
Project Number: RAP 4019

An Activity Monitor for Diabetic Individuals

A Major Qualifying Project Report:

Submitted to the Faculty

Of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

By

Vinith Chemmalil

Marissa Gray

Jennifer Keating

Rebecca Kieselbach

Sarah Latta

Submitted: May 3, 2009

Approved:

Prof. Robert Peura, Major Advisor

1. diabetes 4.ECG

2. activity monitoring 5. accelerometer

3. energy expenditure

2

Abstract
Continuous monitoring of physical activity for diabetic individuals provides important

information regarding energy expenditure. This device makes use of both heart rate sensing and

full body acceleration to measure physical activity. Energy expenditure is calculated using an

algorithm which determines the amount of activity occurring. The output of the calculation is

displayed in carbohydrates to allow for the patient to make better informed decisions regarding

blood glucose level adjustment.

3

Executive Summary
Diabetes is a disease characterized by the body's inability to produce or properly utilize

insulin, the hormone which allows for the cellular absorption and metabolism of glucose [1]. As

a result of this inability to maintain stable glucose levels, diabetic individuals must be aware of

their glucose levels as related to their daily activities.

The largest dietary concern for an insulin dependent (Type I) diabetic individual is

carbohydrates, as they break down into glucose. To ensure an even distribution of carbohydrate

ingestion, a Type I diabetic individual makes adjustments to their insulin dosage based on the

carbohydrate content of a meal. Similarly, a diabetic individual needs to compensate for

carbohydrates burned during exercise through both reduced insulin dosages and increased

carbohydrate consumption.

Activity monitoring devices available today provide valuable information, however they

are not tailored to calculating energy expenditure in real-time for diabetic individuals. When

used in combination, heart rate and accelerometry are two valid parameters for determining

physical activity [2, 3]. A device that uses these parameters to calculate the user's carbohydrate

usage could be used as a noninvasive approach to blood-glucose management.

This project developed an activity monitor which utilizes an algorithm to determine

energy expenditure through the measurements of heart rate and full body acceleration. As

opposed to Actiheart, a comparable device which displays caloric usage retroactively, the device

outputs energy expenditure in terms of carbohydrates in real-time [3].

The first activity monitor device for diabetic individuals was designed by an Major

Qualifying Project (MQP) team in 2007-2008. They were able to confirm an appropriate system

for obtaining accurate heart rate and tri-axial full-body acceleration. However, the device had

many design issues that made it impractical for daily use. The goal of this MQP was to improve

the original design.

Much like the previously designed proof-of-concept device, the newly designed device is

composed of two parts – the signal acquisition module, and the display module.

The electrode based ECG system from the 2007-2008 project was replaced with a Polar

system in order to make the device more wearable. This system is composed of a Polar strap

with a built-in transmitter and a receiver. The transmitter is worn around the chest and

electrically detects the heart beat. It transmits a magnetic signal for each heart beat it detects.

4

The receiver wirelessly detects this signal, and upon arrival of a pulse, outputs a 1 millisecond

digital pulse. The difference in time between the two most recent pulses is used to calculate an

instantaneous heartrate. Wireless communication between the transmitter and receiver is

completed in a low frequency electromagnetic field which must be aligned in parallel in order to

obtain optimal performance.

In the current design, the accelerometer and filter circuitry is encased in the Polar

package. The accelerometer outputs three voltages for the x, y, and z axes; these signals

fluctuate around a zero-g offset (a fixed voltage representing no acceleration in the direction of

the axes). When the three axial outputs are summed, the result includes only voltage outputs

from the accelerometer due to movement. The zero-g voltage, which results from no movement,

and therefore no energy expenditure, must be eliminated from the axial outputs before they are

summed.

Digital filtering of the three axial accelerometer outputs is performed using a Quickfilter

chip. The output of the digital filter is rectified, summed, and counted by software implemented

on a microcontroller. The accelerometer count is then wirelessly transmitted to the display

module via a pair of ZigBee devices.

The best method to calculate energy expenditure from heart rate and accelerometer

counts was developed by Actiheart [25]. Using a branched equation model, the Actiheart

algorithm uses parameters such as the subjects‟ age and gender and variable parameters such as

heart rate and accelerometer counts to determine kilocalories per kilogram minute that are

burned.

To tailor the device for individuals with diabetes, a process is needed to convert

kilocalories to carbohydrates. The process involves determining the amount of carbohydrates

burned during certain activities. The highest amount of carbohydrates is burned during

anaerobic exercise, while the most fat is burned during light aerobic exercise. In the absence of

oxygen, muscles burn carbohydrates supplied from glycogen, which breaks down into glucose.

In the presence of excess oxygen, muscles will use fat for energy. The process works similar to

the Actiheart algorithm in that the ratio of carbohydrates to fat being metabolized varies with

accelerometer counts. A modification has been made to the Actiheart algorithm which converts

energy expenditure in terms of caloric output into a carbohydrate expenditure via ratios based on

5

an individual‟s weight. This algorithm will henceforth be referred to as the modified Actiheart

algorithm.

The display module consists of a microcontroller with an LCD display and four input

buttons. The microcontroller is responsible for both signal analysis and user interface, and works

in two separate states: parameter input state and analysis state.

The device enters the parameter input state as soon as it is turned on. Here, the user is

prompted to enter first their gender (1 for male, 0 for female), then their age, and finally their

weight. Numerical values are inputted on a button-to-button basis in which each placeholder

button scrolls through the values available for that place for each input. For example, during

gender input only the fourth button may change, and it may only be 0 or 1. This is to ensure that

it is easy for the user to correct mistakes. The values selected by the user are entered by pressing

the first button. The data entered during the parameter input state is stored and sent to the

modified Actiheart algorithm for use in the analysis state.

The device then enters the analysis state. During the analysis state the chip continuously

receives signals from the accelerometer and heart rate monitor, converts them into counts per

unit time, and displays the result. Results are displayed in a five-second cyclic manner. In this

state, the cumulative carbohydrate value calculated using the parameter values entered is

available to the user on call via the second button. To reset the carbohydrate count to zero the

user may press the first button.

Approval for human subject testing was received through the WPI Institutional Review

Board (IRB). This process included creating a study protocol, a case report form, and a consent

form. Before obtaining final approval the group participated in online training through the

National Institutes of Health (NIH). Once approved the group was able to test the device on

students attending WPI on a volunteer basis.

In order to ensure that our device performs as well, if not better than, the previous device,

we will be calibrating our device using the algorithms and tests from the first study period.

 These tests include simulating everyday activities such as washing dishes and climbing stairs, in

addition to walking/running on a treadmill at three speeds. Each activity will be performed for

five minutes to allow for heart rate and accelerometer stabilization and readings will be taken for

the last minute. These results are forthcoming.

6

Table of Contents
Abstract ... 2

Executive Summary .. 3

Table of Figures .. 9

Table of Tables ... 11

Authorship .. 12

1 Introduction .. 13

2 Literature Review ... 16

2.1 Understanding Blood Sugar Levels .. 16

2.1.1 The Role of Carbohydrates .. 16

2.1.2 The Glucose Response ... 17

2.1.3 Hormonal Responses to Glucose ... 17

2.1.4 Defining Diabetes .. 17

2.2 Nutrition .. 18

2.2.1 The Glycemic Index ... 19

2.2.2 American Diabetes Association Food Pyramid ... 20

2.3 Lifestyle of a Diabetic Individual ... 22

2.3.1 Diet and Diabetes ... 22

2.3.2 Exercise and Diabetes .. 23

2.3.3 Poor Blood Glucose Management ... 25

2.4.1 Monitoring Physical Activity in Laboratory Conditions ... 25

2.4.2 Monitoring Physical Activity in Non-laboratory Conditions ... 26

3 Design Methods and Alternatives .. 34

3.1 Obtaining Design Constraints ... 34

3.2 Obtaining Design Objectives .. 34

3.3 Design Alternatives ... 38

3.3.1 Conceptual Design 1 – Electrodes and Accelerometer Design .. 40

3.3.2 Conceptual Design 2 – Parameter Detection Glove ... 42

3.3.3 Conceptual Design 3 – Parameter Detection Sock .. 44

7

3.3.4 Conceptual Design 4 – Polar Strap and Accelerometer Design ... 46

4 Detailed Design .. 48

4.1 Signal Acquisition Module ... 48

4.1.1 Acquiring Heart Rate ... 48

4.1.2 Measuring Full-body Acceleration .. 49

4.2 Display Module ... 53

4.2.1 Microprocessor Selection... 53

4.2.2 Device States .. 54

4.2.3 User Interface ... 64

5 Testing ... 66

5.1 Benchmark Testing ... 66

5.2 Human Subject Testing I .. 71

5.3 Human Subject Testing II ... 73

5.4 Results ... 74

6 Conclusions and Recommendations .. 75

6.1 Real-time Energy Expenditure Calculations ... 75

6.2 Improvements to Previous Major Qualifying Project ... 75

6.2.1 Digital Signal Processing ... 75

6.2.2 Signal detection using sensor arrays .. 75

6.2.3 Wirelessly transmitting measured data .. 75

6.2.4 Custom made housing .. 76

6.3 Recommendations ... 76

6.3.1 Size reduction in both signal acquisition and display modules.. 76

6.4.2 Decrease power consumption .. 76

6.4.3a Complete metabolic testing of the device .. 77

6.4.3b Improving the carbohydrate conversion algorithm .. 77

6.4.4 Add data storage features ... 77

6.4.5 Utilize specific inputs to output insulin dosages .. 77

References ... 78

8

Appendices .. 81

A – Weighted Objectives Calculations ... 81

B – IRB Application Process .. 86

Cover Letter .. 86

Application.. 87

Protocol ... 96

NIH Certificates .. 98

IRB Approved Consent Form ... 100

IRB Approval Letter ... 101

Appendix C – Programming ... 102

Signal Acquisition Module Code .. 102

Main.c ... 102

Platform.c .. 126

Qf4a512-access.c .. 137

Qf4a512-functional.c .. 164

Common.h... 172

MSP430.h ... 192

MSP430-SPI.h .. 193

Platform.h ... 195

Project.h .. 197

Qf4a512-access.h .. 197

Qf4a512-functional.h .. 206

Display Module Code ... 207

9

Table of Figures
Figure 1: Heierarchy of some foods in their respective glycemic index categories. Foods witha lower

glycemic index will impact blood sugar levels less than foods with a high glycemic index [4]. 19

Figure 2: This is a listing of some of the best starchy foods for diabetic individuals. This list has been

designed based on ADA food classifications to make it easier for a diabetic individual to choose the bulk

of meal wisely. .. 21

Figure 3: Digiwalker Pedometer boasts accurate counting due to state of the art lever arm sensor, a tightly

coiled spring for increased accuracy, and special features to reduce noise and corrosion [18]. 27

Figure 4: Final prototype of activity monitor for Type 2 diabetic individuals. The device contains

Bluetooth technology to wirelessly transmit data to a mobile phone [19]. ... 27

Figure 5: Polar heart rate monitor with chest strap and wrist device. Consists of a transmitter belt worn

around the chest and a device that is attached to the wrist which displays energy expenditure parameter

output [18]. .. 28

Figure 6: Nike + iPod Sport Kit User's Guide. The kit uses a piezoelectric accelerometer placed in the

user's shoe to sense movement and transmit signals to the iPod, where each step is counted to calculate

distance travelled [21]. .. 30

Figure 7: Caltrac Calorie Counter which uses a single plane accelerometer to detect vertical movements at

the waste [22]. ... 31

Figure 8: Mean error and standard deviation of activity monitors tested in testing by Eston, Rowlands,

and Ingledow [23]. .. 32

Figure 9: Actiheart monitor which uses heart rate and accelerometry to output energy expenditure. The

device slips onto two chest electrodes and has a triaxial piezoelectric accelerometer [24]. 32

Figure 10: Objectives tree designed by the design team prior to detailed weighted objectives analysis. ... 35

Figure 11: Weighted objectives for the Diabetic Activity Monitor. After completing the pair wise

comparison chart, the team calculated that the safety of the device is the most important aspect of its

design. Accuracy of the device was the second most important, while reliability of the device ranked

third. The team found that power efficiency of the device was the least important aspect of the design of

the device. ... 37

Figure 12: Electrodes and accelerometer design from 2007-2008 MQP [18]. ... 40

Figure 13: Diagram of 2007-2008 MQP device. An accelerometer and microprocessor housed on the hip

of the user, with electrodes placed on the hip and sternum to measure the user's leg [18]. 40

Figure 14: Three dimensional representation of the parameter detection glove. Pulse rate and acceleration

would be sensed in the wrist of the individual, with a display of energy expenditure output located on the

proximal side of the hand. ... 42

10

Figure 15: Illustration of parameter detection glove. An accelerometer and pulse sensor housed in a

sensor module on the glove. The sensors would be pressed firmly against the wrist of the user. Energy

expenditure data displayed on the proximal side of the hand. .. 42

Figure 16: Electronic anklet and ankle guard. The electronic anklet would house the accelerometer,

wireless transmitter, computational electronics, and power. The ankle guard would encompass a sensor to

measure a pulse from the back of the ankle. ... 44

Figure 17: Illustration of electronic anklet and form fitting ankle guard. ... 44

Figure 18: The Polar Strap and Accelerometer Design. This design is composed of two distinct parts - the

Polar strap band warn around the chest by the user, and a handheld digital display system for ease-of-use

purposes. ... 46

Figure 19: Placement of the accelerometer and the three axes involved in full body acceleration

measurements. Summation of the axes is calculated as voltagex + voltagey + voltagez. 50

Figure 20: Block diagram of the electrical interactions between the accelerometer, Quickfilter chip, and

the MSP430. .. 52

Figure 21: Block diagram of the device as seen by the microprocessor chip. The microchip receives

signals from the accelerometer and the heart monitor then converts the signals into counts per unit time.

Using those parameters in the Actiheart algorithm, the device will record cumulative carbohydrate

expenditure and output instantaneous carbohydrate expenditure ... 54

Figure 22: Relationship between volumetric oxygen and energy expenditure levels which allows for the

calculation of carbohydrates from caloric expenditure. .. 62

Figure 23: MSP430F449 prototype development board. the four buttons shown are referenced through

the text as buttons 1-4, from left to right. .. 64

Figure 24: Fast Fourier Transform of QAF4A512 Filter of white noise audio file. 67

Figure 25: Maximal heart rate acquired from a frequency application of 15+. .. 68

Figure 26: Heart rate acquired from eight electrical stimulations. .. 68

Figure 27: Heart rate acquired from four electrical stimulations. ... 69

Figure 28: A "YES" resulting from correctly deciphering a transmitted value. ... 69

Figure 29: Bar graph representing the accuracy of the projected carbohydrate expenditure by the device

display versus the calculated carbohydrate output. ... 71

file:\\toaster\jkeats86\My_Documents\Senior%20Year\MQP\Report%20Final.docx%23_Toc229201736
file:\\toaster\jkeats86\My_Documents\Senior%20Year\MQP\Report%20Final.docx%23_Toc229201736

11

Table of Tables

Table 1: Extra carbohydrates that one should consume before participating in vigorous

activity……………………………………………………………………………………………24

Table 2: Pair-wise Comparison Chart for Main Objectives

……………………………………...35

Table 3: Function means chart to determine possible means to achieving device goals. …...…..38

Table 4: Actiheart Activity Algorithm…………………………………………………………...60

Table 5: Respiratory Exchange Ratios …………………………………………………………..63

Table 6: Results from heart rate calculation and display testing on the MSP430F449………….68

Table 7: Projected Carbohydrate Expenditure and Device Carbohydrate Expenditure

Comparison………………………………………………………………………………………70

Table 8 Pair-wise comparison chart for Cost-Effective Sub-Objective ……………………..…..81

Table 9 Pair-wise comparison chart for Practical Sub-Objective ………………………….........82

Table 10 Pair-wise comparison chart for Safe Sub-Objective ……………………………….....82

Table 11 Pair-wise comparison chart for Accurate Sub-Objective ……………………….….....83

Table 12 Pair-wise comparison chart for Reliable Sub-Objective ………………………..…….83

Table 13 Pair-wise comparison chart for Power Efficient Sub-Objective ……………….……..84

Table 14 Pair-wise comparison chart for Durable Sub-Objective ………………………..……..84

Table 15 Weighted benchmark chart for design alternatives ………………….………………..85

12

Authorship

Abstract Vinith Chemmalil, Marissa Gray, Jennifer Keating,

Rebecca Kieselbach, Sarah Latta

Executive Summary Jennifer Keating

1 Introduction Sarah Latta

2 Literature Review Vinith Chemmalil, Marissa Gray, Jennifer Keating,

Rebecca Kieselbach, Sarah Latta

3 Design Methods Vinith Chemmalil, Marissa Gray, Jennifer Keating,

Rebecca Kieselbach, Sarah Latta

4 Detailed Design Jennifer Keating, Rebecca Kieselbach, Vinith Chemmalil

5 Testing Sarah Latta, Vinith Chemmalil

6 Conclusions Marissa Gray

Appendices

 Weighted Objectives Jennifer Keating

 IRB Application Sarah Latta

 Signal Acquisition Code Rebecca Kieselbach

 Display Module Code Jennifer Keating

13

1 Introduction

Insulin is the hormone responsible for the cellular uptake of carbohydrates and sugar

within the body. It is produced within the pancreas in response to the presence of glucose in the

blood [5]. When blood glucose levels increase, the levels of insulin produced increase

respectively. The American Diabetes Association (ADA) defines diabetes as “a disease in which

the body does not produce or properly use insulin,” [4]. In a diabetic individual, the body does

not produce enough insulin, or does not recognize its presence and thus does not properly use it.

Currently there are 23.6 million Americans with diabetes, which composes approximately

7.8% of the population [4]. There are three types of diabetes: gestational, Type 1, and Type 2.

Gestational diabetes occurs in pregnant women when the hormones required to create the

placenta also block insulin reception. This is called insulin resistance and occurs in 4% of

pregnant women annually and normally disappears after the baby is born. Thus, this project is

not focused on cases of gestational diabetes, but rather Type 1 and Type 2 diabetes. In Type 1

diabetes, formerly known as juvenile diabetes, the body hosts an immune response against its

own, insulin producing islet cells, resulting in the inability to produce insulin. Clinically,

diabetes is diagnosed through a fasting plasma glucose test (FPG). To perform an FPG test the

individual fasts for at least 12 hours, then blood is drawn and glucose levels are analyzed. If

FPG test levels are higher than 126 mg/dl, the patient is diagnosed with diabetes. Levels

between 100 and 125 mg/dl indicate pre-diabetes, a condition which is normally considered a

precursor to Type 2 diabetes.

In order to control blood sugar levels, an individual with Type 1 diabetes must be injected

with insulin several times per day. In Type 2 diabetes, the body either does not produce enough

insulin or the cells do not recognize the insulin when it is present [4]. Type 2 diabetes is the

most common form of diabetes in the United States and is often associated with obesity and poor

nutritional habits.

When blood glucose levels are not properly maintained, both Type 1 and Type 2 diabetes

pose serious health risks. Hypoglycemia (low blood sugar) can cause a person to lose

consciousness. Hyperglycemia (high blood sugar) can lead to ketoacidosis. Ketoacidosis occurs

when the body no longer has insulin to break down glucose and begins to metabolize fats for

energy. This releases molecules called ketones that in high doses will poison the body. Under

normal circumstances the kidneys can filter out excess ketones, however, in this case the

14

concentration of ketones is too high, and the body begins to shut down and enters a stage called

diabetic coma. Higher than normal blood glucose levels, in addition to high ketone

concentrations, cause the kidneys to work harder and can cause kidney disease or eventually

failure.

In addition to these complications, diabetic individuals are 40% more likely to develop

glaucoma and 60% more likely to develop cataracts [4]. Diabetic retinopathy is another common

problem caused by the swelling of capillaries in the retina which may result in eye damage and

in some cases total loss of vision. Nerve damage known as diabetic neuropathy can lead to

double vision, paralysis on one side of the face, bladder control problems, nausea, and dizziness.

Diabetes can also lead to blood vessels hardening and narrowing, especially in the foot and leg

where it causes several severe complications, often requiring amputation. All of these conditions

can be prevented or their symptoms reduced by properly maintaining blood glucose levels.

Several methods are recommended by the American Diabetes Association (ADA) to

control blood glucose levels. The gold standard of diabetic monitoring is frequent blood testing

to determine blood glucose levels. Also suggested is a method known as carbohydrate counting.

Carbohydrates are complex organic molecules that the body breaks down into its subcomponents

– glucose. The higher the carbohydrate content in the food, the more the blood glucose level will

be affected during digestion. Carbohydrates are used by the body during exercise, especially

anaerobic exercise. This causes a dramatic drop in blood sugar after a long period of time. To

correct this, an individual may eat something sweet, such as fruit or a candy bar, causing blood

sugar to rise rapidly.

This see-saw effect can be reduced by using a method developed in 1995 by Dr. Lois

Jovanovic-Peterson called Extra Carbs for Exercise (ExCarbs) [6]. This method predicts the

number of carbohydrates that will be utilized during exercise, which can be used to adjust

nutritional intake and/or insulin dosages. Dr. Jovanovic-Peterson provides a table that lists these

values, however the values are not tailored toward individuals. Values are only given for three

weights, and not all exercises are included. For example, if an individual has to walk up seven

flights of stairs because the elevators are not working, it would certainly cause a drop in blood

sugar; however, such exercises are not included in the table, nor are they predictable. For these

reasons and others, it is obvious that better methods of determining how many carbohydrates are

used in a given time period are needed.

15

Developing an improved method of estimated carbohydrate expenditure was the goal of

this project. Strides toward this goal were made during the 2007 – 2008 academic year, in which

an activity monitor utilizing ECG electrodes and an accelerometer was used to detect heart rate

and accelerometry values to estimate energy expenditure. However, placing ECG electrodes

correctly is not an easy task for non-healthcare professionals. The device created was heavy and

bulky, and did not display how many carbohydrates were used at any point in time. The current

project intended to address and resolve these issues. First, the ECG electrodes to determine heart

rate were replaced with a Polar transmitter strap. This strap is easily placed around the rib cage

by anyone without the need of any special training. Attached to it is the accelerometry unit,

which calculates the full body acceleration from the x, y, and z axes. To reduce size and weight

the analog circuitry was replaced with digital circuitry. Data from the Polar strap and the

accelerometer was wirelessly transmitted to the receiver. Since wires were not necessary to

connect the electrodes to a processing unit, the receiver was made to be hand held and portable

enough to clip on a belt, or place in a pocket. The receiver displays the individual‟s

carbohydrate expenditure in real-time by utilizing a branched equation algorithm that modeled

expenditure rate according to activity level.

The research, development, and testing of this device is detailed in the pages below.

Though there are many activity monitors on the market, it is the hope of the design team that this

one, as it is specifically tailored to pertain to diabetes, will improve quality of life for those

individuals with diabetes.

16

2 Literature Review
Diabetes is a disease in which the body either does not produce or properly utilize insulin

– the hormone which allows the body to convert sugars, starches, and other foods into energy

[1]. This results in an inability to inability to monitor and maintain stable blood glucose levels.

As a result diabetic individuals must be constantly aware of their blood glucose levels in order to

avoid health complications. There are currently 23.6 million people living with diabetes in the

United States, thus the design and implementation of a diabetic-specific monitoring device may

greatly benefit society as a whole [4]. The following sections discuss blood sugar and the body‟s

response to blood sugar level changes, the special dietary and exercise needs of diabetic persons,

the effects of poor glucose management, and how an activity monitor customized to meet the

needs of a diabetic person would enable better control of blood glucose levels.

2.1 Understanding Blood Sugar Levels

Blood sugar levels are a measurement of the glucose volume found in blood [12].

Maintaining an appropriate glucose volume is an important factor in homeostatic balance.

Detailed below are the role of carbohydrates in blood sugar levels, the glucose response,

hormonal response to glucose, and the definition of diabetes as related to these subjects.

2.1.1 The Role of Carbohydrates

Carbohydrates are an essential part of every diet [7]. They provide direct energy for the

brain, central nervous system, and muscle cells in the form of glucose [8]. Depending on their

origin, they are broken down into simple or complex (fast or slow) carbohydrates during

digestion. Simple carbohydrates include sugars such as fruit sugar, corn or grape sugar, and

table sugar, whereas complex carbohydrates include foods made of three or more linked sugars,

like wholegrain breads, oats, muesli, and brown rice.

Simple carbohydrates, or monosaccharides/disaccharides, are organic compounds and

sugars which are easily broken down by digestion [8]. These include galactose, fructose,

maltose, sucrose, lactose, and glucose. Complex carbohydrates, or polysaccharides, must be

broken down into monosaccharides before they can be released into the blood stream. All sugars

are absorbed into the blood stream, with glucose playing a major role in what is called the “blood

sugar level”.

17

2.1.2 The Glucose Response

Glucose is a major source of energy for the human body as it is the primary fuel for most

cells [9, 10]. Glucose is absorbed into the bloodstream from the gastrointestinal tract after

digestion, where it is transported to cells that require energy. Immediate use of glucose

following the breakdown of carbohydrates involves the burning of molecules within

mitochondria for the release of carbon dioxide, water, and energy into the body [11]. If glucose

is not immediately needed, it is converted by the liver or muscles into glycogen in order to

supply muscles and other parts of the body with energy. Any remaining glucose after glycogen

saturation has occurred may be converted into fat by the liver and stored in adipose tissue around

the body. In a healthy individual, these conversion processes allow for blood glucose levels to

remain at a relatively homeostatic balance.

2.1.3 Hormonal Responses to Glucose

The body‟s regulatory system maintains control over the level of glucose found within

the bloodstream through hormone regulation systems [12]. There are two types of mutually

antagonistic metabolic hormones which affect blood glucose levels. These are catabolic

hormones (most commonly glucagon) which increase blood glucose, and an anabolic hormone

(insulin) which decreases blood glucose.

When the level of glucose, or blood sugar, in the bloodstream is too high, insulin is

released by the pancreas, which notifies fat and muscle cells to absorb glucose and thus lower the

blood sugar level [12]. When blood sugar levels are too low, the hormone glucagon is released

from the pancreas, which signals the liver to break down glycogen and release more glucose into

the blood stream, thus raising blood glucose levels back to normal. In this way, insulin secretion

operates on a negative feedback mechanism. Insulin levels rise when glucose is absorbed from

the gastrointestinal tract, and drop to normal levels during the presence of glucagon. Insulin

levels in a healthy person therefore fluctuate all day long in order to maintain a stable blood

sugar level.

2.1.4 Defining Diabetes

Diabetes is a carbohydrate metabolism disorder in which the body is unable to properly

maintain blood glucose levels. The normal range for blood glucose is defined as 70-125 mg/dL

of blood (less than 7.0 mmol/L). Levels above or below this value result in hyperglycemia

(persistently high levels), or hypoglycemia (persistently low levels), respectively

[13, 14].

18

Diabetic individuals must closely monitor their blood glucose levels in order to avoid these

conditions.

There are two main types of diabetes – insulin dependent/juvenile diabetes, now termed

“Type 1”, and non-insulin dependent/adult-onset diabetes, now termed “Type 2” [7]. In cases of

Type 1 diabetes the body does not produce enough insulin for cells to absorb glucose at the

appropriate rate. This form of diabetes is caused by the destruction of the beta cells in the

pancreas by immune mechanisms, which results in little to no insulin secretion by the pancreas

[15, 16].

With Type 2 diabetes a much different problem arises. The cells in the body exhibit

insulin resistance, which causes blood sugar and insulin levels to stay high after eating for much

longer than they should. In these situations insulin-making cells are weakened over time, and

eventually the production of insulin stops. Insulin resistance has been linked with issues such as

high blood pressure, high levels of triglycerides, low HDL cholesterol, and excess weight.

Several things can promote insulin resistance such as a sedentary lifestyle, being overweight, and

a diet rich in processed carbohydrates.

While Type 2 diabetes can be treated by other things such as a proper diet and exercise,

all Type 1 diabetic individuals must be treated with daily insulin and must monitor their diets and

exercise levels consistently [7]. Patients with Type 1 diabetes administer insulin shots two to

four times per day and ensure an even distribution of ingested carbohydrates throughout the day.

They also measure their blood sugar levels to ensure that they remain within acceptable range

throughout the day.

2.2 Nutrition
As diabetes is a metabolic disease, it is nearly impossible to control it with medicine

alone – an entire lifestyle change is needed [4]. Diabetic individuals need to be concerned with

what they are eating, how often they are eating, their weight, and how often they exercise. The

American Diabetes Association (ADA) has put together a comprehensive website outlining these

topics and providing tools for diabetic individuals to more easily make the lifestyle changes

necessary for their health. When a diabetic individual takes proper care of him or herself, they

are able to lead a normal, long life. Unfortunately, many diabetic individuals do not monitor

their lifestyle enough and often fatal complications arise.

19

A large part of a diabetic individual‟s dietary concerns are carbohydrates, as

carbohydrates have the greatest effect on glucose levels [4]. However, there are different kinds

of carbohydrates and each has different effects on glucose levels. The three types of

carbohydrates are sugar, starch, and dietary fiber. Of the three, dietary fiber effects glucose

levels the least. The effects of sugars and starches have been carefully researched and organized

for reference by diabetic individuals in something called the glycemic index.

2.2.1 The Glycemic Index

The glycemic index (GI) ranks how a food will affect blood glucose [4]. There are a few

factors involved in determining a food‟s GI, these include: ripeness, processing, cooking, and

variety of the food. For example, a banana that is still slightly green will have a lower GI than a

spotted banana. Converted long-grain rice has a lower GI than brown rice, but short-grain white

rice has a higher GI. Juice has a higher GI than the fruit itself. The lower the GI, the less of an

effect on blood glucose the item will have. In general, diabetic individuals should eat more

unprocessed foods and less high GI items such as white bread, pineapples, and instant oatmeal

[4]. The list below categorizes several foods as low, medium, or high GI foods.

Figure 1: Hierarchy of some foods in their respective glycemic index categories. Foods with a lower glycemic index will
impact blood sugar levels less than foods with a high glycemic index [4].

•Stone Ground Wheat Bread, Pumpernickel Bread

•Pasta

•Sweet Potatoes, corn, peas, carrots

•Most fruits

Low GI

•Whole Wheat Bread, Rye Bread

•Quick Oats

•Brown Rice, Couscous

Medium GI

•White Bread

•Corn Flakes, Instant Oatmeal

•Popcorn

•Pineapple, melons

High GI

20

2.2.2 American Diabetes Association Food Pyramid

While focusing on carbohydrates, it is easy to forget other portions of a meal, but both fat

and fiber are needed to slow the rise of blood glucose levels [4]. To account for this, the ADA

suggests eating peanut butter with apples and including low-fat protein sources, such as fish or

chicken. The key to diabetes management is keeping a well-balanced diet, full of variety.

The ADA has created a food pyramid to further help diabetic individuals plan their meals

[4]. This pyramid is different than the standard United States Department of Agriculture

(USDA) pyramid in that the ADA pyramid is based on carbohydrate count, rather than just food

classifications. For example, in the USDA pyramid, potatoes are counted as a vegetable,

whereas in the ADA pyramid potatoes are counted as starches because of their high carbohydrate

content. Other than some items that are in different categories, like potatoes, the pyramid is

essentially the same. It is divided into six categories – Starches, Fruits, Vegetables, Proteins,

Milk, and Oils and Sweets – and contains recommended servings for each category.

Starches include bread, bagels, dry cereal, cooked cereal, potatoes, yams, peas, corn,

cooked beans, winter squash, rice, and pasta [4]. The pyramid suggests 6-11 servings of starch a

day. Most people do not actually eat eleven servings. Most grain and starches contain 15g of

carbohydrates per ½ cup. The ADA suggests eating certain foods over others. For example,

diabetic individuals should eat whole grains rather than processed white flour. To this extent the

ADA has put out a list of „best‟ foods for the starch category.

Non-starchy vegetables include spinach, Swiss chard, broccoli, cabbage, brussel sprouts,

cauliflower, kale, carrots, tomatoes, cucumbers, and lettuce [4]. Three to five servings are

recommended daily, however, a serving varies if the vegetable is cooked. One cup of raw

tomatoes is a serving, but only ½ cup of stewed tomatoes is a serving. When shopping for

vegetables diabetic individuals should look for fresh, frozen, or canned veggies without any

added salt or sauce.

Fruits have approximately the same number of carbohydrates as starches, but generally

contain more vitamins and lower GI values [4]. High fructose and fiber contents account for the

lower GI value of fruits. Approximately ½ cup of canned fruit or juice has 15g of carbohydrates,

the same as ½ cup of starches. For berries, a serving is about 1 cup. Diabetic individuals should

watch portion sizes with dried fruit since a serving is only 2 tablespoons.

21

Figure 2: This is a listing of some of the best starchy foods for diabetic individuals. This list has been designed based on ADA
food classifications to make it easier for a diabetic individual to choose the bulk of meal wisely.

According to the pyramid, two to three servings of dairy products is needed a day. Fat-

free or low fat milk, non-fat light yogurt, and unflavored soy milk are the best choices. The

traditional USDA pyramid includes cheese and eggs in the dairy category, however, due to their

high protein content, they are included with meat. In addition to eggs, the meat category includes

all high-protein foods such as beans and all meat. Four to six ounces of meat spread out

throughout the day is recommended. The best choices for protein include dried beans, fish,

•Bulgur

•Whole Wheat flour

•Whole oats

•Whole grain corn

•Popcorn

•Brown rice

•Whole rye

•Wild rice

•Buckwheat

•Millet

•Quinoa

•Sorghum

Best Grains

•Parsnip

•Plantain

•Potato

•Pumpkin

•Acorn Squash

•Butternut Squash

•Green Peas

•Corn

Best Starchy Vegetables

•Black, Lima, and Pinto beans

•Lentils

•Black-eyed and split peas

•Fat-free refried beans

•Vegetarian baked beans

Best Dried Beans

22

skinless chicken, eggs, and beef with all visible fat removed. It is important to keep in mind that

though meat and fish do not contain carbohydrates, dried beans do [4]. Fats, sweets, and alcohol

do not contain much nutrition and should be reserved for special occasions.

Utilizing this pyramid, the recommended servings and serving sizes in addition to the

glycemic index to guide choices, a diabetic patient can easily take control of their diet and take

care of themselves properly.

2.3 Lifestyle of a Diabetic Individual
Type 1 diabetic individuals should test themselves four or more times a day, after every

meal and just before going to sleep [4]. Although this is the general recommendation, patients

who are at greater risk of hyperglycemia may require increased testing, to allow for tighter blood

glucose management. Type 2 diabetic individuals often do not need such a strict control of their

blood glucose. However, those who require multiple daily insulin injections or injections coupled

with glucose reduction medication would require a testing regimen comparable to that of a Type

1 diabetic individual.

The rate at which blood glucose levels are measured is often determined after an

individual is diagnosed with diabetes, and is the result of the combination of both the physician‟s

recommendation and the patient‟s ability to maintain the regimen [4]. Individuals who are too

young, too old, and others who are incapable of regular blood glucose testing often have more

laidback testing plans, but those patients often lose the full efficacy of the treatment plan. In an

investigational study on how often diabetic patients regularly checked their blood glucose levels,

only 20% of Type 1 diabetic individuals and 16% of Type 2 diabetic individuals tested their

blood glucose levels according to daily recommendations [17]. It is these inconsistencies in

blood glucose monitoring that cause a decreased efficacy in prevention of diabetic symptoms.

2.3.1 Diet and Diabetes

 Maintaining proper dietary habits is crucial aspect of minimizing diabetic symptoms.

Type 2 diabetes is often attributed to a poor diet due to the fact that overweight individuals are

shown to be at greater risk of attaining Type 2 diabetes [4]. One of the main recommendations

to overweight diabetic individuals is weight reduction coupled with an improved dietary

lifestyle. During this dietary change, individuals are encouraged to test their blood glucose after

23

every meal. With this knowledge the individual should better understand how different foods

affect their blood glucose levels, and give them an insight on consuming healthier foods.

Since it is the regulation of glucose, a carbohydrate, that is important to diabetics, it is

more useful for an individual to understand the amount of carbohydrates that they are

consuming than the number of calories or other nutritional characteristics in a food.

Carbohydrate counting has been a useful tool in the regulation of blood glucose levels, and can

be appropriately implemented by individuals with the proper guidance of a doctor, dietician, or

a certified diabetes educator.

Individuals with Type 1 and Type 2 diabetes who are dependent on supplemental insulin

injections must inject themselves with an appropriate amount of insulin prior to eating to

compensate for the imminent glycemic increase produced by the carbohydrates in a meal [29].

Since insulin absorption varies between individuals, as well as the varying rates of efficacy

amongst different types of insulin, most insulin plans are tailored to the individual.

2.3.2 Exercise and Diabetes

Due to the ever growing adaptation of a sedentary lifestyle, in which individuals are

deskbound at work and inactive at home, coupled with the lack of an exercise plan, the onset of

Type 2 diabetes has only been nurtured in recent years. As with the recommendation of proper

eating habits, doctors often recommend that diabetic individuals increase their activity level by

following an exercise program that is designed for the severity of their disease and by their

overall ability to perform any particular activity. Since exercise helps lower blood sugar levels,

Type 2 diabetic individuals can often manage their glucose levels without the use of any

medications, through a strict diet and exercise routine [4]. Since the need for insulin during

exercise is lowered, Type 2 diabetic individuals need to either consume an appropriate level of

carbohydrates or lower their insulin intake before they partake in a vigorous activity. This

requires the individual to understand how particular exercise affects their blood glucose level,

and know the amount of carbohydrates to ingest to sufficiently accommodate those changes.

The consumption of extra carbohydrates (ExCarbs) prior to partaking in strenuous

exercise is a concept that has been effective in supplementing the active lifestyles of Type 1

diabetic individuals [29]. The ExCarb model provides information on the number of grams of

carbohydrates one should take prior to participating in a particular activity.

24

Table 4: Extra carbohydrates that one should consume before participating in vigorous activity. These values can be used as
a guide to prevent a severe drop in blood sugar after exercise [26]. The ExCarb solution estimates the number of
carbohydrates needed for one hour of activity based on the weight of the individual and type of activity. It exhibits a
competence in providing good carbohydrate expenditure for aerobic activities.

 The ExCarb solution estimates the number carbohydrates needed for one hour of activity

based on the weight of the individual and type of activity. This solution exhibits a competence in

providing good carbohydrate expenditure for aerobic activities, but during the cases of anaerobic

activity such as sprinting, power lifting, or some aspects of basketball, the ExCarb methodology

does not adequately estimate the expected expenditure rate.

