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Abstract

Data mining for patterns and knowledge discovery in mutiate datasets are very impor-
tant processes and tasks to help analysts understand #setjatescribe the dataset, and
predict unknown data values. However, conventional coerpstipported data mining
approaches often limit the user from getting involved innthiaing process and perform-
ing interactions during the pattern discovery. Besideshauit the visual representation
of the extracted knowledge, the analysts can have diffi@dptaining and understanding
the patterns. Therefore, instead of directly applying engttic data mining techniques, it
is necessary to develop appropriate techniques and \dstial systems that allow users
to interactively perform knowledge discovery, visuallyaexine the patterns, adjust the
parameters, and discover more interesting patterns bastwtio requirements.

In the dissertation, | will discuss different proposed wilzation systems to assist
analysts in mining patterns and discovering knowledge iftivauiate datasets, including
the design, implementation, and the evaluation. Threestygealifferent patterns are
proposed and discussed, including trends, clusters ofrsupg, and local patterns. For
trend discovery, the parameter space is visualized to alewser to visually examine the
space and find where good linear patterns exist. For clugeowkry, the user is able to
interactively set the query range on a target attribute ratréeve all the sub-regions that
satisfy the user’s requirements. The sub-regions thaifgdlie same query and are near
each other are grouped and aggregated to form clusterso&arpattern discovery, the
patterns for the local sub-region with a focal point and égghbors are computationally
extracted and visually represented. To discover intargstical neighbors, the extracted
local patterns are integrated and visually shown to theyatsal Evaluations of the three
visualization systems using formal user studies are aldonpeed and discussed.
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Chapter 1

Introduction

1.1 Motivation

Knowledge discovery in multivariate databases is “the trowial process of identifying
valid, novel, potentially useful, and ultimately understable patterns in data” [26]. The
patterns are generally sub-regions or subsets of dataspihiat meet user requirements
or satisfy user demands. We use the term “nuggets” to reprdgeoveries and patterns,
which could be clusters, trends, outliers, and other typsslo-regions or subsets that are
of interest to users.

Data mining is an important step of the knowledge discovepc@ss, which con-
sists of particular mining algorithms to extract and detadden patterns in the data.
Nowadays, many computational data mining techniques heea proposed, and these
technigues become more and more automated, however, teseintion and human un-
derstanding are still required to discover novel knowledas is true, especially when
seeking the answers to some complex analysis question$ose tsituations, analysts
often integrate their expert knowledge, common senseitimis into the data mining
process [52]. However, in many cases, conventional autinddta mining techniques
are often treated as “black-box” systems, which only all@mnimited or no user inter-
ventions. The limitation of pure automated data mining téghes without visualizations
has been discussed in [52].

Moreover, in many cases, the discovered patterns and modbisnake sense and
are explainable when it can be visually represented and ieeahby the analysts. A vi-
sualization system that allows analysts to interactivejyl@e the mined patterns, being
aware of the relationships between data space and pat@&ea,dp potentially quite pow-
erful. Seeking a more accurate and meaningful pattern,ntaee desirable if the users
are able to interactively refine and adjust the patterngdas the users’ task and do-
main knowledge. However, this goal is difficult to achievéhié mining process and the
extracted patterns are not explicit to the analysts. Thenatl advantages of visual data
mining tools compared to classical data mining tools areutised in [52] and [19].

In recent years, visualization has been widely used in maitg chining process. It
can be used to help the analysts explore and navigate thdicated data structures, re-
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veal hidden patterns, and convey the results of data midi@p[p6]. The aim of visual
data exploration and mining is to involve the human in thedaining process. Through
this, human analysts can apply their perceptual abilitieend the analysis, thus gaining
a more comprehensive understanding of the mining processnamng results. As dis-
cussed in [46], with visual data exploration, the data capresented in some visual un-
derstanding manner, which allows the user to better uralteighe data, form hypotheses,
draw and verify conclusions, as well as perform interaciaith the data directly. Keim
[45] also argued that visualization techniques are subatBruseful for exploratory data
analysis and could potentially be very helpful for inspegtiarge databases, especially in
the case where little prior knowledge about the data can pkeap

Visualization can help analysts use visual perception ¥eakhidden patterns. The
major benefit of visual data exploration is that the userskEadirectly incorporated in
the data mining process. Furthermore, visual analyticpcavide an representative and
interactive environment, which combines the human’s mamgnitive capabilities and
computers’ computing abilities. This can improve both tpeesl and accuracy when
identifying hidden data patterns. The goal of visual dataing, as detailed in [10], is to
help analysts establish in-depth insight of the data, twodisr novel and useful knowledge
from the data, and to acquire a better understanding of ttze da

Keim [44] elaborated on the methodology of visual data ngnihhey pointed out that
using visual data exploration has benefits for users, asaaeyften explore data more
efficiently and obtain better results. Visual data explorais particularly useful when
mining tasks are hard to be done solely by automatic algosthn addition, as described
in [46], another advantage of using visual data exploragahniques is that users could
be more confident about their discovered patterns. Thesantatyes promote a high
demand of combining visual exploration techniques andraatic exploration techniques
together. A variety of visual data exploration and visualadaining techniques were
discussed in [20].

In this dissertation, | discussed three novel visualizaBgstems that facilitate vi-
sually and computationally discovering and extractinggyas in multivariate datasets.
The extracted patterns can be visually represented foerbettderstanding. The users
should be able to interactively adjust the pattern basedemser’s task. Visualization
systems that integrate the mining process are proposed:fattern extraction to pattern
representation; from pattern examination to pattern referd.

| list several requirements and desirable features for@aVimining system:

e Understandability requirement: conventional computer-supported data mining
approaches tend to extract complex and incomprehensitikrps, such as a poly-
nomial regression line, a neural network, or an arbitrastyaped sub-region in high
dimensional space. These models can be directly used te aatiassification or
a prediction task. However, without an explicit represeataand human under-
standing, the results are hard to explain and analyze, iedlge@hen the output
conflicts with domain knowledge or common-sense. The adgmstand disadvan-
tages of the model are hidden from the user, which may meanséecan only



passively perform the mining process and accept the miresglts without too
much critique.

e Visual representation An effective visualization technique can strongly assist
analysts in discovering hidden patterns and understaridengata mining results.
In most cases, the patterns cannot be directly shown andiaypar visualization
technique should be designed. For example, in XmdvToolhikearchical cluster
tree and structure based brush [27] provide a good repaagemndf the clustering
results. The designed visual representation should gleavieal the underlying
data structures and convey the extracted patterns usinglwviemponents, such as
color and line width.

¢ Refineable and adjustable:When the extracted patterns are not explicit and vi-
sually examinable by the users, they can only generate a raelmia adjusting
the parameters. However, in most cases, a direct adjustmnehe model structure
is desirable, for example, removing a branch of a tree straadr changing the
coefficient of a regression line.

e Connection between pattern and data: The relationship between the pattern
space and data space should be clearly presented to thestanalkor example,
given a regression model, the user needs to know how welldkee mbints fit the
model and which points are the outliers. When the usersaatieely examine dif-
ferent sub-parts of the model, the data points that fit orespond to this sub-part
should be highlighted.

e Solve complex real-world application problems:For analysts, data mining tech-
niques and data mining results are considered as a toolbegliang the real-world
problems or answering task-related questions. An examplddibe that given a
classification model, e.g., a classification tree for cfgsgy the paper acceptance
results, the users try to figure out why a certain paper isiflad as rejected and
how to change the attribute values to make it classified aspéed. This example
shows that a data mining pattern cannot be directly useddwamnusers’ guiding
guestions, except when human intuition and knowledge ar@\vied in the data
mining process and pattern exploration.

1.2 Research Goals

In this section, | introduce three topics as my dissertatsearch goals. Each topic is one
type of pattern in multivariate datasets that assists usarsderstand multi-dimensional
phenomena, build models for datasets, and predict tangisiae values and class types.



1.2.1 Linear Trend Patterns

The first challenge is to discover and extract linear pastérom a multivariate dataset.
Linear trends are one of the most common patterns and liegaession techniques are
widely used to mine these patterns. However, the automegieession procedure and
results pose several problems:

e Lack of efficiencyWhen discovering trends in a large dataset, users are oiftlgn
concerned with a subset of the data that matches a giverrmpasi@ only these
data should be used for the computation procedure ratherttieawhole dataset.
Furthermore, locating a good estimation of the trend as ialimput for the re-
gression analysis could expedite the convergence, edigdoiahigh dimensional
datasets.

e Lack of accuracy Computational results are often not as accurate as theemser
pects because users are unable to apply their own domairdahgeand perceptual
ability during and after discovering models. User-driveod®lling and tuning may
be required. For example, an extracted linear trend for aséatvith outliers usu-
ally tries to cover all the data points, which means it is noaacurate estimation
for inliers.

e Parameter setting problemMost model estimation techniques require users to
specify parameters, such as the minimum percentage of datts phe model in-
cludes, maximum error tolerance and iteration count. Thes®ften particular to

a concrete dataset, application, and task, but users ofte’ khow conceptually
how to set them.

e Multiple model problemlIf multiple phenomena coexist in the same dataset, many
analytic techniques will extract poor models. This is beeathe computer-based
methods try to extract a single model to fit the whole datageite in this case, dif-
ferent models for different subsets of data points shouleidbected. For example,
if the linear trends for males and females are different arekist in the dataset,

a single linear trend doesn’t explain the dataset very wehis problem can be
solved based on the user’s domain knowledge and visual extjao of the dataset.

As part of my dissertation, | developed a system focusinghesseé problems found
in automatic regression techniques. Specifically, | desiga visual interface to allow
users to navigate in the model space to discover multiplgistyeg linear trends, extract
subsets of data fitting a trend, and adjust the computati@zallt visually. The user
will be able to select and tune arbitrary high-dimensioimadr patterns in a direct and
intuitive manner. | designed a sampled model space measutamap that helps users
quickly locate interesting exploration areas. While natigg in the model space, the
related views that provide metrics for the current selet¢tedd, along with the status
of data space, are dynamically displayed and changed, wgi&s users an accurate
estimation to evaluate how well the subset of data fits theltr&he details of this system
and the assessing of the technology are discussed in Cldapter
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1.2.2 Subgroup Patterns

The second difficulty is to discover interesting subgroupserms of a target attribute
and users’ requirements from a multivariate dataset. Swipgdiscovery is a method
to discover interesting subgroups of individuals from atiaatiate dataset. Subgroups
can be described by relations between independent vasiablg a dependent variable.
An interestingness measure, such as a statistical sigmgcealue, is also specified to
indicate whether the subgroups are of certain interest.gi®uip discovery is used for
understanding the relations between a target variable aptiaf independent variables.
The subgroup discovery process poses several compellaigobes:

e Dynamically submit queriesince analysts may not know in advance what kind of
interesting features the query results have, they may lwawepeatedly re-submit
gueries and explore the results in multiple passes. Thiem#ie mining process
tedious and less efficient.

e Mining results examination problemwithout visual support, users can only exam-
ine the mining results in text or tables. This makes it vemdita understand the
relationships among different subgroups and how they atelolited in the feature
space. A visual representation of the pattern space shaegistribution and
relationships among patterns is preferable.

e Compact representation for visualizatiothhe mining results are often reported as
a set of unrelated subgroups. This kind of mining result iscompact because for
the adjacent subgroups, they should be aggregated andreldsthen they are of
the same interesting type. One benefit could be that an aafgregpresentation is
more compact, which provides the users a smaller repofoligasy examination.
Another benefit could be that the compact representatiorbeamore efficiently
stored in a file and loaded in computer memory.

¢ Relationships between patterns and individualghout a visualization of the min-
ing results, users cannot build connections between therpatand the individuals
when they explore the mining results. This means that thayordy explore the
mining result in the form of each subgroup, while they canmaterstand the dis-
tribution or the structure of the underlying data points.

Focusing on these challenges, our main goal is to designuahiigterface allowing
users to interactively submit subgroup mining queries fecalering interesting patterns.
| proposed and designed a novel pattern extraction andlizatian system, called the
Nugget Browser, that takes advantage of both data miningedstand interactive visual
exploration. Specifically, our system can accept miningiggedynamically, extract a set
of hyper-box shaped regions callsidiggetsor easy understandability and visualization,
and allow users to navigate in multiple views for explorimg tquery results. While
navigating in the spaces, users can specify which level stfattion they prefer to view.
Meanwhile, the linkages between the entities in differenels and the corresponding

5



data points in the data space are highlighted. Details aaldi@ion of this novel system
are in Chapter 4.

1.2.3 Local Patterns

The third challenge is to discover and extract interestowal patterns via sensitivity
analysis. Sensitivity analysis is the study of the varmatid the output of a model as
the input of the model changes. Analysts can also discovahwhput parameters are
significant for influencing the output variable. Althoughmgavisual analytics systems
for sensitivity analysis follow this local analysis methdiaere are few that allow analysts
to explore the local pattern in a pointwise manner, i.e. réhationship between a focal
point and its neighbors is generally not visually conveyEkis pointwise exploration is
helpful when a user wants to understand the relationshipdsat the focal point and its
neighbors, such as the distances and directions.

We seek to propose a novel pointwise local pattern visudbexton method that can
be used for sensitivity analysis and, as a general exptoratiethod, for studying any
local patterns of multidimensional data. The primary cotions of this work include:

e A pointwise exploration environmenthe users should be able to explore a multi-
variate dataset from pointwiseperspective view. This exploration can assist users
in understanding the vicinity of a focal point and reveaks thlationships between
the focal point and its neighbors.

e A visualization approach for sensitivity analysiSensitivity analysis is one im-
portant local analysis method, thus is well suited for ouinpaise exploration.
The designed local pattern exploration view indicates ¢heionships between the
focal point and its neighbors, and whether the relationsbigforms to the local
pattern or not. This helps the user find potentially intengsheighbors around the
focal point, and thus acts as a recommendation system.

e Adjustable sensitivityThe system should allows users to interactively adjust the
sensitivity coefficients, which gives users flexibility tastomize their local patterns
based on their domain knowledge and goals.

Focusing on these requirements, our main goal is to desiggualunterface allowing
users to perform pointwise visualization and exploratimmvisual multivariate analysis.
Generally, any local pattern extracted using the neightmatharound a focal point can
be explored in a pointwise manner using our system. In paaticwe focus on model
construction and sensitivity analysis, where each locttepais extracted based on a
regression model and the relationships between the fodal @od its neighbors. Using
this system, analysts are able to explore the sensitivityrnmation at individual data
points. The layout strategy of local patterns can reveatihieighbors are of potential
interest. During exploration, analysts can interactivdignge the local pattern, i.e., the
derivative coefficients, to perform sensitivity analysésed on different requirements.
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Following the idea of subgroup mining, we employ a statétimethod to assign
each local pattern an outlier factor, so that users can tuidkntify anomalous local
patterns that deviate from the global pattern. Users canampare the local pattern
with the global pattern both visually and statistically. Weegrated the local pattern into
the original attribute space using color mapping and jittgto reveal the distribution of
the partial derivatives. | evaluated the effectivenessusfaystem based on a real-world
dataset and performed a formal user study to better evahmtdfectiveness of the whole
framework. Details and evaluation are discussed in Chapteection 5.

1.3 Organization of this Dissertation

The following chapters of this dissertation are organizeéotows: Chapter 2 proposes
related work of visual data mining and visual analytics. @ba3 presents a parame-
ter space visualization system that allows users to disdmear patterns in multivariate
datasets. Chapter 3 describes a visual subgroup miningmsystlled Nugget Browser,
to support users in discovering interesting subgroups stdtistical significance in mul-
tivariate datasets. Chapter 3 discusses a pointwise lattrp exploration system that
assists users in understanding the relationship betweesdiected focal point and its
neighbors, as well as in performing sensitivity analysisagter 6 concludes with a sum-
mary and the contributions of this dissertation, as well @etial directions for future
research.



Chapter 2
Related Work

In this chapter, | will give an overview of visual data miniagd introduce related works.

2.1 Visual Data Mining Problem

Data Mining (DM) is commonly defined as “the extraction oftpats or models from
data, usually as part of a more general process of extraeiyiglevel, potentially useful
knowledge, from low-level data”, known as Knowledge Disegvin Databases (KDD)
[25], [26]. Data visualization and visual data exploratim@ctome more and more impor-
tant in the KDD process. Analysts use data mining systemertetouct their hypotheses
about data sets, which rely heavily on data exploration aatd dnderstanding. With
interactive navigation of multivariate datasets and quespurcesyisual data mining
tools allow the analysts to quickly examine their hypotisesspecially for answering the
“what if” questions.

The termVisual Data Miningwas introduced over a decade ago. The understanding
of this term varies for different research groups. “Visuatadmining is to help a user
to get a feeling for the data, to detect interesting knowdedmd to gain a deep visual
understanding of the data set” [10]. Niggemann[51] viewsdial data mining as visual
presentation of the data, which is similar to how humans ggsaata presentation. In
particular, to understand the data information, humanis#jfy construct a mental model
which captures only a gist of the data. A data visualizattat ts similar to the mental
model can reveal hidden information in the data. Ankersinf2htioned that visualiza-
tion works as a visual representation of the data. and meremwphasized the relation
between visualization and the data mining and knowledgmouery (KDD) process. He
defined visual data mining as “a step in the KDD process thizeg visualization as a
communication channel between the computer and the useotiuge novel and inter-
pretable patterns.” Ankerst [2] discussed three diffeagmiroaches to visual data mining.
Two of them involve the visualization of intermediate or finaining results, while the
third one, rather than directly being used for showing tiselits of the algorithm, involves
interactive manipulation of the visual representatiorhef data.



The above definitions consider that visual data mining @gfly related to the human
visual understanding and human cognition. They respdgthighlight the importance
of the three aspects of visual data mining: (a) data minisgsa(b) visualization for
representation; and (c) data mining process. Overallgrateng the visualization into
data mining techniques helps convey mining results in a ruaderstandable manner,
deepen the end users’ understanding about how mining absiwork, and manipulate
the mining results with human knowledge.

2.2 Visual Data Mining Process

A visual data mining process proposed in [58] is illustratedrig. 2.1. The analyst

interacts with each step of the pipeline, shown as the lgietimnal arrows that connect
the analyst and different mining steps. These links inditlaat the human analyst plays
an important role in the mining process and can be involveebich step. Indicated by
thicker bi-directional arrows, data mining algorithms @so be applied to the data in
some steps: (@) before any visualization has been carriedand (b) after interacting

with the visualization.

Information.
Knowledge

Legend

= Analytical reasoning}
Data mining || I [: Process step

algorithm I
Interacting with
visualisation

= Visual processing
pipeline

\ [ O

i pmg data to
vmua reprtsentallon

L Selectlon of -
visual representation A i e—

———1] FE_ o

Data mining
algorithm

Collection of
—-[ Data pleparanonJ

Visualisation Techniques

Figure 2.1: Visual data mining as a human-centerd intara@halytical and discovery
process [58].

As discussed before, the visual data mining process redi@gly on visualization and
interactions. The success of the process depends on thanessaof the collection of vi-
sualization techniques. In Fig. 2.1 the “Collection of \Atimation Techniques” are com-
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posed of graphical representations, each of which has ssereinteraction techniques
used for operating with the representation . For instamcfl 4], two visual representa-
tions were successfully applied to fraud detection in @emunication data. Keim [43]
emphasized further the importance of interactivity of tigial representation, as well as
its link to information visualization.

2.3 Visual Data Exploration for Mining

Many application domains have shown examples where phcatgdinates and scat-
terplots can be used for exploring the multivariate datar. |&@er datasets, some user
interactions are also incorporated in these techniques, asi selecting and filtering. In-
selberg [38] discussed that parallel coordinates transfdhe search for relations among
different attributes into a 2-D pattern recognition prabldt is also argued that effective
user interactions can also be provided for supporting thas\tedge discovery process.

