem be-

tween two given relations R and S. Let Σ be the set of valid INDs between

R and S and G(Σ) be the generating set of Σ. Furthermore, let σ ∈ Σ be a

valid IND. Let σL ∈ G(Σ) be the largest element of G(Σ) that implies σ, and
σmax ∈ G(Σ) be the largest IND in G(Σ). With p = |σL|

|σmax| , σ is then called

p-confident. An IND that is p-confident with a p lower than some threshold

is called accidental.

The intuition behind this definition is that for a pair of relations in which

the largest IND has arity k, most INDs of arity less than k·p (i.e., of relatively

small arity) are not very “interesting”, as we are primarily concerned with

finding large overlaps between relations. Since smaller INDs that are implied

only by such “uninteresting” INDs do not contribute to finding large INDs,

there are deemed noise for our algorithm, at the risk of losing some of the

completeness of the result.

For large IND-finding problems, we consider INDs accidental if their con-

fidence is lower than about 0.1, an empirically found value. An IND that

is not accidental does most likely express some kind of semantic relation-

ship between two tables, whereas an accidental IND is likely to be valid by

statistical coincidence, as explained in the remainder of this section.

Often, accidental INDs occur when information is encoded as small inte-

gers; a procedure often used in real-world database design, as the following

example shows.

5.2. FINDING INCLUSION DEPENDENCIES USING HEURISTICS117

Example 5.1 Consider Fig. 5.4 for an example. Using our example data-

base from Fig. 3.1, we assume that the string-valued attributes Genre and

Director have been encoded using numeric values.

GenreIndex
Genre Sci-Fi Drama Satire TV-Feature
Index 1 2 3 4

DirectorIndex
Director D.Lynch J. Negulesco J.Cameron S.Kubrick
Index 1 2 3 4

Movies
Title Genre Director
Dune 1 1
Aliens 2 3
Under My Skin 2 2
Titanic 2 3
Titanic 4 3
Dr. Strangelove 3 4
MyMovies
Title Genre Director
Dune 1 1
Titanic 2 3
Dr. Strangelove 3 4

MyMovies[Genre] ⊆Movies[Director]
MyMovies[Director] ⊆Movies[Genre]

MyMovies[Genre,Director] ⊆Movies[Director,Genre]

Figure 5.4: Accidental INDs Introduced by Encoding Data

In this example, the actual information content is the same as in

the database in Fig. 3.1 (i.e., the two databases are semantically equiv-

alent [MIR94]). The four INDs shown there also hold in this database.

However, in the encoded version of the database, three additional low-arity

5.2. FINDING INCLUSION DEPENDENCIES USING HEURISTICS118

INDs are introduced (shown in bold font in Fig. 5.4). The third IND

(MyMovies[Genre,Director] ⊆ Movies[Director,Genre]) is valid and

maximal and is thus part of the generating set of INDs between MyMovies

andMovies. However, in some sense, this IND is intuitively “wrong”. Note

that it is not implied by any other valid IND otherwise found (in Fig. 3.1),

meaning that it will be discarded (in this case) from the search space when

INDs of arity higher than 2 are generated. Therefore, we will not need this

IND for a correct solution of INDs with arities larger than 2. Also, having

to consider these additional unary and binary INDs enlarges the graphs used

by our algorithm and increases its runtime. The confidence of all three new

INDs as defined in Def. 5.1 is 0.67. This value is relatively high as this small

example relation has very few attributes. For larger relations, we frequently

encounter INDs with very low confidence.

Our definition of “accidental INDs” states that even though an IND may

be valid in the database, it may not actually be “good” data, that is, it may

not help in the discovery of larger INDs. In addition, we hold the view

that such INDs are also less useful to a user as part of the generating set

of INDs. To see this, consider two relations that have a large overlap of k

attributes, expressing some semantic relationship between the relations. An

additional overlap of, for example, k/10 attributes that is disjunct from the

large overlap will most likely not carry any useful information.

In order to assess the probability for such accidental INDs to occur we

look at a statistical model. Assume two relations R and S and the problem

of assessing whether a valid IND σ = R[A] ⊆ S[B] actually expresses a

5.2. FINDING INCLUSION DEPENDENCIES USING HEURISTICS119

semantic relationship between R and S or whether σ holds “by accident”.

Furthermore assume that both attributes have equivalent domains (such as

int or char) with k elements. Let A have r distinct values and B have

n distinct values. Now consider the statistical probability that r particu-

lar objects are included in a random sample of n objects from k different

objects. This probability P (n, r, k) in some sense gives the likelihood that

two attributes form an “accidental IND”. P (n, r, k) can be computed by the

following formula.

Theorem 5.1 Consider a set R = {e1, . . . , er} of r elements from a uni-

verse K of k distinct elements. The probability that a random sample (ob-

tained by sampling with replacement) of n elements from K contains set R

is

P (n, r, k) = 1−

r∑
i=1

(−1)i+1 · (ri) · (k − i)n

kn
(5.1)

Proof: There are kn different samples of size n from k distinct elements

(sampling with replacement). We compute how many of those do not contain

R. A sample that does not contain R is a sample in which at least one

element from R is missing. Let us denote by Ae the set of all samples that

are missing element e. Then, the number of samples that do not contain at

least one element from R is r0 = |Ae1 ∪ Ae2 ∪ · · · ∪ Aer |. The size of each

Ae is easy to compute, however we need to determine the size of the union

of all those sets. For this purposes, we use the inclusion-exclusion rule of

combinatorics.

This rule is a generalization of the rule |A ∪ B| = |A| + |B| − |A ∩ B|
(“addition law”, [Ric95]) and states that:

5.2. FINDING INCLUSION DEPENDENCIES USING HEURISTICS120

∣∣∣∣∣ ⋃
i=1...n

Ai

∣∣∣∣∣ =
n∑

i=1


(−1)i+1 ·

∑
J : |J |=i

∣∣∣∣∣∣
⋂
j∈J

Aj

∣∣∣∣∣∣

 (5.2)

In our problem, the number of distinct samples in a set
⋂

j∈J Aj (i.e.,

the number of samples that contain none of the elements in J), is equal

to the number of distinct samples of n elements from (k − |J |) elements,

i.e., (k−|J |)n. With our definition of set R from above, the number of such

subsets J ⊂ R of a certain size i is
(
r
i

)
. Therefore, the number of samples

that do not contain at least one element from R is:

r0 = |Ae1 ∪Ae2 ∪ · · · ∪Aer | =
r∑

i=1


(−1)i+1 ·

∑
J⊂R: |J |=i

∣∣∣∣∣∣
⋂
j∈J

Aj

∣∣∣∣∣∣



=
r∑

i=1

(−1)i+1 ·
(
r

i

)
· (k − i)n

By dividing this number r0 of samples that do not contain R by the number

kn of possible distinct samples, we get the probability P ′ = r0
kn that a sample

does not contain R, such that P (n, r, k) = 1− P ′, q.e.d. �

For the purpose of determining the probability of “accidental INDs”, we

can use this formula in the following sense: Recall from above that in the

valid R[A] ⊆ S[B], A has r distinct values and B has n distinct values. One

can argue that since the values in A are a subset of the values in B, the

values in both attributes are from a domain B (then, A ⊆ B and B ⊆ B).

We are interested in the “chance” that attribute A just “happens” to be

5.2. FINDING INCLUSION DEPENDENCIES USING HEURISTICS121

included in attribute B as a statistical property. This “chance” can be

assessed by the probability that a superset of A is obtained by a random

sampling of n values from k = |D| values by setting n = k in Equation 5.1.

For the case r = 1, this probability, which we will call p1, tends towards

p1 = 1 − 1
e = 0.632 (i.e., the probability that n samples from n distinct

elements contain one particular element is p1 for n = k and n→∞). What

this probability states is that “if attribute A is from the domain given by

B and has only one value, the chance that the IND R[A] ⊆ S[B] does not

express any semantic relation between A and B is p1”. In Table 5.1 we have

listed the minimum value for r for which pr remains lower than 0.05, for

different n = k. That is, we have computed how many distinct values an

attribute A must contain, given an attribute B with n values, in order to

have 95% confidence that a valid IND R[A] ⊆ S[B] does express a semantic

relationship between A and B. Note that for n ≤ 4, p never drops below

5% for any r, which means that in this model, a valid IND R[A] ⊆ S[B] for

a B with 4 or less distinct values can never be seen as an indicator for a

semantic relationship between A and B.

n = k 95% confidence for r ≥
1000 7
100 7
10 6
8 6
6 5
5 5
4 N/A

Table 5.1: Minimum Number of Distinct Values to Avoid Accidental INDs

5.2. FINDING INCLUSION DEPENDENCIES USING HEURISTICS122

Example 5.2 It is possible to compute confidence levels for the number of

distinct values for other cases. For example, if expert knowledge is avail-

able stating that the domains of both A and B are integer percentages (i.e.,

integers between 0 and 100, 101 distinct values), one obtains that a valid

IND R[A] ⊆ S[B] with 50 distinct tuples in B and 3 distinct tuples in A

has a P (50, 3, 101) = 0.058 probability to be “accidental”, i.e., expresses a

semantic relationship between A and B with 94% confidence.

From Table 5.1 it can be concluded that inclusion dependencies where the

included attribute has less than 6 or 7 distinct values have a high chance of

being valid by statistical coincidence, rather than by semantic relationships

between the attributes. This is a very important result that we use to restrict

the search space of our algorithm.

5.2.2 Heuristics for IND-Validity Testing

We have argued in Sec. 5.1.1 that IND validity testing is expensive, and that

simple SQL-queries to test an IND are computationally and I/O-expensive.

Also, we have seen that INDs that are valid in a database may actually

not express a semantic relationship (with the consequence that they are not

likely to be helpful as nodes or edges in our clique-finding algorithms). These

observations suggest a number of heuristics that we can use to cut down the

search space for algorithm FIND2.

In the following sections, we propose four heuristics for validity testing

of INDs. These heuristics make use of information about attributes that

is easier to obtain and compare than the complete list of values in each

5.2. FINDING INCLUSION DEPENDENCIES USING HEURISTICS123

attribute that would be necessary for IND-validity testing. This additional

information can be grouped as follows:

• meta-information (data types, domains, attribute names),

• simple statistical properties (minimum, maximum for continuous do-

mains, number of distinct values for discrete domains), and

• attribute value distributions or histograms.

In the literature, other information is sometimes used. For example, in a

framework for attribute equivalence in databases, Larson, Navathe, and

ElMasri [LNE89] include additional meta-information, such as semantic

integrity constraints available from the database, security constraints (per-

missions), allowed operations and scale. We hold the view that such meta

information is hard to obtain in a general way for heterogeneous databases

and restrict ourselves to information that is easily available from an other-

wise unknown database by querying the database in SQL.

In the Artificial Intelligence (AI) community [KLN00, MWJ99, DDH00],

the semantics of attributes are often used to assess the similarity of at-

tributes. AI solutions can complement and enhance our results if appropri-

ate meta data is available. We will not concentrate on these approaches here

as we are looking for a solution that is as automated as possible. Attribute

semantics are expert knowledge and often must be entered into a system by

human intervention.

There is substantial work on ontologies, i.e., usually task-independent

knowledge bases used to describe the “world” [Gua95, UG96, GPB99, SBF98],

5.2. FINDING INCLUSION DEPENDENCIES USING HEURISTICS124

with the goal (in our case) to automatically determine the semantics of an

attribute by its name. We are not discussing this work here either, but state

that ontologies could be used in our algorithm when available. Available on-

tologies can be used to simply determine a given IND to be valid or invalid,

without having to execute a database query against the source data.

Given the types of information we propose to use in our algorithm, we

will now discuss four heuristics.

1. Domains: If A and B have incompatible domains, an IND between

them cannot be valid.

2. Names: If the names of A and B are similar, the attributes may be

related.

3. Number of Distinct Values (DV): If the number of distinct values

in A is much smaller than the number of distinct values in B, or if

both numbers are very small, the attributes may not be related (but

rather form an accidental IND, as discussed in Section 5.2.1)

4. Attribute Value Distribution (AVD): If the distribution of values

in A and B, respectively, is different, the attributes may not be related.

We use the first heuristic to reduce the number of database queries sent

to the source databases, while the latter three heuristics help to distinguish

“accidental” INDs from likely semantically meaningful INDs. The Domains

heuristic will not affect the quality of our algorithm. The other three heuris-

tics may lead to false negatives (IND that are falsely classified as accidental,

i.e., invalid) and thus potentially introduce errors in the solution provided

5.2. FINDING INCLUSION DEPENDENCIES USING HEURISTICS125

by FIND2. Solutions to the IND-discovery problem that are found using

these heuristics will contain correct but not necessarily maximal INDs.

5.2.3 Heuristic: Domains

A very simple way to avoid database queries in order to test INDs is the use

of domain information. In the simplest case of relational databases, domain

information is available in the form of SQL-data types, under the assump-

tion that reasonable data types are used for each attribute. For example,

since an SQL-query-engine cannot compute a MINUS-query between an at-

tribute of type int and an attribute of type char, a query to test an IND

between those attributes does not have to be formed. If more comprehen-

sive domain information is available, it can be used in an appropriate way

to avoid forming database queries for incompatible attributes.

This rule does not produce false negative results, in the sense that an

IND that is rejected by it is definitely not valid. Of course, if the rule does

not reject the IND, the IND may still be invalid.

The runtime of the overall algorithm FIND2 is improved according to

the number of different domains in the database and the distribution of

attributes among those domains.

Example 5.3 Consider the number i1 of unary INDs between two relations

R and S with kR = 6 and kS = 4 attributes, respectively. The upper bound

for i1 is i1 < kR · kS = 24. Assuming that both R and S have half of their

attributes in domain int and half of their attributes in domain char, the

number of unary INDs to be rejected by this heuristic is 3 · 2 + 3 · 2 = 12,

5.2. FINDING INCLUSION DEPENDENCIES USING HEURISTICS126

such that only 12 instead of 24 unary INDs have to be tested against the

database.

5.2.4 Heuristic: Attribute Names

In addition to attribute domains, attribute names may also provide infor-

mation that is useful in determining which INDs to test for validity. Under

the assumption that attribute names are “sensible”, i.e., that terms are used

that describe the contents of the attribute in some way, the attribute names

provide valuable meta-information that can help to avoid database queries.

However, attribute names may not always be “meaningful”. Attributes

may have generic names like A0,A1,A2 or names that are acronyms or com-

bined from acronyms, such as A MON SAL. Clearly, it is difficult to automat-

ically recognize a similarity between an attribute name such as A MON SAL

and an attribute name MonthlySalary.

Therefore, the attribute name heuristic can only be used in a positive

sense, i.e., if two attribute names match, the attributes in question are likely

related. Otherwise, nothing can be said about the attributes. Clearly, some

additional false positives may be introduced by this heuristic, i.e., attributes

may not be related even if the heuristic declares them similar or equal. An

additional check for actual validity of the IND question (through a database

query) may need to be performed.

Computing Attribute Name Matches

A number of name matching algorithms have been proposed in the literature.

Most of those algorithms are based on some kind of distance metric [WM97].

5.2. FINDING INCLUSION DEPENDENCIES USING HEURISTICS127

Sometimes, ontologies are used, in the form of dictionaries or hierarchical

structures of related terms [DDH00]. For our experiments, we used the

Trigram-Distance metric proposed by Ukkonen [Ukk92].

Ukkonen defines the general case of q-gram metric as follows, with Σ a

finite alphabet, Σ∗ the set of all strings over Σ, and Σq all strings of length

q over Σ, for q ∈ N
+. A q-gram is any string v = a1a2 . . . aq in Σq.

Definition 5.2 (from [Ukk92]) Let x = a1a2 . . . an be a string in Σ∗, and

let v in Σq be a q-gram. If aiai+1 . . . ai+q−1 = v for some i, then x has an

occurrence of v. Let G(x)[v] denote the total number of the occurrences of

v in x. The q-gram profile of x is the vector Gq(x) = (G(x)[v]), v ∈ Σq.

Definition 5.3 (from [Ukk92]) Let x, y be strings in Σ∗, and let q > 0 be

an integer. The q-gram distance between x and y is

Dq(x, y) =
∑
v∈Σq

|G(x)[v] −G(y)[v]|. (5.3)

Example 5.4 (from [Ukk92]) Let x = 01000 and y = 001111 be strings in

the binary alphabet. Their 2-gram profiles are, listed in the lexicographical

order of the 2-grams, (2, 1, 1, 0) and (1, 1, 0, 3), and their 2-gram distance is

5.

By this definition, a low distance means similar attribute names. The

distance is sensitive to the length of the input strings, such that it is useful

to normalize the distance by dividing it by the number of q-grams across

both strings.

5.2. FINDING INCLUSION DEPENDENCIES USING HEURISTICS128

For q = 3, we have trigrams and the trigram distance metric. Trigrams

are used widely in data mining, which led us to adopt this metric to assess

attribute name similarity. As an example of typical trigram distances, con-

sider Table 5.2, with all possible distances between the two sets of strings

{Title, Genre, Director} and {Titel, Genre, Regisseur}.

“TITEL” “GENRE” “REGISSEUR”
“TITLE” 4 6 10
“GENRE” 6 0 10
“DIRECTOR” 9 9 13

Table 5.2: Trigram-Distances for Two Sets of Strings

It is clear that semantically equivalent names (like Regisseur and Di-

rector) do not necessarily produce low distance values, while low distances

generally mean similar strings (attribute names) and thus potentially related

attributes.

Example 5.5 We give an example of how the trigram metric can be used

to make decisions. In our experiments, we used an empirical formula to ac-

cept or reject the hypothesis “attribute names are related” for two attribute

names. We considered two attribute names A and B related if the trigram-

distance D3(A,B) < 0.6 ·(|A|+ |B|−4). Note that |A|+ |B|−4 is the sum of

the number of (not necessarily distinct) trigrams across both strings. 2 For

the example in Table 5.2, this method would consider only one attribute name

pair to be related, namely (Genre,Genre). Thus, two positive matches (Ti-

tle,Titel and Regisseur,Director) are not recognized. No false positives
2A string of n characters has n− 2 trigrams.

5.2. FINDING INCLUSION DEPENDENCIES USING HEURISTICS129

are found, such that the heuristic can be considered successful (but not “op-

timal”) in this case.

5.2.5 Heuristic: Number of Distinct Values

We have motivated in Section 5.2.1 that even though an IND may be valid in

the database, it may not express a semantic relationship between attributes

or attribute sets. We stated that the likelihood that two attribute sets in

a valid IND are related depends on the probability that the exact values in

those attributes are obtained by random sampling. Thus, we showed that

attributes with a low number of distinct values have a high probability to

be accidental even if their data stands in an inclusion relationship.

Based on this assessment, our heuristic claims that an IND R[A] ⊆ S[B]

should not be used as a node or edge in a hypergraph in algorithm FIND2

if the attribute (or attribute set) A has few distinct values (tuples). Based

on the statistical analysis in Section 5.2.1, we experimented with different

empirical formulae to assess this property.

One simple implementation of this heuristic is to simply discard all in-

clusion dependencies in which the included attribute has less than n distinct

values. In our experiment, we found that n = 6 is a good empirical choice.

This value is also supported by our theoretical results in Sec. 5.2.1. When

this heuristic is used by itself, it may discard valid INDs that are not ac-

cidental (especially when the domains of the attributes involved have very

few elements). In this case, algorithm FIND2 will no longer find the set of

maximal INDs.

We also experimented with more complex heuristics, taking the numbers

5.2. FINDING INCLUSION DEPENDENCIES USING HEURISTICS130

of distinct values in both sides of the IND into account. One heuristic was

based on the ratio between the number of distinct values in both attributes.

According to this heuristic, an IND R[A] ⊆ S[B] is considered invalid if the

following condition holds (|A|D is the number of distinct values in attribute

set A).

|A|D
|B|D <




0.5 if |A|D > 40

0.9 − |A|D
100

otherwise

The intuition behind this function is as follows: By this condition, a

valid IND is considered non-accidental if the number of distinct values in

the left attribute (set) |A|D exceeds a certain percentage of the number of

values in the right attribute (set) |B|D. This percentage varies between 50%

(for |A|D > 40) and just under 90% (for very small |A|D) and is a linear

function of |A|D between those two limits. The cutover point of |A|D = 40

was chosen to achieve a continuous function over the entire range of |A|D.

Our experiments (Chapter 6) showed that the second heuristic works

relatively well on its own, while the first (simple) heuristic is superior when

used in combination with the attribute-value-distribution (AVD) heuristic

described in the next section.

The number-of-distinct-values heuristic can only be used to test for valid

INDs, i.e., an IND that is already considered invalid (for example because

it has been rejected by the domain heuristic) will not be affected. It also

may produce false negatives, since it may reject INDs as invalid that are

members of the generating set that represents the correct solution for this

problem. Since false negatives have adverse effects on the quality of our

5.2. FINDING INCLUSION DEPENDENCIES USING HEURISTICS131

algorithm’s results (Sec. 5.2.8), this heuristic cannot be used on its own, but

rather should be used only in combination with the other heuristics that

filter out INDs that potentially lead to false negatives in this heuristic.

On the other hand, using this heuristic can have significant effects in

reducing the runtime of algorithm FIND2. Since in tables with many numer-

ically encoded attributes (Sec. 5.2.1) numerous INDs may be “accidentally”

valid, this heuristic may reduce the search space by a significant amount.

Since the FIND2 algorithm’s complexity is up to exponential in the number

of nodes (unary INDs) in the problem, a reduction in the number of unary

INDs as achieved by this heuristic may be required to make the algorithm

finish at all. The heuristic may lead to some missing unary INDs which may

prevent the largest INDs from being found (Chapter 6). However, this will

occur only in cases in which the non-heuristic algorithm finds no results at

all, consequently this heuristic is important for our algorithm.

5.2.6 Heuristic: Attribute Value Distribution (AVD)

The Attribute Value Distribution (AVD) heuristic is the most complex to

compute but has very strong predictive power for certain data sets. It is

based on the following hypothesis:

Two attributes A and B that are semantically related (i.e., form

a non-accidental IND) are random subsets of a common domain

of values.

Obviously, this is not always true, for example when one or both of the

attributes A and B are selections obtained by applying some predicate (e.g.,

5.2. FINDING INCLUSION DEPENDENCIES USING HEURISTICS132

a SQL-WHERE-condition) on them. However, related attributes must be

subsets of a common domain, such that the additional assumption that they

are random (as opposed to selected) subsets seems reasonable at least for

some cases. One can test efficiently for this property, by way of statistical

hypothesis testing, explained below.

The heuristic then states that if the values of attributes A and B, re-

spectively, are not random samples of the same domain (universe) of values,

the attributes are not related.

This heuristic can theoretically be used to test for either invalid or valid

INDs, but due to the nature of statistical hypothesis testing is only safe to

use for testing valid INDs. That is, an IND σ that is valid in the database

(i.e., may be accidentally valid) can be tested with this heuristic. If the

validity hypothesis for σ is rejected, σ can be considered invalid. If it is not

rejected, no new information is gained about σ. This heuristic can produce

false negatives when attributes that are actually semantically related are

rejected due to the fact that they are actually not random samples from the

same domain. This may occur when the two relations compared have been

obtained by applying two different predicates (WHERE-clauses) on a larger

data sets, such that the subsets obtained are not random. The statistical

hypothesis testing itself, which is probabilistic in nature, may also produce

an erratic result. In those cases, a non-accidental IND may not be found

and may be missing from the result reported by FIND2, similarly to the

distinct-value heuristic.

Therefore, we use the latter two heuristics in combination. The distinct-

value-heuristic is used to pre-screen valid (possibly accidental) INDs, while

5.2. FINDING INCLUSION DEPENDENCIES USING HEURISTICS133

the AVD-heuristic is used to further support the claim for non-relatedness. If

the latter heuristic failed to provide evidence for non-relatedness, the IND is

assumed valid. Since we are thus restricting the use of the AVD-heuristic to

attributes with few distinct values, the “randomness of subsets” assumption

appears more justified. Our experiments support this claim (see Experiment

4 in Chapter 6).

Performing Statistical Hypothesis Testing for AVD

For the hypothesis test, we use the widely applicable χ2-Test [Lin76, Ric95],

in particular a χ2-Test for independence. This test is designed to assess the

independence of categorical variables. Random sampling data is given as n

pairs (x, y). One then constructs a two-dimensional matrix M , a so called

“contingency table”. The rows of M correspond to all distinct values of x

and the columns of M correspond to all distinct values of y. The element

Ma,b of M is then the number of pairs (a, b) in the data.

The χ2-Test then tests under the null hypothesis that the two variables

x and y are independent, i.e., that the value of variable x does not influence

the value of variable y.

For our purpose we perform the following mapping: given an IND R[A] ⊆
S[B] and the question “is this IND valid accidentally or because A and B

are semantically related?”, we set x = {R,S} and, if <A> denotes the set

of distinct values in A, y =<A> ∪ . That is, we are testing for the

null hypothesis: “the distribution of values in an attribute does not depend

on the relation (out of {R,S}) from which this attribute is taken”. In other

words, both attributes A and B are related, since the value distribution in

5.2. FINDING INCLUSION DEPENDENCIES USING HEURISTICS134

them is the same (i.e., independent of the relation the attribute is coming

from). This method was suggested by Minka [Min01]. Detailed information

on the χ2-Test can be found in [Ric95]. The attribute value distribution in

a single attribute can be obtained easily through an SQL-query such as:

select a,count(a) from r group by a

and is no more complex than testing a single IND. The value distributions of

all attributes have to be computed only once for a relation, and since we use

the heuristic only for attributes with small numbers of distinct values, only

small amounts of data are additionally transferred through the network.

Example 5.6 Consider two relations R and S and two attributes R.A and

S.B. Let R.A have the following values: “0” (5774 times), “1” (40 times),

“2” (4 times), “3” (3 times), “4” (once) and S.B the following values: “0”

(4648 times), “1” (40 times), “2” (once). Clearly, there is a valid IND

S[B] ⊆ R[A]. We are now trying to determine whether this IND suggests

a semantic relationship between A and B or whether the IND is accidental.

A semantic relationship is likely to exist if the value distributions of the

attributes are similar, while the IND is likely to be accidental if the value

distributions are different.

We build a so called contingency table as follows:

of tuples “0” “1” “2” “3” “4”

Relation R (Attribute A) 5822 5774 40 4 3 1

Relation S (Attribute B) 4689 4648 40 1 0 0

The null-hypothesis here is that “the value distribution is equal in both

5.2. FINDING INCLUSION DEPENDENCIES USING HEURISTICS135

attributes”. Performing a χ2-Test on this data gives a χ2-value of 5.388. At

confidence-level 95%, the percentile for the rejection of the null hypothesis

in this case (with 4 degrees of freedom) is 9.49. Therefore, in this case we

cannot reject the null hypothesis, i.e., we cannot say with significant sta-

tistical confidence that the two attributes have different value distributions.

In other words, in this case the χ2-test does not help to decide whether the

two attributes form an IND by accident. Thus, no additional information is

gained that could help us to answer the question stated above.

However, as a variation on this example, if attribute S.B would have

only 10 occurrences of the value “1”, with all other data being equal, we

would obtain a χ2-value of 16.61 and could reject the null-hypothesis. We

would then obtain the result that S[B] ⊆ R[A] is very likely valid by accident.

5.2.7 Summary

Table 5.3 gives an overview over the four heuristics discussed. For each

heuristics, it lists the conditions for application, the error possibilities (false

positives and/or negatives) and the impact on the runtime of the algorithm.

As mentioned before, several heuristics produce false negatives. False nega-

tives translate into missing edges in the graphs Gi in algorithm FIND2 and

thus lead to incomplete solutions for the algorithm. The effect on the so-

lution returned by algorithm FIND2 is that maximal INDs may no longer

be found, but rather several (large) sub-INDs of those maximal INDs are

included in the reported solution. In the next section, we show how this

effect can be alleviated.