25

2.3.3 Poor Blood Glucose Management

 As previously discussed, an investigational study has shown that only 20% of Type 1

diabetic individuals and 16% of Type 2 diabetic individuals tested their blood glucose levels

according to daily recommendations. This poor blood glucose management results in the

occurrences of hyperglycemic and hypoglycemic conditions [17].

 When blood glucose levels are consistently higher than 126 mg/dL, an individual is

considered to be hyperglycemic [5]. During this hyperglycemic state, the body builds up a

greater level of ketones. High levels of ketones in the blood, known as ketoacidosis, are

poisonous to body, leading to long term comatose and potentially death. If high blood glucose

levels continue to go unmonitored, damage to the cardiovascular, retinal, and nervous systems

can occur [4].

 When blood glucose levels are consistently lower than 60 mg/dL, on average, an

individual is considered to be hypoglycemic [5]. Low glucose levels often make individuals tired

and lethargic, causing them to faint, and sometimes causing them to become comatose. Diabetic

individuals who have fallen into this state remedy the situation by the consumption of simple

carbohydrates, like eating a piece of candy or drinking a glass of juice. If low blood sugar levels

continue to go unmonitored, cellular function can no longer be maintained, which can lead to

permanent neurological damage [4].

2.4 Activity Monitors

 Activity monitoring of physical activity can occur in both laboratory and non laboratory

conditions. This project intended to retain the accuracy of physical activity monitoring in

laboratory conditions in a portable non-laboratory activity monitor. Activity monitoring in both

of these settings is detailed in the sections below.

2.4.1 Monitoring Physical Activity in Laboratory Conditions
During exercise, the action of moving muscles requires energy in the form of adenosine

triphosphate (ATP) [5]. ATP is produced in all cells during the oxidation of glucose. When the

muscles are active due to exercise, they need more oxygen to oxidize glucose and produce ATP.

To gain this extra oxygen, the normal human response is to breathe more, which results in

greater oxygen consumption and the production of carbon dioxide [5]. In this case heart rate also

26

increases so that more oxygen rich blood is provided to the working muscles. Thus, energy

expenditure has traditionally been found to relate to CO2 production and heart rate.

In the laboratory, gas analysis is the standard method of assessing the accuracy of activity

monitors due to the correlation between CO2 production and energy expenditure [26]. Gas

analysis usually involves a subject breathing into a mouth piece so that volumes of CO2 can be

measured with each breath. Another method used to measure CO2 production is doubly labeled

water (DLW) in which the disappearance rates of two non-radioactive isotopes of water (H2
18

O

and
2
H2O) are observed. The difference in the disappearance rates of each isotope is used to

calculate the amount of CO2 produced per unit of time. By knowing the CO2 production rate and

the diet of a subject, energy expenditure can be calculated [27]. Although an accurate method,

DLW is a relatively expensive and time consuming test to administer, therefore it would not be a

suitable method to continuously monitor patient‟s energy expenditures in a portable device.

2.4.2 Monitoring Physical Activity in Non-laboratory Conditions
Currently, there is no single, universally accepted device for measuring energy

expenditure for individuals available on the market. However, there are many devices that use a

variety of parameters such as pedometer counts, heart rate, and accelerometry counts to assess

the energy expenditure of physical activity in individuals. Still other devices use a combination

of these parameters to output energy usage.

Pedometers

A pedometer is a device used to count each step a person takes through motion detection

[23]. Many pedometers contain a sensor which moves vertically whenever a person takes a step.

Movement of the sensor closes an electrical circuit, and each time the circuit is closed, it counts

as a step. A summation of the amount of times the circuit closed within a certain period of time

is displayed on the pedometer screen. Pedometers are often small, lightweight, inexpensive, and

can be used during every day activities. However, they do not account for activity types and

intensity and may lose accuracy during intense activity.

The Digiwalker pedometer shown in Figure 3 has been found to be superior to other

devices of its kind and boasts accurate counting due to its state of the art lever arm sensor, a

tightly coiled spring for increased accuracy and special features to reduce noise and corrosion

[18].

27

Figure 3: Digiwalker Pedometer boasts accurate counting due to state of the art lever arm sensor, a tightly coiled spring for
increased accuracy, and special features to reduce noise and corrosion [18].

Another activity monitor, developed specifically to monitor the activity of those with

Type 2 Diabetes is described in a Norwegian study [19]. The device designed in this study is

different from Digiwalker in that it contains Bluetooth technology to wirelessly transmit data to a

mobile phone as shown in Figure 4 below [20].

Figure 4: Final prototype of activity monitor for Type 2 diabetic individuals. The device contains Bluetooth technology to
wirelessly transmit data to a mobile phone [19].

To develop this monitor, 15 people with Type 2 Diabetes provided the researchers with

input on what features a new, mobile device should have. Over a period of four months the

subjects gave their opinions on what specific tools the device should have as well as opinions on

the overall look and comfort of the device. Based on these opinions, the researchers designed a

pedometer activity monitoring device that met the needs of the diabetic patients. This activity

monitor contains a specifically designed mechanical sensor chosen to minimize power

consumption. Also, the device has capabilities to filter out random movement and any outside

noise. To assess the marketability of the device, the researchers asked 1001 people about their

use of step pedometers. Only 6.5% used pedometers daily while 20% used them daily, weekly,

28

or monthly. The appeal of this device is that it is small, compact and discrete. However,

pedometer activity monitors may not be as accurate as devices that consider multiple parameters.

Heart Rate Monitors

Heart rate has been validated against the doubly labeled water technique for estimating

energy expenditure and has a correlation coefficient of 0.94 as compared to DLW [28].

However, it is an indirect method of measuring energy expenditure and thus data often presents

discrepancies.

Heart rate monitors on the market commonly boast higher accuracy rates than pedometers

for measuring energy usage. Heart rate is measured by first placing electrodes on the chest.

These electrodes acquire an ECG signal which is then fed to a data processing unit. This

processing unit has the capacity to calculate the heart rate. As discussed previously, heart rate

measured in laboratory conditions is also a method used to assess the accuracy of portable

activity monitors.

Polar is the leading manufacturer of heart rate monitors [18]. These monitors have a

wide range of uses including fitness programs, athletic teams, medical purposes and physical

education programs. This specific heart rate monitor consists of a transmitter belt that is worn

around the chest and a device that is attached to the wrist. The belt has a fabric strap and two

electrodes that are arranged to measure the potential difference across the chest made by the two

electrodes. This potential difference is sent to the wrist device which receives and processes the

signal, as well as calculates and displays the user‟s heart rate. Figure 5 shows the Polar heart rate

monitor in use.

Figure 5: Polar heart rate monitor with chest strap and wrist device. Consists of a transmitter belt worn around the chest
and a device that is attached to the wrist which displays energy expenditure parameter output [18].

29

 Other heart rate monitors include additional features, such as the Garmin Forerunner 305.

This heart rate monitor contains a GPS feature to measure physical distance travelled and pace of

activity [20]. Heart rate monitors are reasonably accurate in obtaining and calculating heart rate,

however, they may have several inaccuracies when applied to activity monitoring. For example,

if a person is nervous and their heart is beating at a high rate, the heart rate activity monitor will

interpret this information as though the person is undergoing strenuous physical activity when in

fact they could remain motionless. Therefore, an activity monitor that considers multiple

parameters may have a higher accuracy than a single parameter device such as a heart rate

monitor.

Accelerometers

Accelerometers are devices which detect when a subject is in motion [22]. Not only can

they detect human movement, but they also detect the intensity and frequency of movement.

The output of an accelerometer can be processed to isolate the frequency band of human

movement which can provide a measurement for quantifying human activity [18]. In this way,

using accelerometer outputs is a more accurate method than using heart rate to evaluating energy

expenditure.

An example of an accelerometer used to calculate energy expenditure is the Nike+iPod

sport kit which utilizes a piezoelectric accelerometer that is placed in the user‟s shoe [21]. When

the user‟s foot hits the ground, the piezoelectric device senses the movement and wirelessly

transmits the signal to a receiver which is attached to an iPod. The receiver counts each step and

is able to calculate the distance traveled by the user. This receiver is able to calculate the user‟s

time, distance, pace, and burned calories and the information is displayed on the iPod. Figure 6

displays the technology behind the Nike+iPod sport kit. The manufacturer of Nike+iPod boasts

90% accuracy for first time use and increased accuracy if the device is calibrated. Nike or iPod

has not, at this time, released research papers validating their device or information regarding

any clinical trials.

30

Figure 6: Nike + iPod Sport Kit User's Guide. The kit uses a piezoelectric accelerometer placed in the user's shoe to sense
movement and transmit signals to the iPod, where each step is counted to calculate distance travelled [21].

 The shortcoming of this type of accelerometer activity monitoring device is that the

accelerometer is placed on an extremity, in this case the leg. Because the extremities often have

more movements than the rest of the body, inaccuracies in movement counts may occur. For

example, if a subject is wearing the Nike+iPod device and is sitting in a chair gently tapping their

foot on the ground, the accelerometer will detect the movements and the subject will have a

much higher energy expenditure reading than they actually have. The Nike+iPod is only

accurate when measuring movements during physical activity, and for diabetic patients, a device

is needed to measure expenditure during all activities – physical and sedentary.

The Caltrac Calorie Counter, shown in Figure 7, is another accelerometer device that uses

a single plane accelerometer to detect only vertical movements [22]. The counter has an

accelerometer at the waist which measures vertical movements and displays a count of these

movements on a display screen that houses the accelerometer circuitry. Although this device has

been tested and verified in 60 clinical trials as a valid device for calculating energy expenditure,

it does have several shortcomings. One major shortcoming is that the device does not accurately

estimate energy usage for activities involving isometric movements such as cycling and rowing

[18]. An accelerometer that measures movements in three axes may be better suited to calculate

energy expenditure.

31

Figure 7: Caltrac Calorie Counter which uses a single plane accelerometer to detect vertical movements at the waste [22].

Multiple Parameter Activity Monitors

Devices that use only one parameter may have limitations on the types of activities that

can be measured and how accurate the output is to the actual energy expenditure [22].

Connecting three Caltrac accelerometers in an orthogonal fashion has a much better accuracy

than just one stand alone accelerometer [22].

In a study by Eston, Rowlands, and Ingledew, four different activity monitors were tested

and compared to one another based on the energy expenditure output in children [23]. The

devices used in this study included a uni-axial accelerometer, a tri-axial accelerometer, a

pedometer, and a heart rate monitor. These devices were worn by 30 children who participated in

several activities. The accuracy of each of the devices was evaluated for each activity.

 This study showed that the tri-axial accelerometer was the most accurate while the uni-

axial and heart rate monitor were also valid as less expensive options. The study also concluded

that using an accelerometer in conjunction with a heart rate monitor would enable the device to

output the most accurate energy expenditure. Figure 8 below shows the mean error and standard

deviation of each type of device.

32

Figure 8: Mean error and standard deviation of activity monitors tested in testing by Eston, Rowlands, and Ingledow [23].

Actiheart, shown in Figure 9, is an example of a device that utilizes both heart rate and

accelerometry to determine energy expenditure. This device clips onto two chest electrodes and

contains a triaxial piezoelectric accelerometer. Heart rate is calculated by first converting the

analog ECG signal to digital and by calculating the R to R ratio. By using this method to

calculate heart rate, the output is more accurate than the traditional peak detection method.

Combining heart rate with accelerometry combines the best aspects of each technology to output

the most accurate energy expenditure result.

Figure 9: Actiheart monitor which uses heart rate and accelerometry to output energy expenditure. The device slips onto
two chest electrodes and has a triaxial piezoelectric accelerometer [24].

A study was done in 2007 to determine the accuracy of the Actiheart system [25]. This

study was conducted by SE Crouter, JR Churilla, and DR Bassett, Jr of the Depart of Exercise,

Sport, and Leisure Studies at the University of Tennessee, Knoxville. The intention of this study

was to see how accurate the Actiheart system was outside of laboratory conditions. To do this, it

33

included 18 tests that were performed by having subjects wear the Actiheart system and the

Cosmed K4b2, a device that uses indirect calorimetry to determine energy expenditure. The

Actiheart system is a device that will clip onto standard ECG electrodes. This clip houses the

accelerometers. The Cosmed device is a portable metabolic machine. It includes a gas mask and

a processing unit.

The tests included in the study are as follows: lying, computer work, standing, filing

papers, washing dishes, washing windows, slow walk (82 m min-1), vacuum, sweep/mop, raking

grass/leaves, fast walk (103 m min-1), lawn mowing, stationary cycling (avg. 99 W),

ascending/descending stairs, racquetball, basketball, slow run (157 m min-1), and fast run (191

m min-1) [25]. Upon completion of the study, the investigators determined that the Actiheart

system is comparable to other activity monitors, though improvements could be made.

Activity monitors for commercial use output energy expenditure using a variety of

parameters including heart rate, accelerometry, and pedometry. Although most devices that

utilize one parameter are acceptably accurate, monitors that use a combination of parameters

have an increased accuracy.

34

3 Design Methods and Alternatives
The initial client statement given to the design team in August of 2008 was as follows:

“To design and build a continuous activity monitoring device for insulin dependent

diabetic individuals that will output cumulative energy expenditure and rate of energy

expenditure. Energy expenditure will be calculated using multiple parameters for

increased accuracy in monitoring daily activity. This device will be low cost,

aesthetically pleasing, and convenient for everyday use. “

The design team thus set forth to obtain design constraints, objectives, and alternative

designs based off of this statement. A weighted objectives method was used to compare the

alternative designs and ultimately determine the design to proceed with.

3.1 Obtaining Design Constraints
Constraints in engineering are limitations set on the design space by both the client‟s

problem statement and the design team‟s familiarity with various branches of engineering

sciences [2]. The client statement addresses the wants and needs of the client for a particular

design, as well as what it must and should complete. In the case of the design of a diabetic

activity monitor, the requirements for the device are that it outputs accurate energy expenditure

data frequently (at least once per minute), that it is inconspicuous when worn, and that it is

inexpensive enough so as to be reasonable for purchase by every-day civilians. As a result of

these requirements the team was able to deduce that wearability, durability, accuracy, ability to

be produced within the allotted MQP time (A-C term), and a total budget of $625 are all

constraints which govern the design and production of this device.

3.2 Obtaining Design Objectives
Objectives are the end goals a design aims to achieve [2]. Design objectives were

initially created by the design team in list form and then organized into an objectives tree which

contained objectives and sub-objectives. The design team concluded that a minimum of three

sub-objectives should also be included for each of the six main objectives for each main

objective to hold enough importance in the outcome of the overall design. Figure 10 below is a

35

diagram displaying all identified objectives and sub-objectives.

Figure 10: Objectives tree designed by the design team prior to detailed weighted objectives analysis.

With the six main objectives and a minimum of three sub-objectives each, the team

completed a pair-wise comparison chart of the main objectives to obtain ratios of importance of

each main objective relative to the total design, shown in Table 2 on the following page.

Following this analysis, each of the sub-objectives was also weighted using a pair-wise

comparison chart. These pair-wise comparison charts allowed for the completion of the

weighted objective tree. The weighted importance of the sub-objectives of each main objective

can be found in the tables in Appendix A.

Using these tables, each of the design alternatives generated by the team was ranked

according to their potential ability to fulfill each objective thus far identified as important for the

project. The weighted objectives chart resulting from these calculations can be seen in Figure 11

below.

36

Table 2: Pair wise Comparison Chart for Main Objectives. To prioritize the objectives the team devised a pair wise comparison
chart which couples two objectives with one another, ranking one over the other, until all of the objectives have been ranked
fro most important to least important. A score of 1 is given to the cell if the objective in the corresponding row is of greater
importance than the objective in the corresponding column. A score of 0.5 is given if the objectives in the corresponding row
and column are of equal importance. A score of 0 is given when the objective in the corresponding row is of less importance
than the objective in the corresponding column.

Objective

Cost

Efficient Practical Safe Accurate Reliable

Power

Efficient Durable

Cost

Efficient * * * 0.5 0 0 0 1 0.5

Practical 0.5 * * * 0 0 0.5 1 0.5

Safe 1 1 * * * 0.5 0.5 1 1

Accurate 1 1 0.5 * * * 0.5 1 0.5

Reliable 1 0.5 0.5 0.5 * * * 1 0.5

Power

Efficient 0 0 0 0 0 * * * 0.5

Durable 0.5 0.5 0 0.5 0.5 * * *

Objective

Score +

1

High

Ranking Weighted %

 Cost

Efficient 3

Cost

Efficient 10.91%

 Practical 3.5

Practical 12.73%

 Safe 6

Safe 21.82%

 Accurate 5.5

Accurate 20%

 Reliable 5

Reliable 18.18%

 Power

Efficient 1.5

Power

Efficient 5.45%

 Durable 3

Durable 10.91%

 TOTAL 28

TOTAL 100%

37

Figure 11: Weighted objectives for the Diabetic Activity Monitor. After completing the pair wise comparison chart, the team calculated that the safety of the device
is the most important aspect of its design. Accuracy of the device was the second most important, while reliability of the device ranked third. The team found
that power efficiency of the device was the least important aspect of the design of the device.

Diabetic Activity
Monitor

Cost Efficient

Minimal Parts

2.73%

Parts Easily
Obtainable

3.82%

Easy to
manufacture

3.27%

Low shipping weight

1.09%

Practical

Easy to Calibrate

1.90%

Easy to Read output

3.82%

Comfortable to
Wear

3.82%

Lightweight

3.18%

Safe

Fully Enclosed
components

7.27%

No Sharp
components

7.27%

Non-toxic
Components

7.27%

Accurate

Appropiately
Sensitive

6.0%

Detects large and
small movements

6.0%

Not influenced by
vibrations

6.0%

High Quality parts

2.0%

Reliable

Less technical
support

6.36%

Little maintence
require

5.45%

Fewer Parts

2.73%

High quality parts

3.64%

Power Efficient

Low Power
consuming parts

2.27%

Maximize Battery
Life

2.27%

Fewer parts

0.91%

Durable

Wear-resistant

1.81%

Strong materials

4.54%

Water resistant

4.54%

38

3.3 Design Alternatives
Prior to determining various conceptual designs for the diabetic activity monitor, many

methods of measuring human physical activity were analyzed to determine the best means of

obtaining accurate energy expenditure values for the device. The discussed methods of

measuring physical activity included monitoring of heart rate, respiratory rate, and movement

detection. After determining these relevant forms of measurement the group held a meeting to

begin a design brainstorming session. This brainstorming session included determining the

necessary functions and function means in order to create workable activity monitor for diabetic

individuals. The functions identified allowed for the design team to obtain a better grasp upon

the design space and to begin brainstorming possible designs. The functions and means of

attaining these functions are shown below in Table 3.

Table 3: Function means chart to determine possible means to achieving device goals.

Function Possible Means

Measure RR Strain Gauge Auscultatory Plethysmography Pulse Oximetry Piezoelectric

Digital

Processing

MSP430 Chip PSoC Chip PIC Code written in

Assembly

Code written

in C

Measure HR Electrode Polar Strap

Obtain

movement count

Accelerometry Strain Gauge

Determine

Carbohydrates

Actiheart

Algorithm

The design team determined that any one of these forms of measurement, or parameters,

would not be acceptable as stand alone measurements for an energy expenditure output, for

several reasons.

Heart rate was identified as a potential parameter for physical activity measurement as

the rate of heart beats typically corresponds with the amount of exercise being performed by an

individual. The means to acquiring heart rate which were identified include electrode placement

and the use of a Polar strap. While heart rate can be an accurate measure of level of physical

activity in athletic situations, it may be superficially stimulated, such as when a person becomes

39

excited or nervous. It is in this case that it becomes necessary for a separate parameter to be used

and compared with that of heart rate in order to determine the true energy expenditure in the

moment.

Respiratory rate was identified as another possible means for determining level of

physical activity as an individual‟s rate of breathing typically directly corresponds with that

person‟s level of activity. Possible means to acquiring respiratory rate which were identified are

strain gauge methods, bioacoustic methods, plethysmography, and pulse oximetry. Much like

heart rate, it was determined to be a relatively accurate measure for physical activity, but in cases

such as hyperventilation and hypoventilation due to nerves or physical environment (quality of

air can be a factor) another parameter would be necessary to ensure that energy expenditure

readings were correct. Because accurate and discrete respiration monitors are hard to come by,

respiratory rate was eliminated as a parameter during the creation of alternative designs.

Accelerometers are devices which are able to detect magnitude and direction of

acceleration as a vector quantity. Accelerometry was identified as a parameter which could be

useful in determining physical activity as it is based off of movement. A comparison between

accelerometry and either of the two aforementioned parameters could easily determine whether

or not the device user is physically active at the time of measurement and what the energy

expenditure of the user was during times of activity.

As it was clearly determined that the utilization of at least two parameters in combination

was necessary for accurate energy expenditure calculations digital processing and determining

carbohydrates were considered to be two necessary device functions. Research from the

previous diabetic activity monitor MQP showed that ActiHeart has an algorithm which allows

for the comparison of heart rate with accelerometry in order to obtain energy expenditure [25].

Thus electrical components which could be programmed to accept two signals, use algorithms to

compare these signals, and output those calculations to a display were considered.

The following four sections detail the conceptual design ideas created by the design team

while taking the information compiled in the function means chart into consideration.

40

3.3.1 Conceptual Design 1 – Electrodes and Accelerometer Design

The first conceptual design evaluated by the team was the electrodes and accelerometer

MQP device from the 2007-2008 year. This design involves electrodes placed on the chest in

order to monitor heart rate and an accelerometer worn on the hip to monitor whole body

movements. Figures 12 and 13 below show the device design.

Figure 12: Electrodes and accelerometer design from 2007-2008 MQP [18].

Figure 13: Diagram of 2007-2008 MQP device. An accelerometer and microprocessor housed on the hip of the user, with
electrodes placed on the hip and sternum to measure the user's leg [18].

41

Design idea 1 houses an accelerometer and a microprocessor on the hip of the user and

places electrodes on the hip the sternum of the user. Electrodes measure the ECG of the user.

The microprocessor mounted on the hip processes the accelerometry and ECG signals and

outputs data for the user. The top portion of the figure was the MQP device from the 2007-2008

year.

Reasons for Elimination

Some of the main reasons for deciding not to continue with the use of this design were

that: (1) the processing was contained in a bulky housing unit worn around the waste; (2) it was

run off of two poorly placed 9V batteries; (3) the device was heavy and bulky; and (4) the device

did not output carbohydrates or allow the individual to keep track of carbohydrate usage. It was

also very inconvenient to try and place the electrodes correctly. The electrodes and

accelerometer design was reviewed both verbally by the design team and through the use of

weighted objectives charts. It complied by the team‟s weighted objectives by 57%, which was

decidedly not adequate. The individual objective comparisons made for the device and each of

the following devices can be seen in Appendix A.

42

3.3.2 Conceptual Design 2 – Parameter Detection Glove

The parameter detection glove conceptual design uses detection of pulse rate and

acceleration to determine energy expenditure. The device idea consists of one part, a form fitting

glove that houses a pulse sensor, accelerometer, and a display. The form fitting glove would

allow the sensor to be pressed tightly against the wrist of the individual, and the display would be

located on the proximal side of the hand, not to interfere with the grasp of the user. The battery,

accelerometer and computational components would be housed beneath the display so that

cyclical wear would not affect the electronics. Figures 14 and 15 below shows an example of

this design.

Figure 14: Three dimensional representation of the parameter detection glove. Pulse rate and acceleration would be sensed
in the wrist of the individual, with a display of energy expenditure output located on the proximal side of the hand.

Figure 15: Illustration of parameter detection glove. An accelerometer and pulse sensor housed in a sensor module on the
glove. The sensors would be pressed firmly against the wrist of the user. Energy expenditure data displayed on the proximal
side of the hand.

43

Reasons for Elimination

The main problem with this design is that since the accelerometer is located on an

extremity that moves on a regular basis, it will not allow for an accurate representation of the

user's activity. These inaccuracies would make it difficult to properly calibrate the device, as

well as create an appropriate sensitivity range. Also, as the device would be worn like a glove,

the material would have to be water resistant and wear resistant. It would be difficult to

manufacture a device with these mechanical constraints while preserving an ergonomic and

comfortable form factor. The glove conceptual design complied by the team‟s weighted

objectives by 63%, which was determined to be inadequate for this project.

44

3.3.3 Conceptual Design 3 – Parameter Detection Sock

The sock conceptual design uses pulse rate and acceleration to determine energy

expenditure. The device has three components to it: a form fitting ankle guard, an electronic

anklet, and an LCD to display vital readings. The form fitting ankle guard would be made out of

a washable material, encompassing a sensor that would contact the back portion of the ankle to

measure a pulse. The electronic anklet would house the accelerometer, wireless transmitter,

computational electronics, and power. The anklet would be connected to the form fitting ankle

guard via a flexible detachable wire. The housing containing the LCD display would also contain

a wireless receiver and transmitter as well as buttons to input calibration data. This design can

be seen below in Figures 16 and 17.

Figure 16: Electronic anklet and ankle guard. The electronic anklet would house the accelerometer, wireless transmitter,
computational electronics, and power. The ankle guard would encompass a sensor to measure a pulse from the back of the
ankle.

Figure 17: Illustration of electronic anklet and form fitting ankle guard.

45

Reasons for Elimination

Some of the pitfalls of this design deal with its inability to distinguish accelerations due

to a swinging leg when sitting and the acceleration of a body when running. Due to this

shortcoming, it decreases overall sensitivity, ease of calibration while increasing the need for

technical support. Since the pulse sensor would be located at a joint, it would be quite difficult

to filter out any unwanted vibrations. Since the ankle guard would incur cyclic loading by the

user, the material would have to be highly resistant to constant wear and because that portion of

the device will be located on around the foot, the material would have to water resistant. The

type of material needed to create this device is too specific to expect that there will not be errors

in the manufacturing of the device. Overall the sock conceptual design complied by the design

team‟s objectives by 59%, which was not sufficient enough to continue with the design process.

46

3.3.4 Conceptual Design 4 – Polar Strap and Accelerometer Design

There are two main measurement components to this design: the accelerometer and heart

rate detector. Heart rate is an indication of energy expenditure; as people exert themselves, they

must supply more oxygen to their muscles, making their hearts work harder. The faster a

person‟s heart rate, the more energy is being used. However, heart rate is not a perfect indicator

of energy usage. Stimulants, such as caffeine, can increase heart rate while energy expenditure

remains unchanged. Additionally, a physically fit person‟s heart rate will plateau with exercise

even as they continue to use more energy. For example, while a person runs uphill, his or her

heart rate may remain the same as when he or she is running on flat ground despite working

harder. As a result, an accelerometer will be used to account for times when changes in heart

rate do not correspond with changes in movement. The concepts behind this design are similar

to last year‟s diabetic activity monitor MQP (reviewed in section 3.3.1). However, this design

differs from the previous MQP in that it uses a polar strap and heart rate monitor.

Figure 18: The Polar Strap and Accelerometer Design. This design is composed of two distinct parts - the Polar strap band
warn around the chest by the user, and a handheld digital display system for ease-of-use purposes.

47

There are several advantages of using a polar strap over electrodes. First, the Polar strap

is easy to put on and comfortable to wear. Electrodes must be applied separately after cleaning

the skin and stick to the skin with an adhesive, which can be painful to remove, cause irritation,

and fall off over the course of daily activity. The polar strap is an adjustable elastic strap that

goes around the chest; in this case the electrodes are built into the strap and do not need to be

adhered to the skin. This makes the device more discreet, convenient, and comfortable to wear.

The polar strap has two connectors that snap onto a small package containing the circuitry that is

needed to convert the heart rate signals into a pulse and then transmit it. The package is centrally

located on the torso and would also be a good place to include the accelerometer in order to

minimize measurement of non-energy expenditure related motion.

In this design, the accelerometer and filter circuitry would be encased in the polar

package. A separate device would be necessary to contain the microprocessor, memory, and

user interface. This device would be worn in an easily accessible place, so that the display will

be visible to the wearer. Since it will be observable, the package must be discrete, resembling a

watch or PDA. The device would receive wireless signals from the polar package, providing the

processor with heart rate and accelerometry readings. These readings would be used to calculate

the rate of calorie usage, which would be displayed for the wearer.

This design requires a minimal amount of parts encased in two or three water-resistant

packages. Having fewer parts will not only make the product more cost efficient but also smaller

and more discreet. Overall the polar strap and accelerometer design complied by the design

team‟s objectives by 85%, and was thus determined to be the most reasonable design to use.

48

4 Detailed Design

The final design chosen for this device was the Polar Strap and Accelerometer Design.

This device is composed of two parts, the signal acquisition module, which contains the circuitry

for acquiring heart rate and full body acceleration, and the display module, which contains the

programming for signal processing, the energy expenditure algorithm, and the user interface.

4.1 Signal Acquisition Module

The signal acquisition module is the portion of the device which gathers information

from the device user. It uses a Polar strap to gather heart rate information, and an accelerometer

to gather full body acceleration. The acquisition of these signals is detailed in the sections

below.

4.1.1 Acquiring Heart Rate

The previous MQP group used the 3-lead ECG method to obtain the electrocardiogram

signal, and processed the signal with analog circuitry to obtain a heart beat signal. The digital

system measured the time interval between each heart beat to calculate heart rate. Several issues

are associated with this design. The 3-lead ECG method to acquire heart rate is highly

impractical when considering the usability requirements of this device. The device is intended

for all day use, thus it must be easy to set up and operate. The previous MQP noted the difficulty

in applying electrodes on different body types and ensuring good contact throughout the clinical

test for each patient. The electrode wires are another reason the previous device was not feasible

for market. These wires could easily get in the way of normal activity or cause the electrodes to

be pulled off the skin.

The alternative of acquiring heart rate without a 3-lead ECG system is through employing

an existing, market device known as the Polar system. This system is composed of a Polar strap

with a built-in transmitter and a Polar RMCM01 receiver. The transmitter is worn around the

chest, and it generates a 1 msec digital pulse for each heartbeat it detects, which it then transmits

to the receiver. The receiver wirelessly detects the output of the transmitter, and upon arrival of

a pulse, it will generate a digital pulse that electronics further down the line can use. The

wireless communication between the transmitter and receiver is done with a low frequency

electromagnetic field. Therefore, they must be aligned in parallel in order to obtain optimal

performance.

49

The simplest heart rate measuring system connects the RMCM01 output to a digital I/O

of a microprocessor, and calculates the heart rate by measuring the time interval between each

digital pulse. It must be able to measure the time interval between input triggers with a

reasonable resolution. The resolution of time would directly influence how accurate the heart rate

figure would be.

4.1.2 Measuring Full-body Acceleration

 The purpose of the signal acquisition module was to acquire the full body acceleration of

the diabetic individual; full body acceleration is the sum of a person‟s movement in three axes.

The acceleration was measured on the torso because it is more representative of the overall

physical activity of the user. If the acceleration were to be measured on the extremities, such as

a hand, the results would be skewed. For example, when a person gestures as they talk, the

accelerometer would read larger movements, with high gravity values (up to 120 g), which

would translate into higher activity levels. However, the individual would actually be relatively

inactive and expending very little energy.

4.1.2.1 Accelerometer: Freescale MMA7261QT

The accelerometer used in this design was Freescale‟s MMA7261QT. It is a triaxial,

analog accelerometer with a selectable g (gravity) range. The range of g values that the

accelerometer will experience while attached to a human torso is ±6 g. However, the

accelerometer was configured to operate in the ±10 g range so that the output signal voltage

range will fall within the acceptable range of input signal voltages for the Quickfilter chip. This

particular chip was selected for this reason as well as its low power consumption.

4.1.2.2 Digital Signal Filtering: Quickfilter QF4A512

The accelerometer outputs three analog voltages, one for the x, y, and z axes each; these

signals fluctuate around a zero-g offset (a fixed voltage representing no acceleration in the

direction of the axes.) A graphical representation of this scenario can be seen below in Figure

19. When the three axial outputs are summed, the result should only include voltages outputted

from the accelerometer due to movement. The zero-g voltage, which results from no movement,

and therefore no energy expenditure, must be eliminated from the axial outputs before they are

summed. This offset is a direct current (DC) signal component, meaning that it has a frequency

50

of zero Hz. This DC part of the acceleration signal can be filtered out using a specially designed

filter.

Figure 19: Placement of the accelerometer and the three axes involved in full body acceleration measurements. Summation
of the axes is calculated as voltagex + voltagey + voltagez.

This configuration is also capable of producing negative voltages when the wearer moves

“negatively” in the direction of an axis. For example, when the wearer jumps up, the

accelerometer outputs a positive voltage greater than zero-g voltage in the z-axis, but when the

wearer falls back down, the voltage will swing below zero-g voltage. When zero-g voltage is

subtracted from the output, the axial reading will become negative during the fall back down.

Because movement in any direction requires energy expenditure, movement that is in a

“negative” direction must be rectified before being summed with the other axes. If this is not

done, a “negative” movement would subtract from the summed voltage and the total calculated

movement would appear less than what it actually is.

Most human movement, as measured with an accelerometer placed on the torso, is

between 0.8 and 5 Hz [30]. Any movement detected by the accelerometer that is outside this

range is undesirable noise, such as vibrations from a car, or the movement of the chest during

breathing. Aside from filtering noise, a cutoff at 0.8 Hz eliminates the DC offset, whose

Z

Y

X

51

frequency is 0 Hz. In the previous MQP, this was achieved with a significant amount of analog

components, including an accelerometer, three buffers, three high pass filters, three rectifiers, a

summing amplifier, low pass filter, and analog-to-digital conversion (ADC). Many of these

components were eliminated by completing the summation within a processor chip and then

filtering the signal with a digital signal processor.

The initial design concept was to use a digital accelerometer and a digital signal

controller (possibly a dsPIC from Microchip) to filter the signals and perform the rectification

and summation in one chip. However, the dsPIC from MicroChip comes with many extraneous

features, such as pulse width modulation (PWM) channels for motor controlling, because the

product is geared more for complicated motor controlling rather than simple signal filtering. The

dsPIC also costs more and is an unfamiliar platform.

During the research and part selection process, another device was identified that was

simpler, less expensive, and specified for filtering: Quickfilter‟s QF4A512 Programmable Signal

Converter. The QF4A512 is a 4-channel signal conditioner that can be programmed with a gain,

cutoff frequencies, and analog-to-digital sampling frequency. Each channel can be programmed

separately using the Quickfilter Pro software, although for this design, three channels with

identical programming were used. The Quickfilter chip performed the DC offset elimination and

filtering for each of the three signals before outputting them as 16-bit samples. The Quickfilter

was programmed with a McClellan band pass filter with a pass band frequency of 0.5 to 8 Hz.

The filter coefficient values were generated by the Quickfilter software and programmed using

their software adapter and development board.

4.1.2.3 Microcontroller: TI MSP430F449

Quickfilter Technologies provides a code sample that interfaces the Quickfilter QF4A512

with Texas Instrument‟s MSP430F449. This code contains the functions to configure and run

the QF4A512 as well as read and write to its EEPROM. The code had to be modified for the

specific needs of the activity monitor, including adjusting the “main.c” file to process the

acceleration signals and adding code for the other Universal Asynchronous Receiver Transmitter

(UART) interface. The new code also eliminates some of the debugging features, such as testing

point and LED toggling, whose peripherals will take up too much valuable printed circuit board

(PCB) space.

52

 The Quickfilter code example used all four channels on the QF4A512, whereas the

accelerometer only required three, one for each axis. To save the time that reading an extra,

unused channel will take, the code was also rewritten to check only the first three channels. The

MSP430 was programmed to read 16-bit samples from each channel into a buffer, where the

sample was then rectified and the DC offset removed.

When the samples were retrieved, a timer was initialized that counts ten seconds before

generating an interrupt. During these ten seconds, the samples from the three Quickfilter

channels were rectified and summed and a count was incremented to keep track of the number of

samples read. When the interrupt occurred, the value of the samples accumulated in the sum was

divided by the number of samples retrieved to calculate the average full body acceleration over a

ten second period. This information was then used in the algorithm to estimate caloric usage.

Figure 20 below represents the processes carried out by the electrical components of the signal

acquisition module.

Figure 20: Block diagram of the electrical interactions between the accelerometer, Quickfilter chip, and the MSP430.

A ZigBee device called XBEE was used to wirelessly transmit the data to the user-

interface module, where the modified Actiheart algorithm was implemented on another

MSP430F449. The Zigbee device was suitable for this purpose because it is a low power, low

cost wireless platform. The XBEE has a range of approximately 100 feet, which is more than

53

enough for this application since the user will wear both devices. The data is transmitted via

UART to the XBEE from the MSP430 in 8-bit chunks along with a stop and start bit.

4.2 Display Module

Signal processing of both the heart rate and full body acceleration signals was performed

in order to convert the signals to more pertinent information. This signal processing allowed for

not only the display of individually calculated parameters, but also for energy expenditure

calculations to be displayed both continuously and cumulatively. These calculations and the

display of their results were included on a separate module henceforth referenced as the display

module. The display module contains a microprocessor chip which was programmed to perform

all tasks relating to the module, such as the user interface, display of real-time data, and memory.

4.2.1 Microprocessor Selection

An MSP430F449 was also chosen as the microprocessor for the display module.

MSP430 microchips are widely used in electrical engineering applications, especially in student

design projects. The development board available for the MSP430F449 includes an LCD custom

display and four buttons, which provides an acceptable user interface at this stage in this device

design. It is as a result of this, as well as student familiarity with the MSP430 programming

platform that this chip was selected for use in the device design.

The responsibilities of the MSP430F449 within the display module include: (1) reading

accelerometer and heart rate signals, (2) outputting a count of both signals, (3) incorporating the

ActiHeart algorithm to output instantaneous carbohydrate expenditure, (4) display of current

heart rate, accelerometer count, carbohydrate expenditure rate, (5) cumulative carbohydrate

expenditure, and (6) input of patient-specific parameters such as sex, age, and weight.

The block diagram shown in Figure 21 illustrates the order in which these functions

would be performed by the micro processing chip.

54

Figure 21: Block diagram of the device as seen by the microprocessor chip. The microchip receives signals from the

accelerometer and the heart monitor then converts the signals into counts per unit time. Using those parameters in the

Actiheart algorithm, the device will record cumulative carbohydrate expenditure and output instantaneous carbohydrate

expenditure

4.2.2 Device States

In order to accomplish the tasks outlined in Figure 21, the device has been programmed

to operate within two states: parameter input state and analysis state. In parameter input state

the device works to gather the user information necessary to provide a patient-specific energy

expenditure output to the display. In the analysis state, the device receives the signals from the

signal acquisition module and performs signal processing operations to display appropriate heart

rate, full body acceleration, cumulative energy expenditure, and energy expenditure per minute.