The application of a statistical graphics package calledbiGas been described
in [59]. They found that visual data mining techniques carctabined together with
computational neural modeling, which is a very effectiveyw@detect structures in the
neuroanatomical data. This visual data mining tool is usetify the main hypothesis
that neuromorphology shapes neurophysiology. They alscudsed that with the fea-
ture of brush tour strategy and linked brushing in scattésphnd dotplots, XGobi have
been proven as a very successful tool to reveal the hiddectste in their morphology
data. As a result, correlation of electrophysiologicaldabr and certain morphometric
parameters are identified and verified.

Hoffman et al. [36] described a case study of using data eafm techniques to
classify DNA sequences. Several visual multivariate Migaion and data exploration
techniques, such as RadViz, Parallel Coordinates, and $anittots [57], have been
used to validate and attempt to discover new methods fandisshing coding DNA se-
guences from non-coding DNA sequences. Cvek et al. [18]egpisual analytic tech-
niques for mining yeast functional genomics datasets. Teayonstrated the application
of both supervised and unsupervised machine learning tooami@y data. Additionally,
they presented new techniques that can be used to facdltegring comparisons using
visual and analytical approaches. They showed that Phaf2dlerdinates, Circle Seg-
ments [5], and RadViz can help gain insight into the data] &l [54] also discussed
how visual analytic tools can be applied to Bioinformatiedjch indicated that this do-
main poses many challenges and more and more researchmtsoaessual data mining
when tackling these challenges.

Recognition of complex dependencies and correlations detwariables is also an
important issue in data mining. Berchtold et al. [11] pragmba visualization technique
called Independence Diagrams, aiming at reveal deperefeacnong variables. They
first divided each variable into ranges. As a result, for gaaih of attributes, the com-
bination of these ranges can form a two-dimensional grid.efagh cell of this grid, the
number of data items in it are stored. The grids are visuahza scaling each attribute
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axis. They mapped the the proportional to the total numbdats items within that range
to the width; and the density of data items in it is mapped ightness. The authors
stated that, with this visual representation, indepenel@i@grams can provide quanti-
tative measures of the interaction between two variablasaddition, it allows formal
reasoning about issues such as statistical significanaelimftation for this technique is
that for each time, only pairs of attributes can be displayedianalyzed.

Classification is another basic task for pattern recognmitiodata analysis. Dy and
Brodley [23] introduced a technique called Visual-FSSENs(MI Feature Subset Selec-
tion using Expectation-Maximization Clustering). Thistimed incorporated visualiza-
tion techniques, clustering, and user inter- action to g@uite feature subset search by
end users. They chose to display the data and clusteringascatterplots projected
to the 2-D space using linear discriminant analysis. ViSt®EEM allowed the users to
select any subset of features as a starting point, seansfarfdor backward, and visual-
ize the results of the EM clustering, which enables a deepdenstanding of the data.
In [39], a geometrically motivated classifier is presentad applied, with both training
and testing stages, to 3 real datasets. Their implementalioved the user to select a
subset of the available variables and restrict the rule rg¢ioa to these variables. They
stated that the visual aspects can be used for displayingsiét as well as exploring the
salient features of the distribution of data brought outhwy ¢lassifier. They tested their
classifier on three classification benchmark datasets, leowlesd very good results as far
as test error rates are concerned.

2.4 Visualization of Mining Models

Visualization can also be used to convey the results of rgitasks, which enhances user
understanding and user interpretation.

Association rule mining is an important data mining taskiohitreveals correlations
among data items and attribute values. However, undeiisigtite results is not always
simple. This is because the mining results are often quitgetathan can be handled
by humans. Besides, the extracted rules are not generditg)gdanatory. Hofmann
et al. [37] proposed a method, called Double Decker plotsjdoalize the contingency
tables to assist the analysts in understanding the undgréyructures of association rules.
The authors stated that this gives a deeper understanditigearature of the correlation
between the left-hand side of the rule and the right-hanel M interactive use of these
plots are also discussed, which helps the user to undergti@ncelationship between
related association rules, for example, for rule sets withramon right-hand side.

Another similar visual representation of multivariate tingency tables is called Mo-
saic Plots [33]. A mosaic plot is divided into rectangles. eTdrea of each rectangle
is proportional to the the number of data items in a cell, tlee proportions of the Y
variable in each level of the X variable. The arrangemenhefrectangles, and how the
cells are splitted are determined by both the constructigorithm, as well as the user
requirement. The plots reveal the interaction effects betwthe two variables.
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A commercial DM tool called Mineset was introduced by Brurtkak[14]. In in-
tegrated database access, analytical data mining, andidatdization into one system
to support exploratory data analysis and visualization wfimg results. It provided 3D
visualization capabilities for displaying high-dimensa data with geographical and hi-
erarchical information. This tool can help identify poteily interesting models of the
data using analytical mining algorithms.

Another important data mining results are classifiers thatie used for classification
tasks. Some visualization techniques are proposed to suthgouser’s understanding
on the classifiers and manipulate the results. For exam@ekds et al. [9] discussed
a system called Evidence Visualizer to display the strectirSimple Bayes Models, a
decision tree model classifier. This system allowed usgrsitiorm interactions, examine
specific tree node values, display probabilities of setkitéens, and ask what if questions
during exploration. The reasons for the choices of diffewsualization techniques, such
as pies and bars, are also discussed in detail. Kohavi et dldpscribed a visualization
mechanism that are implemented in MineSet to display thisidectable classifier. Some
interactions were provided for exploration of the classifseich as clicking to show the
next pair of attributes, providing drill-downs to the ardarmerest.

Han and Cercone [32] emphasized human-machine interaatidwisualization dur-
ing the entire KDD process. They pointed out that with the Aomarticipation in the
discovery process, the user can easily provide the systemheuristics and domain
knowledge, as well as specify parameters required by tharitigns. They described an
interactive system, called CViz, aiming at visualizing firecess of classification rule
induction. The CViz system uses parallel coordinates tegclanto visualize the original
data and the discretized data. The discovered rules areviglsalized as rule polygons
(strips) on the parallel coordinates system. The rule aoyuand rule quality were coded
by coloring to render the rule polygons. User interactios sapported to allow focusing
on subsets of interesting rules. For example, CViz alloves ts specify a class label to
view all rules that have this class label as the decisionevallne users can also use three
sliders to hide uninteresting rules: two to set the rule emxuthreshold and one to set
guality threshold.

The Self-Organizing Map (SOM) [61] is a neural network algfon that is based on
unsupervised learning. The goal of SOM is to transform artrarlg dimensional pattern
into a one or two dimensional discrete map, which revealsesonaerlying structure of
the data. SOM involves some adaptive learning process, bghwhe outputs become
self-organised in a topologically ordered fashion. In [6R]is discussed that SOM is
a widely used algorithm, and it has led to many applicationdiverse domains. The
authors also argued that SOM can be integrated with diffetisnalization techniques to
enhance users’ interpretation.
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2.5 Integrating Visualizations into Analytical Processes

Wong [90] argued: “rather than using visual data exploraéind analytical mining algo-
rithms as separate tools, a stronger DM strategy would bightyt couple the visualiza-
tions and analytical processes into one DM tool”. Many ngriechniques incorporate a
variety of mathematical steps, where user interventioedsliired. However, some min-
ing techniques are fairly complex, and visualization plagsimportant role to support
the decision making in the interventions. Standing on tbistpthe role of a Visual Data
Mining technique is considered beyond the traditionaldiglihat the technique solely
participates in some phases of an analytical mining promessxploiting data. Rather,
the technique should be viewed as a DM algorithm with vizaailon as the major role.

A work by Hinneburg et al. is another example that shows et toupling of visu-
alization into a mining technique [35]. They proposed anrapph to effectively cluster
high-dimensional data. The approach was established lmasedmbining OptiGrid, an
advanced clustering method, and visualization methodsgpat an interactive cluster-
ing procedure. The approach worked in a recursive mannezcifally, in each step,
if certain conditions are met, the actual data set is pani#d into several subsets. Next,
for those subsets which contain at least one cluster, theapip deals with them recur-
sively, where a new partitioning might take place. The apphochooses a number of
separators in regions with minimal point density, and thessuthose separators to define
a multidimensional grid. For a subset, the recursion stdpswo good separators can be
found. The difficulty in the approach lies in two aspects:ading the contracting projec-
tions and specifying the separators for constructing thitidnmensional grid. These two
operations have no way to be done fully automatically duééodiverse cluster charac-
teristics in different data sets. The authors resortedgoalization. They developed new
techniques that represent the important features of a targder of projections, through
which a user can identify the most interesting projectioms select the best separators.
In this way, the approach improves the effectiveness of lilering process.

Hellerstein et al. [34] focused on utilizing visualizatitmimprove user control in the
process of data discovery. A typical KDD process consistsegéral steps and require-
ments, as well as a sequence of user input for submittingegi@nd adjusting parameters,
which are specific to different algorithms. Some exampleglae distance threshold for
density based clustering, support and confidence for agsmtirule mining, and the per-
centage of training sets for classification. For these oaotis user input, visualization
can help ease the process. For example, in a time-consuaskgdynamically setting
parameters in real time is a highly desirable ability. $tdly setting parameters at the
beginning of the process could possibly work less efficigmts whether the settings are
reasonable cannot be known until the end of the process.

Ankerst et al. [4], [3] targeted to the problem that the useesunable to be involved
in the middle of a running algorithm. The problem is discassea classification task
that the users cannot get intermediate results. For mosgrdulassification algorithms,
users have very limited control to guide and interact with atgorithms. They have no
other choices aside from running the algorithm with somesaite yet typically hard to
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be estimated, parameter values. The users must wait forrthleréisults to tell whether
they should have tried some other values. Towards this @nopthe authors presented
an approach to interactively construct a classifier decigi®@e. The approach exploits a
large amount of visualization for the data set, as well aglerdecision tree. Through
the enhanced user involvement, the user also gains the behatiquiring more insight
about the data, during the process of interactive tree ngotgin.

Another similar work is proposed in [65], which emphasizatkractive machine
learning that involves users in generating the classifiemgelves. This allows the users
to integrate their background knowledge into the modeltags and decision tree build-
ing process. The authors argued that with the support of plsitwo-dimensional vi-
sual interface, even common users (not domain experts)tdhonfen construct good
classifiers after very little practice. Furthermore, tmteractive classifiers construction
approach allows users who are familiar with the data to #ffely apply their domain
knowledge. Some limitations about the approach are alsust®ed, for example, the
manual classifier construction is not likely to be succddsiularge datasets with large
number of attributes to interact with.

Ribarsky et al. [53] propose a mining approach,“discovesyalization”. Unlike the
other DM tools, the approach emphasizes user interactidcemters on the users. It uses
4D (time dependent) visual display and interaction to adatggree. In order to smooth
the user experience, the approach pays a great amountmti@iten organizing data, as
it facilitates graphical representation, as well as rapidl accurate selection via the visu-
alization. In particular, they present a fast clusterirgpathm, that works together with
their approach. The algorithm provides users the abiligx@ore data during continuous
adjustment and based on the feedback obtained from thexatitam with the visualiza-
tion. In addition, the algorithm performs fast clusteringhathe scalability to very large
data sets. It also looks beyond direct spatial clusteriryc@mpletes the task based on
the distribution of other variables. As the first step, thgpoathm uses an initial binsort
to process the data and maintain them into a more manageaélesitially, the entire
(binsorted) data space is viewed as one big cluster. Neatd#ta set is divided in a
iterative manner, until either a user-specified number a$telrs have been formed or it
makes no sense to perform further division. This approactles a quick display for
a general overview of the data distribution. The user caecseegions of interest and
perform further exploration.

My research is strongly related to the visual mining ideashsas exploration for
mining and visually knowledge representation. The mairl gbmy three visual discov-
ery systems is to assist analysts in visually exploring thia dpace, pattern space, and
subgroups to extract and detect certain interesting madelata instances. For example,
users are able to explore the parameter space using a lieleatien panel to discover
strong linear trends, which is discussed in Chapter 3. Fcin déscovered pattern, | de-
sign a visual technique, such as a layout strategy of lodgghbers discussed in Chapter
5, to help users understand and interpret the extractedlkdge. | also borrow the idea
of integrating visualization into mining processes. Faaraple, for the subgroup mining
problem mention in Chapter 4, it is difficult to automatigadpecify the target share range
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and subgroup partitioning strategy because of the divextsesdt characteristics. The sys-
tem allows users to dynamically adjust the cut-point posgifor binning, and that target
share range for different mining tasks they address.
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Chapter 3

Patterns for Linear Trend Discovery

In this chapter, | present a novel visual system that allavedyets to perform the linear
model discovery task visually and interactively. This wbds been published in VAST
2009 [30].

3.1 Introduction

Discovering and extracting useful insights in a datasebasgc tasks in data analysis. The
insights may include clusters, classifications, trenddljeza and so on. Among these,
linear trends are one of the most common features of inteFestexample, when users
attempt to build a model to represent how horsepawyemnd engine size; influence the
retail pricey for predicting the price for a given car, a simple estimateedr trend model
(y = koxo + k121 4 b) could be helpful and revealing. Many computational apphes
for constructing linear models have been developed, sudinee regression [21] and
response surface analysis [13]. However, the procedureesidts are not always useful
for the following reasons:

e Lack of efficiencyWhen discovering trends in a large dataset, users are offtign
concerned with a subset of the data that matches a giverrmpasi@ only these
data should be used for the computation procedure ratherttigawhole dataset.
Furthermore, locating a good estimation of the trend as @ialimput for the re-
gression analysis could expedite the convergence, edigdoiahigh dimensional
datasets.

e Lack of accuracy Computational results are often not as accurate as theeMser
pects because users are unable to apply their own domairdahgevand perceptual
ability during and after discovering models. User-driveod®ling and tuning may
be required.

e Parameter setting problemMost model estimation techniques require users to
specify parameters, such as the minimum percentage of datts phe model in-
cludes, maximum error tolerance and iteration count. Thes®ften particular to
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Figure 3.1: A dataset with a simple linear
trend: y = 3z, — 4a- is displayed with
parallel coordinates. The axes from left
to right are y,z; andx, respectively.

Figure 3.2: A dataset with two linear
trends:y = 3x, —4x, andy = 4wy — 31,
is displayed with a scatterplot matrix.

a concrete dataset, application, and task, but users oftet khow conceptually
how to set them.

e Multiple model problemlIf multiple phenomena coexist in the same dataset, many
analytic techniques will extract poor models.

Locating patterns in a multivariate dataset via visual@atechniques is very chal-
lenging. Parallel coordinates [40] is a widely used appndacrevealing high-dimensional
geometry and analyzing multivariate datasets. Howevesllphcoordinates often per-
forms poorly when used to discover linear trends. In Figule & simple three dimen-
sional linear trend is visualized in parallel coordinatébe trend is hardly visible even
though no outliers are involved. Scatterplot matrices,lendther hand, can intuitively
reveal linear correlations between two variables. HoweWehe linear trend involves
more than two dimensions, it is very difficult to directly ogmize the trend. When two
or more models coexist in the data (Figure 3.2), scatterphttices tend to fail to differ-
entiate them.

Given a multivariate dataset, one question is how to vigaale model space for
users to discern whether there are clear linear trends olfrtbere are, is there a single
trend or multiple trends? Are the variables strongly liheeorrelated or they just spread
loosely in a large space between two linear hyperplane kamnas? How can we visually
locate the trend efficiently and measure the trend accyfatelow can we adjust arbi-
trarily the computational model estimation result basediser knowledge? Can users
identify outliers and exclude them to extract the subsetad@ dhat fits the trend with a
user indicated tolerance? How can we partition the datasetdifferent subsets fitting
different linear trends?

We seek to develop a system focusing on these questionsifiSuc we have de-
signed a visual interface allowing users to navigate in tbd@hspace to discover multiple
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coexisting linear trends, extract subsets of data fittingead, and adjust the computa-
tional result visually. The user is able to select and tubdrary high-dimensional linear
patterns in a direct and intuitive manner. We provide a sathpiodel space measurement
map that helps users quickly locate interesting explonadi@as. While navigating in the
model space, the related views that provide metrics for thieent selected trend, along
with the status of data space, are dynamically displayedthadged, which gives users
an accurate estimation to evaluate how well the subset aeffdathe trend.

The primary contributions of this research include:

e A novel linear model space environmettsupports users in selecting and tuning
any linear trend pattern in model space. Linear patterngefest can be discovered
via interactions that tune the pattern hyperplane pos#mhorientation.

e A novel visualization approach for examining the selectedd We project color-
coded data points onto a perpendicular hyperplane for tselscide whether this
model is a good fit, as well as clearly differentiating outlie Color conveys the
degree to which the data fits the model. A correspondingdpiata is also provided,
displaying the distribution relative to the trend center.

e A sampled measurement map to visualize the distributionddeinspace This
sampled map helps users narrow down their exploration aré@ei model space.
Multiple hot-spots indicate that multiple linear trendxist in the datasets. Two
modes with unambiguous color-coding scheme help userseoammntly conduct
their navigation tasks. Two color-space interactions aogiged to highlight areas
of interest.

e Linear trend dataset extraction and manageméne present a line graph trend
tolerance selection for users to decide the tolerance maxidistance error toler-
ance from a point to the regression line) for the current rhddieers can refine the
model using a computational modeling technique after fig@irsubset of linearly
correlated data points. We also allow the user to extractsand data subsets to
facilitate further adjustment and examination of theiicdigery.

3.2 Introduction and System Components

3.2.1 Linear Trend Nugget Definition

We define anuggetas a pattern within a dataset that can be used for reasoniragaision
making [67]. A linear trend im-dimensional space can be representedias() — b = 0,
whereX; € R" denotes a combination of independent variable vegtér; € R"~') and

a dependent target valygy € R). Herew andb are respectively a coefficient vector and
a constant valuéw € R", b € R). The data points located on this hyperplane construct
the center of the trend. A data pointhat fits the trend should satisfy the constraint

18



|(w,z) —b| < e

Considering that noise could exist in all variables (not fbe dependent variable), it may
be appropriate to use the Euclidean distance from the rg@grelyperplane in place of
the vertical distance error used above [48]. We defitiaear trend nugge{LTN) as a
subset of the data near the trend center, whose distancetipomodel hyperplane is less
than a certain threshol:

LTN(X) = m% < E}

Here E is the maximum distance error, which we ctidlerance for a point to be
classified as within the trend. If the distance from a datatpi the linear trend hyper-
plane is less thai, it is covered and thus should be included in this nuggeteitse
it is considered as an outlier or a point that does not fit ttaad very well. The two
hyperplanes whose offsets from the trend equand — E construct the boundaries of
this trend. The goal of our approach is to help users conaélgidiscover a “good” linear
model, denoted by a small tolerance and, at the same timetingwa high percentage of
the data points.

As the range of the values in the coefficient vector could bg lagge and even in-
finite, we transform this linear equation into a normal fommtake||w|| = 1 and then
represent this vector &8, a unit vector in hypersphere coordinates [50] as desciibed
[22]:

wo = cos(6y)

wy = sin(6y) cos(6s)

Wy_o = sin(fy) - - -sin(6,_2) cos(0,_1)
Wp—1 = sin(6y) - - -sin(0,,_o) sin(6,,_1)

Now our multivariate linear expression can be expressed as:
ycos(6y) + xy sin(6y) cos(f2) + - - - +

Tp—osin(6y)sin(by) - - - sin(h,_2) cos(0,—1)+
Tp_18in(6y) sin(by) - - - sin(6,_2) sin(,,_1) = r

The last angl#,,_; has a range ofr and the others have a rangemf The range
of r, the constant value denoting the distance from the origthédrend hyperplane, is
(0, 4/n) after normalizing all dimensions.

