

Abstract

Scaling of CMOS to nanometer dimensions has enabled dramatic improvement in

digital power efficiency, with lower VDD supply voltage and decreased power con-

sumption for logic functions. However, most traditionally prevalent ADC archi-

tectures are not well suited to the lower VDD environment. The improvement in

time resolution enabled by increased digital speeds naturally drives design toward

time-domain architectures such as voltage-controlled-oscillator (VCO) based ADCs.

The major obstacle in the VCO-based technique is linearizing the VCO voltage-to-

frequency characteristic. Achieving signal-to-noise (SNR) performance better than

-40dB requires some form of calibration, which can be realized by analog or digi-

tal techniques, or some combination [1, 2, 9]. A further challenge is implementing

calibration without degrading energy efficiency performance. This thesis project

discusses a complete design of a 10 bit three stage ring VCO-based ADC. A lookup-

table (LUT) digital correction technique enabled by the “Split ADC” calibration

approach is presented suitable for linearization of the ADC. An improvement in the

calibration algorithm compared to [1, 2] is introduced to ensures LUT continuity.

Measured results for a 10 bit 48.8-kSps ADC show INL improvement of ≈ 10X after

calibration convergence.

Acknowledgements

I would like to express the deepest appreciation to my thesis advisor, Professor

John McNeill, for giving me the opportunity to work with him. He has been the

most inspiring and motivating advisor I have had in my life. His understanding,

wisdom, guidance and encouragement has pushed me further than I thought I could

go in this project.

I would also like to thank Jianping Gong, PhD student in the NECAMSID lab,

for discussing the project with me and for making my experience at the lab more fun

and exciting. Also to Sulin Li who supported my idea and is continuing to further

explore the topic of my project.

Thanks also to Robert Boisse for teaching me how to do the surface mount sol-

dering. Without his help, the printed circuit board would have not been completed.

Last but not least, I want to thank my family, my girl friend and my roommates

for helping me survive all the stress in my college life and not letting me give up.

i

Contents

1 Introduction 1

1.1 Goals and Motivation . 1

1.2 Organization . 2

2 Background 4

2.1 Analog to Digital Converter (ADC) 4

2.1.1 Ideal ADC Characteristics . 5

2.1.2 Static Errors . 6

2.1.3 Dynamic Errors . 10

2.2 VCO-Based ADCs . 11

2.2.1 VCO-Based-ADC Architecture 11

2.2.2 VCO-Based ADC Properties 13

2.2.3 VCO-Based ADC Nonideality 15

2.3 VCO architectures . 16

3 Background Calibration and Correction Technique 19

3.1 Lookup-Table Linearity Correction 19

3.2 Dithered Split-ADC Calibration Concept 23

3.2.1 ADC Characteristic Alignment 25

3.2.2 Slope Calibration . 27

ii

3.2.3 Error Estimation . 28

3.2.4 Iterative Matrix Solution . 31

3.2.5 Limited Signal Range and “Stitching”’ Estimation 34

3.2.6 Offset Consideration . 36

3.3 Calibration Algorithm Summary . 37

4 Analog Circuit and PCB Implementation 39

4.1 Ring VCO . 39

4.2 Frequency Divider . 43

4.3 PCB Design Summary . 45

5 FPGA Implementation 47

5.1 Top Level Block Diagram Design . 47

5.2 Clock Signal Generator . 49

5.3 Dither Generator . 53

5.4 Counter . 55

5.5 Calibration and Correction Block . 56

5.5.1 LUT and Error Matrix Implementation 56

5.5.2 Conversion Based Calculations 59

5.5.3 Ensemble Based Calculations 61

5.6 SRAM Controller . 64

6 Results 66

6.1 Offline LUT Calibration . 66

6.2 Background LUT Calibration . 71

6.2.1 DC Linearity . 72

6.2.2 LMS Convergence Investigation 73

6.2.3 Divergence in LMS loop . 74

iii

7 Conclusions 78

7.1 Future work . 80

A Verilog Code 83

A.1 CLOCK GENERATOR block . 83

A.2 MEMORY CONTROLER block . 84

A.3 CALIBRATION block . 85

B MATLAB Code 92

B.1 Offline LUT linearization . 92

B.2 Linearity test . 93

B.3 Offline calibration linearity test . 93

iv

List of Figures

2.1 ADC Input and Output Definitions 5

2.2 Ideal ADC Transfer Function and Quantization Noise 5

2.3 Nonlinear Static Errors in Nonideal ADCs 8

2.4 Histogram testing of a 4 bit ADC . 9

2.5 Spurious Free Dynamic Range . 11

2.6 Simplified VCO-Based ADC . 12

2.7 Multi-phase VCO-Based ADC Architecture 13

2.8 Quantization of phase in VCO-based ADC 14

2.9 A 3-stage VCO voltage-to-frequency characteristic 15

2.10 Waveforms of a three stage single ended ring VCO 16

2.11 Simplified Current Starved VCO . 17

3.1 Transfer functions of nonlinear ADC with LUT correction 20

3.2 Lookup table with linear interpolation digital correction 21

3.3 Missing codes in LUT implementation 22

3.4 Dithered Split ADC system block diagram 24

3.5 Split ADC characteristic alignment 25

3.6 Split ADC Characteristic alignment with two agreeing but equally

nonlinear ADC characteristics . 26

3.7 Slope Calibration . 28

v

3.8 Error estimation depends on distance of the LUT locations to the

input count . 33

3.9 Example for portions of input range not covered by signal. 35

3.10 Calibration algorithm flow chart . 37

4.1 Simple ring oscillator implemented by NAND gate 40

4.2 Using MOSFET to control the delay of the inverter 41

4.3 Ring VCO schematics . 42

4.4 VCO output waveform for 1.6V and 2.1V input voltage 42

4.5 VCO V-to-f characteristic . 43

4.6 Ripple counter circuit schematic . 44

4.7 Timing diagram of VCO GATE signal 44

4.8 PCB block diagram . 45

5.1 Simplified top level block diagram for FPGA implementation 48

5.2 GPIO input, output configuration . 49

5.3 GPIO input, output configuration . 50

5.4 GPIO input, output configuration . 51

5.5 Converting gated clocks to clock enables to eliminate clock skews . . 52

5.6 PRN GENERATOR block . 53

5.7 Pseudo-random signal timing diagram 54

5.8 Pseudo-random signal timing diagram 55

5.9 Counter Block . 56

5.10 Calibration and Correction Block . 57

5.11 Code and synthesized digital circuit for LUT implementation 58

5.12 Synthesized digital circuit for the correction block 59

5.13 Synthesized digital circuit for the correction block 60

vi

5.14 Ensemble based clock signals . 61

5.15 Block diagram to realize the “stitching” algorithm 62

5.16 MEMORY CONTROLLER block . 64

5.17 Digital circuit implementation controlling the address and write en-

able signal of the SRAM . 65

6.1 Offline calibration technique to estimate LUT coefficients 67

6.2 Raw output count and corrected output count using offline calibration 68

6.3 DC linearity improvement using offline calibration 69

6.4 Missing code at the calibrated output 70

6.5 Introducing R = 2 reduces DC linearity by factor of 2 71

6.6 Digital output of a full-scale triangle wave input 72

6.7 DC linearity error of the background calibrated output 73

6.8 LUT convergence for different parameter μ 74

6.9 Digital output of the triangle wave input when the algorithm diverges 75

6.10 Digital output of two channels when the algorithm diverges 77

vii

List of Tables

7.1 VCO-based ADC System Parameters / Results 79

viii

Chapter 1

Introduction

1.1 Goals and Motivation

The analog-to-digital converter (ADC) plays an important role as a bridge between

the inherently analog world and ever-increasing digital processing world. Ultra-

low-power ADCs are needed in systems constrained by battery power or scavenged

energy limits in applications such as wireless communication, autonomously pow-

ered sensing and monitoring nodes, or implanted biomedical devices for assistive

technology. The ADC energy efficiency expressed by the fJ/step figure-of-merit is a

critical design system driver in power-constrained applications. When pushing for

increasing data rates there is a corresponding increase in the demands of bandwidth

and power dissipation [4].

The advance in CMOS technologies has dramatically improved the performance

of general purpose processors and digital signal processors. However, most tradition-

ally prevalent ADC architectures have not been able to utilize the process scaling to

the same extent, suffering from reduced voltage headroom and reduced analog gain.

The improvement in time resolution enabled by increased digital speeds naturally

1

drives design toward time-domain architectures such as voltage-controled-oscillator

(VCO) based ADCs. A major difficulty with this approach is that ADC linearity

depends directly on the linearity of the VCO voltage-to-frequency control charac-

teristic, which is in general poorly controlled.

Efforts have been made to improve performance of VCO-based ADC. One could

be to place the VCO-based qunatizer within a continuous-time ΣΔ loops where

the high loop gain suppressed non-linearity and phase noise, such as [5, 6, 7, 8,

9]. This approach, however, still required op-amp based integrators or additional

DACs and was thus very analog in nature. Another would be to use a highly linear

current controlled oscillator (ICO) architecture as shown in [8]. However without

the support of a ΣΔ modulator and a feedback DAC, the linearity of the VCO can

only be improved to maximum 7.4 bits.

This thesis project describes a complete design of a 10 bit VCO-based ADC

including an implementation of a lookup table (LUT) linearization technique suit-

able for that ADC. A three stage ring VCO is constructed and the digital output

of the ADC can be obtained by measuring the VCO output clock frequency. The

“Split ADC’ approach [1, 2, 3, 11] is applied to realize continuous digital background

calibration. All the calibration and correction process is performed entirely in the

digital domain by a field-programmable gate array (FPGA) board.

1.2 Organization

This thesis is organized as follows: Chapter 2 provides the background on ADC

characteristics and nonideal behavior. The VCO-based ADC is also investigated,

followed by different VCO architectures. Chapter 3 reviews the background calibra-

tion and correction technique in details, as well as introduces the improved algorithm

2

to preserve LUT continuity. Chapter 4 presents the hardware implementation in a

print circuit board (PCB) including the ring VCOs and frequency dividers. Chapter

5 discusses the FPGA implementation of the calibration technique. All the inputs,

outputs and timing configurations of each digital blocks are explained. The result

measurements of the ADC are provided in Section 6. Finally, Chapter 7 concludes

the research work presented here and provides possible paths for future investigation.

3

Chapter 2

Background

This section firstly provides background information on analog to digital converters

including ideal characteristics and performance metrics. It then goes on to discuss

the VCO-based ADC architecture. Finally, different VCO architectures are investi-

gated in the last subsection.

2.1 Analog to Digital Converter (ADC)

Analog to digital converters (ADCs) translate analog quantities, which are the in-

herent characteristic of “real world” signals, to digital language used in various

applications including computing, information processing and control systems. The

relationship between inputs and outputs of ADCs is shown in Figure 2.1. The ADC

takes an analog voltage as an input and returns a unique group of digital levels, or

binary codes, corresponding to each analog level.

Before designing an ADC, it is necessary to understand the performances and

specifications of the ADC. The following subsections firstly describe the ADC trans-

fer function, followed by discussions on different sources of error of ADCs.

4

N-BIT
ADC

MSB

LSB

DIGITAL
OUTPUT
N-BITS

ANLOG
INPUT

FS

0 OR -FS

Figure 2.1: ADC Input and Output Definitions

2.1.1 Ideal ADC Characteristics

During the conversion process, the analog input signal is quantized to a digital value.

The resolution of an analog to digital converter describes how many quantization

levels the ADC can represent. Since the output of an ADC is in binary format,

the resolution is given in powers of 2. For example, a 10-bit A/D converter can

represent an analog signal using 210 or 1024 quantization levels. Figure 2.2 shows

the ideal transfer characteristics of an ADC. It is important to note that while the

analog voltage is continuous, the digital output is quantized to certain levels.

QUANTIZATION
UNCERTAINTY

ANALOG INPUT

DIGITAL
OUTPUT

1 LSB

q = 1LSBERROR
(INPUT - OUTPUT)

Figure 2.2: Ideal ADC Transfer Function and Quantization Noise

The only error mechanism present in an ideal ADC is quantization. This er-

ror arises because the analog input signal may assume any value within the input

5

range of the ADC while the output data is a sequence of finite precision samples [4].

As Figure 2.2 shown, the quantization error for any signals that spans more than

few LSBs can be modeled as a sawtooth waveform [12]. The maximum error an

ideal converter makes when digitizing a signal is 0.5VLSB. Assuming the quantiza-

tion noise is uniformly distributed over the range ±0.5VLSB, the root-mean-square

quantization error can be calculated as:

(RMS)Vq ≈ VLSB√
12

(2.1)

For a N bit fullscale analog input sinewave, Vin = 2N−1VLSB sin(2πft), swinging

from −2N−1VLSB to 2N−1VLSB, the RMS value is expressed as:

(RMS)VFS =
2N−1VLSB√

2
(2.2)

Therefore, the signal-to-noise ratio for an ideal N-bit converter is

SNR = 20 log10

[
(RMS)VFS

(RMS)Vq

]
= 6.02N + 1.76dB (2.3)

It is important to note that, Equation 2.3 assumes that the quantization noises

and the input signal are uncorrelated and are both measured over the full Nyquist

bandwidth. In the case that the actual signal occupies in a smaller bandwidth, a

correction factor must be included when calculating the signal-to-noise-ratio [12].

2.1.2 Static Errors

There are four possible sources of DC errors associated with ADCs including offset

error, gain error, differential nonlinearity (DNL) and integral nonlinearity (INL).

Unlike the inevitable quantization noise, these error sources only occurs in non-ideal

6

ADCs. As described in Figure 2.2, the dashed straight line joining the midpoints

of all the “steps” often refered as the “code centers”, plays an important role in

determining the static errors of the ADCs. This ideal transfer function of an ADC

might be expressed as a straight line y = Ax + b, where y is the digital code, x is

the analog input voltage, A and b are two constants. The gain and offset errors

are defined as the deviations between the actual gain A and offset b and the ideal

values, respectively. However, since “real world” ADC characteristic might not be a

straight line, the two types of linearity error are used when investigating the ADC

performance.

Figure 2.3 shows linearity errors of ADCs. The integral nonlinearity (INL) is

defined as maximum deviation of the actual transfer characteristic of the converter

from a straight line. This straight line can be either a best straight line which is

drawn so as to minimize these deviations or it can be a line drawn between the end

points of the transfer function once the gain and offset errors have been nullified.

Differential nonlinearity (DNL) is the difference between the step size of an ADC’s

output and the ideal step size. The DNL and INL are usually measured in terms of

least significant bit (LSB). In the case where DNL equals to −1 or +1, the ADC is

nonmonotonic or has missing codes [12].

There are many possible methods to test the linearity performances of an ADC.

One could be to directly measure the the code transitions of the analog input voltage

while observing the digital outputs. However, this method requires a large amount

of measurements and only works well if ADC’s input referred noise is less than 1

LSB [12]. Another approach is the back-to-back static test which captures the error

waveform by comparing the analog input to the digital output through a feedback

path. The main difficulty with this approach is that it requires an additional digital

to analog converter which must have an accuracy significantly greater than the ADC

7

DNL[6]

INL[3]

INL[5] IDEAL
TRANSFER
FUNCTION

ACTUAL
TRANSFER
FUNCTION

ANALOG VOLTAGE

DIGITAL
OUTPUT

CODE

Figure 2.3: Nonlinear Static Errors in Nonideal ADCs

under test [12]. The servo-loop code transition test and computer-based servo-loop

test lend themselves to automated measurements, either ATE systems or in PC-

based controller. These method’s complexity goes beyond the scope of this project.

Histogram (code density) test with linear ramp input is the most suitable method

in testing the linearity performance of the ADC for this project. It involves collecting

a large number of digitized samples over a period of time for a well-defined input

signal which is usually a low frequency fullscale triangular waveform. The number

of occurrences, h(n), are then recorded for each code bin. Ideally, the number of hits

in each bins are equal and can be calculated based on the total number of output

samples M and total number of bins 2N − 1.

h(n) =
M

2N − 2
(2.4)

If measured histogram indicates the actual number of hits in a bin is h(n)actual, then

the DNL can be calculated as:

DNL(n) =
h(n)actual

h(n)theoretical
− 1 (2.5)

8

Since the INL measures the nonlinearity of the overall transfer function, it is simply

the cumulative sum of the DNL.

INL(n) =
n∑

i=0

DNL(n) (2.6)

Figure 2.4 shows an example of a histogram test of a four bit ADC. Note that, the

histogram test alone does not imply monotonicity in an ADC. Additionally, in order

to eliminate the linearity due to the input voltage source, the linear input ramp

used in the histogram test must have greater precision compared to the ADC under

test [12].

0

5

10

15

H
IS

TO
G

R
A

M

0.4

0.2

0

0.2

0.4

D
N

L

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.8

0.6
0.4

0.2
0

0.2
0.4

IN
L

OUTPUT CODE n

iDNLINL =n

htheoretical

i=0

n

Figure 2.4: Histogram testing of a 4 bit ADC

9

2.1.3 Dynamic Errors

The fact that DNL and INL meet the system requirements does not implies that the

DAC will perform well for AC input signals. There are several ways to characterize

the dynamic performance of an ADC. An FFT analysis is often used to measure the

AC distortion of the signal. From that, three important parameters are defined in-

cluding Signal-to-Noise-and-Distortion ratio (SNDR), Signal-to-Noise ratio (SNR),

spurious-free dynamic range (SFDR), and effective number of bits (ENOB).

SINAD is defined as the ratio of the RMS signal amplitude to the mean value of

the root-sum-squares of all other noise components. SNR is similar to SINAD except

that it does not include the harmonic content which occurs at multiples of signal

frequency. Therefore, SNR can reveal the noise floor, which ideally only includes the

quantization noise. As discussed in Section 2.1.1 the ideal SNR is directly related

to the resolution of the ADC. In a similar manner, the effective number of bits is

defined as:

ENOB =
SINAD − 1.76dB

6.02
(2.7)

It should be noted that SINAD and ENOB are functions of the input signal fre-

quency. As frequency increases toward the Nyquist limit, SINAD decreases; so does

ENOB.