5.2. FINDING INCLUSION DEPENDENCIES USING HEURISTICS136

Domain Attribute
Name

Distinct
Value

AVD

Class Meta-Data Meta-Data Data Data
Used to accept
INDs

no yes no no

False positives N/A few N/A N/A
Used to reject
INDs

yes no yes yes

False negatives none N/A many few to
many

Computational
complexity

constant small one-time,
linear in
number of
attributes

one-time,
linear in
number of
attributes

Impact on run-
time by...

avoiding
DB queries

avoiding
DB queries

reducing
size of
graphs

reducing
size of
graphs

Overall benefit small potentially
large

large large

Table 5.3: Four Heuristics Used to Improve Algorithm FIND2

5.2.8 False Negatives and the Clique-Merging Heuristic

Consider a complete graph (i.e., a graph with all possible edges) G = (V,E).

The set of nodes V in G forms a clique. Now remove a single edge from

E. Clearly, the clique property does no longer hold, but rather G will now

contain at least two distinct maximal cliques. Those cliques are likely to

have a substantial overlap (i.e., common set of nodes).

When using heuristics to test the validity of INDs in algorithm FIND2,

some INDs may test as invalid even though they should be considered valid

for our algorithm. Thus, some edges (or even nodes) of any graph or hyper-

graph considered by FIND2 may be missing. The clique finding algorithms

5.2. FINDING INCLUSION DEPENDENCIES USING HEURISTICS137

used by FIND2 will then no longer find cliques that correspond to the maxi-

mal INDs in the given problem, but rather find only smaller subsets of those

cliques. A simulation (Fig. 5.5) shows that the removal of as little as 5

random edges from a complete graph (i.e., a clique) of 40 or 50 nodes will

generally produce a graph with around 20 distinct maximal cliques. Fig. 5.5

shows the number of different cliques in almost complete graphs of 20, 30,

40, and 50 nodes, averaged over 500 experiments each.

0

20

40

60

80

100

0 5 10 15 20 25

A
ve

ra
ge

 N
um

be
r

of
 M

ax
. C

liq
ue

s
(5

00
 S

im
ul

at
io

ns
)

Number of Edges Removed

20 nodes
30 nodes
40 nodes
50 nodes

Figure 5.5: Number of Maximal Cliques in Almost Complete Graphs

However, those sub-cliques will often show substantial overlaps. There-

fore, we use the following strategy:

When heuristics are used in FIND2 that may produce false nega-

tive results (i.e., reporting non-accidental INDs as invalid), and

5.3. INCORPORATING HEURISTICS INTO THE IND-TESTING
ALGORITHM 138

we obtain several large, overlapping INDs from algorithm FIND2,

merge those INDs by finding the union of their nodes.

Naturally, merging all INDs found by algorithm FIND2 will in general

not lead to a valid INDs, unless the (true) generating set of INDs actu-

ally contains only one IND. Therefore, we propose to only merge INDs of

decreasing size, starting from the largest, until adding another IND to the

result will no longer produce a valid IND.

Our experiments show that this heuristic is powerful enough to find large

or maximal valid INDs even in cases when many underlying edges (small-

arity INDs) are not found (Chapter 6). Of course, as only the distinct value

heuristic and potentially the AVD heuristic produces such negative results,

IND merging is not necessary when these two heuristics are either not used

or when they did not reject any otherwise valid IND.

A similar merging strategy is used by Zaki in [Zak00] for the problem

of association rule mining. More information on Zaki’s work is given in the

related work section (Chapter 7).

5.3 Incorporating Heuristics into the IND-Testing

Algorithm

Recall the FIND2 algorithm (Fig. 4.13, p. 89). Four of the subroutines it

calls, namely generateValidUnaryINDs, generateValidBinaryINDs,

generateCliquesAndCheckAsINDs, and generateKAryINDsFrom-

Cliques test inclusion dependencies against the database. As we have shown

at the beginning of this section, this is a time-consuming procedure that our

5.3. INCORPORATING HEURISTICS INTO THE IND-TESTING
ALGORITHM 139

heuristics can help to improve. Thus, we have integrated the four heuristics

discussed above in an algorithm to find INDs for large relations, to be ap-

plied when the exhaustive algorithm fails due to the inherent complexity of

the problem. Instead of using simple database queries to assess the validity

of an IND, we now use a separate algorithm that assess an IND’s valid-

ity. The goal of this “heuristic” algorithm is to find large maximal INDs

with the smallest number of actual DB queries and the smallest possible

intermediate graphs and hypergraphs constructed. In order to minimize the

impact on the correctness of the algorithm (i.e., on the number and size of

INDs found), we apply the heuristics in order of their potential impact on

the feasibility of the algorithm and the correctness of the solution (i.e., first

heuristics that generate no false results, then heuristics that generate only

false negatives, then heuristics that generate false positives).

This heuristic-based algorithm, called CHECKH, is shown in Fig. 5.6. It

expands on the simple IND-checking algorithm CHECK (Fig. 5.3) by (1)

avoiding some DB queries and (2) improving the confidence that INDs re-

ported as valid by the algorithm are not in fact accidental.

The flowchart in Figure 5.7 shows how the four heuristics and the exact

algorithm interplay. An IND with unknown validity is first subjected to the

domain heuristic. If both attributes sets have matching domains, the IND is

tested against the database. If it tests valid, the distinct-value-heuristic and

the AVD-heuristic are applied. Only if those heuristics determine that the

attributes in question have few distinct values and their value distributions

are similar, the attribute name heuristic is used additionally in order to

distinguish between accidental and non-accidental INDs.

5.3. INCORPORATING HEURISTICS INTO THE IND-TESTING
ALGORITHM 140

function CHECKH(Relation R,AttribList A,Relation S,AttribList B)
if (domains of R[A] and S[B] do not match)

return false
else if (CHECK(R,A, S,B) = false)

return false
else if (¬(number of distinct values in A is small))

return true
else if (¬(AVDs of A and B are similar))

return false
else if (Attribute names of A and B are related)

return true
else return false

Figure 5.6: The Heuristic IND-Checking Algorithm CHECKH

The CHECKH algorithm will mark an IND as either valid or invalid.

However, some INDs marked as “invalid” will now actually be valid in the

database. The reason for this procedure is that INDs may be valid “by

accident” and has been discussed in Section 5.2.1. The four functions in al-

gorithm FIND2 mentioned above now simply call algorithm CHECKH instead

of CHECK. In Chapter 6, we report on correlations between the accuracy of

IND validity determination and the accuracy of the complete result. Natu-

rally, the overall accuracy is reduced when IND-testing becomes less accu-

rate. On the other hand, for relations with many attributes the runtime of

FIND2 may be reduced so dramatically that the fact that some large INDs

are found outweighs the drawback that not the largest or not all INDs are

discovered.

Fig. 5.8 gives a flowchart of the entire algorithm FIND2 with CHECKH.

5.3. INCORPORATING HEURISTICS INTO THE IND-TESTING
ALGORITHM 141

Do domains

match?

Does IND hold

in DB?

Is number of

distinct values

small?
Are value

distributions

similar?

Are attribute

names related?

Is this IND “good” (valid and not accidental)?

F
T

T

F

F

F

yes

yes

yes

yes

no

no

no

no
no yes

Algorithm

CHECK

F T Value returned by CHECKH

Heuristic

Figure 5.7: Flowchart for the CHECKH Algorithm.

The non-heuristic algorithm is used for smaller sized problems. The cutover

point between small and large problems is set to 200 unary INDs (UINDs)

and/or 3000 binary INDs. This point was empirically found for the imple-

mentation used but, due to the exponential nature of the problem, it should

not change much in other implementations. Given the 200 UIND-limit, we

can ideally use the non-heuristic algorithm on relations with up to 200 at-

tributes. However, our experiments showed that some relations contain a

large percentage of accidental UINDs, such that the heuristics sometimes

start to become effective for relations with as few as 20 attributes. When

5.4. FURTHER RUNTIME REDUCTIONS 142

heuristics are used, the completeness of the solution is affected. IND-merging

is used when several large similar INDs are found.

Find INDs between Two Relations

complete solution partial solution

IND-merging

< 200 UINDs?

< 3000 BINDs?

FIND

without

heuristics

2
FIND

with heuristics

(using CHECK)

2

H

Many large

similar INDs?

Find Unary and Binary INDs

yes no

yes

no

Figure 5.8: Flow of the Overall Discovery Algorithm

5.4 Further Runtime Reductions

Even using all four heuristics as above, some large problems cause algorithm

FIND2 using CHECKH to have unacceptably high runtime. Therefore, we in-

troduce further adjustments to the algorithm that significantly reduce the

algorithm’s runtime, while in some cases reducing the correctness of the re-

sult further. We consider two approaches at runtime reductions: restricting

the sizes of graphs simply based on the number of nodes and edges, rather

than by some data-driven criteria as in the case of heuristics, and reduc-

5.4. FURTHER RUNTIME REDUCTIONS 143

ing the time taken by the database to test a given IND for validity by using

tuple-level sampling. While our prototype software used for the experiments

does use the first strategy (size restrictions), the second strategy (sampling)

is only presented here as a feasibility study.

5.4.1 Restricting the Size of Graphs in Algorithm FIND2

Some real-world relations have a very small number of distinct values in

many of their attributes. One test relation (INSURANCE) used in our ex-

periments (Chapter 6) had less than 10 distinct values in 84 out of its 86

attributes, with a total size of over 5,000 tuples. Even using the heuris-

tics described above will detect too many valid non-accidental INDs at the

unary and binary level and the algorithm will not finish. For these cases, we

propose additional restrictions. Our experiments showed that good results

are still obtained when such restrictions are used, as reported in the experi-

ments (Chapter 6). We refer to algorithm FIND2 (Fig.4.13, p. 89) and mark

the lines in the algorithm that are affected by these restrictions.

• We introduce a measure of support for an IND. The support is a num-

ber composed of the number of distinct tuples in the two attributes

and the actual χ2-value computed by the AVD-heuristic. A high sup-

port value means that the number of distinct tuples in the attributes

is high and/or that the statistical distribution of the values in both

attributes is similar.

• We sort unary and binary INDs by that support value and then only

retain a certain number of those INDs for subsequent steps of the al-

5.4. FURTHER RUNTIME REDUCTIONS 144

gorithm. Naturally, depending on the quality of our heuristics, “good”

INDs may be removed from the problem space and the full solution

will no longer be found. This is a trade-off with the runtime of the

algorithm. (Lines 01 and 02)

• We also restrict the number of cliques tested against the DB (if a

clique algorithm generates more cliques, the smaller ones are discarded,

function generateCliquesAndCheckAsINDs, lines 04 and 16), and

furthermore we only retain a certain number of the cliques that tested

valid for the next step (i.e., we restrict the size of set I in lines 04 and

16). The actual values for these restrictions were found empirically

and are reported below.

• Furthermore, we restrict the number of sub-INDs generated from fal-

sified cliques (see p. 94) by only generating sub-INDs from the largest

falsified cliques found at any step (function generateKAryINDs-

FromClique, line 12).

• Finally, if during sub-IND-generation a clique implies more than a

certain number of INDs, not all INDs are generated (function gener-

ateSubINDs, line 14).

By restricting the sizes of internal data structures, the data structures

involved in the algorithm never become too big to incur a prohibitive over-

all runtime of the algorithm FIND2. Of course, some of these restrictions, if

they are used, discard valid INDs quite arbitrarily. Sorting INDs by some

“support” value as explained above somewhat alleviates this problem. How-

5.4. FURTHER RUNTIME REDUCTIONS 145

ever, as our restrictions will ensure termination of the algorithm within a

predictable time, the algorithm can be “tuned”, i.e., adapted to the available

time, producing the highest possible accuracy within a given time. Practical

values for restrictions in our implementation (Chapter 6) are:

• 200 unary INDs (nodes in graphs/hypergraphs)

• 3000 binary INDs (edges in graph G2 in Fig. 4.13)

• 2000 cliques tested against the DB

• 1000 cliques retained for subsequent steps of the algorithm, including

cliques corresponding to both valid and invalid INDs

• 2000 INDs maximally generated from any single clique (line 12 in

algorithm FIND2, Fig. 4.13).

We did not restrict the number of edges in hypergraphs. This did not

seem necessary as the restrictions of the first graph G2 usually prevented

the construction of very large hypergraphs.

A possible extension of the algorithm FIND2 with CHECKH heuristics

would be to produce a partial (incomplete) solution quickly, and reuse the

results obtained when determining more complete solutions given more run-

time. This is currently not implemented, but no fundamental obstacles to

such an extension exist.

5.4.2 Determining INDs Using Sampling

So far, we have discussed only a simple query-based method to determine

the validity of an IND in a database. However, if we relax the requirement

5.4. FURTHER RUNTIME REDUCTIONS 146

that IND-checking be an exact procedure, probabilistic algorithms for this

task can be used. Of course, less accurate IND-checking will adversely affect

the quality of our algorithm’s results. It is clear that the errors introduced

by probabilistic IND checking need to be kept small. In particular, false

negatives (reporting non-accidental valid INDs as invalid) pose a problem

for the quality of algorithm FIND2.

We now give a brief overview of sampling strategies that could be used in

IND discovery. Sampling in general means the determination of parameters

of data sets by considering only random subsets of those data sets. By

the nature of sampling, exact results are impossible to obtain. Different

statistical models are used to keep errors low, but in general it is much

harder to make decisions based on sampling than it is to estimate parameters

within some bounds based on sampling. Clearly, it is impossible to decide

whether an IND holds in the database without testing each tuple of the

included attribute for inclusion.

A compromise would be to estimate some query size and decide through

a statistical test whether a valid IND is likely to exist or not. There is

substantial work on the estimation of the size of query results in databases.

Work by Hou and Özsoyoğlu [HÖ91] developed statistical estimators for

several aggregate queries, such as COUNT-queries. The authors suggest

simple estimators for the values of COUNT-queries. Those can be used to

assess IND validity by estimating the number of tuples in an INTERSECT

query through sampling.

Example 5.7 Consider the problem of testing IND R[A] ⊆ S[B]. If an es-

5.4. FURTHER RUNTIME REDUCTIONS 147

timator is available that determines the approximate size of an INTERSECT

query, we can estimate the size for the following SQL-query:

select count (*) from (
select A from R

intersect
select B from S

)

If the size of the result of this query is close to |R|, the IND is likely to be
valid. If the result size is much less than |R|, the IND is invalid.

Results reported by Hou and Özsoyoğlu suggest that the error in esti-

mating counts increases significantly as the sampling fraction is reduced, but

decreases with less selective predicates (larger query results) in the query.

For a sampling rate of 5% over two relations of 20, 000 tuples each, they

report relative errors of 10%–50% for the estimation of the size of an inter-

section query, depending on the selectivity of the query. They also report

estimates for errors in simple random sampling. For two relations R and S

and a sample of size s from each relation, the relative error is estimated as

a function of the size of the intersection |R ∩ S| as

e =
1
s
·
√
|R||S|
|R ∩ S| (5.4)

Thus, for two large relations R and S with |R| ≈ |S|, |R ∩ S| ≈ |R|, the
relative error of the count estimate of an intersection query is e ≈ 1

f · 1√
|R| ,

with f the sample fraction. If the actual size of the intersection is smaller,

the relative error increases. Clearly, the error also increases with smaller

samples, and smaller relations. This result is slightly simplified relative to

5.4. FURTHER RUNTIME REDUCTIONS 148

what is described in [HÖ91], as we are only giving an intuition about the

usefulness of sampling in our algorithm.

A large body of work exists on sampling from relational tables, such

as [OR94, Toi96, JL96, CMN98, MTL00], such that techniques for sampling

are well established theoretically and practically. Simple random sampling

is very sensitive to skewed data. The results above hold only for uniformly

distributed data. More complex sampling schemes have been proposed by

several authors, such as Lipton et al. [LNS90], Haas et al. [HS95, HNSS95,

HNSS93], Poosala and Ioannidis [PI97], and, in particular Ganguly et

al. [GGMS96], who proposed bifocal sampling. This method overcomes the

limitation of previous methods that either assumed uniformly distributed

or skewed data, and essentially samples a data set twice, once under the

assumption of uniform distribution and once under the assumption of skewed

distribution. The results presented by Ganguly et al. suggest that in order

to achieve “good” estimations for the size of a join (one can see intersection

queries as joins over all attributes), a sample of size at most O(
√
n log n) is

sufficient as long as the join size is Ω(n lg n) for relations of n tuples.

We can use sampling schemes such as the above as a method to reduce

the runtime of our algorithm. However, the influence of the naturally higher

error rate on the accuracy of the results of algorithm FIND2 remains prob-

lematic. This could be a topic for future work. For the current work, we did

not feel that incorporating sampling would substantially contribute to ei-

ther the correctness or runtime reductions of the algorithm. However, some

work exists in the literature [KM95] suggesting that for certain universally

quantified statements (assertions that make a statement about all tuples

5.4. FURTHER RUNTIME REDUCTIONS 149

in a database), sampling can help to gather statistical evidence about their

validity in a database. Those ideas could be used in incorporating sampling

into our scheme.

150

Chapter 6

Experiments and Evaluation

6.1 Implementation

We implemented algorithm FIND2 in Java over Oracle relational databases

(using JDBC). The implementation is modular, such that different aspects

of the algorithm can be tested separately. INDs are modeled as objects,

which simplifies the code. Some implementation improvements could be

made by representing INDs as simpler data structures, however that was

not the focus of the prototype implementation. All heuristics and strategies

described in this dissertation, with the exception of tuple-level sampling, are

implemented and can be turned on or off in the prototype. The schemas

of the test databases can either be queried or explicitly specified (if only

subsets of the attributes in the source relations are to be tested).

Figure 6.1 gives an overview over the system architecture. The im-

plementation has two major modules: the IND-Generator which gener-

ates INDs to be tested, and the IND-Tester which tests the IND in ques-

6.1. IMPLEMENTATION 151

tion through a database query and/or through applying the four heuristics

from Fig. 5.7. Those two modules roughly correspond to the FIND2 and

CHECK/CHECKH algorithms, respectively. At the end of the discovery pro-

cess, the IND-Generator also assumes the task of reporting all INDs that

tested as maximal and valid.

DB1 DB2

IND-Generator

Maximal INDs

Data/Queries
Meta-Data

QL-Capable DBMS

IND-Tester

Heuristic

CHECK
H

Distinct-Value

Tester

Domain

Matcher

Attrib. Name

Matcher
�2-Tester

FIND
2

IND-Validity

Truth Values

INDs to be

Tested

Valid

Maximal

INDs

Clique-Finder

Bron/Kerbosch

HYPERCLIQUE

IND-Merger

Figure 6.1: Overview of System Architecture

The implementation has a total of 6 parameters that can be “tuned”.

Five of those parameters restrict the sizes of certain data structures, as

described in Sec. 5.4.1. In particular, those are: the maximal number of

nodes in any graph (i.e., unary INDs), the maximal number of edges in

graph G2 (i.e., binary INDs), the maximal number of cliques tested as INDs

at any one step, the maximal number of cliques retained for the next step,

and the maximal number of INDs generated from any clique by function

generateINDsFromCliques. The sixth parameter that can be set in the

6.2. EXPERIMENTAL SETUP 152

implementation affects the distinct-values heuristic and sets the minimum

number of distinct values in an attribute or attribute set that is necessary

for the distinct-value heuristic to not reject the IND as accidental. For

Experiment 4, we additionally used “fuzzy” IND checking, as explained in

the detailed description of that experiment.

6.2 Experimental Setup

The testing environment for all our experiments consisted of two Linux-

machines—one 400-MHz-Pentium II (Linux-Kernel 2.2.14) running Black-

down Java V1.3.0 for the system and one 800-MHz-Pentium III (Linux-

Kernel 2.2.16) running Oracle 8i for the databases. For simplicity, we only

tested the algorithm on tables within the same database instance, as the

added slowdown of having to test INDs across different databases would

lead to no interesting new insights into our implementation.

We ran experiments on four data sets obtained from the UC Irvine KDD

Archive 1. The data sets (converted into relational tables in Oracle) are

• INSURANCE:Data from the “CoIL 2000 Insurance Company bench-

mark” from the KDD archive. A table with 86 attributes and approx-

imately 6000 tuples. A significant feature of this data set is that all

attributes are encoded by integers. The effect is that nearly all do-

mains in this table are the same, and also have very low distinct-value

counts (all but 2 attributes have fewer than 10 distinct values). Many

accidental INDs are thus created. In this data set, our heuristics have
1URL as of September 2001: http://kdd.ics.uci.edu

6.2. EXPERIMENTAL SETUP 153

the most beneficial effect.

• INTERNET: The Internet Usage Data set containing 72 attributes

and approximately 10,000 tuples. This data set also has many acciden-

tal INDs. It is in many ways similar to the INSURANCE data set

but has clearly defined semantics (its attributes have clear meaning)

so that we used it to test the AVD heuristic by applying predicates to

certain attributes.

• CENSUS: The Census Income Database containing 41 attributes and

approximately 200,000 tuples. As most attributes have unencoded

domains (i.e., the domains are largely distinct sets of strings), our

algorithm can find maximal INDs in this data set without heuristics

and thus this set is mainly used for performance (rather than quality)

testing.

• CUP98: A data set of direct-mail data used for the KDD-Cup 1998.

A relation with 481 attributes and about 95,000 tuples. This relation

has too many attributes for our purpose, so we used two different

projections of this relation onto 80 attributes each, with an overlap of

60 attributes. That is, the maximal IND between the two subsets is

60-ary.

From each of these data sets, we generated overlapping subsets, partly

through random sampling (using Oracle’s SAMPLE clause and row-level

sampling), and partly through selection (predicates, Experiment 4). The

size of the overlaps varied from about 20% to 100% of the size of the smaller

6.3. EXPERIMENTS 154

relation.

Throughout our experiments we did not use the attribute name heuristic

as this would make it more difficult to assess the general properties of our

algorithm. Especially the fact that the data sets we compared were gener-

ated from the same original data set makes it difficult to assess the exact

benefit of the attribute-names heuristic.

6.3 Experiments

Our experiments are measuring the following factors and dependencies:

• The runtime behavior of the exact algorithm FIND2 (using CHECK)

versus the heuristic algorithm (FIND2 using CHECKH),

• the influence of the number of attributes and the relation size on the

runtime of both the heuristic and non-heuristic algorithm,

• the influence of different domains, and in particular different numbers

of distinct values, on the runtime of the algorithm,

• the applicability and influence on quality of the attribute-value-distri-

bution (AVD) heuristic, as the applicability of the AVD heuristic for

data sets obtained through selection by some condition is not obvious,

• the influence of small amounts of noise on the data, since noise will

prevent exact inclusion dependencies from holding.

The size-restricting strategies from Sec. 5.4.1 were applied whenever the

size of the problem would have prevented algorithm FIND2 from finding a

6.3. EXPERIMENTS 155

solution otherwise.

As a simple quality measure for the output of the algorithm, we use the

largest inclusion dependency found by it (in relationship to the largest IND

that exists in the database). Other quality measures are conceivable, such as

measures that take user preferences for some attributes into account (along

the lines of the preference model in the EVE-Project, Sec. 2.2.2).

6.3.1 Experiment 1: Number of Unary and Binary INDs

In a “nice” data set, there will be few accidental INDs. That is, the number

of unary INDs will not be much larger than the number of attributes. We

performed an experiment on data set INSURANCE to assess the number of

unary INDs (UINDs) and binary INDs (BINDs) in a “bad” case with many

accidental INDs. Figures 6.2 and 6.3 show the results. For a number of

different projections of k attributes of relation INSURANCE, Fig. 6.2 shows

the number of possible UINDs (k2) and the number of UINDs that tested

valid in the database. Fig. 6.3 shows the number of possible BINDs (which

depends on the number of valid UINDs) and the number of BINDs that

tested valid. Clearly, there are many more than k UINDs in the first case

and the number of BINDs is prohibitively high even for relations of as few

as 35 attributes. In fact, the basic (non-heuristic) algorithm FIND2 does not

finish for this data set for projections with more than 10 attributes.

Table 6.1 shows the number of unary and binary INDs found in each of

our data sets, which form the nodes and edges, respectively, in the graph

G2 used for clique finding in algorithm FIND2. In each case, we listed the

largest projection of a table for which these values could be determined

6.3. EXPERIMENTS 156

Figure 6.2: Number of Unary INDs in Data Set INSURANCE

Figure 6.3: Number of Binary INDs in Data Set INSURANCE

6.3. EXPERIMENTS 157

within reasonable time.

Data set Attrib. UINDs % of
possible
INDs

BINDs % of
possible
INDs

CUP98 80 278 4.3% 14136 38%
CENSUS 41 69 4.1% 994 45%
INTERNET 20 173 43% 8398 65%
INSURANCE 26 304 45% 28793 70%

Table 6.1: Number of Valid Unary and Binary INDs in Different Data Sets

Given that graphs with more than about 200 nodes and 3000 edges con-

stitute problems for the clique-finding algorithm (Sec. 5.4.1), the results

reported in this experiment clearly indicate that for many real-world prob-

lems, the non-heuristic algorithm will not work. In the case of the data set

INSURANCE, algorithm FIND2 without heuristics will not work for even 20

out of the 86 attributes in the base relations. This motivates the need for

heuristics in our algorithm. On the other hand, for some data sets (e.g., our

test data set CENSUS), the basic algorithm will work quite well and produce

the correct and complete result in short time.

From Table 6.1, in connection with our further experiments, it can be

seen that the percentage of UINDs that is valid between two relations R and

S (as a fraction of the maximal number |R||S|) is a good indicator of whether

the data set has few accidental INDs or many, i.e., whether the INDs in the

data set can be easily discovered by the FIND2 algorithm. This number

can also be used to assess at an early stage whether the algorithm FIND2

without using heuristics and/or without restricting the sizes of internal data

structures will finish within reasonable time or not.

6.3. EXPERIMENTS 158

6.3.2 Experiment 2: Performance and Quality Effects of Heuris-

tics

This experiment was conducted to assess the runtime of the algorithm and

the quality of its output for a given data set, with and without the use

of heuristics. For this experiment, we used a 5000-tuple random subset

CENSUS1 of data set CENSUS and a further random subset of 4500 tuples

(90%) of CENSUS1. We compared the performance and quality of algorithm

FIND2 with and without heuristics. We used different projections on the

set CENSUS, which has 41 attributes. Figure 6.4 shows the runtime of

algorithm FIND2 with and without heuristics, for different size projections.

Figure 6.5 shows the size of the largest single IND found by the heuristic

algorithm in each case.

Figure 6.4: Performance of Algorithm FIND2 Using CHECK and CHECKH,
Respectively for Data Set CENSUS.

6.3. EXPERIMENTS 159

Figure 6.5: Quality of Algorithm FIND2 Using CHECKH for Data Set CEN-
SUS.

The experiment shows the large performance benefits of the heuristic

approach. For projections of data set CENSUS (Fig. 6.4) of an increas-

ing number of attributes, the runtime for the heuristic version of algorithm

FIND2 increases much slower that the runtime for the non-heuristic ver-

sion, yielding a reduction in runtime by two thirds for the full 41-attribute

relation.

Or course, there is a penalty in accuracy as a tradeoff for the lower

runtime. The full generating set of INDs is not found by the heuristic

algorithm, rather FIND2 reports a maximum IND whose arity is about 70%-

85% of the largest valid IND between the test data sets. However, through

IND merging (Sec. 5.2.8), we still correctly find the largest IND in all cases,

for this data set. In other cases, the results of clique merging (Sec. 5.2.8))

6.3. EXPERIMENTS 160

are not perfect as here, but still large INDs are found, as shown in the next

experiment.