An arbitrary linear trend can now be represented by a sirggkegbint 0y, 6, - - -, 0,1, 7)
in the model parameter space. Users can select and adjustearypattern in data space
by clicking and tuning a point in the model space.
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3.2.2 System Overview

We now briefly introduce the system components and views. oMeeall interface is
depicted in Figures 3.3 and 3.4. The user starts from a dai@esgew displayed with
a scatterplot matrix. To explore in the linear model spabe, user first indicates the
dependent variable and independent variables via clickawgral plots in one row. The
clicked plots are marked by blue margins; clicking the sel@glot again undoes the
selection. The selected row is the dependent variable anddlumns clicked indicate
the independent variables. After the user finishes selpttiemdependent and independent
variables, he/she clicks the “model space” button to shahmavigate in the model space.
The points in the data space scatterplot matrix are now edlbased on their distance to
the currently selected linear trend and dynamically chamgen the user tunes the trend
in the model space. As shown in Figure 3.3, the selected diepewariable is “Dealer
Cost” and the two independent variables are “Hp” and “Weigfihe points are color-
coded based on the currently selected trend; dark red meamghe center and lighter
red means further from the center, while blue means the  dmnot fit the trend. Figure
3.4 is the screen shot of the model space view. Each view imtigel space is labeled
indicating the components, as described in the followirggises.

Selected independent variables: HP and Weight
Selected dependent variable: Dealer Cost

B Linear Model Nugget
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Figure 3.3: The Data Space interface overview.
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Figure 3.4: The Model Space interface overview.

3.2.3 Linear Trend Selection Panel

We employ Parallel Coordinates (PC), a common visualipatieethod for displaying
multivariate datasets [40], for users to select and adjugtliaear trend pattern. Each
poly-line, representing a single point, describes a litisard in data space. PC was cho-
sen for its ability to display multiple trends at the samedjralong with the metrics for
each trend. For example, average residual and outlier ipiage are easily mapped to
poly-line attributes, such as line color and line width. k¢sean add new trends, delete
trends and select trends via buttons in the model spaceaatten control panel. Users can
drag up and down in each dimension axis to adjust paramdtersiaDuring dragging, the
poly-line attributes (color and width) dynamically changeoviding users easy compre-
hension of pattern metrics. The parameter value of the ruards is highlighted beside
the cursor. This direct selection and exploration allowessi$o intuitively tune linear pat-
terns in model space, sensing the distance from hyperparegin as well as the orienta-
tions rotated from the axes. Because the parameters ingpipene coordinates can be dif-
ficult to interpret, the familiar formulain the form gf= koxg+ k121 +- - -+ k12,1 +0

is calculated and displayed in the interface. In Figure thége linear trends for a 3-D
dataset are displayed. The percentage of data each treetsdmvith the same model
tolerance) is mapped to the line width and the average rakisiumapped to color (dark
brown means a large value and light yellow means small).
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Figure 3.5: The Model Space Pattern Selection Panel.

3.2.4 Views for Linear Trend Measurement

When the user tunes atrend in model space, it is necessaiid@ detailed information
in data space related to the currently selected trend. Bastds the user can differentiate
datasets having linear trends from non-linear trends drauitany clear trends, as well as
discover a good model during tuning. We provide users thakgad views for discovering
trends and deciding the proper model parameters.

Line Graph: Model Tolerance vs. Percent Coverage

For any multi-dimensional linear trend, there is a positeerelation between the tol-
erance of the model (the distance between the trend hyperpiad the furthest point
considered belonging to the trend) and the percentage afpants this model covers:
the larger the model tolerance is, the higher the percentagsers. There is a trade-off
between these two values, because users generally seansbdels with small tolerance
that cover a high percentage of the data. The users expectitthé answer to the follow-
ing two questions when deciding the model tolerance andepéaige it covers: (a) If the
model tolerance is decreased, will it lose a large amourtefiata? (b) If this trend is
expected to cover a greater percentage of the data, wignifstantly increase the model
tolerance?

To answer these questions, we introduce an interactivegiaph for the currently
selected model. Model Tolerance vs. Percent Coverage vsdea for users to evaluate
this model and choose the best model tolerance. It is claattib line graph curve always
goes from(0, 0) to (1, 1), after normalizing. This line graph also indicates whetihés
model is a good fit or not. If this curve passes the region reaf(t 1) point, there is
a strong linear trend existing in the dataset, with a smédrémce and covering a high
percentage of the data. This interactive graph also prewdselection function for the
model tolerance. The user can drag the point position (ndaalsea red filled circle in
Figure 3.6) along the curve to enlarge or decrease the taer® include more or fewer
points.

Figure 3.6 shows an example of how to use this view to discaxgwod model. The
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line graph for a linear trend with about 10 percent outlisrsiiown. The red point on the
curve indicates the current status of model tolerance anteptage. From the curve of
the line graph, it is easy to confirm that when dragging thatpstiarting from(0, 0) and
moving towardg1, 1), the model tolerance increases slowly as the percentageases,
meaning that a strong linear trend exists. After moving s€1@.90 percent, the model
tolerance increases dramatically while the included ppercentage hardly increases,
indicating that the enlarged model tolerance is mostly ipigkup outliers. So for this
dataset, the user could claim that a strong trend is disedveovering 90 percent of
the data points because the model tolerance is very sm@alf)(0.The corresponding
Orthogonal Projection Plane view and Histogram view shgwvitre distribution of data
points are displayed in Figure 3.7 and Figure 3.8 (descnilgad).

Projection on the Orthogonal Plane

Given an n-dimensional dataset and an n-dimensional linead hyperplane, if the user
wants to know whether the dataset fits the plane (the distasepoints to the hyper-
plane is nearly 0), a direct visual approach is to projecheata point onto an orthogonal
hyperplane and observe whether the result is nearly a btriang.

In particular, we project each high-dimensional data ptora 2-dimensional space
and display it in the form of a scatterplot, similar to the @tdlour [6]. Two projection
vectors are required: the first vectgris the normal vector of the trend plane, i.e. the unit
vectorw described before; the second veatgrwhich is orthogonal te,, can be formed
similar to vy, simply by setting); = 6, + 7/2. The positions of data points in the scat-
terplot are generated by the dot products between the datts@md the two projection
vectors, denoting the distance from the points to the treypkiplane and another or-
thogonal plane, respectively. This view presents the jpostf each point based on their
distance to the current trend, which provides users not ardgtailed distribution view
based on the current trend, but also the capability of desgog the relative positions of
ouliers. Figure 3.7 shows the projection plane. The two lkrécal lines denote the two
model boundaries. Data points are color-coded based ardis&nce to the trend center
(not displayed). The red points are data points covered igytitend; darker red means
near the center and lighter red means further from the cefterblue points are data that
are outliers or ones that do not fit this trend very well.

Linear Distribution Histogram

The histogram view displays the distribution of data pobdsed on their distance to the
current model. As shown in Figure 3.8, the middle red lingesgnts the trend center;
the right half represents the points above the trend hypeepland the left half are those
below the trend hyperplane. Users can set the number of thiegjata points included

in the trend are partitioned into that number of bins basetheir distance to the trend

center. The two blue lines represent the boundary hypezplarhe trend covered bars are
red and color-coded according to their distance. The aolapping scheme is the same
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Figure 3.6: The Line Graph of Model
Tolerance vs. Percent Coverage.

Figure 3.7: The Orthogonal Projection
Plane.

as the projection plane view so the user can easily compagse ttwo views. The two
blue bars represent the data outside the trend; the righs liar the data whose position
is beyond the upper boundary and the left bar is for the datsse/position is beyond the
lower boundary.
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Figure 3.8: The Histogram View.

3.2.5 Nugget Refinement and Management

After finding a good model covering a larger number of datafspithe analyst can use a
refinement function to tune the model using a computatia@drique. We employ Least
Median Squares [55], a robust regression technique, to atentpe regression line based
only on the points covered in the current trend, so it is mdfieient than basing it on
the whole dataset and more accurate because the outliemstacensidered. Figure 3.9
shows the user-discovered trend before refinement andé=8ji0 shows the refinement
results.

A linear trend nugget is a subset of data points that lie witrend boundaries. As-
suming the user has discovered a trend within several dioesst is useful to save it to
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Figure 3.10: The Projection Plane view

Figure 3.9: The Projection Plane view .
after refinement.

before refinement.

a file and reload it to examine, adjust and distribute it teeotisers. After the users find
a strong trend, they can extract the points in the trend bingavas a nugget file. This
model selection method is similar to brushing techniquespovides a convenient way
for users to identify and exclude outliers that deviate fittwntrend. This data selection
technique is also useful if multiple phenomena are presetita dataset, since the user
can save and manage them separately.

3.3 Navigation in Model Space and Linear Trend Model
Discovery

3.3.1 Sampled Measurement Map Construction

Even with the metrics of a linear pattern mapped to the poly-attributes and with the
related views for single model measurement mentioned itid®e8.2.2, the user may still
feel challenged when searching for good linear trends bygutine parameter space val-
ues, due to the large search area associated with multifdeddaensions. We introduce
a sampled model space measurement map for users to viewgtheimensional model
measurement distribution and navigate in the model spaeethyi and efficiently. The
basic idea is that we sample some points in the model spaceadrulate the measure-
ments for each point (linear pattern), so the user can tumpdtterns starting from good
parameter sets.

This map is constructed via the following three steps:

(a) We first partition each parameter space variable inters¢bins. The bin number
could be specified by the users. The points in model spacéelbdathe center of each
combination of bins are selected as sample patterns and elrécsnare calculated for
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model measuring.

(b) Then we eliminate the patterns with low measurementegalnd project a high
dimensional sampled pattern set to a series of two dimeabkpairs. Specifically, for
each paired bin position in two dimensions, only the largesasurement (assume larger
measurement values denote better models) with the samediiiop of these two dimen-
sions is kept as the map value. For example, the bottom lefinbdbne plot corresponds
to the two first bin positions in that dimensional pair, sag, fposition 1 for dimension
and bin position 1 for dimension(the bin number starts from 1). The map value for this
position of this dimension pair is selected as the largestsmement in all the sampled
patterns whose bin position in thi#lh dimension and thg¢th dimension are both 1.

(c) The map values are color-coded based on the metricshélpairwise measure-
ment maps are displayed in a matrix view. The initial par@megalues are set at the
center of the bin with the best measurement, i.e. the mininalenance or the maximum
percent coverage when fixing the other, which generally igessa good linear pattern
for users to start tuning.

The complexity of construction i®€rP, P ---P,_1N, where N is the size of the
datasetP’r is the number of partitions forand P; is the number of partitions fat;. The
number of partitions for each dimension is defined by users.

Two alternative modes are associated with this view, fixedeye coverage and fixed
model tolerance, corresponding to the two measurementfdoirends. As mentioned
before, the user could change the model tolerance and gw/argether in the line graph
view. For the first mode, with model tolerance as the measemgneach bin on the
map represents a model tolerance with a user-indicated fimeerage. When the user
changes the percentage, this map is dynamically re-céécligand changed (Figure 3.11).
For each pairwise bin position in the two dimensional pae, mhinimum model tolerance
is selected as map value and mapped to color. In this modgedituentage of points
the user wants to include in the trend is designated and uaarsearch for the smallest
model tolerances.

The second mode is similar to the first one (Figure 3.12). Ttierdnce is we change
the measurement to coverage, with a user-indicated fixecthtol@rance. This mode is
designed for users to specify the maximum model tolerandesaarch for models that
cover a high percentage of points.

For the two modes of measurement map, we use two unambigwboiscoding
schemes: (a) model tolerance is mapped from dark red topighkt with dark red mean-
ing small model tolerance; (b) the coverage is mapped ta ¢am yellow to blue, with
blue meaning large coverage.

When the user moves the cursor over each bin, the map valbewns The bin in
which the current model resides is highlighted by a coloredniglary. The parameter
values are dynamically changed to the bin center, with thgekt measurement value
as mentioned before, when the user clicks or drags to a edstaiposition. This map
indicates roughly where good models can be found beforadyrthie model in the parallel
coordinates view. Figure 3.12 shows the coverage distobuhap in a 3 dimensional
linear trend display. Users can easily find interesting lpatts and drag or click the

26



R Thetal Theta2 R Thetat ThetaZ

Thetallguum
EEEES

Theta|

Theta

0.86 0.76 0.08 0.0 0.0

Figure 3.11: The Measurement Map: Figure 3.12: The Measurement Map:
mode is “fix coverage”. mode is “fix model tolerance”.

current selected bin into a dark blue area.

3.3.2 Color Space Interactions

It is common that several bins with similar values of inté® shown at the same time
in the sampled map near the local maximum, making it harddateothe best settings.
To solve this problem, we provide two interactions in colpace.

e Scale the map value to employ the whole color range. Becéwesealues are nor-
malized to(0, 1) and then mapped to color, it is possible that all map values ar
in a small range; for example, all the coverage values in thp might be located
in (0.7, 1) for a very large tolerance in the second mode. In other wahescolor
map range is not fully used. We allow the user to scale thesviaoge tq0, 1) to
use the whole color map.

e Color map base-point adjustment. For the sampled measuotenap, the user is
only concerned with the high metric values, so a “filter” ftion to map values less
than a threshold to 0 is useful for users to locate the locaimmam. In particular,
we provide a function for users to change the color map bas#-as the threshold.
After filtering out the uninteresting areas with low metriosers can more easily
find the positions of good models.

The color space interactions are illustrated from Figur&8 8 3.21 and described in
Section 3.4.
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3.3.3 Multiple Coexisting Trends Discovery

This map is also designed to reveal when multiple lineardserpexist in the dataset,
which is very hard to find without visualization. Figure 3tbg/s an example where two
linear trendsy = 3z, — 4z, andy = 3z, — 42, coexist in the three dimension dataset
mentioned earlier. Each trend has 50 percent of the dataspdvhen the user fixes the
percentage at 0.50, there are clearly two separate hot spgioins indicating two linear
trends coexist. Figure 3.13 shows two different hot spothénsampled map with one
of them selected (colored bin). The corresponding subsdat that fit this trend are
colored as shown in Figure 3.14. Red means the point fits treehand blue means it
doesn't. The other trend and fitting data are shown in Figutd 8nd 3.16.

oc %z;)calw%ncy . Spee.d . Volume . . Time

Figure 3.17: Traffic dataset data space view (scatterplttixha

3.4 Case Study

In this section, we discuss case studies showing how toks&ingle or multiple linear
trends and construct models for real datasets. The dataseibtained from the Mn/DOT
Traveler Information [49], that collects traffic data on freeway system throughout the
Twin Cities Metro area. Each data point is the traffic infotima collected by detectors
every 30 seconds. The information includes the followingaldes:

(a) Volume the number of vehicles passing the detector during the 8dngkesample
period. (b)Occupancy the percentage of time during the 30 second sample peraid th
the detector sensed a vehicle. 8)eed the average speed of all vehicles passing the
detector during the 30 second sample period.

We collected the traffic information for a whole day and addedther variable based
on the index order to represent the time stamp. Figure 3.@Wskhe dataset displayed
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in a scatterplot matrix. Assume a user wants to analyze threlations between de-
pendent variable occupancy and independent variablesl gpekvolume and construct
linear models for these three variables. The aim of thisysimtb analyze how the average
speed and vehicle numbers interactively influence the @oup The result is helpful for
detecting anomalies, dealing with missing data points aedipting traffic conditions,
which can be used for traffic surveillance and control.

If the user wants to build a single linear model to explain ¢berelations, the first
step is to select the view mode and adjust the point on thegliagh view to indicate the
model tolerance or coverage. Here we use the first mode towdise model and indicate
85 percent of the data to be covered by the trend, and theohstarmodels with small
tolerances.

For further analysis, users can navigate in the sampledureragnt map and model
selection panel alternately to observe the orthogonakptigin plane and histogram to
decide whether the current model is a good estimation. Twagdown the search area,
the user explores first in the sampled measurement map toalixn with a good es-
timation of the model parameters. Notice that the user ig oohcerned with dark red
bins indicating a small tolerance; the user could interattt e color space to fully use
the color map and then adjust the color map base-point Ungilihinteresting areas are
eliminated and only red areas remain.

Figures 3.18 to 3.21 show the manipulation details for incathe local maximum
value in the sampled measurement map. Figure 3.18 showsdpewith the original
color range and Figure 3.19 shows the map after fuller usbetolor range. Figures
3.20 and 3.21 show the process of adjusting the base pomt®86 to 0.46 and then
0.11 (shown in the color bar legend). If the map value (taleed is larger than this base
point, then it will be set to 1 and then mapped to color. FroguFé 3.22, the user can
easily locate the approximate position of good models ard tbhne them in the model
selection panel.

Figure 3.22 shows the model metric views for the trend in thecbnter (model tol-
erance is 0.07); its corresponding data space view is showigure 3.23. Figure 3.24
shows the adjusted model that fits the data better (modeatate is 0.05) via tuning the
parameter values in the parallel coordinate view; Figu2é 8isplays the data space view.

After refining the model, a good linear estimation for theethwvariables is con-
structed: a trend with small tolerance (0.05) covering ntbea 85 percent of the data
points y = —0.29x¢ + 1.4z, + 25.3, y: Occupancy;zy: Speed,r;: Volume). From
the linear equation, we notice that occupancy is negativetyelated with car speed and
positively correlated with volume. This three dimensidivear trend plane could also be
observed after projection to a two dimensional plane in tita dpace view displayed by
scatterplot matrices. From this we conclude that the monécies and the lower speed
of the vehicles, the higher percentage of time the deteetwsed vehicles, which is fairly
intuitive.

Can we use this model to estimate occupancy when we know tedlsgnd vehicle
numbers? When we look at the data space view in which the datdspare colored
according to their distance to the trend, we found this meddémates occupancy well
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better linear trend after user adjustment

and computational refinement.
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for most of the data points, except the data collected at rammhnight. Therefore, a
single linear trend could not fit all the data points well, @xcby increasing the model
tolerance to a larger value.

If users want to explain the phenomenon by a single lineardiréhe slope of the
trend line of occupancy vs. speed does not change for diffedume numbers (only the
intercept changes). If users want to construct a more commptalel with several trends
to estimate the occupancy more accurately, multiple lineards considering different
levels of volume can be discovered.

For multiple trend modeling, each trend is not required teec@ large percentage
of data points. Conversely, each trend needs to be a stroearlirend represented by
a very small tolerance. Therefore, we chose the second meddixed tolerance, and
adjust the tolerance to a very small value and then exploneadel space as mentioned
before. Notice that the value of volume is a discrete numbetiit is easy to observe
from the Orthogonal Projection Plane view that each suldsdta with the same volume
value is nearly a straight line in three-dimensional spaxtkthe lines are nearly parallel
(Fig. 3.32). Thus we adjust the parameter values until eabbet of data with a similar
volume value aligns to the trend center (Figure 3.32). Adjls first parameter value
(the distance from the hyperplane to the origin) from zemm&ximum to extract the data
points with different volume values (3 different levelswml@olume, median volume and
high volume, colored by purple, yellow and red respectivelyfe can observe from the
data space view that different subsets of data reveal diffdmear trends in the plot of
speed vs. occupancy.