Another significant specification for an ADC is the Spurious Free Dynamic Range

(SFDR). SFDR is the ratio of the RMS value of an input sine wave to the RMS

value of the largest spur observed in the frequency domain. Figure 2.5 shows an

example of SFDR specification for an ADC. As the figure illustrates, the SFDR

could be calculated either based on the amplitude of the carrier signal (dBc) or with

respect to the full scale amplitude (dBFS).

10

SFDR(dBc) SFDR(dBFS)

INPUT SIGNAL LEVEL

FULL SCALE (FS)

FREQUENCY

dB

Figure 2.5: Spurious Free Dynamic Range

2.2 VCO-Based ADCs

There are a wide variety of different ADC architectures available depending on

the requirements of the application. They can range from high-speed, low reso-

lution flash converters to the high-resolution, low-speed oversampled noise-shaping

sigma-delta converters. Scaling of CMOS to nanometer dimensions has enabled

dramatic improvement in digital power efficiency, with lower VDD supply voltage

and decreased power consumption for logic functions. This drives ADCs toward

Voltage-Controlled-Oscillator-Based ADC which takes advantage of the high speed

performance and low power consumption of logic circuits. This section firstly de-

scribes structure of a VCO-based ADC, then discusses the properties, followed by

the nonideality associated with it.

2.2.1 VCO-Based-ADC Architecture

A VCO-based ADC is a time-based architecture that converts an analog input to

frequency which is then quantized to digital output by other digital circuitry. Figure

11

COUNTER

x

CLK

V
IN

CLK

VIN

VCO
OUPUT

COUNT

X 3 12 6

Figure 2.6: Simplified VCO-Based ADC

2.6 shows the VCO-based approach in its simplest form: the ADC input VIN is the

control input to the VCO; the output of the VCO is a digital clock. The digital

output x of the ADC can be obtained by measuring the clock frequency in the digital

domain, for example by a counter recording the number n of VCO clock phase edges

in a given period of time. At the end of every clock period the output of the counter

is sampled and then reset to zero.

In order to increase the resolution of the VCO-based ADC, multiple phase out-

puts of the VCO are used together as shown in Figure 2.7 [10, 17]. In this structure,

the output of each stage is an oscillating waveform which has frequency given by:

fV CO = KV COVIN (2.8)

where KV CO is the slope of the voltage-to-frequency characteristic of the VCO, and

VIN is the analog voltage. The digital output of the ADC is resulted from summing

the number of phase transitions n in a fixed period TCONV of every stage. Therefore,

for an N-stage ring VCO, the digital output is:

n = 2NfV COTCONV = (2NKV COTCONV)VIN (2.9)

12

CTR CTR CTR

A B C

`

CLK

n

VIN RING
VCO

Figure 2.7: Multi-phase VCO-Based ADC Architecture

As Equation 2.9 indicates, ideally, the digital output is directly proportional to

analog input voltage, which is the desired characteristic of an ADC. For an N-phase

VCO-based ADC, the resolution of the ADC is higher by a factor of 2N compared to

that of a single-phase converter. The multi-phase approach does require a modest

increase in complexity, power consumption and chip area [17].

2.2.2 VCO-Based ADC Properties

The VCO-based ADC has several important properties making it suitable for high

speed and low power consumption signal processing applications. The first property

is that quantization noise is first-order noise-shaped [10]. The quantization error of

the VCO-based ADC is not as straight forward as conventional ADC architectures.

Since the number of cycles of each the clock signal is counted, the phases are quan-

tized by 2π. If both the rising edges and the falling edges of the oscillated waveform

are counted, the phases are quantized by π. A signal waveform capturing the phase

of the VCO output is shown in Figure 2.8. Since the residual phase (quantization

error φq[n−1]) of the previous sampling period inherently becomes the initial phase

φi[n] of the next period, the output of a N-phase VCO-based ADC can be calculated

13

by:

y[n] =
N

2π
(φx[n] + φq[n− 1]− φq[n]) (2.10)

where φx[n] is the VCO phase change due to analog inpute. Taking the Z-transform

of Equation 2.10 gives:

Y (z) =
N

2π
(Φx(z) + Φq(z)(z

−1 − 1)) (2.11)

As Equation 2.11 indicates, the quantization phase noise φ[n] “sees”’ a high pass

filter transfer function (z−1 − 1). Therefore, the VCO-based ADC is first-order

noise-shaped.

0

2

PHASE
q[n-1]

i [n] x[n]
q[n]

CLK

VCO
OUTPUT

Figure 2.8: Quantization of phase in VCO-based ADC

Another property that makes VCO-based ADC superior to other architectures

is that the output of a ring VCO is digital in nature. The clock signal toggles

between two discrete levels, either VDD or GND. This property makes the VCO

a great converter building block which takes advantage of the high performance

nanometer CMOS technology without worrying about the decreasing power supply.

In addition, since the amplitude of the VCO output does not play an essential role

14

in the quantization process, the architecture greatly reduces the need of additional

analog circuitries such as buffers and amplifiers.

2.2.3 VCO-Based ADC Nonideality

Despite of these attractive properties discussed in Section 2.2.2, implementing VCO-

based ADC still faces a critical challenge, since the voltage-to-frequency tuning

curve of the VCO is usually nonlinear. This translates directly to the nonlinearity

of the ADC, which highly degrades both static and AC performance of the ADC.

Mitigating this effects of the VCO characteristics becomes the main subject of this

project.

1.1 1.2 1.3 1.4 1.5 1.6
0

50

100

150

200

FR
E

Q
U

E
N

C
Y

[K
H

z]

ANALOG INPUT VOLTAGE [V]

Figure 2.9: A 3-stage VCO voltage-to-frequency characteristic

Figure 2.9 captures the voltage-to-frequency characteristic of a three stage cur-

rent starved VCO. The figure shows that the V-f curve of the VCO is nonlinear with

an offset and a varied slope KV CO = ∂fV CO/∂Vin. Although the offset of the VCO

can easily be corrected by subtracting a fixed amount to the digital output code,

some form of calibration to correct the nonlinear slope KV CO is required in order to

achieve a SNR better than 40dB [1, 2, 9].

15

2.3 VCO architectures

This section briefly discusses some of the available VCO architectures. One of the

oscillator topologies is the LC oscillator. Although this topology out-performs ring

oscillators in terms of phase noise [14, 17], it is analog in nature and requires area-

consuming passive elements; therefore, it is not considered further in this project.

t
PLH

t
PLH

t
PHL

1 2 3

V1

V2

V3

Figure 2.10: Waveforms of a three stage single ended ring VCO

Another common type of oscillator is the ring oscillator. The simplest ring

oscillator can be formed by an odd number of inverters connected in a closed loop

with positive feedback as shown in Figure 2.10. The delay time between the 50%

points of the input and output are labeled tPLH and tPHL depending on whether

the output logic level is changing from high to low or from low to high. If the total

number of stages is n and all of them have the same delay, the oscillation frequency

is then given by:

f =
1

n(tPHL + tPLH)
(2.12)

The number of stages n in a ring oscillator is determined by various requirements,

16

including speed, power consumption, and noise immunity. Usually, there must be an

odd number of inversions in the loop so that the circuit does not latch up. However,

the differential implementation of the ring oscillator can utilize an even number of

stages by simply configuring one stage such that it does not invert [14].

CL

IDp
Vctrp

IDn
Vctr ID
Vctrn

Figure 2.11: Simplified Current Starved VCO

As shown in Equation 2.12 the oscillation frequency depends on the total delay

of each stage. Thus, to vary the frequency, the delay time can be adjusted. There

are several ways to control this delay. The first method is to control the current

drive strength charging and discharging the load of each inverter. This topology is

referred as the current-starved VCO. Figure 2.11 shows a simplified view of a single

stage of the current-starved VCO. The two additional MOSFETs, controlled by the

input voltage VCTR, are used to limit the drain currents to the inverter; in other

word, the inverter is starved for current. The total sum of the output capacitor of

the first stage and the input capacitor of the second stage can be modeled as a load

capacitor CL. The time it takes to charge and discharge CL depends on the current

IDp and IDn, respectively. These time delays are the same as the propagation delays

tPHL and tPLH in Equation 2.12. Therefore, by controlling either the current ID1 or

ID2 the frequency can be changed.

17

Another method is to vary the propagation delay by varying the capacitive load

CL. This variation in load capacitance can be realized by one ore more voltage

dependent capacitors called varactor diodes. A reverse-bias pn junction can serve

as a varactor which has capacitance of:

Cvar =
C0

(1− V/ΦB)m
(2.13)

where C0 is a zero bias capacitance, V is the applied voltage, ΦB is the built-

in voltage of the junction, and m is a value typically between 0.3 and 0.5 [15].

Adding a varactor diode increases the load capacitance, therefore, directly affect the

tuning range of the VCO. Additionally, the nonlinear relationship between controlled

voltage and the varactor diode capacitance is also translated into the nonlinearity

of the VCO.

There are many other methods to implement a VCO including the source-coupled

VCO [13] and delay interpolation VCO [14]. Circuit-level techniques can be used

to improve uncalibrated VCO linearity, easing requirements on digital calibration

and allowing smaller LUT size. However, since designing a VCO is not the main

focus of this project, these techniques are not covered in details. Additionally, as

the calibration technique operates entirely in the digital domain, its applicability is

not limited by the specific VCO circuit architecture [1].

18

Chapter 3

Background Calibration and

Correction Technique

A significant challenge to the VCO-based ADC architecture is to mitigate the effect

of the nonlinear V-f characteristic of the VCO. The main purpose of this section is

to discuss a calibration method to improve the linearity of the VCO-based ADC.

First, the lookup-table with linear interpolation method is discussed. The next sec-

tion investigates the “Split ADC” background digital calibration approach. Finally,

the calibration and correction technique is summarized and the functional block

diagram, as how the technique is implemented, is presented.

3.1 Lookup-Table Linearity Correction

An ideal VCO-based ADC has the digital output code n proportional to the analog

input VIN . However, as discussed by Section 2.2.3, the real relationship between the

VCO count n and the input VIN is usually nonlinear. In order to correct the nonideal

output code, the proposed digital correction technique utilizes a lookup-table (LUT).

19

This LUT provides an additional transfer function between the “uncorrected” count

and the final desired digital output code. Mathematically, this transfer function

is the inverse of the VCO characteristic; thus it can cancel the nonlinearity of the

VCO. This can be explained in Figure 3.1.

V in

UNCORRECTED
OUTPUT COUNT

CORRECTED
OUTPUT COUNT

CORRECTED
OUTPUT COUNT

UNCORRECTED
OUTPUT COUNT

Vin

a) Nonlinear ADC curve b) LUT transfer function c) Corrected ADC curve

Figure 3.1: Transfer functions of nonlinear ADC with LUT correction

Since LUT is a discrete point by point mapping implementation of a transfer

characteristic, it requires 2N entries to fully cover the whole range of the N bit ADC

uncorrected output. In order to reduce complexity of the digital implementation, a

combination of the LUT approach and linear interpolation is used [1, 2]. Figure 3.2

shows definition of the LUT: The uncorrected counter output n is divided into an

upper and a lower group of bits, thereby segmenting the ADC transfer characteristic.

The size of the upper MSB word nU , U bits long, determines the maximum number

of points M in the LUT: M ≤ 2U + 1. The MSBs nU is served as index to a lookup

table which holds correction coefficients anU
. Within each segment, the value of the

LSB word nL is used to linearly interpolate between adjunct anU
and anU+1 values

in the LUT. Since the two adjunct LUT entries are separated by 2L on the n axis,

20

the corrected output code x can be calculated as:

x = anU
+

nL

2L︸︷︷︸
y

(anU+1 − anU
) (3.1)

The LUT can be implemented using digital registers and multiplexers. One

multiplication is required for the linear interpolation. The fraction 1/2L can be

realized simply by an L bit shift in radix point. Since the lengths of the MSB word

and LSB word determine the LUT length and spacing, they also affect the linearity

of the final digital output. The number of points in the LUT needed for adequate

correction is determined by the desired ADC accuracy and the nonlinearity of the

VCO V-f characteristic. More points in the LUT provide a better linearity of the

digital output but require more complex digital circuitry, and consume more power

[1, 2].

nL

a0

a1

a2

aM
a

M-1

x

0 1 M-12nU

LINEAR
INTERPOLATION

LSBs
MSBs

nLnU

U bits
L bits

n
UNCORRECTED COUNT n

SEGMENTATION
INTO UPPER,
LOWER BITS

CORRECTED OUTPUT CODE

2L

LUT COEFF ai

Figure 3.2: Lookup table with linear interpolation digital correction

Another aspect that must be considered when implementing the LUT is the

21

“redundancy factor”. Due to the discrete nature of the input count, there are

numbers that cannot come out of the interpolation. An example of this is shown

in Figure 3.3. At the region where the slope of the LUT transfer function dx/dn

is greater than 1, as the input count increases by 1 the corresponding output code

might increase by more than 1, therefore skipping over some possible values, leading

to missing codes in the ADC. To ensure every output x can be reached by at least

MISSING
CODES

LUT OUTPUT CODE x

VCO COUNT n

10

9

8

7

1 2 3 4 5 6 7 8 9

6

5

4

3

2

1

0

SLOPE dx/dn >1

Figure 3.3: Missing codes in LUT implementation

one input count n, the slope dx/dn must always be less than unity [18]. For an N-bit

converter, the ultimate output code x will have 2N possible values, zero to 2N − 1.

In order to ensure the slope to be less than unity, the total possible output counts

of the VCO must be increased to R(2N − 1), where R is a redundancy factor. For

an ideal ADC, the slope is always 1, therefore, no redundancy would be required,

and R = 1.

22

There are several ways to implement the redundancy factor in VCO-based ADC.

The first one would be to initialize the LUT so that total output range is reduced

by a factor of R compared to the input range. For example, as discussed previously,

the distance between two adjunct LUT entries in the n domain is 2L where L is the

LSB word length. The redundancy factor R could be realized by initialize the LUT

such that the difference between two values in the adjunct LUT locations is 2L/R.

Another simpler approach is to shift the radix point of the digital output code.

For instance, the redundancy factor of 4 can be implemented by a left shift in the

radix point by 2 bits. Although, this method only works if R is a power of 2, it is

easy to be implemented in digital domain and will be utilized in this project.

3.2 Dithered Split-ADC Calibration Concept

The task of the calibration procedure is to determine the ai coefficients in the LUT

used for linear interpolation as shown in Figure 3.2. One option would be to take

the ADC offline, sweep the input linearity over the entire signal range and determine

the proper coefficients ai, as shown in [10]. Disadvantages of this approach include

the need to take the ADC offline and develop the known input signal. Another

drawback is that the VCO characteristic could be a function of temperature. As

the VCO characteristic changes, it requires different set of coefficients ai to properly

correct the digital output. Therefore, offline calibration technique cannot mitigate

the nonlinearity problem if the ADC characteristic differs over time. This section

discusses the proposed approach using “Split ADC” architecture presented in [1, 2]

to realize the background calibration with no need for an accurately known input

signal.

Figure 3.4 shows the split ADC concept as implemented in this project. The

23

nA xA

vIN

vINA

vINB

VREF

xA+xB

2

xBnB

x

VCO “A” LUT “A”

CAL

f-D

f-D

PRN

DITHER

VCO “B” LUT “B”
ADC “B”
CHANNEL

ADC “A”
CHANNEL

p

p

Figure 3.4: Dithered Split ADC system block diagram

signal path is split into two channels, each producing individual output codes xA

and xB. A dither signal ±ΔV is added to the input voltage VIN so that the inputs

to each channels are:

VINA = VIN − pΔV (3.2)

VINB = VIN + pΔV (3.3)

in which p = ±1 is chosen on a pseudo-random basis for each conversion. The best

estimate for ADC output code x is the average of the xA and xB outputs:

x =
xA + xB

2
(3.4)

Since, the dither is added to one channel, and subtracted from the other, its effect

can be eliminated when averaging the digital output codes. The difference Δx of the

two output codes xA and xB can be used to calibrate the two LUTs transparently

to converter operation in the output code signal path:

Δx = xB − xA (3.5)

24

For more intuitive understanding of the algorithm, the next subsections consider the

local difference between the “A” and “B” characteristics, followed by calibration of

the slope.

3.2.1 ADC Characteristic Alignment

In general the two VCOs have different characteristics, requiring two separate LUTs

for each of the “A” and “B” ADCs, as shown in Figure 3.5. Since the VCO char-

acteristics are different, even with identical input voltages the uncorrected output

count nA and nB will generally be different. If the two LUTs had been correctly

calibrated, the xA and xB outputs would have been equal. If the LUTs are not

calibrated correctly, the LUT output xA and xB would have been different. The

nonzero difference Δx = xB − xA indicates a need to adjust the LUTs to bring the

LUTs and the ADC into calibration. Since there is no reason to prefer one VCO

"B" ADC

"A" ADC

x

nA

xB

x/2

nB

different VCO counts for same Vin

VCO count

xA

Figure 3.5: Split ADC characteristic alignment

over the other, half of the total difference Δx is assigned to each LUT to produce

25

the same output code of:

x = xB − Δx

2
= xA +

Δx

2
=

xB + xA

2
(3.6)

For each conversion, one LUT location is updated such that the output codes

are the same for identical input voltages VIN regardless of the disagreement in the

two VIN -to-n characteristics. Therefore, over many conversions across the input

signal range, repeating this LUT adjustment process will eventually bring the ADC

characteristics into agreement. However, the main difficulty of this approach is

that while point-by-point agreement among the conversions can be achieved, the

linearity of the ADC is not guaranteed. In other words, calibration can end up with

two agreeing but equally erroneous nonlinear characteristics as shown in Figure 3.6.

This difficulty is addressed in Section 3.2.2 below.

"B" ADC
"A" ADC

VIN

DESIRED LINEAR
CHARACTERISTIC

OUTPUT CODE X

Figure 3.6: Split ADC Characteristic alignment with two agreeing but equally non-
linear ADC characteristics

26

3.2.2 Slope Calibration

The characteristic alignment technique discussed above does not have any visibility

to the linearity of the two channels. To enable correction of linearity errors, the

dither function is added to the input as shown in the system block diagram of Figure

3.4. The inputs are offset by a known dither value ±ΔV representing a known code

excursion ±D at the ADC output. However, since the two ADC characteristics are

different, the actual codes corresponding to ΔV also differs from the ideal value.