6.3.3 Experiment 3: Effect of Low Numbers of Distinct Val-

ues in Data Set

In this experiment, we wanted to assess the quality of the heuristic algorithm

in a data set with many accidental INDs. Table INSURANCE is such a data

set, as nearly 50 percent of its UINDs are valid. For the full data set of

86 attributes, graph G2 would have 4000 nodes, such that a clique-finding

algorithm would not finish.

Figure 6.6 shows the quality achieved by the heuristic algorithm for this

case, for different size projections of table INSURANCE. Both the size of the

largest IND found directly by algorithm FIND2 and the size of the largest

merged IND are reported. The quality is high for small relations (less than

30 attributes), since fewer than 200 unary INDs and fewer than 3000 binary

INDs are found for those relations (using algorithm CHECKH). No INDs

are therefore excluded from the input to the clique-finding algorithm by the

restrictions listed in Sec. 5.4.1. For larger relations, an increasing number

of UINDs and BINDs are discarded, such that the quality of the final result

becomes lower. The power of the IND-merging strategy (merging large INDs

as long as a valid new IND is formed) becomes clear for large relations, as the

size of the largest discovered IND (relative to the size of the largest existing

IND) actually increases with larger relations. The algorithm FIND2 without

heuristics fails for this data set for all cases with more than 10 attributes, so

no results for the non-heuristic algorithm can be reported for comparison.

6.3. EXPERIMENTS 161

Figure 6.6: Relative Size of Largest IND Discovered, Data Set INSURANCE

Given that the non-heuristic algorithm is practically worthless for this

data set, the performance of the heuristics is quite good. Its major advantage

is that is produces results for any size data set, not only for a data set with

10 or less attributes. In the worst case for this experiment (the projection on

40 attributes, with a valid IND of also 40 attributes), an IND of 13 attributes

(32.5 percent) is found. The increase in quality for relations with over 40

attributes can be attributed to the particular choices for the projections of

the originally 86-attribute data set INSURANCE. As the data set has many

attributes with very few distinct values, it is likely that some of the few

attributes with higher numbers of distinct values were projected out in the

smaller-size problem, such that the algorithm encountered more noise in the

unary and binary INDs and discarded a higher percentage of good (valid

and non-accidental) INDs.

6.3. EXPERIMENTS 162

A possible extension of our algorithm here is to repeat the experiment

with the attributes that are not members of the IND found (in this case we

would have a second IND-finding problem with 26 instead of 40 attributes,

and so on), and try to merge the INDs found. We tried this strategy in this

case and found that an IND of 38 attributes was found after three runs of

algorithm FIND2 with heuristics.

6.3.4 Experiment 4: Accuracy of the χ2-Test and the At-

tribute Value Heuristic

The attribute value heuristic (AVD) relies on the assumption that attributes

that stand in an inclusion relationship to one another are semantically re-

lated and thus show a similar distribution of their values. This will certainly

be true if the two relations in question are actually random samples of some

larger real-world data set. However, the value distribution might not be

preserved if a subset of a relation is formed by some predicate. That is, if

algorithm FIND2 is run on two relations R and S, with R = σA(S), the

value distribution in some attributes in R might be different from the value

distribution in some attributes in S. That is obvious for all attributes in

A, but not necessarily true for other attributes. For example, if a data set

containing information about individual people is selected on the GENDER

attribute, it is clear that an attribute HEIGHT in the subset will have a

different value distribution than the same attribute in the whole relation,

while the distributions will likely be equal for an attribute IQ. Thus, we

performed a number of experiments in which we generated subsets of our

data sets using predicates rather than random sampling. The expectation

6.3. EXPERIMENTS 163

was that whenever heuristics are used, the AVD heuristic will falsely discard

INDs that are actually expressing semantic relationships between attributes,

such that the maximum IND will no longer be found.

Figure 6.7 shows the quality (ratio of size of largest IND found to size

of largest existing IND) of the result in data set INTERNET for four dif-

ferent predicates. The data set represents a survey in Internet usage data,

and we selected the following four attributes for predicates: gender, house-

hold income, country of origin, major occupation, with conditions that had

selectivities between 0.45 and 0.8. Table 6.2 shows the exact predicates

(σ=selectivity of predicate). In all cases, there existed a 72-ary IND be-

tween the two relations tested, and heuristics as well as IND-merging were

used to obtain the result.

Attribute Predicate σ Decoded
GENDER >= 1 0.6 <>’female’
HOUSEHOLD INCOME <= 6 0.8 <75,000
COUNTRY <= 30 0.46 =’US’ AND state <= ’North

Carolina’
MAJOR OCCUPATION <> 99 0.77 <>’other’

Table 6.2: Predicates Used on Dataset INTERNET to Evaluate AVD Heuris-
tic

We performed similar experiments with our other data sets and found

that the AVD heuristic helps to find between 50 percent (data set CUP98 80)

and 10 percent (data set INSURANCE) larger INDs than the algorithm with-

out this heuristic, averaged over several different predicates. The algorithm

without the AVD heuristic never produced a larger IND and also showed

significantly lower performance in many cases.

This experiment shows that using the AVD heuristic gives better results

6.3. EXPERIMENTS 164

Figure 6.7: Quality of Heuristic Algorithm for Subsets Generated Through
Predicates

(i.e., larger INDs) in most of our experimental cases in which it was actually

applied. The heuristic does not affect the result adversely, since it is only

used when (1) the number of valid UINDs and BINDs is too large for the

exact algorithm to run, and (2) the distinct-value heuristic has already re-

jected the IND (see Figs. 5.6 and 5.7). It is possible that some attribute pairs

that would be found without using any heuristic may not be found when

the AVD heuristic is used, but as explained above, the large improvements

in the problem size feasible for the algorithm outweigh this drawback.

6.3.5 Experiment 5: Effect of Data Set Size on Runtime

This experiment was performed to assess the relationship between the sizes

of the underlying relations and the performance of algorithm FIND2. We let

6.3. EXPERIMENTS 165

Figure 6.8: Effect of the Size of Data Sources on Performance of FIND2

the algorithm discover INDs in different (random) subsets of the same data

set (CUP98) and recorded the runtime of the algorithm versus the sum of the

numbers of tuples in both input relations. Fig. 6.8 shows the results. There

is a near linear correlation between the two variables, suggesting that the

query execution time for the SQL INTERSECT queries used (together) grows

linearly with the relation size. There is also a linear correlation between the

execution time of one such query and the size of the relations involved, which

is in agreement with theory if external merge sort is used in the database to

compute the queries.

This experiment suggests that, as long as our basic strategy of a sepa-

ration of the discovery and testing modules is used (Fig. 4.1), the possible

reductions on runtime achieved by an improvement of the IND-testing algo-

rithm are small (since a linear algorithm for IND-testing cannot be improved

6.3. EXPERIMENTS 166

much in comparison to the order-of-magnitude improvements of algorithm

FIND2 vs. the näıve algorithm).

6.3.6 Experiment 6: Effect of Noise on the Correctness of

Algorithm FIND2

In this experiment, we assessed the influence of small amounts of noise (tu-

ples violating the exact inclusion property) on the FIND2 algorithm. We

experimented on the INTERNET dataset, by creating a 90% random sample

and a 99% random sample from the original data set, such that roughly 1%

of tuples in the smaller relation violated the target maximal inclusion depen-

dency. We then relaxed the condition on IND-testing (algorithm CHECK)

by declaring an IND valid if it is violated by less than 1% of the tuples in

the smaller relation.

Fig. 6.9 shows the ratio of the largest IND found by the algorithm FIND2

modified as above, versus the largest IND that existed (with 1% noise) in

the database. IND merging was used in obtaining the result, and results are

reported with and without IND merging. The figure shows that there is some

influence of noise on the completeness of the result, but that a large sub-

IND of the largest IND is still found in the cases tested. The largest single

(unmerged) INDs that were discovered by our algorithm in this experiment

had sizes of roughly 50% of the target size, but could be successfully merged

to reach at more than 90% of the target size, as shown in the Figure.

6.3. EXPERIMENTS 167

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

15 20 25 30 35 40 45

Number of Attributes

R
e

la
tiv

e
Si

ze
o

f
La

rg
e

st
IN

D

merged relative unmerged relative

Figure 6.9: Effect of Noise on the Quality of FIND2

168

Chapter 7

Related Work

The work presented here uses results from a variety of areas of research. We

give an overview over related work in each area.

Inclusion Dependencies. Inclusion dependencies have been widely stud-

ied on a theoretical level. Early work on inclusion dependencies deals mostly

with the implication problem, i.e., with the question of how to derive in-

clusion dependencies from other inclusion dependencies and/or functional

dependencies (FDs). Fundamental work is done by Casanova, Fagin and

Papadimitriou [CFP82]. They present the simple axiomatization for INDs

used in our work and prove that the decision problem for INDs is PSPACE-

complete. They also show further theorems on the interaction between INDs

and functional dependencies (FDs). In particular they show the absence of

a complete axiomatization for a system of both INDs and FDs. Later,

Mitchell [Mit83] developed inference rules for INDs. Among other rules,

Mitchell shows an inference rule called Collection that can derive new

CHAPTER 7. RELATED WORK 169

INDs from existing INDs and FDs. We did not use those rules as their po-

tential benefit (i.e., the number of new INDs derived through those rules) is

small and using those rules would require comprehensive knowledge about

FDs in the relations in question. Cosmadakis et al. [CK84] give results very

closely related to [Mit83], but using a graph-based approach. Missaoui and

Godin [MG90] give a graph-based approach for the use of transitivity for

the IND inference problem, but restrict themselves to so-called typed INDs.

No discovery on the data-level is mentioned. Cosmadakis et al. [CKV90]

also survey implication problems for unary INDs only.

A recent paper by Levene and Vincent [LV00] argues for the defi-

nition of a new “inclusion dependency normal form” which could remove

some important redundancies in databases. Earlier, Fagin [Fag81] had ar-

gued that knowledge about inclusion dependencies is important in database

design. Work like this supports our claim that the discovery of inclusion

dependencies is an important topic.

Graphs and Hypergraphs. Information on graphs and cliques in graphs

is available widely in textbooks (e.g., [Ski97, GJ79]). Even though the

clique-finding problem is NP-complete, many algorithms have been pro-

posed that solve this problem for small input sets. Examples include the

Bron/Kerbosch-algorithm used in our work [BK73], an early algorithm

by Bierstone and its corrections [MC72], and more recent algorithms (a

survey is given in [PX94], see also [Woo97]). All this work is restricted to

graphs (i.e., 2-uniform hypergraphs).

Work on (k-uniform) hypergraphs is somewhat more limited. Some in-

CHAPTER 7. RELATED WORK 170

formation on hypergraphs is available in textbooks [Ber89, GGL95]. Sev-

eral authors have investigated maximal independent sets in hypergraphs,

which is a problem related to the clique-problem. Garrido et al. [GKL96]

give an algorithm that assumes a parallel architecture and computes the

related problem of maximum independent set (MIS), finding one MIS in a

hypergraph, while putting certain restrictions (low arboricity) on the graph.

Their algorithm does not compute all MIS in a graph. LaPadula and

Picollelli [LP01] give some basic mathematical results on hypergraphs

concerning maximal independent sets and other properties. Boros et al.

[BEGK00] give additional properties of hypergraphs and MIS with respect

to parallel algorithms.

Discovery of Patterns in Databases. There is substantial work on the

discovery of patterns in databases. Much work is concentrated on func-

tional dependencies (FDs), such as Lim and Harrison [LH97], Bell and

Brockhausen [BB95a], Huhtala et al. [HKPT98], Knobbe and Adri-

aans [KA96] and Savnik and Flach[SF93]. The last two authors also use

a machine-learning approach to find FDs [FS99].

An important related paper is by Kantola, Mannila et al. [KMRS92].

The authors describe an algorithm for discovering functional dependencies

and also mention inclusion dependencies. However, no algorithm for IND

discovery is given, and only a very rough upper bound for the complex-

ity of the IND-finding problem is presented (in addition to a proof of NP-

completeness of the problem).

Cohen investigates the problem of non-matching, semantically-equi-

CHAPTER 7. RELATED WORK 171

valent values in databases, which we have not covered in this work [Coh98].

The author presents an algorithm to find related data values based on sta-

tistical properties in a database. The focus of this work is very different

from ours, but could be complementary in future applications. Cai et

al. [CCH91] discover classification rules from a database. They present a

machine-learning technique that infers classification rules from patterns in

the data of a database. Again, their focus is different from ours and could

be complementary to our work.

Another important body of work originates in data mining, namely the

problem of the discovery of association rules. The key idea of the Apriori

algorithm used in association rule mining (presented by Aggarwal and

Yu [AY98]) is also used in our solution as information about lower-arity

INDs is used in generating higher-arity INDs. Much work in the litera-

ture deals with implementation issues on Aggarwal’s algorithm (as one

example, [STA98]) or generalizations of the problem [TUA+98].

Zaki [Zak00] presents algorithms for association rule mining. In fact, the

author presents an algorithm that also uses the concepts of finding cliques

in graphs and clique-merging in a graph modeled for the association-rule

mining problem. However, there are important differences between Zaki’s

work and ours:

1. Association rules have the inherent concept of support as a real num-

ber, whereas we are looking for a binary property (inclusion) in our

database. Therefore, our algorithm cannot use the simple sorting

strategy that Zaki proposes for an optimization of his association rule

CHAPTER 7. RELATED WORK 172

algorithm. As less information about each basic unit (association rule

for Zaki, IND for us) is available, our algorithm must find solutions

with less information as input.

2. Association rules are very unlikely to be as large (in “arity”) as our in-

clusion dependencies. In fact, it can be said that in many applications

a small association rule is more useful than a larger one (with lower

support), whereas in our domain, finding the largest correct IND is the

optimal goal for the algorithm. Zaki reports item sets with 22 items

or less in his largest experiments. In contrast, a relation with a 22-ary

IND poses few problem for even our non-heuristic algorithm. In his

approach, the author does not use heuristics to restrict the problem

size. In contrast, heuristics are very important for us since many real-

world problems are too large for the exhaustive algorithm to produce

good results.

3. In association rule discovery, techniques for “clique-merging” and item-

set-merging are used. While we employ some of those techniques as

a last step in our algorithm for very large problems, merging is the

main step for finding larger association rules in the work by Zaki. In

the INDs-finding problem, such simple merging cannot be used as the

success rate (i.e., the probability that merged INDs are valid) is very

small. This again is a consequence of the lack of the concepts of “sup-

port” or “confidence” in our problem. Furthermore, Zaki’s algorithm

employs clique-finding only for traditional graphs (i.e., 2-hypergraphs)

and not for higher-dimensional graphs. In our case, cliques also have

CHAPTER 7. RELATED WORK 173

to be found in higher-dimensional graphs (i.e., k-hypergraphs with

k > 2) and clique-merging is only attempted as a last step for certain

problems for which only low-quality solutions would be found other-

wise.

In summary, while the two approaches use some of the same mathemat-

ical foundations (such as the mapping of the respective discovery problem

to the clique-finding problem), the application of the algorithm in [Zak00]

to solve our problem is not possible. Rather, we have made substantial con-

tributions beyond the initial idea of mapping the IND-finding problem to a

clique-finding problem in order to achieve a practically feasible solution to

the IND-finding problem in high-dimensional data sets.

Other work co-authored by Zaki on association rules includes a paral-

lelization of association rule mining algorithms [ZOPL96].

Hypergraphs have been used in other areas of databases and data min-

ing. For example, Mannila and Raiha [MR94] give an algorithm for the

discovery of functional dependencies that maps the problem to a hypergraph

traversal. Catarci and Tarantino [CT92] use hypergraphs for modeling

the structure of databases. A similar approach is presented by Wang and

Wong [WW96], who introduce attributed hypergraphs to represent order

patterns in databases.

Heuristics. There is substantial related work on some of the heuristics

that we have used to restrict problem spaces in our algorithm. Ontologies for

attribute names are treated in more general ontology work such as [MWJ99,

Gua95, UG96, GPB99] and also more specifically for databases [YJSD91].

CHAPTER 7. RELATED WORK 174

Crow and Shadbolt [CS01] describe methods to generate ontologies by

using information on the Web. Distance metrics as a simple replacement for

ontologies (as mentioned in this work) can be found for example in [WM97,

Ukk92, Hyl96]. Work on the theory of attribute value distributions can be

found in [MCS88] or [HZZ93]. The statistical χ2-test itself is described in

statistics textbooks such as [Ric95].

Sampling. In order to further reduce the runtime of our algorithm, we

have proposed the use of sampling (rather than using SQL queries) to test

INDs against a database. A large number of authors have investigated the

theory of sampling, in particular the question of how and to what extent

database properties can be determined by examining a random sample of

a database rather than the entire database. Since sampling naturally in-

troduces errors into the conclusions one makes based on it, the accuracy

of algorithms that rely on database statistics is lower than the accuracy

of exhaustive strategies. Work on using sampling for association rules has

been done by Toivonen [Toi96] and Zaki et al. [ZPLO97]. Kivinen

and Mannila [KM94] also present theoretical results on the minimal error

bounds of sampling. Their work supports the conclusion that the errors

introduced by sampling are too large to make sampling very beneficial to

our algorithm. In most real-world cases, the error for the size of the in-

tersection between two relations that can be obtained from a sample of a

useful size exceeds 100%, which supports no useful hypothesis testing on

the validity of an IND. Work on determining quantitative database parame-

ters (which we can indirectly use for determining IND validity) is extensive

CHAPTER 7. RELATED WORK 175

and includes [CMN98, MTL00, LNS90, GGMS96, HNSS95, PI97, PSC84,

HNSS93, PIHS96, CR94, HÖ91, JL96]. Most of these authors are concerned

with efficient ways to estimate query results (mainly aggregation queries)

from samples of a database. In principle, such work could be used to es-

tablish statistical tests for the acceptance or refusal of hypotheses about

INDs, based on data samples. However, the errors introduced by all these

statistical models make an application for our problem difficult.

Schema Integration. Schema integration is not limited to the discovery

of INDs. Beyond the approach used in this work, which discovers rela-

tionships between data objects based on data and very simple meta-data

(i.e., domains and attribute names only), there is a massive amount of work

on schema integration in general—from manual approaches using domain

experts to fully automatic systems using meta-information structured in a

variety of ways. Those projects often aim for the larger goal of automat-

ically or semi-automatically integrating entire databases, but do not give

algorithmic solutions on how such an automatic integration can be done on

the data level.

Larson et al. [LNE89] give a theory in which they infer attribute equiv-

alence by a variety of indicators, such as domains, maximal and minimal

values, and any constraints imposed by the (relational) database system.

Their work is complementary to ours in some sense but ignores the actual

data inside the attributes. Therefore, it is very sensitive to the availability

and correctness of their assumed constraints. We are using some of the same

indicators as Larson et al. , in particular the domains of attributes. The

CHAPTER 7. RELATED WORK 176

integration of further indicators suggested by their paper did not appear

helpful in our context, due to a lack of availability and/or significance of

those factors for the case of IND discovery.

Semi-automatic approaches include [PSU98] (described in detail in a

dissertation by Ursino [Urs99]), Sheth, Larson et al. [SLCN88], the

MOMIS project [BBC+00], and others [MWJ99, LC95, LC00]. Machine-

learning, neural networks and other artificial intelligence concepts are of-

ten used for schema integration [LC94, DDH00, Klu95, DP95]. Rahm and

Bernstein [RB01] give an overview over some recent schema-integration

projects; an earlier survey is [BLN86]. Finally, Roddick et al. [RCR96]

reviews the implications of using discovered meta-information rather than

explicitly known meta-information.

Discovery of Resources for Data Integration A paper that in its

goal of finding database relationships is related to ours is by Cho et al.

[CSGM00]. In their work, the authors investigate the discovery of repli-

cated web sites. They make use of the set of hyperlinks in a HTML-file

(and compare the graph of links) in order to assess the relationship between

web sites. Their approach could solve some of the same problems as ours,

however the reliance on the structure of links rather than the actual data

content as their first strategy to reduce the problem space is different from

our focus. Also, our emphasis is on data sources that have identifiable at-

tributes with data values in a particular domain, whereas Cho et al. focus

on semi-structured data. Their solution is not applicable to databases in

models other than the semi-structured model.

CHAPTER 7. RELATED WORK 177

Liu et al. [LLY98] introduce a concept of relevance for databases in

multi-database mining. They select “interesting” databases from a set of

available ones, which is not our focus.

178

Chapter 8

Conclusions

In this part of the dissertation, we have proposed an algorithm called FIND2

for the problem of discovery of inclusion dependencies in databases. In-

clusion dependencies are an important form of database interrelationships,

expressing redundancies between databases. With our solution, it is possi-

ble to automatically compare two databases with known schema, but un-

known interrelationships, and identify inclusion dependencies between their

attributes.

This is the first solution of the inclusion dependency discovery prob-

lem. Previously, only implication rules for inclusion dependencies were

known [CFP82]. There is some work on discovering other types of dependen-

cies, especially functional dependencies [KMRS92, FS99], but no algorithm

for inclusion dependencies had been proposed.

The discovery of inclusion dependencies is a hard problem, with an inher-

ent NP-complexity [KMRS92]. By reducing the problem to a graph problem,

we achieved a significant improvement in performance over the näıve algo-

CHAPTER 8. CONCLUSIONS 179

rithm. Our algorithm uses an NP-complete graph algorithm (clique-finding),

but a test implementation showed that most real-world problems (relations

with up to about 100 attributes each) can be solved with our approach.

For larger-size problems, we additionally identified heuristics that help

to reduce the search space in our algorithm, achieving good results even for

very large problem sizes. This approach also helps to overcome the problem

of “accidental INDs”, which are inclusion dependencies that are valid in a

database even though they do not express any semantic interrelationship

between data objects.

Uses of this technology lie for example in schema integration, an impor-

tant phase of information integration (Fig. 1.1). As our algorithm discovers

database interrelationships, it helps in the identification of data resources

that are useful for a variety of purposes, such as the identification of data-

base duplicates, system integration support, or the purpose of identifiying

backup data for a view synchronization system like EVE (Chapter 2).

180

Part III

Incremental Maintenance of

Schema-Restructuring Views

181

Chapter 9

Introduction and

Background

9.1 Introduction

Information sources, especially on the Web, are increasingly independent

from each other, being designed, administered and maintained by a mul-

titude of autonomous data providers. Nevertheless, it becomes more and

more important to integrate data from such sources. Issues in data inte-

gration include the heterogeneity of data and query models across different

sources, called model heterogeneity [TRV96, HGMN+97] and incompatibil-

ities in schematic representations of different sources even when using the

same data model, called schema heterogeneity [MIR93, LSS96]. Much work

on these problems has dealt with the integration of schematically different

sources under the assumption that all “data” is stored in tuples and all

“schema” is stored in attribute and relation names. We now relax this as-

9.1. INTRODUCTION 182

sumption and focus on the integration of heterogeneous sources under the

assumption that schema elements may express data and vice versa.

One recent promising approach at overcoming such schematic hetero-

geneity are schema-restructuring query languages, such as SchemaSQL, an

extension of SQL devised by Lakshmanan et al. [LSS96, LSS99]. Other pro-

posals include IDL by Krishnamurthy et al. [KLK91], HiLog [CKW89] and

MSQL [LAZ+89]. Schema-restructuring query languages, and SchemaSQL

in particular, support queries over not only data but also schema elements

(such as lists of attribute or relation names) in SQL-like queries. Also, they

allow sets of values obtained from data tuples to be used as schema in the

output relation. This extension leads to more powerful query languages,

effectively achieving a transformation of semantically equivalent but syntac-

tically different schemas [LSS96] into each other.

Previous work on integration used either SQL-views, if the underlying

schema agreed with what was needed in the view schema [QW91, NLR98,

etc.], or translation programs written in a programming language to reor-

ganize source data [BRU97, HGMN+97]. We propose to use views defined

in schema-restructuring languages in a way analogous to SQL-views. This

makes it possible to include a larger class of information sources into an

information system using a query language as the integration mechanism.

This concept is much simpler and more flexible than ad-hoc “wrappers” that

would have to be written for each data source. It is also possible to use or

adapt query optimization techniques for such an architecture.

However, such an integration strategy raises the issue of maintaining

schema-restructuring views, which is an open problem. View maintenance

9.1. INTRODUCTION 183

in a restructuring view is different from SQL view maintenance, due to

the disappearance of the distinction between data and schema, leading to

new classes of updates and update transformations. In this part of the

dissertation, we present the first incremental maintenance strategy for a

schema-restructuring view language, using SchemaSQL as an example.

9.1.1 Motivating Example

Consider the two relational schemas in Fig. 9.1 that are able to hold the

same information and can be mapped into each other using SchemaSQL

queries. The view query restructures the input relations on the top of the

figure representing airlines into attributes of the output relations on the

bottom representing destinations. The arrow -operator (->) attached to an

element in the FROM-clause of a SchemaSQL-query allows to query schema

elements, giving SchemaSQL its meta-data restructuring power. Standing

by itself, it refers to “all relation names in that database”, while attached

to a relation name it means “all attribute names in that relation”.

SchemaSQL is also able to transform data into schema. For example,

data from the attribute Destination in the input schema is transformed into

relation names in the output schema, and vice versa attribute names in the

input (Business and Economy) are restructured into data.

Now consider an update to one of the base relations in our example.

Let a tuple t[Destination,Business,Economy] = (Berlin, 1400, 610) be added

to the base table LH (a data update). The change to the output would

be the addition of a new relation Berlin (a schema change) with the same

schema as the other two relations. This new relation would contain one

9.1. INTRODUCTION 184

BA
Destination Business Economy

Paris 1200 600
London 1100 475

LH
Destination Business Economy

Paris 1220 700
London 1180 500

⇓

create view CITY(Type, AIRLINE) AS

select PRICETYPE, FLIGHT.PRICETYPE

from

-> AIRLINE,

AIRLINE FLIGHT,

AIRLINE-> PRICETYPE,

FLIGHT.Destination CITY

where PRICETYPE <> ’Destination’

and FLIGHT.PRICETYPE <= 1100;

⇓

LONDON
Type BA LH

Business 1100 null
Economy 475 500

PARIS
Type BA LH

Economy 600 700

Figure 9.1: A Schema-Restructuring Query in SchemaSQL.

tuple t[Type,BA,LH] = (Economy,null, 610).

In this example, a data update is transformed into a schema change,

but all other combinations are also possible. The effect of the propagation

of an update in such a query depends on numerous factors, such as the

input schema, the view definition, the set of unique values in the attribute

Destination across all input relations (city names), and the set of input

relations (airline codes). For example, the propagation would also depend

9.1. INTRODUCTION 185

on whether other airlines offer a flight to Berlin in the Economy-class, since

in that case the desired view relation already exists.

9.1.2 Contributions

We propose to use schema-restructuring query languages to define views

over relational sources and we solve several new problems that arise, using

SchemaSQL as an example. We observe that, due to the possible transfor-

mation of “schema” into “data” and vice-versa, we must not only consider

data updates (DUs) for SchemaSQL, but also schema changes (SCs). A

consequence is that, as shown in this work, using the standard approach of

generating query expressions that compute some kind of “delta” relation ∆

between the old and the new view after an update is not sufficient, since

the schema of ∆ would not be defined. Our algorithm in fact transforms

an incoming (schema or data) update into a sequence of schema changes

and/or data updates on the view extent.

The contributions of this part are as follows: (1) we identify the new

problem of schema-restructuring view maintenance, (2) we give an solution

to the problem that is based on a query algebra, (3) we prove this approach

correct, (4) we develop a prototype implementation of a query engine and

incremental view maintenance system for SchemaSQL, and (5) we describe

performance showing the improvements of this approach over recomputa-

tion.