We then select two dimensional correlation with occuparsctha dependent variable
and speed as the independent variable. We color-code thelgpendent variablelume
with three levels in the orthogonal projection plane vievd @ujust the parameters to
fit different subsets of data with different levels of volumiigure 3.26 to 3.31 show
the three subsets of data fit to different discovered lineards after refinement in the
orthogonal projection plane view and data space view. Weotmerve from the data
space view that as the number of vehicles passing the detgtdmges, the trend for
speed and occupancy alters: the more vehicles passingtirthe higher the trend line
is and, also the steeper the slope of the trend line. If themeland speed are known for
estimating the occupancy, the user can classify the volatoethree bins: low, medium
and high, and use different trend lines of speed vs. occypanestimate the occupancy
value.

How can one explain this model with multiple linear trendsdifferent volumes? If it
is ensured that when the detector senses a vehicle, thankyia single car (without any
overlapping) passing the detector, then the occupancy islynafluenced by volume
(also influenced a little by speed, but not significantly wivetume number changes);
it is also clear that low volume indicates low occupancy, akhis demonstrated by the
lower and less steep trend for speed vs. occupancy when eakilow. But sometimes,
especially when volume is large, several vehicles passdteztbr together: consider that
when two overlapping vehicles pass the detector togetherydlume increases but oc-
cupancy doesn’t. As the volume increases, the occupanoyages, and meanwhile, the
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degree of vehicle overlapping increases. When the volurtaege, meaning that several
vehicles pass the detector together with overlapping, ticemancy is not as predictable
just based on volume as it is when volume is small. This suggbe average speed
will be more helpful for estimating occupancy. A steeper higher trend for speed vs.
occupancy when volume is large means that occupancy depem@son speed than on
volume.

3.5 User Study

In this section, we discuss user studies for evaluating ffleetezeness of the visual rep-
resentations of the parameter space and the user-involgddlrselection. The user task
is to identify linear patterns in multivariate datasets.

The main hypothesis for conducting the user studies is themwoutliers exist in
a dataset, the linear trend extracted by computationahtqubs will skew to outliers,
which is not a good fit for the inliers, i.e., the data pointttire generated from the dom-
inant trend. In this situation, our system can better relme@ar patterns in a multivariate
dataset.

To test this hypothesis, two datasets are generated. Edabketlas created using
one underlying linear model with a certain randomly addedrerideally, | would use
a real dataset to evaluate the system. However, for reasetstait is difficult to know
the underlying model that generates the population. Thezef decided to use synthetic
datasets, which is mainly because the underlying modeficmeits are pre-defined, thus
easier to compare the similarity between the extracted hreodkethe underlying model.
For the two datasets, one is easier (dataset A) and the senens harder (dataset B): the
easier one is smaller, has 2 independent variables, ana\vas percentage of outliers;
while the harder one is larger, has 3 independent variables,has higher percentage
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of outliers. Each user is asked to explore both datasetg wginsystem and report the
linear models they discovered. To remove the learning effiee subjects explore the two
datasets with a random order. There are two responses. Sherii is the time users
spend on exploring in the model space to discover lineaepeatt The second one is a
linear trend expression found using our system. The linesuds discovered using our
system are expected to be more similar to the real underiyioggel.

There were in total 17 subjects performed this user studyerAfigning a consent
form and given an explanation of the purpose and tasks oluges study, each subject
performed the exploration as follows. They first roughlydted a good model in the sam-
pled measurement map. The color space interaction car te=is in easily identifying
the potential interesting dark regions. After roughly stteg a good trend in the mea-
surement map, they would further refine the model in the mseleiction panel. During
the adjusting of the trend, they could view the projecticamgl to know what the relation-
ship between the currently selected trend and the dataspsinas well as whether the
model is a good fit for the data. This refinement consists ofdteps: the first one is to
adjust thed values to rotate the trend until the data points lie in a thartigal position,
meaning that the trend is in parallel with the data pointse $&cond step is to adjust the
coefficientR value until the data points are in dark red, meaning that ¢tected linear
trend overlaps and fits the data. Notice that the data poiatgioned before are only the
instances that are generated from the trend, which doewritide the random outliers.
Lastly, the subjects should report the final linear trendesgion they found, as well as
the time they spent on exploring in the parameter space.

We first compare the means of squared errors (MSE) for thesedatasets. For
dataset A, the squared error that linear regression wa$;1v@hile the mean value of
MSE for subjects was 1.752. Since a lower MSE value meansrbathen considering
this metric, linear regression produced better resultsfotved a similar result for dataset
B: the error from linear regression was 1.149, and the stépat 1.22 (mean value).
The reason why the subjects got worse results is that liregaession always gets the
linear trend that minimizes MSE. However, this minimized M&so takes the randomly
distributed outliers into consideration. In this case,g¢kacted linear model is distorted
by the outliers, which means it is not a good fit for the inliers

We then compared the user detected model with the real yignnodel. Each
linear trend can be viewed as a single instance in the modekssince these synthetic
datasets are generated from pre-defined models, we caneigauthidean distance to
the real model as the metric, which is better to measure tbdrggss of the model. For
dataset A, the Euclidean distance for the linear regressiar83, while the mean value
of this metric that the subjects got is 0.64. The smaller @aheans the subjects got a
more similar trend to the real model. The one sample t-testvstthat we can reject
the null hypothesis that linear regression is better thanuger-driven method (p-value
is 0.01). For dataset B, we also got similar results: thealimegression error was 0.785
and the mean value of this metric that the subjects got was AGhough the p-value
(0.086) suggests that the difference is not as significaajppeared in dataset A at the
significance level of 0.05, the subjects still got a bettesule compared to the linear
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regression method. From these user study results, we shibaedithout detecting and
removing outliers in the datasets, the linear regressiohnigue extract linear models
that are influenced by noise, which is not a good fit for the c¢h@mi trend. The proposed
model space visualization can better help the users detglotrs and extract a better
model. We will discuss later the challenge of using autoot&thniques to detect and
remove outliers before extracting linear models.

The user study result shows that for the higher attributeespine subjects did not
perform as good as they did in the lower dimensional spacpir€i3.33 shows the com-
parison of the time the subjects spent on those two datagefsaired t-test indicates
that the subjects spent significantly more time on the hattd&aset (the one with more
independent variables). The p-value is lower then 0.001e rEason why the subjects
spent more time and detected a less accurate result is nisofuse for more indepen-
dent variables, they have a larger model space to explorectisas there were more
parameters to adjust. These results indicated that theraydbesn’t scale very well as
the dimensionality increases. This limitation also appéaturing the sampling in the
model space: for 6 independent variables and each varmbblapled at 4 positions, the
whole sampling process took more the 5 minutes to finish. iBhgcause the number of
sampling points is exponential to the number of dimensidvs.also infer that for more
than 6 coefficients, it would be very difficult for the userdwoe on each axis until they
find a strong linear trend. Here are some potential improveste solve this issue. One
is to allow the users to specify a sub-region in the paransgiace that is interesting to
them and re-sample in this sub-region with a higher sampéitgy Another improvement
could be to allow the users to interactively and progre$giveark and highlight outliers,
and later extract linear trends using only inliers with canapional techniques.
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Figure 3.33: The comparison of the time the subjects spetih®two dataset: simple
means dataset A and hard means dataset B.

We also examined the relationship between the time the sisbgpent and the error
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they made. Figure 3.34 shows the scatterplot for these tweesa Each point is the
response of a single subject. It is clear that except for soutieers, subjects who spent
a fairly long time also got more accurate results. For mobjests, there is a negative
correlation between these two responses. This means thatstibjects have patience and
would like to spend more time to explore in the model spaa;, tend to get better linear
models with lower errors. Based on this result, we may irtfat after being trained and
using this system for a long time to get familiar with the gyst the users can get better
linear models with less time, compared to the novice usdiis eeds to be verified in a
future longitudinal user study.
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Figure 3.34: The scatterplot for time and error. Each pardrie subject. A negative
correlation can be seen for these two responses.

Since automatic technigues can also detect outliers feetatasets, a linear regres-
sion can be performed after removing the outliers. Usingriethod, the extracted linear
pattern could be better, compared to without removing exgliHowever, since the num-
ber of outliers is unknown, the users have to go through theqature: first try to remove
a certain number of outliers; then observe the resultingehoéffter several of such tri-
als, the users can finally identify a reasonable number difeosit and extract the linear
model for the dataset. Also, since most outlier technigegsiire the users to specify
some parameter settings, the users have to try differeaimper settings to get a set
that meets this requirement. In order to understand howghesiperform this parameter
setting task, we invited a subject to extract linear pagiexfter removing outliers in the
dataset. He used Weka to detect outliers using the k-NN rdethbis method requires
two parameters: a radius distance and the number of neighb@\ithout knowing the
percentage of outliers, he had to try several percentagestlérs: from O percent to 15
percent. In this study he used dataset B to detect a linaad.tr€he subject tried more
than 20 parameter settings and spent more than 40 minutesita et of parameter set-
tings that can result in a reasonable percentage of outherssach parameter setting, the
subject removed the resulting outliers and created a neavsdgd@itmerely using the inliers.
Therefore, a set of new datasets were created, and for eadhadf, he then extracted lin-
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ear pattern using the regression technique and recordesiribrs. Since removing more
data points generally results in a smaller error rate, haldddo try different percentage
values from smaller to larger, until he thought the erromtidecrease dramatically. It
costed him over 20 minutes to generate new datasets andtdiiear patterns for them.
The final model he used is the one resulting from removing Sqrdras outliers. The
error using this model is 0.536, which is better than the teamrerror using our system.
However, as discussed before, the whole process requiresltihram one hour. Compared
to our system, on which the subjects spent less than 2 mioatesich dataset, the tra-
ditional method appears to be a very time consuming and usdmsk. Also, without
visual exploration of the dataset, the subject cannot wwtaed the extracted model, i.e.,
the relationship between the linear trend and the dataseh, as how well the trend fits
the data and what is the appropriate tolerance to rejectdimgoas outliers.

Another user study we performed is to evaluate whether ostesy can assist ana-
lysts in discovering linear patterns when multiple lingantls coexist in one multivariate
dataset. When multiple linear patterns exist in the datasatg one linear trend to fit the
data tends to give a poor result. However, if the analystaogice this and use multiple
trends to fit the data, better results can be achieved. Sieceumber of trends is the key
thing to decide, the major challenge here is to identify thenber of trends in the dataset.
We wanted to examine whether analysts can identify the comember of trends when
a small number of trends exist. If they can tell this, they fiather use our system to
separate different trends, or use other computationahtqubs to extract multiple trends.
To test this, 6 datasets were generated. Each dataset waaggehusing zero, one, or two
linear models. The 6 datasets were randomly partitionedtimb groups. Each subject
explored one group of datasets and report how many linezdidrihey discovered for each
dataset. Which group was assigned to the subjects was aldomazed. The result shows
that the accuracy is more the 0.9. This means that using atersyto visually explore
the data can largely assist the analysts in understandiageta and accurately estimate
the number of linear phenomena. The average time spent larexgpeach dataset by the
subjects was 29 seconds.

3.6 Conclusion

In this chapter, we described a novel model space visuaizggchnique to support users
in discovering linear trends among multiple variables. ndsihis system, analysts can
discover linear patterns and extract subsets of the datétttiee trend well by navigating
in the model space and building connections between modeésgnd data space visually.
The case studies show how our system can be used effectwvelydal single and multiple
linear trends and to build explanation models for multiggidatasets. We performed user
studies to evaluate the effectiveness of the user-drimeatitrend discovery when outliers
and multiple trend exists in the datasets. We also compaeedisual and computational
methods for extracting linear patterns when outliers exighe results shows that the
system can better assist the users in discovering outlersnaltiple trends.
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Chapter 4

Nugget Browser: Visual Subgroup
Mining and Statistical Significance
Discovery in Multivariate Dataset

In this chapter, | present a novel pattern extraction andaligation system, called the
Nugget Browser, that takes advantage of both data miningedstand interactive visual
exploration. This work was published in IV 2011 [31].

4.1 Introduction

Subgroup discovery [7] is a method to discover interestiimgsoups of individuals, such
as “the subgroup of students who study in small public higtosets who are significantly
more likely to be accepted by the top 10 universities thadesits in the overall popula-
tion”. Subgroups are described by relations between inuigr@ (explaining) variables
and a dependent (target) variable, as well as a certairesttegness measure. There are
many application areas of subgroup discovery. For exanipegxtracted subgroups can
be used for exploration and description, as well as undaisig the relations between a
target variable and a set of independent variables. Eadjreup or a set of subgroups
is a pattern, i.e., a sub-region in the independent spacéail&& examination of such
regions can be useful to improve understanding of the psated results in the pattern.
The subgroup discovery process poses many challenges:

e First, since the analysts may not know in advance what kinidtefesting features
the data contains, they may have to repeatedly re-submiteguend explore the re-
sults in multiple passes. For example, when the user sulanmitiing query, they
need to specify the target attribute range of interest, asdhe top 10 universities
mentioned before. However, for different datasets an@wifit application scenar-
ios, the number of the top universities may be different &y tmight have to try
several times to find an appropriate range. This makes thmghprocess tedious
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and inefficient. Thus, we need an interactive mining protiestsallows analysts to
submit queries dynamically and explore the results in agrattive manner.

Second, without visual support, users can only examine thengiresults in text
or tables. This makes it very hard to understand the relstius among different
subgroups and how they are distributed in the feature siiesedes, when the user
explores the mining results, the results are often in a gesa or abstracted form,
such as summaries of the sub-regions. However, the exaonratthe instances
in the region is also very important for understanding thia geint distribution.
Thus, without a visualization of the mining results, usexsrot build connections
between the patterns and the instances.

Finally, adjacent subgroups should be aggregated anctobasivhen they are of the
same interesting type. For example, given there are tworeupg of students, both
of which have significantly higher acceptance rates thapdipelation, and they are
adjacent to each other in one independent attribute, sutie g@gsoups with medium
and high income. Then the two subgroups should be aggregatddeported or
treated as a whole subgroup. One benefit is that this aggregptesentation is
more compact, which provides users a smaller report lisefmy examination.
Another benefit is that the compact representation can be eficiently stored
in a file and loaded in computer memory. However, the cludtenaing results
generally tend to be multi-dimensional arbitrary-shapsgians, which are difficult
to understand, report and visualize. Therefore, convelyiagpattern in a compact,
easily understandable, and visualizable form is desirable

Focusing on these challenges, our main goal was to desigualwnterface allowing

users to interactively submit subgroup mining queries fecalering interesting patterns.
Specifically, our system can accept mining queries dyndipiextract a set of hyper-box
shaped regions calleduggetsfor easy understandability and visualization, and allow
users to navigate in multiple views for exploring the quesgults. While navigating in
the spaces, users can specify which level of abstractignpheder to view. Meanwhile,
the linkages between the entities in different levels amdcttrresponding data points in
the data space are highlighted.

The primary contributions of this work include:

e A novel subgroup mining system: we design a visual subgroupngn system
where users can conduct a closed loop analysis involving fudbgroup discovery
and visual analysis into one coherent process.

e An understandable knowledge representation: we proposatagy for represent-
ing the mining results in an understandable form. In additmstorage benefits,
this representation is easy for analysts to understandcamdée directly displayed
using common multivariate visualization approaches.
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A 4-level structure model: we designed a layered model thatva users to ex-
plore the data space at different levels of abstractiortantes, cells, nuggets, and
clusters.

e Visual representation for the nugget space: for each laveldesign a view in
which users are able to explore and select items to visualizge connections
between the adjacent layers are shown based on the usexts pasition.

¢ We implemented the above techniques in an integrated systidedNugget Browser
in XmdvTool [64], a freeware multivariate data visualizatitool.

e Case studies suggest that our visualization techniquesfi@etive in discovering
patterns in multivariate datasets.

e We performed user studies to evaluate the visual repreagamaf the mining re-
sults.

4.2 Visual Subgroup Mining and a Proposed 4-Level Model

In this section, we introduce the subgroup discovery probéad the mining process.
As mentioned in Sec. 4.1, a subgroup discovery problem cattefieed in three main
features: subgroup description, a target variable, andtareistingness measure function.

A subgroup in a multivariate dataset is described as a sgibsrén the independent
attribute space, i.e., range selections on domains of gmgnt variables. For exam-
ple, “male Ph.D. students in a computer science departmbasevage is large (larger
than 25)” is a subgroup with constraints in the 4 independ#ribute space, i.egender
degree programdepartmentaindage The sub-groups can be initialized by partitioning
the independent attribute space. Given a multivariateseétgre-processing partitions
the data space into small cells by binning each independeiatble into several adjacent
subranges, such as low, medium and high ranges. The numbigisdbr each dimension
is defined by users. Users can select bin numbers initiahgdan the cardinality or ap-
plication domain of the datasets, and then change the bitauatcording to the mining
result, such as the number of empty and low density cellshEatt is a description of
one subgroup element.

For the target attribute, based on the application and trdéraity, it can be contin-
uous or discrete. The quality functions are different fasi two target attribute types.

As a standard quality function, Nugget Browser uses thesmakbinomial test to
verify if the target share is significantly different in a gmbup. The z-score is calculated

as.:
P —Po \/* l
1 - po
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This z-score quality function compares the target groupesinahe sub-group with
the share in its complementary subsetand N are subgroup size and total population
size.py is the level of target share in the total population gmé p,) means the difference
between the target shares. For continuous target variabdas patterns, the quality
function is similar, using mean and variance instead ofeshandp,(1 — po).

Users can submit queries on the target attribute to speuifyet range or a significant
level to measure the interestingness of each group. Theaugwith high quality mea-
sures are query results, i.e., discovered patterns. Uaargisually explore the extracted
patterns and furthermore, can adjust the previous queryparidrm a new loop of query
processing.

Intuitively, we use color to represent the mining result lue tell level. The cells
(subgroups) are colored gray if their quality measure dbeatisfy the significance level
(usually 0.05). If the z-score is larger than zero and thalperis less than 0.05, the cells
are colored red. This means that the target attribute shate@verage target attribute
value are significantly larger than the population. Sinylaior the cells whose z-score
is less than zero and the p-value is less than 0.05, the cellsoéored blue. This means
that the target attribute share or the average targetatitrdmlue are significantly lower
than the population. In this work, we use different colorsdpresent different subgroup
types.

A direct way to report the mining results is to return all tlidoced cells. Notice that
the number of cells is exponential in the number of indepehddributes. The query
result can be very large, which makes it hard for the user foes and understand.
Specifically, a large set of unrelated cells may not be deésirecause:

e Users may only care about large homogeneous regions (syisodthe same type)
rather than a set of unrelated cells.

e Users may want to know how many connected regions there dre/aat the sizes
are.

e The result should be in a compact form for ease of understgndi

Towards these goals, we computationally extract two hig¢gwesl abstractions of the
mining result, i.e., the nugget level and the cluster level.

In the cluster level, we aggregate neighbor cells of the styme to form a cluster
i.e., a connected region (Fig. 4.1 (a)). The clusteringltestan be used to answer
guestions such as how many connected regions there are atdhelsizes (number of
instances or cells) are. There are two benefits for the rasthie cluster level besides to
ease exploration. The first one is that the number of clustansreveal the distribution
of the mining result, such as a single continuous large etust a set of discontinuous
small clusters scattered in the space. This can assist iesbetgter understand how the
independent attributes influence the target share. Semdmck the subgroups of the
same type are generally treated as a whole set, the sammdrdatan be applied to
all individuals in one cluster rather than each single c&ince users might be only
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concerned with the large clusters, we can further filter batdmall clusters, based on a
user-specified threshold. This idea of clustering cellsmslar to grid-based clustering
and more benefits are discussed in[63, 1]. The differendeaiswe cluster the cells of
the same type in terms of their interestingness based onghécance level for a target
attribute, while most of the grid-based clustering teche&jonly consider the densities
of each cell.