Therefore, the general input voltages and output codes of the two channels can be

expressed by:

VINA = VIN − pΔV → xA = x− pda (3.7)

VINB = VIN + pΔV → xB = x+ pdb (3.8)

where p is either +1 or −1. As Equation 3.7 and Equation 3.8 indicate, not only

the point-by-point agreement but also the slopes of the VCO characteristics are now

under consideration. The difference of the two output codes xoutA and xoutB can be

calculated as:

Δx = (x− x) + p(da + db) = p(da + db) (3.9)

Figure 3.7 shows the idea of slope calibration. Ideally, when the two ADCs are

identical and linear, da and db would be equal toD. Therefore Δx(ideal) = p(D+D) =

2pD. The fact that Δx is different from the desired value ±2D indicates that the

slope of the “A” and “B” characteristics need to be adjusted. The mathematical

derivation of how the LUT entries would be updated is discussed in Section 3.2.3

below.

27

x +db

-da

Vin V + VininV - V

OUTPUT CODE

correct
slope"A" ADC

"B" ADC

Figure 3.7: Slope Calibration

3.2.3 Error Estimation

This section investigates the mathematical derivation of the error estimation and

LUT calibration process. Firstly, as discussed in the previous sections, generally

the two LUTs have different coefficients denoted by ai and bi corresponding to ADC

“A” and ADC “B”. Therefore, for each LUT Equation 3.1 can be rewritten as:

x̂A = (1− yA)ânUA
+ yAânUA+1 (3.10)

x̂B = (1− yB)b̂nUB
+ yB b̂nUB+1 (3.11)

The “hat” above each parameter in the equations denotes the difference between

the actual value, that is needed to be calibrated, and the desired correct value. The

LUT entries can be redefined as the sum of the correct value and an error term ε.

ânUA
= anUA

+ εnUA
(3.12)

28

b̂nUA
= bnUA

+ εnUB
(3.13)

Substitute (3.12) and (3.13) into (3.10) and (3.11) gives:

x̂A = (1− yA)(anUA
+ εnUA

) + yA(anUA+1 + εnUA+1)

= [(1− yA)anUA
+ yAanUA+1]︸ ︷︷ ︸

xA

+(1− yA)εnUA
+ yAεnUA+1

and:

x̂B = (1− yB)(anUB
+ εnUB

) + yB(bnUB+1 + εnUB+1)

= [(1− yB)bnUB
+ yBbnUB+1]︸ ︷︷ ︸

xB

+(1− yB)εnUB
+ yBεnUB+1

Given that the difference of the two corrected digital outputs, xB − xA, should be

2pD as mentioned in Section 3.2.2, taking the difference of the estimates results in:

x̂B − x̂A − 2pD = (1− yB)εnUB
+ yBεnUB+1 − (1− yA)εnUA

− yAεnUA+1 (3.14)

Equation 3.14 captures the contribution of each LUT entry error to the variation of

Δx = xB − xA from its ideal value 2pD. If all the error terms ε in (3.14) are zero,

then the left hand side must be equal to zero, indicating the correct offset and slope

calibration of the ADC characteristics.

Mathematically, four conversions are needed to solve for four unknown errors in

a specific LUT entry in (3.14). Since there are many LUTs errors to determine,

an ensemble of K (≈ 1000) conversions is accumulated. A matrix representation of

these results are described by:

[
YA YB

]
·

⎡
⎢⎢⎣ −eA

eB

⎤
⎥⎥⎦ = Δx− 2Dp (3.15)

29

YA and YB are K×M matrices containing coefficients yA and yB in (3.14); K is the

ensemble size and M is the length of the LUT. An example of YA is shown in (3.16).

Row ith of the matrix represents error weight coefficients for the ith conversion in

the ensemble; and column kth contains coefficients corresponding to kth entry in the

LUT. Since in every conversion, only two of the LUT locations nU and nU +1 would

be hit, there are only two nonzero terms,1− y and y, in each row.

YA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 (1− yA1) yA1 0 · · ·
0 0 (1− yA2) yA2 · · ·
...

...
...

...

(1− yAK) yAK · · · 0 · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.16)

eA and eB in (3.15) are M × 1 column vector of the LUT errors to be determined:

eA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε0A

ε1A
...

εMA

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, eB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε0B

ε1B
...

εMB

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.17)

Δx and 2Dp are K × 1 column vectors of the actual x̂B − x̂A differences and the

ideal values xB − xA = 2pD, respectively in each conversion.

Δx− 2Dp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δx1

Δx2

...

ΔxK

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− 2D

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1

p2
...

pK

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.18)

Ideally, the LUT error vectors eA and eB could be determined by solving Equa-

tion 3.15, then would be subtracted from the ai and bi in the LUT to get correct

30

coefficients. However, there are difficulties associated with this approach. Firstly,

since the total number of LUT locations (2M) is much fewer than the number of

conversions K in an ensemble, the system is considered as an “overdetermined”

systems. In other words, the matrix Y =
[
YA YB

]
in Equation 3.15 has more

rows than columns; therefore, the system of equations has more equations than

unknowns. According to [20], overdetermined system is usually inconsistent and

does not have a unique solution, especially when there is a lot of uncertainty and

randomness in the system. Secondly, reducing the number of conversions K to 2M

makes Y to be a square matrix, but does not guarantee it to be full rank; and

unique solution does not exist. Particularly, when there are fewer conversions, it is

very likely that the input signal does not hit all the LUT locations in one ensemble,

resulting in “zero” columns in Y. Finally, even if the solution of (3.15) exists, solving

for eA and eB requires a very complicated left inverse matrix operation which is too

computationally intensive and could not be realized by a simple digital circuitry.

Due to all of these difficulties, another approach is investigated in the next section

to estimate the error of the LUT coefficients.

3.2.4 Iterative Matrix Solution

The main challenge to the calibration process addressed in Section 3.2.3 includes

the ability to solve for an exact solution of Equation 3.15. To simplify the digital

hardware, an iterative procedure is used to avoid matrix inversion [3]. Instead of

solving for exact error terms, an LMS-style estimation method is adopted. The

procedure begins by firstly multiply both side of Equation 3.15 with the transpose

of Y: (
YT ·Y

)
· e = YT · (Δx− 2Dp) (3.19)

31

For simplicity, assume (unrealistically) that the
(
YT ·Y

)
matrix is equal to the

identity matrix (
YT ·Y

)
= I (3.20)

Substitute (3.20) into (3.19) gives an “over simplified” solution to the error matrix:

e =

⎡
⎢⎢⎣ − eA

eB

⎤
⎥⎥⎦ = YT · (Δx− 2Dp) (3.21)

The corrected LUT entries would be calculated by subtracting the error terms

from the incorrect LUT coefficients. However, since (3.21) relies on the unrealistic

assumption (3.20), a least mean square (LMS) method is adopted by subtracting a

small portion μ of the estimated errors e as follow:

ai
new = ai

old − μεiA (3.22)

bi
new = bi

old − μεiB (3.23)

Examination of (3.21) and (3.16) shows that the large Y matrix need not be

stored, since the information required for the εA and εB estimation can be accumu-

lated on a conversion-by-conversion basis. Every conversion, if a LUT location is

hit, the error for that entry will be accumulated and then finally subtracted from

the actual LUT coefficients at the end of the ensemble. The way each error is

accumulated in every conversion can be described by:

εiA
(new) = εiA

(old) − (1− yiA)(Δxi − 2piD) (3.24)

ε(i+1)A
(new) = ε(i+1)A

(old) − yiA(Δxi − 2piD) (3.25)

εiB
(new) = εiB

(old) + (1− yiB)(Δxi − 2piD) (3.26)

ε(i+1)B
(new) = ε(i+1)B

(old) + yiB(Δxi − 2piD) (3.27)

32

The energy cost of implementing the algorithm is modest; only two additional

multiplications per conversion are required.and the multiplier is already available

as a resource since it is required for the linear interpolation. As the four equations

indicate, all four error terms are proportional to Δxi − 2piD. The more Δx differs

from its ideal value, the larger the error terms. Additionally, the “distance” be-

tween the actual output code to the LUT coefficient also plays an important role in

updating the LUT. It is related to the percentage of the contribution of each LUT

entry to the error of the output. Intuitively, this makes senses, since the closer the

value to a LUT location, the more effect that LUT entry has on the output code.

Therefore the error of the output code is more likely due to the error of that LUT

entry compared to the others. This can be seen in Figure 3.8. One extreme example

of this is when yiA equals zero; all of the output error is due to LUT coefficient ai

and no information on the error of ai+1 is observed.

2 (1-y)A
L2 yA

L

a i

a i+1

x

VCO output count n

Corrected output code x

2 LUT
locations

1-yi
yi+1

Figure 3.8: Error estimation depends on distance of the LUT locations to the input
count

A key advantage of the LMS approach is that the error estimates need not be

accurate; all that is required is that they be zero-bias and (on average) steer the

convergence of each LUT entry in the correct direction [3]. Secondly, development

33

of the split ADC approach relied on the A and B inputs differing by a known ΔV

dither. In practice, noise will cause an additional difference, leading to inaccuracy

in error estimation even if the error terms had been solved exactly. By averaging

information over many ensembles of conversions, the LMS approach averages out

the effect of noise in determining calibration parameters [1].

3.2.5 Limited Signal Range and “Stitching”’ Estimation

As mentioned previously in Section 3.2.3, for each conversion, only the two LUT

locations, which are hit, are updated. Therefore, regions of the LUT not covered

by the input signal are not calibrated. If the signal activity histogram changes to

access previously unused LUT entirely, ADC error may increase dramatically until

the background calibration loop can converge for the newly used portions of the

LUT.

Consider the example shown in Figure 3.9. Suppose the error estimation process

begins with an initial distribution of linearly spaced LUT entries ai as shown in the

plot at the top of the figure. Also shown as the solid gray line in the figure is the

correct characteristic for error estimation process to converge to. Since the LUT

entries are incorrect the error estimation process would result in nonzero values,

which will be used in the LMS loop to drive the errors toward zero.

In the middle of Figure 3.9 is a histogram of input voltage distribution during

one ensemble of K conversions. Due to the limited signal range, only LUT segments

2-5 are used; the input voltage never reaches the range corresponding to segments

1, 6, or 7.

Below the histogram in Figure 3.9 is a plot showing open circles to represent

the results of the error estimation process for this ensemble of data. Nonzero error

estimates are correctly returned for locations a1-a5. But since LUT locations a0, a6,

34

MSBs

CORRECTED OUTPUT CODE LUT (INITIAL)

CORRECTED OUTPUT CODE LUT (UPDATED)

ESTIMATED ERROR

UNCORRECTED
COUNT

UNCORRECTED
COUNT

SIGNAL HISTOGRAM

1 2 3 4 5 6 7

x

n

n

n

a0

a1

a2

a3

a4

a5

a6

a7

0 1

2
3 4 5 6 7

x

a0

a1

a2

a3

a4

a5

a6

a7

a0

a6

a7

Figure 3.9: Example for portions of input range not covered by signal.

and a7 are never used, estimate for these locations is zero.

At the bottom of Figure 3.9 is a plot of the updated lookup table. As the LMS

35

process updates the ai values, locations a1-a5 are corrected since the input signal

range allows proper estimation of errors ε1-ε5. But since the error estimates are

zero for a0, a6, and a7, they will not change even as a1-a5 are corrected. The result,

with gray circles shown for a0, a6, and a7 at the bottom of figure 3.9, is a LUT with

discontinuities and potentially even nonomontonicity. If the input signal histogram

shifts, the ADC will make large errors until the calibration loop converges with the

new information.

The solution implemented in this work is based on the ability to distinguish

between the cases of ε = 0 due to a true zero error, and ε = 0 due to an LUT location

not being used. During each ensemble of conversions, the calibration algorithm

keeps track of whether an LUT location has been used or not. After calculation

of the εi values, but before the LMS updating, the algorithm checks for unused

LUT locations. When the algorithm reaches an unused LUT location, the ε = 0

in that location is replaced with the nearest valid estimate from an LUT location

that was used. This substitution is represented with the arrows and solid circles in

the plot of ε in Figure 3.9. The result, shown with the open circles for a0, a6, and

a7 at the bottom of Figure 3.9, preserves continuity of the LUT and reduces ADC

errors when the input signal range histogram changes. This “stitching” of the LUT

does not completely eliminate ADC errors. Since there is no signal in the unused

LUT locations no information as to the correctness of those values is determined.

However this technique does preserve continuity of the lookup table at the boundary

between the used and unused portions of the signal range.

3.2.6 Offset Consideration

As noted earlier, this calibration approach provides no information on offset. The

error estimation block only sees the difference between the two channels, thus has no

36

vision on the absolute offset of the ADC. Since the LMS loop is a perfect numerical

integrator, any systematic offset errors in the estimation process would accumulate

indefinitely, causing numerical overflow. To prevent this numerical problem, the

value of one location in the “A” table is fixed and all other error estimates are

referenced to that location to prevent a global drift in offset of the lookup table

entries.

If absolute offset accuracy is required, one of the “A” or “B” converters can

be taken off line for one conversion to sample a known DC voltage and provide

an absolute offset reference for the ADC. When this is done the averaging the two

channel is suspended for that one conversion and the ADC output is determined

only by the output of the other “A” or “B” converter that was not taken offline.

3.3 Calibration Algorithm Summary

OUTPUTx

LUT
CORRECTION

INPUT DITHER

xA, xB CODES

nA, nB
RAW COUNTS

vINA, vINB

CONVERSIONCALIBRATION

SAMPLE vIN

xA+xB
2

ˆ
a , ˆ b

ˆ ˆ a i i , b

ERROR
ESTIMATES

UPDATE
LUT VALUES

LOOKUP TABLESnew

old

μ

x

“STITCH”
ESTIMATE

CONTINUITY

yA, yB

OPERATES OVER ENSEMBLE SET

xB-xA±D

ESTIMATION
MATRIX

“TARGET” DIFFERENCES

LMS FEEDBACK LOOP

TRACK LUT
USAGE

HISTOGRAM

Figure 3.10: Calibration algorithm flow chart

37

Figure 3.10 summarizes the LUT calibration and correction technique imple-

mented in this project. While the right hand side of the figure captures the oper-

ations that occur every conversion, the left hand side includes all calculations that

are done for every ensemble (K conversions).

Initially, the analog input voltage is preprocessed by adding a known dither

voltage ΔV to one channel and subtracting ΔV to the other. The sign of the dither

is determined by a pseudo-random sequence p = ±1. The analog voltage is then

converted in to digital outputs nA, nB by counting the number of phase transitions

of the VCO output clock signals in a given period of time. Generally, the two

VCOs are not identical and both nonlinear; therefore two LUTs are implemented to

correct the output counts. The final digital code is obtained and the effect of dither

is eliminated by averaging the two resulted outputs of the two channels xA and xB.

In every conversion, there are at most two adjunct LUT coefficients used for

each channel. These locations are then recorded by the “TRACK LUT USAGE

HISTOGRAM” block in Figure 3.10. Additionally, all parameters needed to esti-

mate the error using Equation 3.15 are also calculated, including yA, yB, and Δx.

The error terms εA and εB of all the used LUT locations are then accumulated

over K conversions. Finally, before the LUTs are updated by subtracting a small

amount με, the error of the unused LUT coefficients are managed by the “STITCH

EXTIMATE CONTINUITY” block to preserve the continuity of the LUT.

38

Chapter 4

Analog Circuit and PCB

Implementation

This chapter describes the Printed Circuit Board (PCB) design of the VCO-based

ADC. The choice of the VCO architecture is discussed in the first section. In order

to reduce the frequency of the signal processed by the FPGA board, a frequency

divider was built; the details are discussed in the next section. Finally, the overall

block diagram of the PCB is summarized in the last section.

4.1 Ring VCO

The purpose of this section is to discuss a VCO topology which can provides an

oscillating waveform swinging from 0V to 1.8V and has wide frequency range of

about 100MHz. Although the linearity of the VCO directly affects the performance

of the ADC, the digital calibration technique applicability is not limited by the VCO

architecture [1, 2]. Due to the time constraint, this project does not concentrate on

a complete VCO design in transistor level. Instead, different circuits were built at

39

the discrete level, and then tested to determined the most suitable implementation

of the VCO for the ADC specifications.

Most of these implementations were based on the 74AUC1G00 NAND gate.

There is no specific reason for using this chip other than the availability of the

component in the lab. It should be noted that the fundamental building block of a

VCO, an inverter, can be easily implemented using a NAND gate by connecting the

two input of the gate as shown in Figure 4.1. Three NAND gates are then connected

together in a feedback loop to form a ring oscillator. The frequency at which the

circuit oscillates depends on the propagation delay of each stage as discussed in

Section 2.3

A

B

IN OUT IN OUT

Figure 4.1: Simple ring oscillator implemented by NAND gate

There are several ways to control the frequency of the oscillator. One could

be to use the current starved VCO architecture by using a MOSFET to control to

current provided to the inverter as shown in Figure 4.2. However, one difficulty

with this approach is that the power supply VDD and the input voltage range VIN

needs to be high enough so that transistor does not crash in to saturation region.

More importantly, experiments show that the frequency to VIN characteristic of this

structure is not well behaved. The output waveform has relatively large ripples,

causing uncertainty in the phase transition measurements. This might be caused

by the internal structure of the NAND gate which cannot be controlled. Therefore

40

another structure is considered for this project.

A

B

VIN

VDD

Figure 4.2: Using MOSFET to control the delay of the inverter

Shown in Figure 4.3 is the schematic of the VCO used in this project. The

ring oscillator is implemented in the same manner as Figure 4.1. The speed of

the oscillator is controlled directly by varying the supply voltage of these inverters.

RS = 50Ω is the protecting resistor to limit the input current. An emitter follower

is added to buffer the input voltage VIN , preventing the two channels to be coupled

together.

One important factor that needs to be considered when designing the emitter

follower is that as the current drawn by the ring oscillator changes, the bias voltage

VBE also changes exponentially. In order to avoid the nonlinear effect introduced by

the emitter follower, it is desired that the collector current of transistor IC should be

large enough compared to the maximum current drawn by the ring oscillator IRING.