9.2. BACKGROUND 186

9.2 Background

9.2.1 Notation

A value is an element of data that is stored in a relation. Examples include

strings, numbers, and dates. A domain D is a set of values.1 DN is the

special domain of “attribute- and relation names”. We implicitly assume

that there is a bijective mapping from some domains to DN . This means

that the values of some, but not necessarily all, domains can be converted

to names and vice versa. For example, the values from a numeric domain

cannot be converted easily into attribute names in most database systems.

A relation is a 3-tuple R = (n, S,E) with n ∈ DN (the relation name),

S = (a1, a2, . . . , an) ∈ (DN)n (the schema—a tuple of n attribute names)

and E ⊆ {D1 × D2 × . . . × Dn} (the relation extent, which is a subset

of the cross-product of the domains D1 × D2 × . . . × Dn). Note that this

definition associates exactly one value in S with each domain from which E

is constructed (the name of an “attribute”).

A relational tuple t ∈ E is an n-tuple and is an element of a relation’s

extent. An operator t[al1 , al2 , . . . , alk] returns the projection of t on the

attributes named al1 , al2 , . . . , alk . We also define t[∗\{a1, . . . , an}] to be the

projection of t onto all its attributes except the ones named a1, . . . , an.

An attribute Ai ⊆ Di is a multiset that is constructed as follows: Ai =

{t[ai] | t ∈ E}, or short Ai = E[ai]. Then attribute Ai has attribute name

ai. Note that we denote attributes by capital letters (as they are sets) and
1Throughout this work, we will use capital letters R to denote (multi)sets and small

letters a to denote elements of sets.

9.2. BACKGROUND 187

attribute names by small letters. We extend this notation for E[a1, . . . , ak]

to mean the projection of extent E on the attributes A1, . . . , Ak. For read-

ability, if we refer to attribute A of R = (n, S,E), we actually mean the pair

A = (a,E[a]), with a ∈ S. The term prime attribute refers to an attribute

that is a member of any key of R and the term non-prime attribute refers

to an attribute that is not a member of any key of R (see [Ull89]). The dis-

tinct-operator 〈ai〉 on an attribute Ai in extent E returns the set of distinct

values in Ai by removing all duplicates from the multiset E[ai].

Functional dependencies in R are defined as usual (see [Ull89, Chapter

7]), with X → A defining the attribute A to be functionally dependent on

the set of attributes X (i.e., for any t ∈ E, the value of t[a] depends only on

t[x1, . . . , xk]) . Likewise, we assume the usual definitions of natural join 56

and cross product ×.

9.2.2 SchemaSQL

In relational databases it is possible to store equivalent data in different

schemas [Hul86, MIR93] that are incompatible when queried in SQL. How-

ever, for information integration purposes it is desirable to combine data

from such heterogeneous schemas. SchemaSQL is an SQL derivative de-

signed by Lakshmanan et al. [LSS96] which can be used to restructure

the schema of a relational database. In [LSS99], Lakshmanan et al. de-

scribe an extended algebra and algebra execution strategies to implement a

SchemaSQL query evaluation system. It extends the standard SQL algebra

which uses operators such as σ(R), π(R), and R 56 S by adding four op-

erators named Unite, Fold, Unfold, and Split originally introduced by

9.2. BACKGROUND 188

Gyssens et al. [GLS96] as part of their “Tabular Algebra”. Lakshmanan

et al. show that any SchemaSQL query can be translated into this extended

algebra.

SchemaSQL Algebra Operators

As the definitions of the operators in [LSS99] are very brief and could be mis-

interpreted, we will now give more precise operator definitions in more de-

tail. While we followed Lakshmanan’s definitions closely, we have slightly

changed the semantics of the Fold/Unfold-operator pair [LSS99] to in-

clude an explicit key constraint, which avoids an ambiguity explained be-

low. The original SchemaSQL proposal can be supported as well, with slight

changes in the update propagation scheme. Examples for the four operators

defined in this section can be found in Fig. 9.2. We will refer to the input

relation of each operator as R and to the output relation as Q.

The Unite-Operator is defined on a set of k relations R∗ = {R1, . . . , Rk}
with ap as an argument. We define a set N∗ = {nR1 , . . . , nRk

}, which is the

set of all relation names in R∗, in the new domain Dp. We further denote

by Nk the relation R(nk, E, S). Then, for each Ri, we assume the schema

SRi = (a1, . . . , an) and the extent ERi ⊆ {D1 × . . . × Dn}. Note that this

implies that all Ri have the same schema. The output of the Unite operator

is then one relation Q = Uniteap(R∗) with EQ ⊆ {D1 × . . . × Dn × Dp}
and SQ = (a1, . . . , an, ap) with EQ =

⋃
nk∈N∗

(Nk × {nk}). Note that Nk de-

notes the relation Nk and nk its relation name. In words, a new relation

is constructed by taking the union of all input relations and adding a new

attribute Ap whose values are the relation names of the input relations. In

9.2. BACKGROUND 189

BA
Destination Business Economy

Paris 1200 600
London 1100 475

LH
Destination Business Economy

Paris 1220 700
London 1180 500

⇓ Unite Airline

TMP REL 0001
Airline Destination Business Economy

BA Paris 1200 600
BA London 1100 475
LH Paris 1220 700
LH London 1180 500

⇓ Fold Type, Price,{Business,Economy}

TMP REL 0002
Airline Type Destination Price

BA Business Paris 1200
BA Business London 1100
BA Economy Paris 600
BA Economy London 475
LH Business Paris 1220
· · · · · · · · · · · ·

⇓
Standard-SQL

select * from tmp rel 0002

where price <= 1100;

TMP REL 0003
Airline Type Destination Price

BA Business London 1100
BA Economy Paris 600
BA Economy London 475
· · · · · · · · · · · ·

⇓ Unfold Airline, Price

TMP REL 0004
Type Destination BA LH

Business London 1100 null
Economy Paris 600 700
Economy London 475 500

⇓ Split Destination

LONDON
Type BA LH

Business 1100 null
Economy 475 500

PARIS
Type BA LH

Economy 600 700

Figure 9.2: The Four SchemaSQL Operators Unite, Fold, Unfold, Split.

9.2. BACKGROUND 190

Fig. 9.2, the Unite-operator is defined over the set of relations BA, LH and

has the attribute name Airline as its argument.

The Fold-Operator works on a relation R = (nR, ER, SR) with ER ⊆
{D1 × . . . ×Dn ×Dd × . . .×Dd︸ ︷︷ ︸

k times

} and SR = (a1, . . . , an, an+1, . . . an+k) and

takes as arguments the names of the pivot and data attributes ap and ad in

its output relation. Note that this definition requires that k attributes of R

have to be of the same domain. Furthermore, we require the attribute set

{a1, . . . , an} to satisfy a uniqueness constraint in order to avoid ambiguities

in the operator (this requirement is not explicit in [LSS99]). With R having

n + k attributes, we then define Q = Foldap,ad
(R) = (nQ, EQ, SQ) with

nQ = nR, EQ ⊆ {D1× . . .×Dn×Dd×Dp} and SQ = (a1, . . . , an, ad, ap). We

define A∗ = {an+1, . . . an+k} as a set of values in a new domain Dp where the

values are obtained by the above-mentioned conversion of attribute names

into data values. Finally, E =
⋃

ak∈A∗
(R[a1, . . . , an, ak]× {ak}). In words,

the operator takes all data values from the set of related attributes, and

sorts them into one new attribute ad, introducing another new attribute

ap that holds the former attribute names. Note that, since ap becomes

part of a key for ad, it has to be included in the set X for any functional

dependency X → Ad. To motivate the above uniqueness constraint, note

that its violation would require us to introduce multiple tuples in the output

relation that differ only in their attribute ad. The semantics of such tuples

are not clear in a real-world application. In Fig. 9.2, the Fold-operator is

defined on relation TMP REL 0001 and has the arguments ap = Type, ad =

Price, A∗ = {Business,Economy}.

9.2. BACKGROUND 191

The Unfold-Operator is the inverse of Fold. Defined on a relation

R = (nR, ER, SR) with the extent ER ⊆ {D1 × . . . × Dn × Dp × Dd} and

the schema SR = (a1, . . . , an, ap, ad), it takes two arguments ap, ad which

are attribute names from SR. To simplify the notation and without loss of

generality, we reorder the attributes in R (by exchanging the indices on both

SR and ER accordingly), such that Ap and Ad become the last two attributes

in R. We call Ap the pivot attribute and Ad the data attribute. Let R have

n + 2 attributes. In addition to the original SchemaSQL, we impose two

conditions on functional dependencies in R: (X → Y) ⇒ Ad �∈ X and

∃(X → Ad) with Ap ∈ X. That is, Ad must be non-prime, Ap must be

prime and Ad must depend on a key containing Ap (this is not explicity

stated in [LSS99]). We also set A∗ = R〈Ap〉 (the set of distinct values in

Ap), k = |A∗| and impose a total order on A∗ to assign an index 1 ≤ i ≤ k

to each of its elements (A∗ = {a∗1, . . . , a∗k}).
Then we have Q = Unfoldap,ad

(R) = (nQ, SQ, EQ) with NQ = nR,

EQ ⊆ {D1 × . . . × Dn × Dd × . . .×Dd︸ ︷︷ ︸
k times

} and SQ = (a1, . . . , an, a
∗
1, . . . , a

∗
k).

The extent is constructed by EQ = ER[a1, . . . , an] 56 E1 56 . . . 56 Ek with

Ei = {t[a1, . . . , an, ad] | t ∈ ER ∧ t[ap] = a∗i }.
In words, the schema of Q consists of all attributes in R except the data

and pivot attribute, plus one attribute for each distinct data value in the

pivot attribute. Each tuple t′ in Q is constructed by taking a tuple t in R

and filling each new attribute Ai with the value from attribute Ad in a tuple

from R that has the name ai as value in Ap (assuming an implicit conversion

between names and values as required above). The new attributes all have

9.2. BACKGROUND 192

the domain Dd of the old attribute Ad.

In Fig. 9.2, the Unfold-operator with arguments ap = Airline and

ad = Price is defined over relation TMP REL 0003. The operator produces

output by taking tuples from TMP REL 0003, and filling the attributes rep-

resenting airlines with values from the data attribute ad = Price in the

relation TMP REL 0003, matching attribute names in the output relation

with the values of the pivot attribute Airline in the input relation.

The Split-Operator is the inverse of the Unite-operator. It trans-

forms a single relation R = (nR, ER, SR) with ER ⊆ {D1×. . .×Dn×Dp} and
SR = (a1, . . . , an, ap) into a set of k relations with the same schema. It takes

as argument the name of the pivot attribute ap which we assume to be the

last in R. We require that Ap does not have NULL-values, i.e., ∀x ∈ Ap : x �=
⊥, to avoid having attributes without names. One could allow NULL-values

with slight changes in the semantics (and update propagation algorithm),

however the language appears cleanest when including this requirement.

The output of Split is a set of relations Q∗ = Splitap(R) = {Q1, . . . , Qk}
with A∗ = R〈Ap〉 and k = |A∗|. We will refer to the ordered elements of

A∗ as in the Unfold-case, i.e., A∗ = {a∗1, . . . , a∗k}. For each output relation

Qi, we have: nQi = a∗i , EQi ⊆ {D1 × . . . × Dn}, SQi = (a1, . . . , an), and

EQi = {t[a1, . . . , an] | t ∈ R ∧ t[ap] = a∗i }. In words, we break R down into

k relations of the same schema, with the new relation names the k distinct

values from R’s attribute Ap. In Fig. 9.2, the Split-operator is defined over

relation TMP REL 0004, takes as its only argument ap = Destination, and

produces 2 tables names LONDON and PARIS.

9.2. BACKGROUND 193

SchemaSQL Query Evaluation

Similar to traditional SQL evaluation, [LSS99] proposes a strategy for query

evaluation in SchemaSQL that first constructs and then processes an alge-

bra query tree, leading to an efficient implementation of SchemaSQL query

evaluation over an SQL database system. In order to evaluate a Schema-

SQL query, an algebra expression using standard relational algebra plus the

four operators introduced above is constructed. This expression is of the

following standard form [LSS99] :

V = Splita(Unfoldb,c(πD(σcond (Folde1,f1,G1(Uniteh(R1))× . . .

. . . × Foldem,fm,Gm(Uniteh(Rm)))))) (9.1)

with attribute names a, b, c, ei, fi, hi, the sets of attribute names D and Gi,

and selection predicates cond determined by the query. Any of the four

SchemaSQL operators may not be needed for a particular query and would

then be omitted from the expression. R1 . . . Rm are base relations, or, in the

case that the expression contains a Unite-operator, sets of relations with

equal schema.

The algebraic expression for our running example (Fig. 9.1) is:

V = SplitDestination(UnfoldAirline,Price(σPrice<1100 (9.2)

(FoldType, Price, {Business,Economy}(UniteAirline(BA,LH)))))

This algebraic expression is then used to construct an algebra tree (Fig. 9.3)

whose nodes are any of the four SchemaSQL operators or a “Standard-SQL”-

9.2. BACKGROUND 194

operator (including the π, σ, and ×-operators of the algebra expression) with
standard relations “traveling” along its edges. The query is then evaluated

by traversing the algebra tree and executing a query processing strategy for

each operator, analogous to traditional SQL query evaluation.

Note that the query tree could include ×-operators (which do not exist

in our example), but that the order of Unite, Fold, Unfold, Split (if

they exist) is fixed by the template in Equation 9.1. The Unite operator

takes a number of relations of the same schema as an input, while the Split-

operator produces as output a set of relations of the same schema. Note that

the algebra tree in Fig. 9.3 is very simple. In more complex queries, the tree

could “fork” at the Standard-SQL-node, and several smaller “flattening”

trees using Unite- and Fold-operators could occur. In that case, and also

in the case of standard relational joins, the Standard-SQL-node would itself

contain a more complex algebra tree containing simple SQL algebra nodes.

Relation LH

Relation BA Standard−SQLFoldUnite SplitUnfold

Figure 9.3: The Algebra Tree for the Example in Fig.9.1

195

Chapter 10

Propagation of Updates in a

SchemaSQL View

10.1 The SchemaSQL Update Propagation Strat-

egy

In this section, we introduce the update propagation strategy for Schema-

SQL by defining updates and then describing the propagation of updates

through the operators of the SchemaSQL algebra tree.

10.1.1 Classes of Updates and Transformations

The updates that can be propagated through views in SchemaSQL can be

grouped into two categories: Schema Changes (SC) and Data Updates (DU).

Schema changes that we consider are: add-relation(n, S), delete-relation(n),

rename-relation(n, n′) with relation names n, n′ and schema S as introduced

10.1. THE SCHEMASQL UPDATE PROPAGATION STRATEGY 196

in Section 9.2.1 as well as add-attribute(r, a), delete-attribute(r, a), rename-

attribute(r, a, a′) with r the name of the relation R that the attribute named

a belongs to, a′ the new attribute name in the rename-case, and the notation

otherwise as above. Data updates are any changes affecting a tuple (and

not the schema of the relation), i.e., add-tuple(r,t), delete-tuple(r,t), update-

tuple(r,t,t′)), with t and t′ tuples in relation R with name r. Note that we

consider update-tuple as a basic update type, instead of breaking it down

into a delete-tuple and an add-tuple. An update-tuple update consists of two

tuples, one representing an existing tuple in R and the other representing

the values of that tuple after the update. This allows to keep relational

integrity constraints valid that would otherwise be violated temporarily.

10.1.2 SchemaSQLUpdate Propagation vs. Relational View

Maintenance

Update propagation in SchemaSQL-views, as in any other view environment,

consists in recording updates that occur in the input data and translating

them into updates to the view extent. In incremental view maintenance of

SQL views [QW91, GL95, MKK97], many update propagation mechanisms

have been proposed. Their common feature is that the new view extent

is obtained by first computing extent differences between the old view V

and the new view V ′ and then adding them to or subtracting them from

the view, i.e., V ′ = (V \∇V) ∪ ∆V , with ∇V denoting some set of tuples

computed from the base relations that needs to be deleted from the view

and ∆V some set that needs to be added to the view [QW91].

In SchemaSQL, this mechanism leads to difficulties. If SchemaSQL views

10.1. THE SCHEMASQL UPDATE PROPAGATION STRATEGY 197

must propagate both schema and data updates, the schema of ∆V or ∇V

does not necessarily agree with the schema of the output relation V . But

even when considering only data updates to the base relations, the new

view V ′ may have a different schema than V . That means the concept of

set difference between the tuples of V ′ and V is not even meaningful. Thus,

we must find a way to incorporate the concept of schema changes. For this

purpose, we now introduce a data structure ∂ which represents an update

sequence of n data updates DU and schema changes SC.

Definition 10.1 (defined update) Assume two sets DU and SC which

represent all possible data updates and schema changes, respectively. A

change c ∈ DU ∪ SC is defined on a given relation R if one of the

following conditions holds:

• if c ∈ DU , the schema of the tuple added or deleted must be equal to

the schema of R.

• if c ∈ SC, the object c is applied to (an attribute or relation) must exist

(for delete- and update-changes) or must not exist (for add-changes)

in R.

Definition 10.2 (valid update sequence) A sequence of updates

(c1, . . . , cn) with ci ∈ DU ∪ SC, denoted by ∂R, is called valid for R if for

all i (1 < i ≤ n), ci is defined on the relation R(i−1) that was obtained by

applying c1, . . . , ci−1 to R.

For simplicity, we will also use the notation ∂ω to refer to a valid up-

date sequence to the output table of an algebra operator ω. Note that

10.1. THE SCHEMASQL UPDATE PROPAGATION STRATEGY 198

these definitions naturally extend to views, since views can also be seen as

relational schemas. For an example, consider propagation of the update

add-tuple(’Berlin’,1400,610) to LH in Fig. 10.7 (p. 210). Having the

value Berlin in the update tuple will lead to the addition of a new relation

BERLIN in the output schema of the view—forming a sequence ∂V which

contains both a schema change and a data update:

∂V = (add-relation(BERLIN, (Type,Destination,BA,LH)),

add-tuple(BERLIN, (’Economy’,null,610))

)

The add-relation-update is valid since the relation BERLIN did not exist in

the output schema before, and the add-tuple-update is valid since its schema

agrees with the schema of relation BERLIN defined by the previous update.

10.1.3 Overall Propagation Strategy

Given an update sequence ∂V implemented by a List data structure, our

update propagation strategy works according to the algorithm in Fig. 10.1.

Each node in the algebra tree has knowledge about the operator it represents.

This operator is able to accept one input update and generate a sequence of

updates as output. Each (leaf node) operator can also recognize whether it

is affected by an update (by comparing the relation(s) on which the update

is defined with its own input relation(s)). If it is not affected, it simply

returns an empty update sequence.

After all the updates for the children of a node n are computed and col-

10.1. THE SCHEMASQL UPDATE PROPAGATION STRATEGY 199

lected in a list (variable s in the algorithm in Fig. 10.1), they are propagated

one-by-one through n. Each output update generated by the operator of n

when processing an input update will be placed into one update sequence,

all of which are concatenated into the final return sequence r (see Fig. 10.1,

← is the assignment operator).

function propagateUpdate(Node n,Update u)
List r ← ∅, s← ∅
if (n is leaf)

if (n.operator is affected by u)
r.append(n.operator.operatorPropagate(u))

else
for(all children ci of n)

//s will change exactly once, see text
s.append(propagateUpdate(ci, u))

for(all updates ui in s)
r.append(n.operator.operatorPropagate(ui))

return r

Figure 10.1: The SchemaSQL View Maintenance Algorithm

The algorithm performs a postorder traversal of the algebra tree. This

ensures that each operator processes input updates after all its children

have already computed their output1. At each node n, an incoming update

is translated into an output sequence ∂n of length greater than or equal to

0 which is then propagated to n’s parent node. Since the algebra tree is

connected and cycle-free (not considering joins of relations with themselves)

all nodes will be visited exactly once. Also note that since updates occur

only in one leaf at a time, only exactly one child of any node will have a

non-empty update sequence to be propagated. That is, the first for-loop will
1We are not considering concurrent updates in this work.

10.1. THE SCHEMASQL UPDATE PROPAGATION STRATEGY 200

find a non-empty addition to s only once per function call. After all nodes

have been visited, the output of the algorithm will be an update sequence

∂V to the view V that we will prove to have an effect on V equivalent to

recomputation.

10.1.4 Propagation of Updates through Individual Schema-

SQL

Operators

Since update propagation in our algorithm occurs at each operator in the

algebra tree, we have to design a propagation strategy for each type of

operator.

Propagation of Schema Changes through SQL Algebra Operators

The propagation of updates through standard SQL algebra nodes is simple.

Deriving the update propagation for data updates is discussed in the litera-

ture on view maintenance [QW91, GL95]. It remains to define update prop-

agation for selection, projection, and cross-product operators under schema

changes 2.

The propagation of updates through standard SQL algebra nodes is sim-

ple. Deriving the update propagation for data updates is discussed in the

literature on view maintenance [BLT86, QW91, GL95]. It remains to define

update propagation for selection, projection, and cross-product operators

under schema changes. As with all the other operators in this work, we
2these are the only operators necessary for the types of queries discussed in this dis-

sertation

10.1. THE SCHEMASQL UPDATE PROPAGATION STRATEGY 201

denote the input relation by R (and its name by r) and the output relation

by Q (named q).

Relation-Updates: For all standard SQL algebra operators, updates of

type add-relation(n,S) is not propagated since it will not affect existing out-

put. Delete-relation(r) makes the operator’s output invalid (i.e., is propa-

gated into a delete-relation(q) of its output relation), and rename-relation(n, n′)

is not propagated since the name of an input relation is not relevant to a

standard SQL-operator.

Attribute-Updates:

1. Selection operator σcond with cond a list of conditions on the attributes

in this operator’s relation R.

All attribute updates are propagated by changing the parameter r

(which represents the name of the input relation) to the name of the

output relation q. If a predicate in cond is defined over a renamed

attribute, it is changed accordingly. If it is defined over a deleted

attribute, the view becomes invalid.

2. Projection operator πĀ with a set of attributes Ā as projection list

add-attribute(r, a) will not be propagated (∂ω = ∅) as a will not be

in Ā. Delete-attribute(r, a) will be propagated as delete-attribute(q, a)

if a ∈ Ā. Rename-attribute(r, a, a′) will be propagated as rename-

attribute(q, a, a′) if a ∈ Ā, in which case the projection list changes:

Ā′ ← Ā\a∪ a′. Thus, the changed attribute name will be available on

the output.

10.1. THE SCHEMASQL UPDATE PROPAGATION STRATEGY 202

3. Cross-Product Operator ×
The cross-product operator simply propagates any incoming update

(on an attribute) into an output update by changing the relation name

parameter r to q. Incremental view maintenance is performed as nec-

essary, in a manner described in the literature [ZGMW96, AESY97,

ZR99].

SchemaSQL Operators

In Figs. 10.2–10.5, we give the update propagation tables for the four Schema-

SQL operators. For the notation and meaning of variables and constants,

please refer to Section 9.2.1. In order to avoid repetitions in the notation,

the cases for each update type are to be read in an “if-else”-manner, i.e., the

first case that matches a given update will be used for the update generation

(and no other). Also, NULL-values are like other data values, except where

stated otherwise.

The tables show the propagation of each possible input change, broken

down into several cases as necessary (in the second column). The second

column also shows any auxiliary variables needed for propagation and their

computation. For example, if an attribute is deleted from the input of a

Split-operator, the propagation depends on whether the deleted attribute

is the pivot attribute Ap or another attribute. The last column in all ta-

bles shows the output of the operator, i.e., the update sequence ∂ω gener-

ated as the propagation of an input update. This output is shown as an

SQL insert-, delete-, or update-statement (in typewriter font) or as a

schema change (in italics). Note that whenever our propagation tables give

10.1. THE SCHEMASQL UPDATE PROPAGATION STRATEGY 203

an SQL-statement as the output of an operator ω, the exact list of updates

∂ω can be derived simply by applying this SQL-statement to the output

relation Rω. In the case of most SQL-update and delete-statements, the

output relation of an operator ω is needed to translate a SQL-statement into

an update sequence ∂ω. This situation is similar to projection-operators in

SQL, where the removal of duplicate output tuples can only be accomplished

if the output of the operator is known. Otherwise, each operator ω in the

tree requires as input for the propagation of any update only the input

update itself, its own parameters, and the set A∗ determined according to

Section 9.2.2.

Inspection of the update propagation tables shows several properties of

our algorithm. For example, the view becomes invalid under some schema

changes or data updates, mainly if an attribute or relation that was necessary

to determine the output schema of the operator is deleted (e.g., when delet-

ing the pivot or data attribute in Unfold). In the case of rename-schema

changes (e.g., under rename-relation in Fold), some operators change their

parameters. Those are simple renames that do not affect operators other-

wise. In those cases we denote renaming by ⇒. The operator will produce

a zero-element output sequence.

Formalization of the Propagation of Updates

A formalization of the propagation of updates is extensive and lacks the

conciseness of the propagation tables given in this section. Therefore, we

will only give an example of how such a definition could be accomplished.

We will consider the propagation of add-tuple through Unfold (Fig. 10.6):

10.1. THE SCHEMASQL UPDATE PROPAGATION STRATEGY 204
In
p
u
t
C
h
a
n
g
e

C
o
n
d
it
io
n
s

P
ro
p
a
g
a
ti
o
n

a
d
d
-t
u
p
le

(r
,t
)

t[
a
1
,.

..
,a

n
,a

p
]
∈

R
in
va
li
d
v
ie
w
(k
ey

v
io
la
ti
o
n
)

t[
a

p
]
∈

A
∗

t[
a
1
,.

..
,a

n
]
∈

R

u
p
d
a
t
e

Q
s
e
t
[
t[
a

p
]]

=
t[
a

d
]

w
h
e
r
e

a
1
,.

..
,a

n
=

t[
a
1
,.

..
,a

n
]

t[
a

p
]
∈

A
∗

t[
a
1
,.

..
,a

n
]
�∈

R

i
n
s
e
r
t

i
n
t
o

Q
(
a
1
,.

..
,a

n
,a

p
)

v
a
l
u
e
s

(
a
1
,.

..
,a

n
,a

d
)

t[
a

p
]
�∈

A
∗

t[
a
1
,.

..
,a

n
]
∈

R

a
d
d
-a

tt
ri

bu
te

(q
,t
[a

p
])
,

u
p
d
a
t
e

Q
s
e
t
[
t[
a

p
]]

=
t[
a

d
]

w
h
e
r
e

a
1
,.

..
,a

n
=

t[
a
1
,.

..
,a

n
]

t[
a

p
]
�∈

A
∗

t[
a
1
,.

..
,a

n
]
�∈

R

a
d
d
-a

tt
ri

bu
te

(q
,t
[a

p
])
,

i
n
s
e
r
t

i
n
t
o

Q
(
a
1
,.

..
,a

n
,a

p
)

v
a
l
u
e
s

(
a
1
,.

..
,a

n
,a

d
)

d
el

et
e-

tu
p
le

(r
,t
)

t[
a

p
]
ex
is
ts

in
R
[a

p
]
ex
a
ct
ly

o
n
ce

d
el

et
e-

a
tt
ri

bu
te

(q
,t
[a

p
])

t[
a

p
]
ex
is
ts

in
R
[a

p
]
m
o
re

th
a
n
o
n
ce

u
p
d
a
t
e

Q
s
e
t
[
t[
a

p
]]

=
N
U
L
L

w
h
e
r
e

a
1
,.

..
,a

n
=

t[
a
1
,.

..
,a

n
]

3

u
pd

a
te

-t
u
p
le

(r
,t

,t
′)

t[
a
1
,.