Although there are some benefits to representing the miessigltrat the cluster level,
the largest problem is that the clusters are generallyrarbyt-shaped sub-regions in
multi-dimensional space. This makes it very difficult foe tisers to understand the shape
of a cluster and visually represent a cluster. To deal wigsétproblems, we propose an-
other level between the cell level and the cluster level, e nugget level. Specifically,
we aggregate neighbor cells to form larger block-structimgoer-boxes for compact rep-
resentation and easier perception. This aggregation df af s&ljacent cells is called a
nugget A nugget can be unambiguously specified and compactlyagtyréwo cells, i.e.,

a starting cell and an ending cell, which are two corners efctbrresponding hyper-box.
A nugget has two important propertiggeducibility andmaximality

e irreducibility: any sub-region (subset) of a nugget, also in the cell fosnstill of
the user’s interest and meets the interestingness measat®oh requirement.

e maximality a nugget cannot be extended in any direction in any dimartsicol-
lect more cells to form a larger one.

The concepts of irreducibility and maximality were propbég [8]. We extend this
idea to a multi-dimensional space to generate a set of lahyger-rectangular regions

that satisfy the query.
=
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Figure 4.1: The 4-level layered Model. User can explore tita dpace in different levels
in the nugget space.
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The proposed 4-level structure model is shown Fig. 4.1. Asvshin Fig. 4.1 (a),
assume that the whole feature space is two dimensional (#yepdane) and the target
dimension values (binary) are represented as the point dalthis example, assume the
blue and red points are from two classes, e.g., USA cars gahdae cars. Assume the
user’s query is requesting to find the subgroups where tigettahare (origin is USA)
of the cars are significantly higher or lower than the popoatTo answer this, we first
color the cells based on z-score: color the cell blue (rethafpercentage of cars from
USA is significantly higher (lower) than the whole of the ptgiion. The partitioning and
coloring results are shown in Fig. 4.1 (c). A gray cell meaosignificance is detected
or are empty cells.

4.3 Nugget Extraction

In this section, we describe our proposed nugget represamind extraction method.
Assume there ar® dimensions in the feature space. As mentioned before, eawme
sion is partitioned into several bins. Assume theregydins for dimensiork. The cut
points for dimensiork areCy,; (min) < Cy o < -+ < Cy p,+1 (mazx). HereCy, ; means
the value of thg” cut point in dimensior, assuming the first cut point is the minimum
in this dimension. For any cell, we assign an index (entry) based on its value position
in each dimension: [, 1, 1,2, -+, I, p] (1 < I, < By, for1 <k < D). For example,
if the first dimension value lies between the minimum and #wad cut point, i.e(’ ;
<wv < (2, the index value of the first dimension of this instance is 1.

Definitions and the nugget extraction algorithm are intstubelow:

Sort all cells. we define a celt, asahead ofanother cell, if for a dimensionk,
I..x < I, 1, and for the previous indices, they are all the same, f.g;,= I, ; for 1 <
t < k. We sort all the cells according to this order. We call theesblistCellList Some
positions could be missing if the cell with that index is eynpt

Of the same type: two cells areof the same typ# they both satisfy the same query.
This means they have the same color.

Previous cell: ¢, is theprevious cellof cell ¢, in dimensionk if 1., , = I, , - 1, and
for the other indexes, they are the same, ig., = I, for1 < j < D andj # k. So
usually one cell ha® previous cellsn terms of all the dimensions.

Between two cells: cell ¢, is between:, and¢, if for each dimension, the index of
is larger than or equal tq,, and smaller than or equal tg, i.e., I, , < I, < I 1, forl
< k < D. Ifcell ¢, is between:, andc,, it meansc, is covered by the hyper-box whose
two corners are, andc,. Note that herebetweehdoes not mean the location @ellList

Reachable: cell ¢, is reachablefrom ¢, if a) ¢, andc, are of the same type, and b) all
the cellsbetweerthese two cells are of the same typecasindc,. If ¢, is reachableby
¢4, then that means the hyper-box, takiggandc, as corners, is colored uniformly.

Algorithm Description: To find all the nuggets, for each cell, we fill a list of cells,
calledreachList If cell ¢, is in thereachListof c,, that means, is reachable frona,.
We fill this list from an empty list for each cell in the order@ellList This is because
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when filling thereachListfor cell ¢, we have finished the lists of the (maybe fewer)
previous cellsof ¢,. Due to the property ofreducibility, we only examine the cells in
the list of previous celldor filling the list for the current cell. After getting the ign

of all thereachLiss of all thepreviouscells, we check each cell in the unioned list and
delete unreachable cells. For this purging process, agdyrilee previous cellsteachList
require access. In order to fulfill teaximalityproperty, those surviving cells, which can
reach the current cell, have to be removed fromrdaehlistsof the previous cells. The
area between cetl, andc, (a cell in thereachlistsof ¢,) is a nugget.

The time cost for extracting all nugget is determined by thenber of interesting
cells. The number of all cells is independent of the data sk exponential to the di-
mensionality, given a fixed constant bin partition numberdibdimensions. This means
our system scales well as the data size increased and dossat®twell as the dimen-
sionality increases. However, due to the fact that most efclls are not interesting
(not colored), we can infer that the number of interestingsder forming nuggets and
clusters is low, which can lower down the time of extractingygets. To show this, we
used our system to extract nuggets for two datasets witlehidimensionality. The first
dataset has 13 dimensions and 73 nuggets were extractddlinmtoe second dataset has
30 dimensions and 18 nuggets were extracted in total. Fdr datasets, the time for
extracting all nuggets cost less than 1 seconds, whichateticthat this proposed nugget
extraction process can handle datasets with high dimeal#iypn

4.4 Nugget Browser System

In this section, we introduce the system components, viangthe interactions.

4.4.1 Data Space

We employ Parallel Coordinates (PC), a common visualirati@thod for multivariate
datasets [40], to visualize the data points and nuggetsarallpl coordinates, each data
point is drawn as a poly-line and each nugget is drawn as aesbtoanslucent band (Fig.
4.6), whose boundaries indicate the values of the loweredstarting cell) and upper
range (ending cell) for each dimension. The color blue addmdicate the sign of the
z-score and darker color means higher significance is desedvfor the subgroup. The
color strategy is obtained from Color Brewer [16], usingetging color schema (7 bins).
We provide interactions in the nugget navigation space ewhat the users can select
which data points to view in the cell, nugget and clusterlleVie last dimension (axis)
is the target attribute that guides the user in submittingrigs and changing the target
share ranges. The query ranges are shown during adjustveeintl colored bars on the
last axis). To assist the user in filtering out uninterestinggets, a brush interaction is
provided. The user can submit a certain query range in thepeident variable space
and all the nuggets that don't fully fall in the query rangdl Wwe hidden in the nugget
view. An example of a query is to select all the subgroupsiwighcertain age range.
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4.4.2 Nugget Space

In the nugget space view, three coordinated views, i.estetwiew, nugget view, and cell
view, are shown in different 2D planes (Fig. 4.7). The linkeaghow the connections
between adjacent views [15].

Cluster View. In the cluster view (Fig. 4.7 left), we employ a small “thunadi
of a parallel coordinate view to represent each cluster. dibe of each thumbnail is
proportional to the number of instances each cluster cositad that large clusters attract
the user’s attention. When the user moves the cursor ontestec| the parallel coordinate
icon is enlarged and the connections are shown from thiseslts all the nuggets in the
nugget view that comprise this cluster. Meanwhile, theegponding instances are shown
in the data space view.

Since the clusters consist of the data points in a high-dsoeal space, to preserve
the high-dimensional distances among the clusters we gnmgriaMIDS layout [12] to
reveal latent patterns. The question is how to measure thiéasity of two clusters. A
commonly used and relatively accurate method for meastin@glistance between two
groups of instances is to average all the Euclidean dissaoceach instance pair from
different groups. The problem is that for large clusters,dbmputational cost is high. We
therefore calculate the distance in a upper level of thegseg 4-level model, i.e., using
the average Euclidean distances between all cell pairs. rAsudt, the cost reduces as it
depends on the number of cells, which is much smaller. THelsthnce is calculated as
the Euclidean distance between two cell centroids.

Nugget View. As mentioned before, each nugget is a hyper-rectangulgresha
single star glyph with a band, as proposed in [68], can thusskee to represent a nugget
(Fig. 4.7 middle). The star glyph lines show the center ofrthgget, and the band fades
from the center to the boundaries. Similar to the clustewyv@nnections between the
nugget view and the cell view are displayed according to 8@ ’sl cursor position. The
corresponding data points are also highlighted.

We again use an MDS layout for the nugget view, but the digtanetrics are cal-
culated differently from the cluster view. This is becausg o nuggets could overlap
in space, thus an instance could be covered by multiple nsigde reveal the distance
between two nuggets, we designed two different distancesunements: one for overlap-
ping nuggets and one for non-overlapping nuggets.

When the two nuggets have common cells, the distance matticates how much
they overlap:

_ Al+|B|—-2/ANB
Dis(Nuggeta, Nuggetp) = = |‘A||+ |£‘3| |

Here|A| means the number of cells that clusteincludes. When the two cells have
a very small overlapping area, i.e., almost non-overlag dilstance is near 1. When the
two cells almost fully overlap on each other, the distanceeer O.

When the two nuggets do not have any common cells, we use thad#tan distance
as the measurement. For each dimension, the distance isireédsy using a grid as a
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single unit, called thgrid distance For example, the grid distance for dimensiois
0 if on that dimension the two nuggets’ boundaries meet witlamy gaps, or the two
nuggets have overlapping bins (note that two nuggets magvestap in space, but may
overlap in certain dimensions). The grid distance of din@ns is 1 if there is a one-bin
gap between the two nuggets on that dimension. The distarag/idimension is the cell
distance+1 indicating how many steps they are away from each other:

D

Dis(Nuggeta, Nuggets) = > (GridDistance,(A, B) + 1)
k=1

Note that the minimal distance is 1 for two non-overlappinggets, which is also
the maximal distance for two overlapping nuggets. HencéeénMDS layout view, the
nuggets in a cluster will tend to stay together to help repatterns.

For both of the cluster view and the nugget view, we use MD&akatyout strategy, so
the time cost for constructing the two views is mainly detieed by the MDS algorithm.
Here we give the time cost of two datasets for constructimg\iew to show how our
system scales as the number of nuggets increases. For thdafaiset with 69 clusters
and 86 nuggets, it took 5 seconds to create this view; andhéosécond dataset with 123
clusters and 248 nuggets, it took 155 seconds to creatisgridv. This indicated that
as the number of clusters and nuggets increase, our systesn’'tlscale very well. To
address this limitation, implementing a faster algorithiiM®S layout can be a future
work.

Cell View. In the cell view (Fig. 4.7 right), each cell is representeéd asjuare. The
cell colors are consistent with the colors in other viewse Thll is highlighted when the
user is hovering the cursor on it. Meanwhile, all the data{soin this cell are shown
in the data space view. The curves indicating connectiotvgdma the cell level and the
nugget level are also shown for the cells the cursor pointéristead of a single curve,
multiple ones are shown as a cell could be included in meltipiggets.

4.5 Case Study

In this section, we discuss a case study showing the eftawss of our system. The
dataset was obtained from the UCI Machine Learning Repysdalled “the Mammo-
graphic Mass Dataset” [60]. Mammography is the most effeatiethod for breast can-
cer screening. The dataset size is 961 (830 after removatgrines with missing values).
5 independent attributes, such as #ge of the patient and thdensityof the mass, are
extracted and the target attributeSsverity(benign or malignant). There are two main
goals for analyzing the dataset. The first one is to undeidtaw the independent at-
tributes influence the target attribute. This can assistitfetors in finding the important
attributes impacting the diagnosis results. The secontligda discover the subgroups
where the benign (malignant) rate is significantly highetosver than the population.
For a future diagnosis, if a patient is discovered in thoseigs, more attention should be
paid or some conclusion about the diagnosis result couldderd
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To show the difficulty of finding how the independent attrdgmiinfluence the target
attribute using common multivariate data visualizatiochteques and interactions, we
first display the dataset using Parallel Coordinates in Xfodl. As shown in figure 4.2
and 4.3, the highlighted instances are selected using tighliechnique (range query)
on the target attribute. Figure 4.2 shows the query resuttlidhe benign instances (red
color poly-lines) and figure 4.3 shows the query result othalmalignant instances. The
pink area shows the bounding box of all the instances in tleygut can be observed
that for each query, the instances cover almost the whalbwtt ranges and all different
values in different dimensions. This shows the common Vigai@gon technique, even
with interactive range queries, can hardly reveal theimglahip between the independent
attributes and the target attribute.

Figure 4.2: Brushed benign instances Figure 4.3: Brushed malignant instances

We then show the insufficiency of the traditional subgrouping technique without
visualization in providing compact and easily understéhelanining results. We per-
formed the mining as follows. The target share value is bemgthe target attribute.
This query examines the subgroups with significantly hidteerign rate and significantly
lower benign rate. Note that significantly lower benign rdées not necessarily mean
significantly higher malignant rate, which can be examingdgecifying another mining
guery that takes share value as malignant in the targebatitti The whole independent
attribute space is portioned by binning each attribute cipally, for the attribute whose
cardinality is smaller than 7, the bin number is the same egéndinality, such aden-
sity. For the attributeage (numerical attribute), the bin number is set to 7. We chose 7
because for lower values, the patterns are very similatebgtclear, while higher number
of bins results in a lower number of instances in each groinichweduces the reliability
of significance due to the small sample size. After the bignihe whole dataset is par-
titioned into a set of subgroups. Each subgroup consistgod@p of individuals whose
attribute values are similar or the same in all dimensionachEsubgroup is examined
using the p-value and z-score of the statistical test asntieeeistingness measure. Parts
of the mining results are shown in Figure 4.4 as a table. Tdres¢ans the description of
each subgroup in each dimension. 18 subgroups have thenbatégsignificantly larger
than the population. It is clear that without visualizatianalysts cannot understand how
the subgroups are distributed in the space and the relatmmbetween the subgroups.
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Also, for some subgroups, such as number 12, 13, and 14, teedg@cent to each other
and can be reported as a single group for a compact représanta

BI-RADS Age Shape Margin Density
Group#|1 2 3 4 5 6/1 2 3 a5 6 71 234a]l123as5s5|l12 3 alz:score p_value

* * * * * 1.683 D.0a7
3.385 0.001
2.385 0.008
1.683 0.046
5.125 D.001
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3.814 D.001
2.177 0.001
1.683 0.0a6
5642 0.001
1.945 0.026
0.001
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Figure 4.4: The mining results are represented in a tablerbefggregating neighbor
subgroups.

From the previous discussions, we can observe severalliiis:

e itis hard to understand how the independent attributesantla the target attribute
using common visualization techniques.

e itis hard to understand the distribution of the subgroups
e the mining results are not reported in a compact knowledgesentation form.

Next we will show how to use the Nugget Browser system to betikre the subgroup
mining problem. Figure 4.5 shows the higher level, i.e.,ribgget level representation
of the mining result in a table form. 8 nuggets are reportea more compact manner,
compared to the result of traditional subgroup mining, ieelist of subgroups. Figure
4.6 shows all the nuggets (translucent bands) extractdekiddta space view. Color blue
means a significantly higher benign rate and color red meaign#icantly lower benign
rate. It is very clear that subgroups with high benign rateslme differentiated from the
low benign rate subgroups in most of the dimensions, whidltates that the independent
attributes have a strong impact on the target attribute. é¥ew this influence can hardly
be discovered in traditional multivariate data visual@mattechniques, even with range
gueries. Specifically, the high benign rate subgroups hawer values for attributeBI-
RADS Age ShapeandMargin, compared to the low benign rate subgroups. Most of the
subgroups with significance discovered h@ensityvalue 3 (means low). More details
of how the independent attributes influence the targebateiwill be discussed later.
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Figure 4.5: The mining results are represented in a tabr afjgregating neighbour
subgroups.

Age Shape Margin Density Severity
999 415 52 415 105

BLRADS
6.25

075 141 0385 08 085 005

Figure 4.6: The data space view shows all the nuggets asati&uicent bands. The right-
most dimension is the target attribute. The blue verticgiom on the target dimension
indicates the target range of the subgroup mining query.

Although the nugget representation, shown in Figure 4.5ase compact than the
cell representation, without the visual representatiba,users still have difficulties un-
derstanding the distribution of the nuggets and buildingnextions between the pattern
and the instances. To better understand the mining resudtuather explore them, the
analysts can open the nugget space view (Figure 4.7). Bas#uedistribution in the
nugget view and the cluster view, the high benign rate ciustel the low benign rate
cluster are separated from each other in the attribute spatieating that the the target
attribute is influenced by the independent attributes. Wealso discover that a large
red cluster and a large blue cluster are extracted. It is siibat the higher benign rate
regions and low benign rate regions are continuous in thepeddent attribute space.
More discoveries found during the exploration in the nuggpetce are as follows:
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Figure 4.7: The nugget space view shows the mining resultend of abstractions. The
connecting curves indicate the connection between adjéeeasis.

1. For the low benign rate subgroups, there are two outlietside the main cluster.
By hovering the cursor and selecting on the two outliers, arediscover what causes the
two outliers to differ from the main cluster: tlhapevalues of the main cluster (red)
are 3 and 4, while the two outliers hahapevalue 1. When showing these two outlier
subgroup instances in the data space view, we can obseivedliastances are benign
and the group sizes are small. Thus, the doctors can corikate¢hey are not typical and
ignore these two outlier subgroups during analysis.

2. The shape value 4 is more important for the low benign f&tes can be discovered
when displaying all the instances in the red cluster: th@shalues are either 3 (means
lobular) or 4 (means irregular), while for the value 4 , higkignificance is found, which
can be recognized by a darker color.

3. For lower age patients, higher benign rate tend to be @&sed. This can be
verified by distribution of the interesting subgroups: nghar benign rate groups are in
age bin 6 and 7; no lower benign rage groups are in age bin 1.and 2

4. Attribute BI-RADShas a negative effect for higher benign rate, i.e., lo®kr
RADSvalues tend to have higher benign rate. This can be disadareording to the
distribution of subgroups with significance on this atttdauFor the higher benign rate
subgroups most of them haB-RADSvalue 4. For low benign rate subgroup: most
of them haveBI-RADSvalue 5. The analysts can understand this trend better yf the
know the meaning of this attribute: each instance has arciated BI-RADS assessment.
The lowest value means definitely benign and highest valuenmhbighly suggestive of
malignancy.
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4.6 User Study

In this section, we discuss a user study for evaluating tfeetéfeness of the visual rep-
resentations of the nugget space. The hypothesis is thgiarewhto the current existing
work using a table representation, the designed nugget thatwises shape and layout
can better help the users understand the subgroup mininlgsraad quickly identify pat-
terns in it. The patterns could be outliers, clusters, aretlapped subgroups. To show
that simple multivariate visualization techniques camewtal the pattern very well, we
implemented scatterplot matrices for comparison. Anottal of this user study is to
evaluate the proposed 3-level knowledge representatianchpared the nugget view
and the cluster view, in terms of their abilities of preddcti For this task, the subjects
were provided with the nugget view, or the cluster view, al agea set of instances. They
were asked to build a correlation between the subgroupsenidstances.

We invited students as the subjects (18 in total) to pasdieipn the user study. The
subjects were asked to answer 11 questions based on diffesanl presentations of the
subgroups. The subjects answered the questions basedemm-®upied figures which
were printed out on paper. Note that any single questiontaheusubgroup mining re-
sults could be answered based on different visual reprasemtmethods, such as the
designed nugget representation or the table represamntadiabjects were randomly as-
signed a visual representation method to answer a givertigne$ake the evaluation of
the representation of the two levels (nugget level and etustrel) for example. We de-
signed two questions (questigh, and questiord);) to compare the representation of the
two levels. We generated two groups of questions, gi@y@and groupGz, as follows.
Each question group had both questiGhsand(@,. In groupG 4, question?), would be
answered based on the nugget level representation, whaktiqu(), would be answered
based on the cluster level representation. In gi@ypthe questions are the same, but we
exchanged the visual representations: quespipwas represented using the cluster level
and guestior), was represented using the nugget level. In the study, weoralydas-
signed half of the subjects to question grdiip and the other half to question grotfy;.
Similarly, we generated three groups of questions to etaline three representations of
the subgroup mining result: table representation, sgattematrix representation, and
the nugget representation.