The operations performed in these states are detailed below.

4.2.2.1 Parameter Input State

The device enters the parameter input state upon initialization. The user is prompted to

enter first their gender (0 for male, 1 for female), then their age, and finally their weight. This is

accomplished in each case by first sending commands to the LCD to display the words

representing the necessary input. These are “GENDER”, ”AGE”, and “WEIGHT”, respectively.

This occurs when the code below is executed:

Within the chip Input Signals

55

In this case the variable „inputtype‟ is defined previously in the code as an incrementing

number associated with how many LCD operations have been completed since the program

started. When programming in C, the number 0 (as in inputtype==0) is associated with the first

iteration of a procedure. When this code is executed, the first operation of the LCD will be to

display the word “SEX”, the second will be to display “AGE”, and the third will be to display

“WEIGHT”.

The user then enters the number representative of their gender, age, or weight. Once the

user presses „enter‟ the data is stored as the variable associated with the LCD display command,

and sent to the modified Actiheart algorithm for use in the analysis state. This is accomplished

using the code below:

This code indicates that if a button has been pressed and the inputtype is 0, 1, or 2

(gender, age, or weight), the variable 'variable value' will be stored as the appropriate variable for

the energy expenditure calculation. The 'variablevalue' operation takes the numbers entered by

the user in the ones, tens, and hundreds place and calculates the correct number to store as the

variable using Equation 1 below.

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑉𝑎𝑙𝑢𝑒 = 100𝑥 + 10𝑦 + 1𝑧

56

For example, if the user wanted to enter their weight as 134 pounds, the numbers entered

as x, y, and z would be 1, 3, and 4, respectively. The variable value would then be calculated as

shown below in Equation 2.

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑉𝑎𝑙𝑢𝑒 = 100 ∗ 1 + 10 ∗ 3 + 1 ∗ 4 = 100 + 30 + 4 = 134

The "if else-if" statements in this section determine whether or not the variablevalue

should be stored as gender, age, or weight. So if a statement for inputtype==1 is executed, the

number entered will be stored as age, and the if-else statement will be exited. This leaves the

statement inputtype++; as the next section of the code to be executed. This simply informs the

device that the inputtype now being analyzed is the inputtype after the previous one - or in the

case of this example - inputtype ==2, weight. After the inputtype is changed the numerical

values for the ones, tens, and hundreds places are restored to zero for the next input.

Once this process has been completed for all three of the variables the device exits

parameter state and enters the analysis state.

4.2.2.2 Analysis State

During the analysis state the chip continuously receives signals from the accelerometer

and heart rate monitor, converts them into counts per unit time, and displays the result. Results

are displayed in a five-second cyclic manner. In this state, the cumulative carbohydrate value

calculated using the parameter input values is available to the user on call via the second button.

To reset the carbohydrate count to zero, the user may press the first button.

4.2.2.2.1 Heart Rate Calculation

Heart rate is defined as the number of heart beats that occur during one minute. These

beats are observed by the QRS wave portion of the electrical signal generated by the heart. The

most simplistic way of measuring heart rate would be to actually count how many times a

person‟s heart contracted within one minute, however, that is too time consuming to give

worthwhile results. Alternatively, the actual heart rate can be calculated by counting the number

of beats in a 15 second period of time, and multiplying that count by four to give the predicted

output for a sixty second time period. This equation can be seen below in Equation 3.

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3 𝐻𝑒𝑎𝑟𝑡 𝑅𝑎𝑡𝑒 = 4[𝑁]𝑡
𝑡+15

57

Unfortunately, this provides a somewhat large room for error if the detector misread a

heartbeat. If something like noise were to cause the device to see a pulse that was not actually a

result of a heartbeat, not only would one extra beat be added to the per 15 second rate, but four

would be added to the per minute rate due to the multiplier. As a result of this a more accurate

algorithm has been determined for heart rate calculation.

The algorithm for calculating heart rate divides the time between heart beat pulses sent

from the Polar® strap into sixty seconds, to represent a beats-per-minute rate. This calculation is

made within the Display Module. Every time the Display Module sees a pulse, the current time

is recorded onto a variable and the difference between that time and the last time is calculated.

The calculation for two heart beats can be seen below:

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4 𝐻𝑒𝑎𝑟𝑡 𝑅𝑎𝑡𝑒 =
60

𝑡𝑖𝑚𝑒2 − 𝑡𝑖𝑚𝑒1

 This equation was then expanded to the equation which can be seen in Equation 5 in

order to gather data over a 15 second period of time, and output the average rate acquired from

that data. In the equation this time period, called an epoch, is represented by the limits of t to

t+15, and the average of the data is represented by dividing by N, the number of beats observed

within the epoch.

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5 𝐻𝑒𝑎𝑟𝑡 𝑅𝑎𝑡𝑒 =
60

𝑡𝑖𝑚𝑒2 − 𝑡𝑖𝑚𝑒1

𝑁

1

𝑡

𝑡+15

𝑁

This algorithm is extremely accurate in that the most recent heart rate can be obtained

with every heart beat. This allows for more accurate measurement than the typical beats-per-

minute calculation outlined in Equation 2. In this case, if an incorrect reading were to be made

by the device, only two beats would be affected maximally – the first beat which included the

misreading as the second time, and the next beat which included it as the first.

Below, the programming code for the calculation of Equation 4 can be seen.

58

This code segment is recording the time of the first heart beat, calculating the difference

between the two beats, and then calculating the heart rate via the designated heart rate calculation

algorithm.

4.2.2.2.2 Full Body Acceleration Count

The full body acceleration count over a ten second period of time is calculated in the

signal acquisition module and is transmitted to the display module using the UART capabilities

available on MSP430F449 micro processing chips and a pair of ZigBee devices. The task of the

display module in this case is to obtain the two 8-bit samples sent by the accelerometer,

reorganize them back into the 16-bit number that they represent, and then convert the binary

number into a decimal number. This is accomplished using the code below.

59

The information from the accelerometer is sent over as a byte which enters the receive

buffer, RXBUF0. This byte is stored as “tempByte” each time. To determine what operation to

do with the byte, it must be determined which byte in the sequence is being received – the first or

the second. This is completed by defining the samples as the odd or even received byte. In the

“if” statement above, the program says that if the sample is even, then the logical or of the

tempByte is completed, and the byte is shifted. The “else” portion of the “if” statement indicates

that if the sample is an odd sample, it is the first byte received, and it a logical and should be

performed.

In order to display an accurate measure of counts per minute, this number contained

within the byte is multiplied by six, to represent a 60 second period of time. This value is sent to

the full body acceleration display as well as the modified Actiheart algorithm which uses it to

calculate energy expenditure.

4.2.2.2.3 Energy Expenditure

Energy Expenditure Calculation

During the previous MQP project, it was determined that the best method to calculate

energy expenditure from heart rate and accelerometer counts was developed by the ActiHeart

study completed in 2007. This set of equations uses the subjects‟ age and gender in addition to

60

the heart rate and accelerometer counts to determine how many kilocalories per kilogram minute

are burned. The equations are located in the following table:

Table 4: Actiheart Activity Algorithm

Parameters such as resting heart rate, sex, and age of an individual are incorporated into

the Actiheart algorithm yields a kilo caloric expenditure at a given accelerometer count and heart

rate [25].

Since the rate of caloric expenditure varies with activity level, the Actiheart algorithm

determines which parameter best models the expenditure rate for that particular activity through

prioritization levels.

Accelerometer Prioritization:

 During events when there are low accelerometer counts, coupled with high heart rate

measurements, Actiheart assumes that the high heart rate values are caused by stress or chemical

imbalances and models the energy rate of the individual using an algorithm that emphasizes the

accelerometer based algorithm.

61

 Equal Prioritization:

 When there is moderate rise in heart rate measurements, neglecting the accelerometer

count value, Acitheart equally distributes the energy expenditure modeling between the heart rate

based algorithm and the accelerometer based algorithm.

Heart Rate Prioritization:

 During times when both heart rate values and accelerometer counts are significantly high,

Actiheart believes the heart rate based algorithm best models the rate at which energy is

expended, and shifts emphasis of the expenditure modeling more toward that algorithm and less

toward the accelerometer based equation.

The device, ultimately, outputs kilocalories per kilogram minute, an uncommon and

generally not a practical number for diabetic individuals to monitor their activity. Since the

device will be used primarily for a single user, the individual will be required to input their

weight, in kilograms, in order for the device to output real-time caloric expenditure. To make

the device more user friendly, another process is needed to convert kilocalories expended per

minute to carbohydrates expended per minute.

Kilocalories to Carbohydrate Conversion

In order to calculate the grams of carbohydrates, composing expended calories, the

volumetric respiratory exchange ratio (RER) of carbon dioxide emission versus oxygen

consumption needed to be known. RER is calculated by dividing the amount of carbon dioxide

exhaled by the amount of oxygen inhaled. Carbohydrates are known to be the exclusive source

of caloric expenditure during complete anaerobic exercise, when carbon dioxide emitted from

the body equals the amount of oxygen consumed [source]. As the activity level becomes more

aerobic, when carbon dioxide emissions are less than oxygen consumption, calories expended

consist more of proteins and fat and less of carbohydrates. For each section of the Actiheart

equation, a corresponding RER value was implemented to convert those outputted calories into

carbohydrates. These RER values were determined from a study conducted in 2000 [31]. The

study determined relationships between volumetric oxygen and energy expenditure levels. The

conclusions are shown in Figure 22 below. The higher the energy output, the higher the RER

and the more carbohydrates are expended.

62

Correlating the activity level with respiratory exchange ratios allow for caloric

expenditure to be translated into carbohydrates which are values that are better suited for glucose

management [31].

Figure 22: Relationship between volumetric oxygen and energy expenditure levels which allows for the calculation of
carbohydrates from caloric expenditure.

63

Table 5: Respiratory Exchange Ratios determined by study in 2000 which determined relationships between volumetric oxygen

and energy expenditure levels.

The Actiheart algorithm was modified appropriately according to this information.

Equation 6 below shows the modifications. The original Actiheart algorithm was divided into

three branches. In the first branch, activity is mostly anaerobic and emphasis is placed on

accelerometry counts. For this branch the estimated carbohydrate percentage of total energy

expenditure is relatively low, around 0.45. In the second branch, activity is equally aerobic and

anaerobic and the equation relies on both. In this case, carbohydrate percentage is estimated to

be 0.62. In the third branch, activity is mostly aerobic and the energy expenditure relies heavily

on heart rate. In this instance, carbohydrate percentage is estimated to be 0.87. Weight is

included as a factor because the more a person weighs, the more carbohydrates are burned

through metabolic processes.

64

Equation 6:

<23 HRaS and <25 counts min
-1

 : ((0.1*AEE HR)+(0.9*AEE Acc))*(weight)*0.45

23<HRaS<80: ((0.5*AEE HR)+(0.5*AEE Acc))*(weight)*0.62

80<HRaS and 25<counts min
-1

: ((0.9*AEE HR) +(0.1*AEE Acc))*(weight)*0.87

This equation was used in the device to provide the user with carbohydrate expenditure,

which in turn could aid in required dietary and insulin intake modifications.

Programming of the modified Actiheart Algorithm

The modified version of the Actiheart algorithm in Equation 6 was programmed into the

MSP430449 to calculate values and display the results in real-time on screen. Both the heart rate

and full body acceleration counts per minute were sent to the algorithm to output a rate of

carbohydrate expenditure per minute. In order to allow for a cumulative count of the

carbohydrates expended over time, the result of the algorithm is divided by 6 at each input to

represent the value accumulated over a period of 10 seconds. This value is stored, and added to

the next incoming value. This operation is completed continuously while the device is in use.

4.2.3 User Interface

 The user interface was simplistically designed due to the need for the activity monitor‟s

continuous use. Several measures were made in order to help the user enter their patient-specific

information and call up their heart rate, full body acceleration, and energy expenditure with

limited effort. The module used for this system is shown below in Figure 23.

Figure 23: MSP430F449 prototype development board. The four buttons shown are referenced through the text as buttons
1-4, from left to right.

65

 Numerical input is completed on a button-to-button basis. The 2
nd

, 3
rd

, and 4
th

 buttons,

shown in Figure 23, represent the numerical input places. Originally, the device was

programmed to scroll through 0-9 on a rotating basis for each place, however, it was decided that

setting limits for each input would make the device easier to use. The limits employed were as

follows:

Gender Input - The limit was set to 1. This way if the user is male and accidentally enters

the number „1‟ for gender, pressing the button again will return the value to 0.

Age Input - The maximum age value able to be entered by the user is 129 years of age. The

oldest person that ever lived was 22. Added some years to give flexibility just in case)

Weight Input - The maximum value remains at 999 lbs so as to avoid discrimination.

Describe in better detail.

These limits were implemented by simply programming each of the placeholder buttons for

input type case. For example, if the age is being entered, the input type is “1”, and thus button 2

is programmed to scroll to a maximum value of 1, button 3 is programmed to scroll to a

maximum value of 9 if 0 was entered on button 2, and only a value of 2 if 1 was entered, and

button 4 was programmed to scroll through all 9 values regardless.

Each of these values is stored as its respective variable by the user pressing the first button,

which represents „enter‟. This data is then sent to the modified Actiheart algorithm for use in the

analysis state.

During the analysis state the user is able to see heart rate and full body acceleration on a

rotating basis, and able to call cumulative carbohydrate values and carbohydrate expenditure rate

to screen by pressing the second and third buttons, respectively. The results of cumulative

carbohydrates display as “CG” for “cumulative grams”, and the results of the carbohydrate

expenditure rate display in crams per minute, which is represented on screen as “GPM”. If the

user were to want to clear the cumulative carbohydrate count, pressing button 1 would return the

count to zero. This feature allows the user to determine how many carbohydrates are burned

during a specific period of physical activity.

66

5 Testing
To ensure the overall device operates within specified parameters, several validation tests

are needed. First tests on the individual components were completed to ensure proper function.

Then testing on the assembled device needs to be done. This testing was intended to be done in

two parts: calibration of the algorithm and validation of the conversion to carbohydrates. Our

device used a different accelerometers than those used by Actiheart, thus we must determine the

scaling factor of the algorithm in order to get the most accurate calculation. In this light, we

must correlate certain accelerometer counts with carbohydrate usage.

5.1 Benchmark Testing

Sensor Module

Several studies have been completed to assess the accuracy of Polar straps to determine

heart rate. A study done at North Dakota State University compared seven heart rate monitors,

including two different Polar devices, against ECG readings. They found that at all but the very

highest activity levels, i.e. professional sprinters, the Polar devices were incredibly accurate [31].

A study conducted by the American College of Sports Medicine also found that the Polar heart

rate monitor was a good choice to measure heart rate [32].

The Quickfilter filter design software, given the filter parameters, successfully generated

a 0.8 to 5Hz McClellan band pass filter. The software provides a Fast Fourier Transform (FFT)

of the expected filter behavior. However, this FFT is only an idealized projection, so the filter

was lab tested to be sure of its performance. The Quickfilter software has the ability to read the

output of the chip and generate a real-time FFT. A QF4A512 filter chip was programmed with

the filter coefficients and connected to the computer through the programming adapter attached

the QF4A512 development board. A white noise audio file was applied to the channel one BNC

input; the signal was filtered by the programmed chip and displayed in the Quickfilter software.

The fast Fourier transform of the chip‟s filter is shown below in Figure 24.

67

Figure 24: Fast Fourier Transform of QAF4A512 Filter of white noise audio file.

 The resulting FFT of the band pass filter demonstrates an acceptable filter behavior for

our device requirements. It filters out frequencies outside of the approximate range 08 to 5Hz

with a suitable roll-off.

Display Module

The heart rate calculation used in the signal processing portion of the display module was

tested in the laboratory by performing electrical stimulation tests with alligator clips. In these

electrical stimulation tests, the design team simply applied an appropriately sized voltage signal

to the pin on the MSP430F449 which would be receiving the digital pulses from the Polar®

strap. In other words, each time the alligator clip touched the pin, this simulated a heart rate

pulse as detected by the strap.

The alligator clips were supplied a voltage of 3V. The clips were applied to the

appropriate pin over 10 second intervals. In the first trial, the pin was touched as many times as

possible for 10 seconds, representing maximum heart rate. The maximum heart rate displayed

was 255 beats per minute (BPM). In the next trial, the pin was touched 8 times over a 10 second

interval. The time between electrical stimulations was measured and used to determine heart

rate. The display recorded 60 BPM while the value calculated by the experimenter was 63 BPM.

During the third trial the pin was touched 4 times with an expected display value of 24 BPM,

68

while the display value was 21 BPM. There is some error between the expected result and the

displayed result as there may have been some human error while recording the time between

each electrical stimulation to calculate the expected results, as well as in applying the electrical

stimulation. If full contact was not made between the alligator clip and pin, a signal would not

have been observed by the device.

The method of measuring the time in between stimulations to calculate heart rate has been shown

to be accurate. Figures 25-27 demonstrate the different rates of electrical stimulation while Table 6

shows the results of the stimulation testing. The device was shown to be fairly accurate, and is most

likely more accurate than recorded, considering human error.

Table 6: Results from heart rate calculation and display testing on the MSP430F449.

Heart Rate Calculation and Display Testing

Test

Number

Frequency of

Application

Calculated

Result

Displayed Beats-Per-

Minute

∆(Measured-Predicted)

[BPM]

1 15+ 255 255 0

2 8 24 21 3

3 4 60 63 3

Figure 25: Maximal heart rate acquired from a frequency application of 15+.

Figure 26: Heart rate acquired from eight electrical stimulations.

69

Figure 27: Heart rate acquired from four electrical stimulations.

The ability of the display module to receive the full body acceleration values from the

signal acquisition module was tested by writing the code used to transmit data into the display

module and feeding the program values. The goal was to receive the 2 bytes of information,

reverse the order, and translate the values into the correct decimal number. In the test used, a

screen display of “YES” indicated that the test worked, whereas a display of “NO” indicated that

the conversion had not worked.

Initially the program resulted in a “NO” response from the system, however the design

team learned that this was due to an issue with the address being used to store the information.

Once the address was changed appropriately the test displayed a “YES” on screen (shown below

in Figure 28).

Figure 28: A "YES" resulting from correctly deciphering a transmitted value.

Finally, bench tests were performed in order to ensure that the programmed modified

Actiheart algorithm was functioning properly. This was verified by writing values for heart rate

and full body acceleration count into the display module code, collecting the output, and

comparing it to calculations made by hand.

70

In order to represent practical energy expenditure values with these tests, values from the

Actiheart study temporarily stored in the device. The Actiheart acceleration and (heart rate) HR

values shown below in Table 7 represent the average results for full body acceleration and heart

rate per minute gathered from the Actiheart whilst performing the listed activities. An analysis

of the accuracy of the display output for the display module was completed by comparing the

values obtained by longhand calculation to those displayed on screen. These values are also

available in Table 8. Several other activities were analyzed, but those chosen were used in this

test as they represent some activities which will be used in device testing. In order to better

represent the progression of energy expenditure, values for slow and fast walking and running

were included as well. A comparison of these results can be seen in Figure 29.

Table 7: Actiheart acquired values for full body acceleration counts/min and heart rates for several activities were
programmed into the device to receive a projected carbohydrate expenditure output for these activities. The values
obtained from by-hand calculations of the algorithm are shown in the column for calculated carbohydrates.

Activity Actiheart
Acceleration (counts
min-1)

Actiheart HR
(BPM)

Device Projected
Carbohydrates (g)

Calculated
Carbohydrates
(g)

Lying 0.1 66 0 0

Filing Papers 5 83 0 0.60

Washing Dishes 10.6 104 1 1.7

Slow Walk (82 m/min) 101.9 105 2 2.0

Fast walk (avg 103
m/min)

597.1 103 2 2.9

Ascending/descending
stairs

351 130 7 7.7

Slow run (157 m/min) 1776 155 11 11.5

Fast run (191 m/min) 1908.4 170 13 13.5

71

Figure 29: Bar graph representing the accuracy of the projected carbohydrate expenditure by the device display versus the
calculated carbohydrate output.

 The carbohydrate values calculated by hand appear to be slightly larger than those shown

on screen in the device. This is as a result of double to integer conversion for display on screen.

In order to remedy this, future devices could have a more accurate LCD display which was

capable of showing decimals, or the program could be written to round up – which would result

in a larger carbohydrate expenditure projected by the device than by calculation. The long term

cumulative values would not suffer greatly as a result of this difference, because the

programming does not actually drop the values when adding the results over time. Thus the

cumulative energy expenditure value would at most be off by a fraction of a gram.

5.2 Human Subject Testing I

IRB Approval

In order to complete testing on human subjects, approval must be obtained from WPI's

Institutional Review Board. This can be a lengthy involved process, however given that our

device is an improvement and expansion of a previous project, we only had to obtain a

continuation of the IRB approval given last year. An IRB application was filled out and filed

with the Office of Sponsored Research along with a copy of the intended procedures, case report

form, and subject consent form. As a requirement of approval, all group members were required

to complete online training through the National Institute of Health (NIH) entitled Protecting

-5 0 5 10 15

Lying

Wsahing Dishes

Fast wal (avg 103 m/min)

Slow run (157 m/min)

Carbohydrates (g)

A
ct

iv
it

y
Accuracy of Device Projected Carbohydrate

Expenditure

Calculated Carbs

Device Projected Carbs

72

Human Research Participants and submit certificates of completion. Copies of these documents

can be found in Appendix A, along with the letter granting IRB approval.

Procedures

The purpose of this project was to improve upon the 2007-2008 design. With this in mind it

was decided that device testing should adhere to the same procedures used last year. In turn,

these tests were derived from the original Actiheart study in order to better compare the device to

Actiheart. However, in order to encourage more cooperation from testing subjects and keeping in

mind location constraints not all of the tests used to determine the accuracy of Actiheart were

considered. The tests that were performed follow:

 Standing

 Sitting

 Ascending/Descending Stairs

 Washing dishes

 Filing Papers

 Sweeping the floor

 Slow walk (3.6 mph)

 Fast walk (4.8 mph)

 Slow jog (5.6 mph)

The tests that were not included in our study were cycling, racquetball, basketball, lawn

mowing, and leaf raking, among others. It was felt that having test subjects complete these tests

would be very time consuming and introduce more risk. Given that our test subjects are all

undergraduate students with a full academic schedule who are volunteering their time for this

study, we made the decision to respect their time and only include those tests which could be

completed in any classroom or on a treadmill. Overall these tests were proven to take less than

two hours, even with location changes.

73

Potential subjects were asked to volunteer by members of the group. Those who responded

favorably were included, with the exception of those who did not meet the inclusion criteria.

The inclusion criteria were that the subject did not have asthma, irregular heartbeats, or any other

medical condition that may be exacerbated by testing. This was not only for their safety and well

being, but to also limit the liability of WPI. 38 individuals initially volunteered and were given

the consent form to review and make their decision.

IRB protocols require that each subject be given a week to fully consider the possible risks of

participating in the study before they sign the form and are officially enrolled in the study. Due

to several modifications made to the device, testing was delayed, and several subjects withdrew

their interest in volunteering.

At the beginning of the testing session the subject's heart rate was obtained while in a supine

position. From this it was possible to calculate the sleeping heart rate needed for the energy

expenditure algorithm. To verify that the device was accurately outputting the heart rate, the

subjects pulse was taken by the student investigator by hand. Each individual test was performed

for five minutes. This was to ensure a steady heart rate would be reached and that consistent

values would be obtained for all subjects. After each period of 5 minutes, the total carbohydrate

expenditure was recorded, and reset. These values were used as comparison point between

subjects only, as no other device outputs energy expenditure in carbohydrates. In addition to

carbohydrate usage, heart rate and accelerometer counts were also recorded to use as comparison

points between devices. For each subject a case report form was completed. These can be found

in Appendix A. At the completion of this study these forms will be filed with the Office of

Sponsored Research and stored there for five years.

5.3 Human Subject Testing II

This testing period was to include metabolic testing to verify the carbohydrate conversion

we implemented and make any adjustments needed. These tests would need to be done in a

metabolic lab in order to use advance equipment. Possible locations were identified within

central Massachusetts, however upon contact it was determined that all laboratory time was

spoken for through the summer of 2009, long pass the conclusion of this project. A detailed

explanation of the various methods possible for these tests can be found in Chapter 2 of this

report.

74

5.4 Results

These results are ongoing, but once complete will be compared to a study done in 2007 to

determine the accuracy of Actiheart and the 2007 – 2008 device.

75

6 Conclusions and Recommendations

The following chapter discusses how energy expenditure was calculated, how changes

made to the previous major qualifying project improved the device, and the accuracy of the

activity monitor. We also present several recommendations to further improve this device to

increase its market potential.

6.1 Real-time Energy Expenditure Calculations

 Heart rate and fully body acceleration can be measured in real-time and can be used in

combination to determine energy expenditure via the modified Actiheart algorithm.

Outputting energy expenditure in grams of carbohydrates is useful for diabetic

individuals due to its correlation with insulin levels in the body.

6.2 Improvements to Previous Major Qualifying Project

 Utilizing the various techniques of digital signal processing, signal detection with sensor

arrays, transmitting data wirelessly, and custom-designed circuitry enclosures makes the

device easy and simple to use as well as aesthetically pleasing.

6.2.1 Digital Signal Processing

 Acceleration signals are processed in the digital domain using a programmable filter chip.

Digitally processing signals reduces the size of the circuitry and is simpler to implement

than analog signal processing.

6.2.2 Signal detection using sensor arrays

 The Polar® heart rate detection system accurately detects the electrical signals of the

heart using a sensor array, unlike the traditional approach of the electrode system.

 Heart rate signals detected by the Polar® system are wirelessly transmitted to a receiver

chip, eliminating the need for electrical leads to carry the signal to be processed.

6.2.3 Wirelessly transmitting measured data

 Sending the heart rate and acceleration data from the signal acquisition module to the

display module wirelessly decreases the size of the device as well as makes it more

comfortable to wear and easy to use.

76

6.2.4 Custom made housing

 Custom housing built according to the specific dimensions of the device is sleek and

aesthetically pleasing. The signal acquisition module housing is attached to the Polar®

device, and the display module is handheld or can be placed in a pocket. This enables

diabetic individuals to discreetly wear and use the activity monitor.

6.3 Recommendations
The following section discusses our recommendations for future work after the project

was completed. These recommendations for the device, which include size reduction, decreased

power consumption, more extensive testing, and data storage capabilities, are intended to

improve the marketability of the device.

6.3.1 Size reduction in both signal acquisition and display modules

To reduce the size of the signal acquisition device, a smaller microcontroller such as the

MSP430F149 can be used. In order to use this microcontroller the Quickfilter software code

must be modified to accommodate the MSP430F449 rather than the current MSP430F449.

Size reduction in the display module can be accomplished by using a smaller, custom

made LCD screen and button system. The current LCD and buttons is part of a development

board specific to MSP430 devices. Smaller LCD and buttons will increase the compactness of

the device and make the device more discrete to use. Ultimately, this upgraded system could be

incorporated via a watch-like design for discreetness and ease of use.

6.4.2 Decrease power consumption

With the current power consumption of two 3V batteries, the device will continue to

work for two to three hours without being charged if left on during this entire time period. In the

future, power consumption should be decreased so that the user can leave the device on

throughout the day to track their energy expenditure. Ideally, the batteries would only need to be

changed after several weeks. This increased battery life will make the device easier to use and

more accurate as it will calculate energy expenditure for longer amounts of time without needing

to be charged.

77

6.4.3a Complete metabolic testing of the device

We recommend testing the accuracy of the number of carbohydrates burned according to

our device to the number of carbohydrates that are actually burned. This type of testing can be

done utilizing a gas exchange analyzer, or metabolic cart, in a metabolic lab such as one at

UMASS Medical in Worcester, MA. The values calculated by our device should be

quantitatively compared to those found during the metabolic testing.

6.4.3b Improving the carbohydrate conversion algorithm

In order to more accurately estimate carbohydrates being burned, real-time volumetric

oxygen intake and carbon dioxide output values are needed. Since the current algorithm,

converting calories into carbohydrates, does not take any respiratory measurements, it completes

the conversion using estimates based off statistical respiratory values per activity level. To

increase the accuracy of this conversion, the algorithm must be altered to tailor more towards the

user. This can be achieved by looking into a correlation between age, gender and weight with

respiratory exchange.

6.4.4 Add data storage features

Adding a storage feature to the device such as a Secure Digital (SD) card will enable the

user to record the data from the activity monitor for later use. An SD card is a small, low power,

flash-based storage device that could be used to save energy expenditure, heart rate, and full

body acceleration information. Once inserted into the activity monitor it will store the data and

can be removed and inserted into a computer for further analyzing. The current device PCB was

manufactured to interact with a MicroSD, so the work required to incorporate this feature

depends only on programming the MSP430F449.

6.4.5 Utilize specific inputs to output insulin dosages

Outputting specific insulin dosages will be more helpful to diabetic individuals than

energy expenditure in carbohydrates alone. If glucose levels could be measured and stored as an

input to the device, an algorithm could be used to calculate the specific insulin dosages needed.

78

References
[1] “Diabetes.” Public Health. Kansas City, Missouri: Community Health Assessment, 2006.

[2] Dym, Clive L. and Patrick Little. Engineering Design: A Project-Based Introduction. 2nd

edition. Wiley. 2003

[3] S Brage, N Brage, PW Franks, U Ekelund, M Wong,

LB Andersen,

K Froberg,

and NJ

Wareham, “Reliability and validity of the combined heart rate and movement sensor

Actiheart,” Eur. J. Clin. Nutr. 59: 561-570, 2005.

[4] American Diabetes Association. <http://www.diabetes.org>. Accessed 26 April 2009.

[5] Fox, Stuart Ira. Human Physiology. 10 edition. McGraw – Hill, New York. 2007.

[6] Jovanovic-Peterson, Lois, MD. “ExCarbs, a New Way of Control Through Exercise”

Diabetes Health. July 1, 1995. <

http://www.diabeteshealth.com/read/1995/07/01/397/excarbs-a-new-way-of-control-

through-exercise/> Accessed 26 April 2009.

[7] Harvard School of Public Health. “Carbohydrates: Good Carbs Guide the Way”.

Accessed 10 October 2008 < http://www.hsph.harvard.edu/nutritionsource/what-should-

you-eat/carbohydrates-full-story/index.html>

[8] Carpi, Anthony Ph D. “Carbohydrates”. Vision Learning. Accessed 12 October 2008. <

http://www.visionlearning.com/library/module_viewer.php?mid=61>

[9] American Diabetes Association. “All About Diabetes: Overview”. Accessed 10 October

2008 < http://www.diabetes.org/about-diabetes.jsp>

 [10] Sayers, George. "Insulin." Encyclopedia Americana. 2008. Grolier Online. 13 Oct. 2008

<http://ea.grolier.com/cgi-bin/article?assetid=0215870-00>.

[11] Bassett, Steven. “Anatomy and Physiology.” Hoboken, NH: John Wiley & Sons,

Incorporated, 2005. 211.

[12] Rea, Caroline RS. “Diabetes Health Center: Blood Glucose” July 25, 2007. Accessed 13

October 2008. < http://diabetes.webmd.com/blood-glucose?page=4>

http://www.hsph.harvard.edu/nutritionsource/what-should-you-eat/carbohydrates-full-story/index.html
http://www.hsph.harvard.edu/nutritionsource/what-should-you-eat/carbohydrates-full-story/index.html
http://www.visionlearning.com/library/module_viewer.php?mid=61
http://www.diabetes.org/about-diabetes.jsp
http://diabetes.webmd.com/blood-glucose?page=4

79

[13] "Hypoglycemia." Encyclopedia Americana. 2008. Grolier Online. 13 Oct. 2008

<http://ea.grolier.com/cgi-bin/article?assetid=0211090-00>.

[14] Rizza, Robert A. "Diabetes Mellitus." Encyclopedia Americana. 2008. Grolier Online. 13

Oct. 2008 <http://ea.grolier.com/cgi-bin/article?assetid=0126230-00>.

[15] Tuch, Bernard. “Diabetes Research: A Guide for Postgraduates.” London, UK: CRC

Press, 2000. 1-14.

[16] Chen, Yue and Yang Mao. “Obesity and Leisure Time Physical Activity Among

Canadians” Preventative Medicine 42.4 (2006): 261-265.

[17] M.I. Harris, “Frequency of blood glucose monitoring in relation to glycemic control in

patients with type 2 diabetes”, Diabetes Care 24 (2001) 979-982

[18] Kinnal, Elizabeth, Towa Matsumura, Shannon O‟Toole, Nathan Occhialini. “An Activity

Monitor for Diabetic Individuals”. 2008. Worcester Polytechnic Institute Major

Qualifying Project.

 [19] Arsand, E., et al. "A System for Monitoring Physical Activity Data Among People with

Type 2 Diabetes." eHealth Beyond the Horizon. 2008. 14 Oct. 2008

http://www.hst.aau.dk/~ska/MIE2008/ParalleSessions/PapersForDownloads/02.C&HBe

H/SHTI136-0113.pdf

[20] "Garmin Forerunner 305." Consumer Search. 2009. 28 Apr 2009

<http://www.consumersearch.com/heart-rate-monitors/garmin-forerunner-305>.

[21] "Rock and Run." Nike+Ipod. 2009. Apple. 28 Apr 2009

<http://www.apple.com/ipod/nike/run.html>.

[22] Maliszewski, A., et al, "Validity of the Caltrac Accelerometer in Estimating Energy

Expenditure and Activity in Children and Adults." PES 3(2)May 1991 Web.28 Apr 2009

[23] Eston, R., Rowlands, A., and Ingledew, D.. "Validity of heart rate, pedometry, and

accelerometry for predicting the energy cost of children‟s activities." J Appl Physiol 1998

84:362-371. Web.28 Apr 2009.

[24] Image: www.salusa.se

[25] Crouter, SE, JR Churilla and DR Bassett. "Accuracy of the Actiheart for the Assessment

of Energy Expenditure in Adults." European Journal of Clinical Nutrition (2007)

[26] Brown, Stanley P., Wayne C. Miller and Jane M. Eason. Exercise Physiology: Basis of

Human Movement in Health and Disease. Baltimore: Lippincott Williams & Wilkins,

2006

https://exchange.wpi.edu/owa/redir.aspx?C=3f485783e38549b493cd29f3a695b4ca&URL=http%3a%2f%2fwww.hst.aau.dk%2f%7eska%2fMIE2008%2fParalleSessions%2fPapersForDownloads%2f02.C%26HBeH%2fSHTI136-0113.pdf
https://exchange.wpi.edu/owa/redir.aspx?C=3f485783e38549b493cd29f3a695b4ca&URL=http%3a%2f%2fwww.hst.aau.dk%2f%7eska%2fMIE2008%2fParalleSessions%2fPapersForDownloads%2f02.C%26HBeH%2fSHTI136-0113.pdf
http://www.salusa.se/

80

<http://books.google.com/books?ct=result&id=gg4Xn4aGaBQC&dq=carbohydrate+expe

nditure+labs&ots=RrK2gSxrYz&pg=PA582&lpg=PA582&sig=ACfU3U0dMFpnaIe3K5

tYjnNgK7zbFaS3Ug&q=table+4.3#PPA87,M1>

[27] Schoeller, D.A. and E. van Santen. “Measurement of energy expenditure in humans by

doubly labeled water method” Journal of Applied Physiology 1982. 53:955-959

[28] Livingstone, M Barbara E, et al. “Simultaneous measurement of free-living energy

expenditure byu the doubly labeled water method and heart-rate monitoring” The

American Journal of Clinical Nutrition 1990; 52:59-65

[29] Riddell M, Perkins B. “Type 1 Diabetes and Exercise: Using the Insulin Pump to

Maximum Advantage”. Can J Diabetes. 2006; 30:72-79.

[30] Bouten, Carlijn, Karel Koekkoek, Maarten Verduin, Rens Kodde, and Jan Janssen. "A

Triaxial Accelerometer and Portable Data Processing Unit for the Assessment of Daily

Physical Activity." IEEE Transactions on Biomedical Engineering 44 (1997): 136-47.