Measurement shows IRING(max) ≈ 5mA. If IC is about 3X larger than IRING then

the resistor RE can be determined by:

RE =
VE

IC − IRING

≈ 2V

15mA− 5mA
= 200Ω (4.1)

The input voltage VIN is translated directly to the supply voltage of the ring

41

2.5V
VIN

50

200

1.8V

V
OUT10mA

74AUC1G00

INPUT BUFFER RING VCO OUTPUT BUFFER

I = 5mARING

R =E

RS

50k

50k

C

Figure 4.3: Ring VCO schematics

oscillator by: VRING ≈ VIN − 0.7V . Therefore, not only the frequency but also

the amplitude of the oscillated output waveform depend on the input voltage VIN .

In order to keeps the amplitude of the output clock signal approximately at 1.8V ,

one more inverter is required as shown in Figure 4.3. This inverter is powered by a

constant 1.8V supply voltage providing an output swing from 0 to 1.8V . A simple

resistor bias circuit is needed to bias the input of the inverter at around 0.9V . The

output of the ring oscillator is AC coupled to the output stage by the capacitor

C = 1000pF . Two VCOs in Figure 4.3 were built; the sample waveform of the

Vin = 1.6V Vin = 2.1V

Figure 4.4: VCO output waveform for 1.6V and 2.1V input voltage

output is shown in Figure 4.4 and the characteristics were measured as shown in

Figure 4.5. The analog input voltage ranges from 1.6V to 2.1V and the output

42

1.6 1.7 1.8 1.9 2 2.1
20

40

60

80

100

120

140

160

INPUT VOLTAGE V [V]IN

f
[M

H
z]

V
C

O

Figure 4.5: VCO V-to-f characteristic

frequency ranges from 40 MHz to about 140 MHz. It can be seen in the figure

that the two VCOs have similar but not identical characteristics. Both of them are

nonlinear; but the slopes df/dV only vary within about ±20% of its average value

which is given by:

KV CO(AV G) =
Δf

ΔV
≈ 14MHz− 40MHz

2.1V − 1.6V
= 200

[
MHz

V

]
(4.2)

4.2 Frequency Divider

Although the digital calibration can be implemented solely using the FPGA board,

a divider is built in order to reduce the frequency of the waveforms processed by the

FPGA. This frequency divider can be considered as a part of the counter. In other

words, the 12 bits counter is split into two 6 bit counters: one is constructed in the

PCB, the other is implemented by the FPGA . The PCB schematic of the frequency

divider is shown in Figure 4.6. As there is no correlation between the VCO output

clock signal and the reset signal provided by the FPGA board, the ripple counter

structure is used instead of the synchronous one.

43

S

CLK

D

R

Q

Q

S

CLK

D

R

Q

Q

S

CLK

D

R

Q

Q

S

CLK

D

R

Q

Q

S

CLK

D

R

Q

Q

S

CLK

D

R

Q

Q

RIPPPLE COUNTER

SMALLHC74 SMALLHC74 SMALLHC74SMALLHC74 SMALLHC74 SMALLHC74

74AUC1G00

VCO_GATE

1.8VDD
BIT 5

CTR_CLR

BIT 0

VCO CLK OUT
DE2-115

FPGA

BIT 1

BIT 2

BIT 3

BIT 4

Figure 4.6: Ripple counter circuit schematic

The circuit uses six dual positive edge triggered D-type flip-flops 74HC74. All

six bit output signals of the ripple counter become the inputs to the FPGA board.

The FPGA only needs to count the most significant bit signal “BIT 5” of which the

frequency is 64 times smaller than that of the VCO output fV CO.

It should be noted that, in addition to the low enable reset signal CTR CLR the

counter also requires a gate signal VCO GATE. When VCO GATE = 1, the NAND

gate inverts the VCO output clock signal; when VCO GATE = 0 the output of the

NAND gate is always high. Therefore, no phase transition of the VCO output would

be counted during the time when VCO GATE is high. This sets up a “break” time

window for the FPGA to grab the data and reset the counter. The actual effective

conversion time is only the period when VCO GATE is low.

VCO clk

VCO_GATE

COUNTER INPUT

No phase transition counted

T CONV

Figure 4.7: Timing diagram of VCO GATE signal

44

4.3 PCB Design Summary

Figure 4.8 shows the complete block diagram implementation of the PCB for this

project. The input voltage VIN is split into two channels. The PRN signal represents

a pseudo-random sequence of either 1 (VDD = 1.8V) or 0 (GND). The dither size

can be controlled by the resistor Rx as follow:

2ΔV =
VDDRs

(Rx +Rs)
⇒ ΔV =

VDDRs

2(Rx +Rs)
(4.3)

VCTR

50

PRN

VCO A

74AUC1G00

VCO B
74AUC1G00

VCO_GATE

50

50

PRN

RIPPLE
COUNTER

B

RIPPLE
COUNTER

A

R

R

CTR_CLR

BIT 0A
BIT 1A
BIT 2A
BIT 3A
BIT 4A
BIT 5A

BIT 0B
BIT 1B
BIT 2B
BIT 3B
BIT 4B
BIT 5B

Rx

Rx

RS

RS

Figure 4.8: PCB block diagram

The analog voltages are then converted to frequency domain using the two VCOs

of which the V-to-f characteristics are shown in Figure 4.5. The two 774AUC1G00

NAND gates are then used to generate a break time window for the counter to grab

the data and to reset. Two 6 bit ripple counters are constructed using six 74HC74 D-

flip flops. The reset signal CTR CLR, gate signal VCO GATE, and dither PRN are

0-1.8V digital signals provided by the FPGA board. The first five least significant

bits of the two ripple counters are sampled by the FPGA, while the sixth bit signals

45

are then counted to get the last seven most significant bits of the VCO counts n.

The detailed implementation of FPGA board are documented Chapter 5

46

Chapter 5

FPGA Implementation

The main focus of this project is to implement the calibration algorithm in an

FPGA board. The board used in this project is DE2-115; and the algorithm is

implemented in Altera - Quartus II 13.0. Although the whole calibration technique

can be coded solely using Verilog, it is easier to implement each block separately

using the schematic feature in Quartus II.

5.1 Top Level Block Diagram Design

This section describes a top design structure of the FPGA implementation for this

project. The Quartus II CAD system supports a schematic design method in which

the users draws a graphical diagram of the circuit. Each function can be imple-

mented using one block diagram which then can be described by either a verilog

source code file or a schematic design file. There are totally 6 blocks in the top level

design:

• CLOCK GENERATOR: generate all the clock signals controlling the timing

operation of other blocks and provide reset and gate signals for the PCB

47

• PRN GENERATOR: generate pseudo-random sequence p for the dither ΔV

• COUNTER A: sample 5 LSB signals and count 7 MSBs of VCO A output

• COUNTER B: sample 5 LSB signals and count 7 MSBs of VCO B output

• CALIBRATION: perform the LUT correction and background calibration.

• MEMORY CONTROLLER: control the SRAM to store measured data

COUNTER A

COUNTER B

CALIBRATION MEMORY
CONTROLER

CLOCK_50

PRN GENERATOR

CLOCK GENERATOR

DATA IN A

DATA IN B nB

nA

xout
SRAM
control
signals

PRN

CTR_CLR

VCO_GATE

12'b 16'b

6'b

6'b

SRAM

50MHz

Figure 5.1: Simplified top level block diagram for FPGA implementation

Figure 5.1 captures the simplified block diagram of the FPGA implementation.

All the clock signals are generated based on the 50MHz clock signal “CLOCK 50”

produced by an oscillator of the DE2-115 board. The two COUNTER blocks output

12 bit numbers nA and nB which are then corrected by the CALIBRATION block.

The corrected output x has 16 bit and is written in the SRAM memory by the

MEMORY CONTROLLER block.

The DE2-115 FPGA board interfaces with the designed PCB through a 40-pin

expansion header. The voltage level of the I/O pins on the header is adjusted to

1.8V by the JP6 jumper. Figure 5.2 captures the inputs and outputs connected

to each pin of the GPIO. The FPGA takes 12 output signals of the two frequency

48

dividers, implemented on the PBC, as the inputs and provides the reset, gate clock

signals and the dither sequence p and p̄. The DE2-115 Control Panel is used to

performs all data transfers between the FPGA board and a host computer via the

USB Blaster link. Readers are encouraged to refer to the DE2-115 user manual for

more information.

1
3
5
7
9

GND
11
13
15
17
19
21
23
25

GND
27
29
31
33
35

0
2
4
6
8
5V
10
12
14
16
18
20
22
24
3.3V
26
28
30
32
34

DATA_MSB_A
LSB_A[4]
LSB_A[3]
LSB_A[2]
LSB_A[1]

LSB_A[0]

DATA_MSB_B
LSB_B[4]
LSB_B[3]
LSB_B[2]
LSB_B[1]

LSB_B[0]

PRN
CTR_CLR

VCO_GATE

VCO
COUNT

A

VCO
COUNT

B

Dither
sequence

p

Reset & gate
signal for
counters

Figure 5.2: GPIO input, output configuration

5.2 Clock Signal Generator

The first parameter that needs to be determined when implementing a clock gener-

ator is the sampling frequency fs. For this project, since the frequency range of the

VCO output is around 100MHz, in order to realize a 10 bit ADC with a redundancy

factor R = 2 the sampling frequency is required to be:

fs =
ΔfV CO

2NR
≈ 100MHz

2 · 210 ≈ 48.8MHz (5.1)

Figure 5.3 shows the CLOCK GENERATOR block. There are a total of 7 output

49

CLOCK GENERATOR ADC_CLK

CTR_CLR

VCO_GATE

MEM_CLK

ENSEMBLE_CLK

ENSEMBLE_CLK_RESET

ENSEMBLE_CLK_DELAY

ERROR_CORRECTION

CLOCK_50 I/O Type
CLOCK_50
ADC_CLK
CTR_CLR
VCO_GATE
MEM_CLK
ENSEMBLE_CLK
ENSEMBLE_CLK_RESET
ENSEMBLE_CLK_DELAY
ERROR_CORRECTION

INPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT

Figure 5.3: GPIO input, output configuration

signals produced which are listed below:

• ADC CLK: 48.8kHz main conversion clock of the ADC

• MEM CLK: 48.8kHz clock to control the MEMORY COTROLLER block

• CTR CLR: 48.8kHz reset signal to reset the counters

• VCO GATE: 48.8kHz gate window to block the VCO oscillated signal, “freez-

ing” the counter outputs while the ADC samples data.

• ENSEMBLE CLK: 48.8kHz/K clock to sample all the LUT error terms every

K conversions

• STITCH CLK: 48.8kHz/K clock to perform the “stitching” error estimation

for all unused LUT locations

• ENSEMBLE CLK DELAY: 48.8kHz/K clock to updates the LUT every K

conversions

All the clock signals are generated based on the 50MHz reference clock of the FPGA.

The simplest way to divide a clock frequency is to count the number of rising edge

50

of the reference clock. The maximum count of the counter determines the frequency

of the output signal:

fout =
fREF

Max count + 1
=

50MHz

Max count + 1
(5.2)

In this project, a 10 bit counter with maximum output count of 1023 is used to

realize the frequency of 48.8 kHz. To get the desired clock signals, the output of

the counter is then compared to a reference count value. This value determines the

relative delay of the output clocks. Figure 5.4 shows the timing diagram of all the

input and output signals to the CLOCK GENERATOR block.

ADC_CLK

CTR_CLR

VCO_GATE

MEM_CLK

ENSEMBLE_CLK

STITCH_CLK

ENSEMBLE_CLK_DELAY

sample the data

reset counters

block input to counter
save data to memory

sample all error terms

estimate error for unused LUT locations

update LUTs

1 conversion
(1024 reference clk cycles)

1 ensemble
(K conversions)

conversion
based
clocks
f = fs

ensemble
based
clocks
f = fs/K

Figure 5.4: GPIO input, output configuration

When implementing a complex clock network, eventually the design will intro-

duce physical gates in the clock paths to control the downstream clocks. This is

referred as “clock gating”. These gates could introduce significant delay and cause

large clock skew and lead to setup and hold-time violations [16]. Although the

FPGA has a 50MHz low skew reference clock, it is not flexible enough to represent

the clocking needs of a sophisticated design. When the global clock lines cannot nat-

urally accommodate these physical gates, the place and route tools will be forced

51

to use other on-chip routing resources for the clock networks with inserted gates,

usually resulting in large clock skews between different paths to destination regis-

ters. Additionally, using the detecting the rising edge of the clocks shown in Figure

5.4 is difficult. The main reason is because these clocks have very small duty cycles

of less than 1%. Therefore, they might have relatively high noise and jitter. An

unwanted ripple in the waveform my be miss-detected as a rising edge, resulting in

inconsistency in the design.

D Q

clk

Din

REF CLK

D Q

clk
GATED CLK

Dout

Logic gates

clock skew due to physical
gate in clock path

D Q

clk

Din

REF CLK

D Q

E

clk

GATED CLK

Dout

Logic gates

no clock skew both two DFFs
are driven by same based clock

gated clock becomes enable signal

GATED CLOCK

CLOCK ENABLE

Figure 5.5: Converting gated clocks to clock enables to eliminate clock skews

52

To overcome the two problems above, the “clock enable” method, illustrated in

Figure 5.5, is applied in this project [16]. The gated clock is used as an enable signal

of the flip flops. When the gated clock is to be switch “on”, the sequential elements

will be enabled and when the clock is to be switched “off”, the sequential elements

will be disabled. All the operations are performed at the rising edge of the reference

clock, therefore, eliminating the large clock skews. Additionally, since the circuit

functions when the the gated clock is high rather than at the rising edge of the gate

clocks, it also solve the rising edge miss-detection problem mentioned earlier.

5.3 Dither Generator

PRN GENERATOR

PRNCLOCK_50 I/O Type
CLOCK_50
CTR_CLR
PRN

INPUT
INPUT
OUTPUT

CTR_CLR

DFFE
D

ENA

Q
CLOCK_50

ADC_CLK

p

GPIO35

GPIO33

Figure 5.6: PRN GENERATOR block

Figure 5.6 shows the PRN GENERATOR block. One challenge in implementing

the PRN GENERATOR block is that the pseudo-random sequence is used for both

analog input and digital calibration. For each conversion, the dither is added at the

beginning and remains unchanged during the conversion time period TCONV , while

the digital calculation corresponding to that conversion is performed in the next

period, after the output counts of the counters are sampled. In Figure 5.6, PRN is

the pseudo-random sequence that is connected to the GPIO output pin for the analog

side of the ADC; whilse p is one period delayed version of the PRN needed for digital

calculation. Two clock signals are used: CTR CLR and ADC CLK to implement

53

these two pseudo-random signals. The PRN GENERATOR block generates an

output PRN at every falling edge of the CTR CLR signal. This output is then

sampled using a D-flip flop, which is enabled by the ADC CLK clock, to get p. The

idea of this can be explained by the timing diagram shown in Figure 5.7

VCO_GATE

CTR_CLR

ADC_CLK

grasp data
& reset effective

conversion time
T CONV

p1

p1

p2

p2

p3PRN

p
sampled version of PRN at ADC_CLK

p0

Figure 5.7: Pseudo-random signal timing diagram

The simplest pseudo-random bit sequence generator is the feedback shift register

[19]. A shift register of length m bits is clocked by the CTR CLR signal. The

reference clock is utilized to convert the gated-clock to enable clock as discussed

earlier in Section 5.2. An exclusive-OR gate generates the serial input signal from

the exclusive-OR combination of the nth bit and the last mth bit of the shift register.

The output of this circuit goes though a set of states and eventually repeating itself

afterK clock cycles. The lengthK of this sequence can be maximized and controlled

by changing the feedback tap n and the length of the shift registerm. For this project

K is chosen to be equal to the ensemble sized of 1024. The corresponding values

for m and n are 10 and 7, respectively [19]. Figure 5.8 shows the digital circuit

implementation in FPGA of the feedback shift register. When all the outputs of the

flip flops are low, the circuit is trapped at this state and the output is always 0. In

54

order to avoid this problem, an extra OR combination of all 10 bits is used as the

input preset signal to the flip flops. When all 10 bits are 0, the flip flop outputs are

reset to 1’s.

D Q

E

clk

PRN D Q

E

clk

PRN D Q

E

clk

PRN D Q

E

clk

PRN

1 2 7 10CTR_CLR

CLOCK_50

PRN

Figure 5.8: Pseudo-random signal timing diagram

5.4 Counter

As discussed in Section 4.2 the first 6 LSBs of the VCO output count n are counted

by a frequency divider implemented in the PCB. Therefore, the FPGA only need

to take care of the 6 MSBs. Figure 5.9 shows the COUNTER block with input and

output definitions. The same rippled counter structure shown in Figure 4.6 is im-

plemented in FPGA for both channels. The counters are reset when the CTR CLR

signal is low. All 12 bits of the output count are then sampled by the ADC CLK

clock signal and stored in a two 12 bit registers nA and nB. The LSB[4..0] and

MSB DATA signals are extracted from the 6 bit output of the PCB counters con-

nected to the FPGA board via the GPIO port.

55

COUNTER_A

ADC_CLK

CTR_CLR

DATA_MSB_A

LSB_A[4..0]

Nout_A[11..0]

CLOCK_50 I/O Type
CLOCK_50
ADC_CLK
CTR_CLR
DATA_MSB
LSB[4..0]
Nout[11..0]

INPUT
INPUT
INPUT
INPUT
INPUT
OUTPUT

Figure 5.9: Counter Block

5.5 Calibration and Correction Block

After the clock output of the VCO is processed by the frequency divider and the

COUNTER block, the raw output count is then corrected by a LUT which is cal-

ibrated digitally in background. These functions are performed by the CALIBRA-

TION block shown in Figure 5.10. The main two input data of the block is the

two raw output count Nout A and Nout B of the two counters which are sampled

by the ADC CLK clock at 48.8 KHz. All the other inputs are the clock signals

controlling the timing of the correction and calibration process. The corrected 16

bit output X out is then saved in the memory SRAM every conversion. In order

to understand the operation as well as the timing of the block, this section firstly

describe the LUT and error matrix implementation in FPGA. After that all the cal-

culations which occur every conversion is discussed, followed by those which occur

in updating calibration parameters after every ensemble set of K conversions.