Before the study, the subjects signed a consent form. Themsedject was shown a
brief explanation of the study using examples and samplstmuns, such as which dataset
we used and how to read the figures. The subjects finishedutig Isy answering several
guestions. One type of question was the identification faskjdentify and highlight the
specified pattern, such as clusters and outliers. This tiygaestions is used to evaluate
the visual representation of the subgroup mining resule dtmer type of question was
the prediction task, i.e., for a given instance, determiméciv subgroup it belongs to.
This type of questions was used to evaluate the nugget eagegon in different levels.
We recorded the time each subject spent on each questiomrfoef analysis.

Figure 4.8 uses error bars with a 0.95 confidence intervahtovshe accuracy for
the three knowledge representations of the subgroup mmeisigits. We found that the
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scatterplot data representation and the table repregemtatre very similar in terms
of accuracy. It is clear that the proposed nugget represents better than both the
scatterplot and table representation, though no statistignificance is detected.
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Figure 4.8: The comparison of accuracy for different miniegult representation types.

We also examined time spent on each representation, whecshamvn in Figure 4.9.
Similarly, the nugget representation is better than therdtho types of knowledge repre-
sentations. The difference between the nugget represengatd the scatterplot matrix is
significant (p-value=0.014). To conclude, we found the aisepresentation of the sub-
group mining result using the proposed nugget method iebttan the tabular method
and scatterplot matrix method, in both accuracy and time.

Lastly, we compared the two different levels of nugget repreations. Figure 4.10
compares the accuracy for these two levels, and Figure #mpares the time spent for
these two levels. It is shown that the two representatioms tieeir own advantages: the
nugget representation costs less time for the predictisk tahile the cluster level can
provide higher accuracy. A possible explanation is thatthster view uses the parallel
coordinates thumbnail representation, which may causdapgng when a cluster has
many instances. This explains why the subjects spent moeedn this task when using
the cluster view. The accuracy for the nugget view is not aglgs the cluster view. This
is because compared to the star glyph, a parallel coordregtesentation is relatively
easier to make a comparison, as a trend is shown. Since mstistdtdifference is de-
tected, the conclusion is that there is no difference inWeerhethods in terms of their

prediction abilities.
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Figure 4.9: The comparison of time for different mining nésepresentation types.
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Figure 4.11: The comparison of time for different levels.

Conclusions

In this chapter, we described a visual subgroup mining systalled theNugget Browser

to support users in discovering important patterns in watiate datasets. We proposed a
4-level layered model that allows users to explore the ngim@sult in different levels of
abstraction. The nugget level mining results are represess regular hyper-box shaped
regions, which can be easily understood, visualized, akagetompactly stored. The
layout strategies help users understand the relationsimqmg extracted patterns. In-
teractions are supported in multiple related nugget spaves\to help analysts navigate
and explore. The case studies show how our system can bewsedetl patterns and
solve real life application problems. The user study shiwasthe proposed visual repre-
sentation can better help the analysts understand theaybgrining results, as well as
quickly identify specified patterns.
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Chapter 5

Local Pattern and Anomaly Detection

In this chapter, | introduce a novel visualization systet tillows analysts to perform
multivariate analysis in a pointwise manner and examineeip patterns in multivariate
datasets. This system is designed for one type of local sisalye., sensitivity analysis.
| evaluated the system with formal user studies and expedies. There are two main
goals when using this system to explore a multivariate eéatas

e examine a multivariate dataset from a single focal poine fiddationships between
neighbors and the focal point are visually represented.

e discover anomalous local patterns, i.e., outliers thatd#ferent from the global
pattern. Each detected anomalous local pattern can be édii@svanuggetthat can
be managed using this system.

5.1 Introduction

5.1.1 Sensitivity Analysis

A local pattern can be viewed as a pattern that is extractgdfom the subset of data
points within a small region around a focal point. There aenynmultivariate analysis
techniques that follow the idea of local analysis, and onghein is sensitivity analysis.
Sensitivity analysis is the study of the variation of thepuitof a model as the input
of the model changes [56]. When we study the correlation éetwa target (response)
variableY and a set of independent variables,, X5, ..., X, }, sensitivity analysis can
tell analysts the change rate Bfas X; varies. Analysts can also discover which input
parameters are significant for influencing the output védeiatSensitivity analysis has
been widely applied for understanding multivariate bebiaand model construction for
analyzing quantitative relationships among variable$.[B6r example, it can be applied
to car engine designs: fuel consumption is dependent oneflaéianships among the
design choices, such as fuel injection timing, as well asaifmn-varied conditions, such
as engine speed [42]. The analysis results are importarglpirty engineers tune the
parameters in designing an engine.
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Sensitivity analysis is essential for decision makingteysunderstanding, as well as
model constructing. Numerous approaches have been pfmosalculate the sensitivity
coefficients. | focus on differential analysis, where sevisies are defined as the partial
derivatives of a target variable with respect to a set of pethelent variables.

5.1.2 Motivations for Pointwise Exploration

Although many visual analytics systems for sensitivitylgsia follow this local analysis
method, there are few that allow analysts to explore thd [matéern in a pointwise man-
ner, i.e., the relationship between a focal point and itgim®ors is generally not visually
conveyed. The key idea behind this research is analogotre tstiteet view in a Google
map [29], where the user can stand in a position in the global tm browse the neighbors
and understand its vicinity, i.e., the local patterns.

This pointwise exploration is helpful when a user wants tdarstand the relationship
between the focal point and its neighbors, such as the dissaand directions. The
analysis result can assist analysts in understanding vagig/hbors do not conform to the
local pattern. This discovery can be used to detect locainaties and find potentially
interesting neighbors.

To better understand the usefulness of pointwise sengitivialysis, | discuss an ap-
plication scenario for selecting an apartment near a camphe target variable is the
price and the independent variables are several apartnteibutes that influence the
target, such as room size, bedroom number, distance to carapd so on. The local
sensitivity analysis can tell users (students) how theepisanfluenced by an indepen-
dent variable, either positively or negatively, as well dgali variables are important for
choosing an apartment. However, users often cannot eastiglel which apartment is
worth renting. Given a particular apartment or the one inclwhihey currently reside, it is
not always clear whether there are any better choices cauparthis one. Specifically,
can the student pay a little more to get a much better apattroefind a similar one
that is much cheaper. Finally, if users have domain knovwdealgcertain requirements,
they should be able to use this to change this apartment §jrtdsk. For example, if
the students know that distance is much more important fr thoices, i.e., they pre-
fer a closer one rather than a bigger one (assume both chomesse costs the same
amount), they should increase the influencing factor foradise, or similarly decrease
the influencing factor of size.

We seek to develop a system focusing on the challenges thdtaned in the apart-
ment finding problem. In this chapter, | present a novel pase local pattern visual
exploration method that can be used for sensitivity anglgsd, as a general exploration
method, for studying any local patterns of multidimenslataa. Specifically, this sys-
tem allows users to interactively select any single dattaimee for browsing the local
patterns. Each instance is assigned a factor using statigteans to reveal outliers that
do not conform to the global distribution. In the local patteiew, the layout strategy
reveals the relationships between the focal point and itghbers, in terms of the sensi-
tivity weighting factors. Users can interactively change sensitivity information, i.e.,
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the partial derivative coefficients, based on their requésts. Users can also compare
the local pattern with the global pattern both visually atadistically.
The primary contributions of this system include:

5.2

A novel pointwise exploration environmetitsupports users in browsing a multi-
variate dataset from pointwiseperspective view. This exploration assists users in
understanding the vicinity of a focal point and reveals #lationships between the
focal point and its neighbors.

A novel visualization approach for sensitivity analysgensitivity analysis is one
important local analysis method, thus is well suited for paintwise exploration.
The designed local pattern exploration view indicates ¢heionships between the
focal point and its neighbors, and whether the relationshipforms to the local
pattern or not. This helps the user find potentially intengsheighbors around the
focal point, and thus acts as a recommendation system.

Adjustable sensitivityThe system allows users to interactively adjust the sigitgit
coefficients, which gives users flexibility to customizeithecal patterns based on
their domain knowledge and goals.

System evaluation using real-world datasétevaluated the effectiveness of our
system based on a real-world dataset and performed a fosealstudy to better
evaluate the effectiveness of the whole framework.

Local Pattern Extraction

5.2.1 Types of Local Patterns

There are many types of local patterns that can be used feitiség analysis and other
local analysis. | list some of them in the following:

the model coefficients: one way to calculate the sensiiwits to use the partial
derivative values. For a local linear regression model, abefficients for each
independent variable are one of type local pattern. Thedfizlkis pattern is the
number of independent variables.

the residual values: for each neighbor, the residual dessow well it fit the
local model, i.e., the difference between the estimatedevahd observed value.
The size of this pattern is the neighbor count.

the angle between the connecting vectors, i.e., a vectar fre focal point and
a neighbor, as well as a certain orientation, such as the meator of the linear
regression hyper-plane, or a positive direction of a dinmmnd use this information
as the local pattern and it will be discussed later in Sedi@n
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5.2.2 Neighbor Definition

A local pattern in a multivariate dataset means a single plaitst and its vicinity, i.e., a
set of data items in a sub-region. The data point can be viasedfocal poin#’, which
could be an existing data item in the dataset or any usetfsggposition. The data items
within the range are considered neighbors.

The notion of locality can be defined by the user’s requireim@enerally, two differ-
ent types of ‘locality’ are considered:

e Hyper-sphereThe definition of a Hyper-spherical local neighborhoodhwiispect
to F' is a subset of points within a hyper-sphere takings the center. This set
of normalized n-dimensional points is denotedlgswith |F' — v| < r (v € V).
| —v| means the distance measure (Euclidean distance) betweetatti pointF’
and the poinb. r is a user-defined radius to control the degree of localityeNtoat
the normalization means different weights will be assignégn calculating the
Euclideandistance of the two data points. Usually all the dimensiogers@rmal-
ized between zero and one; however, in some cases, a weilghé@ssigned based
on the model coefficients or any user-specified values. Téighivor definition is
widely used in many multivariate analysis methods such asitiebased clustering
[24]. Another way to define neighbors is to specify a numheand for a specific
point, thek nearest data points are its neighbors. In this case, théregan is
also a sphere shaped area.

e Hyper-box The definition of a Hyper-box local neighborhood with resp® F
is a subset of points within a Hyper-box takidgas the center. This set of n-
dimensional points satisfy|F}, — vx| < r, whereF}, is the value of dimensioh
of " andry, is the range of the hyper-box for dimensibnFor a box-shaped area,
the user can specify the box size on each dimension. This gisers flexibility
to define the neighborhood based on different applicatiodsraquirements. For
example, for categorical independent attributes, suchhasountry of origin or
manufacturer of a car, the coefficients of the sensitivitglgsis are meaningless,
since the attribute values are not ordinal. However, fdied#htorigins or man-
ufacturers the coefficients may be different and it is useful to comghesn. In
this case, the user can specify the box size on the catefaticautes so that the
cars of the same origin and manufacturer are neighbors. sysiem allows users
to perform this neighborhood definition in a parallel coaate view by dragging
and resizing a box-shaped region.

5.2.3 Calculating Local Patterns for Sensitivity Analysis

As mentioned earlier, there are many ways to compute thetségof one dependent
variable with respect to an independent variable. In thiskwb follow a variational
approach, where the sensitivity can be calculated by thieapderivative of one variable
with respect to another. The derivative of a target variaglas the independent variable,
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X, changes is approximated ag/0x. The relationship is geometrically interpreted as a
local slope of the function of y(x). Since we do not know theseld form of the function
y(X) between variables in the general case, we approxirhatpartial derivatives using
linear regression. The regression analysis is performddfarent neighborhoods around
each point. A tangent hyperplane for each focus point isutatied based on its neighbors
using linear regression. This linear function represenis the independent variables
influence the target variable, considering a constant dtahging rate for all independent
variables. Also, the representation enables the modekidigirthe target value given the
independent variables, as well as to assess the error betive@redicted value and the
observed value. In a sense, analysts assume that the laglaboes fit this trend since the
sum of the square errors to the regression line is minimized.

Generally speaking, any local information that can assiatyats in performing lo-
cal pattern analysis can be extracted and visually reptegddar examination, such as
neighbor count, distances to neighbors, and orientatioeighbors. In this research, in
particular, | focus on the orientations from the focus ptinthe neighbors. | choose this
pattern for two reasons. First, this pattern tells userselaionships between the focus
point and its neighbors, i.e., the directions to move from fircus point to its neigh-
bors. Second, and more importantly, since our system igdedifor sensitivity analysis
and we extract a linear regression model, this directioralsvwhether the relationship
conforms with the local trend or not, which can assist analysperforming sensitivity
analysis in this neighborhood region.

Similar to the street view in Google Map, when a user standssanhgle point (the
focal point) to examine the neighborhood, the orientatitm¢he neighbors tell users
which direction they should move from the standing poinée (tigin) to reach each of
the neighbors. In the map coordinate system, this direcsioisually described using an
angle between a standard direction vector, such as norha @onnecting vector, from
the focal point to a neighbor point. In our system, to assstslin performing sensitivity
analysis, we take the normal vector of the regression hygees the standard direction.
Since there are two normal vectors of one plane, without asy bf generality, we take
the one directed to the negative side of the target variatieeastandard normal direction.
For each neighbor of the focal point, we calculate an afigietween the normal vector
of the regression hyperplane and the connecting vectordsetthe focal point and that
neighbor, as shown in Figure 5.d'0s(#) is the dot product of the two unit vectors.

To remove the unit differences among the different attebutve assign a weight,
using the regression coefficient, for each independeribattty, so that the changing rates
are the same between each independent variable and thevarigéle. This step can be
considered a normalization. After the normalization, lopas of the linear trend are all
7/4 in all dimensions, and the angles between 0 ana. The direction of the normal
vector is orthogonal to the local gradient, taking the fqmaiht as the starting position.
Therefore, the anglé for one neighbor represents whether the relationship lestwiee
focal point and this neighbor conforms with the local lingand or not. The expectation
of this angle ist/2, assuming all the local points fit the extracted linear moeey well.

If the angle isr/2, it means that the vector from the focal point to this neighibdhe
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same as the local trend (the blue point in Fig. 5.1). If thdaigess thamr /2 (the green
point in Fig. 5.1), it indicates that the neighbor’s targetilbute value is smaller than the
estimate using the extracted model. Note that when we sgy#ulicted value, we do not
mean it is the predicted value using the local regressiomep{the solid red line in Fig.
5.1). Since we care about the relationships between thesfpoint and its neighbors,
the predicted value is based on the regression plane thatvedrio the focal point in
parallel (the dotted red line in Fig. 5.1). In contrast, iéthngle is larger than/2 (the
yellow point in Fig. 5.1), it means that the neighbor’s targgribute value is larger than
the estimate, taking the origin as the focal point.
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Figure 5.1: The extracted local pattern.

To sum up, in this system, the extracted local pattern fonglsipoint is a vectol’,
in which each value is an angle introduced as before. Theddizeis the same as the
neighbor count.

5.2.4 Anomaly Detection

Our system allows users to detect anomalous local patteatgleviate from others. In
general, we follow the idea of subgroup discovery mentioime@hapter 4 to identify
interesting subgroups from the dataset.

Since each local pattern is extracted from a small subget,neighbors of a single
data point, we can take each local pattern as a subgroup. stinggoup discovery can
be applied to discover the local patterns of certain speaggificance, such as the ones
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different from the others, i.e. anomalies. The word “anaual implies that there is
something basic to which each subgroup can be comparedhieee is some notion of
‘background’ or ‘expected’ pattern. For example, the dimets (angles) to the neigh-
bors mentioned before are expected tod2. We know this is because the analysts
have knowledge of regression analysis. In general, howasers do not have this prior
knowledge.

As a general solution, | assume each subgroup (a local paiseone extracted sam-
ple. All the samples could be integrated as a populatiombailsite the underlying model
that generates the individuals. | use the term “global patte represent the integrated
pattern. Each local pattern is compared with this globaltordecide whether it is differ-
ent from it. To better understand this idea, | give an exarfgplsearching for anomalous
patterns on a map. In this example, the extracted patteheipdrcentage of water cov-
erage around each sample position, and the goal is to detectadous areas in terms of
this pattern. Since we assume users do not know the expeatedy we integrate all the
local patterns (percentages of water coverage) togetlicusm a statistical test to detect
anomalies. It is not hard to understand that for a map of raathlareas near lakes and
shores are anomalies; for a map of the ocean, islands areadinem

As a statistical method, the significance value of each Ipattern is evaluated by a
quality function. | use the same quality function mentioime@hapter 4. Although this is
a general way to detect anomalies, visual exploration oh sengle pattern is still often
needed. This is because this approach is based on the agsunhgit the population
is normally distributed, which does not always hold for gdphcations. In the system,
| support users examining each local pattern and comparwwgh the global one both
statistically and visually.

5.3 System Introduction

In this section, we introduce the proposed local patterfogapon method and our sys-
tem design. In our system, we provide 5 different coordichatews to assist users in
exploring the local patterns.

5.3.1 Global Space Exploration

Theglobal viewis designed to give users a global sense of the whole datasically,
any multivariate data visualization techniques, such agtexplot matrices, parallel co-
ordinates, pixel oriented techniques, or glyphs, can bd tselisplay and explore the
data globally. Of these methods, only glyphs show each daitat prdividually as an
entity. We use a star glyph because the analyst can eastyf\spéhich individual data
point he/she wants to examine, thus leading to a easy exioloraf the local pattern of
that data point. A major drawback for the glyph display meti®the scalability issue.
When the data size is very large, each glyph is very small aisdifficult to recognize
and specify a single data item. A solution is to use brushimg)fdtering techniques to

63



hide uninteresting local patterns to save the display spagether solution is clustering
similar local patterns and displaying different clusterseparate views.

To assist analysts in discovering anomalous local pattemsa subgroup of neigh-
bor data points that are different from the global patter®,ancode the statistical results
using color. As shown in Fig. 5.2, gray color means there isignificant difference be-
tween the sample and the population in a significance levedljpe is larger than 0.05),
suggesting the local pattern is not an anomaly. Red and bloesamean that a significant
difference is detected (p-value is less than 0.05). Red s#nz-score is less than zero
(the critical value is -1.96 for 0.05 level), which means lineal pattern has significantly
lower mean value than that of the global pattern. Simildrlye means the z-score is
larger than zero (the critical value is 1.96 for 0.05 leviljlicating a higher mean value
compared to the global pattern. We use a diverging colotegtyafor two colors from
Color Brewer [16]; this strategy is also used in the localgrat view for comparative
neighber representation. The darker the red and blue catershe higher the signifi-
cance is (i.e., a smaller p-value is obtained). When useamie each individual local
pattern, red and blue items are generally of users’ interd$tough we use 0.05 as default
significant level, if users only want to focus on the data gehat are extremely different
from the global pattern, they can change the significant keva smaller value, such as
0.01 or 0.001, to reduce the number of anomalous local pattée., red and blue star

glyphs.
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Figure 5.2: The global display using star glyphs (902 resdmim the diamond dataset).
The color represents whether the data item is an anomaloalsdattern or not. The filled
star glyphs are selected local pattern neighbors.