..
,a

n
,a

p
]
=

t′
[a

1
,.

..
,a

n
,a

p
]

u
p
d
a
t
e

Q
s
e
t
[
t[
a

p
]]

=
t[
a

d
]

w
h
e
r
e

a
1
,.

..
,a

n
=

t[
a
1
,.

..
,a

n
]

t[
a
1
,.

..
,a

n
,a

p
]
�=

t′
[a

1
,.

..
,a

n
,a

p
]

b
re
a
k
d
ow

n
in
to

(d
el

et
e-

tu
p
le
,
a
d
d
-t
u
p
le
)

a
d
d
-a

tt
ri

bu
te
(r

,a
)

a
d
d
-a

tt
ri

bu
te
(q

,
a
)

d
el

et
e-

a
tt
ri

bu
te
(r

,
a
)

a
∈
{A

d
,A

p
}

in
va
li
d
v
ie
w

a
�∈
{A

d
,A

p
}

d
el

et
e-

a
tt
ri

bu
te
(q

,
a
)

re
n
a
m

e-
a
tt
ri

bu
te
(r

,
a
,a

′)
a
=

A
d

U
n
f
o
l
d

a
p

,a
=
⇒

U
n
f
o
l
d

a
p

,a
′

a
=

A
p

U
n
f
o
l
d

a
,a

d
(R

)
=
⇒

U
n
f
o
l
d

a
′ ,

a
d
(R

)
a
�∈
{A

d
,A

p
}

re
n
a
m

e-
a
tt
ri

bu
te
(q

,
a
,a

′)
d
el

et
e-

re
la

ti
o
n
(r
)

d
el

et
e-

re
la

ti
o
n
(q
)

re
n
a
m

e-
re

la
ti
o
n
(n

,n
′)

U
n
f
o
l
d

a
p

,a
d
(N

)
=
⇒

U
n
f
o
l
d

a
p

,a
d
(N

′)
(r
en
a
m
in
g
th
e
in
p
u
t
re
la
ti
o
n
)

3
if
th
is
u
p
d
a
te

le
a
d
s
to

a
tu
p
le
w
it
h
a
ll
N
U
L
L
-v
a
lu
es
,
th
e
tu
p
le
m
u
st

b
e
d
el
et
ed
.

F
ig
ur
e
10
.2
:
P
ro
pa

ga
ti
on

R
ul
es

fo
r
Q
=

U
n
f
o
l
d
a

p
,a

d
(R

)

10.1. THE SCHEMASQL UPDATE PROPAGATION STRATEGY 205

In
p
u
t
C
h
a
n
g
e

C
o
n
d
it
io
n
s
a
n
d
V
a
ri
a
b
le
B
in
d
in
g

P
ro
p
a
g
a
ti
o
n

a
d
d
-t
u
p
le

(r
,t
)

(A
∗
=
{a

∗ 1
,.

..
,a

∗ k
},k
←
|A

∗ |)
f
o
r

i
:
=
1
.
.
k

i
n
s
e
r
t

i
n
t
o

Q

v
a
l
u
e
s

(
a
1
,.

..
,a

n
,
a
∗ i
,
t[
a
∗ i
])

d
el

et
e-

tu
p
le

(r
,t
)

d
e
l
e
t
e

f
r
o
m

Q

w
h
e
r
e

a
1
,.

..
,a

n
=

t[
a
1
,.

..
,a

n
]

u
pd

a
te

-t
u
p
le

(r
,t

,t
′)

A
∈

A
∗ ;

se
t

t[
a
]
to

a
va
lu
e

c

u
p
d
a
t
e

Q
s
e
t

a
d
=

c
w
h
e
r
e

a
1
,.

..
,a

n
=

t[
a
1
,.

..
,a

n
]
a
n
d

a
p
=

a

A
�∈

A
∗ ;

se
t

t[
a
]
fr
o
m

a
va
lu
e

b
to

a
va
lu
e

c
u
p
d
a
t
e

Q
s
e
t

a
=

c
w
h
e
r
e

a
=

b

a
d
d
-a

tt
ri

bu
te
(r

,a
)

A
∈

A
∗4

f
o
r
e
a
c
h

t
u
p
l
e

u
∈

R
i
n
s
e
r
t

i
n
t
o

Q
(
a
1
,.

..
,a

n
,a

p
,a

d
)

v
a
l
u
e
s

(
u
[a

1
,.

..
,a

n
],

a
,
N
U
L
L
)

A
�∈

A
∗

a
d
d
-a

tt
ri

bu
te
(q

,a
)

d
el

et
e-

a
tt
ri

bu
te
(r

,a
)

A
∈

A
∗

d
e
l
e
t
e

f
r
o
m

Q
w
h
e
r
e

a
p
=

a

A
�∈

A
∗

d
el

et
e-

a
tt
ri

bu
te
(q

,
a
)

re
n
a
m

e-
a
tt
ri

bu
te
(r

,a
,a

′)
A
∈

A
∗

u
p
d
a
t
e

Q
s
e
t

a
p
=

a
′
w
h
e
r
e

a
p
=

a

A
�∈

A
∗

re
n
a
m

e-
a
tt
ri

bu
te
(q

,
a
,a

′)
d
el

et
e-

re
la

ti
o
n
(r
)

d
el

et
e-

re
la

ti
o
n
(q
)

re
n
a
m

e-
re

la
ti
o
n
(n

,n
′)

F
o
l
d

a
p

,a
d
(N

)
=
⇒

F
o
l
d

a
p

,a
d
(N

′)

4
N
o
te

th
a
t
th
e
d
ec
is
io
n
w
h
et
h
er

a
n
ew

a
tt
ri
b
u
te

sh
o
u
ld

b
e
a
m
em

b
er

o
f
a
1
,.

..
,a

n
ca
n
o
n
ly

b
e
m
a
d
e
b
y
ev
a
lu
a
ti
n
g
th
e
v
ie
w
q
u
er
y.

F
ig
ur
e
10
.3
:
P
ro
pa

ga
ti
on

R
ul
es

fo
r
Q
=

F
o
l
d
a

p
,a

d
,A

∗ (
R
)

10.1. THE SCHEMASQL UPDATE PROPAGATION STRATEGY 206

In
p
u
t
C
h
a
n
g
e

C
o
n
d
it
io
n
s

P
ro
p
a
g
a
ti
o
n

a
d
d
-t
u
p
le

(r
,t
)

t[
a

p
]
�∈

A
∗

a
d
d
-
r
e
l
a
t
i
o
n

[
t[
a

p
]]

w
i
t
h

s
c
h
e
m
a

(
S

R
\R

.A
p
)
;

i
n
s
e
r
t

i
n
t
o

[
t[
a

p
]]

v
a
l
u
e
s

(
t[
a
1
,.

..
,a

n
])

t[
a

p
]
∈

A
∗

i
n
s
e
r
t

i
n
t
o

[
t[
a

p
]]

v
a
l
u
e
s

(
t[
a
1
,.

..
,a

n
])

d
el

et
e-

tu
p
le

(r
,t
)

t[
a

p
]
ex
is
ts

in
R
[a

p
]
ex
a
ct
ly

o
n
ce

d
e
l
e
t
e
-
r
e
l
a
t
i
o
n

[
t[
a

p
]]

t[
a

p
]
ex
is
ts

in
R
[a

p
]
m
o
re

th
a
n
o
n
ce

d
e
l
e
t
e

f
r
o
m

[
t[
a

p
]]

w
h
e
r
e

a
1
,.

..
,a

n
=

t[
a
1
,.

..
,a

n
]

u
pd

a
te

-t
u
p
le

(r
,t

,t
′)

t[
a
1
,.

..
,a

n
,a

p
]
=

t′
[a

1
,.

..
,a

n
,a

p
]

u
p
d
a
t
e

[
t[
a

p
]]

s
e
t

[
a

d
]
=

t[
a

d
]

w
h
e
r
e

a
1
,.

..
,a

n
=

t[
a
1
,.

..
,a

n
]

t[
a
1
,.

..
,a

n
,a

p
]
�=

t′
[a

1
,.

..
,a

n
,a

p
]

b
re
a
k
d
ow

n
in
to

(d
el

et
e-

tu
p
le
,a

d
d
-t
u
p
le
)

a
d
d
-a

tt
ri

bu
te
(r

,a
)

∀q
∈
{q

1
..

.q
n
}:

a
d
d
-a

tt
ri

bu
te
(q

,
a
)

d
el

et
e-

a
tt
ri

bu
te
(r

,
a
)

a
=

A
p

in
va
li
d
v
ie
w

a
�=

A
p

∀q
∈
{q

1
..

.q
n
}:

d
el

et
e-

a
tt
ri

bu
te
(q

,
a
)5

re
n
a
m

e-
a
tt
ri

bu
te
(r

,
a
,a

′)
a
=

A
p

S
p
l
i
t

a
(R

)
=
⇒

S
p
l
i
t

a
′ (

R
)

a
�=

A
p

∀q
∈
{q

1
..

.q
n
}:

re
n
a
m

e-
a
tt
ri

bu
te
(q

,
a
,a

′)
d
el

et
e-

re
la

ti
o
n
(r
)

∀q
∈
{q

1
..

.q
n
}:

d
el

et
e-

re
la

ti
o
n
(q
)

re
n
a
m

e-
re

la
ti
o
n
(n

,n
′)

S
p
l
i
t

a
p
(N

)
=
⇒

S
p
l
i
t

a
p
(N

′)

5
If
th
is
u
p
d
a
te

le
a
d
s
to

a
tu
p
le
w
it
h
a
ll
N
U
L
L
-v
a
lu
es

in
a
n
o
u
tp
u
t
re
la
ti
o
n
,
th
e
tu
p
le
m
u
st

b
e
d
el
et
ed
.

F
ig
ur
e
10
.4
:
P
ro
pa

ga
ti
on

R
ul
es

fo
r
Q
=

S
p
l
i
t
a

p
(R

)

10.1. THE SCHEMASQL UPDATE PROPAGATION STRATEGY 207

In
p
u
t
C
h
a
n
g
e

C
o
n
d
it
io
n
s
a
n
d
V
a
ri
a
b
le
B
in
d
in
g
s

P
ro
p
a
g
a
ti
o
n

a
d
d
-t
u
p
le

(r
x
,t
)

i
n
s
e
r
t

i
n
t
o

Q
(
a
1
,.

..
,a

n
,a

p
)

v
a
l
u
e
s

(
t[
a
1
,.

..
,a

n
],

r x
)

d
el

et
e-

tu
p
le

(r
x
,t
)

d
e
l
e
t
e

f
r
o
m

Q

w
h
e
r
e

a
1
,.

..
,a

n
=

t[
a
1
,.

..
,a

n
]
a
n
d

a
p
=

r x

u
pd

a
te

-t
u
p
le

(r
x
,t

,t
′)

A
=

A
d
;
se
t

t[
a
]
to

a
va
lu
e

c

u
p
d
a
t
e

Q
s
e
t

a
=

c
w
h
e
r
e

a
1
,.

..
,a

n
=

t[
a
1
,.

..
,a

n
]
a
n
d

a
p
=

r x

A
�=

A
d
;
se
t

t[
a
]
fr
o
m

a
va
lu
e

b
to

a
va
lu
e

c

u
p
d
a
t
e

Q
s
e
t

a
=

c
w
h
e
r
e

a
=

b
a
n
d

a
p
=

r x

a
d
d
-a

tt
ri

bu
te
(r

,a
)

a
d
d
si
m
u
lt
a
n
eo
u
sl
y
to

a
ll

R
i

a
d
d
-a

tt
ri

bu
te
(q

,a
)

o
th
er
w
is
e

in
va
li
d
v
ie
w

d
el

et
e-

a
tt
ri

bu
te
(r

,
a
)

d
el
et
e
si
m
u
lt
a
n
eo
u
sl
y
fr
o
m

a
ll

R
i

d
el

et
e-

a
tt
ri

bu
te
(q

,
a
)

o
th
er
w
is
e

in
va
li
d
v
ie
w

re
n
a
m

e-
a
tt
ri

bu
te
(r

,a
,a

′)
re
n
a
m
e
si
m
u
lt
a
n
eo
u
sl
y
in

a
ll

R
i

re
n
a
m

e-
a
tt
ri

bu
te
(q

,a
,a

′)
o
th
er
w
is
e

in
va
li
d
v
ie
w

a
d
d
-r

el
a
ti
o
n
(r

x
,S

)
n
o
ch
a
n
g
e
(u
n
ti
l
fi
rs
t

a
d
d
-t
u
p
le

to
R

x
)

d
el

et
e-

re
la

ti
o
n
(r

x
)

d
e
l
e
t
e

f
r
o
m

Q
w
h
e
r
e

a
p
=

r x

re
n
a
m

e-
re

la
ti
o
n
(n

,n
′)

U
n
i
t
e

a
p
({

R
1
,.

..
,N

,.
..

,R
n
})

=
⇒

U
n
i
t
e

a
p
({

R
1
,.

..
,N

′ ,
..

.,
R

n
})

u
p
d
a
t
e

Q
s
e
t

a
p
=

n
′

w
h
e
r
e

a
p
=

n

F
ig
ur
e
10
.5
:
P
ro
pa

ga
ti
on

R
ul
es

fo
r
Q
=

U
n
i
t
e
a

p
(R

1
,R

2
,.
..
,R

n
)6

6
N
o
te

th
a
t

r x
is
th
e
n
a
m
e
o
f
R
el
a
ti
o
n

R
x
,
w
h
ic
h
is
o
n
e
o
f
th
e

n
re
la
ti
o
n
s
o
f
eq
u
a
l
sc
h
em

a
th
a
t
a
re

u
n
it
ed

b
y
th
e

U
n
i
t
e
-o
p
er
a
to
r.

10.1. THE SCHEMASQL UPDATE PROPAGATION STRATEGY 208

Using the notation from Section 9.2.2, assume a relation R = (NR, SR, ER)

with n attributes that is the input for an operator Q = Unfoldap,ad
(R) pro-

ducing an output relation Q = (NQ, SQ, EQ) with n− 2 + k attributes and

an update to R, denoted by ∆R = t[a1, . . . , an, ap, ad] = (x1, . . . xn, xp, xd).

Let A∗ be a set of the k distinct values in Ap (the pivot attribute, see the

definition of Unfold in Sec. 9.2.2).

The propagation of this update is shown in Fig. 10.6.

The structure (EQ \ T1)⊕ in the figure7 is constructed by adding an

attribute to EQ \ T1, i.e., (EQ \ T1 ⊆ D1 × . . . × Dn+k) ⇒ ((EQ\ T1)⊕ ⊆
D1× . . .×Dn+k×Dd) with all data values in this new attribute set to NULL

(⊥). Note that the output relation becomes invalid iff an update is inserted

into the input relation that agrees in a1, . . . , an, ap with an existing tuple

(similar to a key violation).

10.1.5 Update Propagation Example

Fig. 10.7 gives an example for an update that is propagated through the

SchemaSQL-algebra-tree in Fig. 9.2 (see also Fig. 10.12). All updates are

computed by means of the propagation tables in the previous section. The

operators appear in boxes with their output attached to the rightof each

box (SQL-statements according to our update tables, Figs. 10.2–10.5). The

actual tuples added by these SQL-statements are shown in tabular form.

The sending of updates to another operator is denoted by double arrows

(⇓), while single arrows (↓) symbolize the transformation of SQL-statements

into updates. We are propagating an add-tuple-update to base relation LH.
7We use the symbol \ to denote set-difference.

10.1. THE SCHEMASQL UPDATE PROPAGATION STRATEGY 209

E
′ R
←

E
R
∪
∆

R
a
tu
pl
e-
ad
d

⇓
ν
←

∆
R
[a

p
]

th
e
pi
vo
t-
va
lu
e
of
th
e
ne
w
tu
pl
e

T
0
←

{t
∈
E

R
|t
[a

1
,.
..
,a

n
,a

p
]=

∆
R
[a

1
,.
..
,a

n
,a

p
]}

fin
d
ou
t
if
ad
de
d
tu
pl
e
ex
is
ts
in

E
R

S
′ Q
←

  ∅
if

T
0
�=
∅

ke
y
vi
ol
at
io
n

S
Q

if
ν
∈
A

∗
no
te
th
at

k
=
|A

∗ |
(a

1
,.
..
,a

n
,a

∗ 1
,.
..
,a

∗ k
,a

p
)

ot
he

rw
is
e

sc
he
m
a
ch
an
ge
if
ne
ce
ss
ar
y

T
1
←

{t
∈
E

Q
|t
[a

1
,.
..
,a

n
]=

∆
R
[a

1
,.
..
,a

n
]}

th
e
m
at
ch
in
g
tu
pl
es
in
th
e
ou
tp
ut
re
la
ti
on

T
2
←

{t
∈
T
1
|t
[ν
]←

∆
R
[a

d
]}

se
t
pi
vo
t
at
tr
ib
ut
e
to
va
lu
e
in
da
ta
at
tr
ib
ut
e

T
3
←

                  {t[
a
1
,.
..
,a

n
,a

∗ 1
,.
..
,a

∗ k
,a

p
]|

t[
a
1
,.
..
,a

n
,a

p
]←

∆
R
[a

1
,.
..
,a

n
,a

d
];

t[
a
∗ i
]←

⊥} if
T
1
=
∅

if
ne
w
ro
w
in
ou
tp
ut
ta
bl
e,
co
ns
tr
uc
t
ne
w
tu
pl
e,
fil
l
un
us
ed
at
tr
ib
ut
es
w
it
h
N
U
L
L

{t[
a
1
,.
..
,a

n
,a

∗ 1
,.
..
,a

∗ k
,a

p
]|

t[
a
1
,.
..
,a

n
,a

∗ 1
,.
..
,a

∗ k
]∈

T
1
;
t[
a
p
]←

∆
R
[a

d
]}

ot
he

rw
is
e

ju
st
se
t
ap
pr
op
ri
at
e
va
lu
e

E
′ Q
←

  ∅
if

T
0
�=
∅

(E
Q
\T

1
)
∪
T
2

if
ν
∈
A

∗
no
sc
he
m
a
ch
an
ge

(E
Q
\T

1
)⊕
∪
T
3

ot
he

rw
is
e

an
ou
tp
ut
sc
he
m
a
ch
an
ge

F
ig
ur
e
10
.6
:
P
ro
pa

ga
ti
on

of
ad
d-
tu
pl
e(
∆

R
)
th
ro
ug

h
an

U
n
f
o
l
d
-O

pe
ra
to
r

10.1. THE SCHEMASQL UPDATE PROPAGATION STRATEGY 210

∂R: add-tuple to LH (input change)
Destination Business Economy

Berlin 1400 610
⇓

ω1: Unite Airline

↓
insert into TMP REL 0001

values (’LH’,’Berlin’,1400,610);

∂ω1: add-tuple to TMP REL 0001
Airline Destination Business Economy

LH Berlin 1400 610

⇓
ω2: Fold Type, Price,{Business,Economy}

↓

insert into TMP REL 0002

values

(’LH’,’Economy’,’Berlin’,610);

insert into TMP REL 0002

values

(’LH’,Business’,’Berlin’,1400);
∂ω2: 2 add-tuple to TMP REL 0002
Airline Type Destination Price

LH Economy Berlin 610
LH Business Berlin 1400

ω3:

⇓
Standard-SQL

select * from tmp rel 0002

where price <= 1100;

↓
∂ω3: add-tuple to TMP REL 0003
Airline Type Destination Price

LH Economy Berlin 610
⇓

ω4: Unfold Airline, Price

↓

insert into TMP REL 0004

values

(’Economy’,’Berlin’,null,610);

∂ω4: add-tuple to TMP REL 0004
Type Destination BA LH

Economy Berlin null 610

⇓
ω5: Split Destination

↓

create table BERLIN; (like LONDON)
insert into Berlin

values (’Economy’,null,610);

∂V : add-relation BERLIN, then
add-tuple to BERLIN

(output change)
Type BA LH

Economy null 610

Legend

⇑ updates Unite operators tables data updates

↑ SQL-statements insert... queries generated
applied to generated
output relation by operator

Figure 10.7: Update Propagation in the View from Figure 9.2. See Sec-
tion 10.1.5 for explanation.

10.1. THE SCHEMASQL UPDATE PROPAGATION STRATEGY 211

Algorithm propagateUpdate will perform a postorder tree traversal, i.e., pro-

cess the deepest node (Unite) first, and the root node (Split) last. The

operators are denoted by ω1 through ω5, in order of their processing. First,

the Unite operator propagates the incoming update into a one-element se-

quence ∂ω1 of updates which is then used as input to the Fold-operator.

The Fold-operator propagates its input into a two-element sequence ∂ω2,

sent to the StandardSQL-operator. This operator then propagates each of

the two updates separately, creating two sequences ∂ω31 and ∂ω32 , with 1

and 0 elements, respectively. Recall from Section 10.1.3 that in the case

of more than one update sequence being created by an operator, those se-

quences can simply be concatenated before the next operator’s propagation

is executed, yielding ∂ω3. Since one update is not propagated due to the

WHERE-condition in the StandardSQL-node, we have ∂ω3 = ∂ω31 . Un-

fold now transforms its incoming one-element update sequence ∂ω3 into

another one-element sequence ∂ω4 which becomes the input for the Split-

operator. This operator finally creates a two-element sequence, consisting of

an add-relation schema change followed by an add-tuple data update. This

sequence is the final update sequence ∂V which is applied to view V , leading

to the new view V ′ equivalent to the view obtained by recomputation.

10.1.6 Grouping Similar SchemaSQL Updates in Batches

Certain updates in our strategy are transformed by some operators into

update sequences ∂ in which all the updates are similar. This gives an

opportunity for optimization on our update propagation strategy.

For example, a Fold-node can transform a single schema change (such

10.1. THE SCHEMASQL UPDATE PROPAGATION STRATEGY 212

as a attribute-delete) into a sequence of data updates (such as a sequence of

tuple-deletes). An inspection of the update propagation tables in this section

shows that, typically, such a sequence consists of similar updates. Consider

the example in Fig. 10.7, where a deletion of attribute Business in relation

TMP REL 0001 would lead to a sequence of delete-tuple updates of all tuples

in TMP REL 0002 that have the value Business in the attribute Type. A sim-

ple way of executing all those updates efficiently using SQL would be to is-

sue a query such as delete from TMP REL 0002 where type=’Business’.

Thus, instead of propagating all individual tuple updates using some delta

relation, as done in traditional view maintenance, we instead propose to

abstract this sequence of updates into an SQL update statement and push

the complete statement through the algebra tree.

We have identified two classes of such batched updates that occur fre-

quently as outputs of our propagation strategy, as described below.

Definition 10.3 (Batched Update) A batched update is a sequence of

SchemaSQL updates, denoted by ∂, which adheres to one of the following

structures:

• ∂ consists entirely of delete-tuple-updates to the same relation R, with

equal schema and a set of attributes a1 . . . ak whose values are a unique

identifier for each tuple in ∂ (i.e., form a key). We denote such a

sequence by

delete-tuple-batch(r, cond(a1, c1), . . . , cond(ak, ck))

with cond(ai, ci) a condition selecting tuples t ∈ R that have value ci in

10.1. THE SCHEMASQL UPDATE PROPAGATION STRATEGY 213

attribute ai (t[ai] = ci). This represents a set of delete-tuple statements

on the output relation R that could be generated by an SQL-delete

statement with the WHERE-conditions a1 = c1, . . . , ak = ck.

• ∂ consists entirely of update-tuple-updates to relation R. All update-

tuples have equal schema. Parameters are a single attribute b with

(unique or duplicate) values, and a function f between the old and

new values of another attribute a in each tuple. We denote such a

sequence by

update-tuple-batch(r, a, f, b, c)

with a, b denoting attribute names, f denoting a function over the do-

main of the attribute with name a (that is, f : Da → Da), and c

denoting a constant. This represents a set of update-tuple updates af-

fecting every tuple t for which the value of attribute b is c, by changing

the value t[a] to f(t[a]), i.e., ∀t ∈ R s.t. t[b] = c : t[a] ← f(t[a]). In

words, the update update-tuple-batch(r, a, f, b, c) means “in relation r,

set a = f(a) where b = c”. Note that for simplicity, we are restricting

batched updates to a single WHERE-condition.

With this definition of batched update, the above example can now be

represented as delete-tuple-batch (TMP REL 0002, cond(type, ’Business’)).

We do not define insert-tuple batches since we consider only single data

updates or schema changes entering our algebra tree, and such updates

will never be transformed into larger “batches”. In particular, adding an

10.1. THE SCHEMASQL UPDATE PROPAGATION STRATEGY 214

attribute or a relation in a base table means adding an empty structure con-

taining no data. As only structures with matching schemas (i.e., attribute

of a matching data type or relations with a matching set of attributes) can

be added to the information space, the only new information to the system

is the name of the new attribute or relation, respectively. Thus, such up-

dates do not lead to batches of updates, and in fact often do not lead to any

updates on the view extent at all.

Batches of schema-changes are also not useful because meaningful

schema-change batches do not occur in our context. Inspection of the up-

date tables in this section shows that, with the exception of the Split node,

propagation of schema changes always leads to a single schema change, not

sequences of related changes. In the case of the Split-node, any resulting

“batch” of schema changes will lead to changes across several relations, an

operation that cannot be optimized using our batched-approach and SQL-

statements.

As mentioned above, the main benefit of batched updates lies in a pos-

sible optimization of the implementation of our update propagation strat-

egy. Since some operators generate batches of related updates, consider-

ing batches as types of updates and propagating those through the algebra

tree just like single updates could lead to performance improvements of the

system. For an example, consider again Fig. 10.7 and an update delete-

attribute(TMP REL 0001,Business) as input to the Fold-operator. Setting

n = |TMP REL 0001|, this update in the current strategy would lead to

a propagation of n single delete-tuple updates, whereas a treatment of all

those updates as a batch would require the propagation of only one up-

10.2. CORRECTNESS 215

date, namely delete-tuple-batch(TMP REL 0002,cond(type,’Business’)). Fig-

ures 10.8–10.11 show the propagation tables. As before, the input table is

denoted by R (with name r) and the output table by Q (with name q). The

remaining syntax follows Def. 10.3.

Input
Change

Parameters Conditions Propagation

delete-
tuple-batch

(r, cond(a, c)) a = ap delete-attribute(q,c)

a = ad,
A∗ unchanged

foreach a ∈ A∗

update Q

set a = NULL

where a = c
other delete-tuple-batch

(q, cond(a, c))
(r, cond(a1, c1), . . . ,
cond(an, cn))

delete-tuple-batch
(q, cond(a1, c1), . . . , cond(an, cn))

update-
tuple-batch

(r, a, f, b, c) f(v) = cnew

(a constant
function),
a = b = ap

rename-attribute(q,c,cnew)

a = ad, b = ap update Q set [c] = f([c])
or
update-tuple-batch
(q, c, f, null, null)

a = ad, b �= ap
foreach ν ∈ A∗

update-tuple-batch(q, ν, f, b, c)

Figure 10.8: Batched Update Propagation Rules for Q=Unfold ap,ad
(R)

10.2 Correctness

Our update propagation strategy is equivalent to a stepwise evaluation of

the algebraic expression constructed for a query. Each operator transforms

its input changes into a set of semantically equivalent output changes, even-

tually leading to a set of changes that must be applied to the view to syn-

chronize it with the base relation change. In this section, we will show that

10.2. CORRECTNESS 216

Input
Change

Parameters Conditions Propagation

delete-
tuple-batch

(r, cond(a, c)) a ∈ A∗ delete from Q

where ap = a and ad = c

other delete-tuple-batch
(q, cond(a, c))

(q, cond(a1, c1), . . . ,
cond(an, cn))

delete-tuple-batch
(q, cond(a1, c1), . . . , cond(an, cn))

update-
tuple-batch

(r, a, f, b, c) a ∈ A∗, b ∈ A∗
update Q

set ad = f(ad)
where ap = a and b = c

other update-tuple-batch(q, a, f, b, c)

Figure 10.9: Batched Update Propagation Rules for Q=Fold ap,ad,A∗(R)

Input
Change

Parameters Addtl. Condi-
tions

Propagation

delete-
tuple-batch

(r, cond(a, c)) a = ap del-relation(q,c)

a = ad,
A∗ unchanged

foreach q ∈ A∗

update q
set q.ad = NULL
where q.ad = c

other foreach q ∈ A∗

delete-tuple-batch(q, cond(a, c))

(r, cond(a1, c1), . . . ,
cond(an, cn))

foreach q ∈ A∗

delete-tuple-batch
(q, cond(a1, c1), . . . , cond(an, cn))

update-
tuple-batch

(r, ap, f, b, cold) with
f(v) = cnew (a con-
stant function)

b = ap rename-relation(cold,cnew)

b �= ap, a ∈ A∗ foreach q ∈ A∗

update-tuple-batch(q, a, f, b, c)

Figure 10.10: Batched Update Propagation Rules for Q=Split ap(R). Note
that A∗ = {q1, q2, . . . , qk} is the set of output relation names.