5.5.1 LUT and Error Matrix Implementation

There are several ways of implementing a LUT in Verilog code. One could be to use

a simple case statement which is synthesized to purely combinational digital logic

56

CALIBRATION_CORRECTION

ENSEMBLE_CLK

ENSEMBLE_CLK_DELAY

STITCHING_CLK

Nout_A[11..0]

Xout[15..0]
CLOCK_50 I/O Type

CLOCK_50
ENSEMBLE_CLK
ENSEMBLE_CLK_DELAY
STITCHING_CLK
MEM_CLK
Nout_A[11..0]
Nout_b[11..0]
P
Xout[15..0]

INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
OUTPUT

Nout_B[11..0]

MEM_CLK

Figure 5.10: Calibration and Correction Block

elements [16]. The difficulty with this approach is that the LUT coefficients are

fixed and cannot be updated easily. Another method which is more appropriate for

this project is to implement the LUT as a memory where the LUT values are stored

in registers. These values can be referred by a multiplexer (MUX) and updated

via a demultiplexer (DEMUX). The example Verilog code for the LUT and the

synthesized digital circuit diagram is shown in Figure 5.11.

The same structure is used to implement the matrix errors ε. In order to avoid

the rounding error due to all digital calculations, precisions of all LUT and error

matrices are set to be 32 bits. To estimate the error matrices, three error terms are

needed for each channels.

• rawea, raweb: The raw error matrices that is updated every conversion.

• ea, eb: The sampled version of rawea and raweb updated every ensemble

when the ENSEMBLE CLK signal is high.

• eavalid, ebvalid: The final error matrix that includes the “stitching” algo-

rithm to preserve the LUT continuity

While, simply, all the error matrices are set to zero, several important factors

57

REG 0

REG 1

DEMUX MUX

ADDR ADDR

REG M

parameter LUTlength =7'd39;
reg [31:0] LUT_A [0:LUTlength];
reg [31:0] LUT_B [0:LUTlength];

M = LUTlength

32b32b

Updated
value

Figure 5.11: Code and synthesized digital circuit for LUT implementation

need to be considered when initializing the LUT. Intuitively, the LUT contains all

the output x = ai corresponding to the uncorrected count n = MSB · 2L, which has

all the LSBs equal to zero. The most straightforward way to initialize the LUT is

to set the output equal to the input code; and the MSB of the input code is equal

to the LUT location i. However, since the uncorrected count n does not start from

zero but from a minimum value nmin, there would be a unused LUT region from

location 0 to location MSBmin. Therefore, to eliminate this redundant region, the

address to the LUT is defined as

LUTlocation = i = MSB−MSBmin + 1 (5.3)

where MSBmin is the minimum MSB value that the uncorrected code n ever has for

a full-scale input signal. Since the LUT has 20 more precision bits compared to the

58

uncorrected count, the LUT coefficients are initialized as:

ai = i · 2L ∗ 220 (5.4)

Note that the 220 factor does not imply a scale factor of 220 but indicates the 20

precision bits of the LUT coefficients, as the radix point of the final output codes x

will be shifted to the correct position using MATLAB. The next section describes

the detailed calculations for the LUT correction and calibration block.

5.5.2 Conversion Based Calculations

This section describes all the calculations that occurs every conversion in the cal-

ibration and correction block. These include the linear interpolation and error es-

timation. The linear interpolation is performed solely by combinational logic. In

other words, no clock signal is needed to control the timing of these operation. Fig-

ure 5.12 shows a synthesized circuit diagram of the correction block. Firstly, the

MSB and LSB are recorded based on the count n. The MSB is then used as the

control signal to the MUX to determine the LUT coeffients ai and ai+1. Then the

linear interpolation in Equation 3.1 is performed using a multiplier and a shift reg-

ister. The same structure is used for B channel. After that the final output code

LUT A ai

ai+1
MSB_A

LSB_A

N
SHIFT
REG

X

Figure 5.12: Synthesized digital circuit for the correction block

is calculated by taking the average of the two output xA and xB. The error term

59

deltax is also extracted as:

deltax = xB − xA − 2pD (5.5)

This equation can be realized by a digital circuit as shown in Figure 5.13. The two

values 2D and -2D are two parameters that are initially stored in two registers. The

pseudo-random signal p is served as the control signal to a multiplexer to indicate

the correct sign of ±2D. The calculated value deltax is then utilized to in the error

estimation process which is discussed next.

XB
-XA

2D

-2D

p

0
1

deltax

Figure 5.13: Synthesized digital circuit for the correction block

Since the input n is clocked by the ADC CLK signal, the output x and deltax

is expected to change its value after a time delay compared to the ADC CLK.

Therefore, all the next operations to estimate the error are timed by the clock

MEM CLK which is a delayed version of the ADC CLK. When the MEM CLK

signal is high, the following calculations are performed:

• Update the rawea and raweb matrices by:

rawea[i] ← rawea[i]− deltax(2L − LSB A) (5.6)

raweb[i+ 1] ← raweb[i+ 1] + deltaxLSB A (5.7)

raweb[j] ← raweb[j]− deltax(2L − LSB B) (5.8)

raweb[j + 1] ← raweb[j + 1] + deltaxLSB B (5.9)

60

• Track the used LUT location by:

hit A[i] = 1′b1 (5.10)

hit A[i+ 1] = 1′b1 (5.11)

hit B[j] = 1′b1 (5.12)

hit B[j + 1] = 1′b1 (5.13)

The two arrays hit A and hit B track which LUT locations have been hit during one

ensemble. Any zero entry in the arrays indicates an unused LUT location. These

arrays will be utilized to estimate the error terms of the unused LUT region to

preserve the LUT continuity.

5.5.3 Ensemble Based Calculations

In order to understand all the calculations that occur every ensemble, a timing

diagram of all the clock signals is first investigated. There are totally 4 clock signals

controlling these ensemble based operations as shown in Figure 5.14

ENSEMBLE_CLK

STITCHING_CLK

ENSEMBLE_CLK_DELAY

ENSEMBLE_CLK_RESET

sample rawea and raweb to get ea, eb

update eavalid, ebvalid

update LUTs

reset all error matrices

Figure 5.14: Ensemble based clock signals

61

After K conversions, the rawea and raweb error matrices are then sampled by

a set of D-flip flops enabled by the ENSEMBLE CLK clock signal to get ea and

eb. Before the LUTs are updated at the rising edge of ENSEMBLE CLK DELAY,

the “stitching” algorithm presented in Section 3.2.5 is applied to estimate the er-

ror terms for unused LUT locations. The results are stored in the eavalid and

ebvalid. Finally, all the error matrices needed for the calibration is reset by the

ENSEMBLE CLK RESET clock.

ea eavalid

hit
above

below

position eavalid [i-1]

eavalid [i]

eavalid [i+1]

ea[i-1]

ea[i]

ea[i+1]

Figure 5.15: Block diagram to realize the “stitching” algorithm

To realize the “stitching” algorithm, the structure shown in Figure 5.15 is uti-

lized. A 3:1 multiplexer is used for each entry of the error matrix. The idea of this

approach is that, if the LUT location i is hit, then the corresponding estimated error

term ea[i] is valid and is copied to the eavalid matrix. On the other hand, if the ith

entry is not used and is above the region covered by the signal range, no information

is gathered for that location; therefore ea[i] equals 0. In this case, the value stored

in the right below location (i− 1)thof the eavalid matrix is copied to the ith entry.

It is not necessary that the (i− 1)th location would be covered by the input signal.

However, after several clock cycles, the valid error term of the top used LUT loca-

tion will be copied to all the above locations. The LUT region that below the signal

62

range is also updated in a similar manner. All of these operations operate at the

rising edge of the 50MHz reference clock and is enabled by the STITCHING CLK

signals. Thus, it is required that the STITCHING CLK signal needs to be high for

a long enough time in order for the signal to propagates through all the unused LUT

locations.

A critical part of this design is to determine whether the LUT location is within

or above or below the signal range. As discussed in Section 5.5.2 the two number

hit A and hit B can track if the LUT location is hit or not. However, to distinguish

the “above” and “below” case the two additional above A and above B numbers are

considered. For a continuous input signal which cover a small range of the LUT,

the two binary number hit A and hit B always have the form of

hit = 0 · · · 0 11 · · · 1︸ ︷︷ ︸
used region

0 · · · 0 (5.14)

Taking the opposite of this gives:

above = −hit = 1 · · · 1 00 · · · 01︸ ︷︷ ︸
used region

0 · · · 0 (5.15)

As (5.15) shows, for unused LUT locations, the corresponding bit in parameter above

can indicates if the location is above or below the signal range. It should be noted

that, the technique presented in this section to realize the “stiching” algorithm only

works when the input signal is continuous. In other word, the signal never skips

any LUT location; therefore, the only possible unused LUT locations are at the two

ends of the LUT characteristic curve.

63

5.6 SRAM Controller

The DE2-115 board has 2MB SRAM memory with 16-bit data width. This SRAM

can be controlled by the FPGA by the MEMORY CONTROLLER block as shown

in Figure 5.16.

MEMORY CONTROLLER SRAM_ADDR[19..0]

SRAM_DQ[15..0]

SRAM_WE_N

CLOCK_50 I/O Type
CLOCK_50
MEM_CLK
Xout [15..0]
SRAM_ADDR[19..0]
SRAM_DQ[15..0]
SRAM_WE_N

INPUT
INPUT
INPUT
OUTPUT
OUTPUT
OUTPUT

Xout[15..0]

MEM_CLK

SRAM_LB_N

SRAM_CE_N

SRAM_UB_N

SRAM

A[19..0]

I/O [15..0]

WE_n

CE_n

UB_n

LB_n

Figure 5.16: MEMORY CONTROLLER block

The operation of the SRAM is straight forward. Firstly the chip is low enabled

by the CE n signal; and the upper byte and lower byte are also accessed by power-

down UB n and LB n. The 16 bit data input of the SRAM is directly connected to

the corrected digital output Nout via the SRAM DQ bus. The SRAM WE N signal

controls both writing and reading of the memory, while the address of the memory

is set by SRAM ADDR. Since the data Nout is sampled by the 48.8KHz ADC CLK

clock, the address at which the data is saved also needs to increment at the same

rate. However, if the address is controlled by the same clock as the data, the SRAM

will record the data at the time when it changes the value; this causes uncertainty

in the measurement. In order to avoid this problem, the MEM CLK signal is used

to clock the address of the memory. To increment the address and control the write

enable signal, a simple counter is implemented as shown in Figure 5.17.

The first bit of the counter output is connected to the write enable signal. To

visualize the operation of the SRAM, the write enable signal is also connected to

64

21 bit
COUNTER

MEM_CLK
count[20..0] count[20]

count[19..0]

SRAM_ADDR[19..0]

SRAM_WE_N

LEDG[0]

Figure 5.17: Digital circuit implementation controlling the address and write enable
signal of the SRAM

an LED via an inverter; therefore, when the SRAM is in “write” mode, the LED

is lighted up. The other 20 bits of the count output control the address of the

SRAM. After the address changes and sweeps over the entire 2MB memory, the

most significant bit of count is 1, thus disabling the write mode of the SRAM,

turning off the LED. At this point, the “DE2-115 Control Panel” feature can then

be activated to load the data to the host computer.

65

Chapter 6

Results

The split VCO-based ADC was built and the calibration technique was implemented

in the DE2-115 board. The output data was collected and analyzed. This section

discusses the resulted performance of the ADC. The first section investigates the

offline calibration technique. The linearity of the ADC as well as the LMS loop

convergence of the background calibration technique is then provided in the next

section. Measure results show ≈ 10X improvement in the INL error of the ADC

after calibrated using the background calibration technique.

6.1 Offline LUT Calibration

Offline calibration technique is not the main focus of this project since it requires

the need to take the ADC offline and develop a known input signal. However, it is

important to firstly implement the offline calibration to ensure the proper function

of the LUT correction. Figure 6.1 captures how to estimate the LUT coefficients ai

offline in MATLAB.

Firstly, a full scale triangle analog input is used and the raw output count is then

measured. After that, a corresponding desired linear digital output is estimated in

66

DIGITAL OUTPUT

ANALOG INPUT VIN

UNCORRECTED
COUNT

DESIRED
CORRECTED COUNT

MSB
a0

a1

a2

a3

a4

aend-1

aend

Mmin

M +1min

Mmax

Figure 6.1: Offline calibration technique to estimate LUT coefficients

MATLAB. There are several ways to estimate this linear ramp output. One could

be to do a best-fit straight line based on the measured data. Another simpler

way is to form a straight line from the maximum and the minimum of the raw

output count. The second method was implemented as shown in Figure 6.1. The

LUT coefficients a are determined to be the desired linear output corresponding

to the raw counts of MSB · 2L, where L is the number of LSBs. However, one

problem with this simple approach is that the LUT can only cover the range from

n = MSBmin ·2L to n = MSBmax ·2L. Therefore, all numbers at the two end regions

are not calibrated. In order the solve this problem, two more LUT coefficients at

two ends are extrapolated, which are denoted by a0 and aend in Figure 6.1. Suppose

the minimum measured count nmin has least significant bits of LSBmin and the

maximum count nmax has least significant bits of LSBmax. Since both these two

points are in the estimated straight line, linear interpolation gives:

nmin =
a1 − a0

2L
LSBmin + a0 (6.1)

67

nmax =
aend − a(end−1)

2L
LSBmax + a(end−1) (6.2)

Solving the two equations results in:

a0 =
2Lnmin − LSBmina1

2L − LSBmin

(6.3)

aend =
2Lnmax − 2La(end−1)

LSBmax

+ aend−1 (6.4)

This offline calibration process was performed in MATLAB. The resulted LUT

coefficients were then implemented in FPGA to correct the signal. The plot for

output count before and after the calibration was shown in Figure 6.2. Six LSBs

out of the 12 bits were used for the LUT initialization. The corrected output is

much more linear compared to the uncorrected count.

0 1 2 3 4 5 6 7 8 9 10

x 105

1000

1200

1400

1600

1800

2000

2200

2400

2600

SAMPLES

D
IG

IT
A

L
O

U
TP

U
T

UNCORRECTED COUNT
CORRECTED COUNT

Figure 6.2: Raw output count and corrected output count using offline calibration

The histogram test was performed to evaluate the DC linearity improvement of

the ADC. Different numbers of LSBs and MSBs and their effects on linearity were

also investigated. Shown at the top of Figure 6.3 are the DNL and INL plots of

68

the uncalibrated signal. The ADC exhibits very low DNL error due to the natural

smooth characteristic of the VCO. However, the issue of the VCO-based ADC is

the global nonlinearity which is shown by large peak INL error of -37/50 LSB. This

INL error is improved greatly for calibrated output. As Figure 6.3 shows, the larger

the LUT size is, the smaller the INL error. The peak INL is 3.0/-2.5 LSB for the

calibrated ADC with LUT size of 15. When the LUT size is increased to 29, the

INL is reduced to 2.60/-1.27 LSB; while this value is 2.0/-1.16 LSB for a 55 point

LUT. Although enlarge the LUT size can improve the linearity of the ADC, it also

increases the complexity and power consumption of the circuit.

IN
L

1000 1500 2000 2500
-1

-0.5

0

0.5

1

D
N

L

1000 1500 2000 2500

-2

0

2

4

IN
L

1000 1500 2000 2500
-1

-0.5

0

0.5

1

D
N

L

1000 1500 2000 2500
-2

-1

0

1

2

3

IN
L

1000 1500 2000 2500
-1

-0.5

0

0.5

1

D
N

L

1000 1500 2000 2500
-2

-1

0

1

2

IN
L

1000 1500 2000 2500
-1

-0.5

0

0.5

1

D
N

L

a) Uncorrected output

b) Calibrated output with 15 LUT locations (7LSBs)

c) Calibrated output with 29 LUT locations (6 LSBs)

d) Calibrated output with 55 LUT locations (5LSBs)

1000 1500 2000 2500

-20

0

20

40

IN
L

Figure 6.3: DC linearity improvement using offline calibration

69

Another interesting aspect can be observed from the DNL plots in Figure 6.3 is

the fact that LUT correction actually “degrades” the DNL performance of the ADC.

In fact, for all three LUT sizes, the peak DNL errors are about +1/-1 LSB. Figure

6.4 zooms in the corrected output waveform at the point where the DNL error is

-1LSB. As the figure shows, there is a code missing from the calibrated output. This

is a common problem in LUT correction when LUT transfer function has a slope

greater than unity. In order to avoid missing code in LUT correction a redundancy

factor R must be introduced [18].

3.565 3.57 3.575 3.58 3.585 3.59 3.595 3.6

x 105

1513

1514

1515

1516

1517

1518

1519

1520

SAMPLE

D
IG

IT
A

L
C

O
D

E

MISSING CODE

Figure 6.4: Missing code at the calibrated output

Figure 6.5 shows the DC linearity of the offline calibrated ADC with redundancy

factor R = 2 and LUT size of 29. As the measurement indicates, introducing

redundancy factor of 2 can reduce both the DNL and INL error by the same factor,

thus eliminating the missing code issue. In fact the peak DNL is only around ±0.5
LSB and the INL is less than ±1 LSB

70

600 800 1000 1200
-1

-0.5

0

0.5

1

D
N

L

600 800 1000 1200
-1

0

1

2

IN
L

Figure 6.5: Introducing R = 2 reduces DC linearity by factor of 2

6.2 Background LUT Calibration

This section provides measured result of background calibration technique. Back-

ground correction and calibration were performed using a DE2-115 FPGA as dis-

cussed in Chapter 5. Six MSBs were used as the address to the LUT; and six LSBs

were used for the linear interpolation. The ADC was able to perform the calibration

and correction in digital domain transparently to the main signal path. Although a

LUT size of 40 was used, only 30 LUT locations were covered by the signal range.

The corrected output is stored in the SRAM and analyzed using MATLAB. Firstly,

the DC linearity of the calibrated ADC is presented in Section 6.2.1. Section 6.2.2

then covers the LMS loop convergence. Finally, a pathological failure in the cali-

bration algorithm, resulting in a divergence in the LMS loop is discussed and the

solution is provided.

71

6.2.1 DC Linearity

The calibrated digital output of a full scale triangle analog input is shown in Figure

6.6. The digital output range is from 360 to 1860 corresponding to analog voltage

range of 1.64V - 2.05V. It should be noted that the positive offset of 360 of the

output is desired in order ensure that the minimum LUT coefficient is positive.