[31] Terbizan, Donna J, Brett A Dolezal, and Christian Albano. “Validity of Seven

Commercially Available Heart Rate Monitors.” Measurement in Physical Education and

Exercise Science. Vol. 6 Issue. 4 February 2002. Pg. 243 – 247

<http://www.informaworld.com/smpp/content~content=a785828031~db=all~order=page

>

[32] Gamelin, Francois Xavier, Serge Berthoin, and Laurent Bosquet. “Validity of the Polar

S810 Heart Rate Monitor to Measure R-R Intervals at Rest.” Medicine & Science in

Sports and Exercise. 38(5):887-893, May 2006. <http://www.acsm-

msse.org/pt/re/msse/abstract.00005768-200605000-

00013.htm;jsessionid=J9mc4B0S4PynRJyJSZ0MxSNJK0hH4hklynxXCdLLW6mykJhG

C9JJ!-1862535748!181195628!8091!-1>

http://books.google.com/books?ct=result&id=gg4Xn4aGaBQC&dq=carbohydrate+expenditure+labs&ots=RrK2gSxrYz&pg=PA582&lpg=PA582&sig=ACfU3U0dMFpnaIe3K5tYjnNgK7zbFaS3Ug&q=table+4.3#PPA87,M1
http://books.google.com/books?ct=result&id=gg4Xn4aGaBQC&dq=carbohydrate+expenditure+labs&ots=RrK2gSxrYz&pg=PA582&lpg=PA582&sig=ACfU3U0dMFpnaIe3K5tYjnNgK7zbFaS3Ug&q=table+4.3#PPA87,M1
http://books.google.com/books?ct=result&id=gg4Xn4aGaBQC&dq=carbohydrate+expenditure+labs&ots=RrK2gSxrYz&pg=PA582&lpg=PA582&sig=ACfU3U0dMFpnaIe3K5tYjnNgK7zbFaS3Ug&q=table+4.3#PPA87,M1
http://books.google.com/books?ct=result&id=gg4Xn4aGaBQC&dq=carbohydrate+expenditure+labs&ots=RrK2gSxrYz&pg=PA582&lpg=PA582&sig=ACfU3U0dMFpnaIe3K5tYjnNgK7zbFaS3Ug&q=table+4.3#PPA87,M1

81

Appendices

A – Weighted Objectives Calculations
Table 8 Pair-wise comparison chart for Cost-Effective Sub-Objective

Cost Efficient (10.91%)

Minimal

Parts

Parts Easily

Obtainable

Easy to

Manufacture

Low Shipping

Weight

Minimal Parts * * * 0 0.5 1

Parts Easily

Obtainable 1 * * * 0.5 1

Easy to Manufacture 0.5 0.5 * * * 1

Low Shipping Weight 0 0 0 * * *

 Cost Efficient Score + 1

 Minimal Parts 2.5

 Parts Easily

Obtainable 3.5

 Easy to Manufacture 3

 Low Shipping Weight 1

 TOTAL 10

High Ranking

Weighted

% True Weighted %

 Eliminate unwanted

sounds 25% 2.73%

 Good device contact 35% 3.82%

 Easy to Manufacture 30% 3.27%

 Low Shipping Weight 10% 1.091%

 TOTAL 100% 10.91%

82

Table 9 Pair-wise comparison chart for Practical Sub-Objective

Practical (12.73%)

Easy to

Calibrate

Easy to Read

Output

Comfortable to

Wear

Lightweigh

t

Easy to Calibrate * * * 0 0 0.5

Easy to Read

Output 1 * * * 0.5 0.5

Comfortable to

Wear 1 0.5 * * * 0.5

Lightweight 0.5 0.5 0.5 * * *

Practical Score + 1

 Easy to Calibrate 1.5

 Easy to Read

Output 3

 Comfortable to

wear 3

 Lightweight 2.5

 TOTAL 10

 High Ranking Weighted % True Weighted %

 Easy to Calibrate 15% 1.901%

 Easy to Read

Output 30% 3.82%

 Comfortable to

Wear 30% 3.82%

 Lightweight 25% 3.18%

 TOTAL 100% 12.73%

Table 10 Pair-wise comparison chart for Safe Sub-Objective

Safe (21.82%)

Fully enclosed

components

No sharp

components

Nontoxic

Components

Fully enclosed

components * * * 0.5 0.5

No sharp components 0.5 * * * 0.5

Nontoxic components 0.5 0.5 * * *

Safe Score + 1

 Fully enclosed

components 2

 No sharp components 2

 Nontoxic components 2

 TOTAL 6

 High Ranking Weighted % True weighted %

 Fully enclosed

components 33.3% 7.273%

 No sharp components 33.3% 7.273%

 Nontoxic components 33.3% 7.273%

 TOTAL 100% 21.82%

83

Table 11 Pair-wise comparison chart for Accurate Sub-Objective

Accurate(20%)

Appropriately

Sensitive

Detects small

and large

movements

Not influenced

by vibrations

High quality

parts

Appropriately sensitive * * * 0.5 0.5 1

Detects small and large

movements 0.5 * * * 0.5 1

Not influenced by vibrations 0.5 0.5 * * * 1

High quality parts 0 0 0 * * *

Accurate Score + 1

 Appropriately sensitive 3

 Detects small and large

movements 3

 Not influenced by vibrations 3

 High quality parts 1

 TOTAL 10

 High Ranking Weighted % True Weighted %

 Appropriately sensitive 30% 6%

 Detects small and large

movements 30% 6%

 Not influenced by vibrations 30% 6%

 High quality parts 10% 2%

 TOTAL 100% 20%

 Table 12 Pair-wise comparison chart for Reliable Sub-Objective

Reliable(18.18%)

Less Technical

Support

Little maintenance

required

Fewer

Parts

High Quality

Parts

Less Technical

Support * * * 0.5 1 1

Little maintenance

required 0.5 * * * 1 0.5

Fewer Parts 0 0 * * * 0.5

High Quality Parts 0 0.5 0.5 * * *

Reliable Score + 1

 Less Technical

Support 3.5

 Little maintenance

required 3

 Fewer Parts 1.5

 High Quality Parts 2

 TOTAL 10

 High Ranking Weighted % True Weighted %

 Less Technical

Support 35% 6.363%

 Little maintenance

required 30% 5.454%

 Fewer Parts 15% 2.727%

 High Quality Parts 20% 3.636%

 TOTAL 100% 18.18%

84

Table 13 Pair-wise comparison chart for Power Efficient Sub-Objective

Power Efficient(5.45%) Low power consuming parts Maximize battery life Fewer parts

Low power consuming parts * * * 0.5 1

Maximize battery life 0.5 * * * 1

Fewer Parts 0 0 * * *

Power Efficient Score + 1

 Low power consuming parts 2.5

 Maximize battery life 2.5

 Fewer parts 1

 TOTAL 6

 High Ranking Weighted % True Weighted %

 Low power consuming parts 41.7% 2.273%

 Maximize battery life 41.7% 2.273%

 Fewer parts 16.6% 0.905%

 TOTAL 100% 5.45%

Table 14 Pair-wise comparison chart for Durable Sub-Objective

Durable (10.91%) Wear-Resistant Strong Materials Water Resistant

Wear-Resistant * * * 0 0

Strong Materials 1 * * *

 Water Resistant 1 0.5 * * *

Durable Score + 1

 Wear-Resistant 1

 Strong Materials 2.5

 Water Resistant 2.5

 TOTAL 6

 High Ranking Weighted % True Weighted %

 Wear-Resistant 16.6% 1.811%

 Strong Materials 41.6% 4.539%

 Water Resistant 41.6% 4.539%

 TOTAL 100% 10.90%

 *10.90 is a result of rounding

85

Table 15 Weighted benchmark chart for design alternatives

Weighted Benchmark Chart

 Weight Polar

Strap

 Electrodes +

Accel.

Sock

Design

Hand

Design
Minimal parts 2.73% 90.00% 60.00% 70.00% 70.00%

Parts easily

obtainable

3.82% 100.00% 70.00% 70.00% 70.00%

Easy to manufacture 3.27% 80.00% 50.00% 40.00% 65.00%

Low shipping weight 1.091% 80.00% 70.00% 90.00% 90.00%

Easy to calibrate 1.901% 80.00% 40.00% 30.00% 30.00%

Easy to read output 3.82% 90.00% 60.00% 90.00% 90.00%

Comfortable to wear 3.82% 90.00% 50.00% 60.00% 80.00%

Lightweight 3.18% 90.00% 50.00% 80.00% 75.00%

Fully enclosed

components

7.273% 100.00% 20.00% 90.00% 90.00%

No sharp

components

7.273% 100.00% 85.00% 95.00% 95.00%

Nontoxic

components

7.273% 100.00% 95.00% 95.00% 95.00%

Appropriately

sensitive

6% 85.00% 60.00% 50% 60%

Detects small and

large movements 6%

70.00%
60.00% 10% 10%

Not influenced by

vibrations

6% 90.00% 40.00% 10% 10%

High quality parts 2% 80.00% 85.00% 60% 80%

Less technical

support

6.363% 70.00% 60.00% 30.00% 40.00%

Little maintenance

required

5.454% 70.00% 55.00% 40.00% 50.00%

Fewer parts 2.727% 90.00% 70.00% 80.00% 70.00%

Higher quality parts 3.636% 90.00% 90.00% 90.00% 80.00%

Lower power

consuming parts

2.273% 70.00% 40.00% 80.00% 70.00%

Maximize battery

life

2.273% 70.00% 30.00% 70.00% 60.00%

Fewer Parts 0.905% 90.00% 70.00% 70.00% 70.00%

Wear Resistance 1.811% 80.00% 40.00% 30.00% 50.00%

Strong Materials 4.539% 90.00% 30.00% 30.00% 40.00%

Water Resistance 4.539% 50.00% 25.00% 40.00% 50.00%

Totals 100% 85.00% 56.6%

58.8% 62.57%

86

B – IRB Application Process

Cover Letter

Professor Rismiller, Chairman of the Institutional Review Board:

 This project is a continuation of a MQP project of the same name completed during the 2007-2008

academic year. The previous MQP was given IRB approval on March 13th, 2008, and considering this group’s

intention is to improve upon the previous project, the same study methodology will be used.

 Sincerely,

 Vinith Chemmalil

Marissa Gray

 Jennifer Keating

 Rebecca Kieselbach

 Sarah Latta

87

Application

If your project has any federal sponsorship (e.g. federal funding), either prime or pass-through, the WPI IRB is

not authorized to perform a review. Please contact Christina DeVries in Research Administration at (508) 831-

6716 for direction to an appropriate IRB. DO NOT submit an application to the WPI IRB.

This application is for: (Please check one) Expedited Review Full Review
WPI

IRB

Principal Investigator (PI) or Project Faculty Advisor: (NOT a student or fellow; must be a WPI employee)
use

only

Name: Robert Peura Tel No: (508)769-4784
E-Mail

Address: rpeura@aol.com

Department: Biomedical Engineering

Co-Investigator(s): (Co-PI(s)/non students)

Name: Tel No:
E-Mail

Address:

Name: Tel No:
E-Mail

Address:

Student Investigator(s):

Name: Sarah Latta Tel No: (508) 713-5631
E-Mail

Address: slatta@wpi.edu

Name: Vinith Chemmalil Tel No: (617) 669-7606
E-Mail

Address: xxxvtcxxx@wpi.edu

Check if: Undergraduate project (MQP, IQP, Suff., other) MQP - Diabetes Activity Monitor

 Graduate project (M.S. Ph.D., other)

Has an IRB ever suspended or terminated a study of any investigator listed above?

No Yes (Attach a summary of the event and resolution.)

Vulnerable Populations: The proposed research will involve the following (Check all that apply):

pregnant women human fetuses neonates minors/children prisoners

students individuals with mental disabilities individuals with physical disabilities

88

Collaborating Institutions: (Please list all collaborating Institutions.)

Locations of Research: (If at WPI, please indicate where on campus. If off campus, please give details of locations.)

WPI Fitness Center and Salisbury Laboratories 311

Project Title: Diabetes Activity Monitor

Funding: (If the research is funded, please enclose one copy of the research proposal or most recent draft with your

application.)

Funding Agency: WPI Fund:

Human Subjects Research: (All study personnel having direct contact with subjects must take and pass a training

course on human subjects research. There is a link to a web-based training course that can be accessed under the

Training link on the IRB web site http://www.wpi.edu/Admin/Research/IRB/training.html. The IRB requires a copy of the

completion certificate from the course or proof of an equivalent program.)

Anticipated Dates of Research:

Start Date: 12/15/2008 Completion Date: 5/10/2008

89

Instructions: Answer all questions. If you are asked to provide an explanation, please do so with adequate details. If

needed, attach itemized replies. Any incomplete application will be returned.

1.) Purpose of Study: (Please provide a concise statement of the background, nature and reasons for the proposed

study. Insert below using non-technical language that can be understood by non-scientist members of the IRB.)

The device built during this project needs to be tested to ensure its level of accuracy. The device will use a strap

placed around the chest to measure heart rate and movement. This information will be sent to a wireless device with a

display of the information.

2.) Study Protocol: (Please attach sufficient information for effective review by non-scientist members of the IRB.

Define all abbreviations and use simple words. Unless justification is provided this part of the application must not

exceed 5 pages. Attaching sections of a grant application is not an acceptable substitute.)

A.) For biomedical, engineering and related research, please provide an outline of the actual experiments to be

performed. Where applicable, provide a detailed description of the experimental devices or procedures to be used,

detailed information on the exact dosages of drugs or chemicals to be used, total quantity of blood samples to be used,

and descriptions of special diets.

B.) For applications in the social sciences, management and other non-biomedical disciplines please provide a

detailed description of your proposed study. Where applicable, include copies of any questionnaires or standardized

tests you plan to incorporate into your study. If your study involves interviews please submit an outline indicating the

types of questions you will include.

C.) If the study involves investigational drugs or investigational medical devices, and the PI is obtaining an

Investigational New Drug (IND) number or Investigational Device Exemption (IDE) number from the FDA, please

provide details.

D.) Please note if any hazardous materials are being used in this study.

E.) Please note if any special diets are being used in this study.

3.) Subject Information:

A.) Please provide the exact number of subjects you plan to enroll in this study and describe your subject population.

(eg. WPI students, WPI staff, UMASS Medical patient, other)

90

Males: 20 Females: 20 Description: WPI Students

B.) Will subjects who do not understand English be enrolled?

No Yes (Please insert below the language(s) that will be translated on the consent form.)

C.) Are there any circumstances under which your study population may feel coerced into participating in this study?

No Yes (Please insert below a description of how you will assure your subjects do not feel coerced.)

D.) Are the subjects at risk of harm if their participation in the study becomes known?

No Yes (Please insert below a description of possible effects on your subjects.)

91

E.) How will subjects be recruited for participation? (Check all that apply.)

 Referral: (By whom) Project Memebers

 Direct subject advertising, including: (Please provide

a copy of the proposed ad. All direct subject advertising

must be approved by the WPI IRB prior to use.)

 Other: (Identify) Newspaper Bulletin board

 Database: (Describe how database populated) Radio Flyers

 Television Letters

F.) Have the subjects in the database agreed to be

contacted for research projects? No Yes N/A

 Internet E-mail

G.) Are the subjects being paid for participating? (Consider all types of reimbursement, ex. stipend, parking, travel.)

No Yes (Check all that apply.) Cash Check Gift certificate Other:

Amount of compensation

4.) Informed Consent:

A.) Who will discuss the study with and obtain consent of prospective subjects? (Check all that apply.)

 Principal Investigator Co-Investigator(s) Student Investigator(s)

B.) Are you aware that subjects must read and sign and Informed Consent Form prior to

conducting any study-related procedures and agree that all subjects will be consented prior to

initiating study related procedures? No Yes

C.) Are you aware that you must consent subjects using only the IRB-approved Informed Consent

Form? No Yes

D.) Will subjects be consented in a private room, not in a public space? No Yes

E.) Do you agree to spend as much time as needed to thoroughly explain and respond to any

subject’s questions about the study, and allow them as much time as needed to consider their

decision prior to enrolling them as subjects? No Yes

92

F.) Do you agree that the person obtaining consent will explain the risks of the study, the subject’s

right to decide not to participate, and the subject’s right to withdraw from the study at any time? No Yes

G.) Do you agree to either 1.) retain signed copies of all informed consent agreements in a secure

location for at least three years or 2.) supply copies of all signed informed consent agreements in

.pdf format for retention by the IRB in electronic form? No Yes

(If you answer No to any of the questions above, please provide an explanation.)

5.) Potential Risks: (A risk is a potential harm that a reasonable person would consider important in deciding whether

to participate in research. Risks can be categorized as physical, psychological, sociological, economic and legal, and

include pain, stress, invasion of privacy, embarrassment or exposure of sensitive or confidential data. All potential risks

and discomforts must be minimized to the greatest extent possible by using e.g. appropriate monitoring, safety devices

and withdrawal of a subject if there is evidence of a specific adverse event.)

A.) What are the risks / discomforts associated with each intervention or procedure in the study?

The band may be uncomfortable for some subjects and must be worn beneath clothing.

B.) What procedures will be in place to prevent / minimize potential risks or discomfort?

The band will be placed by the subject. If any adjustments are needed a member of the same gender will assist the

subject.

6.) Potential Benefits:

A.) What potential benefits other than payment may subjects receive from participating in the study?

N/A

B.) What potential benefits can society expect from the study?

93

This device will aid diabetic patients in determining correct insulin dosages.

7.) Data Collection, Storage, and Confidentiality:

A.) How will data be collected?

Through datasheets filled out by the student investigators.

B.) Will a subject’s voice, face or identifiable body features (eg. tattoo, scar) be recorded by audio or videotaping?

No Yes (Explain the recording procedures you plan to follow.)

C.) Will personal identifying information be recorded? No Yes (If yes, explain how the identifying information

will be protected. How will personal identifying information be coded and how will the code key be kept confidential?)

D.) Where will the data be stored and how will it be secured?

The data will be stored on only one computer and all hard copies of data will be collected at the end of the study and

destroyed.

E.) What will happen to the data when the study is completed?

All data, excepting what generalizations are reported, will be destroyed.

F.) Can data acquired in the study adversely affect a subject’s relationship with other individuals? (i.e. employee-

supervisor, student-teacher, family relationships)

No.

G.) Do you plan to use or disclose identifiable information outside of the investigation personnel?

 No Yes (Please explain.)

94

H.) Do you plan to use or disclose identifiable information outside of WPI including non-WPI investigators?

 No Yes (Please explain.)

8.) Deception: (Investigators must not exclude information from a subject that a reasonable person would want to

know in deciding whether to participate in a study.)

Will the information about the research purpose and design be withheld from the subjects?

 No Yes (Please explain.)

9.) Adverse effects: (Serious or unexpected adverse reactions or injuries must be reported to the WPI IRB within 48

hours. Other adverse events should be reported within 10 working days.)

What follow-up efforts will be made to detect any harm to subjects and how will the WPI IRB be kept

informed?

Upon their completetion in the study, subjects will have a one on one follow-up meeting to determine if there were any

adverse effects. If there were, the WPI IRB will be immediately informed.

10.) Informed consent: (Documented informed consent must be obtained from all participants in studies that involve

human subjects. You must use the templates available on the WPI IRB web-site to prepare these forms. Informed

consent forms must be included with this application. Under certain circumstances the WPI IRB may waive the

requirement for informed consent.)

Investigator’s Assurance:

I certify the information provided in this application is complete and correct.

I understand that I have ultimate responsibility for the conduct of the study, the ethical performance of the project, the

protection of the rights and welfare of human subjects, and strict adherence to any stipulations imposed by the WPI IRB.

95

I agree to comply with all WPI policies, as well all federal, state and local laws on the protection of human subjects in

research, including:

 ensuring the satisfactory completion of human subjects training.

 performing the study in accordance with the WPI IRB approved protocol.

 implementing study changes only after WPI IRB approval.

 obtaining informed consent from subjects using only the WPI IRB approved consent form.

 promptly reporting significant adverse effects to the WPI IRB.

Signature of Principal Investigator Date

Print Full Name and Title

Please return a signed hard copy of this application to the WPI IRB c/o Research Administration.

If you have any questions, please call (508) 831-6716.

96

Protocol

Protocol

Number:

DAM-020

Protocol Title: Preliminary Calibration and Testing of the Combined Heart Rate and

Accelerometer for Determining Energy Expenditure

Study Sponsor: Worcester Polytechnic Institute, Worcester, MA

Investigational

Product:

The Combined Heart Rate and Accelerometer Activity Monitoring Device

Study

Objectives:

Primary Study Objectives Include:

• Calibrate the combined heart rate and accelerometer monitoring device to

accurately predict energy expenditure;

• Screening for potential safety issues.

Study Design: Overview:

• Prospective, simultaneously-recruited, un-blinded, preliminary study

• Number of subjects = up to 40

• The primary study endpoint -device calibration- will be achieved through

having subjects perform a variety of different activities while measuring their

heart rate and accelerometer outputs in order to adjust the activity algorithm.

Healthy volunteers will be enrolled accordingly to the inclusion/exclusion

criteria. Prior to the activity period, the subjects will lie down in a comfortable

area for five minutes while wearing the investigational device and a pulse

oximeter. The resting heart rate from both devices will be obtained at the end

of five minutes. During the first activity period, the subjects will wear the

investigational device while performing different activities for five minutes

with at least five minutes of rest in between activities. The activities that the

subjects will be performing and the order that they will perform them in are

listed as follows: sitting, slow walk on the treadmill (3.10 mph), fast walk on

the treadmill (3.80 mph), and running on the treadmill (5.90 mph). The

activity counts and heart rate will be obtained from the investigational device

during the final minute of each activity. Within one minute after the

completion of the first activity period, the subject‟s heart rate will be recorded

using both the investigational device and a pulse oximeter. During the second

activity period, the subjects will be wearing the investigational device while

performing the following activities in the given order with five minutes rest in

between: ascending/descending stairs, sweeping, washing dishes, filing

papers, and standing. The activity counts and heart rate will be obtained from

the investigational device during the final minute of each activity. Within one

minute after the completion of the first activity period, the subject‟s heart rate

will be recorded using both the investigational device and a pulse oximeter.

The student investigators will compare the accelerometer counts per minute

against the counts per minute of the Actiheart combined heart rate and

accelerometer activity monitor published in the European Journal of Clinical

Nutrition. Using linear regression techniques, the student investigators will

determine the correlation coefficient between the two accelerometer‟s counts

per minute. This number will be used to adjust the existing Actiheart activity

algorithm to our accelerometer specifications.

Study Methods Primary Study Endpoints:

97

• Activity monitor calibration, preformed by adapting published algorithms

for an existing combined heart rate and movement sensor.

Key Secondary Study Endpoints Include:

• Heart Rate stand alone accuracy, measured by the difference between the

heart rate measurements obtained by the investigational device and the

measurements obtained by a pulse-oximeter.

Key Safety Assessments Include:

• Potential effects of electrode placement, as measured by observed and

reported discomfort and changes in skin during and after the testing period.

Study Conduct In Accordance With:

• Principles of Good Clinical Practice;

• Principles of Declaration of Helsinki (1989);

• Title 21 Parts 50, 54, 56, and 812 of the U.S. Code of Federal Regulations;

• The Medical Research Council‟s Code of Ethical Conduct for Research

Involving Humans (1997); and

• All federal, provincial, state, and local laws of the pertinent regulatory

authorities.

Subject

Selection

Major Study Inclusion Criteria Include:

• Men and women between 18 and 25 years of age; and

• Healthy volunteers

Major Study Exclusion Criteria Include:

• Subjects with a history of respiratory problems (e.g., asthma)

• Subjects with a history of heart problems (i.e. irregular heartbeat)

• Subjects who are recovering from injury or surgery; and

• Subjects who for any reason are unable to perform physical activities.

Study Plan Study Periods Include:

• Baseline Period (up to 30 days);

• Calibration and Testing Period (up to 4 hours);

• Follow Up Period (approximately 24 hours); and

• Analysis Period (up to 30 days).

Statistical

Methods

Statistical Methods Include:

• Primary study endpoint: Tests for differences in accuracy will be conducted

using a paired t-test.

Study Sample Size:

• Total Male Enrollment Population: up to 20 subjects

• Total Female Enrollment Population: up to 20 subjects

• Total Study Subject Enrollment Population: up to 40 subjects.

98

NIH Certificates
The National Institutes of Health (NIH) Office of Extramural Research certifies that Rebecca Kieselbach successfully

completed the NIH Web-based training course “Protecting Human Research Participants”.

Date of completion: 10/27/2008

Certification Number: 125235

99

100

IRB Approved Consent Form

101

IRB Approval Letter

102

Appendix C – Programming

Signal Acquisition Module Code

Main.c
/***************************** (C) Quickfilter Technologies, Inc.

*************************//*!

 @file main.c

 Program to demonstrate writing/reading of data to/from the QF4A512 using a TI

MSP430F449.

 $Id: main.c 121 2006-07-24 20:17:09Z jhopson $

 @formats

 - C

 - Doxygen (comment markup to produce HTML docs)

 @dependencies

 - Operating System: none

 - Toolset: IAR MSP

 - Platform: TI MSP-TS430PZ100 (any MSP430 should work)

 - CPU Architecture: MSP-430

 - CPU Variant: '149 (any MSP430 should work)

 - Device: USART0 and/or USART1

 - CPU byte order: little endian

*//**

 Below will appear on the main page (index.html) of the Doxygen HTML output.

******//*!

 @mainpage notitle

 @htmlonly

<p><div><table width="100%" border="0"><tr><td width="150">

 @endhtmlonly

 @image html QuickfilterLogo.png

 @htmlonly </td>

 <td padding-top="100px" padding-left="100px"> <h2>APPLICATION

NOTE QFAN003</h1>

 <h2>MSP-430 Host Software Example for the QF4A512</h2></td></tr></table><p>

 <hr>

 @endhtmlonly

 @section Introduction

 The QF4A512 is controlled with a set of registers visible through its SPI

interface. This

103

 Application Note provides a working example of the QF4A512 when connected to a TI

MSP-430

 microcontroller.

 The goals of this Project are –

 - Demonstrate QF4A512 operation in detail on a popular microcontroller (TI MSP-

430)

 - Provide a means for the developer to get a target running quickly with high-

level C code

 - Provide a clean user interface, which abstracts much of the QF4A512 interface

detail

 A .zip archive file, named QFAN003–Project Content.zip, contains the

technical content

 for this Application Note.

 @section demo Demonstration Circuit

 The platform for this demonstration is the TI MSP-TS430PZ100 Target Socket Module

connected to

 a Quickfilter QF4A512-DK Development Board, via the USART0 SPI interface.

 @verbatim

 3.3 MSP430F449 3.3 J5 QF4A512

3.3

 ^ -------------------- ^ --------------

- ^

 | 1,60 | | 94 | 11 17 |

| 20,32 |

 | 100 | /RST |<-------o------------------>| /RST

|--------+

 +-------| | 70 3 15 |

|

 | SIMO0/P3.1 |--------------------------->| SDI

|

 57 | | 69 5 14 |

| 1.8

 o----| SOMIO/P3.2 |<---------------------------| SDO

| 9,19, ^

 Test 58 | | 68 1 16 |

| 26,28, |

 Points o----| UCLK0/P3.3 |--------------------------->| SCLK

| 29 |

 59 | | 87 9 13 |

|--------+

 o----| P1.0 |<---------------------------| /DRDY

|

 | | 71 7 12 |

|

 82 | P3.0 |--------------------------->| /CS

| 10,11,18

 o----| ACLK/P1.5 | |

| 24,25,27

 Clock 83 | | 12 |

| 30,31

 Test o----| SMCLK/P1.4 P5.1 |-----+ |

|--------+

104

 86 | | | Activity | XIN XOUT

| |

 o----| MCLK/P1.1 | _|_ _ --------------

- ---

 | | \ / /| | 22 | 23

GND

 | | _v_ | |

 61,98,99 | | | +-|[]|-+

 +-------| XIN XOUT | \

 | -------------------- / 560 20 MHz

 --- | 8 | 9 | Ohms

 GND | | ---

 +-|[]|-+ GND

 32.768 KHz

 ^ ^ ^

 | |

|

 +------------- MSP-TS430PZ100 --------------+----------- QF4A512-DK

------------+

 @endverbatim

 The QF4A512 SPI pins are available on the Quickfilter QF100-DB23 Development

Board via J5, the

 External SPI header.

 The pinout for J5 is shown in the diagram above. SPI Header pins 2, 4, 6, 8, 10,

12 & 14 are ground.

 Leave pin 13 pulled high through R56.

 See Qf4a512-access.h for more information on the internals of the QF4A512.

 @section design Software Design

 The QF4A512 may be attached to devices of widely varying scale and integration.

To support

 both ends of the spectrum, there are two target models for the QF4A512, Small and

Large. This

 example code represents the @b Small model, which targets small microcontroller-

based

 systems. Some features and assumptions of the Small Model library are -

 - Assumes no operating system

 -# No file system

 -# No kernel logging

 -# Unstructured interrupt handling

 - Minimal memory footprint

 -# No heap (statically allocated buffers)

 -# Limited buffer size

 - Minimal runtime overhead in Release build

 - Minimal power consumption

 -# CPU idle while not processing data

 - Written in C (not C++)

 -# Unstructured exception handling

 -# Statically linked

 -# No namespaces

 - 8/16-bit SPI hardware

 - All channels sample at the same rate

105

 - Any number of channels supported

 -# Channel count is a compile-time option

 -# Channels must start at 0 and expand up

 Features and assumptions that are common to all models are -

 - Supports multiple logical devices

 - Interrupt and/or DMA driven

 - Structured C

 - Does not conform to a specific driver framework

 - QF4A512 driver decoupled from hardware by thin, simple hardware access API

 - Defensive coding measures in Debug build

 -# Extensive use of assertions

 - Source code internally documented to produce an HTML User Guide.

 @section structure Software Structure

 This code is intended to be a structured example that demonstrates the

configuration and

 operation of the QF4A512. Among its features are Configure mode reads and

writes, processing

 of Run mode data, and writing and reading the on-chip EEPROM. Its structure is

shown below.

 @verbatim

 Implemented in

 +-------------+--+

 | | Application Code | main.c

 | | |

 | Standard | +-----------------------------+

 | C | | QF4A512 Functional Driver | Qf4A512-

functional.c

 | Libraries +------------+-----------------------------+

 | | QF4A512 Access Driver | QF4A512-access.c

 | +--+

 | | Hardware Abstraction | Msp430-

SPI.c/Platform.c

 +-------------+--+

 @endverbatim

 QF4A512-access.c and QF4A512-functional.c are the focus of this project.

QF4A512-access.c

 provides raw data transfer functions and mode control. QF4A512-functional.c

provides a

 library of specific control features built on top of the API in QF4A512-access.c.

In Run

 mode, qf4a512_ReadSamples(), in QF4A512-access.c, is the go-to function for

reading the data

 stream from the device.

 QF4A512-access.c and QF4A512-functional.c are written without any SPI hardware

dependencies

 and are portable to any processor that uses little-endian byte order and provides

an

 underlying SPI API appropriate to the target device. Msp430-SPI.c provides the

SPI API in

106

 this case. Msp430-SPI.c and Platform.c are non-portable, and have to be modified

for each

 CPU variant and hardware platform, respectively.

 Note that this code does not demonstrate device calibration. See

 “QFAN012 - Calibration of the QF4A512”, at quickfiltertech.com for calibration

information.

 @section howto How To Build

 @subsection tools Tools Used

 This project was compiled using the Evaluation Version of the IAR Embedded

Workbench, available

 at www.iar.de, and the Texas Instruments MSP-FET430UIF USB-to-JTAG debug

interface, available

 at www.ti.com ($99).

 The Windows help file (HTML) documentation is automated using Doxygen, an open-

source tool

 available at www.doxygen.org. Doxygen can (optionally) use a open-source tool

called Dot to

 create call and inheritance graphs in the documentation. Dot is available at

www.graphviz.org.

 @subsection procedure Build Procedure

 To build this example, load the tools and unzip “QFAN003–Project Content.zip”.

Then double-

 click “IAR Workspace.eww” to open the workspace. To build, select Project-

>Rebuild All from

 the Main menu. This demonstration project should build with no warnings or

errors. Note that

 the stack size is set to 100 (64h) bytes.

 @image html IAR.png

 The inheritance graphs in the documentation are optional in Doxygen, but if Dot

is available

 and the HAVE_DOT option is set to 'yes' in Doxyfile, they will be produced.

 To build the HTML documentation, open Doxywizard from the Windows Start bar.

Then open

 "Document\Doxyfile" from the File->Open... dialog and select the Start button on

Doxywizard's

 main screen. Doxygen should produce no warnings or errors for this demonstration

project.

 @image html Doxywizard.png

 This source code has also been built with two other tools after minor

modification. The other

 tools are TI's Code Composer Essentials (www.ti.com) and Mspgcc

(mspgcc.sourceforge.net). The

 latter is free, works on virtually any operating system, and appears to be of the

same quality

 as the commercial tools.

107

 @section flow Design Flow with PC Software

 This section describes how to integrate the output of the Quickfilter PRO PC

software with

 this example code. It's important to point out that this flow is for designs

that have

 changing filter requirements during runtime. Designs that need one configuration

should

 consider programming the QF4A512 internal EEPROM once during production.

 The first step is to get the PC software to produce a C header (.h) file that

contains a

 table of configuration entries for the QF4A512. Be sure to use Version 3.1.1, or

later, of

 the PC software. The Export tab on the QFControl dialog, shown below, produces

that file.

 @image html QfPro-Export.png

 The table of entries contains both the control register entries and the FIR

filter

 coefficients. It is named “QFImageRegisterTable[]”. To load the table at

runtime, pass

 the array to the qf4a512_LoadImageRegisterTable() function.

 @subsection build Other Notes

 The assert() macro, and macros built upon it (AssertNonNull, etc.), are used to

instrument the

 code in the Debug build configuration. These statements are removed in Release

builds, and

 have no effect on code size or bandwidth in that case. However, they do consume

code space

 and runtime bandwidth in a Debug build. The tradeoff is an improvement in the

ability to

 catch many types of bugs earlier in the debug process. See assert.h in the C

library

 documentation.

 @par

 Please send any comments, bug reports, etc. relating to this example to

apps@quickfilter.com

*///***

//********************************FUNCTION

DECLARATIONS**//

void runtimerb(void);

void stoptimerb(void);

void send(void);

int currentTime(unsigned int);

void swDelay(unsigned int max_cnt);

void ZbSpi_Init(void);

108

//***

************//

__interrupt void TimerB0Isr(void);

unsigned short int timer = 0;

unsigned int numSamples = 0;

unsigned int rectSample = 0;

unsigned int sumSample = 0;

unsigned int multSamples = 0;

unsigned int txSample = 0;

unsigned char txSample1 = 0;

unsigned char txSample2 = 0;

#include "Msp430-SPI.h"

#include "Qf4a512-access.h"

#include "Qf4a512-functional.h"

#include "Project.h"

#include "Platform.h"

#include <msp430x44x.h>

// Include table with device settings produced by the Quickfilter Pro software

//#include "QFImageRegisterTable.h"

#define NUM_FRAMES_PER_SAMPLE_REQUEST 1

int main(void)

{

WDTCTL = WDTPW + WDTHOLD;

 // Initialize the platform

 QfPlat_Init();

 // Init QF4A512 and SPI hardware to which the QF4A512 is attached.

 qf4a512_Init();

 //Initialize the UART hardware to which the ZBEE is attached

 ZbSpi_Init();

 // Load the table of settings and FIR coefficients from the Quickfilter Pro PC

 // software. (see header above for instructions on how to generate the table)

// qf4a512_LoadImageRegisterTable(

// SPI0_HANDLE,

// (qf4a512_ConfigTableEntry *)QFImageRegisterTable,

// QF_IMAGE_REGISTER_TABLE_DIMENSION);

 WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer

 _BIS_SR(GIE); // Global Interrupt enable

 InfiniteLoop()

 {

 Byte Frame;

 /// Buffer to hold the samples currently being processed

109

 UInt16 Sample[NUM_FRAMES_PER_SAMPLE_REQUEST][

QF4A512_NUM_CHANNELS_ENABLED];

 // Get a sample of data

 Validate(

 qf4a512_ReadSamples(

 SPI0_HANDLE, // Device handle

 Sample, // Location to place the

samples

 NUM_FRAMES_PER_SAMPLE_REQUEST) // Number of frames to read

);

 // Start the timer

 runtimerb();

 // Rectify sample and remove offset for each channel and then sum the

samples

 for(Frame = 0;

 Frame < NUM_FRAMES_PER_SAMPLE_REQUEST;

 Frame++)

 {

 Byte Channel;

 for(Channel = 0;

 Channel < QF4A512_NUM_CHANNELS_ENABLED;

 Channel++)

 {

 rectSample = abs(Sample[Frame][Channel] - 32768);

 sumSample = rectSample + sumSample;

 }

 //Sum rectified&summed samples

 multSamples = multSamples + sumSample;

 numSamples++;

 if(currentTime(10)) //if 10 sec have passed

 {

 stoptimerb(); //Stop timer B and reset

timer to 0

 txSample = multSamples/numSamples; //Average samples from 10

second period

 txSample1 = txSample & (BIT7|BIT6|BIT5|BIT4|BIT3|BIT2|BIT1|BIT0);

 txSample2 = txSample >> 8;

 // Transmit Data

 U1TXBUF = txSample1;

 send();

 swDelay(5); // sw delay function

 U1TXBUF = txSample2;

 send();

 swDelay(5); // sw delay function

 runtimerb(); //Restart timer B

 numSamples = 0;

 rectSample = 0;

 sumSample = 0;

 multSamples = 0;

 txSample1 = 0;

 txSample2= 0;

110

 }

 }

 }

 // If your code ever stops reading Run mode data at runtime,

 // be sure to call qf4a512_ExitRunMode(SPI0_HANDLE);

}

//***

***********//

// @summary start TIMER B Delay 10 seconds

//***

**********//

void runtimerb(void)

{

 TBCTL= TBSSEL_1 + CNTL_0 + MC_1 + ID_1; //ACLK, 16 Bit, up mode, div=2

 TBR = 0x5000; //32768 clk tics = 10 sec

 TBCCTL0 = CCIE; //TBR interrupt enabled

}

//***

***********//

// @summary stop TIMER B

//***

***********//

void stoptimerb(void)

{

 TBCTL= MC_0; //stop timer

 TBCCTL0 &= ~CCIE; //TBR interrupt disabled

 timer = 0; //reset timer to 0

}

//***

***********//

// @summary determines if the number of seconds specified by delay has been

reached

//***

***********//

int currentTime(unsigned int delay)

{

 unsigned short int sec; //elapsed seconds

 _DINT(); //disable interrupts

 sec = (timer/32768)*10; //sec gets the value of 10*timer/32768

 _EINT(); //enable interrupts

111

 if (sec >= delay) //If the number of seconds is greater than the

timer delay...

 return 1; //return 1

 else

 return 0; //else return 0

}

//***

***********//

// @summary Timer B0 interrupt service routine.

//***

***********//

#pragma vector = TIMERB0_VECTOR

__interrupt void TimerB0Isr(void)

{

 timer++; //increment the timer

}

//***

***********//

// @summary Waits till TX buffer is done

//***

***********//

void send(void)

{

 char dmy = 0;

 while (!(IFG2 & UTXIFG1)) // USART1 TX buffer done

 dmy=dmy;

}

//***

***********//

// @summary Software delay

//***

***********//

void swDelay(unsigned int max_cnt)

{

 unsigned int cnt1=0, cnt2;

 while (cnt1 < max_cnt)

 {

 cnt2 = 0;

 while (cnt2 < 65535)

 cnt2++;

 cnt1++;

 }

}

112

/**

 ******** S P I F O R Z B E E

*******/

void ZbSpi_Init(void)

{

 //Configure UART1 for XBEE at 9600 baud Transmit -- Interrupts not enabled

 P3SEL |= 0x30; // P3.6,7 = USART1 TXD/RXD

 ME2 |= UTXE1 + URXE1; // Enable USART1 TXD/RXD

 U1CTL |= CHAR; // 8-bit character

 U1TCTL |= SSEL0; // BRCLK = SMCLK

 U1BR0 = 0x6D; // 1MHz 9600

 U1BR1 = 0x00; // 1MHz 9600

 U1MCTL = 0x03; // modulation

 U1CTL &= ~SWRST; // Initialize USART state machine

 P3DIR |= BIT6; // P3.6 output direction

 P3DIR &= ~BIT7; // P3.7 input direction

}

MSP430 – SPI.c

/***************************** (C) Quickfilter Technologies, Inc.

*************************//*!

 @file Msp430-SPI.c

 Abstraction of MSP-430 SPI port for use with Quickfilter device drivers.