When the user moves the cursor onto a single data item, ighibeis and the item
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itself are highlighted using larger filled glyphs to draw tieer’s attention. Meanwhile,
the basic statistical information is shown in the bottom bach as neighbor count, mean
value, z-score, and p-value.

5.3.2 Local Pattern Examination

During the interactive exploration in the global view, whigx® user moves the cursor
onto a data item, another view displaying all its neighbaord the selected point are
drawn, called thdocal pattern view The main purpose for this view is to illustrate the
relationships between the focal point and all its neighbAssa general solution, assume
that the focal point is placed in the center of this view; laél heighbors’ positions should
be designated to reflect their relationships, accordindfterdnt types of extracted local
patterns and the users’ requirements.

In particular, in our system, the focal point is shown in teater of the display using
a star glyph, which allows the user to easily recognize thmneotion between the local
pattern view and the global view. The two cross lines (vatand horizontal) passing the
center create four quadrants, using the focal point as fggoAs a layout strategy, we
map the difference in target values between a neighbor anfibtal point as Y, meaning
for each neighbor, if its target value is higher than the fguant’s target value, it is
located in the upper half. Contrariwise, if the target vakiwer than the focal point,
it is located in the lower half. The higher the absolute ddfece is, the further away the
neighbor is placed. This layout strategy tells users whefatl an interesting neighbor
when the goal is to discover a neighbor with different tamgtibute values, such as
looking for a more/less expensive apartment.

As discussed before, the local pattern in this chapter itlentation anglé. The
angle is mapped to X in this view. The angle of the focal pagt/2, assuming the
direction conforms with the local trend. When the angle leetwa connecting vector and
the normal vector of the local trend is less thd8, the corresponding neighbor is placed
in the left half of the view. If§ is smaller (larger) tham/2 it means the neighbor’s target
value is smaller (larger) than the estimate. The user cathiseiece of information to
discover interesting neighbors. For instance, taking daegple of the apartment finding
problem, given a focal apartment, the students should have mterest in the neighbor
apartments shown on the left side, as those neighbors aeeéeby our system as having
lower prices than predicted comparing with the focal point.

For each neighbor, we support two display methods. The firstis the original
value display, which means that for each neighbor, thebattivalues in the original
dataset are shown. In this case, we again use the star glypépgresent each neighbor,
so that users can connect this view with the global view (Big). The second display
method is a comparative display (Fig. 5.5), in which the Fqmaint is the base line,
represented as dashes, where: is the number of attributes. For each neighbor, there are
m bars corresponding to its attributes, where a upward (downward) bar for an attribute
indicates that the neighbor’s value in that dimension ideiglower) than that of the
focal point. This piece of information is also redundan#dpmresented using colors: blue
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means higher and red means lower. The larger the differenn¢ke darker the color is.

Note that the height of a bar represents the difference legtwee neighbor and the focal
point in the normalized space, so that when the relatiortstiyween the neighbor and the
focal point conforms with the local trend, the sum of the baights of the independent
attributes are the same as the bar height of the target fondighbor.

In terms of the scalability for the comparative display,tbtite number of neighbors
and the number of dimensions can result in visual clutteradlapping. For example,
Figure 5.3 shows the local pattern view with a large numberedjhbors (332 neighbors
in total). One simple solution for a fair number of neighbr$o allow users to inter-
actively change a scale factor to reduce the size of eachitdata A data item will be
enlarged to its original size when the user moves the cunsiarit Another solution is
to reduce the number of the displayed neighbors: the useid specify a small number
of k, and only the most closétneighbors or the most interestikgheighbors, based on a
certain interestingness function, are displayed in theswMVe can also apply a clustering
technique to reduce the number of displayed neighbors. fieains we can cluster to
group nearby similar neighbors. After that, each displayeidhbor is a visual represen-
tation of a set of similar neighbors. Some interactions aamtegrated allowing further
exploration of a specified group of similar neighbors, oowlhg the user to adjust the
level of cluster tree for displaying. When there is a largenbar of attributes, a dimen-
sion reduction or selection technique could be appliedreedoalysis. For example, the
attributes with lower influencing factors can be removedéatucing visual clutter.

- e Taol |E=mim=n )

65 1.01,4,5,1,6150]

6.65Carat + 394.92Color + 421.99Ckarity - 69.04Cut - 3027.86 = Price

Figure 5.3: The local pattern view with a large number of hbys (332 neighbors),
which results in visual clutter.

The local regression line in an equation form is shown in tbgdm bar to assist
the analyst in performing sensitivity analysis. For therattions in this view, when the
user moves the cursor on the focal point or one of the neighltbe data item ID and
its attribute values are displayed next to it (in the form Dfdttribute 1, attribute 2, ...,
attribute n]). The user can click any data point to show oeltite attribute values.
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Figure 5.4: Neighbor representa- Figure 5.5: Neighbor representa-
tion using original values. tion using comparative values.

5.3.3 Compare the Local Pattern with the Global Pattern

The colors of each data point in the global view represemstatistical test results, i.e.,
an outlier factor indicates how likely the local subgrougitéerent from others. However,
knowing the statistical test results is often insufficielRtr example, some insignificant
results may also be interesting due to a large deviationreftwe, a visual comparison
of the local with the global is still needed. To allow the usecompare the local pattern
with the global pattern both statistically and visually, wevide users a&omparison
view, showing the global distribution (directions to neighbausing a histogram. The
mean values and confidence intervals for both the global@sal pattern are also shown
in the bottom (Figure 5.6). The use of this view is shown indage study section.

5.3.4 Adjusting the Local Pattern

The local partial derivative values reflect how the indegendariables influence the tar-
get variable in the local area. However, the derivativeesalmay not necessarily meet the
user’s expectations and requirements when they want toritedeisting neighbors. For
instance, assume that the students wants to move to an@idemant from the current
one and are willing to increase their payments, e.g., theylavoe willing to pay around
$100 more for one more bedroom, or pay $100 more for movindegctaser to the cam-
pus. In this case, one more bedroom is the same as 1 mile dloserms of influencing
ability on the target. For different users, the requireraat likely different. Students
with cars may prefer larger apartment, while ones withotd paefer a closer apartment.
In the first case they would like to increase the influenciradiaof size on price, while
in the second case, they would like to increase the influgrfeictor of distance. It means
that different users have different ways to define “bettelnewthey want to find “better”
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Figure 5.6: The comparison view. The two pink bars in thedyttepresent the confi-
dence interval of global pattern (upper) and selected lpatern (lower).

neighbors around the focal point.

In our system, we provide userdacal pattern adjusting vieywsing parallel coor-
dinates (Fig. 5.7). The partial derivatives are drawn aslg-lige. The user can inter-
actively change the coefficient values, i.e., the slopesefttend line, by dragging the
poly-line on each axis. During the adjustment, the localguatview is also dynamically
changed to reflect the new relationships among the focat poahits neighbors in the new
“environment”, i.e., using the new trend. This is becausecaleulate the relationships
among the focal point and its neighbors based on the nornzabwvef the hyperplane.
Since we define the standard direction using the normal yee® can understand this
tuning as equivalent to changing the definition of north inapm

Figures 5.8 and 5.9 show the local pattern view before ared aftanging the coef-
ficients. The dataset is a car sales dataset (from the SPS8esdatasets). For easier
understanding, only two independent attributes are censti horsepower and MPG.
The target is the price of the car. The goal is to compare abeigcar, whose ID is 68
(the upper one with attribute values) with the focal one @02). It is shown that locally
horsepower influences the price positively. Before adpgstihis neighbor is in the right
hand side, which means a worse deal since the price is highardastimated. We can
recognize this by the comparative display of the neightdog;9um of the height of the
independent attribute bars is less than the target bar h@dbwer bar for horsepower
than the bar for price), which means the price is higher ttsimated. After changing
the weight (coefficient) of horsepower to a higher values tieighbor become a better
deal (in the left side). This is because the customer corslid@sepower as an important
attribute. After changing, the sum of the bar heights foeehdent attributes increases
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Figure 5.7: The local pattern adjusting view. The poly-lnepresents the adjustable
coefficients.

and exceeds the target bar height. This example shows useIustomize and change
the coefficients according to their priorities.

5.3.5 Integrate the Local Pattern into the Global Space View

Generally, a local pattern is a value or a vector for a singtalf point. Thus, the local
pattern vector can be treated the same as the attributesvialuke original data space.
Assume there are independent attributes and 1 target attribute, we canereaew
dimensions taking the derivative values as derived dinogigssand integrate them into
the original attributes, thus resulting in a new datasehwit + 1 dimensions. Any
multivariate data visualization technique can be useddplay this new dataset, such as
scatterplot matricies and parallel coordinates. Thisaligation enables users to discover
the relationships among the derived dimensions and theatigimensions.

Fig. 5.10 shows an example of th@egrated view In this example, each data point
is a child’s basic body information: age, gender, height weight. The age range is
between 5 and 11. We use weight as the target and the goal isctovdr for children
of different ages and genders, how height influences weibihe neighbors are defined
as children with the same age and gender, and similar heightneight. The figure
shows the distribution of the derivative@u{eight/Oheight) in the original space (age
and gender). The derivative values are color-coded (dader means higher value) and
the points are jittered to avoid overlaps. We can discowarttie derivatives increase as
age increases. Analysts can also compare the derivativedfierent genders to answer
guestions, such as for 8-years-old children, which gendgitdrger derivative values (the
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Figure 5.8: The local pattern view Figure 5.9: The local pattern view
before adjusting the horsepower co- after adjusting the horsepower co-
efficient. The neighbor (ID 68) is a efficient. The neighbor (ID 68) be-
worse deal. came a better deal.

answer is female).

5.4 Case Study

In this section, we discuss case studies to evaluate ouoagipiand show the effective-
ness of our system. The dataset is a diamond dataset obfaamedhn online jewelry
store [41]. Each data item is one diamond. The target at&itmprice. There are 4 dif-
ferent independent attributes that influence the price adiadnd:weight(carat), color,
clarity andcut The goal is to assist customers in choosing a diamond. Hoewkry can
also tell the retailer whether the price of a certain diamisrekt appropriately. We use a
subset of the diamonds with a certain price range ($5000 0@88ince we assume that
customers have a budget range for shopping, rather thamcaliout the whole dataset.
The whole dataset has 13298 data items and the subset haat@dgs.

The main computational bottleneck is in the calculatiom®lved in finding neigh-
bors, which would be performed in@(n?) time cost without any index data structure,
assuming the data sizesis After the neighbors for each data item are found, the least
square linear regression costi$/km?), whereK is the average neighbor count amd
is the dimension number. During the exploration of eachllpatiern, there is no compu-
tational cost since the neighbor index is already createwbtifer cost in our system is in
the local pattern adjusting period, which($k) (k is the neighbor count of the examined
focal point). On a 3 Ghz dual core desktop PC with 4 GB of RAM andATI Radeon
X1550 graphics card, we ran our system both for the wholeséatnd the subset of the
diamond dataset (neighbor range is defined as 0.1 of theegatige of each attribute).
For the subset, the time for finding neighbors and regressitmulating took less than 2
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Figure 5.10: The view for integrating derivatives into ghblspace. The jittered points
with different colors indicate the coefficient 6height/Oweight. As age increases, the
coefficient increases. For the same age, the coefficienesate different for different
genders.

seconds. For the whole dataset, the time required is about@es. The huge difference
is mainly due to the quadratic time complexity for findinggtgdors. For both datasets,
the exploration of local patterns, as well as local pattefjustment, can be performed
and updated in real time.

5.4.1 Where are the Good Deals

For easier understanding, we start from a single indepératibuteweight The user
of our system can achieve this by defining an appropriatehbeidiood: two diamonds
are neighbors when they have similaeightandprice, as well as they are of the same
color, clarity andcut The extracted local pattern is the orientations to thehimgs. Fig.
5.2 shows the global star glyph display. The color indicathsther the diamond is an
anomalous one. To examine the global distribution, the oarropen the comparison
view (Fig. 5.6). The global distribution is similar with amoal distribution, except there
are two peaks on each side. We will show later this is due teesamomalies, i.e., some
diamonds whose prices are not set appropriately. The metredistribution is about
/2, which is the same as we discussed before, assuming theboesdit the local linear
trend .

To understand the normal and abnormal data items in detailslvow three local
pattern views for gray, red, and blue data points. Figur& Shbws the local pattern view
of a gray data point. All the neighors of this data point ar¢hie center of the view (x
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position), indicating that the directions to the neighkamesall aboutr /2. This means that
all the data points in the local area fit the regression hypegy which is very common in
the dataset. We can also recognize this local fitting by timeperative representation of
all neighbors: the height of the first bavé€igh) is almost the same as the height of the last
bar (price). This indicates the price difference, between the focaitmnd one neighbor,
is proportional to the weight difference. To assist the gstah performing the sensitivity
analysis, i.e., what is the change rate of the target as aperdlent attribute value varies,
we show the local regression model in the bottom bar. It isvstibat in this local area, as
the weight increases, the price increases, which meansta/pasfluencing factor. The
changing rate of price is $55, as the weight increases 0.@t. cBhe influencing factors
of the other independent attributes are all 0, since allhi®gs have the same values.
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Figure 5.11: The local pattern view of a gray data item. Thermation from the focal
point to all its neighbors are/2, which is common in the dataset.

Figure 5.12 shows the local pattern view for a diamond thdtlug in Figure 5.2,
suggesting that it is an anomaly and the test result showsdan of this local pattern
is significantly higher than the global pattern. The usersmathat all the neighbors are
in the right half of the view. This means that for each neighltwe direction is larger
thanw /2. From the discussion before, we know that when the diredsitarger thanr /2
for a certain neighbor, it means the target variable is higjien estimated, assuming the
local regression plane passes through the focal point. diicpkar, the local sensitivity
shows that as weight increases 0.01 carat, the price iresesl8. However, the price
of the local neighbors are higher than estimated consigeéhiis changing trend. Take
the upper diamond for example. The upper half means a highggttvalue based on our
local pattern layout strategy. We can see that for this rmglthe weight is 0.01 carat
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higher than the focal point, while the price is $450 highantkhe focal point, which is a
larger changing rate, compared with the local trend. The cee also read this from the
comparative representation of this neighbor: a higher ankled bar for price than the bar
for weight, which means the price change rate is higher theighw. This tells users that
this neighbor is a worse deal compared with the focal poimil&rly, we can consider
another neighbor whose price is lower than the focal poiat, in the bottom half of the
display (the nearest one to the focal point). The neighbeeight is 0.02 lower than the
focal point. If this neighbor fits the local trend, the pricewid be $118*2=$236 lower
than the focal diamond. However, the price is only $120 lothan the focal diamond,
which also means this neighbor is not a good deal compardd tivit focal diamond.
The user can also read this through the comparative repegsenof this neighbor: a
much darker and lower bar for weight than the bar for pricenithese discussions, we
know that for blue diamonds, generally most of neighborsratke right half side of the
view, which means there are worse deal compared with thisTimes, the blue diamonds
should be preferable for the customers.
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Figure 5.12: The local pattern view of a blue data item. Thentations from the focal
point to most of its neighbors are larger thaf2, which means the neighbors’ target
values are higher than estimated. In other words, the famat s a “good deal”.

Finally, we give an example of a diamond mapped to red in E@. Similar with the
discussion for blue diamonds, a red diamond means therearg netter deals compared
with this one. Fig. 5.13 shows the local pattern view of a riesirebnd. It is shown that
locally as the weight increases 0.01 carat, the price ise®&332. The two neighbors
(with attribute values) are better than this one. For thecupeighbor, the weight is the
same as the focal point, while the price is $570 lower tharfabal point (a downward
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red bar). For the lower neighbor, the weight is higher thaftizal point, while the price

is $150 lower than the focal diamond. For the focal diamaomel neighbors in the left half

are better recommendations. Since there are many blue drdlaimonds (anomalies),
the distribution of the global pattern has two peaks in eadd. SFrom the retailer side,
it should consider decreasing the prices of the red diamandsncreasing the prices of
blue diamonds.
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Figure 5.13: The local pattern view of a red data item. Therddtions from the focal
point to most of its neighbors are lower thari2, which means the neighbors’ target
values are lower than estimated. In other words, the fodak ga “bad deal”.

This method of discovering good and bad deals in this daisaéto suitable for more
than one independent attribute. We choose only one indepeattribute just because it
is easy to verify whether the diamonds are worth buying.

5.4.2 Display the Local Pattern in the Global View

It is shown that for different local patterns (subsets ofghbbors), the price increases
differently as the weight increases. This means the coeffisi Oprice/Oweight) are
different in the whole space. It is useful to give users a gla@ense in terms of how
the sensitivity derivatives are distributed in the origigpace. To assist users in better
understanding this, we use the whole dataset rather thalnsatsof a certain range. Fig.
5.14 shows a scatterplot view of the dataset. We use cologpgmesent the derivative
values: dark blue means high and dark orange means low. Tbestoategy is again
diverging. The points are jittered to reduce overlapping.
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Figure 5.14: The coefficients @iprice/Oweight are color-mapped and displayed in a
scatterplot matrix of original attribute space.
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Figure 5.16: The local pat- Figure 5.17: The local pat-
tern view after increasingtern view after decreasing
the coefficient ofcolor and the coefficient ofcolor and
decreasing the coefficientincreasing the coefficient
of clarity. The neighbor of clarity. The neighbor
with highercolor became a with higherclarity became
“good” deal. a “good” deal.

Figure 5.15: The local pat-
tern view before tuning the
coefficients. One neighbor
(ID 533) has highercolor
and the other neighbor (ID
561) has higheclarity.

Users can discover that the derivatives are pretty comsigiediamonds of the same
color, clarity and cut. This means that for different suligfeheighbors, although their
weights and prices are of different ranges, the influencagofs of weight on price are
very similar. Another discovery is that as color, claritydasut increase, the derivatives
generally increase (from dark orange to dark blue). Thismadhat for diamonds of
higher quality, the weight is more important for price, ite price is very sensitive with
changing weight for the subspace of higher color, claritg ant. As customers, when
they notice that, they could consider changing their cloised on this discovery. For
the blue region, they can consider choosing a diamond offlexeeght, since it will save
them a lot of money. In contrast, for the orange region, theay consider choosing a
diamond of higher weight, since it won’t increase their sasto much. We can also
notice that in the upper right of the plot of clarity vs. cgltirere is a dark orange block
in the blue area. A possible explanation for this divergenme the main pattern is that
there are not enough diamonds in this region, whose coloclanity values are both very
high. The low price variance results in low coefficient value

5.4.3 Customize the Local Pattern

Given budget limits, customers have to find a trade-off whemswering the diamond
attributes. Although the extracted sensitivity coeffitgereflect locally how the price is
influenced by the diamond attributes, when customers agetsgl a diamond, they have
their own attribute priorities. It means that they have wiiae the unimportant attributes
(decrease the values) to reach the higher configurationseangreferred attributes. For
example, some customers may prefer higher weight diamdadge( ones), while not
caring too much about the clarity; and some may prefer higaermore shininess),
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while not caring too much about the color. In different casestomers have their own
ways to define the meaning of “good”. Thus the customers shioellable to customize
the model (sensitivity coefficients) and find good diamomddifferent cases.