2 4 6 8 10

x 105

400

600

800

1000

1200

1400

1600

1800

C
O

R
R

E
C

TE
D

O
U

TP
U

T

SAMPLE

Figure 6.6: Digital output of a full-scale triangle wave input

Figure 6.7 captures the DC linearity reported at 12 bit level of the calibrated

ADC. Compared to the INL of the uncorrected signal of -37/50 LSB as shown

in Figure 6.3a, the INL for corrected signal is improved by a factor of ≈ 10X.

Measurement shows a peak INL error of +5.6/-3.3 LSB and peak DNL of +0.37/-

0.82 LSB. For a 10 bit level (redundancy factor R = 4), the linearity error would be

reduced further by a factor of 4.

72

400 600 800 1000 1200 1400 1600 1800
-4

-2

0

2

4

6

IN
L

400 600 800 1000 1200 1400 1600 1800
-1

-0.5

0

0.5

1

D
N

L

Figure 6.7: DC linearity error of the background calibrated output

6.2.2 LMS Convergence Investigation

To test the LMS convergence loop, the analog input was set to a DC value and the

adaptation transient of the LUT coefficient was observed. The top plot in Figure

6.8 shows a particular LUT coefficient for different values of LMS parameter μ,

while the bottom one shows the corresponding error term deltax = xB −XA − 2D.

The final LUT values of three cases are different as the condition varies for each

measurement. However, all the LUT coefficients converge to a value that drives the

error term deltax to zero. The response exhibits stable behavior with no overshoot

or ringing. The convergence response indicates the usual trade off for an adaptive

LMS loop. Smaller values of μ grant a more stable but slower loop convergence. For

all three different μ values, the LUT converges within 100K conversions. Another

interesting aspect of the LMS convergence loop is that the ensemble size has no

73

effect on the speed of the convergence. Larger ensemble size can accumulate a

larger error terms; on the other hand, it also decreases the frequency, at which the

LUT is updated, by the same factor. For this project, the ensemble size was chosen

to be 1024 conversions.

Figure 6.8: LUT convergence for different parameter μ

6.2.3 Divergence in LMS loop

As the calibration algorithm was implemented in FPGA, there were several situa-

tions when the algorithm diverges. One of them is when the LMS parameter μ is

larger than 2−10; another one is when the analog signal range is small such that

only a few LUT locations were covered. One possible reason is that both these

74

two cases result in a large estimate of the error terms which are then subtracted

by the LUT coefficients. Relying too much on the accuracy of the estimated error

can cause the loop to diverge. However, there is another more important issue with

the calibration technique that leads to this divergence problem. Shown in Figure

6.9 is the measured digital output of a triangle wave input when the calibration

diverges. At the bottom of the figure is the zoomed in version of the waveform. As

the figure shows, even though the overall characteristic of the output looks linear,

the divergence problem occurs locally and periodically for each small segments of

the curve.

3.56 3.563 3.567 3.568 3.569

x 104

200

240

900

940

500

540

S
AM

AP
L

E
D

I
S

G

TLCOEG

3.94 3.5 3.54 6 6.04 6.1 6.14 6.3

x 104

400

1000

1400

S
AM

AP
L

E
D

I
S

G

TLCOEG

Figure 6.9: Digital output of the triangle wave input when the algorithm diverges

75

To understand this problem, it is important to readdress the calibration tech-

nique implemented in this project. The analog signal is split into two channels

which share the same structure, and are expected to produce the same output codes.

Therefore, the difference between the two outputs can be used to align the two char-

acteristics. However, since this simple technique has no vision on the slope of the

characteristics, the analog inputs to these two channels are intentionally separated

by 2ΔV corresponding to a known output code of 2D by introducing the dither.

The calibration process is now based on the error term xA − xB − 2D. By doing

this, slope of “ADC A” at Vin = V can be “aligned” to the slope of “ADC B” at

V in = V ±ΔV which then again turns out the be aligned to slope of channel A at

V in = V ± 2ΔV . Sweeping through all value of V can ensure the same constant

slope of the two characteristics.

However, this intuitive reasoning does not hold true in every case, particularly

for a LUT implementation in which the slope of the transfer function is inherently

discontinuous between two adjacent segments. Moreover, in this project the distance

between two LUT locations was accidentally set up to be twice the output dither

size D. This choice of the LUT spacing turns out to be the main reason underlying

the divergence issue. Shown in Figure 6.10 are the outputs of the two channels when

the calibration technique actually converges to an unstable mode; the slopes of the

two characteristics periodically changes for every LUT segment. In the figure the

dashed red segment (ADC A) and the corresponding dashed blue segment (ADC B)

are separated by 2ΔV in the voltage domain and 2D in digital domain; similarly

for the solid segments. Thus the “slope alignment” condition mentioned above is

still preserved. However, the two adjacent segments of both the two channels have

different slopes; and the average of these two slopes is equal to the desired value.

As the error estimation process slightly moves the dashed segments to a wrong

76

direction, all the solid ones are also incorrectly adjusted, and vice versa, leading to

the divergence of the whole LUT.

V

DIGITAL CORRECTED
OUTPUT CODE

a
5

a
6

2D

2 V

a
7

a
8

b
5

b
6

b
7

b
8

ANALOG INPUT VOLTAGE Vin

ADC A

ADC_B

Figure 6.10: Digital output of two channels when the algorithm diverges

This problem can be fixed easily by reducing the dither size ΔV so that when

the analog signal steps by ±ΔV the calibration block can “see” the difference in

the slopes of the dashed lines and the solid lines and corrects them. Another more

general solution is not to make the dither size 2D to be a multiple of the LUT

spacing. This can avoid the periodic behavior of the slope discontinuity of the LUT.

In other word, when the analog is swept through all LUT locations, as one channel

move to another LUT segment, changing the slope, the other should not. Therefore,

the slope variation of two adjacent segments can be visualized and calibrated.

77

Chapter 7

Conclusions

The design of a 10b VCO-based ADC was presented in this project. A background

calibration and correction technique to linearize the VCO-based ADC was imple-

mented in an FPGA. Chapter 2 and Chapter 3 provided a detailed background on

the VCO-based ADC architecture and the calibration technique. An improvement

in the algorithm compared to [1, 2, 3] to preserve the LUT continuity was intro-

duced. The detailed implementation of the ADC in the PCB and FPGA is discussed

in Chapter 4 and Chapter 5. Chapter 6 discusses the resulted measurement of the

ADC regarding its DC linearity and LMS loop convergence. A divergence issue of

the calibration technique was detected and a solution was proposed.

Table 7.1 summarizes the design specifications of the VCO-based ADC imple-

mented in this project. Two VCOs with an input range of 1.63V - 2.05V and a

frequency range of 40MHz - 140MHz were used. Two 12 bit counters were imple-

mented to count the number of phase transitions of the VCO output. The ADC

was operated at a sampling frequency of 48.8KSps.

The calibration and correction can correct the output in digital domain, trans-

parently to the main signal path. Although offline calibration shows a great im-

78

Table 7.1: VCO-based ADC System Parameters / Results

PARAMETER / RESULT VALUE UNITS

VCO Input Range Used 1.63 - 2.05 V

Frequency Range 40 - 140 MHz

ADC Resolution 10 bits

Sample Rate fS 48.8 KSps

Dither ΔV 1/32 FS

INL +5.6 / -3.3 LSB

DNL +0.37 / -0.82 LSB

LUT Size 40 points

Counts / Segment 64 counts

LMS Parameter μ 2−15

Loop Convergence Time 100k convs

Ensemble Size 1024 convs

Internal Digital Precision 32 bits

provement in the linearity of the ADC, it cannot adapt to any increases in the input

signal ranges or changes in the VCO characteristics due to temperature. Moreover,

the ADC needs to be taken offline; and the known input signal is required.

Background calibration technique was implemented in the FPGA. All calcula-

tions in the digital domain were performed in 32 bit level precision. When the loop

converged, the ADC showed ≈ 10X improvement in the INL error. For param-

eter μ smaller than 2−10, the algorithm was able to converge stably within 100K

conversions.

When the dither size 2D is equal to an integer number of LUT spacing, the

algorithm can converge to an unstable mode where slope of the ADC characteristic

toggles between 2 values for every two adjunct segments. The size of these segments

is determined by dither size 2D. Eventually, this leads to the divergence of the

whole LUT. The LUT spacing or dither size need to be designed carefully in order

to avoid this problem.

79

7.1 Future work

Due to time constrain, several aspects of the design has not been considered in this

project and would be a motivation for future similar project. The first one is the

dynamic performance of the ADC with background calibration. Another important

factor is the power consumption and the digital complexity of the design. Increase

the LUT size can improve the ADC’s linearity; on the other hand it also increases the

digital complexity and power consumptions. Additionally, it would be worthwhile

to investigate different VCO architectures and there characteristics to optimize the

figure of merit of the ADC.

A solution to eliminate the divergence issue mentioned in section 6.2.3 is to

reduce the dither size ΔV . However, for the PCB implemented in this project, as

the dither size was reduced, the two VCOs were coupled together, producing the

same output. This might be due to internal coupling issue of the PCB that has not

been investigated. Additionally, even for large dither, the way the dither was added

to the two channels might introduce additional nonlinearity to the ADC. Therefore,

a different analog front end also needs to be considered for future work.

Although an improvement in the LUT calibration technique was presented in this

thesis project, it only can preserve the continuity for unused LUT regions at the two

ends when the input signal is continuous. Skipping over some LUT locations would

also results in discontinuity in the LUT. One option to estimate of the error for the

skipped LUT locations would be to take the average error of the two nearest used

LUT locations on the two sides. Finally, if the application require absolute offset

calibration, a technique presented in [1] should be implemented in future projects.

80

Bibliography

[1] J. McNeill, R. Majidi, J. Gong, and C. Liu, “Lookup-Table-Based Background
Linearization for VCO-Based ADCs,” IEEE Custom Integrated Circuits Confer-
ence, Sept. 2014.

[2] J. McNeill, R. Majidi, and J. Gong, “ ‘Split ADC’ Background Linearization of
VCO-Based ADCs,” IEEE Trans. Circuits Syst. I, vol. 62, no. 1, Jan. 2015, pp.
49-58.

[3] J. McNeill, M Coln, D. R. Brown, and Brian Larivee, “Digital Background
Calibration Algorithm for ”Split ADC” Architecture,” IEEE Trans. Circuits
Syst. I, vol. 56, no. 2, Feb. 2009, pp. 294-306.

[4] Robert H. Walden, “Analog-to-Digital Converter Survey and Analysis” IEEE
Journal on Selected Areas in Communications, vol. 17, no. 4, Apr. 1999 pp.
539-550.

[5] M. Z. Straayer and M. H. Perrott, “A 12-bit, 10-MHz bandwidth, continuous-
time ADC with a 5-bit, 950-MS/s VCO-based quantizer,” IEEE Journal of Solid-
State Circuits, April 2008.

[6] Park, M.; Perrott, M.H., “A 78 dB SNDR 87 mW 20 MHz Bandwidth
Continuous-Time ADC with VCO-Based Integrator and Quantizer Implemented
in 0.13μm CMOS,” IEEE Journal of Solid-State Circuits, Dec. 2009.

[7] G. Taylor and I. Galton, “A Mostly-Digital Variable-Rate Continuous-Time
Delta-Sigma Modulator ADC,” IEEE Journal of Solid-State Circuits, 2010.

[8] J. Hamilton, S. Yan, and T. R. Viswanathan, “An uncalibrated 2MHz, 6mW,
63.5dB SNDR discrete-time input VCO-based ADC,” IEEE Custom Integrated
Circuits Conference (CICC2012), Sept. 2012.

[9] K. Lee, Y. Yoon, and N. Sun, “A 1.8mW 2MHz-BW 66.5dB-SNDR ADC Using
VCO-Based Integrators with Intrinsic CLA,” IEEE Custom Integrated Circuits
Conference (CICC2013), Sept. 2013.

81

[10] J. Kim, T. -K. Jang, Y. -G. Yoon and S. Cho, “Analysis and design of voltage-
controlled oscillator based analog-to-digital converter,” IEEE Transactions on
Circuits and Systems I, Jan. 2010.

[11] J. Li and U. Moon, “Background calibration techniques for multistage pipelined
ADCs with digital redundancy, IEEE Trans. Circuits Syst. II, vol. 50, no. 9, pp.
531-538, Sep. 2003.

[12] Analog Devices technical staff, “Data Conversion Handbook,” Massachusetts:
Newnes, 2015.

[13] R. Jacob Baker, “CMOS Circuit Design, Layout, and Simulation (Third Edi-
tion),” Jew Jersey: Wiley, 1964.

[14] Behzad Razavi, “Design of Analog CMOS Integrated Circuits,” New York:
McGraw-Hill, 2001.

[15] Robert Pierret, “Semiconductor DEvice Fundamentals,”Massachusetts: Addi-
son Wesley, 1996.

[16] Doug Amos, Austin Lesea and Rene Richter, “FPGA-Based Prototyping
Methodology Manual Best Practices in Design-for-Prototyping” Synopsys, Inc,
Mountain View, 2010.

[17] Joakim Bergs. Design of a VCO based ADC in a 1802m CMOS Process for use
in Positron Emission Tomography. M.S. thesis, Lulea University of Technology,
Sweden, 2009.

[18] R. W. Hamming, “Numerical Methods for Scientists and Engineers,” New York:
Dover, 1986.

[19] W. H.Press, S. A.Teukolsky, W. T. Vetterling, and B. P. Flannery, “Numer-
ical Recipes in C: The Art of Scientific Computing.” Cambridge Univ. Press,
Cambridge, 1992.

[20] G. Golub and C. F. van Loan, “Matrix Computations (Third Edition),” Balti-
more, Maryland: Johns Hopkins University Press, 1996.

82

Appendix A

Verilog Code

A.1 CLOCK GENERATOR block

// Module Dec la ra t i on
module CLOCK GEN 2
(
// {{ALTERA ARGS BEGIN}} DO NOT REMOVE THIS LINE !
CLOCK 50, ADC CLK, CTR CLR, VCOGATE, MEMCLK, ENSEMBLE CLK,
ENSEMBLE CLK RESET, ENSEMBLE CLK DELAY, ERRORCORRECTION
// {{ALTERA ARGS END}} DO NOT REMOVE THIS LINE !
) ;
// Port Dec la ra t i on

// {{ALTERA IO BEGIN}} DO NOT REMOVE THIS LINE !
input CLOCK 50 ;
output ADC CLK;
output CTR CLR;
output VCOGATE;
output MEMCLK;
output ENSEMBLE CLK;
output ENSEMBLE CLK RESET;
output ENSEMBLE CLK DELAY;
output ERRORCORRECTION;
// {{ALTERA IO END}} DO NOT REMOVE THIS LINE !

reg [9 : 0] cnt = 10 ’ b0 ;
reg [1 9 : 0] cnt1 ;

always@ (posedge CLOCK 50) begin
cnt <= cnt+1’b1 ;

83

cnt1 <= cnt1 +1’b1 ;
end

a s s i gn ADC CLK = (cnt == 10 ’ d2) ;
a s s i gn CTR CLR = ˜(cnt == 10 ’ d9) ;
a s s i gn VCOGATE = ˜(cnt <= 10 ’ d10) ;
a s s i gn MEMCLK = (cnt == 10 ’ d15) ;
a s s i gn ENSEMBLE CLK = (cnt1 == 20 ’ d20) ;
a s s i gn ENSEMBLE CLK RESET = (cnt1 == 20 ’ d128) ;
a s s i gn ENSEMBLE CLK DELAY = (cnt1 == 20 ’ d120) ;
a s s i gn ERRORCORRECTION = (cnt1 > 20 ’ d25)&&(cnt1 < 20 ’ d100) ;
endmodule

A.2 MEMORY CONTROLER block

module SRAM CONTROLER 2
(
// {{ALTERA ARGS BEGIN}} DO NOT REMOVE THIS LINE !
MEMCLK, DATA, CLOCK 50, SRAMWEN, SRAMADDR, SRAMDQ
// {{ALTERA ARGS END}} DO NOT REMOVE THIS LINE !
) ;
// Port Dec la ra t i on

// {{ALTERA IO BEGIN}} DO NOT REMOVE THIS LINE !
input MEMCLK;
input [1 5 : 0] DATA;
input CLOCK 50 ;
output SRAMWEN;
output [1 9 : 0] SRAMADDR;
output [1 5 : 0] SRAMDQ;
// {{ALTERA IO END}} DO NOT REMOVE THIS LINE !

reg [1 9 : 0] address = 20 ’ b0 ;
reg [2 0 : 0] w r i t e enab l e = 21 ’ b0 ;
always@ (posedge CLOCK 50) begin

i f (MEMCLK) begin
address <= address + 1 ’ b1 ;
w r i t e enab l e <= wr i t e enab l e +1’b1 ;

end
end
a s s i gn SRAMWEN = wr i t e enab l e [2 0] ;
a s s i gn SRAMADDR = address ;

84

a s s i gn SRAMDQ = ((wr i t e enab l e [20]==0))? DATA : 16 ’ bz ;

endmodule

A.3 CALIBRATION block

module CALIBRATION 2
(
// {{ALTERA ARGS BEGIN}} DO NOT REMOVE THIS LINE !
Nout A , Nout B , ENSEMBLE CLK, p , MEMCLK, ENSEMBLE CLK RESET,
CLOCK 50, ENSEMBLE CLK DELAY,ERRORCORRECTION,
Xout A , Xout B , Xout , de l tax , CHECK
// {{ALTERA ARGS END}} DO NOT REMOVE THIS LINE !
) ;
// Port Dec la ra t i on

// {{ALTERA IO BEGIN}} DO NOT REMOVE THIS LINE !
input [1 1 : 0] Nout A ; input [1 1 : 0] Nout B ; input ENSEMBLE CLK;
input p ; input MEMCLK; input ENSEMBLE CLK RESET;
input ENSEMBLE CLK DELAY; input ERRORCORRECTION;
input CLOCK 50 ;
output [1 5 : 0] Xout A ; output [1 5 : 0] Xout B ;
output [1 5 : 0] Xout ; output [1 5 : 0] de l tax ;
output reg [1 5 : 0] CHECK;
// {{ALTERA IO END}} DO NOT REMOVE THIS LINE !