10.2. CORRECTNESS 217

Input
Change

Parameters Addtl. Condi-
tions

Propagation

delete-
tuple-batch

(rx, cond(a, c))
delete from Q

where ap = rx and a = c

update-
tuple-batch

(rx, a, f, b, c) a ∈ A∗
update Q

set a = f(a)
where ap = rx and b = c

Figure 10.11: Batched Update Propagation Rules for
Q=Unite ap(R1, R2, . . . , Rn)

this strategy leads to correct update propagation. Recall that we denote an

update sequence applied to relation R by ∂R. We will use the notation R

for the input relation and Q for the output relation throughout this section.

Before we prove the correctness of the algorithm, we state some obser-

vations: The structure of the algebra tree for a view depends only on the

query, not on the base data [LSS99]. The only changes to operators under

base relation updates are possible changes of parameters (schema element

names) inside the operators; an algebra operator can not disappear or ap-

pear as the result of a base update. However, the entire view query may be

rendered invalid, for example under some delete-relation-updates.

Furthermore, an inspection of the update propagation algorithm (see

Fig. 10.1, p. 199) shows that the propagation of any single base relation

update occurs strictly along a path in the algebra tree, strictly from a leaf

to the root. That is, only SchemaSQL algebra operators along the single

path from the updated base relation to the root are affected by an update.

This is in contrast to SQL view maintenance, where maintenance queries

to related sources are necessary for some operators. The four SchemaSQL

operators do not combine input relations in a way similar to an SQL-join,

10.2. CORRECTNESS 218

Figure 10.12: A SchemaSQL Algebra Tree.

so that maintenance queries to other branches of the algebra tree are not

generated by the SchemaSQL operators. For correctness of standard SQL

maintenance queries (which only occur for some operators such as join), we

rely on well-known related work [GL95, AESY97].

Let us label the output relations of each operator along the path of

update propagation with X1, . . . ,Xn, in ascending order from the opera-

tor closest to the leaf to the operator closest to the root of the algebra

tree. In Fig. 10.12, we have labeled the output relations of each operator

(X1, . . . ,X4), as well as the base relations (R1, R2) and the view (V).

We first prove correctness of operators and then show the overall prop-

agation scheme to be correct.

Theorem 10.1 (Correctness for Single Operators)

Let ω ∈ {Unite,Split,Unfold,Fold, π, σ,×} be a node in a SchemaSQL

algebra tree. Let R be the input relation(s) for ω and Q = ω(R) be its output

relation(s). Furthermore, let ∆R be a data update or schema change to R,

transforming R→ R′ and QREC the output relation of ω after recomputation.

Applying the rules from the update propagation tables Figs. 10.2–10.5 and

Section 10.1.4 for ω and ∆R will generate a sequence of updates defined on

the node’s output relation (denoted by ∂Q, see Def. 10.1) that transforms

Q→ QINC, with QINC = QREC.

Proof: The proof is given by inspecting the update propagation tables,

10.2. CORRECTNESS 219

Figs. 10.2–10.5, and comparing their output with the expected output after

recomputation for each case. We will only give two examples for such com-

parisons as a proof idea. Consider the propagation of a delete-tuple data

update in the Fold-operator (Fig. 10.3). Let a relation R be folded by

Q = Foldap,ad,A∗(R). Now consider the relation R′ = R\{t}, with tuple t

deleted. Note that t has up to |A∗| non-null values in its data attributes (i.e.,

in attributes whose names are in A∗). For each of those non-null values, the

pre-update output relation Q contained a separate tuple which now has to

be deleted. Therefore, after recomputation, the Fold-operator produces an

output relation Q′ that differs from Q in that it has up to |A∗| tuples less.
All those missing tuples have as a common feature that they agree in the

values of their attributes a1, . . . , an (i.e., all attributes except the ones in A∗)

with the deleted tuple. This is precisely what the update propagation rule

(line 2 of Fig. 10.3) accomplishes by deleting all tuples with that condition.

As another example, let us also consider the propagation of the schema

change delete-attribute(r, a) in Fold (line 5 of Fig. 10.3). Recomputation

of the operator yields a Q′ that differs from Q in one of two ways: if a

data attribute A (a ∈ A∗) in R is deleted, all tuples whose values in Ap

correspond to the name of A are missing from Q′. If a non-data attribute is

deleted from R, the attribute in Q′ that has the same name as the deleted

attribute in R is deleted. In both cases, the update propagation rules change

Q in exactly that way.

The remaining operators and cases can be verified in a similar fashion.

�

10.2. CORRECTNESS 220

The following corollary is immediate since if an update sequence correctly

transforms a relation, it must also be valid (Def. 10.2) on that relation.

Corollary 10.1 The propagation of any update defined on input relation

R through an operator ω will produce a valid update sequence for output

relation Q.

Theorem 10.2 (Correctness of SchemaSQL View Maintenance) Let

V be a

view defined over the set of base relations R1, . . . , Rp, and ∆Ru ∈ {DU,SC}
an update applied to one relation Ru (1 ≤ u ≤ p). Let R′

u be the relation

Ru after the application of ∆Ru and V ′
REC be the view after recomputation.

Furthermore, let the SchemaSQL View Maintenance Algorithm as defined

in Section 10.1.3 produce a change sequence ∂V that transforms view V into

view V ′
INC. Then, V

′
REC = V ′

INC.

Proof: Let n be the number of intermediate relations Xi affected by an

update (along the path from Ru to V). We want to prove that recomputa-

tion generates the same intermediate relations (and therefore the same view

relation) as incremental updating, i.e, ∀i (1 ≤ i ≤ n) : (X ′
i)REC = (X ′

i)INC

and thus V ′
REC = V ′

INC. The proof is by induction over Xi for i = 0 . . . n+1.

Set X0 = Ru, (X ′
n+1)REC = V ′

REC, (X
′
n+1)INC = V ′

INC.

Base Case: The base case for i = 0 is trivial. R′
u is the same rela-

tion, whether the algebra tree is recomputed or incrementally updated, i.e.,

(X ′
0)REC = (X ′

0)INC = R′
u.

Induction Hypothesis: (X ′
k)REC = (X ′

k)INC (k ≥ 0).

10.2. CORRECTNESS 221

Induction Step: It is to show that (X ′
k+1)REC = (X ′

k+1)INC.

Since by hypothesis, (X ′
k)REC = (X ′

k)INC, there must exist an update

sequence ∂Xk that correctly transforms Xk to X ′
k (and must therefore be

valid on Xk). Let us denote the operator whose input table is Xk by ωk and

let m = |∂Xk|. By Thm. 10.1, any single valid update to any relation is

correctly propagated through any one operator, in the sense that recompu-

tation of the operator will yield the same result as incremental propagation.

If m = 1, the induction step is thus proven. For m > 1, a valid sequence of

m updates on Xk will trigger a sequence of incremental propagation steps in

ωk. This will cause ωk to transform Xk+1 into a sequence of m intermediate

(temporary) relations (X(1)
k+1)INC, . . . , (X

(m)
k+1)INC, each of which is equivalent

to the corresponding state (X(1)
k+1)REC, . . . , (X

(m)
k+1)REC that could be reached

by recomputing ωk after each update. Note that X(m)
k+1 ≡ X ′

k+1. After appli-

cation of all m updates to Xk+1 we have X ′
k+1 = (X(m)

k+1)INC = (X(m)
k+1)REC,

or (X ′
k+1)INC = (X ′

k+1)REC. If any valid sequence of updates gets propa-

gated correctly, the sequence ∂Xk (valid by Corollary 10.1) in particular

must also be correctly propagated, i.e, produce a relation (X ′
k+1)INC with

(X ′
k+1)INC = (X ′

k+1)REC. q.e.d. �

222

Chapter 11

Implementation and

Evaluation

11.1 Implementation

11.1.1 SchemaSQL Query Engine

The update propagation strategy described in this dissertation has been

implemented in Java on top of a SchemaSQL query evaluation module also

written by the author. This query engine was built based on the description

in [LSS99]. Our code first parses SchemaSQL queries (using JavaCC), then

builds an algebra tree out of the parsed query, and finally evaluates the query

result through a postorder traversal of that tree, computing the output of

each algebra node as it is visited (see Fig. 11.1). The next node then reads

its child node’s temporary relation to compute its output. For this prototype

implementation, each node temporarily stores its output through JDBC in

11.1. IMPLEMENTATION 223

the query engine’s “local” relational database (Oracle 8) as keeping relations

in memory only incurs limitations on the size of input relations and also

would have required us to reimplement significant parts of relational query

technology. For performance reasons, all intermediate nodes in the algebra

tree share one JDBC-connection to the local database.

The implementation of the query engine uses pure Java and JDBC-con-

nections to several instances of Oracle 8. We use standard SQL DDL and

DML statements (sequences of select, insert, delete, update and state-

ments for schema change operations like alter table) for all queries—thus

making full use of the source database’s SQL query evaluation capabili-

ties. We do not use any system specific functions other than simple schema

changes. A wrapper class (which we have also successfully implemented for

Microsoft’s Access) makes differences in the syntax of schema change op-

erations transparent. Therefore, the implementation is independent of the

database used.

To improve performance and simplify our code, our implementation at-

tempts to use as much of the SQL query capability as possible, in particular

by extracting standard SQL out of the SchemaSQL query and evaluating

it in a single StandardSQL-node, which simply executes its stored SQL-

statement against the local SQL-database. The SchemaSQL query engine

currently does not perform or utilize any query optimization strategies other

than those provided by the underlying SQL query engine when executing

queries against the local database.

11.1. IMPLEMENTATION 224

11.1.2 Incremental Update Propagation

To perform update propagation in the manner described in this disserta-

tion, we added update propagation capabilities to each algebra operator

class (that is, Unite, Fold, Unfold, Split, StandardSQL). A method in

each node (named propagateUpdate()) accepts one update and returns a

list of (data and/or schema) updates which represent the result of the up-

date propagation. Then, we added code for the propagation of the output

updates of each operator to its parent. Thus, the same code that performs

the postorder traversal of the operator tree for the initial materialization

of the view can now also perform the incremental update propagation, by

simply calling the update propagation method instead of the materialization

method on each node and recursively using each operator’s output as the

input for the parent operator.

Updates were modeled into a small class hierarchy consisting mainly of

the classes SchemaUpdate and DataUpdate. Each node in the algebra tree

is now extended by the ability to propagate all such updates. The current

code does not support batched updates.

Fig. 11.1 shows the architecture of our system. The main difference to a

traditional query engine implementation is the fact that, instead of being a

module separate from the query evaluation engine, the update propagation

module is part of the engine and an instance of this module is active in

every algebra tree operator. This enables the system to propagate updates

incrementally through the algebra tree.

11.2. PERFORMANCE EVALUATION 225

create view AIRLINE(DEST, X)

as select (DEST, Y.PRICETYPE)

from AIRLINES Y

........

RDBMSRDBMSRDBMS

SchemaSQL-
Query Processor

Algebra-Tree

Builder

SchemaSQL-

Parser

SchemaSQL View Definition

View Extent

Local

RDBMS

Incremental Update

Propagation*

User Application

Middleware

Extent Computation*

QueriesQuery Results

Updates

* One instance of this module for each node in algebra tree

Figure 11.1: The architecture of the SchemaSQL View Maintenance System

11.2 Performance Evaluation

11.2.1 Experimental Setup

Factors Relevant to Performance

As already explained, SchemaSQL update propagation is significantly dif-

ferent from traditional incremental view maintenance. Major differences are

the transformation of data updates into schema changes and vice-versa, the

need for the propagation of base schema changes, and the propagation strat-

egy based on propagating an update through an algebra tree rather than

computing delta-queries against the base relations.

To assess the influence of those issues on performance, we executed a

11.2. PERFORMANCE EVALUATION 226

number of experiments using our prototype. We are reporting some of the

results in this section. For the experiments described here, we focused on

the following factors contributing to SchemaSQL update propagation per-

formance:

• the type of update (data update or schema change) at the base rela-

tions;

• the transformation type of the update (i.e., the type, data update or

schema change, into which a base update is propagated);

• the selectivity of conditions in the view query that determines the size

of the view relative to the sizes of the base relations;

• the size of base relations.

Schema and View Queries

If not stated otherwise, all our experiments use the following view query,

over the same base schema as in our running example (Fig. 9.1):

create view CITY(Type, AIRLINE) AS
select PRICETYPE, FLIGHT.PRICETYPE
from -> AIRLINE,

AIRLINE FLIGHT,
AIRLINE-> PRICETYPE,
FLIGHT.Destination CITY

where PRICETYPE <> ’Destination’
and AIRLINE like ’AIRLINE%’
and FLIGHT.PRICETYPE <= ’1101’;

The output schema of this query, considering the input schemas from

Fig. 9.1, consists of two relations Business and Economy which both have the

11.2. PERFORMANCE EVALUATION 227

schema (Destination,AIRLINE 1,...,AIRLINE K), with one attribute named

AIRLINE X for each relation named AIRLINE X in the input schema. The

output schema may change during an experiment.

The base data was generated from a list of strings (representing names of

cities), augmented by random numbers representing “flight prices”. Those

numbers were generated using uniformly distributed random numbers in

a certain range. The base relation sizes and distribution of updates are

described with each experiment.

Since we have multiple output relations, we need to extend the concept

of view size to multiple relations. We thus define the view size to be the

sum of the sizes of all output relations.

Measurements and System Parameters

The test system was a Pentium II/400 running Linux and Blackdown Java

1.2.2. Database connectivity was achieved through JDBC. The databases

used for our tests (local database and information source) were two instal-

lations of Oracle 8i, running on a Pentium 233 under Windows NT and a

4-processor 300MHz DEC Alpha under DEC OSF1, respectively.

For our experiments, we measured the total execution time of the initial

materialization of the view (for control purposes, not shown in the chart),

then the time for a number of updates, depending on the experiment, and

finally the time for a recomputation of the view extent. The times were

measured by comparing the system time before and after executing update

propagation or recomputation, i.e., they include system, user, and I/O time.

11.2. PERFORMANCE EVALUATION 228

11.2.2 Deleting Base Relations of Different Sizes

In our classification of updates (Section 10.1), inserting a table implies in-

serting an empty table. The data would have to be added in subsequent

data updates. Therefore, inserting (and also renaming) schema elements

leads to relatively simple propagation results, as the information content

of the database does not change much under such updates. Therefore the

experiments reported here concentrate mainly on the deletion of schema el-

ements (attributes, relations), as well as on the insertion and deletion of

data.

We ran the above query over a schema containing four base relations

(representing four different airlines) with approximately 100, 200, 300, and

400 tuples, respectively. We then deleted each of those base relations and

compared the time for incremental update propagation with the time for

recomputation after a base relation was deleted. After each deletion and

measurement, the original information space was restored. With the above

query, the original view extent had two relations Business and Economy with

378 and 444 tuples, respectively and decreased roughly proportionally after

deletions of base relations. Fig. 11.2 shows the times measured.

In our current implementation, deleting a base relation R in a query such

as the one above will result in the creation of approximately |R| updates
inside the operator tree. Therefore, deleting larger relations takes longer

than deleting smaller relations. On the other hand, recomputation time

will decrease with larger sizes of the deleted relation, as the resulting view

extent has less tuples. The crossover point between view maintenance and

11.2. PERFORMANCE EVALUATION 229

recomputation is at about a base size of 225, i.e., deleting a relation of

more than 225 tuples (about 25% of the view size) will take longer than

recomputing the view. This means that our update propagation strategy

will perform better than recomputation for tuple-wise deletions of up to

25% of the entire information space. Propagating 225 delete-tuple updates

will have a smaller total execution time than a single recomputation of the

view. On the other hand, this experiment shows that a single input update

(in this case a delete-relation update) can be very expensive as it may lead

to many updates in the view extent.

0

20

40

60

80

100

120

140

0 50 100 150 200 250 300 350 400 450

T
im

e
(s

)

Size of Deleted Base Relation

Incremental View Maintenance
Recomputation

Figure 11.2: View Maintenance and Recomputation Times vs. Size of
Deleted Base Relations

We also ran the same set of updates under the view query from our

running example (Fig. 9.1), which creates one output relation for each unique

destination in any of the input relations. A first experiment showed that,

11.2. PERFORMANCE EVALUATION 230

during the materialization of the view from large base relations, the Oracle

database we were using rejected the creation of new tables after about 620

create table-statements. So we repeated the experiment with the above

schema having 100,200,300, and 400 tuples and deleted each relation. This

time, the query computed properly. Some of the running times in seconds

are given in Table 11.1.

Base Table Deleted Relation Size Incremental VM Recomputation
AIRLINE LH 333 395s 125s
AIRLINE KL 111 318s 145s

Table 11.1: Propagation and Recomputation in the Query from Fig. 9.1

Note that in this case, the deletion of a base relation eventually leads to

one delete-attribute schema change per output relation, so deleting a base

relation with 222 tuples will first lead to the propagation of 222 delete-tuple

updates, propagated to one output relation each, and then to up to 444

delete-attribute schema changes—exactly one for each output relation. The

experiment shows that in this case, which incurs many schema changes in

the output relations, a recomputation has a performance advantage over the

unoptimized incremental update propagation. An obvious optimization for

the processing of this particular query would be to ignore the delete-tuple-

updates and apply only the delete-attribute changes.

11.2.3 Deleting Tuples from Base Relations

In this experiment (Fig. 11.3), we delete a sequence of random tuples from

the base schema and measured the cumulative propagation time. For our

11.2. PERFORMANCE EVALUATION 231

chart, we numbered the updates by consecutive numbers i. The cumula-

tive propagation time for update i is the sum of the propagation times for

all updates numbered 0 . . . i. We also measured the time to recompute the

view after the entire update sequence was executed. This experiment shows

again that in our schema, the crossover point between incremental mainte-

nance and recomputation is at roughly 200 tuples, i.e., after 200 updates,

recomputation of our view (with view size 888) would become more efficient.

The view size is the major factor determining the recomputation time for a

view, whereas the time for incremental propagation of a single data-update

mainly depends on the system implementation, i.e., is roughly constant for

our implementation and test environment. The average time to propagate

a single update can be estimated from the slope of the curve in Fig. 11.3 to

be about 285ms, which is a value depending mainly on the size of the tuples

propagated.

From those facts, it can be concluded that the ratio between the number

of propagated updates at the crossover point and the view size is a sys-

tem constant depending only on the implementation, i.e., we expect that

recomputation of a view will take roughly the same time as the incremental

propagation of the deletion of a certain percentage of the view’s tuples. In

our experiment, this ratio was about 1/4 (a crossover point of 200 for a view

with roughly 800 tuples).

Note the jump in the incremental maintenance time at the end of the

curve. This time represents a data update that led to a schema change in

the output relation. The reason is that the last tuple from a base relation

was deleted which led to a delete-attribute change in an output relation.

11.2. PERFORMANCE EVALUATION 232

0

10

20

30

40

50

60

70

0 50 100 150 200 250

C
um

ul
at

iv
e

T
im

e
(s

)

Update Sequence Number

Incremental VM
Recomputation

Figure 11.3: Deleting Tuples from the Input Schema

11.2.4 Deleting Tuples Leading to Schema Changes

In this experiment, we wanted to assess the difference in propagation time of

the same updates, depending on whether these updates lead to data updates

or schema changes in the view. Schema changes actually executed on a

relation database are slow operations. Therefore, the expectation is that

an update propagation (including the application of those updates against

a database) that leads to a schema change will be slower than an update

propagation leading to only a data update in the view.

Thus, in this experiment we are deleting tuples from the base schema.

This time we have four base relations R1, R2, R3, R4 of sizes 1, 10, 100, and

1000, respectively, but make sure that some of the updates incur schema

changes in the output schema. First, we inserted 10 tuples into relation

11.2. PERFORMANCE EVALUATION 233

R1, then removed tuples from relation R2 one-by-one, until R2 was empty.

This leads to a schema change in the output schema since the corresponding

attribute is removed from each output relation. Then, we removed all 11

tuples from relation R1 (incurring another schema change), followed by a

removal of 10 random tuples from relation R3. Note that in this sequence,

updates #19 and #30 lead to schema changes in the output.

We then plotted the time each update took to propagate. Note the

relatively even distribution of update propagation times around 250 ms in

Fig. 11.4, except for two updates, which take over 2 seconds to propagate.

Those are clearly those updates that led to schema changes in the output

relations. The measured update time (if no schema change is incurred) is

similar to the average time measured in Fig. 11.3. Again, the propagation

time for the data updates depends mainly on the tuple size, and the un-

derlying database, whereas the time for schema changes depends on the

underlying database only (as practically no data has to be transported).

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35 40

Ti
m

e
(m

s)

Update Sequence Number

Figure 11.4: Base Updates lead to Data Updates or Schema Changes

11.2. PERFORMANCE EVALUATION 234

11.2.5 View Selectivity

In this experiment, we measure how the performance advantage of incremen-

tal view maintenance over recomputation is affected by the view selectivity,

i.e., by the probability that a base tuple’s data will actually be reflected in

a view.

To assess the effect of different view selectivities on view maintenance

times, we ran an experiment over different selectivities in the view query.

We adjusted selectivity in the range [0.02 . . . 1] by using different constant

values for local conditions in the WHERE-clause of our query (i.e., con-

ditions of the type FLIGHT.PRICETYPE<=1100). We define view selectivity

over our multiple-relation output schema in analogy to view size as the ratio

of the view size of the current query and the view size of a query without

WHERE-clause. For each selectivity setting, we deleted a relation with 100

tuples (10% of the input tuples) from the base schema and measured in-

cremental view maintenance time and view recomputation time. Fig. 11.5

shows the result of the experiment. The graph shows that both incremen-

tal view maintenance time and recomputation time increase with the view

selectivity, which is not surprising, since in both cases more tuples have to

be processed when the view selectivity (and thus the view) becomes larger.

However, the relative increase in the incremental update propagation time

is similar to the relative increase in recomputation time, meaning that our

propagation strategy will keep its performance benefits under changes of the

view’s selectivity.

11.2. PERFORMANCE EVALUATION 235

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
(s

)

View Selectivity

Recomputation
VM after del-relation

Figure 11.5: Update Propagation under Views of Different Selectivities

236

Chapter 12

Related Work

The integration of data stored in heterogeneous schemas has long been an

object of intensive studies. The problem of schematic heterogeneity or dif-

ferent source capabilities is repeatedly encountered when attempting to in-

tegrate data. Some examples are Garlic [TAH+96], TSIMMIS [HGMN+97],

DISCO [TRV96], and GenCompact [GMLY99].

A number of logic-based languages have been developed to integrate

heterogeneous data sources,e.g., HiLog [CKW89] or SchemaLog [GLS+97].

Some SQL-extensions have also been proposed, such as MSQL [LAZ+89]

which has capabilities for basic querying of schema elements, XSQL [KKS92]

which allows schema-querying in object-oriented databases, and, in partic-

ular, SchemaSQL [LSS96] (see below).

Those approaches overcome different classes of heterogeneities in rela-

tional schemas. However, the important class of schematic heterogeneities

in semantically equivalent relational databases is often excluded from in-

tegration language proposals. Krishnamurthy et al. [KLK91] were the

CHAPTER 12. RELATED WORK 237

first to recognize the importance of schematic discrepancies and developed a

logic-based language called IDL to deal with such problems. Miller et al.

[MIR93] show that relational databases may contain equivalent information

in different schemas and give a formal model (Schema Intension Graphs) to

study such “semantic equivalence” of heterogeneous schemas.

The predominant approach at integrating such semantically equivalent

schemas has been done by Gyssens et al. [GLS96] and later by Laksh-

manan, Sadri, and Subramanian [LSS96, LSS99]. In [LSS96], the authors

present SchemaSQL, which is used as the basis for our work. SchemaSQL

builds upon earlier work in SchemaLog [GLS+97]. It is a direct extension

of SQL, with the added capability of querying and restructuring not only

data, but also schema in relational databases, and transforming data into

schema and vice-versa. Thus, using SchemaSQL as a query language makes

it possible to overcome schematic heterogeneities between relational data

sources.

A second foundation of our work is the large body of work on incremental

view maintenance. Many algorithms for efficient and correct view mainte-

nance for SQL-type queries have been proposed. Prominent results, often

taking concurrency into account, include ECA [ZGMHW95], SWEEP [AESY97],

Mohania et al. [MKK97], and parallel view maintenance [ZRD01]. Those

approaches follow an algorithmic approach in that they propose algorithms

to compute changes to a view.

Griffin and Libkin [GL95] consider views with duplicates, and, more

importantly, follow an algebraic approach which defines a complete and min-

imal set of relational algebra operators. They achieve a rigorous proof of the

CHAPTER 12. RELATED WORK 238

correctness of view maintenance by proving the correctness of those opera-

tors and their nesting. Their proof mechanism is similar to ours. Griffin

and Libkin’s work is partly based on the algebraic approach by Qian and

Wiederhold [QW91].

Related to our work are also performance studies on incremental view

maintenance algorithms. An early paper on measuring the performance of

incremental view maintenance strategies is Hanson [Han87]. The ECA

paper [ZGMHW95] contains a study on the performance of its algorithm,

but only in an analytical manner rather than actual performance studies.

More recently, there are studies on some view maintenance algorithms for

example by Kuno et al. [KR98] and O’Gorman et al. [OAE00]. Griffin

and Libkin [GL95] give an analytical complexity study of their algorithm

but do not evaluate system performance.

239

Chapter 13

Conclusions

In this work, we have proposed the first incremental view maintenance al-

gorithm for schema-restructuring views. We have expanded upon the work

by Lakshmanan et al. [LSS96], which allowed queries to be defined over

schematically heterogeneous sources, by introducing an algorithm to incre-

mentally maintain view extents and schemas. We have shown that the tra-

ditional approach to incremental view maintenance—rewriting view queries

and executing them against the source data—is not easy to adapt for such

views, and that it is also necessary to include schema changes. We have

solved this problem by defining an algebra-based update propagation scheme

in which updates are propagated from the leaves to the root of the alge-

bra tree corresponding to the query. As some updates (especially schema

changes) are translated into long sequences of similar updates, we have also

investigated the possibility of optimizations introducing batches of updates.

Furthermore, we have formally proved the correctness of the algorithm. Per-

formance experiments on a prototype of a view-maintenance-capable query

CHAPTER 13. CONCLUSIONS 240

engine have shown that update propagation has the expected large benefits

over recomputation of views.