 $Id: Msp430-SPI.c 125 2006-07-24 20:40:36Z jhopson $

 @formats

 - C

 - Doxygen (comment markup to produce HTML docs)

 @dependencies

 - Operating System: none

 - Toolset: IAR MSP

113

 - Platform: TI MSP-TS430PZ100 (any MSP430 should work)

 - CPU Architecture: MSP-430

 - CPU Variant: '449 (any MSP430 with the same USART should work)

 - Device: USART0

 - CPU byte order: little endian

 @notes

 -# This non-portable C file abstracts the SPI port of an MSP-430 for use by any

SPI-

 based Quickfilter devices. This code doesn't have any context about the

meaning

 of the data it is sending or receiving over the SPI port. It passes a raw

payload

 of bytes to or from the SPI port. Interrupts are used, DMA is not.

 @par

 @verbatim

 +-------------+--+

 | | Application Code |

 | Standard +--+ This

file

 | C | SPI-based Quickfilter Device Driver | --------

 | Libraries +--+ <--- provides

this API

 | | SPI Hardware Abstraction Library (HAL) |

 +-------------+--+

 @endverbatim

 @par

 This library *only* manipulates SPI hardware and its interrupt control

registers.

 It doesn't call any other libraries.

 -# SPI ports do not have to be opened or closed before use. All ports are

initialized

 at startup with one call to @ref QfSpi_Init.

 -# Low Power Mode 0 (LPM0) is used. The CPU & MCLK are stopped, but the FLL+,

SMCLK

 and ACLK are fully active. All enabled interrupts are acknwledged while in

LPM0.

 -# The Quickfilter software uses a device number to distinguish between

multiple devices.

 Only Device 0 (USART0) is implemented so far, but the interface can

accommodate

 adding more devices.

 -# SPI ports only emit the clock when actually clocking data.

 -# The SPI baud rate is a compile-time constant, SPI0_BAUD_DIVISOR, and so is

not

 adjustable at runtime.

 @references

 -# "MSP430x43x, MSP430x44x Mixed Signal Microcontroller (Rev. D) ", SLAS344D,

 Version Aug. 2004, Texas Instruments,

focus.ti.com/lit/ds/symlink/msp430f449.pdf

114

 -# "TI MSP430x4xx Family User's Guide", SLAU056, Version E, Texas Instruments,

 focus.ti.com/lit/ug/slau056e/slau056e.pdf

 -# IAR Embedded Workbench Help, Version 3.40.2.3, www.iar.de

 -# "doxygen", Version 1.4.6, Dimitri van Heesch, doxygen.org

*///***

#include "Project.h"

#include "Platform.h"

#include "Msp430-SPI.h" // Self include

/**

 L o c a l C o n s t a n t s , M a c r o s a n d T y p e s

*************/

/// Modulation control value for SPI0

#define SPI0_MODULATION_CONTROL 1

/// Baud rate divisor value for SPI0

#define SPI0_BAUD_DIVISOR 0x8

/// Current operation being performed by the SPI port.

typedef enum { Uninitialized, Idle, Write, BufferedRead, UnbufferedRead }

SpiState;

/**

 L o c a l V a r i a b l e s

*************/

/// SPI0 port state

static volatile SpiState Spi0State = Uninitialized;

//**** S P I 0 W r i t e - R e l a t e d D e f i n i t i o n s ****

/// Pointer to user buffer with data to send out SPI

static volatile Byte * Spi0WriteBuffer;

/// Index into user write buffer

static volatile Count Spi0WriteBufferIndex;

/// Total number of bytes to send from user buffer

static volatile Count Spi0WriteBufferLength;

115

//**** S P I 0 R e a d - R e l a t e d D e f i n i t i o n s ****

/// Function pointer to be called in receive ISR when a byte is received

static ReceiveCallback Spi0ReceiveCallback;

/// Buffer to which data will be placed for unbuffered reads

static volatile Byte * Spi0ReadBuffer;

/// Number of bytes in @ref Spi0ReadBuffer

static volatile Count Spi0ReadDataCount;

/// Number of bytes to read while in low power mode. For an UnbufferedRead,

/// is the total number of bytes. For BufferedRead mode, this is the number

/// of bytes in the read cycle, but buffering continues even after power mode

/// has been exited.

static volatile Count Spi0ReceivesUntilWakeup;

/**

 L o c a l F u n c t i o n P r o t o t y p e s

*************/

static Bool UnbufferedReadCallback(Byte NewByte);

__interrupt void Spi0ReadIsr(void);

/**

 ******** P u b l i c F u n c t i o n s

*******/

/**

**********//*!

116

 @summary Initialize the SPI devices before first use

 @notes

 -# Call this once before calling any other functions in this module, typically

early

 in system initialization. Also call if the device needs to be re-initializd

after

 a call to QfSpi_DeInit().

 -# The User's Guide gives the *required* initialization/re-configuration

process for

 the USART. "Failure to follow this process may result in unpredictable USART

 behavior"

 - Set SWRST

 - Initialize all USART registers with SWRST=1 (including UxCTL)

 - Enable USART module via the MEx SFRs (USPIEx)

 - Clear SWRST via software

 - Enable interrupts (optional) via the IEx SFRs (URXIEx and/or UTXIEx)

*//**

*************/

void QfSpi_Init(void)

{

 // Sanity check SPI0 state.

 Assert(Spi0State == Uninitialized);

 SetBit(UCTL0, SWRST); // Hold the USART in Reset while configuring

 ClearBit(IE1, URXIE0); // Disable SPI0 Receive Interrupts

 U0ME |= UTXE0 + URXE0; // Enable USART0 transmit and receive modules

 P3SEL |= 0x0E; // Select the SPI option for USART0 pins

(P3.1-3)

 UCTL0 |= CHAR + // Character length is 8 bits

 SYNC + // Synchronous Mode (as opposed to UART)

 MM; // 8-bit SPI Master **SWRST**

 UTCTL0 |= CKPH + // UCLK delayed by 1/2 cycle

 SSEL1 + SSEL0 + // Clock source is SMCLK (implies Master

mode)

 // 00 UCLKI 10 SMCLK

 // 01 ACLK (fastest) 11 SMCLK

 STC; // 3-pin SPI mode (STE disabled)

 URCTL0 = 0; // Receive control register

 UMCTL0 = SPI0_MODULATION_CONTROL; // No modulation

 UBR10 = GetHiByte(SPI0_BAUD_DIVISOR); // Set baud rate

 UBR00 = GetLoByte(SPI0_BAUD_DIVISOR);

 URCTL0 = 0; // Init receiver contol register

117

 ME1 |= UTXE0 + URXE0; // Enable USART0 SPI transmit and receive.

(note that

 // URXE0 and USPIE0 are one in the same on

the '449)

 ClearBit(UCTL0, SWRST); // Release USART state machine (begin

operation).

 // Doesn't do anything in SPI mode until a

write

 // to TXBUF0 occurs.

 Spi0State = Idle;

}

/**

**********//*!

 @summary Deinitialize the specified SPI device after last use.

 @notes

 -# Do not call any functions after calling this function, except QfSpi_Init().

 It may be called later to re-initialize the SPI port.

*//**

*************/

void QfSpi_DeInit(void)

{

 Assert(Spi0State != Uninitialized);

 SetBit(UCTL0, SWRST); // Reset USART state machine

 // Be sure StreamRead is off.

 QfSpi_Configure(0, SetUnbufferedReadMode, NULL, 0);

 Spi0State = Uninitialized;

}

/**

**********//*!

 @summary Write 'Length' bytes from 'Buffer' to SPI 0

 @param[in] Device Device number. 0 for USART0.

 @param[in] Buffer Buffer with input data

 @param[in] Length Number of bytes to write

 @notes

 -# Transmits are interrupt-based, but not buffered. This function returns only

 after the 'Buffer' has been sent. The CPU is put in Idle mode during the

wait

 to save power.

118

 -# Data is transmitted byte-for-byte as it appears in the buffer. Be sure the

higher

 level code handles any endian conversion before calling this function.

 -# SPI data received during the write cycle is discarded.

 -# SPI ports only emit the clock when actually transferring data.

 -# The SPI interface timing for this call is as follows. '^'=stable on

 rising edge, all fields are msb first

 @par

 @verbatim

 1 1 1 1 1 1 1 1 1 1 2 2 2 2

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3

 SCLK ^-^...

 SDO [Buffer[0]] [Buffer[1]] [Buffer[2]]...

 SDI x...

 @endverbatim

*//**

*************/

void QfSpi_Write(

 const Handle Device,

 const Byte * Buffer,

 const Count Length)

{

 // Sanity check input parameters & mode.

 Assert(Device == SPI0_HANDLE);

 AssertNonNull(Buffer);

 Assert(Length > 0);

 Assert(Spi0State == Idle);

 // Setup info used in transmit interrupt handler

 Spi0State = Write;

 Spi0WriteBuffer = (volatile Byte *)Buffer;

 Spi0WriteBufferIndex = 1;

 Spi0WriteBufferLength = Length;

 // Send first byte to get engine started. Write to TXBUF0 clears UTXIFG0.

 TXBUF0 = Buffer[0];

 // Enable SPI0 receive interrupts (clear flag before enabling)

 ClearBit(IFG1, URXIFG0);

 SetBit(IE1, URXIE0);

 // Idle in low power mode 0 while receiving.

 __low_power_mode_0();

 Spi0State = Idle;

}

119

/**

**********//*!

 @summary Read 'Length' bytes from the SPI port and return the data in 'Buffer'.

 @param[in] Device Device number. 0 for USART0.

 @param[out] Buffer Buffer to hold read data

 @param[in] Length Number of bytes to read. Must be less than

 QF_SPI_SIZE_OF_SPI_READ_BUFFER - 3.

 @return True if buffer overflowed, false otherwise.

 @notes

 -# This function waits until Buffer is full to return. The CPU is put in Idle

 mode during the wait to save power.

 -# Data appears in Buffer byte-for-byte as it arrives at the SPI port. Be sure

 higher level code handles any byte-order conversion of wide data.

 -# As SPI master, MSP-430 controls the clock.

 -# The SDO pin is always low (0) during a read cycle.

 -# The SPI interface timing for this call is as follows. '^'=stable on

 rising edge, all fields are msb first

 @verbatim

 1 1 1 1 1 1 1 1 1 1 2 2 2 2

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3

 SCLK ^-^...

 SDO xx___...

 SDI [Buffer[0]] [Buffer[1]] [Buffer[2]]...

 @endverbatim

*//**

*************/

Result QfSpi_Read(

 const Handle Device,

 Byte * Buffer,

 const Count Length)

{

 // Check input parameters.

 Assert(Device == SPI0_HANDLE);

 AssertNonNull(Buffer);

 Assert(Length > 0 &&

 Length <= QF_SPI_SIZE_OF_SPI_READ_BUFFER);

 Assert(Spi0State == Idle);

 // UnbufferedRead mode requires some setup first.

 Spi0State = UnbufferedRead;

 Spi0ReceivesUntilWakeup = Length;

 Spi0ReadBuffer = Buffer;

120

 Spi0ReadDataCount = 0;

 Spi0ReceiveCallback = UnbufferedReadCallback;

 // Enable SPI0 receive interrupts (clear flag then enable)

 ClearBit(IFG1, URXIFG0);

 SetBit(IE1, URXIE0);

 QfSpi_ResumeReceive(Device);

 // Use low power mode while waiting for

 // data transfer to complete.

 __low_power_mode_0();

 Spi0State = Idle;

 return Success;

}

/**

**********//*!

 @summary Configure aspects of SPI port operation.

 @param[in] Device Device number. 0 for USART0.

 @param[in] Request Type of configuration requested.

 @param[in,out] Buffer Any input or outout data associated with the

configuration request.

 @param[in,out] Length Size of input or output data appropraite to the Request.

 @return True if configuration successful, otherwise false.

*//**

*************/

Result QfSpi_Configure(

 const Handle Device,

 const QfSpi_ConfigRequest Request,

 void * Buffer,

 Count * Length)

{

 // Check input parameters.

 Assert(Device == SPI0_HANDLE);

 Assert(Spi0State == Idle || Spi0State == BufferedRead);

 Assert(Length == 0);

 ClearBit(IE1, URXIE0); // Disable SPI0 Receive Interrupts

 switch(Request)

 {

 // Start reading and continuously buffering data

 case SetBufferedReadMode:

121

 Spi0State = BufferedRead;

 Spi0ReceiveCallback = (ReceiveCallback)Buffer;

 // Enable SPI0 receive interrupts (clear flag then enable)

 ClearBit(IFG1, URXIFG0);

 SetBit(IE1, URXIE0);

 break;

 // Set device to read bytes only as requested. Note

 // that this is called to stop StreamRead mode.

 case SetUnbufferedReadMode:

 Spi0State = Idle;

 break;

 // Crash if any other Request value is used during Debug

if defined(Debug)

 default: Assert(0);

endif

 }

 return Success;

}

/**

 ******** U t i l i t y F u n c t i o n s

*******/

/**

**********//*!

 @summary Read a single byte from the SPI port.

 @param[in] Device Device handle

122

 @return The byte that was read from the SPI port.

 @notes

 -# This function doesn't handle any error conditions, including buffer

overflow. Only

 use it in Unbuffered mode.

*//**

*************/

inline

Byte QfSpi_ReadByte(const Handle Device)

{

 Byte ReturnValue;

 Assert(Spi0State != BufferedRead);

 QfSpi_Read(Device, &ReturnValue, 1);

 return ReturnValue;

}

/**

**********//*!

 @summary Write a single byte 'Value' to the QF4A512 Configuration space at

'Address'.

 @param[in] Device Device handle

 @param[in] Value Byte to write to Configuration register

*//**

*************/

inline

void QfSpi_WriteByte(

 const Handle Device,

 const Byte Value)

{

 QfSpi_Write(Device, &Value, 1);

}

/**

**********//*!

 @summary Write a two-byte 'Value' to the QF4A512 Configuration space at

'Address'.

 @param[in] Device Device handle

 @param[in] Value Byte to write to Configuration register

123

*//**

*************/

inline

void QfSpi_WriteUInt16(

 const Handle Device,

 UInt16 Value)

{

 // Data is always sent most-significant byte first, so

 // change byte order to put MSB at low address.

 Value = SwapUInt16Bytes(Value);

 QfSpi_Write(Device, (Byte *)&Value, 2);

}

/**

**********//*!

 @summary Continue receiving SPI0 bytes.

 @param[in] Device Device handle

 - This function only resumes an already-configured SPI port. The SPI port must

be

 configured before calling this function.

*//**

*************/

inline

void QfSpi_ResumeReceive(const Handle Device)

{

 // Check input parameters.

 Assert(Device == SPI0_HANDLE);

 // Receive clocking is started by loading the transmit register.

 TXBUF0 = 0;

}

/**

 ******** L o c a l (S t a t i c) F u n c t i o n s

124

*******/

/**

 ******** I n t e r r u p t S e r v i c e R o u t i n e s

*******/

// Suppress "Warning[Pa082]: undefined behavior: the order of volatile accesses

is

// undefined in this statement..." that occurs below. The order is unimportant

here.

#pragma diag_suppress = Pa082

/**

**********//*!

 @summary SPI0 receive interrupt service routine.

 @notes

 - The Status Register (SR) is pushed on the stack on entry to the ISR,

capturing the

 Global Interrupt Enable (GIE) bit and the power management bits. The SR is

restored

 from the stack when the Return from Interrupt (RETI) instruction executes at

the end

 of the ISR.

 @par

 The __low_power_mode_off_on_exit() call, used below, manipulates the copy of

SR on

 the stack.

*//**

*************/

#pragma vector = USART0RX_VECTOR

125

__interrupt void Spi0ReadIsr(void)

{

 if(Spi0State == Write)

 {

 // Means of measuring frequency and length of write ISRs during Debug

 SetTestPoint(Spi0WriteIsrTestPoint);

 // Sanity checks

 AssertNonNull(Spi0WriteBuffer);

 Assert(Spi0WriteBufferIndex <= Spi0WriteBufferLength);

 Assert(Spi0State == Write);

 // If there's more data to send, load TXBUF0 to start another transmit.

 if (Spi0WriteBufferIndex < Spi0WriteBufferLength)

 {

 TXBUF0 = Spi0WriteBuffer[Spi0WriteBufferIndex++];

 }

 else

 {

 // Disable transmit (technically 'receive') interrupts

 ClearBit(IE1, URXIE0);

 // Defensive measure. Null detected if ISR entered again.

 Spi0WriteBuffer = NULL;

 // Exit low power mode 0, and continue foreground operation

 // on return from this ISR

 __low_power_mode_off_on_exit();

 }

 ClearTestPoint(Spi0WriteIsrTestPoint);

 }

 else

 {

 // Means of measuring frequency and length of read ISRs during Debug

 SetTestPoint(Spi0ReadIsrTestPoint);

 // Sanity checks

 Assert(Spi0State == BufferedRead || Spi0State == UnbufferedRead);

 Assert(Spi0ReadDataCount <= QF_SPI_SIZE_OF_SPI_READ_BUFFER);

 AssertNonNull(Spi0ReceiveCallback);

 if ((*Spi0ReceiveCallback)(RXBUF0) == true)

 {

 // Start another cycle by loading the transmit register.

 TXBUF0 = 0;

 }

 else

 {

 // Exit low power mode 0, and continue foreground operation on return

from

126

 // this ISR. (note that this does not turn off SPI reads in

BufferedMode).

 __low_power_mode_off_on_exit();

 }

 ClearTestPoint(Spi0ReadIsrTestPoint);

 }

}

/**

**********//*!

 @summary Read ISR callback used for unbuffered reads.

 - This function is called during an interrupt service routine. Be sure to keep

 it as short as possible and only manipulate things that are appropriate to

this context.

*//**

*************/

Bool UnbufferedReadCallback(Byte NewByte)

{

 // Store received byte in buffer

 Spi0ReadBuffer[Spi0ReadDataCount] = NewByte;

 // Increase the count of bytes in Spi0ReadBuffer

 Spi0ReadDataCount++;

 // If wakeup counter is active, decrease the count of bytes before

 // low-power mode is turned off.

 if (--Spi0ReceivesUntilWakeup == 0)

 {

 return false;

 }

 return true;

}

Platform.c
/***************************** (C) Quickfilter Technologies, Inc.

*************************//*!

 @file Platform.c

 Abstracts a variety of operations that are specific to the way this platform

circuit

 is designed.

 $Id: Platform.c 121 2006-07-24 20:17:09Z jhopson $

127

 @formats

 - C

 - Doxygen (comment markup to produce HTML docs)

 @dependencies

 - Operating System: none

 - Toolset: IAR MSP

 - Platform: TI MSP-TS430PZ100 with QF4A512

 - CPU Architecture: MSP-430

 - CPU Variant: '449

 - Device: GPIO config of this platform

 - CPU byte order: n/a

 @notes

 -# Note that these are not MSP430 GPIO control functions per se. These

functions

 put the GPIO control in the context of their use on this MSP430/QF4A512

platform.

 @verbatim

 +-------------+--+

 | | Application Code | This

file

 | Standard +--+ --------

 | C | SPI-based Quickfilter Device Driver |

 | Libraries +--+ <--- provides

part of

 | | SPI Hardware Abstraction Library (HAL) | this

API

 +-------------+--+

 @endverbatim

 This library *only* manipulates SPI hardware and its interrupt control

registers, and

 calls a few Standard C library functions. It doesn't call any other

libraries.

 @references

 -# "QF4A512 4-Channel Programmable Signal Converter", Rev C3, Apr 06,

Quickfilter

 Technologies, Inc., www.quickfiltertech.com/files/QF4A512revC3.pdf

 -# "TI MSP430x4xx Family User's Guide", SLAU056, Version E, Texas Instruments,

 focus.ti.com/lit/ug/slau056e/slau056e.pdf

 -# IAR Embedded Workbench Help, Version 3.40.2.3, www.iar.de

 -# "doxygen", Version 1.4.6, Dimitri van Heesch, doxygen.org

*///***

#include "Project.h"

#include "Platform.h"

128

/**

 L o c a l C o n s t a n t s , M a c r o s a n d T y p e s

*************/

/**

 L o c a l V a r i a b l e s

*************/

/// Callback function for the DRDY active ISR

static FuncPtr DrdyCallbackFunc = NULL;

/**

 L o c a l F u n c t i o n P r o t o t y p e s

*************/

void InitClocking(void);

__interrupt void TimerA0Isr(void);

__interrupt void DrdyIsr(void);

/**

 ******** P u b l i c F u n c t i o n s

*******/

/**

**********//*!

 @summary Initialize platform-specific elements

129

*//**

*************/

void QfPlat_Init(void)

{

 WDTCTL = WDTPW + WDTHOLD; // Disable watchdog timer

 // Verify the byte order of the platform and

 // give a warning if it isn't little endian.

#if defined(Debug)

 UInt16 ByteOrderTestValue = 1;

 Byte * ByteOrderTestArray = (Byte *)&ByteOrderTestValue;

 Assert(ByteOrderTestArray[0] == 1);

#endif

 InitClocking(); // Setup clocks

 InitTestPointPort();

 ClearBit(P5OUT, BIT2); // Clear Valid Activity Indicator

 SetBit(P5DIR, BIT2); // pin and set to an output

 SetBit(P3OUT, BIT0); // Initialize /CS for QF4A512 on SPI0

 SetBit(P3DIR, BIT0);

 ClearBit(P1DIR, DRDY_BIT); // Set DRDY to an input

 // Global interrupt enable

 __enable_interrupt();

}

/**

**********//*!

 @summary Initialize the device clocking. ACLK runs off of the 32.768 KHz

crystal. MCLK

 runs off the DCO and supplies the CPU with 8MHz. SMCLK runs the

peripherals

 (SPI and timer) at 8MHz.

 - The DCO clock is generated internally and calibrated from the 32kHz crystal.

 - ACLK is brought out on pin P1.5 (82), MCLK is brought out out on pin P1.1 (86),

SMCLK

 is brought out on P1.4 (83).

 - The 32kHz crystal connects between pins XIN and XOUT. Nothing is connected to

XT2IN/XT2OUT.

 - Be sure not to let the DCO go above the max frequency of the device (8MHz, in

this case).

130

 - The Modulator is off (SCFQ_M in SCFQCTL), so the frequency will be as constant

as possible.

 - The value written to the SCFQCTL register is automatically incremented by one.

In other

 words, to achieve a frequency-multiplication factor of 32, 31 should be written

into the

 lower seven bits of SCFQCTL.

*//**

*************/

void InitClocking(void)

{

 FLL_CTL0 = _1010_0000;

 // |||| ||||

 // |||| |||+----- DCOF - clear any existing fault condition

 // |||| ||+------ LFOF - "

 // |||| |+------- XT10F - "

 // |||| +-------- XT20F - "

 // ||++---------- XCAPxPF - 8pF capacitance on XIN/XOUT

 // |+------------ XTS_FLL - low-frequency mode

 // +------------- DCOPLUS - use divided fDCO output

 FLL_CTL1 = _0010_0000;

 // |||| ||||

 // |||| ||++----- FLL_DIV - No ACLK division on P1.5

 // |||| |+------- SELS - SMCLK sourced by FLL

 // |||+-+-------- SELM - MCLK sourced by FLL

 // ||+----------- XT2OFF - no secondary clock input. turn oscillator

off

 // |+------------ SMCLKOFF - turn (leave) SMCLK on

 // +------------- (unused)

 SCFI0 = _0101_0000;

 // |||| ||||

 // |||| ||++----- MODx (LSBs) - TI guy doesn't know what these are for!

 // |||| || seems to work at 0.

 // ||++-++------- FN_x - DCO range from 2.8 to 26.6 MHz

 // ++------------ FLLDx - add additional x2

 SCFQCTL = _1111_1000;

 // |||| ||||

 // |+++-++++----- N - Feedback loop divisor (120d)

 // +------------- SCFQ_M - turn modulator off

 SetBitsUsingMask(P1DIR, _0011_0010); // Set P1.1, P1.4 and P1.5 as

outputs

 SetBitsUsingMask(P1SEL, _0011_0010); // Set P1.1, P1.4 and P1.5 as clock

out

}

131

/**

**********//*!

 @summary Activate chip select for the QF4A512 attached to SPI0.

 @notes

 -# Warning! QF4A512 logic requires DRDY to be high before taking /CS low in

Run mode.

 DRDY will remain low in Configure mode.

*//**

*************/

void QfPlat_ActivateQF4A512ChipSelect(void)

{

 ClearBit(P3OUT, BIT0);

}

/**

**********//*!

 @summary Deactivate chip select for the QF4A512 attached to SPI0.

 @notes

 -# /CS has to be low for at least four SYS_CLK (not SCLK) during each SPI bus

cycle.

 If /CS is de-asserted too soon, DRDY might not be cleared in time for the

next

 cycle. Although this would rarely be an issue, this code checks to be sure

DRDY

 is high before de-selecting /CS.

*//**

*************/

void QfPlat_DeactivateQF4A512ChipSelect(void)

{

 SetBit(P3OUT, BIT0);

}

/**

**********//*!

 @summary Set the direction of the DRDY pin for the QF4A512 connected to USART0.

*//**

*************/

void QfPlat_SetSpi0DrdyDirection(Bool Direction)

{

 if (Direction == Input)

132

 {

 ClearBit(P1DIR, BIT0);

 }

 else

 {

 SetBit(P1DIR, BIT0);

 }

}

/**

**********//*!

 @summary Set the state of the DRDY pin for the QF4A512 connected to USART0.

*//**

*************/

void QfPlat_SetSpi0DrdyState(Bool State)

{

 if (State == Active)

 {

 SetBit(P1OUT, BIT0);

 }

 else

 {

 ClearBit(P1OUT, BIT0);

 }

}

/**

**********//*!

 @summary Gets the state of the DRDY pin.

 @notes

 -# DRDY is on pin 1.0.

*//**

*************/

Bool QfPlat_IsDrdyPinActive(void)

{

 return IsBitSet(P1IN, BIT0) ? true : false;

}

/**

**********//*!

 @summary Configure interrupts from the DRDY pin.

133

*//**

*************/

inline

void QfPlat_ConfigureDrdyInterrupt(FuncPtr Handler)

{

 DrdyCallbackFunc = Handler;

 ClearBit(P1SEL, DRDY_BIT); // DRDY pin is a GPIO only (no special

functionality)

 ClearBit(P1DIR, DRDY_BIT); // Set DRDY to an input

 ClearBit(P1IES, DRDY_BIT); // DRDY interrupt occurs on rising edge

 ClearBit(P1IFG, DRDY_BIT); // Reset the DRDY bit interrupt flag

}

/**

**********//*!

 @summary Enable interrupts from the DRDY pin.

*//**

*************/

inline

void QfPlat_EnableDrdyInterrupts(void)

{

 // Only transitions, not static levels, cause interrupts. Be sure to set flag

 // if DRDY is already active.

 if (QfPlat_IsDrdyPinActive())

 {

 SetBit(P1IFG, DRDY_BIT);

 }

 SetBit(P1IE, DRDY_BIT); // Enable interrupts on DRDY pin

}

/**

**********//*!

 @summary Disable interrupts from the DRDY pin.

*//**

*************/

inline

void QfPlat_DisableDrdyInterrupts(void)

{

 ClearBit(P1IE, DRDY_BIT); // Disable interrupts on DRDY pin

}

134

/**

**********//*!

 @summary Toggle the state of the Activity LED on the platform.

*//**

*************/

#pragma inline

void QfPlat_ToggleActivityLED(void)

{

 ToggleBit(P5OUT, BIT2);

}

/// The number of TimerA ticks in one millisecond using SMCLK

#define TimerA0TicksPerMillisecond 0x1F98

/// Count of milliseconds until wakeup from low power mode. Used by QfPlat_Delay

static volatile UInt16 MillisecondsUntilWakeup;

/**

**********//*!

 @summary Delay the specified number of milliseconds

 @param[in] Milliseconds Number of milliseconds to delay

 @notes

 -# The accuracy of the delay isn't very important, but try to err on the side

of waiting

 too long.

 -# Be sure no other interrupts will occur during the wait time.

*//**

*************/

void QfPlat_DelayMs(const UInt16 Milliseconds)

{

 MillisecondsUntilWakeup = Milliseconds;

 CCTL0 = CCIE; // CCR0 interrupt enabled

 CCR0 += TimerA0TicksPerMillisecond; // Add Offset to CCR0

 TACTL = TASSEL_2 + // Use SMCLK,

 MC_2; // Count up countinuously. Match with

compare

 // latch (TBCL0)

 __low_power_mode_0(); // Conserve power while waiting

}

135

/**

 ******** U t i l i t y F u n c t i o n s

*******/

/**

 ******** L o c a l (S t a t i c) F u n c t i o n s

*******/

/**

 ******** I n t e r r u p t S e r v i c e R o u t i n e s

136

*******/

// Suppress "Warning[Pa082]: undefined behavior: the order of volatile accesses

is

// undefined in this statement..." that occurs below. The order is unimportant

here.

#pragma diag_suppress = Pa082

/**

**********//*!

 @summary Timer A0 interrupt service routine.

 @notes

 - Services QfPlat_DelayMs()

*//**

*************/

#pragma vector = TIMERA0_VECTOR

__interrupt void TimerA0Isr(void)

{

 SetTestPoint(TimerA0IsrTestPoint);

 if (--MillisecondsUntilWakeup == 0)

 {

 TACTL = 0; // Disable TimerA0 interrupt, and

turn

 // timer off to save power.

 __low_power_mode_off_on_exit();

 }

 else

 {

 CCR0 += TimerA0TicksPerMillisecond; // Add delay for next millisecond

 }

 ClearTestPoint(TimerA0IsrTestPoint);

}

/**

**********//*!

 @summary Interrupt service routine to handle transitions on the DRDY pin.

 @notes

 - The port interrupt flag has to be explicitly cleared.

137

 - This function is called during an interrupt service routine. Be sure to keep

 it as short as possible and only manipulate things that are appropriate to

this context.

*//**

*************/

#pragma vector = PORT1_VECTOR

__interrupt void DrdyIsr(void)

{

 SetTestPoint(Spi0DrdyIsrTestPoint);

 // Be sure DRDY bit is the one that trigerred the interrupt

 Assert(IsBitSet(P1IN, DRDY_BIT));

 AssertNonNull(DrdyCallbackFunc);

 // Reset the DRDY bit interrupt flag

 ClearBit(P1IFG, DRDY_BIT);

 // Call function using pointer supplied in call to

QfPlat_EnableDrdyInterrupts()

 DrdyCallbackFunc();

 ClearTestPoint(Spi0DrdyIsrTestPoint);

}

Qf4a512-access.c
/***************************** (C) Quickfilter Technologies, Inc.

*************************//*!

 @file Qf4a512-access.c

 Raw data transfer functions and device mode control of QF4A512 (Small model).

 $Id: Qf4a512-access.c 121 2006-07-24 20:17:09Z jhopson $

 @formats

 - C

 - Doxygen (comment markup to produce HTML docs)

 @dependencies

 - Operating System: none

 - Toolset: none

 - Platform: none

 - CPU Architecture: none

 - CPU Variant: none

 - Device: SPI port attached to a QF4A512

 - CPU byte order: little endian

138

 @notes

 -# This portable C file implements the QF4A512 Library layer in the figure

below.

 @par

 @verbatim

 +-------------+--+ This

file

 | | Application Code | ------

 | | |

 | Standard | +-----------------------------+

 | C | | QF4A512 Functional Driver |

 | Libraries +------------+-----------------------------+ <--- presents

this API

 | | QF4A512 Access Driver |

 | +--+ ---> & calls

this API

 | | SPI Hardware Abstraction Library (HAL) | (& some

standard C

 +-------------+--+ library

functions)

 @endverbatim

 @par

 The API supports reading and writing configuration data, reading and writing

the on-

 board EEPROM, and reading the Run mode data stream. The QF4A512 Functional

Driver

 uses this module to provide more context-specific functionality, such as

power

 management and reset management.

 @par

 This code does not directly access any hardware. It calls the layer below

(HAL)

 to send and receive data to and from the QF4A512. The HAL is non-portable.

 -# This module does not control which channels are enabled.

 -# This module's interface supports multiple devices, but only Device 0

(SPI0_HANDLE)

 is implemented at this time.

 -# The QF4A512 has three modes, Configure, Run and Eeprom. This module

attempts to make

 mode transitions transparent. For example, calling @ref

qf4a512_ReadConfigRegisters

 puts the device in Configure mode, if it's not there already. However,

explicit

 mode control is needed in one case, the transition out of Run mode. If Run

mode

 isn't explicitly exited, data will continue to be backup in the SPI buffer

until it

 overruns. When done with Run mode (i.e. making consecutive calls to

 qf4a512_ReadSamples), call @ref qf4a512_ExitRunMode.

 -# The EEPROM inside the QF4A512 is compatible with the ATMEL AT25320A. The

algorithms

139

 used to manage EEPROM are consistent with that device. This module does not

support

 the write protection mechanisms of the AT25320A.

 -# The QF4A512 control registers that are more than 8-bits are stored little

endian

 (lowest byte first) when streamed in Autoincrement mode. The Run mode data

from the

 device is big endian.

 @references

 -# "QF4A512 4-Channel Programmable Signal Converter", Rev C3, Apr 06,

Quickfilter

 Technologies, Inc., www.quickfiltertech.com/files/QF4A512revC3.pdf

 -# "SPI Serial EEPROMS", 3347J-SEEPR-10/05, Atmel Corp.,

 www.atmel.com/dyn/resources/prod_documents/doc3347.pdf

 -# "doxygen", Version 1.4.6, Dimitri van Heesch, doxygen.org

*///***

#include "Project.h"

#include "Platform.h"

#include "Qf4a512-access.h" // Self include

/**

 L o c a l C o n s t a n t s , M a c r o s a n d T y p e s

*************/

/// Mask for the Channel ID bits in the Flags byte of Run time data

#define CHANNEL_NUM_MASK _0110_0000

/// Number of bits to right shift the Flags byte to put

/// the Channel ID field in the bit 0 position.

#define CHANNEL_NUM_OFFSET 5

/// Number of output frames the Device 0 read buffer can hold

#define FRAME_CAPACITY_OF_DEVICE0_READ_BUFFER 8

///

// EEPROM Management

/// Number of bytes in one page of EEPROM memory

#define QF4A512_EEPROM_PAGE_SIZE 32

// EEPROM Instruction Codes

/// Instruction to enable EEPROM writing (WREN)

#define QF4A512_EEPROM_WRITE_ENABLE_INSTRUCTION 6

140

/// Instruction to disable EEPROM writing (WRDI)

#define QF4A512_EEPROM_WRITE_DISABLE_INSTRUCTION 4

/// Instruction to read the EEPROM status register (RDSR)

#define QF4A512_EEPROM_READ_STATUS_REGISTER_INSTRUCTION 5

/// Instruction to write the EEPROM status register (WRSR)

#define QF4A512_EEPROM_WRITE_STATUS_REGISTER_INSTRUCTION 1

/// Instruction to read the EEPROM memory (READ)

#define QF4A512_EEPROM_READ_INSTRUCTION 3

/// Instruction to write the EEPROM memory (WRITE)

#define QF4A512_EEPROM_WRITE_INSTRUCTION 2

// EEPROM Status Register Bits

/// Busy Indicator bit in the EEPROM Status register (RDY).

#define QF4A512_EEPROM_STATUS_BUSY_BIT BIT0

/// Write enable bit in the EEPROM Status register (WEN)

#define QF4A512_EEPROM_STATUS_WRITE_ENABLE_BIT BIT1

/// Block Protect Bit 0 in the EEPROM Status register (BP0)

#define QF4A512_EEPROM_STATUS_BLOCK_PROTECT_BIT0 BIT2

/// Busy Indicator Bit 1 in the EEPROM Status register (BP1)

#define QF4A512_EEPROM_STATUS_BLOCK_PROTECT_BIT1 BIT3

/// Write Protect Enable bit in the EEPROM Status register (WPEN)

#define QF4A512_EEPROM_STATUS_WRITE_PROTECT_BIT BIT7

/// Operating modes for the QF4A512.

typedef enum {

 Uninitialized = 0,

 Run,

 Configure,

 Eeprom

} qf4a512_Mode;

/**

 L o c a l V a r i a b l e s

*************/

/// Current operating mode of the QF4A512

141

static qf4a512_Mode DeviceMode = Uninitialized;

/// Frame data buffer queue data in BufferedRead mode

static volatile UInt16 Device0ReadBuffer [FRAME_CAPACITY_OF_DEVICE0_READ_BUFFER

]

 [QF4A512_NUM_CHANNELS_ENABLED];

/// Location in @ref Device0ReadBuffer where next byte will be inserted

static volatile Count Device0FrameInsertIndex;

/// Location in @ref Device0ReadBuffer where next byte will be retrieved

static volatile Count Device0FrameExtractIndex;

/// Number of bytes in @ref Device0ReadBuffer

static volatile Count Device0FrameCount;

/// Channel number within a frame

static volatile Count Device0Channel;

/// Byte number within a sample (3 bytes per sample - Flags + 2-byte sample)

static volatile Count Device0ByteNum;

/**

 L o c a l F u n c t i o n P r o t o t y p e s

*************/

static void PutQF4A512InConfigureMode(const Handle Device);

static void PutQF4A512InRunMode(const Handle Device);

static void PutQF4A512InEepromMode(const Handle Device);

static Byte GetEepromStatus(const Byte Device);

static Bool IsEepromReady(const Byte Device);

static Bool Device0BufferedReadCallback(Byte NewByte);

static void Device0DrdyCallback(void);

/**

 ******** P u b l i c F u n c t i o n s

*******/

142

/**

**********//*!

 @summary Initialize all QF4A512 devices before first use

 - Call this first, before calling any other functions in this module, typcially

 during system initialization. Also use if the devices need to be re-initializd

 after a call to @ref qf4a512_DeInit().

 - No other initizlization is required. Devices don't need to be individually

opened.

 - This init leaves the QF4A512(s) in Configure mode, even if the AutoStart

feature

 is enabled on the device.

 - Before initializing a QF4A512, this code needs to know whether the device is

 currently in Configure or Run mode (the interface is different in each mode).

 This is done with the DRDY pin.

 @par

 First, be sure DRDY is an input to the microcontroller. Be sure /CS is high

then

 wait at more than the longest Run mode frame time and check DRDY. If it's low

 the device is in Configure mode. If DRDY is high, the QF4A512 is in Run mode.

 @par

 Why do you have to wait if DRDY is low? In Run mode DRDY is an output pin that

 will change state per the Run mode interface timing. That timing dicates that

 DRDY go high when new data is ready (if /CS is high). New data will always be

 ready every frame period, so DRDY will go high within that time if in Run mode.

*//**

*************/

void qf4a512_Init(void)

{

 // Sanity check device mode.