parameter D = 16 ’ d1024 ; parameter LUTlength =7’d39

reg [3 1 : 0] LUT A [0 : LUTlength] ; reg [3 1 : 0] LUT B [0 : LUTlength] ;
reg [LUTlength : 0] h it A ; reg [LUTlength : 0] h i t B ;
reg [LUTlength : 0] above A ; reg [LUTlength : 0] above B ;
wire [5 : 0] LUTloc A = Nout A [11 :6] −6 ’ d10 ;
wire [5 : 0] LUTloc B = Nout B [11 :6] −6 ’ d10 ;

reg s igned [3 1 : 0] rawea [0 : LUTlength] ;
reg s igned [3 1 : 0] raweb [0 : LUTlength] ;
reg s igned [3 1 : 0] ea [0 : LUTlength] ;
reg s igned [3 1 : 0] eb [0 : LUTlength] ;
reg s igned [3 1 : 0] e ava l i d [0 : LUTlength] ;
reg s igned [3 1 : 0] ebva l i d [0 : LUTlength] ;

85

initial begin // INITIALIZATION
hit_A = 0;
hit_B = 0;
LUT_A[0] = 32'd 0;LUT_B[0] = 32'd 0;
LUT_A[1] = 32'd 67108864 ;LUT_B[1] = 32'd 67108864 ;
LUT_A[2] = 32'd 134217728 ;LUT_B[2] = 32'd 134217728 ;
LUT_A[3] = 32'd 201326592 ;LUT_B[3] = 32'd 201326592 ;
LUT_A[4] = 32'd 268435456 ;LUT_B[4] = 32'd 268435456 ;
LUT_A[5] = 32'd 335544320 ;LUT_B[5] = 32'd 335544320 ;
LUT_A[6] = 32'd 402653184 ;LUT_B[6] = 32'd 402653184 ;
LUT_A[7] = 32'd 469762048 ;LUT_B[7] = 32'd 469762048 ;
LUT_A[8] = 32'd 536870912 ;LUT_B[8] = 32'd 536870912 ;
LUT_A[9] = 32'd 603979776 ;LUT_B[9] = 32'd 603979776 ;
LUT_A[10] = 32'd 671088640 ;LUT_B[10] = 32'd 671088640 ;
LUT_A[11] = 32'd 738197504 ;LUT_B[11] = 32'd 738197504 ;
LUT_A[12] = 32'd 805306368 ;LUT_B[12] = 32'd 805306368 ;
LUT_A[13] = 32'd 872415232 ;LUT_B[13] = 32'd 872415232 ;
LUT_A[14] = 32'd 939524096 ;LUT_B[14] = 32'd 939524096 ;
LUT_A[15] = 32'd 1006632960 ;LUT_B[15] = 32'd 1006632960 ;
LUT_A[16] = 32'd 1073741824 ;LUT_B[16] = 32'd 1073741824 ;
LUT_A[17] = 32'd 1140850688 ;LUT_B[17] = 32'd 1140850688 ;
LUT_A[18] = 32'd 1207959552 ;LUT_B[18] = 32'd 1207959552 ;
LUT_A[19] = 32'd 1275068416 ;LUT_B[19] = 32'd 1275068416 ;
LUT_A[20] = 32'd 1342177280 ;LUT_B[20] = 32'd 1342177280 ;
LUT_A[21] = 32'd 1409286144 ;LUT_B[21] = 32'd 1409286144 ;
LUT_A[22] = 32'd 1476395008 ;LUT_B[22] = 32'd 1476395008 ;
LUT_A[23] = 32'd 1543503872 ;LUT_B[23] = 32'd 1543503872 ;
LUT_A[24] = 32'd 1610612736 ;LUT_B[24] = 32'd 1610612736 ;
LUT_A[25] = 32'd 1677721600 ;LUT_B[25] = 32'd 1677721600 ;
LUT_A[26] = 32'd 1744830464 ;LUT_B[26] = 32'd 1744830464 ;
LUT_A[27] = 32'd 1811939328 ;LUT_B[27] = 32'd 1811939328 ;
LUT_A[28] = 32'd 1879048192 ;LUT_B[28] = 32'd 1879048192 ;
LUT_A[29] = 32'd 1946157056 ;LUT_B[29] = 32'd 1946157056 ;
LUT_A[30] = 32'd 2013265920 ;LUT_B[30] = 32'd 2013265920 ;
LUT_A[31] = 32'd 2080374784 ;LUT_B[31] = 32'd 2080374784 ;
LUT_A[32] = 32'd 2147483648 ;LUT_B[32] = 32'd 2147483648 ;
LUT_A[33] = 32'd 2214592512 ;LUT_B[33] = 32'd 2214592512 ;
LUT_A[34] = 32'd 2281701376 ;LUT_B[34] = 32'd 2281701376 ;
LUT_A[35] = 32'd 2348810240 ;LUT_B[35] = 32'd 2348810240 ;
LUT_A[36] = 32'd 2415919104 ;LUT_B[36] = 32'd 2415919104 ;
LUT_A[37] = 32'd 2483027968 ;LUT_B[37] = 32'd 2483027968 ;
LUT_A[38] = 32'd 2550136832 ;LUT_B[38] = 32'd 2550136832 ;
LUT A[39] = 32'd 2617245696 ;LUT B[39] = 32'd 2617245696 ;

86

rawea[0] = 32'd0;rawea[1] = 32'd0;raweb[0] = 32'd0;raweb[1] = 32'd0;
rawea[2] = 32'd0;rawea[3] = 32'd0;raweb[2] = 32'd0;raweb[3] = 32'd0;
rawea[4] = 32'd0;rawea[5] = 32'd0;raweb[4] = 32'd0;raweb[5] = 32'd0;
rawea[6] = 32'd0;rawea[7] = 32'd0;raweb[6] = 32'd0;raweb[7] = 32'd0;
rawea[8] = 32'd0;rawea[9] = 32'd0;raweb[8] = 32'd0;raweb[9] = 32'd0;
rawea[10] = 32'd0;rawea[11] = 32'd0;raweb[10] = 32'd0;raweb[11] = 32'd0;
rawea[12] = 32'd0;rawea[13] = 32'd0;raweb[12] = 32'd0;raweb[13] = 32'd0;
rawea[14] = 32'd0;rawea[15] = 32'd0;raweb[14] = 32'd0;raweb[15] = 32'd0;
rawea[16] = 32'd0;rawea[17] = 32'd0;raweb[16] = 32'd0;raweb[17] = 32'd0;
rawea[18] = 32'd0;rawea[19] = 32'd0;raweb[18] = 32'd0;raweb[19] = 32'd0;
rawea[20] = 32'd0;rawea[21] = 32'd0;raweb[20] = 32'd0;raweb[21] = 32'd0;
rawea[22] = 32'd0;rawea[23] = 32'd0;raweb[22] = 32'd0;raweb[23] = 32'd0;
rawea[24] = 32'd0;rawea[25] = 32'd0;raweb[24] = 32'd0;raweb[25] = 32'd0;
rawea[26] = 32'd0;rawea[27] = 32'd0;raweb[26] = 32'd0;raweb[27] = 32'd0;
rawea[28] = 32'd0;rawea[29] = 32'd0;raweb[28] = 32'd0;raweb[29] = 32'd0;
rawea[30] = 32'd0;rawea[31] = 32'd0;raweb[30] = 32'd0;raweb[31] = 32'd0;
rawea[32] = 32'd0;rawea[33] = 32'd0;raweb[32] = 32'd0;raweb[33] = 32'd0;
rawea[34] = 32'd0;rawea[35] = 32'd0;raweb[34] = 32'd0;raweb[35] = 32'd0;
rawea[36] = 32'd0;rawea[37] = 32'd0;raweb[36] = 32'd0;raweb[37] = 32'd0;
rawea[38] = 32'd0;rawea[39] = 32'd0;raweb[38] = 32'd0;raweb[39] = 32'd0;

ea[0] = 32'd0;ea[1] = 32'd0;eb[0] = 32'd0;eb[1] = 32'd0;
ea[2] = 32'd0;ea[3] = 32'd0;eb[2] = 32'd0;eb[3] = 32'd0;
ea[4] = 32'd0;ea[5] = 32'd0;eb[4] = 32'd0;eb[5] = 32'd0;
ea[6] = 32'd0;ea[7] = 32'd0;eb[6] = 32'd0;eb[7] = 32'd0;
ea[8] = 32'd0;ea[9] = 32'd0;eb[8] = 32'd0;eb[9] = 32'd0;
ea[10] = 32'd0;ea[11] = 32'd0;eb[10] = 32'd0;eb[11] = 32'd0;
ea[12] = 32'd0;ea[13] = 32'd0;eb[12] = 32'd0;eb[13] = 32'd0;
ea[14] = 32'd0;ea[15] = 32'd0;eb[14] = 32'd0;eb[15] = 32'd0;
ea[16] = 32'd0;ea[17] = 32'd0;eb[16] = 32'd0;eb[17] = 32'd0;
ea[18] = 32'd0;ea[19] = 32'd0;eb[18] = 32'd0;eb[19] = 32'd0;
ea[20] = 32'd0;ea[21] = 32'd0;eb[20] = 32'd0;eb[21] = 32'd0;
ea[22] = 32'd0;ea[23] = 32'd0;eb[22] = 32'd0;eb[23] = 32'd0;
ea[24] = 32'd0;ea[25] = 32'd0;eb[24] = 32'd0;eb[25] = 32'd0;
ea[26] = 32'd0;ea[27] = 32'd0;eb[26] = 32'd0;eb[27] = 32'd0;
ea[28] = 32'd0;ea[29] = 32'd0;eb[28] = 32'd0;eb[29] = 32'd0;
ea[30] = 32'd0;ea[31] = 32'd0;eb[30] = 32'd0;eb[31] = 32'd0;
ea[32] = 32'd0;ea[33] = 32'd0;eb[32] = 32'd0;eb[33] = 32'd0;
ea[34] = 32'd0;ea[35] = 32'd0;eb[34] = 32'd0;eb[35] = 32'd0;
ea[36] = 32'd0;ea[37] = 32'd0;eb[36] = 32'd0;eb[37] = 32'd0;
ea[38] = 32'd0;ea[39] = 32'd0;eb[38] = 32'd0;eb[39] = 32'd0;

end//END LUT INITIALIZATION

wire[31:0] SLOPE_A = LUT_A[LUTloc_A+1'b1] - LUT_A[LUTloc_A];
wire [37:0] DIFF_A = SLOPE_A*Nout_A[5:0];
wire [31:0] DIFF_A1 = DIFF_A[37:6]+LUT_A[LUTloc_A];
assign Xout_A = DIFF_A1[31:16];//divide DIFF by 64 = 6 LSBs

wire[31:0] SLOPE_B = LUT_B[LUTloc_B+1'b1] - LUT_B[LUTloc_B];
wire [37:0] DIFF_B = SLOPE_B*Nout_B[5:0];
wire [31:0] DIFF_B1 = DIFF_B[37:6]+LUT_B[LUTloc_B];
assign Xout B = DIFF B1[31:16];//divide DIFF by 64 = 6 LSBs

87

//AVERAGE THE TWO CHANNEL AND CALCULATE PARAMETERS NEEDED FOR ERROR
ESTIMATION

wire [16:0] SUM = Xout_A + Xout_B;
assign Xout = SUM [16:1];

assign deltax = (p)? (Xout_B - (Xout_A+D)) : ((Xout_B+D)- Xout_A);
wire signed [6:0] temp_a1 = 7'sd63 - Xout_A[5:0];//convert to signed number
wire signed [6:0] temp_a2 = Xout_A[5:0]; //convert to signed number
wire signed [6:0] temp_b1 = -7'sd63 + Xout_B[5:0];//convert to signed number
wire signed [6:0] temp_b2 = -Xout_B[5:0]; //convert to signed number
wire signed [31:0] update1 = $signed(deltax)*$signed(temp_a1);
wire signed [31:0] update2 = $signed(deltax)*$signed(temp_a2);
wire signed [31:0] update3 = $signed(deltax)*$signed(temp_b1);
wire signed [31:0] update4 = $signed(deltax)*$signed(temp_b2);

//// UPDATE THE ERROR MATRIXES EVERY CONVERSION
always@(posedge CLOCK_50) begin
if(ENSEMBLE_CLK_RESET) begin
hit_A = 0;
hit_B = 0;
rawea[0] = 32'd0;rawea[1] = 32'd0;raweb[0] = 32'd0;raweb[1] = 32'd0;
rawea[2] = 32'd0;rawea[3] = 32'd0;raweb[2] = 32'd0;raweb[3] = 32'd0;
rawea[4] = 32'd0;rawea[5] = 32'd0;raweb[4] = 32'd0;raweb[5] = 32'd0;
rawea[6] = 32'd0;rawea[7] = 32'd0;raweb[6] = 32'd0;raweb[7] = 32'd0;
rawea[8] = 32'd0;rawea[9] = 32'd0;raweb[8] = 32'd0;raweb[9] = 32'd0;
rawea[10] = 32'd0;rawea[11] = 32'd0;raweb[10] = 32'd0;raweb[11] = 32'd0;
rawea[12] = 32'd0;rawea[13] = 32'd0;raweb[12] = 32'd0;raweb[13] = 32'd0;
rawea[14] = 32'd0;rawea[15] = 32'd0;raweb[14] = 32'd0;raweb[15] = 32'd0;
rawea[16] = 32'd0;rawea[17] = 32'd0;raweb[16] = 32'd0;raweb[17] = 32'd0;
rawea[18] = 32'd0;rawea[19] = 32'd0;raweb[18] = 32'd0;raweb[19] = 32'd0;
rawea[20] = 32'd0;rawea[21] = 32'd0;raweb[20] = 32'd0;raweb[21] = 32'd0;
rawea[22] = 32'd0;rawea[23] = 32'd0;raweb[22] = 32'd0;raweb[23] = 32'd0;
rawea[24] = 32'd0;rawea[25] = 32'd0;raweb[24] = 32'd0;raweb[25] = 32'd0;
rawea[26] = 32'd0;rawea[27] = 32'd0;raweb[26] = 32'd0;raweb[27] = 32'd0;
rawea[28] = 32'd0;rawea[29] = 32'd0;raweb[28] = 32'd0;raweb[29] = 32'd0;
rawea[30] = 32'd0;rawea[31] = 32'd0;raweb[30] = 32'd0;raweb[31] = 32'd0;
rawea[32] = 32'd0;rawea[33] = 32'd0;raweb[32] = 32'd0;raweb[33] = 32'd0;
rawea[34] = 32'd0;rawea[35] = 32'd0;raweb[34] = 32'd0;raweb[35] = 32'd0;
rawea[36] = 32'd0;rawea[37] = 32'd0;raweb[36] = 32'd0;raweb[37] = 32'd0;
rawea[38] = 32'd0;rawea[39] = 32'd0;raweb[38] = 32'd0;raweb[39] = 32'd0;

end else if (MEM_CLK) begin
CHECK = deltax;
hit_A[LUTloc_A] = 1'b1;
hit_B[LUTloc_B] = 1'b1;
hit_A[LUTloc_A+1'b1] = 1'b1;
hit_B[LUTloc_B+1'b1] = 1'b1;

rawea[LUTloc_A] = rawea[LUTloc_A] - update1; //This is 32 * rawea in the
matlab file
rawea[LUTloc_A+1'b1] = rawea[LUTloc_A+1'b1] - update2; //Same here
raweb[LUTloc_B] = raweb[LUTloc_B] - update3; //This is 32 * rawea in the
matlab file
raweb[LUTloc B+1'b1] = raweb[LUTloc B+1'b1] - update4; //Same here

88

LUT_A[15] = LUT_A[15]- $signed(eavalid[15][31:4])-eavalid[15][31];
LUT_B[15] = LUT_B[15]- $signed(ebvalid[15][31:4])-ebvalid[15][31];
LUT_A[16] = LUT_A[16]- $signed(eavalid[16][31:4])-eavalid[16][31];
LUT_B[16] = LUT_B[16]- $signed(ebvalid[16][31:4])-ebvalid[16][31];
LUT_A[17] = LUT_A[17]- $signed(eavalid[17][31:4])-eavalid[17][31];
LUT_B[17] = LUT_B[17]- $signed(ebvalid[17][31:4])-ebvalid[17][31];
LUT_A[18] = LUT_A[18]- $signed(eavalid[18][31:4])-eavalid[18][31];
LUT_B[18] = LUT_B[18]- $signed(ebvalid[18][31:4])-ebvalid[18][31];
LUT_A[19] = LUT_A[19]- $signed(eavalid[19][31:4])-eavalid[19][31];
LUT_B[19] = LUT_B[19]- $signed(ebvalid[19][31:4])-ebvalid[19][31];
LUT_A[20] = LUT_A[20]- $signed(eavalid[20][31:4])-eavalid[20][31];
LUT_B[20] = LUT_B[20]- $signed(ebvalid[20][31:4])-ebvalid[20][31];
LUT_A[21] = LUT_A[21]- $signed(eavalid[21][31:4])-eavalid[21][31];
LUT_B[21] = LUT_B[21]- $signed(ebvalid[21][31:4])-ebvalid[21][31];
LUT_A[22] = LUT_A[22]- $signed(eavalid[22][31:4])-eavalid[22][31];
LUT_B[22] = LUT_B[22]- $signed(ebvalid[22][31:4])-ebvalid[22][31];
LUT_A[23] = LUT_A[23]- $signed(eavalid[23][31:4])-eavalid[23][31];
LUT_B[23] = LUT_B[23]- $signed(ebvalid[23][31:4])-ebvalid[23][31];
LUT_A[24] = LUT_A[24]- $signed(eavalid[24][31:4])-eavalid[24][31];
LUT_B[24] = LUT_B[24]- $signed(ebvalid[24][31:4])-ebvalid[24][31];
LUT_A[25] = LUT_A[25]- $signed(eavalid[25][31:4])-eavalid[25][31];
LUT_B[25] = LUT_B[25]- $signed(ebvalid[25][31:4])-ebvalid[25][31];
LUT_A[26] = LUT_A[26]- $signed(eavalid[26][31:4])-eavalid[26][31];
LUT_B[26] = LUT_B[26]- $signed(ebvalid[26][31:4])-ebvalid[26][31];
LUT_A[27] = LUT_A[27]- $signed(eavalid[27][31:4])-eavalid[27][31];
LUT_B[27] = LUT_B[27]- $signed(ebvalid[27][31:4])-ebvalid[27][31];
LUT_A[28] = LUT_A[28]- $signed(eavalid[28][31:4])-eavalid[28][31];
LUT_B[28] = LUT_B[28]- $signed(ebvalid[28][31:4])-ebvalid[28][31];
LUT_A[29] = LUT_A[29]- $signed(eavalid[29][31:4])-eavalid[29][31];
LUT_B[29] = LUT_B[29]- $signed(ebvalid[29][31:4])-ebvalid[29][31];
LUT_A[30] = LUT_A[30]- $signed(eavalid[30][31:4])-eavalid[30][31];
LUT_B[30] = LUT_B[30]- $signed(ebvalid[30][31:4])-ebvalid[30][31];
LUT_A[31] = LUT_A[31]- $signed(eavalid[31][31:4])-eavalid[31][31];
LUT_B[31] = LUT_B[31]- $signed(ebvalid[31][31:4])-ebvalid[31][31];
LUT_A[32] = LUT_A[32]- $signed(eavalid[32][31:4])-eavalid[32][31];
LUT_B[32] = LUT_B[32]- $signed(ebvalid[32][31:4])-ebvalid[32][31];
LUT_A[33] = LUT_A[33]- $signed(eavalid[33][31:4])-eavalid[33][31];
LUT_B[33] = LUT_B[33]- $signed(ebvalid[33][31:4])-ebvalid[33][31];
LUT_A[34] = LUT_A[34]- $signed(eavalid[34][31:4])-eavalid[34][31];
LUT_B[34] = LUT_B[34]- $signed(ebvalid[34][31:4])-ebvalid[34][31];
LUT_A[35] = LUT_A[35]- $signed(eavalid[35][31:4])-eavalid[35][31];
LUT_B[35] = LUT_B[35]- $signed(ebvalid[35][31:4])-ebvalid[35][31];
LUT_A[36] = LUT_A[36]- $signed(eavalid[36][31:4])-eavalid[36][31];
LUT_B[36] = LUT_B[36]- $signed(ebvalid[36][31:4])-ebvalid[36][31];
LUT_A[37] = LUT_A[37]- $signed(eavalid[37][31:4])-eavalid[37][31];
LUT_B[37] = LUT_B[37]- $signed(ebvalid[37][31:4])-ebvalid[37][31];
LUT_A[38] = LUT_A[38]- $signed(eavalid[38][31:4])-eavalid[38][31];
LUT_B[38] = LUT_B[38]- $signed(ebvalid[38][31:4])-ebvalid[38][31];