We show an example to illustrate how customers can custothé&erequirements.
Assume that a customer has decided the weight and cut oflgxtisa, and is struggling
with higher color or higher clarity. In this case, the neighinod is defined as diamonds
of the same weight and cut. For color and clarity, the neighdad region covers three
levels of each, indicating lower, current, and higher valuBig. 5.15 shows the local
pattern view of a preferable diamond before adjusting tledfiments. The two neighbors,
shown with attribute values, are two alternative optionapared with the focal one. Both
of them are more expensive than the focal one: one has higétex) color and one has
higher (better) clarity. Before tuning the coefficientsha@f them are better deals (in the
left half). If the customer knows that she prefers higheoc(@larity), she can accordingly
increase the coefficient for color (clarity) and/or deceettgat for clarity (color). Fig.
5.16 and Fig. 5.17 show the local pattern views after adjgdtie coefficients. In Fig.
5.16, the coefficient for color is increased and the coefiicfer clarity is decreased.
It is clear that the neighbor with high color became a good.d€hese two neighbors
can be easily differentiated and the customer can tell whrahis worth purchasing in
this circumstance. A similar result is shown in Fig. 5.16.this case, the coefficient
for clarity is increased and the coefficient for color is d&sed. We can discover that
the two neighbors shift in the opposite directions compavél Fig. 5.16. According
to this example, we can see that customers can define “gooeli slecting a diamond.
Generally speaking, for any other type of local patternsrsisan customize the definition
of “interestingness” and the system is able to provide udéfierent recommendations of
neighbors.

5.5 User Study

In this section, we discuss a user study for evaluating tieetfeness of the visual repre-
sentations of the local pattern. We focused on two visuabfac different types of glyph
representations and different layout strategies. To rentlog interaction effects among
the two factors, we evaluate the two factors independently.

For the glyph type, our goal was to examine the effectivernédte comparative
display, i.e., using upward and downward bars to representdlationship between the
focal point and its neighbors. To compare with other metheds implemented two
other types of commonly used glyph representations: prghiphs (Figure 5.18) and
star glyphs (Figure 5.19). To make the comparison fair, ve® a&htegrated the same
color strategy into these two glyph types. Our hypothesks that the comparative glyph
method better reveals the relationships between the sdlémtal point and its neighbors.
A sample question was “Compared to the focal diamond, howymaighbors have both
lower color and lower clarity?”

For the layout strategy, our goal was to examine the effentigs of the local pattern
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Figure 5.18: The profile glyph display.
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Figure 5.19: The star glyph display.
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view layout, namely, placing the selected focal point ind¢kater and placing the neigh-
bors in the four quadrants according to the interesting(sssh as diamond price). For
comparison, we implemented a scatterplot display that rttepattribute values to the x
and y locations. The focal point was differentiated by batle snd color. Our hypothesis
was that the centered layout can better help analysts lodatesting neighbors. A sam-
ple question was “How many more dollars are needed to buyraathd with both higher
color and higher clarity?” The dataset we used is the santeeagataset mentioned in the
case study which had 4 independent attributes and 1 target.

We invited students to be the subjects (21 in total) in the saady. The subjects
were asked to answer 8 questions about local patterns basasual representations. In
this user study, we didn’'t ask the subjects to use our systrause the main goal was
to evaluate the local pattern design method. In Sectionvie6lescribe in detail how a
user explored a dataset using our system. The subjects matstie questions based on
screen-copied figures printed out on paper. Note that amgtesguestion could be an-
swered based on different visual representation methotteeacdame local pattern, such
as different glyph types or different layout strategiesbj8ats were randomly assigned
a visual representation method to answer a given questiake the evaluation of the
layout strategy for example. We designed two questionsstiqre?), and questiorn);)
to compare the two layout methods. We generated two groups&dtions, grou(sr 4
and group’ g, as follows. Each question group had both quest@nand@),. In group
G 4, questiony, would be answered based on the designed local pattern lagrateggy,
while question?), would be answered based on the scatterplot layout. In gfgyphe
guestions are the same, but we exchanged the layout sesttegiestior), was repre-
sented using the scatterplot and questignvas represented using our local pattern layout
method. In the study, we randomly assigned half of the stjequestion grougr 4 and
the other half to question groupz. Similarly, we generated three groups of questions to
evaluate the glyph types because there are three diffelygtt gepresentations.

Before the study, the subjects signed a consent form. Themsedject was shown a
brief explanation of the study using examples and samplstouns, such as which dataset
we used and how to read the figures. The subjects finisheduthg Isy answering several
guestions. We recorded the time each subject spent on eastiaqufor further analysis.

Figure 5.20 uses error bars with a 0.95 confidence intensddav the accuracy for the
three glyph types. We found that the comparative glyph aedgtbfile glyph were very
similar in terms of accuracy. It is clear that both the comapiae glyph and the profile
glyph are much better than the star glyph: the p-values &¥7Gand 0.023, respectively.

We also examined the time spent for each glyph type and thé ees shown in Figure
5.21. Similarly, the comparative glyph and profile glyph begter than the star glyph.
The difference between comparative glyph and star glyplyrafecant (p-value=0.026).
Although there is no significant difference between comiparaand profile glyphs (p-
value=0.232), the time subjects spent on the comparatjghghas much lower than for
the profile glyph. To conclude, we found comparative glyphd profile glyphs were
better than the star glyphs for both accuracy and time. Tlaracy for comparative
glyphs and profile glyphs are very similar, but they spenterione on profile glyphs.
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Figure 5.20: The comparison of accuracy for different glyyaes.
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Lastly, we compared the two layout strategies. Figure 5@fpares the accuracy
for these two layout methods. In terms of accuracy, the twatesgies are almost the
same (nearly 80%). However, in terms of task completion time noticed that the
subjects spent much more time when using the scatterplottayhe average time for the
centered layout was 62 seconds, while for the scatterplotltat was 87 seconds, which
is shown in Figure 5.23. This is a statistically significaifteslence (p-value=0.038). We
also noticed that the time variance of the centered layoldrge. We believe this is
because of different learning rates for this new layout metlfSome subjects seemed to
learn and get used to this layout very quickly, while othexd difficulties and spent more
time getting used to it. In a future evaluation, we will trydonfirm this difference in
learning rates and repeat the tests with trained subjects.

Error Bars show 95% Cl of
Mean

1.004
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B0

accuracy

.70

607 meel

.50 T T
centered scatter

Layout Type

Figure 5.22: The comparison of accuracy for different laygpes.

5.6 Usage Session

We now demonstrate how our visual exploration method coeldided for solving real
life problems. Our usage session was again based on the niibdadaset. We invited a
user who was trying to make a decision on buying a diamondstmta system.

Before using our system, he first browsed some on-line diansefling websites on
the internet to get familiar with the diamond purchasindgtaghere were two reasons
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Figure 5.23: The comparison of time for different layoutegp

for this activity prior to using our system. The first was tdghkim understand which
attributes are important to him, i.e., to develop a persprefierence. The second reason
was that he could determine the minimum requirements angribe range he’d like to
choose from. He told us his preferred price range was rouggtiyeen $6000 and $7000.
In terms of the importance of different attributes, he thaugeight (size) was the most
important one. The second attribute important to him wasrcdlhe other two attributes,
clarity and cut, were not very important to him. He said thaswecause he thought the
latter two attributes were not as noticeable as weight afat éar him. He also indicated
minimum requirements on these attributes: weight needbd i least 1.1; color needed
to be at least H (the required value was 4 where the best caloevs 8); clarity needed
to be at least SI1 (the required value was 3 where the begtyclatue is 8); he did not
have any requirements on the attribute cut.

With these requirements and preferences, he started usingswal exploration sys-
tem to perform the task. The first step was to define the lodgghberhood range. After
being given some explanation on this step, he decided toad&fio diamonds as neigh-
bors when they have similar weight (within 0.15), color @& minus 1) and price (within
$500). He did not care about the other two attributes, glanitd cut, so he decided to
remove their influence at this step.

He then explored in the data in the global view (the star glgisiplay) by hovering
the cursor over the glyphs (data items). The data attribateshown when the cursor
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is on that data item. The glyphs are ordered based on pridee soughly picked some
interesting candidates within his preferred price rangehbd two criteria when choosing
the candidates. For the first one, since he considered wibigimost important attribute,
he picked several heavy (large) diamonds. The secondioritgras to focus more on
the blue data items. This is because we told him that geyeyblphs colored blue are
usually better deals. After this initial rough selection,dhose three candidates as shown
in Table 5.1. These three diamonds are all blue, i.e., theybatter than most of their
neighbors.

ID | Weight | Color | Clarity | Cut | Price
584 | 1.26 6 2 3 6600
567 | 1.52 6 1 3 6510
544 | 1.51 2 3 2 6420

Table 5.1: Candidate diamonds after a rough explorationargtobal star glyph view.

Then he decided to refine his selection by examining eachidatedn the local pat-
tern view. He opened the local pattern view and compared thesgected candidates
with their similar local neighbors. The three local patterews of these candidates are
shown in Figures 5.24, 5.25, and 5.26. The attributes afegisame order as introduced
in section 5.4: the first attribute vgeightand the last attribute jgrice. He wanted to find
more interesting candidates on the left hand side in this.vie

When he viewed the local neighbors of diamond 584, he noticatidiamond 624
was also a good choice because its weight is higher. Althtluglprice is a little higher,
since it is on the left hand side, it may still be worth buyinthe second neighbor he
was interested in was diamond 547. This diamond has the saightas diamond 624,
but it is much cheaper. Another interesting neighbor wasdiad 461, whose weight is
higher than candidate 584, but much cheaper. All threeastgrg neighbors are on the
left hand side, indicating they are worth buying comparethécandidate diamond 584.
Therefore, at this point, he removed diamond 584 from thelickate list and added the
three newly found diamonds onto the list.

Then he opened the local pattern view for diamond 567. Heedtihat the neighbor
diamond 400 was a much better choice. The weight and coldrattebetter than those
of the previous chosen diamond 567, yet with a lower priceh&memoved 567 from the
candidate list and added diamond 400 to it. He didn't find augresting neighbors for
candidate diamond 544.

Next, he wanted to view the local patterns of the newly addedliclates to further en-
large the candidate list with more choices. He didn’t find baiter choices for diamonds
624, 547, and 400. When he viewed the local pattern of diard@&id(Figure 5.27), he
found an interesting neighbor, diamond 384. Because itghwés higher and its price is
lower, he added it to the list. The candidate list at this p@ishown in Table 5.2. Notice
that after refinement, he had found several additionalesterg candidates and only one
pre-chosen diamond survived after examining the neighbors
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Figure 5.24: The local pattern view of dig=igure 5.25: The local pattern view of dia-
mond 584. mond 567.

7397, 26Weight + 865,81Coor + 0.00Ckarty + 0.00Cut - 601347 = Price €327, 50Weight + 438 02Celor » 0.00Ckrty + 0.00Cu! - 4350.60 = Price

Figure 5.26: The local pattern view of dig-igure 5.27: The local pattern view of dia-

mond 544. mond 461.
ID | Weight | Color | Clarity | Cut | Price
384 | 1.36 3 2 3 5890
461 1.3 4 2 3 6140
624 | 1.33 5 2 3 6790
400 1.58 7 1 3 5940
544 | 1.51 2 3 2 6420
547 1.33 4 2 3 6440

Table 5.2: Candidate diamonds after examining each lod#tnpaof the pre-selected
diamonds.
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He then made a final decision among candidates on this listfirstaemoved dia-
monds 544 and 384 because their color, an important agilolid not satisfy his mini-
mum requirement. He then removed diamond 400 becausetity elas lower than that
of the rest. After this, he noticed that all the candidatés’ity were lower than his initial
requirement. Since he cared about weight and color much,rhereecided to make a
compromise on clarity, i.e., reduce the minimum requiretnfiemm SI1 (value 3) to SI2
(value 2). Now he narrowed his choices down to three simi@madnds: ID 461, 624,
and 547. He decided to remove diamond 624 because the prckiglacompared to the
other two. After a careful comparison between diamonds 461547, he finally decided
to purchase diamond 461. This is because diamond 461’s wisighly slightly smaller
than diamond 547, which is probably not noticeable, but tieeps $300 cheaper.

After the study, he said that overall this system was verpfaél The local pattern
view helped him compare similar data items, find more intergcandidates, and guide
him to make a more comprehensive decision. He mentionedhibatystem was easy to
use and helped him finish the task very quickly.

We asked him whether he had some suggestions for improvirgystem. He pointed
out some limitations and gave us some useful suggestionsaidé¢he neighbor definition
in the parallel coordinate view is somewhat confusing antidek difficulty understand-
ing it. He said sometimes given a candidate, he only wantexkamine the neighbors
with higher weight or color. He suggested we could add a fando that the user can
dynamically change the neighbor definition and give him tge#iexibility in defining
neighbors not only centered in the focal diamond, but alsotake the focal diamond’s
value as maximum or minimum, such as only cheaper neighbors.

Another suggestion was a sorting functionality. He said ighirwant to sort the star
glyphs in the global view during exploration. This functadity is not currently supported
but would not be difficult to add. A filtering functionality waalso mentioned. He told
us that a range query filter would be useful. It could be usddde the less interesting
diamonds which don't satisfy the minimum requirement. Thisctionality could be
effective, especially in the case when a large number ofl leeghbors exist. The last
comment was to have a comparative view for the selected datedi. The view could
provide him an overall comparison, where he could selectddriie candidates as the
focal diamond.

5.7 Conclusion

This chapter presented a novel pointwise visualizationexpdoration technique for vi-
sual multivariate analysis. Generally, any local pattettnaeted using the neighborhood
around a focal point can be explored in a pointwise mannemusiir system. In partic-
ular, we focus on model construction and sensitivity angjyshere each local pattern is
extracted based on a regression model and the relationsétipgen the focal point and
its neighbors. Using this system, analysts are able to exple sensitivity information
at individual data points. The layout strategy of local @ats can reveal which neighbors
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are of potential interest. Therefore, our system can be asedrecommendation system.
During exploration, analysts can interactively changddical pattern, i.e., the derivative
coefficients, to perform sensitivity analysis based onedéht requirements. Following
the idea of subgroup mining, we employ a statistical metlaassign each local pattern
an outlier factor, so that users can quickly identify anamallocal patterns that deviate
from the global pattern. Users can also compare the loctdnpatith the global pattern
both visually and statistically. We integrated the locatt@a into the original attribute
space using color mapping and jittering to reveal the digtion of the partial derivatives.
We discuss case studies with real datasets to investigatffdctiveness and usefulness
of our approach. We performed comparative evaluationsnéiroo our glyph design and
layout decisions, and described the experience of a ustarpeng a real task with the
system.
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Chapter 6

Conclusions

6.1 Summary

In this dissertation, | discussed three different visuian systems that assist analysts
in visually discovering interesting patterns in multizd datasets. The main goal is to
discover patterns both computationally and visually. Tteppsed systems can facilitate
retrieving patterns, visually representing the patteansl, navigating in the pattern space.
The major contribution of three systems include:

e Linear Pattern Detection: This system allows users to visually examine the pa-
rameter space, i.e., the linear trend coefficient spacestmwer linear trends and
set appropriate thresholds, such as maximum tolerance amcham coverage.
The sampled parameter space shows where the ‘good’ linétarma may exist
and the user can interactively adjust the sample point,lmisian extracted linear
pattern. The preliminary results suggest that the systenfamlitate discovering
multiple coexisting linear trends and extracting more aatitrend using computa-
tional techniques after interactively removing the oudlithat are outside the trend
boundary. The user study shows that this system can betfetheeusers discover
the hidden linear model in the datasets, compared to the etatipnal methods.

e Visual Subgroup Mining:

The main contribution for this system is that we allow usersiteractively submit
subgroup mining queries for discovering interesting pagand visually examine
the mining result. Specifically, our system can accept ngigjueries dynamically,
extract a set of hyper-box shaped regions caledgetdor easy understandability
and visualization, and allow users to navigate in multiplaws for exploring the
query results. | proposed a multi-layer structure to aghistuser examine the
patterns in different level of details. While navigatingtime spaces, users can
specify which level of abstraction they prefer to view. Meduile, the linkages
between the entities in different levels and the correspapdata points in the data
space are highlighted. The user study indicates that tkiggycan better help the
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users understand the mining result and identify interggtirtbgroups, compare to
existing tabular knowledge representations.

e Local Patterns Exploration and Anomaly Detection In this system, the patterns
for the local sub-region with a focal point and its neighbars computationally
extracted and visually represented for examination. Thaeted local pattern is
used for sensitivity analysis. | designed a pointwise evgtion method to allow
users to examine the neighbors of a focal point. To discavemelous patterns, the
extracted local patterns are integrated and visually showime analysts. Users can
discover the anomalies based on the distributions of glodérns. The user study
showed that the designed local pattern view is better taths users understand
the relationship between the selected focal point and ighbers. It also helps the
users more quickly identify interesting neighbors.

Table 6.1 gives a summary and comparisons of the three system

6.2 Contributions

The main features of the systems and contributions of myedesson include:

e Pattern extraction: The main goal for my dissertation was to assist analysts com
putationally, visually, and interactively discover andrext interesting patterns,
such as trends, clusters, and outliers from multivariatasgds. The proposed sys-
tems allow the users to mine different types of patterns gedi/ what kind of
patterns they expect to extract, including the pattern sypeparameters.

e Pattern representation After the patterns are extracted according to the users’
requirement, the next step is to visually represent eactenpato help the users
understand each individual pattern, the relationship apaiterns and how they
are distributed in the pattern space. In the nugget browség®, | used star glyphs
to visually represent each nugget and the layout strategysithe relationships
among different extracted patterns.

e Pattern exploration: Interactions are provided so that the users are able toexpl
in the pattern space. Since the pattern space is usuallylsdrop discretized,
to discover more interesting data items in the pattern spaeeexploration must
be interactive. For example, in the linear pattern discpwsistem described in
Chapter 3, we provide users a sampled model space, whereoaseselect a single
point and explore in the space.

e Pattern refinement Users can refine their queries to extracted more apprepriat
patterns. Also, users can adjust each pattern to improwsranec For example,
in the linear pattern discovery system mentioned in Chaptasers can adjust the
discovered or computed linear trend in a model selectioelpdie line width and
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line color represent the goodness of the current trend.dmpdintwise locl pattern
exploration system, described in Chapter 5, users are @lldavcustomize the local
pattern based on their requirements.

6.3 Future Work

In the future, I'd like to:

e Extend the parameter space exploration and visualizatiostier general mod-
els, such as non-linear forms. Extend this model extragiroblem to other data
mining tasks, for example, not only for regression, but &saliscrimination and
classification tasks.

e Add more interactions and more complex mechanisms for magalge user’s dis-
coveries in the Nugget Browser system, such as adjustingetugpundaries with
domain knowledge, as well as removing highly overlappinggais. Another ex-
tension is to use the extracted nuggets as evidence to béafliypotheses about
the casual relationship between the independent and tzagables. Therefore, an
evidence pool is a useful feature that can be supported ifuthee.

e Extend the pointwise local pattern exploration to suppastentypes of patterns,
such as distances. Interactively submitting queries foeadmg interesting local
pattern can also be supported in the future, for exampleininsimilar local pat-
terns based on an interesting one.

e Continue to evaluate the systems with users. Longitudinaliss could be per-
formed to analyse the learning curves of different systems.

e Since “nugget” denotes a subset of data or any interestingnfys in multivari-
ate datasets, this idea of knowledge discovery can be estietoda more general
use. Some other visual analytic systems can be proposebtirmapted and evalu-
ated. These systems can assist users in computational tenactively extracting
nuggets, visually representing each nugget and the refdtip between the nugget
and data for better understanding, as well as interactigdjysting the nuggets
with user’s domain knowledge. Some other potential futuoekvincludes: discov-
ering other types of patterns, which are not mentioned mdigsertation, such as
graph/structure based patterns or surprising patteraspa@ering different patterns
in subspaces or lower dimensional space projections; muinuggets of different
types from different systems; supporting collaborativgget-based analysis; as
well as managing and comparing the findings from differemapeeter settings or
data sources.
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