 Assert(DeviceMode == Uninitialized);

 // Initialize the SPI port(s) this module will use.

 QfSpi_Init();

 // Detect existing device mode (See note above)

 QfPlat_SetSpi0DrdyDirection(Input);

 QfPlat_DelayMs(200 /*ms*/);

 if(QfPlat_IsDrdyPinActive() == true)

 {

 DeviceMode = Run;

143

 PutQF4A512InConfigureMode(SPI0_HANDLE);

 }

 else // Device is in Config mode

 {

 // Config drives the DRDY pin as low output

 QfPlat_SetSpi0DrdyState(Low);

 QfPlat_SetSpi0DrdyDirection(Output);

 DeviceMode = Configure;

 // To access coefficient memory in Configure mode, the SPI_CTRL[

ram_run_mode]

 // bit must be cleared so the coefficient area can synchronize to the SPI

clock,

 // not the internal clock (clk_sys).

 //

 // Warning! Be sure 'DeviceMode = Configure' before calling any

qf4a512_...

 // functions (as done below), or mayhem might ensue.

 Byte CurrentSpiCtrl = qf4a512_ReadConfigByte(SPI0_HANDLE,

QF4A512_SPI_CTRL_ADDRESS);

 SetBit(CurrentSpiCtrl, BIT0);

 qf4a512_WriteConfigByte(SPI0_HANDLE, QF4A512_SPI_CTRL_ADDRESS,

CurrentSpiCtrl);

 }

 // Sanity check the target device type.

 Assert(qf4a512_ReadConfigByte(SPI0_HANDLE, QF4A512_GLBL_ID_ADDRESS) ==

QF4A512_CHIP_ID_NUMBER &&

 qf4a512_ReadConfigByte(SPI0_HANDLE, QF4A512_DIE_REV_ADDRESS) >=

QF4A512_MINIMUM_DIE_REV_NUMBER);

 // Set the autoincrement bit in SPI_CTRL so sequences > 1 byte can be

sent/received.

 qf4a512_WriteConfigByte(SPI0_HANDLE, QF4A512_SPI_CTRL_ADDRESS, _0000_1000);

 // Verify that autoincrement got turned on

 Assert(qf4a512_ReadConfigByte(SPI0_HANDLE, QF4A512_SPI_CTRL_ADDRESS) &

_0000_1000);

}

/**

**********//*!

 @summary Deinitialize all QF4A512 devices after last use.

144

 - Do not call any functions other than @ref qf4a512_Init() after calling this

function.

 - The device may be in any power state prior to entering this function.

 - Upon return, the device should consume the same or less power than the Sleep

power state.

 - Devices don't need to be individually closed.

*//**

*************/

void qf4a512_DeInit(void)

{

 // Sanity check device mode.

 Assert(DeviceMode != Uninitialized);

 QfSpi_DeInit();

 DeviceMode = Uninitialized;

}

/**

**********//*!

 @summary Reads 'Length' Run mode samples from the QF4A512 into 'Buffer'.

 @param[in] Device Device handle

 @param[out] Buffer Receives frames of 16-bit sample data

 @param[in] Length Number of frames of data to read

 @return Always Success, for now.

 - Warning! This function only works when all channels are active and sampling at

 the same frequency. If the channels have different sampling frequencies, this

 function provides no means of knowing which samples are valid for a given

frame.

 (single-channel high-speed mode is not supported)

*//**

*************/

Result qf4a512_ReadSamples(

 const Handle Device,

 UInt16 Buffer [][QF4A512_NUM_CHANNELS_ENABLED],

 const Count Length)

{

 Count Frame;

 // Sanity check input parameters

 Assert(Device == SPI0_HANDLE);

 AssertNonNull(Buffer);

 Assert(Length > 0);

145

 // If not in Run mode, go there now

 if (DeviceMode != Run)

 {

 PutQF4A512InRunMode(Device);

 }

 for(Frame = 0;

 Frame < Length;

 Frame++)

 {

 Count Channel;

 if(Device0FrameCount == 0)

 {

 // Use low power mode while waiting for the next frame.

 __low_power_mode_0();

 }

 // Store the received data in the Caller's buffer.

 for(Channel = 0;

 Channel < QF4A512_NUM_CHANNELS_ENABLED;

 Channel++)

 {

 Buffer[Frame][Channel] = Device0ReadBuffer[

Device0FrameExtractIndex][Channel];

 }

 // Advance frame index to next position. Wrap to the

 // the beginning if it goes beyond the end.

 Device0FrameExtractIndex++;

 Device0FrameExtractIndex %= FRAME_CAPACITY_OF_DEVICE0_READ_BUFFER;

 // Decrease the count of frames in Device0ReadBuffer

 Device0FrameCount--;

 }

 return Success;

}

/**

**********//*!

 @summary Read 'Length' configuration registers into 'Buffer' starting at

'StartingAddr'.

 @param[in] Device Device handle

 @param[in] StartingAddr Register or EEPROM address at which to start writing

data

146

 @param[out] Buffer Pointer to data to be written

 @param[in] Length Number of bytes in WriteBuff to write

 @return 'Success' if configuration successful, otherwise a negative value error

code.

 - The QF4A512 interface timing for reading configuration registers is as follows.

 All fields are msb first and '^'=stable on rising edge.

 @verbatim

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3

3 3 3 3 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4

5 6 7 8 9

 SCLK ^-

^-^-^-^-^...

 SDO 1 [------ StartingAddr -----] x

x x x x x...

 SDI x x x x x x x x x x x x x x x x [Buffer[0]] [Buffer[1]] [

Buffer[2]]...

 _

 /CS

|__..

.|

 /DRDY

__...

 @endverbatim

*//**

*************/

void qf4a512_ReadConfigRegisters(

 const Handle Device,

 Count StartingAddr,

 Byte * Buffer,

 const Count Length)

{

 // Sanity check input parameters

 Assert(Device == SPI0_HANDLE);

 Assert(StartingAddr + Length <= QF4A512_MAX_REGISTER_ADDRESS);

 AssertNonNull(Buffer);

 Assert(Length > 0);

 // Put device in Configure mode if not there already

 if (DeviceMode != Configure)

 {

 PutQF4A512InConfigureMode(Device);

 }

 // Prepare address.

 StartingAddr <<= 1; // Address is offset by 1

147

 SetBit(StartingAddr, BIT15); // 1 in msb indicates read

 // QF4A512 read configuration data frame

 QfPlat_ActivateQF4A512ChipSelect(); // 1. Activate /CS

 QfSpi_WriteUInt16(Device, StartingAddr); // 2. Send address

 QfSpi_Read(Device, Buffer, Length); // 3. Read the data

 QfPlat_DeactivateQF4A512ChipSelect(); // 4. Deactivate /CS

}

/**

**********//*!

 @summary Write 'Length' configuration registers from 'Buffer' starting at

'StartingAddr'.

 @param[in] Device Device handle

 @param[in] StartingAddr Register or EEPROM address at which to start writing

data

 @param[in] Buffer Pointer to data to be written

 @param[in] Length Number of bytes in WriteBuff to write

 @return 'Success' if configuration successful, otherwise a negative value error

code.

 - The QF4A512 interface timing for writing configuration registers is as follows.

 All fields are msb first and '^'=stable on rising edge.

 @verbatim

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3

3 3 3 3 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4

5 6 7 8 9

 SCLK ^-

^-^-^-^-^...

 SDO 0 [------ StartingAddr -----] x [Buffer[0]] [Buffer[1]] [

Buffer[2]]...

 SDI x

x x x x x...

 _

 /CS

|__..

.|

 /DRDY

__...

 @endverbatim

*//**

*************/

Result qf4a512_WriteConfigRegisters(

148

 const Handle Device,

 Count StartingAddr,

 const Byte * Buffer,

 const Count Length)

{

 // Sanity check input parameters

 Assert(Device == SPI0_HANDLE);

 Assert(StartingAddr + Length <= QF4A512_MAX_REGISTER_ADDRESS);

 AssertNonNull(Buffer);

 Assert(Length > 0);

 // Put device in Configure mode if not there already

 if (DeviceMode != Configure)

 {

 PutQF4A512InConfigureMode(Device);

 }

 // Address to device is offset 1 bit to the left

 StartingAddr <<= 1;

 // QF4A512 writeconfiguration data frame

 QfPlat_ActivateQF4A512ChipSelect(); // 1. Activate /CS

 QfSpi_WriteUInt16(Device, StartingAddr); // 2. Send address

 QfSpi_Write(Device, Buffer, Length); // 3. Write the data

 QfPlat_DeactivateQF4A512ChipSelect(); // 4. Deactivate /CS

 return Success;

}

/**

**********//*!

 @summary Read 'Length' EEPROM bytes into 'Buffer' starting at 'StartingAddr'.

 @param[in] Device Device handle

 @param[in] StartingAddr Register or EEPROM address at which to start writing

data

 @param[out] Buffer Pointer to data to be written

 @param[in] Length Number of bytes in WriteBuff to write

 @return 'Success' if configuration successful, otherwise a negative value error

code.

 - The EEPROM read interface is as follows. All fields are msb first and

'^'=stable

 on rising edge.

 @verbatim

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3

3 3 3 3 3

149

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4

5 6 7 8 9

 SCLK ^-

^-^-^-^-^...

 SDO 0 0 0 0 x 0 1 1 [-------- StartingAddr -------] x x x x x x x x x x x

x x x x x...

 SDI x [Buffer[0]] [

Buffer[1]]...

 _

 /CS

|__..

.|

__

 /DRDY

...

 @endverbatim

 - The Address field of the EEPROM is in little endian byte order, which is

opposite

 from the Configuration registers of the QF4A512. However, this module handles

the

 reversal (e.g. there's no need to alter StartingAddr).

*//**

*************/

/*

Result qf4a512_ReadEeprom(

 const Handle Device,

 const Count StartingAddr,

 Byte * Buffer,

 const Count Length)

{

 // Sanity check input parameters

 Assert(Device == SPI0_HANDLE);

 Assert(StartingAddr + Length <= QF4A512_MAX_EEPROM_ADDRESS);

 AssertNonNull(Buffer);

 Assert(Length > 0);

 // Put device in Configure mode if not there already

 if (DeviceMode != Eeprom)

 {

 PutQF4A512InEepromMode(Device);

 }

 // Wait for EEPROM to be ready.

 WaitFor(IsEepromReady(Device) == true);

 // Atmel AT25320A EEPROM read cycle

 QfPlat_ActivateQF4A512ChipSelect(); // 1. Activate

/CS

 QfSpi_WriteByte(Device, QF4A512_EEPROM_READ_INSTRUCTION); // 2. Send the

Read instruction

150

 QfSpi_WriteUInt16(Device, StartingAddr); // 3. Send the

address

 QfSpi_Read(Device, Buffer, Length); // 4. Read the

data

 QfPlat_DeactivateQF4A512ChipSelect(); // 5. Deactivate

/CS

 return Success;

}

/**

**********//*!

 @summary Write 'Length' EEPROM bytes from 'Buffer' starting at 'StartingAddr'.

 @param[in] Device Device handle

 @param[in] StartingAddr Register or EEPROM address at which to start writing

data

 @param[in] Buffer Pointer to data to be written

 @param[in] Length Number of bytes in WriteBuff to write

 @return 'Success' if configuration successful, otherwise a negative value error

code.

 - The time between CS low and the first SCLK edge is not critical to the device.

 - Data received while performing this write is discarded.

 - EEPROM mode is distinct from Run mode.

 - This function is not aware of the means used by the lower-level HAL to access

 the QF4A512. It may be interrupt-based, DMA-based or polled.

 - In the diagrams below all fields are msb first and '^'=stable on rising edge.

 - The interface timing for writing EEPROM is as follows.

 @verbatim

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3

3 3 3 3 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4

5 6 7 8 9

 SCLK ^-

^-^-^-^-^...

 SDO 0 0 0 0 x 0 1 0 [------- StartingAddr ------] [Buffer[0]] [

Buffer[1]]...

 SDI x

x x x x x...

 _

_

151

 /CS

|__..

.|

__

 /DRDY

...

 @endverbatim

 - Although the time between CS low and the first SCLK edge is not critical, the

 low-to-high transition of the CS pin must occur during the SCK low-time

immediately

 after clocking in the D0 (LSB) data bit.

 - After each data byte is received, the EEPROM is received, the five low-order

 address bits are internally incremented by one; the hig-order bits of the

 address will remain constant. So, to write 32 bytes at a time, start on a

 32-byte boundary.

 - The EEPROM is automatically returned to the write disable state at the

completion

 of a write cycle.

 - The Address field of the EEPROM is in little endian byte order, which is

opposite

 from the Configuration registers of the QF4A512. However, this module handles

 the reversal (e.g. there's no need to alter StartingAddr).

*//**

*************/

/*

Result qf4a512_WriteEeprom(

 const Handle Device,

 const Count StartingAddr,

 const Byte * Buffer,

 const Count Length)

{

 /// Offset from StartingAddress from which data will be written on current

cycle.

 Count AddressOffset = 0;

 /// EEPROM address to which data will be written on the current cycle

 Count CurrentAddress;

 Count NumRemainingBytes; ///< Number of bytes still to be written

 Count BytesToWriteThisCycle; ///< Number of bytes to write on the current

cycle

 // Sanity check input parameters

 Assert(Device == SPI0_HANDLE);

 Assert(StartingAddr + Length <= QF4A512_MAX_EEPROM_ADDRESS);

 AssertNonNull(Buffer);

 Assert(Length > 0);

 // Put device in Configure mode if not there already

152

 if (DeviceMode != Eeprom)

 {

 PutQF4A512InEepromMode(Device);

 }

 // Wait for EEPROM to be ready.

 WaitFor(IsEepromReady(Device) == true);

 // The EEPROM works on 32-byte pages, starting at 32-byte boundaries (e.g. the

lower 5

 // bits are zero). Loop through as many pages as needed to write all the

data, taking

 // into account the odd sizes that may occur in the first and/or last pages.

 for(NumRemainingBytes = Length;

 NumRemainingBytes > 0;

 NumRemainingBytes -= BytesToWriteThisCycle)

 {

 CurrentAddress = StartingAddr + AddressOffset;

 // If address doesn't fall on a page boundary, calculate the number of

bytes from

 // the address up to the next page boundary. (note that this will only

occur on

 // the first write cycle).

 if (CurrentAddress % QF4A512_EEPROM_PAGE_SIZE > 0)

 {

 BytesToWriteThisCycle = QF4A512_EEPROM_PAGE_SIZE -

 (CurrentAddress % QF4A512_EEPROM_PAGE_SIZE);

 // Also look for the case where the data both starts

 // and ends within the bounds of a single page.

 if (NumRemainingBytes < BytesToWriteThisCycle)

 {

 BytesToWriteThisCycle = NumRemainingBytes;

 }

 }

 // If there is less than one full page of data remaining, the data count

is the

 // size of the write. (note that this will only occur on the last write

cycle).

 else if (NumRemainingBytes < QF4A512_EEPROM_PAGE_SIZE)

 {

 BytesToWriteThisCycle = NumRemainingBytes;

 }

153

 // All writes other than the special cases above are one full page in

length.

 // (note that this can occur on any write cycle, including the first or

last).

 else

 {

 BytesToWriteThisCycle = QF4A512_EEPROM_PAGE_SIZE;

 }

 // Sanity check the parameters for this write cycle

 Assert(CurrentAddress >= StartingAddr &&

 CurrentAddress < StartingAddr + Length);

 Assert(BytesToWriteThisCycle <= QF4A512_EEPROM_PAGE_SIZE);

 Assert((GetEepromStatus(Device) & 0x8c) == 0); // Be sure write

protection is off

 // Atmel AT25320A EEPROM write cycle.

 //

 // 1. Activate /CS

 // 2. Enable writes with the WREN instruction.

 // 3. Deactivate /CS

 QfPlat_ActivateQF4A512ChipSelect();

 QfSpi_WriteByte(Device, QF4A512_EEPROM_WRITE_ENABLE_INSTRUCTION);

 QfPlat_DeactivateQF4A512ChipSelect();

 Assert((GetEepromStatus(Device) & 2) == 2); // Double-check write

enable

 // 4. Activate /CS

 // 5. Send the Write instruction

 // 6. Send the address

 // 7. Send the data

 // 8. Deactivate /CS

 QfPlat_ActivateQF4A512ChipSelect();

 QfSpi_WriteByte(Device, QF4A512_EEPROM_WRITE_INSTRUCTION);

 QfSpi_WriteUInt16(Device, CurrentAddress);

 QfSpi_Write(Device, Buffer + AddressOffset, BytesToWriteThisCycle);

 QfPlat_DeactivateQF4A512ChipSelect();

 // 9. Wait for Status register to indicate 'Ready'.

 WaitFor(IsEepromReady(Device) == true);

 // Adjust the write address for the next cycle

 AddressOffset += BytesToWriteThisCycle;

 }

 return Success;

}

154

*/

/**

 ******** U t i l i t y F u n c t i o n s

*******/

/**

**********//*!

 @summary Read a single byte from the QF4A512 Configuration space at 'Address'.

 @param[in] Device Device handle

 @param[in] Address Device address from which byte will be read

 @return The byte that was read from the QF4A512.

*//**

*************/

inline

Byte qf4a512_ReadConfigByte(

 const Handle Device,

 const Count Address)

{

 Byte ConfigValue;

 // Get the requested configuration byte

 qf4a512_ReadConfigRegisters(

 Device,

 Address,

 &ConfigValue,

 1);

 return ConfigValue;

}

155

/**

**********//*!

 @summary Write a single byte 'Value' to the QF4A512 Configuration space at

'Address'.

 @param[in] Device Device handle

 @param[in] Address Device address from which byte will be read

 @param[in] Value Byte to write to Configuration register

*//**

*************/

inline

void qf4a512_WriteConfigByte(

 const Handle Device,

 const Count Address,

 const Byte Value)

{

 qf4a512_WriteConfigRegisters(

 Device,

 Address,

 &Value,

 1);

}

/**

**********//*!

 @summary Read a single byte from the QF4A512 EEPROM at 'Address'.

 @param[in] Device Device handle

 @param[in] Address EEPROM address from which byte will be read

 @return The byte that was read from the QF4A512 EEPROM.

*//**

*************/

/*

inline

Byte qf4a512_ReadEepromByte(

 const Handle Device,

 const Count Address)

{

 Byte EepromValue;

 // Get the requested EEPROM byte

 qf4a512_ReadEeprom(

 Device,

 Address,

 &EepromValue,

 1);

 return EepromValue;

}

156

*/

/**

**********//*!

 @summary Write a single byte to the QF4A512 EEPROM at 'Address'.

 @param[in] Device Device handle

 @param[in] Address EEPROM address to which byte will be written

 @param[in] Value Byte to write to Configuration register

*//**

*************/

/*

inline

void qf4a512_WriteEepromByte(

 const Handle Device,

 const Count Address,

 const Byte Value)

{

 qf4a512_WriteEeprom(

 Device,

 Address,

 &Value,

 1);

}

*/

/**

**********//*!

 @summary Stop the continuous sampling of data in Run mode.

 @param[in] Device Device handle

 - If this function isn't called after Run mode is finished, the SPI read buffer

will

 overflow.

*//**

*************/

inline

void qf4a512_ExitRunMode(const Handle Device)

{

 PutQF4A512InConfigureMode(Device);

}

/**

157

 ******** L o c a l (S t a t i c) F u n c t i o n s

*******/

/**

**********//*!

 @summary Put the specified QF4A512 in Run mode

 @param[in] Device Device handle

 - It's OK if the device is already in Run mode.

 - qf4a512_Init() calls this function before this driver is fully operational. It

assumes

 things are done in the manner below. Check that interaction before changing

this function.

*//**

*************/

static void PutQF4A512InRunMode(const Handle Device)

{

 // Sanity check Device handle

 Assert(Device == SPI0_HANDLE);

 if (DeviceMode == Run)

 {

 return;

 }

 // Device has to be configured before Run mode. If in

 // Eeprom mode, setup for configuration first.

 else if (DeviceMode != Configure)

 {

 PutQF4A512InConfigureMode(Device);

 }

 // The SPI_CTRL[ram_run_mode] bit must be cleared so the coefficient memory

 // area can synchronize to the internal clock (clk_sys), not the SPI clock, in

 // Run mode.

 //

 // This also sets multi-channel mode, turns parity off, enables autoincrement,

 // and sets Channel 1 as the fast channel (the one that drives DRDY)

158

 qf4a512_WriteConfigByte(Device, QF4A512_SPI_CTRL_ADDRESS, _0000_1001);

 // DRDY is an input in Run mode

 QfPlat_SetSpi0DrdyDirection(Input);

 // Start Run mode

 qf4a512_WriteConfigByte(Device, QF4A512_RUN_MODE_ADDRESS, _0000_0001);

 // From here on, until the device is put back in Configure or Eeprom mode, the

 // QF4A512 interface operates differently. See the QF4A512 datasheet.

 // Initialize circular frame buffer parameters

 Device0FrameInsertIndex = 0;

 Device0FrameExtractIndex = 0;

 Device0FrameCount = 0;

 // Turn on buffering for the SPI port. This sets up, but doesn't start data

 // capture.

 QfSpi_Configure(

 Device,

 SetBufferedReadMode, // Specify Run mode

 (void *)Device0BufferedReadCallback, // Call this when each byte arrives

 0);

 // Configure DRDY pin interrupts. A low-to-high on DRDY will start data

capture.

 QfPlat_ConfigureDrdyInterrupt(Device0DrdyCallback);

 // Catch the next high transition of DRDY

 QfPlat_EnableDrdyInterrupts();

 DeviceMode = Run;

}

/**

**********//*!

 @summary Put the specified QF4A512 in Configure mode

 @param[in] Device Device handle

 - It's OK if the device is already in Configure mode.

*//**

*************/

static void PutQF4A512InConfigureMode(const Handle Device)

{

 // Sanity check Device handle

159

 Assert(Device == SPI0_HANDLE);

 if (DeviceMode == Configure)

 {

 return;

 }

 else if (DeviceMode == Run)

 {

 /// Send this to a device in Run mode to put it in Configure mode

 static const Byte ExitRunMode[] = { QF4A512_RUN_MODE_ADDRESS, 0, 0 };

 QfPlat_DisableDrdyInterrupts();

 QfSpi_Configure(Device, SetUnbufferedReadMode, NULL, 0);

 // Get device back to Configure mode

 QfPlat_ActivateQF4A512ChipSelect(); // 1. Activate /CS

 QfSpi_Write(Device, (Byte *)&ExitRunMode, 3); // 2. Send command data

 QfPlat_DeactivateQF4A512ChipSelect(); // 3. Deactivate /CS

 }

 // This mode drives the DRDY pin as low output

 QfPlat_SetSpi0DrdyState(Low);

 QfPlat_SetSpi0DrdyDirection(Output);

 DeviceMode = Configure;

 // To access coefficient memory in Configure mode, the SPI_CTRL[ram_run_mode

]

 // bit must be cleared so the coefficient area can synchronize to the SPI

clock,

 // not the internal clock (clk_sys).

 //

 // Warning! Be sure 'DeviceMode = Configure' before calling any qf4a512_...

 // functions (as done below), or mayhem might ensue.

 Byte CurrentSpiCtrl = qf4a512_ReadConfigByte(Device, QF4A512_SPI_CTRL_ADDRESS

);

 SetBit(CurrentSpiCtrl, BIT0);

 qf4a512_WriteConfigByte(Device, QF4A512_SPI_CTRL_ADDRESS, CurrentSpiCtrl);

}

/**

**********//*!

 @summary Put the specified QF4A512 in Eeprom mode

 @param[in] Device Device handle

160

 - It's OK if the device is already in Eeprom mode.

*//**

*************/

/*

static void PutQF4A512InEepromMode(const Handle Device)

{

 // Sanity check Device handle

 Assert(Device == SPI0_HANDLE);

 if (DeviceMode == Eeprom)

 {

 return;

 }

 // If device isn't in Configure mode, get it there first.

 // From there, just set DRDY high to get to Eeprom mode.

 else if (DeviceMode != Configure)

 {

 PutQF4A512InConfigureMode(Device);

 }

 // This mode drives the DRDY pin as low output

 QfPlat_SetSpi0DrdyState(High);

 DeviceMode = Eeprom;

}

*/

/**

**********//*!

 @summary Read the Status register of the specified QF4A512 device.

 @param[in] Device Device handle

 @return Status byte of EEPROM device, verbatim

 - EEPROM read status register (RDSR) timing.

 @verbatim

 1 1 1 1 1 1

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

 SCLK(o) ^-^-^-^-^-^-^-^-^-^-^-^-^-^-^-^

 SDO(o) 0 0 0 0 x 1 0 1 x x x x x x x x

 SDI(i) x__hi_impedance__[-- data 1 ---]

 _ _

 /CS(o) |________________________________|

 /DRDY(o)

 @endverbatim

161

*//**

*************/

/*

static Byte GetEepromStatus(const Byte Device)

{

 Byte EepromStatus;

 // Sanity check Device handle

 Assert(Device == SPI0_HANDLE);

 // EEPROM Read Status Byte frame

 QfPlat_ActivateQF4A512ChipSelect(); // 1. Activate /CS

 QfSpi_WriteByte(Device, // 2. Send Read Status

Command

 QF4A512_EEPROM_READ_STATUS_REGISTER_INSTRUCTION);

 EepromStatus = QfSpi_ReadByte(Device); // 3. Read the Status

byte

 QfPlat_DeactivateQF4A512ChipSelect(); // 4. Deactivate /CS

 return EepromStatus;

}

*/

/**

**********//*!

 @summary Checks the EEPROM Status register and returns true if the Ready bit is

set

 @param[in] Device Device handle

 @return True of the Ready bit is set in the Status register, false if not

*//**

*************/

/*

static Bool IsEepromReady(const Byte Device)

{

 Byte EepromStatus;

 // Sanity check Device handle

 Assert(Device == SPI0_HANDLE);

 EepromStatus = GetEepromStatus(Device);

 return IsBitClear(EepromStatus, QF4A512_EEPROM_STATUS_BUSY_BIT);

}

*/

162

/**

**********//*!

 @summary Called when the DRDY pin goes high

 - This function is called during an interrupt service routine. Be sure to keep

 it short and only manipulate things that are appropriate to this context.

*//**

*************/

static void Device0DrdyCallback(void)

{

 // Initialize frame buffer parameters

 Device0ByteNum = 1;

 Device0Channel = 0;

 // Don't allow DRDY interrupts while reading SPI

 QfPlat_DisableDrdyInterrupts();

 // Activate Chip Select (/CS)

 QfPlat_ActivateQF4A512ChipSelect();

 // SPI receive is already configured, it just needs to be resumed.

 QfSpi_ResumeReceive(SPI0_HANDLE);

}

// Suppress "Warning[Pa082]: undefined behavior: the order of volatile accesses

is

// undefined in this statement..." that occurs below. The order is unimportant

here.

#pragma diag_suppress = Pa082

/**

**********//*!

 @summary Called by the Device0 read ISR every time a byte is received (in

Buffered mode).

 - This function is called during an interrupt service routine. Be sure to keep

 it as short as possible and only manipulate things that are appropriate to this

context.

 - Since the 16-bit runtime sample data comes out msb first, and QfSpi_Read()

returns bytes

 in the order they are received, the samples in Data are in big endian byte

order. The

 MakeUInt16 macro hides the byte swapping, but be aware of that it does occur.

 - Note that the New bit, in the Flags byte, isn't checked because this function

assumes

 all channels are sampling at the same frequency. If DRDY goes high for the

'fastest'

163

 channel, the others must have new data too.

 - The time between CS low and the first SCLK edge is not critical to the device.

 - Run mode data comes out of the QF4A512 as a set of 3-byte frames, as shown

below,

 with one frame for each active channel. Note that every active channel

produces

 a frame, even if the channels have dissimilar sampling rates and a channel has

no

 new data (see the New Data bit).

 @verbatim

 1 1 1 1 1 1 1 1 1 1 2 2 2 2

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3

 SCLK ^-^...

 SDO [-- address --] [--- data ----] x x x x x x x x

 SDI 0 1 2 3 [rsvd] [-------- channel data -------]

 ^ ^ ^ ^

 | | | New Data

 | | Channel ID 0

 | Channel ID 1

 Odd Parity

 _ _

 /CS |___|

 /DRDY ___...

 @endverbatim

*//**

*************/

static Bool Device0BufferedReadCallback(Byte NewByte)

{

 /// High byte of the current sample

 static volatile Byte HighByte;

 // Handling varies depending on which byte is being processed

 if (Device0ByteNum == 1) // Flags byte (ignored)

 {

 // Verify the channel number in Flags corresponds with our value

 Assert((NewByte & CHANNEL_NUM_MASK) >> CHANNEL_NUM_OFFSET ==

Device0Channel);

 // Verify the New bit is set

 Assert(IsBitSet(NewByte, QF4A512_NEW_DATA_BIT));

 Device0ByteNum = 2;

 }

 else if (Device0ByteNum == 2) // High byte of sample (save for later)

 {

 HighByte = NewByte;

 Device0ByteNum = 3;

164

 }

 else if (Device0ByteNum == 3) // Low byte of sample

 {

 Device0ReadBuffer[Device0FrameInsertIndex][Device0Channel] =

MakeUInt16(HighByte, NewByte);

 Device0ByteNum = 1;

 // Advance sample count

 Device0Channel++;

 // Perform extra processing at the end of the frame

 if (Device0Channel == QF4A512_NUM_CHANNELS_ENABLED)

 {

 // Cycle /CS. Note - /CS has to cycle between frames for

 // new data to be latched into the output shift register.

 // If not cycled, the existing samples will be repeated.

 QfPlat_DeactivateQF4A512ChipSelect();

 // Advance frame index to next position. Wrap to the

 // the beginning if it goes beyond the end.

 Device0FrameInsertIndex++;

 Device0FrameInsertIndex %= FRAME_CAPACITY_OF_DEVICE0_READ_BUFFER;

 // Increase the count of frames in Device0ReadBuffer

 Device0FrameCount++;

 // Be sure buffer isn't being overflowed

 Assert(Device0FrameCount < FRAME_CAPACITY_OF_DEVICE0_READ_BUFFER);

 // Catch the next high transition of DRDY.

 QfPlat_EnableDrdyInterrupts();

 return false;

 }

 }

 return true;

}

Qf4a512-functional.c
/***************************** (C) Quickfilter Technologies, Inc.

*************************//*!

 @file Qf4a512-functional.c

 Implementation of high-level Qf4a512 features (Small model).

 $Id: Qf4a512-functional.c 121 2006-07-24 20:17:09Z jhopson $

165

 @formats

 - C

 - Doxygen (comment markup to produce HTML docs)

 @dependencies

 - Operating System: none

 - Toolset: none

 - Platform: none

 - CPU Architecture: none

 - CPU Variant: none

 - Device: QF4A512, SPI port + portable SPI API

 - CPU byte order: little endian

 -# This portable C file implements the QF4A512 Library layer in the figure

below.

 @verbatim

 +-------------+--+

This file

 | | Application Code | --

 | | |

 | Standard | +-----------------------------+ <---

presents this API

 | C | | QF4A512 Functional Driver |

 | Libraries +------------+-----------------------------+ ---> &

calls this API

 | | QF4A512 Access Driver | (&

some standard C

 | +--+

library functions)

 | | SPI Hardware Abstraction Library (HAL) |

 +-------------+--+

 @endverbatim

 This file is the front-line API for an applications programmer controlling a

QF4A512.

 Although the lower level API (@ref Qf4a512-access.c) could be called

directly from an

 application, it is intended that the functions in this file be used where

possible.

 This code does not directly access any hardware. It calls the access driver

to send

 and receive data to and from the QF4A512.

 -# This code does not support device calibration.

 @references

 -# "QF4A512 4-Channel Programmable Signal Converter", Rev C3, Apr 06,

Quickfilter

 Technologies, Inc., www.quickfiltertech.com/files/QF4A512revC3.pdf

 -# "SPI Serial EEPROMS", 3347J-SEEPR-10/05, Atmel Corp.,

 www.atmel.com/dyn/resources/prod_documents/doc3347.pdf

 -# "doxygen", Version 1.4.6, Dimitri van Heesch, doxygen.org

*///***

166

#include "Project.h"

#include "Platform.h"

#include "Qf4a512-access.h"

#include "Qf4a512-functional.h" // Self include

/**

 L o c a l C o n s t a n t s , M a c r o s a n d T y p e s

*************/

/**

 L o c a l V a r i a b l e s

*************/

/**

 L o c a l F u n c t i o n P r o t o t y p e s

*************/

/**

 ******** P u b l i c F u n c t i o n s

*******/

/**

**********//*!

 @summary Load a table of address/value pairs into the QF4A512 configuration

registers.

167

 @param[in] Device Device handle

 @param[in] Table Pointer to array of qf4a512_ConfigTableEntry structures

 @param[in] SizeOfTable Dimension of the 'Table' array

 @return 'Success' if configuration successful, otherwise a negative value error

code.

 - 'Table' is typically generated by the Quickfilter Pro PC design software. Its

name is

 QFImageRegisterTable. The number of entries in that table is held in

 QF_IMAGE_REGISTER_TABLE_DIMENSION, so a typical call to this function would be

 @code

 qf4a512_WriteImageRegisterTableToEeprom(

 SPI0_HANDLE,

 (qf4a512_ConfigTableEntry *)QFImageRegisterTable,

 QF_IMAGE_REGISTER_TABLE_DIMENSION);

 @endcode

 - Writing the table one byte at a time, as this function does, is not very

efficient, but

 the configuration table entries are address/data pairs, so optimzing the number

of writes

 would consume memory and code space. Hopefully, this function won't be called

much, and

 when it is called, time will not be at a premium.

*//**

*************/

inline

Result qf4a512_LoadImageRegisterTable(

 const Handle Device,

 const qf4a512_ConfigTableEntry * Table,

 const Count SizeOfTable)

{

 Count TableIndex;

 // Sanity check input parameters

 Assert(Device == SPI0_HANDLE);

 AssertNonNull(Table);

 Assert(SizeOfTable > 0);

 // Write each register specified in the table

 for(TableIndex = 0;

 TableIndex < SizeOfTable;

 TableIndex++)

 {

 Assert(Table[TableIndex].Address < QF4A512_MAX_FILTER_COEFF_ADDRESS);

 qf4a512_WriteConfigByte(

 Device,

 Table[TableIndex].Address,

 Table[TableIndex].Value);

168

 // Verify coefficient writes in a Debug build. Control area writes (0x0

 // to 0x100) aren't verified because read only bits that differ with

 // written data cause false errors during readback.

#if defined(Debug)

 if(TableIndex >= QF4A512_MIN_GH_FILTER_COEFF_ADDRESS &&

 TableIndex <= QF4A512_MAX_FILTER_COEFF_ADDRESS)

 {

 Assert(Table[TableIndex].Value ==

 qf4a512_ReadConfigByte(Device, Table[TableIndex].Address));

 }

#endif

 }

 return Success;

}

/**

**********//*!

 @summary Write 'Table' to the QF4A512 EEPROM.

 @param[in] Device Device handle

 @param[in] Table Pointer to array of qf4a512_ConfigTableEntry structures

 @param[in] SizeOfTable Dimension of the 'Table' array

 @return 'Success' if configuration successful, otherwise a negative value error

code.

 - 'Table' is typically generated by the Quickfilter Pro PC design software. Its

name is

 QFImageRegisterTable. The number of entries in that table is held in

 QF_IMAGE_REGISTER_TABLE_DIMENSION, so a typical call to this function would be

 @code

 qf4a512_WriteImageRegisterTableToEeprom(

 SPI0_HANDLE,

 (qf4a512_ConfigTableEntry *)QFImageRegisterTable,

 QF_IMAGE_REGISTER_TABLE_DIMENSION);

 @endcode

 - Writing the table one byte at a time, as this function does, is not very

efficient, but

 the configuration table entries are address/data pairs, so optimzing the number

of writes

 would consume memory and code space. Hopefully, this function won't be called

much, and

 when it is called, time will not be at a premium.

169

*//**

*************/

/*

inline

Result qf4a512_WriteImageRegisterTableToEeprom(

 const Handle Device,

 const qf4a512_ConfigTableEntry * Table,

 const Count SizeOfTable)

{

 Count TableIndex;

 // Sanity check input parameters

 Assert(Device == SPI0_HANDLE);

 AssertNonNull(Table);

 Assert(SizeOfTable > 0);

 // Write each register specified in the table

 for(TableIndex = 0;

 TableIndex < SizeOfTable;

 TableIndex++)

 {

 qf4a512_WriteEepromByte(

 Device,

 Table[TableIndex].Address,

 Table[TableIndex].Value);

 // Verify writes in a Debug build.

 Assert(Table[TableIndex].Value ==

 qf4a512_ReadEepromByte(Device, Table[TableIndex].Address));

 }

 return Success;

}

*/

/**

**********//*!

 @summary Software reset the specified QF4A512.

 @param[in] Device Device number.

 - After the device is reset, it may come up in either Configure or Run mode,

depending on

 the programming of the EEPROM in the device. This function does not address

the

 possibility of coming up in Run mode. It assumes the device will come up in

Confugre

 mode. If needed, qf4a512_Init() shows how to detect the mode after reset.

170

*//**

*************/

/*

inline

void qf4a512_ResetDevice(const Handle Device)

{

 qf4a512_WriteConfigByte(Device, QF4A512_FULL_SRST_ADDRESS, BIT0);

}

*/

#if defined(NOT_IMPLEMENTED_YET)

/**

**********//*!

 @summary NOT IMPLEMENTED YET - Configure the QF4A512 PLL-based clock.

 @param[in] clockConfig PLL configuration structure

 @return 'Success' if configuration successful, otherwise a negative value error

code.

 - The master clock for the QF4A512 is produced by a crystal oscillator with a

nominal frequency

 of 20MHz. Alternatively the device can be fed with an external clock signal

derived

 elsewhere. The master clock is used as a reference for a phase-locked loop

(PLL), from which

 clocks are derived to drive the FIR filters, the ADC and the analog front end.

The master

 clock is also divided down to provide a clock to be used for transfers to the

on-chip EEPROM.

 @par

 @verbatim

 .

 . PLL .

 . ____ .