In summary, we believe our work is a significant step towards supporting

the integration of large yet schematically heterogeneous data sources into

integrated environments such as data warehouses or information gathering

applications, while allowing for incremental propagation of updates. One

application of this work is in a larger data integration environment such as

EVE [NLR98] (Chapter 2), in which the SchemaSQL wrapper would help

to integrate a new class of information sources into a view.

241

Part IV

Conclusions and Future

Work

242

Chapter 14

Conclusions and Future

Work

Information integration has been an important and lively topic of research

for two decades. Despite all the efforts, a truly comprehensive solution for

the information integration problem is not in sight. Several proposals have

been made that approach the problem of integration under the assumption

that information sources are well known and understood, and have equal

data models and similar schemas. There has also been substantial work on

semi-automatic methods to identify database contents, structures, relation-

ships, and capabilities. However, there has been much less work in the area

of a fully automatic discovery of database properties.

The goal of this dissertation is to provide solutions in information inte-

gration. We have concentrated on two key issues that have gained impor-

tance through newer developments in database technology: the discovery of

14.1. RESULTS AND CONTRIBUTIONS OF THIS DISSERTATION243

relationships, and the integration of schematically heterogeneous sources.

14.1 Results and Contributions of this Disserta-

tion

Discovery of Inclusion Dependencies in Databases

Inclusion dependencies express redundancies between databases. Such re-

dundancies are more and more common as more data is being collected

by independent information providers and stored separately. Any effort to

combine such data must rely on knowledge about inclusion relationships

between databases. The inclusion dependency discovery problem has been

proven NP-complete [KMRS92], and the näıve algorithm has a prohibitively

high runtime even for very small problems (relations with as few as 10 at-

tributes).

In Part II of this dissertation, we have shown a comprehensive, fully

automated solution of this problem. The key to the solution is the reduc-

tion of the exponential-complexity problem (whose näıve solution consists

in enumerating all possible inclusion dependencies and testing them) to a

graph-problem, namely the maximal-clique problem. Even though the gen-

eral clique problem in itself is also NP-complete, we used an algorithm that

finds cliques in a time polynomial in the number of cliques in a graph. That

enabled us to dramatically reduce the algorithm’s complexity in the average

case. We defined algorithm FIND2 which uses a clique-finding algorithm to

discover inclusion dependencies. Algorithm FIND2 also incorporates a new

14.1. RESULTS AND CONTRIBUTIONS OF THIS DISSERTATION244

algorithm HYPERCLIQUE defined by us that finds cliques in k-uniform hy-

pergraphs, which is a necessary step in the discovery algorithm. The main

advantage of the FIND2 algorithm is its ability to reduce the number of

inclusion dependency candidates tested against a database by many orders

of magnitude, while still finding the complete and correct solution to the

problem.

With algorithm FIND2, we are able to solve the inclusion dependency

discovery problem for relations of about 40 attributes. In order to extend

the applicability of the algorithm, we defined heuristics that help to reduce

the search space further. The heuristics are powerful enough to increase

the feasible problem size for this exponential problem to relations with at

least 100 attributes (up to 200 attributes, depending on the source data).

By using heuristics, we sacrifice some of the completeness of the solutions,

but will in most cases still discover the largest existing inclusion dependency

between two relations (which is the most interesting result among all possible

dependencies), or at least a large fragment of the largest dependency.

Extensive experiments on a prototype implementation show that the so-

lution is feasible and works well on real-world data. We found that (1)

the runtimes of both a näıve algorithm and a strategy along the lines of the

Apriori-Algorithm for association rules [AS94] are prohibitively high for rela-

tions with as few as ten attributes, (2) our algorithm without heuristics finds

the complete set of inclusion dependencies for relations with typically 50 at-

tributes and 10,000 tuples in around one hour on a typical PC, and (3) using

heuristics, the feasible problem size of this exponential-complexity problem

can be extended to 100 attributes in difficult cases and 200 attributes in

14.1. RESULTS AND CONTRIBUTIONS OF THIS DISSERTATION245

well-behaved cases. The number of tuples of the relations involved is only

a linear factor for the runtime. The algorithm needs no manual input and

can adapt to the nature of the problem, reporting less complete results for

more difficult problems.

Incremental Maintenance of Schema-Restructuring Views

Schema-restructuring views (for example defined in SchemaSQL [LSS96])

are an extension of traditional SQL-style views in that the rigorous dis-

tinction between schema (attribute names, relation names, domains) and

data (values) in a relational database is softened. Schema-restructuring

query languages can query across a list of related attributes, even using the

attribute names themselves as data, such that predicates formulated over

attribute names become possible. Conversely, values in the input relation

can be transformed into attribute names in the view. A major advantage of

such query languages is the ability to restructure a set of schematically het-

erogeneous but related databases into a common relational view. Schematic

heterogeneity [MIR94] is a condition in which two databases are able to as-

sume isomorphic sets of states (i.e., are able to hold the same data) but do

so in schemas that can not be queried by a common SQL query.

Schema-restructuring query languages have been defined in the litera-

ture, but no view maintenance algorithm had been found so far. In Part III

of this dissertation, we have provided the first such algorithm. View mainte-

nance in schema-restructuring views is a challenging task. The transforma-

tion between schema and data which schema-restructuring languages achieve

leads to the transformation of data updates into schema changes and vice

14.2. IDEAS FOR FUTURE WORK 246

versa as well. This, and the fact that due to the restructuring of schemas a

data update cannot be assumed to have a predictable schema, means that

the traditional view maintenance approach of computing differential queries

and sending them to data sources cannot be used.

We have proposed an algorithm that instead performs maintenance at

each operator in the query evaluation tree. Updates in our scheme occur

in a leaf of that tree and are propagated through a depth-first (postorder)

tree traversal. We have identified update propagation algorithms for each

operator in a schema-restructuring algebra given by Lakshmanan et al.

[LSS99] and defined an overall scheme that provides correct and efficient

view maintenance of schema-restructuring views.

We implemented the solution and ran experiments testing correctness

and performance. The experiments show a significant performance advan-

tage over view recomputation, after both data updates and schema changes

at the sources. We also identified optimizations for our view maintenance

algorithm by combining sequences of similar updates in batches and propa-

gating them as a unit. This update batching can achieve a further significant

improvement in update propagation time. Furthermore, we provided a for-

mal proof of the correctness of the algorithm.

14.2 Ideas for Future Work

14.2.1 Discovery Across Multiple Databases

The solution for inclusion dependency discovery that we provided in this

dissertation is primarily optimized for the case of two relations whose in-

14.2. IDEAS FOR FUTURE WORK 247

terrelationships are to be found. However, the discovery problem can also

be extended towards multiple relations. An idea for a solution given in

this work is to simply find redundancies between any pair of relations and

compute the union of the results. However, it seems likely that significant

improvements can be made to this strategy. One approach would be to make

use of the transitivity of inclusion dependencies. Computing the transitive

closure of a subset of inclusion dependencies identified among a set of re-

lations could lead to new inclusion dependencies whose existence does not

have to be discovered by the FIND2 algorithm.

Global optimization for discovery across multiple relations seem possible.

One idea would be to replace the current two-relation storage structure for

inclusion dependencies in the FIND2 algorithm with a structure that can

hold dependencies and their attributes among multiple relations. That may

make it possible to find a new algorithm that uses global knowledge about

sets of single attribute pairs, rather than complete inclusion dependencies.

Exploiting knowledge about single attribute pairs across multiple relations

may lead to a significant reduction of the search space for each pair of

relations considered, especially in combination with the transitivity property

of inclusion dependencies.

14.2.2 Interactivity in the Discovery Process

Our current algorithm runs as a stand-alone solution and works without

human input or intervention. While that behavior seems appropriate for

an “agent-like” use of our technology, it is desirable for the algorithm to be

able to use any existing human input about the problem it is to solve. For

14.2. IDEAS FOR FUTURE WORK 248

example, a human expert could provide knowledge about known relation-

ships between certain attributes, which would restrict the remaining search

space. Another possibility that would be feasible to incorporate in algorithm

FIND2 is a prioritization of attributes. Currently, all attributes in a given

relation are considered equally important for the solution of the problem.

However, if for large problem sizes a complete solution cannot be found, it

would be possible for our algorithm to explore more closely a given subset

of attributes and spend more time discovering relationships between such

interesting attributes. Such use of human input could eventually lead to an

interactive form of discovery, in which the algorithm presents intermediate

results to a human user and incorporates user feedback to direct its further

attention to certain subsets of the search space. An interactive solution

along those lines could be integrated with the EVE-System (Chapter 2) for

a more comprehensive view synchronization solution.

Naturally, a simple form of incorporating expert domain knowledge would

be to simply exclude any IND known to be valid or invalid from testing by

the algorithm. A list of known INDs could be kept and used similar to the

Domain heuristic in avoiding some database queries.

14.2.3 Adaptive Discovery

A further direction of future work is the level of automation that the algo-

rithm can achieve. Currently, the FIND2 algorithm works independent from

user input, but may fail to find a complete result, or in same cases even any

result, for large problem sizes. However, it is possible to improve on this be-

havior by (1) finding more heuristics that reduce the problem space further

14.2. IDEAS FOR FUTURE WORK 249

or achieve a higher-quality distinction between information and noise and

(2) define a more comprehensive algorithmic flow, by incorporating “fall-

back” mechanism that allow the algorithm to pursue alternative strategies

when a particular step in the discovery process fails or times out. Currently,

no such time-out is in place, the algorithm rather relies on empirical data

that determine which strategy (heuristic or non-heuristic) is to be used.

14.2.4 Schema-restructuring Views

There are many interesting future work directions in the area of schema-

restructuring views as well.

For example, a new class of wrapper generators could help in estab-

lishing such views in the first place. Currently, schema-restructuring query

languages lack the understandability that SQL has. An interactive tool that

helps a user to define schema-restructuring queries simply by pointing out

schema elements to be transformed seems to be feasible and useful. The

utility of such a tool could be greatly enhanced by incorporating some kind

of discovery of relationships between sources with conflicting schemas. Our

work on discovery of database interrelationships, presented in this disser-

tation, could be a step in this direction. Extending our work towards the

discovery of redundancies among truly heterogeneous databases would be a

major step towards an automatic integration of information sources.

14.2. IDEAS FOR FUTURE WORK 250

14.2.5 Query Optimization and Implementation of ViewMain-

tenance

New query optimization strategies for our maintenance algorithm can be

explored as well. Currently, the only query optimization that takes place is

the batching of updates. While that strategy is quite successful, the ques-

tion of a global query optimization for data updates or schema changes has

not been explored. Lakshmanan et al. , who are the original authors of the

important schema-restructuring language SchemaSQL [LSS99], have identi-

fied some simple optimization strategies upon which a more comprehensive

theory could be built.

Finally, a more immediate next step would be a review of the implemen-

tation with the goal of removing some of the performance obstacles. Cur-

rently, all algebra operators require to store some data in a local database.

It would be interesting to investigate whether this is a necessary feature of

schema-restructuring query evaluation or whether it is possible to eliminate

the need for intermediate storage.

14.2.6 Discovery and Maintenance in Non-relational Data

Last but not least, our work on both interrelationship discovery and schema-

restructuring view maintenance could be extended towards other, non-relational,

databases. While the discovery algorithm does not rely on relational data,

it is not suitable for semi-structured databases, in which the concept of

attribute is not as strictly defined as in the relational or object-oriented

case. On the other hand, schema-restructuring views naturally occur in

14.2. IDEAS FOR FUTURE WORK 251

such semi-structured databases, for example in XML files. An interesting

topic of research would be to explore to which extent existing query lan-

guage proposals for such data models (such as XQuery [W3C01]) support

views and to which extent existing update propagation strategies can be

adapted to the semi-structured paradigm. We think that it is likely that the

results obtained in this dissertation are useful in this context, since the idea

of mapping data relationship discovery problems to graph (or hypergraph)

problems has been proven to be feasible in a number of cases.

252

Appendix A

The

Bron/Kerbosch-Algorithm

This algorithm has been published in [BK73] and finds the set of maximum
cliques in a graph. While the general problem is NP-complete, the runtime of
the algorithm is polynomial in the number of cliques, such that the algorithm
finishes quickly for graphs with few cliques. The algorithm is given below

APPENDIX A. THE BRON/KERBOSCH-ALGORITHM 253

in pseudocode (with zero-based arrays).

ALGORITHM BRON-KERBOSCH

INPUT:
A graph G = (V,E)

OUTPUT:
The set of maximal cliques in G

Stack compsub
Set cliques
int nodes [0 . . . |V | − 1]

for i← 0 . . . |V | − 1
nodes [i]← i

extend(nodes , 0, |V |) //overwrites set cliques
return cliques

APPENDIX A. THE BRON/KERBOSCH-ALGORITHM 254

FUNCTION EXTEND

GLOBAL VARIABLES:
Graph G as adjacency matrix connected [0 . . . |V | − 1][0 . . . |V | − 1]
Stack compsub
Set cliques

INPUT:
A set of nodes

function extend(int oldSet [],ne , ce)
int newSet [0 . . . ce− 1]
nodmin ← ce;nod ← 0 //number of disconnections
for i← 0 . . . ce − 1

p← old [i]; count ← 0
for j ← ne . . . ce− 1

if (¬connected [p][old [j]])
count ← count + 1; pos ← j
if (count ≥ nodmin) break

if (count < nodmin)
fixp ← p;nodmin ← count
if (i < ne) s← pos ; nod ← 0
else s← i; nod ← 1

if (nodmin = 0) break
for k ← (nodmin + nod) . . . 1
old [s]↔ old [ne]; sel ← old [ne];nenew ← 0
for i← 0 . . . ne− 1

if (connected [sel][old[i]]) newSets [nenew]← old[i]; nenew ← nenew + 1
cenew ← nenew + 1
for i← ne+ 1 . . . ce− 1

if (connected [sel][old[i]]) newSets [cenew]← old[i]; cenew ← cenew + 1
compsub.push(sel)
if (cenew = 0)
cliques.addElement(compsub) //add stack as new clique

else if (nenew < cenew) extend(newSet , nenew, cenew)
compsub.pop(sel); ne← ne+ 1
if (k > 1)

s← ne
while (connected [fixp][old[s]]) s← s+ 1

//find node disconnected from fixp
return

255

Appendix B

A Brute-Force Algorithm to

Find Hypercliques

Figure B.1 gives the algorithm FIND HYPERCLIQUES BRUTE FORCE in
pseudo code. This exhaustive algorithm simply enumerates possible clique
candidates, starting with the entire k-hypergraph and continuing towards
smaller and smaller cliques, and tests them. As there is generally a large
number of candidates, only promising candidates are generated. Promising
candidates for a clique are sets whose elements (nodes) all have the minimum
degree necessary for a clique (Thm. 4.2). Also, the highest node degree in
the graph determines the largest possible clique size, such that larger clique
candidates do not have to be generated. The algorithm stops when all cliques
have been found (i.e., when the size of clique candidates enumerated reaches
a number lower than the rank k of the input graph).

It is clear that the complexity of this algorithm is very high such that it
is not feasible for larger graphs (more than about 30 nodes), and will even
take excessive time on dense k-hypergraphs with fewer nodes. For example,
for a very dense 3-hypergraph with 30 nodes, the algorithm would have to
check

∑30
i=3

(30
i

) ≈ 1.1 · 109 sets for the clique property, where each check
involves testing up to

(30
3

)
= 4060 edges. The algorithm is feasible on sparse

graphs since low node degrees mean that many larger cliques do not have
to be generated.

APPENDIX B. A BRUTE-FORCE ALGORITHM TO FIND
HYPERCLIQUES 256

ALGORITHM FIND HYPERCLIQUES BRUTE FORCE

INPUT:
k-Uniform Hypergraph Gk = (V,E)

OUTPUT:
a set result , containing cliques in Gk

function findHypercliquesBruteForce(Graph Gk)
result ← ∅
d← maximum node degree in Gk

smax ← largest s for which
(
s−1
k−1

) ≤ d //maximum clique size
do

dmin ←
(smax−1

k−1

)
//min. node degree for clique with smax nodes

if (fewer than smax nodes with degree dmin in G)
smax ← smax − 1

else break
while (smax ≥ k)

for s← smax . . . k //for all clique sizes ≤ max.
dmin ←

(s−1
k−1

)
//min. degree for this clique size

G∗ ← induced subgraph of Gk with all nodes with degree ≥ dmin

forall (s-subsets Gs of G∗)
if (Gs is a clique in G∗)
result ← result ∪Gs

return result

Figure B.1: Brute-Force Algorithm to Find Cliques in a k-Uniform Hyper-
graph

257

Bibliography

[Abi97] S. Abiteboul. Querying semistructured data. In Proceedings
of the International Conference on Database Theory, Delphi,
Greece, January 1997.

[AESY97] D. Agrawal, A. El Abbadi, A. Singh, and T. Yurek. Efficient
View Maintenance at Data Warehouses. In Proceedings of
SIGMOD, pages 417–427, 1997.

[AKS96] Y. Arens, C. A. Knoblock, and W.-M. Shen. Query Refor-
mulation for Dynamic Information Integration. Journal of
Intelligent Information Systems, 6 (2/3):99–130, 1996.

[ALM+92] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy.
Proof Verification and Intractability of Approximation Prob-
lems. In Proc. 33rd IEEE Symp. on Foundations of Computer
Science, 1992.

[AMM97] P. Atzeni, G. Mecca, and P. Merialdo. Semistructured and
Structured Data in the Web: Going Back and Forth. SIG-
MOD Record (ACM Special Interest Group on Management
of Data), 26(4):16 ff., 1997.

[AS94] R. Agrawal and R. Srikant. Fast Algorithms for Mining As-
sociation Rules. In J. B. Bocca, M. Jarke, and C. Zaniolo,
editors, Proc. 20th Int. Conf. Very Large Data Bases, VLDB,
pages 487–499. Morgan Kaufmann, 12–15 September 1994.

[AY98] C. C. Aggarwal and P. S. Yu. Online Generation of Associa-
tion Rules. In Proceedings of IEEE International Conference
on Data Engineering, pages 402–411, 1998.

[BB95a] S. Bell and P. Brockhausen. Discovery of Data Dependencies
in Relational Databases. In Y. Kodratoff, G. Nakhaeizadeh,

BIBLIOGRAPHY 258

and C. Taylor, editors, ML-Net Familiarization Workshop,
1995.

[BB95b] S. Bell and P. Brockhausen. Discovery of Data Dependen-
cies in Relational Databases. Technical report, University of
Dortmund, 1995.

[BBC+00] D. Beneventano, S. Bergamaschi, S. Castano, et al. Infor-
mation Integration: The MOMIS Project Demonstration. In
International Conference on Very Large Data Bases, pages
611–614, 2000.

[BDT98] P. Buneman, A. Deutsch, and W. Tan. A deterministic model
for semistructured data. InWorkshop on Query Processing for
Semistructured Data and Non-Standard Data Formats, 1998.

[BEGK00] E. Boros, K. Elbassioni, V. Gurvich, and L. Khachiyan. An
Incremental RNC Algorithm for Generating All Maximal In-
dependent Sets in Hypergraphs of Bounded Dimension. Tech-
nical Report 47-2000, Rutgers University, 2000.

[Ber89] C. Berge. Hypergraphs. North-Holland, 1989.

[BK73] C. Bron and J. Kerbosch. Finding All Cliques of an Undi-
rected Graph. Communications of the ACM, 16(9):575–577,
September 1973.

[BLN86] C. Batini, M. Lenzerini, and S. Navathe. A Comparative Anal-
ysis of Methodologies of Database Schema Integration. ACM
Computing Surveys, 18(4):323–364, 1986.

[BLT86] J. A. Blakeley, P.-E. Larson, and F. W. Tompa. Efficiently
Updating Materialized Views. Proceedings of SIGMOD, pages
61–71, 1986.

[BPSM97] E. T. Bray, J. Paoli, and C. Sperberg-McQueen.
Extensible Markup Language (XML), 1997.
http://www.w3.org/TR/PR-xml-971208.

[BRU97] P. Buneman, L. Raschid, and J. Ullman. Mediator
Languages—a Proposal for a Standard. SIGMOD Record,
March 1997.

BIBLIOGRAPHY 259

[CCH91] Y. Cai, N. Cercone, and J. Han. Attribute-Oriented Induction
in Relational Databases. In Knowledge Discovery in Data-
bases, pages 213–228. AAAI Press, Menlo Park, California,
1991.

[CFP82] M. A. Casanova, R. Fagin, and C. H. Papadimitriou. Inclu-
sion Dependencies and their Interaction with Functional De-
pendencies. In Proceedings of ACM Conference on Principles
of Database Systems (PODS), pages 171–176, 1982.

[Che76] P.-S. Chen. The Entity-Relationship Model—Towards a Uni-
fied View of Data. ACM Transactions on Database Systems,
1(1):9–36, 1976.

[CK84] S. S. Cosmadakis and P. C. Kanellakis. Functional and In-
clusion Dependencies: A graph-theoretic Approach. In ACM,
editor, Proceedings of ACM Symposium on Principles of Data-
base Systems, pages 29–37. ACM Press, 1984.

[CKV90] S. S. Cosmadakis, P. C. Kanellakis, and M. Y. Vardi.
Polynomial-Time Implication Problems for Unary Inclusion
Dependencies. Journal of the ACM, 37(1):15–46, January
1990.

[CKW89] W. Chen, M. Kifer, and D. Warren. HiLog as a Platform
for Database Languages. IEEE Data Eng. Bull., 12(3):37,
September 1989.

[CMN98] S. Chaudhuri, R. Motwani, and V. Narasayya. Random Sam-
pling for Histogram Construction: How much is enough? SIG-
MOD Record (ACM Special Interest Group on Management of
Data), 27(2):436–447, 1998.

[Cod70] E. F. Codd. A Relational Model of Data for Large Shared
Data Banks. CACM, 13(6):377–387, 1970.

[Coh98] W. W. Cohen. Integration of Heterogeneous Databases With-
out Common Domains Using Queries Based on Textual/
Similarity. SIGMOD Record, 27(2):201–213, 1998.

[CR94] C. M. Chen and N. Roussopoulos. Adaptive Selectivity Esti-
mation Using Query Feedback. SIGMOD Record (ACM Spe-
cial Interest Group on Management of Data), 23(2):161–172,
June 1994.

BIBLIOGRAPHY 260

[CS01] L. Crow and N. Shadbolt. Extracting Focused Knowledge
from the Semantic Web. International Journal of Human-
Computer Studies, 54:155–184, 2001.

[CSGM00] J. Cho, N. Shivakumar, and H. Garcia-Molina. Finding Repli-
cated Web Collections. SIGMOD Record (ACM Special Inter-
est Group on Management of Data), 29(2):355–366, 2000.

[CT92] T. Catarci and L. Tarantino. Structure Modeling Hyper-
graphs: a Complete Representation for Databases. In Data-
base and Expert Systems Applications (DEXA), pages 314–
319, 1992.

[CZC+01] J. Chen, X. Zhang, S. Chen, A. Koeller, and E. A. Runden-
steiner. DyDa: Data Warehouse Maintenance in Fully Con-
current Environments. In Proceedings of SIGMOD’01. Demo
Session, page 619, Santa Barbara, California, May 2001.

[DDH00] A. Doan, P. Domingos, and A. Halevy. Learning Source De-
scription for Data Integration. In Proceedings of the Third In-
ternational Workshop on the Web and Databases (WebDB),
pages 81–86, Dallas, 2000.

[DP95] S. Dao and B. Perry. Applying a Data Miner To Heteroge-
neous Schema Integration. In Knowledge Discovery and Data
Mining, pages 63–68, 1995.

[Dus97] O. M. Duschka. Query Planning and Optimization in Infor-
mation Integration. PhD thesis, Stanford University, Stanford,
California, December 1997.

[Eic91] C. F. Eick. A Methodology for the Design and Transforma-
tion of Conceptual Schemas. In G. M. Lohman, A. Sernadas,
and R. Camps, editors, 17th International Conference on Very
Large Data Bases, pages 25–34, Barcelona, Catalonia, Spain,
3–6 September 1991. Morgan Kaufmann.

[EN94] R. Elmasri and S. B. Navathe. Fundamentals of Database Sys-
tems. The Benjamin/Cummings Publishing Company, Inc.,
1994.

[EW94] O. Etzioni and D. Weld. A Softbot-Based Interface to the In-
ternet. Communications of the ACM, 37(7):72–76, July 1994.

BIBLIOGRAPHY 261

[EWH85] R. Elmasri, J. Weeldreyer, and A. Hevner. The category con-
cept: An extension to the entity-relationship model. Data &
Knowledge Engineering, 1:75–116, 1985.

[Fag81] R. Fagin. A Normal Form for Relational Databases that is
Based on Domains and Keys. ACM Transactions on Database
Systems (TODS), 6(3):387–415, 1981.

[Fay97] U. Fayyad. Knowledge Discovery in Databases: An Overview.
In N. Lavrač and S. Džeroski, editors, Proceedings of the 7th
International Workshop on Inductive Logic Programming, vol-
ume 1297 of LNAI, pages 3–16, Berlin, September 17–20 1997.
Springer.

[FPSS96] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data
mining to knowledge discovery in databases. AI Magazine,
17:37–54, 1996.

[FPSSU96] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthu-
rusamy, editors. Advances in Knowledge Discovery and Data
Mining. AIII Press/MIT Press, March 1996.

[FS99] P. A. Flach and I. Savnik. Database dependency discovery: a
machine learning approach. AI Communications, 12(3):139–
160, November 1999.

[Gar98] S. R. Gardner. Building the Data Warehouse. Communica-
tions of the ACM, 41(9):52–60, 1998.

[GGL95] R. L. Graham, M. Grötschel, and L. Lovász, editors. Handbook
of Combinatorics. Elsevier/MIT Press, 1995.

[GGMS96] S. Ganguly, P. B. Gibbons, Y. Matias, and A. Silberschatz.
Bifocal sampling for skew-resistant join size estimation. SIG-
MOD Record, 25(2):271–281, June 1996.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. Freeman, San
Francisco, 1979.

[GKD97] M. R. Genesereth, A. M. Keller, and O. M. Duschka. In-
fomaster: An Information Integration System. SIGMOD
Record (ACM Special Interest Group on Management of
Data), 26(2):539ff., 1997.

BIBLIOGRAPHY 262

[GKL96] O. Garrido, P. Kelsen, and A. Lingas. A Simple NC-Algorithm
for a Maximal Independent Set in a Hypergraph of Poly-Log
Arboricity. Information Processing Letters, 58:55–58, 1996.

[GL95] T. Griffin and L. Libkin. Incremental Maintenance of Views
with Duplicates. In Proceedings of SIGMOD, pages 328–339,
1995.

[GLS96] M. Gyssens, L. V. S. Lakshmanan, and I. N. Subramanian. Ta-
bles as a Paradigm for Querying and Restructuring (extended
abstract). In ACM, editor, Proceedings of ACM Symposium
on Principles of Database Systems, volume 15, pages 93–103,
New York, NY 10036, USA, 1996. ACM Press.

[GLS+97] F. Gingras, L. Lakshmanan, I. N. Subramanian, D. Papoulis,
and N. Shiri. Languages for Multi-Database Interoperability.
In J. M. Peckman, editor, Proceedings of SIGMOD, volume
26(2) of SIGMOD Record, pages 536–538, 1997.

[GMHI+95] H. Garćıa-Molina, J. Hammer, K. Ireland, et al. Integrating
and Accessing Heterogeneous Information Sources in TSIM-
MIS. In AAAI Spring Symposium on Information Gathering,
1995.

[GMLY99] H. Garćıa-Molina, W. Labio, and R. Yerneni. Capability Sen-
sitive Query Processing on Internet Sources. In Proceedings of
the 15th International Conference on Data Engineering, Syd-
ney, Australia, March 1999. Accessible at http://www-db.-
stanford.edu/.