end
end

89

// UPDATE THE UNUSED PORTION OF THE LUT USING EAVALID AND EBVALID MATRIX

always@(posedge CLOCK_50) begin
if (ERROR_CORRECTION) begin
eavalid[0]<=(hit_A[0])? ea[0]: eavalid[1];
eavalid[1]<=(hit_A[1])? ea[1]: (above_A[1])? eavalid[0]: eavalid[2];
eavalid[2]<=(hit_A[2])? ea[2]: (above_A[2])? eavalid[1]: eavalid[3];
eavalid[3]<=(hit_A[3])? ea[3]: (above_A[3])? eavalid[2]: eavalid[4];
eavalid[4]<=(hit_A[4])? ea[4]: (above_A[4])? eavalid[3]: eavalid[5];
eavalid[5]<=(hit_A[5])? ea[5]: (above_A[5])? eavalid[4]: eavalid[6];
eavalid[6]<=(hit_A[6])? ea[6]: (above_A[6])? eavalid[5]: eavalid[7];
eavalid[7]<=(hit_A[7])? ea[7]: (above_A[7])? eavalid[6]: eavalid[8];
eavalid[8]<=(hit_A[8])? ea[8]: (above_A[8])? eavalid[7]: eavalid[9];
eavalid[9]<=(hit_A[9])? ea[9]: (above_A[9])? eavalid[8]: eavalid[10];
eavalid[10]<=(hit_A[10])? ea[10]: (above_A[10])? eavalid[9]: eavalid[11];
eavalid[11]<=(hit_A[11])? ea[11]: (above_A[11])? eavalid[10]: eavalid[12];
eavalid[12]<=(hit_A[12])? ea[12]: (above_A[12])? eavalid[11]: eavalid[13];
eavalid[13]<=(hit_A[13])? ea[13]: (above_A[13])? eavalid[12]: eavalid[14];
eavalid[14]<=(hit_A[14])? ea[14]: (above_A[14])? eavalid[13]: eavalid[15];
eavalid[15]<=(hit_A[15])? ea[15]: (above_A[15])? eavalid[14]: eavalid[16];
eavalid[16]<=(hit_A[16])? ea[16]: (above_A[16])? eavalid[15]: eavalid[17];
eavalid[17]<=(hit_A[17])? ea[17]: (above_A[17])? eavalid[16]: eavalid[18];
eavalid[18]<=(hit_A[18])? ea[18]: (above_A[18])? eavalid[17]: eavalid[19];
eavalid[19]<=(hit_A[19])? ea[19]: (above_A[19])? eavalid[18]: eavalid[20];
eavalid[20]<=(hit_A[20])? ea[20]: (above_A[20])? eavalid[19]: eavalid[21];
eavalid[21]<=(hit_A[21])? ea[21]: (above_A[21])? eavalid[20]: eavalid[22];
eavalid[22]<=(hit_A[22])? ea[22]: (above_A[22])? eavalid[21]: eavalid[23];
eavalid[23]<=(hit_A[23])? ea[23]: (above_A[23])? eavalid[22]: eavalid[24];
eavalid[24]<=(hit_A[24])? ea[24]: (above_A[24])? eavalid[23]: eavalid[25];
eavalid[25]<=(hit_A[25])? ea[25]: (above_A[25])? eavalid[24]: eavalid[26];
eavalid[26]<=(hit_A[26])? ea[26]: (above_A[26])? eavalid[25]: eavalid[27];
eavalid[27]<=(hit_A[27])? ea[27]: (above_A[27])? eavalid[26]: eavalid[28];
eavalid[28]<=(hit_A[28])? ea[28]: (above_A[28])? eavalid[27]: eavalid[29];
eavalid[29]<=(hit_A[29])? ea[29]: (above_A[29])? eavalid[28]: eavalid[30];
eavalid[30]<=(hit_A[30])? ea[30]: (above_A[30])? eavalid[29]: eavalid[31];
eavalid[31]<=(hit_A[31])? ea[31]: (above_A[31])? eavalid[30]: eavalid[32];
eavalid[32]<=(hit_A[32])? ea[32]: (above_A[32])? eavalid[31]: eavalid[33];
eavalid[33]<=(hit_A[33])? ea[33]: (above_A[33])? eavalid[32]: eavalid[34];
eavalid[34]<=(hit_A[34])? ea[34]: (above_A[34])? eavalid[33]: eavalid[35];
eavalid[35]<=(hit_A[35])? ea[35]: (above_A[35])? eavalid[34]: eavalid[36];
eavalid[36]<=(hit_A[36])? ea[36]: (above_A[36])? eavalid[35]: eavalid[37];
eavalid[37]<=(hit_A[37])? ea[37]: (above_A[37])? eavalid[36]: eavalid[38];
eavalid[38]<=(hit_A[38])? ea[38]: (above_A[38])? eavalid[37]: eavalid[39];
eavalid[39]<=(hit_A[39])? ea[39]: eavalid[38];
end
end

90

always@(posedge CLOCK_50) begin
if (ERROR_CORRECTION) begin
ebvalid[0]<=(hit_B[0])? eb[0]: ebvalid[1];
ebvalid[1]<=(hit_B[1])? eb[1]: (above_B[1])? ebvalid[0]: ebvalid[2];
ebvalid[2]<=(hit_B[2])? eb[2]: (above_B[2])? ebvalid[1]: ebvalid[3];
ebvalid[3]<=(hit_B[3])? eb[3]: (above_B[3])? ebvalid[2]: ebvalid[4];
ebvalid[4]<=(hit_B[4])? eb[4]: (above_B[4])? ebvalid[3]: ebvalid[5];
ebvalid[5]<=(hit_B[5])? eb[5]: (above_B[5])? ebvalid[4]: ebvalid[6];
ebvalid[6]<=(hit_B[6])? eb[6]: (above_B[6])? ebvalid[5]: ebvalid[7];
ebvalid[7]<=(hit_B[7])? eb[7]: (above_B[7])? ebvalid[6]: ebvalid[8];
ebvalid[8]<=(hit_B[8])? eb[8]: (above_B[8])? ebvalid[7]: ebvalid[9];
ebvalid[9]<=(hit_B[9])? eb[9]: (above_B[9])? ebvalid[8]: ebvalid[10];
ebvalid[10]<=(hit_B[10])? eb[10]: (above_B[10])? ebvalid[9]: ebvalid[11];
ebvalid[11]<=(hit_B[11])? eb[11]: (above_B[11])? ebvalid[10]: ebvalid[12];
ebvalid[12]<=(hit_B[12])? eb[12]: (above_B[12])? ebvalid[11]: ebvalid[13];
ebvalid[13]<=(hit_B[13])? eb[13]: (above_B[13])? ebvalid[12]: ebvalid[14];
ebvalid[14]<=(hit_B[14])? eb[14]: (above_B[14])? ebvalid[13]: ebvalid[15];
ebvalid[15]<=(hit_B[15])? eb[15]: (above_B[15])? ebvalid[14]: ebvalid[16];
ebvalid[16]<=(hit_B[16])? eb[16]: (above_B[16])? ebvalid[15]: ebvalid[17];
ebvalid[17]<=(hit_B[17])? eb[17]: (above_B[17])? ebvalid[16]: ebvalid[18];
ebvalid[18]<=(hit_B[18])? eb[18]: (above_B[18])? ebvalid[17]: ebvalid[19];
ebvalid[19]<=(hit_B[19])? eb[19]: (above_B[19])? ebvalid[18]: ebvalid[20];
ebvalid[20]<=(hit_B[20])? eb[20]: (above_B[20])? ebvalid[19]: ebvalid[21];
ebvalid[21]<=(hit_B[21])? eb[21]: (above_B[21])? ebvalid[20]: ebvalid[22];
ebvalid[22]<=(hit_B[22])? eb[22]: (above_B[22])? ebvalid[21]: ebvalid[23];
ebvalid[23]<=(hit_B[23])? eb[23]: (above_B[23])? ebvalid[22]: ebvalid[24];
ebvalid[24]<=(hit_B[24])? eb[24]: (above_B[24])? ebvalid[23]: ebvalid[25];
ebvalid[25]<=(hit_B[25])? eb[25]: (above_B[25])? ebvalid[24]: ebvalid[26];
ebvalid[26]<=(hit_B[26])? eb[26]: (above_B[26])? ebvalid[25]: ebvalid[27];
ebvalid[27]<=(hit_B[27])? eb[27]: (above_B[27])? ebvalid[26]: ebvalid[28];
ebvalid[28]<=(hit_B[28])? eb[28]: (above_B[28])? ebvalid[27]: ebvalid[29];
ebvalid[29]<=(hit_B[29])? eb[29]: (above_B[29])? ebvalid[28]: ebvalid[30];
ebvalid[30]<=(hit_B[30])? eb[30]: (above_B[30])? ebvalid[29]: ebvalid[31];
ebvalid[31]<=(hit_B[31])? eb[31]: (above_B[31])? ebvalid[30]: ebvalid[32];
ebvalid[32]<=(hit_B[32])? eb[32]: (above_B[32])? ebvalid[31]: ebvalid[33];
ebvalid[33]<=(hit_B[33])? eb[33]: (above_B[33])? ebvalid[32]: ebvalid[34];
ebvalid[34]<=(hit_B[34])? eb[34]: (above_B[34])? ebvalid[33]: ebvalid[35];
ebvalid[35]<=(hit_B[35])? eb[35]: (above_B[35])? ebvalid[34]: ebvalid[36];
ebvalid[36]<=(hit_B[36])? eb[36]: (above_B[36])? ebvalid[35]: ebvalid[37];
ebvalid[37]<=(hit_B[37])? eb[37]: (above_B[37])? ebvalid[36]: ebvalid[38];
ebvalid[38]<=(hit_B[38])? eb[38]: (above_B[38])? ebvalid[37]: ebvalid[39];
ebvalid[39]<=(hit_B[39])? eb[39]: ebvalid[38];
end
end
endmodule

91

Appendix B

MATLAB Code

B.1 Offline LUT linearization

f unc t i on [LUT, max data quantized , min MSB data] = LUTinit (LSBnum)
id = fopen (’ raw data . bin ’) ;
raw data1 = f l o o r (s i n g l e (f r ead (id , ’∗ uint16 ’)) / 1 6) ;

%==
% Process the raw data and get the u s e f u l data
% El iminate the f i r s t number
% Because in FPGA the f i r s t data in memory i s always 0
data3 = so r t (raw data1 (2 : end) , ’ ascend ’) ;
data4 = data3 (1 : end) ;
%===
% Find the s l ope o f o f f l i n e LUT
ramp = l i n s p a c e (min (data4) ,max(data4) , l ength (data4)) ;

MSB data = f l o o r (data4 /(2ˆ(LSBnum))) ;
LSB data = data4 − MSB data∗(2ˆLSBnum) ;
data quant i zed = data4 − LSB data ;
data quant i zed un ique = unique (data quant i zed) ;
% I n i t i a l LUT f i l l e d with 0
LUT = ze ro s (s i z e (data quant i zed un ique)) ;
% Find ai , and put a i i n to LUT
f o r i = 1 : 1 : l ength (data quant i zed un ique)

index = f i nd (data quant i zed ==

LUT(i) = f l o o r (ramp(index)) ;
end
LUT(1) = (ramp(1)−LUT(2)∗ LSB data (1)/ (2ˆLSBnum))

92

/(1−LSB data (1)/ (2ˆLSBnum)) ;
temp = (ramp(end) − LUT(end))/ LSB data (end)

∗(2ˆLSBnum) + LUT(end) ;

LUT = [LUT; temp] ;
max data quantized = max(data quant i zed) ;
min MSB data = min (MSB data) ;

B.2 Linearity test

f unc t i on [dnl , i n l] = dn l i n l (data)
% Set edges f o r DNL
edge = (min (data) −0 .5 :1 :max(data)+0 .5) ;
% Count numbers o f data in d i f f e r e n t a reas
dn l count=h i s t c (data , edge) ;
% For DNL, chop out f i r s t 2 and l a s t 2 edge po in t s
dnl=dnl count (2 : end−2);
% normal i ze
dnl=dnl /mean(dnl)−1;
% i n l as cumsum
i n l=cumsum(dnl) ;

B.3 Offline calibration linearity test

c l e a r a l l ;
c l o s e a l l ;
c l c ;
LSBnum = 6 ; %5 LSBs f o r l i n e a r i n t e r p o l a t i o n
id = fopen (’ raw data . bin ’) ;
raw data = f l o o r ((s i n g l e (f r ead (id , ’∗ uint16 ’))) / 1 6) ;

f i g u r e (1)
p l o t (raw data)
g r i d on
%===
%pre p r o c e s s the raw data
%e l im ina t e the f i r s t number (always 0)
data2 = so r t (raw data (2 : end) , ’ ascend ’) ;
data1 = data2 (1 : end) ;
[LUT, max data quantized , min MSB data] = f i n d a i (LSBnum) ;
data = data1 ;

% %e l im ina t e data which exceed the LUT range

93

% k = 1 ;
% f o r i = 1 : 1 : l ength (data1)
% i f (data1 (i) < max data quantized)
% data (k) = data1 (i) ;
% k = k+1;
% end
% end
MSB data = f l o o r (data /(2ˆ(LSBnum))) ;
LSB data = data − MSB data∗(2ˆLSBnum) ;
%==
% Correct data based on LUT
% I n i t i a l with 0
da t a c o r r e c t = ze ro s (s i z e (data)) ;
% In t e r p o l a t i o n
% da t a c o r r e c t = a i + (a i+1−a i)∗ (LSB/2ˆL)
f o r i =1:1 : l ength (data)

da t a c o r r e c t (i) = f l o o r (LUT(MSB data (i)−min MSB data+1)
+ (LUT(MSB data (i)−min MSB data+2)−LUT(MSB data (i)
−min MSB data+1))∗(LSB data (i)/(2ˆLSBnum))) ;

end
%==
[DNL raw , INL raw] = dn l i n l (data) ;
[DNL correct , INL cor rec t] = dn l i n l (d a t a c o r r e c t) ;
%==
f i g u r e (2)
p l o t (data , ’ r ’ , ’ l inewidth ’ , 2) ;
hold on ;
p l o t (da ta co r r e c t , ’ b ’ , ’ l inewidth ’ , 2) ;
ax i s ([0 l ength (data) min (data) max(data)]) ;
x l ab e l (’SAMPLES’) ;
y l ab e l (’DIGITAL OUTPUT’) ;
l egend (’UNCORRECTED COUNT’ , ’CORRECTED COUNT’)

f i g u r e (3)
t i t l e (’ Error or raw data ’)
subp lot (2 , 1 , 1)
p l o t (DNL raw , ’ LineWidth ’ , 2)
y l ab e l (’DNL raw ’)
t i t l e (’ Error o f unca l i b ra t ed data ’)
ax i s ([0 l ength (DNL raw) f l o o r (min (DNL raw)) c e i l (max(DNL raw))]) ;
subp lot (2 , 1 , 2)
p l o t (INL raw , ’ LineWidth ’ , 2)

94

y l ab e l (’ INL raw ’)
ax i s ([0 l ength (INL raw) f l o o r (min (INL raw)) c e i l (max(INL raw))]) ;

f i g u r e (4)
subp lot (2 , 1 , 1)
p l o t (DNL correct , ’ LineWidth ’ , 2)
y l ab e l (’DNL cor r e c t ’)
t i t l e (’ Error o f data c a l i b r a t e d us ing MATLAB’)
ax i s ([0 l ength (DNL correct) f l o o r (min (DNL correct)) ,

c e i l (max(DNL correct))]) ;
subp lot (2 , 1 , 2)
p l o t (INL correct , ’ LineWidth ’ , 2)
y l ab e l (’ INL co r r e c t ’)
ax i s ([0 l ength (INL cor rec t) f l o o r (min (INL cor rec t)) ,

c e i l (max(INL cor rec t))]) ;

f c l o s e (’ a l l ’) ;

95

	201504301353 (1)
	Long_Pham_Thesis