 . +------+ / \ +-------+ . +-------+

 20 MHz --+--->| /a |--->|diff|---->| VCO |---+----+-->| /x |--->

SYS_CLK

 | . +------+ ____/ +-------+ | . | +-------+ up to

200MHz

 | . PLL_CTRL_0 ^ | . | SYS_CLK_CTRL

 | . (a=1-64) | | . | (x=1-64)

 | . | | . |

 | . | +-------+ | . | +-------+

 | . +-------| /b |<--+ . +-->| /y |--->

ADC_CLK

 | . +-------+ . +-------+ up to

100MHz

 | . PLL_CTRL_1 . ADC_CLK

 | . (b=1-64) . (y=2-16)

 | .

 | +-------+

 +--->| /z |--->

EE_CLK

171

 +-------+ up to

1.25MHz

 STARTUP

 (z=1-32)

 @endverbatim

 - The PLL clock frequency is determined by the input clock frequency

 the pre-divider value (M) and the divider value (N): PLL_CLK = f0 * N / M The

default frequency

 for PLL_CLOCK is 200MHz. (f0 = 20MHz, M = 1, N= 10) Operation of the PLL is

possible in two

 frequency ranges: 20-100MHz and 100-300MHz.

*//**

*************/

Result QfConfigureClock(

 const ClockConfig clockConfig)

{

 Assert(0);

}

#endif

/**

 ******** U t i l i t y F u n c t i o n s

*******/

/**

 ******** L o c a l (S t a t i c) F u n c t i o n s

172

*******/

Common.h
/***************************** (C) Quickfilter Technologies, Inc.

*************************//*!

 @file Common.h

 Common defines and macros that are generally applicable to C/C++ files.

 $Id: Common.h 121 2006-07-24 20:17:09Z jhopson $

 @formats

 - C preprocessor directives

 - Doxygen (comment markup to produce HTML docs)

 @dependencies

 - Operating System: none

 - Toolset: none

 - CPU byte order: none

 @notes

 -# Do not put anything non-portable in this file.

*///***

#if !defined(COMMON_H_INCLUDED)

#define COMMON_H_INCLUDED

/// Type for pointers to functions with no input parameters or return types.

typedef void(* FuncPtr)(void);

///

///////

//

// Header Dependencies

//

/// Standardized, extensible type representing the result of a function call.

Positive

/// numbers and zero represent success, negative numbers represent failure.

173

typedef enum {

 Success = 0, ///< Zero and above is a

success

 InternalError = -1, ///< Internal software error in

reporting module

 UnknownError = -2,

 UnrecoverableError = -3,

 Timeout = -4,

 DataOutOfRange = -10,

 SizeOutOfRange = -11,

 InvalidDataFormat = -12,

 InvalidSyntax = -13,

 InvalidParameter = -14,

 InvalidState = -15,

 BufferOverflow = -20,

 BufferUnderflow = -21,

 BufferEmpty = -22,

 InvalidAscii = -30,

 InvalidParity = -31,

 InvalidChecksum = -32,

 InvalidFraming = -33,

 InvalidProtocol = -34,

 MediaFull = -40,

 MediaEmpty = -41,

 MediaReadError = -42,

 MediaWriteError = -43,

 MediaFormatError = -44,

 InvalidMediaFormat = -45,

 ResourceBusy = -50,

 ResourceReset = -51,

 ResourceNotFound = -52,

 ResourceNotAvailable = -53,

 ResourceExhausted = -54,

 FeatureNotFound = -60,

 FeatureNotInstalled = -61,

 FeatureNotConfigured = -62,

 FeatureNotSupported = -63,

 FeatureNotImplemented = -64,

 InvalidInterrupt = -70,

 UnexpectedInterruptOccurred = -71,

 UndefinedInterruptOccurred = -72,

 InvalidUserAction = -80,

 InvalidKeySelection = -81

} Result;

174

///

///////

//

// Common values for BOOL type.

//

// Notes

// 1. Technically BOOL is true if > 0 and false if =0. Tests for 'true' should

test

// for non-zero, not 1.

//

#if !defined(NO_COMMON_BOOL_MACROS)

#if !defined(false)

#define false 0

#endif

#if !defined(true)

#define true 1

#endif

#if !defined(False)

#define False 0

#endif

#if !defined(True)

#define True 1

#endif

#if !defined(No)

#define No 0

#endif

#if !defined(Yes)

#define Yes 1

#endif

#define Off 0

#define On 1

#define Low 0

#define High 1

#define Clear 0

#define Set 1

#define Invalid 0

#define Valid 1

#define Inactive 0

#define Active 1

#define Disabled 0

#define Enabled 1

#define NotDone 0

#define Done 1

#define Short 0

#define Long 1

#define Input 0

175

#define Output 1

#define Inner 0

#define Outer 1

#define Minimize 0

#define Maximize 1

#define Unsuccessful 0

#define Successful 1

#define Incorrect 0

#define Correct 1

#define Bummer 0

#define OkeeDokee 1

#endif

///

///////

//

// Non-printable ASCII codes.

//

#if !defined(NO_NON_PRINTABLE_ASCII_MACROS)

#define nul 0 ///< ^@ null character

#define soh 0x01 ///< ^A start of heading

#define stx 0x02 ///< ^B start of text

#define etx 0x03 ///< ^C end of text

#define eot 0x04 ///< ^D end of transmission

#define enq 0x05 ///< ^E enquire

#define ack 0x06 ///< ^F acknowledge

#define bel 0x07 ///< ^G ring bell

#define bs 0x08 ///< ^H backspace

#define ht 0x09 ///< ^I horizontal tab

#define lf 0x0A ///< ^J line feed

#define vt 0x0B ///< ^K vertical tab

#define ff 0x0C ///< ^L form feed

#define cr 0x0D ///< ^M carriage return

#define so 0x0E ///< ^N shift out

#define si 0x0F ///< ^O shift in

#define dle 0x10 ///< ^P data link escape

#define dc1 0x11 ///< ^Q device control 1/x-on

#define dc2 0x12 ///< ^R device control 2

#define dc3 0x13 ///< ^S device control 3/x-off

#define dc4 0x14 ///< ^T device control 4

#define nak 0x15 ///< ^U negative acknowledgement

#define syn 0x16 ///< ^V synchronous idle

#define etb 0x17 ///< ^W end of transmission block

#define can 0x18 ///< ^X cancel

#define em 0x19 ///< ^Y end of medium

#define sub 0x1A ///< ^Z substitute

#define esc 0x1B ///< ^[escape

#define fs 0x1C ///< ^\ file separator

#define gs 0x1D ///< ^] group separator

176

#define rs 0x1E ///< ^^ record separator

#define us 0x1F ///< ^_ unit separator

#define del 0x7f ///< delete character

#endif

///

///////

//

// Data extraction, combination and rotation macros.

//

/// Retun the lower 4 bits of a as a UInt8

#define GetLoNibble(a) (UInt8)((a)&0x0F)

/// Return second 4 bits a as a UInt8

#define GetHiNibble(a) (UInt8)((a)>>4)

/// Return lower byte of a as a UInt8

#define GetLoByte(a) (UInt8)((a)&0x00FF)

/// Return second byte of a as a UInt8

#define GetHiByte(a) (UInt8)((a)>>8)

/// Return lower word of a as a UInt16

#define GetLoWord(a) (UInt16)((a)&0xFFFF)

/// Return second word of a as a UInt16

#define GetHiWord(a) (UInt16)((a)>>16)

/// Set the lower byte of a UInt16, preserving the upper byte.

/// Existing contents in the lower word of a are lost.

#define SetLoWord(a, b) ((a)&0xff00)|(UInt16)(b))

/// Set the upper byte of a UInt16, preserving the lower byte

/// Existing contents in the upper word of a are lost.

#define SetHiWord(a, b) ((a)&0x00ff)|(UInt16)((b)<<8))

177

/// Rotate, not shift, a UInt8 to the left. The MSB becomes the LSB.

#define RotateByteLeft(a) ((a)<<1)|(((a)&0x80)?1:0)

/// Rotate, not shift, a UInt8 to the right. The LSB becomes the MSB.

#define RotateByteRight(a) ((a)>>1)|(((a)&0x01)?0x80:0)

/// Rotate, not shift, a UInt16 to the left. The MSB becomes the LSB.

#define RotateWordLeft(a) ((a)<<1)|(((a)&0x8000)?1:0)

/// Rotate, not shift, a UInt16 to the right. The LSB becomes the MSB.

#define RotateWordRight(a) ((a)>>1)|(((a)&1)?0x8000:0)

/// Create a UInt16 out of two UInt8 or INT8

#define MakeUInt16(a,b) (((UInt16)(a)<<8)|(UInt16)(b))

/// Create a UInt32 out of two UInt16 or INT16

#define MakeUInt32(a,b) (((UInt32)(a)<<16)|(UInt32)(b))

/// Add two pointers and create a void pointer

#define AddPointers(a,b) (void*)((Count)(a)+(Count)(b))

/// Subtract two pointers and create a void pointer

#define SubtractPointers(a,b) (void*)((Count)(a)-(Count)(b))

/// Swap upper and lower bytes (change endianness) in a 16-bit value

#define SwapUInt16Bytes(a) (((a)>>8) | ((a)<<8))

/// If the compiler doesn't define NULL, define it here

#if !defined(NULL)

#define NULL (void *)0

#endif

///

///////

//

// Hardware register manipulation macros

//

178

// Notes

// 1. These macros treat registers as volatile.

// 2. It is sometimes easier to view bit registers in binary form. The binary

// representation macros (below) can be used as follows.

// 8-bit registers -

// // 7654 3210

// SetByte(UartCtrl1, _0001_0100);

//

// Word-wide registers -

// // 1111 11

// // 5432 1098 7654 3210

// SetWordFromBytes(UartCtrl1, _0001_0111, _1111_1111);

// SetWordFromBytes(UartCtrl2, _0001_0100, _0101_1010);

// SetWordFromBytes(UartCtrl3, _0101_0011, _0111_1001);

//

/// Returns a byte (UInt8) from a volatile hardware register given a pointer to

that register.

#define GetByte(ptr) *((const volatile UInt8 *)(ptr))

/// Returns a word (UInt16) from a volatile hardware register given a pointer to

that register.

#define GetWord(ptr) *((const volatile UInt16*)(ptr))

/// Returns a word (UInt32) from a volatile hardware register given a pointer to

that register.

#define GetLong(ptr) *((const volatile UInt32*)(ptr))

/// Sets a byte (UInt8) volatile hardware register at the specified pointer

location.

#define SetByte(ptr,val) *((volatile UInt8 *)(ptr))=(val)

/// Sets a byte (UInt16) volatile hardware register at the specified pointer

location.

#define SetWord(ptr,val) *((volatile UInt16*)(ptr))=(val)

/// Sets a long (UInt32) volatile hardware register at the specified pointer

location.

#define SetLong(ptr,val) *((volatile UInt32*)(ptr))=(val)

/// Sets a word (UInt16) volatile hardware register from two bytes (UInt8) at the

specified pointer location.

#define SetWordFromBytes(ptr,a,b) *((volatile UInt16*)(ptr))=MakeUInt16(a,b)

179

///

///////

//

// Bit manipulation macros

//

// Notes

// 1. These macros treat all memory locations as volatile.

// 2. Use IS_BIT_SET() in conditionals. For instance -

//

// if(IS_BIT_SET(UartCtrl1, BIT5)) ...

//

// 3. SET_BIT_x() and CLEAR_BIT_x() perform a NON-ATOMIC read-modify-write. If

atomicity

// is required, disable interrupts first.

//

#if !defined(NO_COMMON_BIT_MACROS)

/* Removed to eliminate conflict with same definitions in IAR header files -

#define BIT0 0x01 ///< Specifies first bit in the bit macros

#define BIT1 0x02 ///< Specifies second bit in the bit macros

#define BIT2 0x04 ///< Specifies third bit in the bit macros

#define BIT3 0x08 ///< Specifies fourth bit in the bit macros

#define BIT4 0x10 ///< Specifies fifth bit in the bit macros

#define BIT5 0x20 ///< Specifies sixth bit in the bit macros

#define BIT6 0x40 ///< Specifies seventh bit in the bit macros

#define BIT7 0x80 ///< Specifies eigth bit in the bit macros

#define BIT8 0x0100 ///< Specifies ninth bit in the bit macros

#define BIT9 0x0200 ///< Specifies tenth bit in the bit macros

*/

#define BIT10 0x0400 ///< Specifies eleventh bit in the bit macros

#define BIT11 0x0800 ///< Specifies twelth bit in the bit macros

#define BIT12 0x1000 ///< Specifies thirteenth bit in the bit

macros

#define BIT13 0x2000 ///< Specifies fourteenth bit in the bit

macros

#define BIT14 0x4000 ///< Specifies fifteenth bit in the bit

macros

#define BIT15 0x8000 ///< Specifies sixteenth bit in the bit

macros

#define BIT16 0x00010000 ///< Specifies seventeenth bit in the bit

macros

#define BIT17 0x00020000 ///< Specifies eightteenth bit in the bit

macros

#define BIT18 0x00040000 ///< Specifies nineteenth bit in the bit

macros

#define BIT19 0x00080000 ///< Specifies twentieth bit in the bit

macros

#define BIT20 0x00100000 ///< Specifies twenty-first bit in the bit

macros

#define BIT21 0x00200000 ///< Specifies twenty-second bit in the bit

macros

180

#define BIT22 0x00400000 ///< Specifies twenty-third bit in the bit

macros

#define BIT23 0x00800000 ///< Specifies twenty-fourth bit in the bit

macros

#define BIT24 0x01000000 ///< Specifies twenty-fifth bit in the bit

macros

#define BIT25 0x02000000 ///< Specifies twenty-sixth bit in the bit

macros

#define BIT26 0x04000000 ///< Specifies twenty-seventh bit in the bit

macros

#define BIT27 0x08000000 ///< Specifies twenty-eighth bit in the bit

macros

#define BIT28 0x10000000 ///< Specifies twenty-ninth bit in the bit

macros

#define BIT29 0x20000000 ///< Specifies thirtieth bit in the bit

macros

#define BIT30 0x40000000 ///< Specifies thirty-first bit in the bit

macros

#define BIT31 0x80000000 ///< Specifies thirty-second bit in the bit

macros

/// Returns true if bit is set, false otherwise. Actually, true if any bits set

in b are set in a.

#define IsBitSet(a,b) ((a)&(b) ? true : false)

/// Returns true if bit is clear, false otherwise. Actually, true if any bits

clear in b are set in a.

#define IsBitClear(a,b) ((a)&(b) ? false : true)

/// Sets the specified bit. Actually, sets all the bits in a that are set in b .

#define SetBit(a,b) (a)|=(b)

/// Clears the specified bit. Actually, clears all the bits in a that are set in

b .

#define ClearBit(a,b) (a)&= ~(b)

/// Toggles the specified bit. Actually, toggles all the bits in a that are set

in b .

#define ToggleBit(a,b) (a)^=(b)

/// Applies the mask to value, then 'returns' true if any of those bits are set

#define AreAnyMaskBitsSet(value, mask) ((value)&(mask) ? true : false)

181

/// All bits that are set in mask are cleared in value

#define ClearBitsUsingMask(value, mask) (value)&= ~(mask)

/// All bits that are set in mask are set in value

#define SetBitsUsingMask(value, mask) (value)|=(mask)

/// All bits that are set in mask are toggled in value

#define ToggleBitsUsingMask(value, mask) (value)^=(mask)

#endif

///

///////

//

// Character and string macros.

//

#if !defined(NO_COMMON_CHARACTER_MACROS)

#define ASCII_MAX 0x7F ///< Maximum ASCII VAlue

#define WHITESPACE_CHARACTERS " \t\r" ///< Define string

containing the whitespace characters

/// Returns 0 if character is not ASCII, non-zero if ASCII

#define IsAscii(chr) ((chr)<= ASCII_MAX)

/// Returns 0 if character is not hexadecimal ASCII, otherwise non-zero

#define IsHex(chr) (((chr)>='0')&&((chr)<='9') ||\

 ((chr)>='a')&&((chr)<='f') ||\

 ((chr)>='A')&&((chr)<='F'))

/// Returns 0 if character is not ASCII whitespace, otherwise non-zero

#define IsWhitespace(chr) (((chr)==' ')||((chr)=='\t')||((chr)=='\n')) ?

true:false

/// Converts a character to its uppercase value only if it is a lowercase value.

#define ToLower(chr) (chr)+(((chr)>=0x61)&&((chr)<=0x7A))?0x20:0

/// Converts a character to its lowercase value only if it is an uppercase value.

182

#define ToUpper(chr) (chr)-(((chr)>=0x61)&&((chr)<=0x7A))?0x20:0

#endif

///

///////

//

// Array macros

//

//

// Notes

// 1. Note that 'array' must be an array name and not an expression.

//

#if !defined(NO_COMMON_ARRAY_MACROS)

/// Get size, in bytes (INT8), of an array

#define GetArraySize(array) (sizeof(array))

/// Get the number of elements in an array

#define GetArrayDimension(array) (sizeof(array)/sizeof(array[0]))

/// Get a pointer to the end of an array

#define GetEndOfArray(array) ((void *)((Count)&array + sizeof(array)))

/// Get the index number of an element given a pointer to the array and a pointer

to the item.

#define GetIndexFromPtr(array,pitem) (((pitem)-&array)/sizeof(array[0]))

#endif

///

///////

//

// Structure macros.

//

// Notes

// 1. Note that 'str' and 'element' must be names and not expressions.

//

#if !defined(NO_COMMON_STRUCTURE_MACROS)

183

/// Get the offset of a structure element, measured from the beginning of the

structure

#define GetElementOffset(str,element) ((Count) (&((str *)0)->element))

/// Get the pointer to a structure element, given the beginning of the structure

and the element name

#define GetElementPtr(str,element) AddPtr(&str,

GetElementOffset(str,element))

#endif

///

///////

//

// Assertion macros.

//

#if !defined(NO_COMMON_ASSERTION_MACROS)

#if !defined(DISABLE_COMMON_ASSERTION_MACROS)

/// Assert wrapper

#define Assert(a) assert(a)

/// Throw an assertion if a is non-NULL.

#define AssertNull(a) assert((a) == NULL)

/// Throw an assertion if a is NULL.

#define AssertNonNull(a) assert((a) != NULL)

/// Throw an assertion if a is below lo or abouve hi.

#define AssertBounds(a,lo,hi) assert(((a)<=hi) && ((a)>=lo))

/// 'a' is a function call. This asserts that the function returns a

/// non-negative value. Note that this macro behaves differently from

/// other assertion macros because the function still exists, without

/// the return value check, in non-Debug builds.

#if defined(Debug)

define Validate(a) Assert((a) >= 0)

#else

define Validate(a) a

184

#endif

#else

define Assert(a) ((void) 0)

define AssertNull(a) ((void) 0)

define AssertNonNull(a) ((void) 0)

define AssertBounds(a,lo,hi) ((void) 0)

define Validate(a) a

#endif

#endif

///

///////

//

// Miscellaneous macros.

//

#if !defined(NO_COMMON_MISCELLANEOUS_MACROS)

/// Returns non-zero if val is even

#define IsEven(val) !((val)&0x01)

/// Returns non-zero if val is odd

#define IsOdd(val) ((val)&0x01)

/// Returns the higher of a and b

#define GetHigherOf(a,b) ((a)>(b))?(a):(b)

/// Returns the lower of a and b

#define GetLowerOf(a,b) ((a)<(b))?(a):(b)

/// Limits a's range to within lo and hi

#define GetWithinRange(a,lo,hi) ((a)>(hi)?(hi):((a)<(lo)?(lo):(a)))

/// Wait for the expression to become true. Warning - this does not block the

task or

/// timeout. Be sure expression will eventually become true.

#define WaitFor(exp) while(!(exp))

185

/// Create an infinite loop

#define InfiniteLoop() while(1)

/// Dummy value used to emphasize that the value doesn't matter

#define DontCare 0x5a

#endif

///

///////

//

// Time macros.

//

#define MICROSECONDS_PER_MILLISECOND 1000

#define MICROSECONDS_PER_SECOND 1000000

#define MICROSECONDS_PER_MINUTE 60000000

#define MILLISECONDS_PER_SECOND 1000

#define MILLISECONDS_PER_MINUTE 60000

#define MILLISECONDS_PER_HOUR 3600000

#define SECONDS_PER_MINUTE 60

#define SECONDS_PER_HOUR 3600

#define SECONDS_PER_DAY 86400

#define SECONDS_PER_NON_LEAP_YEAR 31536000

#define SECONDS_PER_LEAP_YEAR 31622400

#define HOURS_PER_DAY 24

#define HOURS_PER_TWO_DAYS 48

#define HOURS_PER_THREE_DAYS 72

#define HOURS_PER_FOUR_DAYS 96

#define HOURS_PER_FIVE_DAYS 120

#define HOURS_PER_SIX_DAYS 144

#define HOURS_PER_SEVEN_DAYS 168

#define HOURS_PER_WEEK 168

#define HOURS_PER_28_DAY_MONTH 672

#define HOURS_PER_29_DAY_MONTH 696

#define HOURS_PER_30_DAY_MONTH 720

#define HOURS_PER_31_DAY_MONTH 744

#define HOURS_PER_NON_LEAP_YEAR 8760

#define HOURS_PER_LEAP_YEAR 8784

#define DAYS_PER_WEEK 7

186

#define DAY_OF_WEEK_MONDAY 0

#define DAY_OF_WEEK_TUESDAY 1

#define DAY_OF_WEEK_WEDNESDAY 2

#define DAY_OF_WEEK_THURSDAY 3

#define DAY_OF_WEEK_FRIDAY 4

#define DAY_OF_WEEK_SATURDAY 5

#define DAY_OF_WEEK_SUNDAY 6

#define DAYS_IN_JANUARY 31

#define DAYS_IN_NON_LEAP_FEBRUARY 28

#define DAYS_IN_LEAP_FEBRUARY 29

#define DAYS_IN_MARCH 31

#define DAYS_IN_APRIL 30

#define DAYS_IN_MAY 31

#define DAYS_IN_JUNE 30

#define DAYS_IN_JULY 31

#define DAYS_IN_AUGUST 31

#define DAYS_IN_SEPTEMBER 30

#define DAYS_IN_OCTOBER 31

#define DAYS_IN_NOVEMBER 30

#define DAYS_IN_DECEMBER 31

#define DAYS_PER_NON_LEAP_YEAR 365

#define DAYS_PER_LEAP_YEAR 366

#define MONTHS_PER_YEAR 12

///

///////

//

// Spell out long numbers to clarify their meaning and avoid typos.

#if !defined(NO_COMMON_LONG_NUMBER_DEFINES)

#define TEN_THOUSAND 10000

#define HUNDRED_THOUSAND 100000

#define ONE_MILLION 1000000

#define TEN_MILLION 10000000

#define HUNDRED_MILLION 100000000

#define _2TO_THE_4TH 16

#define _2TO_THE_5TH 32

#define _2TO_THE_6TH 64

#define _2TO_THE_7TH 128

#define _2TO_THE_8TH 256

#define _2TO_THE_9TH 512

#define _2TO_THE_10TH 1024

#define _2TO_THE_11TH 2048

#define _2TO_THE_12TH 4096

#define _2TO_THE_13TH 8192

#define _2TO_THE_14TH 16384

#define _2TO_THE_15TH 32768

#define _2TO_THE_16TH 65536

187

#define _2TO_THE_17TH 131072

#define _2TO_THE_18TH 262144

#define _2TO_THE_19TH 524288

#define _2TO_THE_20TH 1048576

#define _2TO_THE_21ST 2097152

#define _2TO_THE_22ND 4194304

#define _2TO_THE_23RD 8388608

#define _2TO_THE_24TH 16777216

#define _2TO_THE_25TH 33554432

#define _2TO_THE_26TH 67108864

#define _2TO_THE_27TH 134217728

#define _2TO_THE_28TH 268435456

#define _2TO_THE_29TH 536870912

#define _2TO_THE_30TH 1073741824

#define _2TO_THE_31TH 2147483648

#define _2TO_THE_32ND 4294967296

#define ONE_K _2TO_THE_10TH

#define TWO_K _2TO_THE_11TH

#define FOUR_K _2TO_THE_12TH

#define EIGHT_K _2TO_THE_13TH

#define SIXTEEN_K _2TO_THE_14TH

#define THIRTY_TWO_K _2TO_THE_15TH

#define SIXTY_FOUR_K _2TO_THE_16TH

#define HUNDRED_TWENTY_EIGHT_K _2TO_THE_17TH

#define TWO_HUNDRED_FIFTY_SIX_K _2TO_THE_18TH

#define FIVE_HUNDRED_TWELVE_K _2TO_THE_19TH

#define HALF_MEGABYTE _2TO_THE_19TH

#define ONE_MEGABYTE _2TO_THE_20TH

#define TWO_MEGABYTES _2TO_THE_21ST

#define FOUR_MEGABYTES _2TO_THE_22ND

#define EIGHT_MEGABYTES _2TO_THE_23RD

#define SIXTEEN_MEGABYTES _2TO_THE_24TH

#define THIRTY_TWO_MEGABYTES _2TO_THE_25TH

#define SIXTY_FOUR_MEGABYTES _2TO_THE_26TH

#define HUNDRED_TWENTY_EIGHT_MEGABYTES _2TO_THE_27TH

#define TWO_HUNDRED_FIFTY_SIX_MEGABYTES _2TO_THE_28TH

#define HALF_GIGABYTE _2TO_THE_29TH

#define ONE_GIGABYTES _2TO_THE_30TH

#define FOUR_GIGABYTES _2TO_THE_32ND

#endif

///

///////

//

// Binary representations of byte-wide numbers.

//

#if !defined(NO_COMMON_BINARY_NUMBER_VALUES)

188

#define _0000_0000 0x00 // 0x00 to 0x1F

#define _0000_0001 0x01

#define _0000_0010 0x02

#define _0000_0011 0x03

#define _0000_0100 0x04

#define _0000_0101 0x05

#define _0000_0110 0x06

#define _0000_0111 0x07

#define _0000_1000 0x08

#define _0000_1001 0x09

#define _0000_1010 0x0A

#define _0000_1011 0x0B

#define _0000_1100 0x0C

#define _0000_1101 0x0D

#define _0000_1110 0x0E

#define _0000_1111 0x0F

#define _0001_0000 0x10 // 0x10 to 0x1F

#define _0001_0001 0x11

#define _0001_0010 0x12

#define _0001_0011 0x13

#define _0001_0100 0x14

#define _0001_0101 0x15

#define _0001_0110 0x16

#define _0001_0111 0x17

#define _0001_1000 0x18

#define _0001_1001 0x19

#define _0001_1010 0x1A

#define _0001_1011 0x1B

#define _0001_1100 0x1C

#define _0001_1101 0x1D

#define _0001_1110 0x1E

#define _0001_1111 0x1F

#define _0010_0000 0x20 // 0x20 to 0x2F

#define _0010_0001 0x21

#define _0010_0010 0x22

#define _0010_0011 0x23

#define _0010_0100 0x24

#define _0010_0101 0x25

#define _0010_0110 0x26

#define _0010_0111 0x27

#define _0010_1000 0x28

#define _0010_1001 0x29

#define _0010_1010 0x2A

#define _0010_1011 0x2B

#define _0010_1100 0x2C

#define _0010_1101 0x2D

#define _0010_1110 0x2E

#define _0010_1111 0x2F

#define _0011_0000 0x30 // 0x30 to 0x3F

#define _0011_0001 0x31

#define _0011_0010 0x32

#define _0011_0011 0x33

#define _0011_0100 0x34

#define _0011_0101 0x35

#define _0011_0110 0x36

#define _0011_0111 0x37

189

#define _0011_1000 0x38

#define _0011_1001 0x39

#define _0011_1010 0x3A

#define _0011_1011 0x3B

#define _0011_1100 0x3C

#define _0011_1101 0x3D

#define _0011_1110 0x3E

#define _0011_1111 0x3F

#define _0100_0000 0x40 // 0x40 to 0x4F

#define _0100_0001 0x41

#define _0100_0010 0x42

#define _0100_0011 0x43

#define _0100_0100 0x44

#define _0100_0101 0x45

#define _0100_0110 0x46

#define _0100_0111 0x47

#define _0100_1000 0x48

#define _0100_1001 0x49

#define _0100_1010 0x4A

#define _0100_1011 0x4B

#define _0100_1100 0x4C

#define _0100_1101 0x4D

#define _0100_1110 0x4E

#define _0100_1111 0x4F

#define _0101_0000 0x50 // 0x50 to 0x5F

#define _0101_0001 0x51

#define _0101_0010 0x52

#define _0101_0011 0x53

#define _0101_0100 0x54

#define _0101_0101 0x55

#define _0101_0110 0x56

#define _0101_0111 0x57

#define _0101_1000 0x58

#define _0101_1001 0x59

#define _0101_1010 0x5A

#define _0101_1011 0x5B

#define _0101_1100 0x5C

#define _0101_1101 0x5D

#define _0101_1110 0x5E

#define _0101_1111 0x5F

#define _0110_0000 0x60 // 0x60 to 0x6F

#define _0110_0001 0x61

#define _0110_0010 0x62

#define _0110_0011 0x63

#define _0110_0100 0x64

#define _0110_0101 0x65

#define _0110_0110 0x66

#define _0110_0111 0x67

#define _0110_1000 0x68

#define _0110_1001 0x69

#define _0110_1010 0x6A

#define _0110_1011 0x6B

#define _0110_1100 0x6C

#define _0110_1101 0x6D

#define _0110_1110 0x6E

#define _0110_1111 0x6F

190

#define _0111_0000 0x70 // 0x70 to 0x7F

#define _0111_0001 0x71

#define _0111_0010 0x72

#define _0111_0011 0x73

#define _0111_0100 0x74

#define _0111_0101 0x75

#define _0111_0110 0x76

#define _0111_0111 0x77

#define _0111_1000 0x78

#define _0111_1001 0x79

#define _0111_1010 0x7A

#define _0111_1011 0x7B

#define _0111_1100 0x7C

#define _0111_1101 0x7D

#define _0111_1110 0x7E

#define _0111_1111 0x7F

#define _1000_0000 0x80 // 0x80 to 0x8F

#define _1000_0001 0x81

#define _1000_0010 0x82

#define _1000_0011 0x83

#define _1000_0100 0x84

#define _1000_0101 0x85

#define _1000_0110 0x86

#define _1000_0111 0x87

#define _1000_1000 0x88

#define _1000_1001 0x89

#define _1000_1010 0x8A

#define _1000_1011 0x8B

#define _1000_1100 0x8C

#define _1000_1101 0x8D

#define _1000_1110 0x8E

#define _1000_1111 0x8F

#define _1001_0000 0x90 // 0x90 to 0x9F

#define _1001_0001 0x91

#define _1001_0010 0x92

#define _1001_0011 0x93

#define _1001_0100 0x94

#define _1001_0101 0x95

#define _1001_0110 0x96

#define _1001_0111 0x97

#define _1001_1000 0x98

#define _1001_1001 0x99

#define _1001_1010 0x9A

#define _1001_1011 0x9B

#define _1001_1100 0x9C

#define _1001_1101 0x9D

#define _1001_1110 0x9E

#define _1001_1111 0x9F

#define _1010_0000 0xA0 // 0xA0 to 0xAF

#define _1010_0001 0xA1

#define _1010_0010 0xA2

#define _1010_0011 0xA3

#define _1010_0100 0xA4

#define _1010_0101 0xA5

#define _1010_0110 0xA6

191

#define _1010_0111 0xA7

#define _1010_1000 0xA8

#define _1010_1001 0xA9

#define _1010_1010 0xAA

#define _1010_1011 0xAB

#define _1010_1100 0xAC

#define _1010_1101 0xAD

#define _1010_1110 0xAE

#define _1010_1111 0xAF

#define _1011_0000 0xB0 // 0xB0 to 0xBF

#define _1011_0001 0xB1

#define _1011_0010 0xB2

#define _1011_0011 0xB3

#define _1011_0100 0xB4

#define _1011_0101 0xB5

#define _1011_0110 0xB6

#define _1011_0111 0xB7

#define _1011_1000 0xB8

#define _1011_1001 0xB9

#define _1011_1010 0xBA

#define _1011_1011 0xBB

#define _1011_1100 0xBC

#define _1011_1101 0xBD

#define _1011_1110 0xBE

#define _1011_1111 0xBF

#define _1100_0000 0xC0 // 0xC0 to 0xCF

#define _1100_0001 0xC1

#define _1100_0010 0xC2

#define _1100_0011 0xC3

#define _1100_0100 0xC4

#define _1100_0101 0xC5

#define _1100_0110 0xC6

#define _1100_0111 0xC7

#define _1100_1000 0xC8

#define _1100_1001 0xC9

#define _1100_1010 0xCA

#define _1100_1011 0xCB

#define _1100_1100 0xCC

#define _1100_1101 0xCD

#define _1100_1110 0xCE

#define _1100_1111 0xCF

#define _1101_0000 0xD0 // 0xD0 to 0xDF

#define _1101_0001 0xD1

#define _1101_0010 0xD2

#define _1101_0011 0xD3

#define _1101_0100 0xD4

#define _1101_0101 0xD5

#define _1101_0110 0xD6

#define _1101_0111 0xD7

#define _1101_1000 0xD8

#define _1101_1001 0xD9

#define _1101_1010 0xDA

#define _1101_1011 0xDB

#define _1101_1100 0xDC

#define _1101_1101 0xDD

#define _1101_1110 0xDE

192

#define _1101_1111 0xDF

#define _1110_0000 0xE0 // 0xE0 to 0xEF

#define _1110_0001 0xE1

#define _1110_0010 0xE2

#define _1110_0011 0xE3

#define _1110_0100 0xE4

#define _1110_0101 0xE5

#define _1110_0110 0xE6

#define _1110_0111 0xE7

#define _1110_1000 0xE8

#define _1110_1001 0xE9

#define _1110_1010 0xEA

#define _1110_1011 0xEB

#define _1110_1100 0xEC

#define _1110_1101 0xED

#define _1110_1110 0xEE

#define _1110_1111 0xEF

#define _1111_0000 0xF0 // 0xF0 to 0xFF

#define _1111_0001 0xF1

#define _1111_0010 0xF2

#define _1111_0011 0xF3

#define _1111_0100 0xF4

#define _1111_0101 0xF5

#define _1111_0110 0xF6

#define _1111_0111 0xF7

#define _1111_1000 0xF8

#define _1111_1001 0xF9

#define _1111_1010 0xFA

#define _1111_1011 0xFB

#define _1111_1100 0xFC

#define _1111_1101 0xFD

#define _1111_1110 0xFE

#define _1111_1111 0xFF

#endif

#endif // COMMON_DEFINES_INCLUDED

MSP430.h
/***************************** (C) Quickfilter Technologies, Inc.

*************************//*!

 @file Msp430.h

 MSP-430-related definitions.

 $Id: Msp430.h 121 2006-07-24 20:17:09Z jhopson $

*///***

#if !defined(MSP430_44X_H_INCLUDED)

#define MSP430_44X_H_INCLUDED

193

#include <msp430x44x.h>

#include "Msp430-Types.h"

#define CPU_FAMILY MSP430 // CPU core compatibility (such as

 // 68HC11, x86_REAL).

#define CPU_VAIRANT 449 // Subtype of CPU

#define CPU_FULL_PART_NUMBER MSP430F449 // Full CPU model number (w/o

package info)

#define CPU_REGISTER_WIDTH 16 // Data bus width in bits.

#define CPU_DATA_BUS_WIDTH 16 // Data bus width in bits.

#define CPU_ADDRESS_BUS_WIDTH 16 // Address bus width in bits.

#define CPU_BYTE_ORDER LITTLE_ENDIAN // Byte order of addressed data

(op-

 // tions are

BIG/LITTLE/SWITCHABLE).

#define CPU_ALIGNMENT NO_ALIGN // Minimum storage boundary for

data

 // (options are NO_ALIGN,

BYTE_ALIGN

 // WORD_ALIGN, LWORD_ALIGN).

#define CPU_VOLTAGE 3.3 // Voltage of device.

#define CPU_INPUT_CLOCK 8000000 // Frequency of CPU clock in Hz

#endif

MSP430-SPI.h

/***************************** (C) Quickfilter Technologies, Inc.

*************************//*!

 @file Msp430-SPI.h

 Abstraction of MSP-430 SPI port for use with Quickfilter device drivers.

 $Id: Msp430-SPI.h 121 2006-07-24 20:17:09Z jhopson $

*///***

#if !defined(MSP_430_SPI_H_INCLUDED) // Inclusion control

define MSP_430_SPI_H_INCLUDED

#include "Project.h"

194

/// Device handle for USART0.

#define SPI0_HANDLE 0

/// Device handle for USART1.

#define SPI1_HANDLE 1

/// Maximum allowable device number. Device 0 is USART0 and device 1 is USART1.

#define QF_SPI_MAX_DEVICE_NUMBER 0

/// Byte capacity of the local stream read buffers

#define QF_SPI_SIZE_OF_SPI_READ_BUFFER 128

/// Standard type for function from receive ISR when a byte is received

typedef Bool (* ReceiveCallback)(Byte);

/// Configuration options for the SPI port.

typedef enum {

 /// Reads are performed as requested. No buffering

 /// occurs between @ref QfSpi_Read read calls.

 SetUnbufferedReadMode,

 /// SPI data is continuously buffered. User must call @ref QfSpi_Read

 /// at the rate at which data is filling up buffers.

 SetBufferedReadMode

} QfSpi_ConfigRequest;

#ifdef __cplusplus

 extern "C" // C++ source requires this linkage

specification

{

#endif

void QfSpi_Init(void);

void QfSpi_DeInit(void);

void QfSpi_Write(

 const Handle Device,

 const Byte * Buffer,

 const Count Length);

Result QfSpi_Read(

 const Handle Device,

 Byte * Buffer,

 const Count Length);

Result QfSpi_Configure(

 const Handle Device,

 const QfSpi_ConfigRequest Request,

 void * Buffer,

195

 Count * Length);

Byte QfSpi_ReadByte(

 const Handle Device);

void QfSpi_WriteByte(

 const Handle Device,

 const Byte Value);

void QfSpi_WriteUInt16(

 const Handle Device,

 UInt16 Value);

void QfSpi_ResumeReceive(

 const Handle Device);

#ifdef __cplusplus

} // End of C++ linkage specification

#endif

#endif

Platform.h
/***************************** (C) Quickfilter Technologies, Inc.

*************************//*!

 @file Platform.h

 Abstracts a variety of operations that are specific to the way this platform

circuit

 is designed.

 $Id: Platform.h 121 2006-07-24 20:17:09Z jhopson $

*///***

#if !defined(PLATFORM_H_INCLUDED) // Inclusion control

define PLATFORM_H_INCLUDED

#include "Project.h"

#include "Msp430-SPI.h"

#define DRDY_BIT BIT0

//#if defined(Debug)

// Three instrumentation bits are used during debug.