[GPB99] A. Gómez-Pérez and V. Benjamins. Applications of Ontolo-
gies and Problem-Solving Methods. AI Magazine, 20(1):119–
122, 1999.

[GRVB98] J.-R. Gruser, L. Raschid, M. E. Vidal, and L. Bright. Wrapper
Generation for Web-Accessible Data Sources. In 6th Int. Conf.
on Cooperative Information Systems, pages 14–23, New York,
1998.

[Gua95] N. Guarino. Formal Ontology, Conceptual Analysis and
Knowledge Representation. International Journal of Human-
Computer Studies, 43(5/6):625–640, 1995.

BIBLIOGRAPHY 263

[Han87] E. N. Hanson. A Performance Analysis of View Materializa-
tion Strategies. In Proceedings of SIGMOD, pages 440–453,
1987.

[HGMN+97] J. Hammer, H. Garćıa-Molina, S. Nestorov, R. Yerneni,
M. Breunig, and V. Vassalos. Template-Based Wrappers in
the TSIMMIS System. In Proceedings of SIGMOD, pages 532–
535, 1997.

[HK87] R. Hull and R. King. Semantic Database Modelling: Survey,
Applications and Research Issues. ACM Computing Surveys,
19(3):201–260, September 1987.

[HKPT98] Y. Huhtala, J. Karkkainen, P. Porkka, and H. Toivonen. Ef-
ficient discovery of functional and approximate dependencies
using partitions. In Proceedings of IEEE International Con-
ference on Data Engineering, pages 392–401, 1998.

[HNSS93] P. J. Haas, J. F. Naughton, S. Seshadri, and A. N. Swami.
Fixed-Precision Estimation of Join Selectivity. In Proceedings
of ACM Symposium on Principles of Database Systems, pages
190–201. ACM Press, May 1993.

[HNSS95] P. J. Haas, J. F. Naughton, S. Seshadri, and L. Stokes.
Sampling-Based Estimation of the Number of Distinct Values
of an Attribute. In International Conference on Very Large
Data Bases, pages 311–322, 1995.

[HÖ91] W.-C. Hou and G. Özsoyoğlu. Statistical Estimators for Ag-
gregate Relational Algebra Queries. ACM Transactions on
Database Systems, 16(4):600–654, December 1991.

[HS95] P. J. Haas and A. N. Swami. Sampling-based Selectivity Esti-
mation for Joins Using Augmented Frequent Value Statistics.
In Proceedings of IEEE International Conference on Data En-
gineering, pages 522–531, 1995.

[Hul86] R. Hull. Relative information capacity of simple relational
database schemata. SIAM Journal on Computing, 15(3):856–
886, 1986.

[Hyl96] J. A. Hylton. Identifying and Merging Related Bibliographical
Records. Master’s thesis, MIT, Dept. of EECS, 1996. MIT
ME-EECS.

BIBLIOGRAPHY 264

[HZ96] R. Hull and G. Zhou. A framework for supporting data inte-
gration using the materialized and virtual approaches. In SIG-
MOD, pages 481–492, Montreal, Canada, 1996. ACM Press.

[HZZ93] W.-C. Hon, Z. Zhang, and N. Zhou. Statistical Inference
of Unknown Attribute Values in Databases. In B. Bhar-
gava, T. Finin, and Y. Yesha, editors, Proceedings of Inter-
national Conference on Information and Knowledge Manage-
ment, pages 21–30, New York, NY, USA, November 1993.
ACM Press.

[JL96] G. H. John and P. Langley. Static Versus Dynamic Sampling
for Data Mining. In E. Simoudis, J. Han, and U. M. Fayyad,
editors, Proc. 2nd Int. Conf. Knowledge Discovery and Data
Mining, KDD, pages 367–370. AAAI Press, 2–4 August 1996.

[KA96] A. J. Knobbe and P. W. Adriaans. Discovering Foreign Key
Relations in Relational Databases. In R. Trappl, editor, Pro-
ceedings of the Thirteenth European Meeting on Cybernetics
and Systems Research, volume 2, pages 961–966, Vienna, Aus-
tria, 1996. Austrian Soc. Cybernetic Studies, Vienna, Austria.

[KKS92] M. Kifer, W. Kim, and Y. Sagiv. Querying object-oriented
databases. In M. Stonebraker, editor, Proceedings of SIG-
MOD, volume 21(2) of SIGMOD Record (ACM Special In-
terest Group on Management of Data), pages 393–402, New
York, NY 10036, USA, 1992. ACM Press.

[KLK91] R. Krishnamurthy, W. Litwin, and W. Kent. Language fea-
tures for interoperability of databases with schematic discrep-
ancies. SIGMOD Record (ACM Special Interest Group on
Management of Data), 20(2):40–49, June 1991.

[KLN00] J. Kang, M. L. Lee, and J. F. Naughton. IDB: Toward the
Scalable Integration of Queryable Internet Data Sources. Uni-
versity of Wisconsin—Madison, 2000.

[KLSS95] T. Kirk, A. Y. Levy, Y. Sagiv, and D. Srivastava. The Infor-
mation Manifold. Proceedings of the AAAI Spring Symposium
on Information Gathering in Distributed Heterogeneous Envi-
ronments, Stanford, California, March 1995.

BIBLIOGRAPHY 265

[Klu95] M. Klusch. Cooperative Recognition of Interdatabase Depen-
dencies. In Proceedings of the Second International Workshop
on Advances in Databases and Information Systems — AD-
BIS’95, pages 135–139, Moscow, June 27–30 1995.

[KLZ+97] A. Koeller, Y. Li, X. Zhang, A. Lee, A.Nica, and E. Run-
densteiner. Evolvable View Environment (EVE): Maintaining
Views over Dynamic Distributed Information Sources. Centre
for Advanced Studies Conference, November 1997.

[KM94] J. Kivinen and H. Mannila. The Power of Sampling in Know-
ledge Discovery. In Proceedings of ACM Symposium on Prin-
ciples of Database Systems, volume 13, pages 77–85, 1994.

[KM95] J. Kivinen and H. Mannila. Approximate inference of func-
tional dependencies from relations. Theoretical Computer Sci-
ence, 149(1):129–149, 18 September 1995.

[KMRS92] M. Kantola, H. Mannila, K. J. Räihä, and H. Siirtola. Dis-
covering functional and inclusion dependencies in relational
databases. International J. Of Intelligent Systems, 7:591–607,
1992.

[KR98] H. A. Kuno and E. A. Rundensteiner. Incremental main-
tenance of materialized object-oriented views in MultiView :
Strategies and performance evaluation. IEEE Transaction on
Data and Knowledge Engineering, 10(5):768–792, Sept/Oct.
1998.

[KR99] A. Koeller and E. A. Rundensteiner. View Synchronization:
Using an Integrated Approach of Rewriting and Ranking View
Queries. Journal of Computer Science and Information Man-
agement, 2(1), 1999.

[KR00] A. Koeller and E. A. Rundensteiner. History-Driven View
Synchronization. In Proceedings of 2nd International Con-
ference on Data Warehousing and Knowledge Discovery
(DaWaK), Lecture Notes in Computer Science 1874, pages
168–177, Greenwich, UK, September 2000. Springer Verlag.

[KR01] A. Koeller and E. A. Rundensteiner. A History-Driven Ap-
proach at Evolving Views Under Meta Data Changes. submit-
ted to Journal for Information Systems, 2001.

BIBLIOGRAPHY 266

[KRH98] A. Koeller, E. A. Rundensteiner, and N. Hachem. Integrat-
ing the Rewriting and Ranking Phases of View Synchroniza-
tion. In Proceedings of the ACM First International Workshop
on Data Warehousing and OLAP (DOLAP’98), pages 60–65,
November 1998.

[LAC+93] M. Loomis, T. Atwood, R. Cattell, J. Duhl, G. Ferran, and
D. Wade. The ODMG object model. Journal of Object Ori-
ented Programming, pages 64–69, June 1993.

[LAZ+89] W. Litwin, A. Abdellatif, A. Zeroual, B. Nicolas, and
P. Vigier. MSQL: A Multidatabase Language. Information
Sciences, 49(1), 1989.

[LC94] W.-S. Li and C. Clifton. Semantic Integration in Heteroge-
neous Databases Using Neural Networks. In J. B. Bocca,
M. Jarke, and C. Zaniolo, editors, International Conference
on Very Large Data Bases, pages 1–12, 1994.

[LC95] W.-S. Li and C. Clifton. SemInt: a system prototype for
semantic integration in heterogeneous databases. In Proceed-
ings of SIGMOD, volume 24(2) of SIGMOD Record, pages
484–484, 1995.

[LC00] W. Li and C. Clifton. SemInt: A tool for identifying attribute
correspondences in heterogeneous databases using neural net-
works. Data and Knowledge Engineering, 33(1):49–84, 2000.

[LH97] W. Lim and J. Harrison. Discovery of Constraints from Data
for Information System Reverse Engineering. In Proc. of Aus-
tralian Software Engineering Conference (ASWEC ’97), Syd-
ney, Australia, Sep 28–Oct 2 1997.

[Lin76] B. W. Lindgren. Statistical Theory. Macmillan Publishing
Co., Inc., New York, 3rd edition, 1976.

[LKNR98] A. J. Lee, A. Koeller, A. Nica, and E. A. Rundensteiner. Data
Warehouse Evolution: Trade-offs between Quality and Cost
of Query Rewritings. Technical Report WPI-CS-TR-98-2, re-
vised in 1999., Worcester Polytechnic Institute, Dept. of Com-
puter Science, 1998.

BIBLIOGRAPHY 267

[LKNR99a] A. J. Lee, A. Koeller, A. Nica, and E. A. Rundensteiner. Data
Warehouse Evolution: Trade-offs between Quality and Cost
of Query Rewritings. In Proceedings of IEEE International
Conference on Data Engineering, Special Poster Session, page
255, March, Sydney, Australia 1999.

[LKNR99b] A. J. Lee, A. Koeller, A. Nica, and E. A. Rundensteiner. Non-
Equivalent Query Rewritings. In Proceedings of the 9th Inter-
national Databases Conference, pages 248–262. City Univer-
sity of Hong Kong Press, Hong Kong, July 1999.

[LLY98] H. Liu, H. Lu, and J. Yao. Identifying Relevant Databases for
Multidatabase Mining. Lecture Notes in Computer Science,
1394:210–221, 1998.

[LNE89] J. A. Larson, S. B. Navathe, and R. Elmasri. A Theory
of Attribute Equivalence in Databases with Applications to
Schema Integration. IEEE Transactions on Software Engi-
neering, 15(4):449–463, April 1989.

[LNR97] A. J. Lee, A. Nica, and E. A. Rundensteiner. The EVE Frame-
work: View Synchronization in Evolving Environments. Tech-
nical Report WPI-CS-TR-97-4, Worcester Polytechnic Insti-
tute, Dept. of Computer Science, 1997.

[LNR01] A. J. Lee, A. Nica, and E. A. Rundensteiner. The EVE Ap-
proach: View Synchronization In Dynamic Distributed Envi-
ronments. IEEE Transaction on Knowledge and Data Engi-
neering, Accepted 2001. To Appear.

[LNS90] R. J. Lipton, J. F. Naughton, and D. A. Schneider. Prac-
tical selectivity estimation through adaptive sampling. SIG-
MOD Record (ACM Special Interest Group on Management
of Data), 19(2):1–11, June 1990.

[LP01] M. J. LaPadula and M. E. Picollelli. On Redundant and Non-
Semi-Intersecting Hypergraphs. DIMACS—Center for Dis-
crete Mathematics and Theoretical Computer Science, 2001.

[LSK95] A. Y. Levy, D. Srivastava, and T. Kirk. Data model and
query evaluation in global information systems. Journal of
Intelligent Information Systems - Special Issue on Networked
Information Discovery and Retrieval, 5(2):121–143, 1995.

BIBLIOGRAPHY 268

[LSS96] L. V. S. Lakshmanan, F. Sadri, and I. N. Subramanian.
SchemaSQL — A Language for Interoperability in Relational
Multi-database Systems. In T. M. Vijayaraman et al., editors,
International Conference on Very Large Data Bases, pages
239–250, Mumbai, India, Sept. 1996.

[LSS99] L. V. S. Lakshmanan, F. Sadri, and S. N. Subramanian. On
Efficiently Implementing SchemaSQL on an SQL Database
System. In International Conference on Very Large Data
Bases, pages 471–482, 1999.

[LV00] M. Levene and M. W. Vincent. Justification for Inclusion
Dependency Normal Form. IEEE Transactions on Knowledge
and Data Engineering (TKDE), 12, 2000.

[LYV+98] C. Li, R. Yerneni, V. Vassalos, H. Garćıa-Molina, Y. Papakon-
stantinou, J. Ullman, and M. Valiveti. Capability Based Me-
diation in TSIMMIS. In Proceedings of SIGMOD, pages 564–
566, 1998.

[MC72] G. D. Mulligan and D. G. Corneil. Corrections to Bier-
stone’s Algorithm for Generating Cliques. Journal of the
ACM, 19(2):244–247, April 1972.

[MCS88] M. V. Mannino, P. Chu, and T. Sager. Statistical Profile
Estimation in Database Systems. ACM Computing, Springer
Verlag (Heidelberg, FRG and NewYork NY, USA)-Verlag Sur-
veys, 20(3), September 1988.

[MG90] R. Missaoui and R. Godin. The Implication Problem for In-
clusion Dependences: A Graph Approach. SIGMOD Record,
19(1):36–40, March 1990.

[MHH00] R. J. Miller, L. M. Haas, and M. A. Hernández. Schema
Mapping as Query Discovery. In International Conference on
Very Large Data Bases, pages 77–88, 2000.

[Min01] T. P. Minka. Bayesian Inference, Entropy, and
the Multinomial Distribution. MIT, http://www-
white.media.mit.edu/˜tpminka/papers/learning.html, Febru-
ary 2001. Tutorial.

BIBLIOGRAPHY 269

[MIR93] R. J. Miller, Y. Ioannidis, and R. Ramakrishnan. The Use of
Information Capacity in Schema Integration and Translation.
In Proceedings of the Nineteenth International Conference on
Very Large Data Bases (VLDB), pages 120–133, Dublin, Ire-
land, August 1993.

[MIR94] R. J. Miller, Y. E. Ioannidis, and R. Ramakrishnan. Schema
Intension Graphs: A Formal Model for the Study of Schema
Equivalence. Technical Report CS-TR-1994-1185, University
of Wisconsin, Madison, January 1994.

[Mit83] J. C. Mitchell. Inference Rules for Functional and Inclusion
Dependencies. In Proceedings of ACM Symposium on Prin-
ciples of Database Systems, pages 58–69, Atlanta, Georgia,
21–23 March 1983.

[MKK97] M. K. Mohania, S. Konomi, and Y. Kambayashi. Incremental
Maintenance of Materialized Views. In Database and Expert
Systems Applications (DEXA), pages 551–560, 1997.

[MM65] J. W. Moon and L. Moser. On Cliques in Graphs. Israel
Journal of Mathematics, 3:23–28, 1965.

[MR94] H. Mannila and K. J. Raiha. Algorithms for inferring
functional-dependencies from relations. Data & Knowledge
Engineering, 12:83–99, 1994.

[MTL00] D. P. Makawita, K.-L. Tan, and H. Liu. Sampling from Data-
bases Using B+-Trees. In A. Agah, J. Callan, and E. Run-
densteiner, editors, Proceedings of International Conference
on Information and Knowledge Management, pages 158–164,
November 6–11 2000.

[MWJ99] P. Mitra, G. Wiederhold, and J. Jannink. Semi-automatic in-
tegration of knowledge sources. In Proc. of the 2nd Int. Conf.
On Information Fusion (FUSION’99), Sunnyvale, California,
1999.

[Nic99] A. Nica. View Evolution Support for Information Integration
Systems over Dynamic Distributed Information Spaces. PhD
thesis, University of Michigan in Ann Arbor, in progress 1999.

BIBLIOGRAPHY 270

[NLR98] A. Nica, A. J. Lee, and E. A. Rundensteiner. The CVS Al-
gorithm for View Synchronization in Evolvable Large-Scale
Information Systems. In Proceedings of International Con-
ference on Extending Database Technology (EDBT’98), pages
359–373, Valencia, Spain, March 1998.

[NR97a] A. Nica and E. A. Rundensteiner. Loosely-Specified Query
Processing in Large-Scale Information Systems. International
Journal of Cooperative Information Systems, 1997.

[NR97b] A. Nica and E. A. Rundensteiner. On Translating Loosely-
Specified Queries into Executable Plans in Large-Scale Infor-
mation Systems. In Proceedings of Second IFCIS International
Conference on Cooperative Information Systems CoopIS’97,
pages 213–222, June 1997.

[NR98] A. Nica and E. A. Rundensteiner. Using Containment In-
formation for View Evolution in Dynamic Distributed Envi-
ronments. In Proceedings of International Workshop on Data
Warehouse Design and OLAP Technology (DWDOT’98), Vi-
enna, Austria, August 1998.

[NR99] A. Nica and E. A. Rundensteiner. View Maintenance after
View Synchronization. In International Database Engineer-
ing and Applications Symposium (IDEAS’99), pages 213–215,
August, Montreal, Canada 1999.

[OAE00] K. O’Gorman, D. Agrawal, and A. El Abbadi. On the Im-
portance of Tuning in Incremental View Maintenance: An
Experience Case Study (Extended Abstract). In Proceedings
of the Second International Conference on Data Warehousing
and Knowledge Discovery (DaWaK), pages 77–82, September
2000.

[OR94] F. Olken and D. Rotem. Random Sampling from Databases
— A Survey. Technical report, Information and Computing
Sciences Division, Lawrence Berkeley National Laboratory,
Berkeley, California, 22 March 1994.

[PBE95] E. Pitoura, O. Bukhres, and A. Elmagarmid. Object Orien-
tation in Multidatabase Systems. ACM Computing Surveys,
27(2):141–195, June 1995.

BIBLIOGRAPHY 271

[PF91] G. Piatetsky-Shapiro and W. J. Frawley, editors. Knowledge
Discovery in Databases. American Association for Artificial
Intelligence, Menlo Park, California, U.S.A., 1991.

[PI97] V. Poosala and Y. E. Ioannidis. Selectivity Estimation With-
out the Attribute Value Independence Assumption. In Inter-
national Conference on Very Large Data Bases, pages 486–
495, 1997.

[PIHS96] V. Poosala, Y. E. Ioannidis, P. J. Haas, and E. J. Shekita.
Improved histograms for selectivity estimation of range pred-
icates. SIGMOD Record, 25(2):294–305, June 1996.

[PSC84] G. Piatetsky-Shapiro and C. Connell. Accurate estimation of
the number of tuples satisfying a condition. SIGMOD Record,
14(2):256–276, 1984.

[PSU98] L. Palopoli, D. Saccà, and D. Ursino. Semi-automatic, seman-
tic discovery of properties from database schemes. In Inter-
national Database Engineering and Application Symposium,
pages 244–253, 1998.

[PX94] P. Pardalos and J. Xue. The Maximum-Clique Problem. Jour-
nal of Global Optimization, 4:301–328, 1994.

[QW91] X. Qian and G. Wiederhold. Incremental Recomputation of
Active Relational Expressions. IEEE Transactions on Know-
ledge and Data Engineering (TKDE), 3(3):337–341, Septem-
ber 1991.

[Ram97] R. Ramakrishnan. Database Management Systems.
WCB/McGraw-Hill, 1997.

[RB01] E. Rahm and P. A. Bernstein. On Matching Schemas Au-
tomatically. Technical Report MSR-TR-2001-17, Microsoft
Research, http://www.research.microsoft.com, feb 2001.

[RCR96] J. F. Roddick, N. G. Craske, and T. J. Richards. Handling dis-
covered structure in database-systems. IEEE Transactions on
Knowledge and Data Engineering (TKDE), 8:227–240, 1996.

[Ric95] J. A. Rice. Mathematical Statistics and Data Analysis.
Duxbury Press, 2nd edition, 1995.

BIBLIOGRAPHY 272

[RKL+98] E. A. Rundensteiner, A. Koeller, A. Lee, Y. Li, A. Nica,
and X. Zhang. Evolvable View Environment (EV E) Project:
Synchronizing Views over Dynamic Distributed Information
Sources. In Demo Session Proceedings of International Con-
ference on Extending Database Technology (EDBT’98), pages
41–42, Valencia, Spain, March 1998.

[RKZ+99] E. A. Rundensteiner, A. Koeller, X. Zhang, A. Lee, A. Nica,
A. VanWyk, and Y. Li. Evolvable View Environment. In Pro-
ceedings of SIGMOD’99 Demo Session, pages 553–555, May
1999.

[RLN97] E. A. Rundensteiner, A. J. Lee, and A. Nica. On Preserv-
ing Views in Evolving Environments. In Proceedings of 4th
Int. Workshop on Knowledge Representation Meets Databases
(KRDB’97): Intelligent Access to Heterogeneous Information,
pages 13.1–13.11, Athens, Greece, August 1997.

[RN95] S. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach. Prentice Hall, 1995.

[Rou98] N. Roussopoulos. Materialized Views and Data Warehouses.
SIGMOD Record, 27(1):21–26, 1998.

[RS97] M. T. Roth and P. M. Schwarz. Don’t Scrap It, Wrap It! A
Wrapper Architecture for Legacy Data Sources. In Interna-
tional Conference on Very Large Data Bases, pages 266–275,
1997.

[SBF98] R. Studer, R. Benjamins, and D. Fensel. Knowledge Engi-
neering: Principles and Methods. Data and Knowledge Engi-
neering, 25:161–197, 1998.

[SF93] I. Savnik and P. A. Flach. Bottom-up induction of functional
dependencies from relations. In G. Piatetsky-Shapiro, editor,
Proc. of AAAI-93 Workshop: Knowledge Discovery in Data-
bases, pages 174–185, July 1993.

[Ski97] S. S. Skiena. The Algorithm Design Manual. Springer-Verlag,
1997.

[SL90] A. P. Sheth and J. A. Larson. Federated Database Systems
for Managing Distributed, Heterogeneous, and Autonomous

BIBLIOGRAPHY 273

Databases. ACM Computing Surveys, 22(3):183–236, Septem-
ber 1990. Also published in/as: Bellcore, TM-STS-016302,
Jun.1990.

[SLCN88] A. P. Sheth, J. A. Larson, A. Cornelio, and S. B. Navathe. A
Tool for Integrating Conceptual Schemas and User Views. In
Proceedings of IEEE International Conference on Data Engi-
neering. IEEE, 1988.

[STA98] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating Asso-
ciation Rule Mining with Relational Database Systems: Al-
ternatives and Implications. SIGMOD Record (ACM Special
Interest Group on Management of Data), 27(2):343–354, 1998.

[TAH+96] M. Tork Roth, M. Arya, L. M. Haas, M. J. Carey, W. Cody,
R. Fagin, P. M. Schwarz, J. Thomas, and E. L. Wimmers.
The Garlic Project. SIGMOD Record (ACM Special Interest
Group on Management of Data), 25(2):557 ff., 1996.

[Toi96] H. Toivonen. Sampling Large Databases for Association Rules.
In T. M. Vijayaraman, A. P. Buchmann, C. Mohan, and N. L.
Sarda, editors, VLDB’96, Proceedings of 22th International
Conference on Very Large Data Bases, pages 134–145, Mum-
bai (Bombay), India, 3–6 September 1996. Morgan Kaufmann.

[TRV96] A. Tomasic, L. Raschid, and P. Valduriez. Scaling Heteroge-
neous Databases and the Design of Disco. In International
Conference Distributed Computing Systems, pages 449–457,
May 1996.

[TUA+98] D. Tsur, J. D. Ullman, S. Abiteboul, C. Clifton, R. Motwani,
S. Nestorov, and A. Rosenthal. Query flocks: a generalization
of association-rule mining. In Proceedings of SIGMOD, vol-
ume 27(2) of SIGMOD Record (ACM Special Interest Group
on Management of Data), pages 1–12, New York, NY 10036,
USA, 1998. ACM Press.

[UG96] M. Uschold and M. Grüninger. Ontologies: Principles,
Methods and Applications. Knowledge Engineering Review,
1(2):93–155, June 1996.

BIBLIOGRAPHY 274

[Ukk92] E. Ukkonen. Approximate String-Matching with q-grams and
Maximal Matches. Journal of Theoretical Computer Science,
92:191–211, 1992.

[Ull89] J. Ullman. Principle of Database and Knowledge-Base Sys-
tems. Computer Science Press, 1989.

[Urs99] D. Ursino. Semi-Automatic Approaches and Tools for the Ex-
traction and the Exploitation of Intensional Knowledge from
Heterogeneous Information Sources. PhD thesis, Università
degli Studi della Calabria, Cosenza, Italy, 1999.

[W3C01] W3C. XQuery: A Query Language for XML.
http://www.w3.org/TR/xquery/, February 2001.

[Wie92] G. Wiederhold. Mediators in the Architecture of Future In-
formation Systems. IEEE Computer, 25(2):38–49, 1992.

[WM97] D. Wilson and T. R. Martinez. Improved Heterogeneous Dis-
tance Functions. Journal of Artificial Intelligence Research,
6:1–34, 1997.

[Woo97] D. R. Wood. An algorithm for finding a maximum clique in
a graph. Operations Research Letters, 21:211–217, 1997.

[WW96] Y. Wang and A. K. C. Wong. Representing Discovered Pat-
terns Using Attributed Hypergraph. In International Confer-
ence on Knowledge Discovery and Data Mining, pages 283–
286, 1996.

[YJSD91] C. Yu, B. Jia, W. Sun, and S. Dao. Determining rela-
tionships among names in heterogeneous databases. SIG-
MOD Record (ACM Special Interest Group on Management
of Data), 20(4):79–80, December 1991.

[Zak00] M. J. Zaki. Scalable Algorithms for Association Mining. IEEE
Transactions on Knowledge and Data Engineering (TKDE),
12(3):372–390, May/June 2000.

[ZGMHW95] Y. Zhuge, H. Garćıa-Molina, J. Hammer, and J. Widom. View
Maintenance in a Warehousing Environment. In Proceedings
of SIGMOD, pages 316–327, May 1995.

BIBLIOGRAPHY 275

[ZGMW96] Y. Zhuge, H. Garćıa-Molina, and J. L. Wiener. The Strobe
Algorithms for Multi-Source Warehouse Consistency. In Inter-
national Conference on Parallel and Distributed Information
Systems, pages 146–157, December 1996.

[ZOPL96] M. J. Zaki, M. Ogihara, S. Parthasarathy, and W. Li. Parallel
Data Mining for Association Rules on Shared-memory Multi-
processors. In Supercomputing ’96 Conference Proceedings:
November 17–22, Pittsburgh, PA, 1996.

[ZPLO97] M. J. Zaki, S. Parthasarathy, W. Li, and M. Ogihara. Evalua-
tion of Sampling for Data Mining of Association Rules. In Pro-
ceedings of the Seventh International Workshop on Research
Issues in Data Engineering (RIDE’97), pages 42–50. IEEE,
April 1997.

[ZR99] X. Zhang and E. A. Rundensteiner. Flexible Data Warehouse
Maintenance Under Concurrent Schema and Data Updates. In
Proceedings of IEEE International Conference on Data En-
gineering, Special Poster Session, page 253, March, Sydney,
Australia 1999.

[ZRD01] X. Zhang, E. A. Rundensteiner, and L. Ding. PVM: Par-
allel View Maintenance Under Concurrent Data Updates of
Distributed Sources. In Data Warehousing and Knowledge
Discovery, Proceedings, Munich, Germany, September 2001.
230–239.