 // name pin (on '449)

 // ---- ---

//#define ActivityLED BIT1 // P5.1 12

196

//#define TimerA0IsrTestPoint BIT4 // P5.4 55

//#define Spi0DrdyIsrTestPoint BIT5 // P5.5 57

//#define Spi0ReadIsrTestPoint BIT6 // P5.6 58

//#define Spi0WriteIsrTestPoint BIT7 // P5.7 59

//#define InitTestPointPort() { P5DIR |= BIT1 | BIT4 | BIT5 | BIT6 | BIT7; }

//#define SetTestPoint(a) SetBit(P5OUT, a)

//#define ClearTestPoint(a) ClearBit(P5OUT, a)

//#define ToggleTestPoint(a) ToggleBit(P5OUT, a)

//#define IsTestPointSet(a) IsBitSet(P5OUT, a)

//#else

//#define InitTestPointPort() ((void)0)

//#define SetTestPoint(a) ((void)0)

//#define ClearTestPoint(a) ((void)0)

//#define ToggleTestPoint(a) ((void)0)

//#define IsTestPointSet(a) ((void)0)

//#endif

#ifdef __cplusplus

 extern "C" { // C++ source requires this linkage

specification

#endif

void QfPlat_Init(void);

void QfPlat_ActivateQF4A512ChipSelect(void);

void QfPlat_DeactivateQF4A512ChipSelect(void);

void QfPlat_SetSpi0DrdyDirection(Bool Direction);

void QfPlat_SetSpi0DrdyState(Bool State);

void QfPlat_DelayMs(const UInt16 Milliseconds);

Bool QfPlat_IsDrdyPinActive(void);

void QfPlat_ConfigureDrdyInterrupt(FuncPtr Handler);

void QfPlat_EnableDrdyInterrupts(void);

void QfPlat_DisableDrdyInterrupts(void);

void QfPlat_ToggleActivityLED(void);

#if defined(Debug)

void QfAssertionFailed(const char * Expression, const char * FileName, const

int LineNum);

#endif

#ifdef __cplusplus

 } // End of C++ linkage specification

#endif

#endif

197

Project.h
/***************************** (C) Quickfilter Technologies, Inc.

*************************//*!

 @file Project.h

 Project-specific defines and types.

 $Id: Project.h 122 2006-07-24 20:25:01Z jhopson $

 @formats

 - C declarations (header)

 - Doxygen (comment markup to produce HTML docs)

*///***

#if !defined(PROJECT_H_INCLUDED) // Inclusion control

define PROJECT_H_INCLUDED

// Suppress "Warning[Pa039]: use of address of unaligned structure member..."

occurs

// because the structures in Qf4a512-access.h are (by necessity) misaligned.

#pragma diag_suppress = Pa039

/// The inline keyword isn't supported in the IAR C compiler (it is in the C++

compiler)

#define inline

#define QF4A512_NUM_CHANNELS_ENABLED 3

#include "Common.h"

#include "Msp430.h"

#include <stdlib.h>

#include <assert.h>

#endif // PROJECT_H_INCLUDED

Qf4a512-access.h
/***************************** (C) Quickfilter Technologies, Inc.

*************************//*!

 @file Qf4a512-access.h

198

 Raw data transfer functions and device mode control of QF4A512 (Small model).

 $Id: Qf4a512-access.h 120 2006-07-19 16:11:20Z jhopson $

 @notes

 -# The structures in this file must be packed (no space between elements).

The 'pack(1)'

 pragma is for the IAR compiler, but it shoul be benign with other

compilers.

*///***

#if !defined(QF4A512_ACCESS_H_INCLUDED) // Inclusion control

define QF4A512_ACCESS_H_INCLUDED

#include "Project.h"

/// Number of channels in a QF4A512 device

#define QF4A512_NUM_CHANNELS 3

/// Maximum number of FIR coefficients in each channel

#define QF4A512_NUM_FIR_COEFFICIENTS_PER_CHANNEL 256

/// Number of bytes in each FIR filter coefficient.

#define QF4A512_NUM_BYTES_PER_FIR_COEFFICIENT 3

/// Maximum of G & H coefficients in each channel

#define QF4A512_NUM_GH_COEFFICIENTS_PER_CHANNEL 64

/**

**********//*!

 @summary Channel and FIR configuration for one individual channel.

 - Below is the memory map for the channel configuration area.

 @par

 @verbatim

 +--+ 00EA

 | E2h (reserved) (8) | <-- note less reserved

space

 | Channel E1h Maintenance (1) | on Channel 4

 | 4 C2h Configuration (31) |

 | C0h Run & Status (2) |

 +--+ 00C0

 | B2h (reserved) (14) |

199

 | Channel B1h Maintenance (1) |

 | 3 92h Configuration (31) |

 | 90h Run & Status (2) |

 +--+ 0090

 | 82h (reserved) (14) |

 | Channel 81h Maintenance (1) |

 | 2 62h Configuration (31) |

 | 60h Run & Status (2) |

 +--+ 0060

 | 52h (reserved) (14) |

 | Channel 51h Maintenance (1) |

 | 1 32h Configuration (31) |

 | 30h Run & Status (2) |

 +--+ 0030

 @endverbatim

 - This structure must be packed because some two-byte registers are at odd

addresses.

*//**

*************/

#pragma pack(1)

typedef struct { // Offset Description

 // ------ -----------

 Byte CH1_PGA; ///< Offset +0h. Control Register. Enable FIR

operation, set PGA gain.

 Byte CH1_STAT; ///< Offset +1h. Channel Status

 Byte CH1_CFG; ///< Offset +2h. Channel configuration

 UInt16 AREC_1_GAIN; ///< Offset +3/4h. AREC gain control

 UInt16 CHPC_1_DIV; ///< Offset +5/6h. Chopper period setting

 UInt16 CIC_1_R; ///< Offset +7/8h. CIC decimation, R value

 Byte CIC_1_R_H; ///< Offset +9h. CIC decimation, R value

 Byte CIC_1_SHIFT; ///< Offset +Ah. CIC shift

 Byte FIR_0_0_CTRL; ///< Offset +Bh. FIR Control, filter 0

 Byte FIR_0_0_NMIN_F1; ///< Offset +Ch. Minimum storage address for f1

 Byte FIR_0_0_NMAX_F1; ///< Offset +Dh. Maximum storage address for f1

 Byte FIR_0_0_CMIN_F1; ///< Offset +Eh. Minimum coefficient storage

address for f1

 Byte FIR_0_0_CMAX_F1; ///< Offset +Fh. Maximum coefficient storage

address for f1

 Byte FIR_0_0_NMIN_F2; ///< Offset +10h. Minimum storage address for f2

 Byte FIR_0_0_NMAX_F2; ///< Offset +11h. Maximum storage address for f2

 Byte FIR_0_0_CMIN_F2; ///< Offset +12h. Minimum coefficient storage

address for f2

 Byte FIR_0_0_CMAX_F2; ///< Offset +13h. Maximum coefficient storage

address for f2

 Byte FIR_0_1_CTRL; ///< Offset +14h. FIR Control, filter 1

 UInt16 FIR_0_1_NMIN_F1; ///< Offset +15/16h. Minimum storage address for f1

 UInt16 FIR_0_1_NMAX_F1; ///< Offset +17/18h. Maximum storage address for f1

 Byte FIR_0_1_CMIN_F1; ///< Offset +19h. Minimum coefficient storage

address for f1

 Byte FIR_0_1_CMAX_F1; ///< Offset +1Ah. Maximum coefficient storage

address for f1

200

 UInt16 FIR_0_1_NMIN_F2; ///< Offset +1B/1Ch. Minimum storage address for f2

 UInt16 FIR_0_1_NMAX_F2; ///< Offset +1D/1Eh. Maximum storage address for f2

 Byte FIR_0_1_CMIN_F2; ///< Offset +1Fh. Minimum coefficient storage

address for f2

 Byte FIR_0_1_CMAX_F2; ///< Offset +20h. Maximum coefficient storage

address for f2

 Byte CH1_SRST; ///< Offset +21h. Channel soft reset

} qf4a512_ChannelConfigRegs;

#pragma pack()

/**

**********//*!

 @summary Represents all registers in the QF4A512 device.

 - Below is the memory map for the entire device.

 @par

 @verbatim

 +--+ 00F0

 | Die Rev & Calibration |

 +--+ 00EA

 | E2h (reserved) (8) | <-- note less reserved space

 | Channel E1h Maintenance (1) | on Channel 4

 | 4 C2h Configuration (31) |

 | C0h Run & Status (2) |

 +--+ 00C0

 | B2h (reserved) (14) |

 | Channel B1h Maintenance (1) |

 | 3 92h Configuration (31) |

 | 90h Run & Status (2) |

 +--+ 0090

 | 82h (reserved) (14) |

 | Channel 81h Maintenance (1) |

 | 2 62h Configuration (31) |

 | 60h Run & Status (2) |

 +--+ 0060

 | 52h (reserved) (14) |

 | Channel 51h Maintenance (1) |

 | 1 32h Configuration (31) |

 | 30h Run & Status (2) |

 +--+ 0030

 | Global Maintenance |

 +--+ 001D

 | Global Configuration |

 +--+ 0011

 | Run & Status |

 +--+ 0009

 | EEPROM Startup |

 +--+ 0005

 | High Level |

 +--+ 0000

 @endverbatim

201

 - Below is an alternate view of the memory map showing runtime visibility,

 by mode, and the EEPROM space.

 @par

 @verbatim

 Registers

 ... +------------------+ 3FFF

 . | Unused |

 . +------------------+ 2400

 . | Filter Data | EEPROM

 . | |

 Visibility . +------------------+ 1000 +----------

--+ FFF

 ---------- . | Unused | | User

Space |

 . +------------------+ 0F00 +----------

--+ F00

 Configure | Filter | |

|

 Mode . | Coefficients | One-to-One |

|

 . | | Mapping |

|

 __.__ +------------------+ 0100 +----------

--+

 Run __| . | Control & Status | <========> |

|

 Mode | . | Registers | |

|

 (write only) |__.__ +------------------+ 0000 +----------

--+ 000

 @endverbatim

 - This structure must be packed because some two-byte registers are at odd

addresses.

*//**

*************/

#pragma pack(1)

 // Addr Description

typedef struct { // ---- -----------

 /// High-level configuration registers

 Byte GLBL_SW; ///< Addr 0h. Dummy RAM register. For testing

device reads & writes

 Byte GLBL_ID; ///< Addr 1h. Chip ID Including Revision Number

 Byte FULL_SRST; ///< Addr 2h. Activates all soft resets

 Byte GLBL_CH_CTRL; ///< Addr 3h. Reset, Enable or Power Down each

channel

 Byte RUN_MODE; ///< Addr 4h. Set chip in Run or Configure Mode

202

 /// EEPROM Startup

 Byte EE_TRANS; ///< Addr 5h. Control data transfers to/from EEPROM

 Byte EE_COPY; ///< Addr 6h. Control full transfers to/from EEPROM

 Byte STARTUP; ///< Addr 7h. Set startup configuration, rate for

EEPROM clock

 Byte INIT_COUNT; ///< Addr 8h. Initialization delay counter

 /// Run & Status

 Byte ENABLE_0; ///< Addr 9h. Enable ADC and system clock per

channel

 Byte ENABLE_1; ///< Addr Ah. Enable AAF per channel, ADC operation

mode

 Byte ENABLE_2; ///< Addr Bh. Designate active channels

 Byte PLL_SIF_STAT; ///< Addr Ch. PLL lock, SIF address out of range

 Byte EE_VAL; ///< Addr Dh. EEPROM status register value

 Byte EE_STATUS; ///< Addr Eh. EEPROM transfer status flags

 Byte ADC_STATUS_0; ///< Addr Fh. ADC out of range, per channel

 Byte ADC_STATUS_1; ///< Addr 10h. ADC out of range, high or low, per

channel

 /// Global Configuration

 Byte PLL_CTRL_0; ///< Addr 11h. PLL Pre-divider, frequency range.

 Byte PLL_CTRL_1; ///< Addr 12h. PLL loop divider.

 Byte ADC_CLK_RATE; ///< Addr 13h. Clock rate for ADC, CRC and AREC.

 Byte SYS_CLK_CTRL; ///< Addr 14h. System Clock control.

 Byte SPI_CTRL; ///< Addr 15h. Set single-, multi-channel mode

 Byte SPI_MON; ///< Addr 16h. Monitor internal data transfers

 UInt16 EE_STADDR; ///< Addr 17/18h. EE start address for block

transfers (byte0)

 UInt16 SIF_STADDR; ///< Addr 19/1Ah. Chip start address for block

transfers (byte0)

 UInt16 END_ADDR; ///< Addr 1B/1Ch. Ending address for block transfers

(byte0)

 /// Global Maintenance

 Byte SCRATCH[8]; ///< Addr 1Dh-24h. RAM registers. Available for any

runtime use.

 Byte SU_UNLOCK; ///< Addr 25h. Lock bit for test/maintenance

(factory use only)

 Byte GLBL_SRST; ///< Addr 26h. Global soft resets

 Byte ADC_CTRL; ///< Addr 27h. ADC control.

 Byte AREC_CTRL; ///< Addr 28h. AREC control.

 Byte pad1[7];

 // Array of channel configuration information. (Note - there's no padding

after Chan4

 qf4a512_ChannelConfigRegs Channel1Config; ///< Addr 30h. Channel 1

configuration

 Byte pad2[14];

203

 qf4a512_ChannelConfigRegs Channel2Config; ///< Addr 60h. Channel 2

configuration

 Byte pad3[14];

 qf4a512_ChannelConfigRegs Channel3Config; ///< Addr 90h. Channel 3

configuration

 Byte pad4[14];

 qf4a512_ChannelConfigRegs Channel4Config; ///< Addr C0h. Channel 4

configuration

 Byte pad5[8];

 // A few registers are tucked in the 'dead' space after Channel 4

 // configuration. Most of them are factory test, so they aren't

 // included here.

 Byte DIE_REV; ///< Addr EAh. Revision of the

silicon die

 Byte pad6[21];

 /// Array of G & H filter coefficients for each channel.

 UInt16 GHCoefficients[QF4A512_NUM_CHANNELS]

 [QF4A512_NUM_GH_COEFFICIENTS_PER_CHANNEL];

 /// Array of FIR coefficients for each channel. Since the coefficients are 3

bytes

 /// in length, and there is no 3-byte type in most C compilers, coefficients

 /// are treated as three byte arrays (hence the third dimension below).

 Byte FirCoefficients[QF4A512_NUM_CHANNELS]

 [QF4A512_NUM_FIR_COEFFICIENTS_PER_CHANNEL]

 [QF4A512_NUM_BYTES_PER_FIR_COEFFICIENT];

} qf4a512_GlobalRegisters;

#pragma pack()

/// Static value of the CHIP_ID register for a QF4A512

#define QF4A512_CHIP_ID_NUMBER 0xA0

/// Minimum value of DIE_REV for compatibility with this module (may be higher)

#define QF4A512_MINIMUM_DIE_REV_NUMBER 0xC1

/// Length of one full frame of data (from /CS low to /CS high again)

#define QF4A512_LENGTH_OF_FULL_FRAME (QF4A512_LENGTH_OF_SINGLE_CHAN_FRAME * \

 QF4A512_NUM_CHANNELS_ENABLED)

/// Length of one frame of data from one channel. A QF4A512 channel has a Flags

byte and two data bytes.

#define QF4A512_LENGTH_OF_SINGLE_CHAN_FRAME 3

/// Bit position, in the Flags byte of the Run mode data stream, of the bit

indicating new data

204

#define QF4A512_NEW_DATA_BIT BIT4

/// Lowest address of the G & H filter coefficient memory

#define QF4A512_MIN_GH_FILTER_COEFF_ADDRESS \

 GetElementOffset(qf4a512_GlobalRegisters, GHCoefficients)

/// Lowest address of the User FIR filter coefficient memory

#define QF4A512_MIN_FILTER_COEFF_ADDRESS \

 GetElementOffset(qf4a512_GlobalRegisters, FirCoefficients)

/// Highest address of the filter coefficient memory

#define QF4A512_MAX_FILTER_COEFF_ADDRESS sizeof(qf4a512_GlobalRegisters)

/// Maximum address of EEPROM

#define QF4A512_MAX_EEPROM_ADDRESS 0xfff

/// Maximum useful configuration address. This address leaves out the filter

coefficients

/// between 0x1000 and 0x2400, but none of the functions in this module access

that area.

#define QF4A512_MAX_REGISTER_ADDRESS QF4A512_MAX_FILTER_COEFF_ADDRESS

///

// Addresses of common registers within the QF4A512

/// Address of the Chip ID register

#define QF4A512_GLBL_ID_ADDRESS GetElementOffset(qf4a512_GlobalRegisters,

GLBL_ID)

/// Address of the Chip ID register

#define QF4A512_FULL_SRST_ADDRESS GetElementOffset(qf4a512_GlobalRegisters,

FULL_SRST)

/// Address of the Die Revision register

#define QF4A512_RUN_MODE_ADDRESS GetElementOffset(qf4a512_GlobalRegisters,

RUN_MODE)

/// Address of the Die Revision register

#define QF4A512_DIE_REV_ADDRESS GetElementOffset(qf4a512_GlobalRegisters,

DIE_REV)

/// Address of the SPI Control register

#define QF4A512_SPI_CTRL_ADDRESS GetElementOffset(qf4a512_GlobalRegisters,

SPI_CTRL)

205

/// Configuration options for the QF4A512 port.

typedef enum {

 SetIdleMode,

 SetRunMode,

 WriteConfigRegisters,

 ReadConfigRegisters,

 ReadEeprom,

 WriteEeprom

} qf4a512_ConfigRequest;

#ifdef __cplusplus

 extern "C"

{ // C++ source requires this linkage specification

#endif

void qf4a512_Init(void);

void qf4a512_DeInit(void);

Result qf4a512_ReadSamples(

 const Handle Device,

 UInt16 Buffer [][QF4A512_NUM_CHANNELS_ENABLED],

 const Count Length);

void qf4a512_ReadConfigRegisters(

 const Handle Device,

 Count StartingAddr,

 Byte * Buffer,

 const Count Length);

Result qf4a512_WriteConfigRegisters(

 const Handle Device,

 Count StartingAddr,

 const Byte * Buffer,

 const Count Length);

Result qf4a512_ReadEeprom(

 const Handle Device,

 const Count StartingAddr,

 Byte * Buffer,

 const Count Length);

Result qf4a512_WriteEeprom(

 const Handle Device,

 const Count StartingAddr,

 const Byte * Buffer,

 const Count Length);

Byte qf4a512_ReadConfigByte(

 const Handle Device,

 const Count Address);

void qf4a512_WriteConfigByte(

206

 const Handle Device,

 const Count Address,

 const Byte Value);

void qf4a512_WriteEepromByte(

 const Handle Device,

 const Count Address,

 const Byte Value);

Byte qf4a512_ReadEepromByte(

 const Handle Device,

 const Count Address);

void qf4a512_ExitRunMode(

 const Handle Device);

#ifdef __cplusplus

} // End of C++ linkage specification

#endif

#endif

Qf4a512-functional.h
/***************************** (C) Quickfilter Technologies, Inc.

*************************//*!

 @file Qf4a512-functional.h

 Implementation of high-level Qf4a512 features (Small model).

 $Id: Qf4a512-functional.h 122 2006-07-24 20:25:01Z jhopson $

*///***

#if !defined(QF4A512_FUNCTIONAL_H_INCLUDED) // Inclusion control

define QF4A512_FUNCTIONAL_H_INCLUDED

#include "Project.h"

/// Each entry in the configuration register table, produced by the PC software,

contains

/// an address/value pair.

typedef struct

{

 UInt16 Address;

 Byte Value;

} qf4a512_ConfigTableEntry;

#ifdef __cplusplus

207

 extern "C"

{ // C++ source requires this linkage specification

#endif

Result qf4a512_LoadImageRegisterTable(

 const Handle Device,

 const qf4a512_ConfigTableEntry * Table,

 const Count SizeOfTable);

Result qf4a512_WriteImageRegisterTableToEeprom(

 const Handle Device,

 const qf4a512_ConfigTableEntry * Table,

 const Count SizeOfTable);

void qf4a512_ResetDevice(const Byte Device);

#ifdef __cplusplus

} // End of C++ linkage specification

#endif

#endif

Display Module Code

#include "msp430x44x.h"

#include <in430.h>

#define a (0x80) // definitions for LCD seegments on the Olimex LCD. 4-Mux

operation is assumed

#define b (0x40) // For more details on 4-Mux operation, gather your LCD datasheet,

#define c (0x20) // TI's MSP430F449 User Guide (look for LCD Controller, then 4-

Mux),

#define d (0x01) // and MSP-449STK-2 schematic. You will need ALL these 3 when

defining

#define e (0x02) // each number or character. Remember, the Olimex LCD doesn't use

a LCD driver!

#define f (0x08) // You tell the LCD what characters to display. It's very time

consuming!!

#define g (0x04)

#define h (0x10)

// Variables for buttons

#define BTN1 (BIT4)

#define BTN2 (BIT5)

#define BTN3 (BIT6)

#define BTN4 (BIT7)

#define BTN_MASK (BTN1 | BTN2 | BTN3 | BTN4)

// Variables for count

char *LCD = LCDMEM; //Pointer to LCD Memory Segments

float occurence[2] = {0, 0}; //Heart beat occurence time record array

208

unsigned char i = 0;

unsigned char next = 0;

unsigned char j; //Conversion factor

float time = 0; //Time

float t1 = 0;

float t2 = 0;

float dt = 0;

// Determines whether we're displaying the rotating information

// Or asking for input from the user

int rotating = 0;

unsigned char busy;

unsigned int ACC = 0;

unsigned int bufferACC = 0;

unsigned int volts = 0;

unsigned int restHR = 0;

unsigned int HR = 0; //Heart rate

unsigned int AC = 0; //Accelerometer

unsigned char switchCnt = 0; //Display switch counter

unsigned char adc_in = 0;

unsigned int avgHR = 0;

unsigned char HRcnt = 0;

unsigned int bufferHR = 0;

unsigned int vectorHR[256] = {0}; //Store ADC12 measurements

unsigned char arrayHR[256] = {0}; //Store past HR calculations

unsigned char charHR[4]; //Store character version of heart rate

unsigned char beat = 0;

int counts = 0;

double rate = 0;

double carbs = 0;

// Button declarations

int variablevalue = 0; //Variable value will be 3 digits, start at 0

int displayName = 1; // 1 if display name, 0 if button has been

pressed

char digits[3] = {0, 0, 0};

char buttonStatusPrev = 0; // Previous status of buttons

char buttonStatus = 0; // Current status of buttons

char buttonPressed = 0; // Pressed buttons

char buttonReleased = 0; // Released buttons

int inputtype = -1;

int sex = 0;

int age = 0;

int weight = 0;

int firstByte = 0;

int INbyte; //INbyte is the received number from

Accelerometer

// Function Headers

//void main();

//void setupTimerB(void);

//void setupEKG(void);

void init_sys();

void clearLCD();

209

double AEEaccell (int counts, int age, int sex);

double AEEhr (double HRaS, int age, int sex);

double AEEcombined (int age, int sex, int weight);

// Function Headers for Buttons

void buttonHandler();

void delayX (unsigned int x);

void rotationHandler();

void writeLetter(int position, char letter);

void writeWord(const char *word);

/********************* MAIN FUNCTION *********************/

void main(void)

{

 WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer

 init_sys();

 // configUART();

 /* unsigned int txSample = 144;

 unsigned char txSample1 = txSample & 0xff;

 unsigned char txSample2 = txSample >> 8;

 // unsigned int temp = txSample2 + 0x00;

// temp = temp << 8;

 // temp |= txSample1;

 unsigned char temp = (1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1) & txSample2;

 temp = temp << 8;

 temp = temp | txSample1;

 unsigned char j=100;

 int ans = (int)temp;

 if (ans == txSample)

 writeWord("YES");

 else

 writeWord("NO");*/

 /*// Display the heart rate one number at a time

 for(char i=7; i>4;i--)

 {

 char y = (ans/j) + 48;

 writeLetter(i, y);

 if (y != 0) ans =(ans%j);

 j=j/10;

 }

 exit();*/

 while(1) {

 // Always call the button handler, even if we're displaying

 // the rotating information

 buttonHandler();

 // Only call the rotation handler if we're displaying

210

 // the rotating information

 if (rotating == 1)

 rotationHandler();

 }

}

/********************* DISPLAY HEARTRATE *********************/

void dispHR(unsigned int hR) {

 unsigned int j=100;

 // Display BPM

 writeWord("BPM");

 // Display the heart rate one number at a time

 for(char i = 7; i > 4; i--)

 {

 char y = (hR/j) + 48;

 writeLetter(i, y);

 if (y != 0) hR =(hR%j);

 j=j/10;

 }

}

/********************* DISPLAY ACCELEROMETRY *********************/

void dispACC(unsigned int aC) {

 unsigned int j=1000;

 // Display ACC

 writeWord("CT");

 // Display the Accelerometry one number at a time

 for(char i = 7; i > 3; i--)

 {

 char y = (aC/j) + 48;

 writeLetter(i, y);

 if (y != 0) aC =(aC%j);

 j=j/10;

 }

}

/********************* DISPLAY CARBS *********************/

void dispCarbs(unsigned int cR, char *str) {

 unsigned int j=100;

 // Display CARBS

 writeWord(str);

 // Display the carbs one number at a time

 for(char i = 7; i > 4; i--)

 {

 char y = (cR/j) + 48;

 writeLetter(i, y);

 if (y != 0) cR =(cR%j);

 j=j/10;

 }

}

/********** TimerB Interruup Service Routine *************/

#pragma vector = TIMERB0_VECTOR

211

__interrupt void Timer_B0(void)

{

 time += 0.01; //increment time

 t1 += 0.01;

 t2++;

 if ((int)t2 % 1000 == 0 && rotating == 1) { // Then multiplied the

number back by 5,

 // so basically if the remainder is >0

then

 // it decides that it's not ready

 if (restHR == 0)

 restHR = bufferHR;

 restHR = 60;

 //Implement the combined algorithm

 double comb = AEEcombined (age, sex, weight);

 inputtype++; //Says that the input type is

incrementing

 if (inputtype > 4) //if the input type goes above 4 (ACC)

it should go back to HR

 inputtype = 3; //Input type for HR

 }

 // 15 second epoch, only if we're displaying the rotating information

 if((int)t2 % 500 == 0 && rotating == 1)

 {

 // if (sex !=0 && age != 0 && weight !=0)

 // AC = (int)(AEEaccell(age, sex));

 adc_in = 0;

 bufferHR = avgHR/(unsigned int)HRcnt;

 avgHR = 0;

 HRcnt = 0;

 }

}

/********** HEART RATE SIGNAL PROCESSING *************/

//interrupt triggered when a digital pulse is acquired

#pragma vector = PORT2_VECTOR

__interrupt void Port2_ISR(void)

{

// buzzerOn(); //Make sound for each heart rate

// swDelay(1); //Delay to make sure sound is heard

 if(next == 0) //If very first heart beat time

 //Is not recorded...

 {

 occurence[0] = time; //record time of very first heart beat

 next = 1; //Very first heart beat time is recorded

 }

 else

 {

 occurence[1] = time; //Record heart beat time

212

 dt = (occurence[1] - occurence[0]); //Calculate time difference between two

beats

 HR = (int)(60/dt); //Calculate heart rate

 occurence[0] = occurence[1]; //Second heart beat time to first heart

beat time

 avgHR += HR; //Actual average calculated later in the

timer interrupt

 HRcnt ++;

 }

 P2IFG &= ~(BIT0);

}

/****************** ROTATION HANDLER ****************/

void rotationHandler() {

 // First clear the screen

 clearLCD();

 // Inputtype used to determine what shows up on the LCD --> HR and Acceeleration

will cycle, carbs will be displayed upon request

 switch(inputtype)

 {

 case 3: dispHR(bufferHR); break;

 case 4: dispACC(INbyte); break;

 case 5: dispCarbs(carbs, "CG"); break;

 case 6: dispCarbs(rate, "GPM"); break;

 //default: clearLCD(); break;

 }

}

/***************** BUTTONS ************************/

void buttonHandler(void)

{

 if (buttonPressed)

 {

 // software delay

 #ifdef SIZE_OPTIMIZED

 delayX (300);

 #else

 delayX (300);

 #endif

 }

 buttonStatusPrev = buttonStatus;

 buttonStatus = ~(P3IN & BTN_MASK);

 buttonPressed = (buttonStatusPrev ^ buttonStatus) & buttonStatus;

 buttonReleased = (buttonStatusPrev ^ buttonStatus) & buttonStatusPrev;

 // Display the correct input type

 if (displayName == 1 && rotating != 1) {

 switch(inputtype)

 {

 case 0: writeWord("GENDER"); break;

 case 1: writeWord("AGE"); break;

 case 2: writeWord("WEIGHT"); break;

 case 3: writeWord("RESTING"); break;

 default: clearLCD(); break;

213

 }

 }

 if (buttonPressed) {

 // Make sure we're not rotating

 if (rotating == 0) {

 // Make sure input type is between (inclusive) 0 and 2

 if (inputtype == -1)

 inputtype = 0;

 else {

 // Button One is Pressed

 if (buttonPressed & BTN1) //this is saying if the button pressed is the

first button

 {

 variablevalue = digits[0] + 10*digits[1] + 100*digits[2];

 switch(inputtype)

 {

 case 0: sex = variablevalue; break;

 case 1: age = variablevalue; break;

 case 2: weight = variablevalue / 2.2; break;

 case 3: restHR = variablevalue; restHR = bufferHR; rotating = 1; break;

 }

 inputtype++; //increment input type up to

inputtype==2

 digits[0]= 0;

 digits[1]=0;

 digits[2]=0;

 variablevalue=0; //then set all buttons back to zero

 displayName = 1;

 }

 else

 displayName = 0;

 // Button Two is Pressed

 if (buttonPressed & BTN2 && inputtype != 0 && inputtype != 3) //repeat

with button 2

 {

 // Make sure the number is within range for the AGE case

 if (inputtype == 1) // Make sure the digit does not exceed 1

 if (digits[2] + 1 > 1)

 digits[2] = -1;

 // Make sure the digit does not exceed 9

 if (digits[2] + 1 > 9)

 digits[2] = -1;

 // Button TWO does not work for the SEX or AGE case

 digits[2] += 1;

 variablevalue = digits[0] + 10*digits[1] + 100*digits[2];

 }

 // Button Three is Pressed

 if (buttonPressed & BTN3 && inputtype != 0 && inputtype != 3) //repeat

with button 3

 {

 // Make sure the number does not exceed the range for the AGE case

214

 if (inputtype == 1) // Make sure it does not go above 120 years old

 if (digits[2] == 1 && digits[1] + 1 > 2)

 digits[1] = -1;

 // Make sure digit does not exceed 9

 if (digits[1] + 1 > 9)

 digits[1] = -1;

 // Button THREE does not work for the SEX case

 digits[1] += 1;

 variablevalue = digits[0] + 10*digits[1] + 100*digits[2];

 }

 // Button Four is Pressed

 if (buttonPressed & BTN4 && inputtype != 3) //if the button pressed

is button 4

 {

 // Make sure the number is in range for SEX

 if (inputtype == 0) // Make sure the range does not go over 1

 if (digits[0] + 1 > 1)

 digits[0] = -1;

 // Make sure the digit does not exceed 9

 if (digits[0] + 1 > 9)

 digits[0] = -1;

 digits[0] += 1;

 variablevalue = digits[0] + 10*digits[1] + 100*digits[2];

 }

 if (rotating == 0) {

 char variable[4];

 variable[0]=digits[2]+0x30;

 variable[1]=digits[1]+0x30;

 variable[2]=digits[0]+0x30;

 variable[3]=0;

 // Clear the LCD before writing

 clearLCD();

 // Write the digits to the LCD

 writeWord(variable);

 }

 }

 }

 else if (rotating == 1) { // If we're rotating

 // Reset the carbs

 if (buttonPressed & BTN1)

 carbs = 0;

 // Display the cummulative carbs

 if (buttonPressed & BTN2)

 inputtype = 5;

 // Display the rate of carbs burned

 if (buttonPressed & BTN3)

 inputtype = 6;

215

 // Display the heart rate

 if (buttonPressed & BTN4)

 inputtype = 3;

 }

 }

}

//Display numbers as user enters them

void writeNumber(int position, int letter)

{

 if (letter >= 0 && letter <= 9)

 writeLetter(position, (char)(letter + 48));

}

/************************ ALGORITHM ************************/

//HRaS = bufferHR - 0.83*bufferHR

//Calculate the Activity Algorithm

double AEEaccell (int counts, int age, int sex)

{

 if (counts < 133)

 return ((((0.203 * 133) - (0.75 * age) + (83 * sex) + 46) / 133) * counts) /

4186.8;

 else

 return ((0.203 * counts) - (0.75 * age) + (83 * sex) + 46) / 4186.8;

}

//Calculate the Heart rate Algorithm

double AEEhr (double HRaS, int age, int sex)

{

 if (HRaS < 23)

 return ((((5.95 * HRaS) + (0.23 * age) + (84 * sex) - 134) / 23) * HRaS) /

4186.8;

 else

 return ((5.95 * HRaS) + (0.23 * age) + (84 * sex) - 134) / 4186.8;

}

//Calculate Algorithms Combined

double AEEcombined (int age1, int sex1, int weight1)

{

 // Convert accelerometer data to per minute

 int counts = INbyte * 6;

 // Calculate the heart rate above sleep

 int HRaS = bufferHR - 0.83 * restHR;

 // Define the acceleration and heart rate algorithms

 double CAC = AEEaccell(counts, age1, sex1); //Where

'CAC' is acclereation for the combined algorithm

 double CHR = AEEhr(HRaS, age1, sex1); //Where 'CHR' is

heart rate for the combined algorithm

 double res = 0; //Where 'res' is

result

 if (counts < 25 && HRaS < 23)

 res = ((0.1 * CHR) + (0.9 * CAC)) * (weight1 * 0.45);

 else if (HRaS > 23 && HRaS < 80)

216

 res = ((0.5 * CHR) + (0.5 * CAC)) * (weight1 * 0.62);

 else if (counts > 25 && HRaS >= 80)

 res = ((0.9 * CHR) + (0.1 * CAC)) * (weight1 * 0.87);

 // Keep track of the rate (per minute) and the sum of carbs burned

 rate = res;

 carbs += res / 6; //Incrementing

value of carbohydrates is stored here

 return res;

}

/************************ 449UART ************************************/

//**

// MSP-FET430P440 Demo - USART0, 9600 UART Echo ISR, DCO SMCLK

//

// Baud rate divider with 1048576hz = 1048576Hz/9600 = ~109.23 (06Dh|03h)

// ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = default DCO = 32 x ACLK = 1048576Hz

// //* An external watch crystal between XIN & XOUT is required for ACLK *//

//

// MSP430F449

// -----------------

// /|\| XIN|-

// | | | 32kHz

// --|RST XOUT|-

// | |

// | P2.4|----------->

// | | 9600 - 8N1

// | P2.5|<-----------

//

//

// M. Buccini

// Texas Instruments Inc.

// Feb 2005

// Built with IAR Embedded Workbench Version: 3.21A

//***

void send()

{

 char dmy = 0;

 while (!(IFG1 & UTXIFG0)) // USART0 TX buffer done

 dmy=dmy;

}

void receive()

{

 char dmy = 0;

 while (!(IFG1 & URXIFG0)) // USART0 RX buffer FULL

 dmy=dmy;

}

void configUART(void)

{

 unsigned char INbyte;//, OUTbyte=0;

 WDTCTL = WDTPW + WDTHOLD; // Stop WDT

217

 FLL_CTL0 |= XCAP18PF; // Configure load caps

 // Configs UART0 to work at 9600 baud Transmit -- Interrupts not enabled

 // Use this for the receive byte - it is 449

 P2SEL |= 0x30; // P2.4,5 = USART0 TXD/RXD

 ME1 |= UTXE0 + URXE0; // Enable USART0 TXD/RXD

 UCTL0 |= CHAR; // 8-bit character

 UTCTL0 |= SSEL1; // UCLK = SMCLK

 UBR00 = 0x6D; // 1MHz 9600

 UBR10 = 0x00; // 1MHz 9600

 UMCTL0 = 0x03; // modulation

 UCTL0 &= ~SWRST; // Initialize USART state machine

 P2DIR |= BIT4; // P2.4 output direction

 P2DIR &= ~BIT5; // P2.5 input direction

 /* Receive Acclerometer information*/

 int cd = 0;

 while(1)

 {

 //Receive byte

 receive();

 unsigned int tempByte = RXBUF0; //tempByte stores it whenever it gets it

 /*

 unsigned int temp = txSample2 + 0x00;

 temp = temp << 8;

 temp |= txSample1;

 */

 if (cd % 2 == 0) { //if it's even then it does the logical or

 INbyte = tempByte + 0x00;

 INbyte = INbyte << 8;

 INbyte |= firstByte;

 }

 else { //if it's odd then it does the logical and and left shift

 firstByte = tempByte;

 cd = 0;

 }

 //display_byte(INbyte);

 cd++;

 }

}

/************************ DELAY FOR BUTTONS ********************/

void delay (unsigned int x) //9+a*12 cycles

{

 unsigned int i;

 for (i = 0; i < x; i++);

}

void delayX (unsigned int x)

{

 unsigned int i;

 for (i = 0; i < x; i++)

218

 delay (255);

}

/************The code below this line is from the ECE2801 course that has been

editted to fit the project**************************/

/******************** initSys() *****************************/

void init_sys(void)

{

 // Setup LCD

 FLL_CTL0 = XCAP10PF; //Set load capacitance for 32k xtal

 // Initialize LCD driver (4Mux mode)

 LCDCTL = LCDSG0_7 + LCD4MUX + LCDON; // 4mux LCD, segs16-23 = outputs

 BTCTL = BT_fLCD_DIV128; // Set LCD frame freq = ACLK

 P5SEL = 0xFC; // Set Rxx and COM pins for LCD

 clearLCD(); // Clear LCD display

 // Setup Button ports

 P3SEL &= ~(BIT7|BIT6|BIT5|BIT4); // P3.7-4 I/O Function [0000 xxxx]

 P3DIR &= ~(BIT7|BIT6|BIT5|BIT4); // P3.7-4 Push buttons input [0000 xxxx]

 // Set up heart beat port

 P2SEL &= ~(BIT0); // P2.0 I/O option (0)

 P2DIR &= ~(BIT0); // Set P2.0 to input direction (0)

 P2IES |= (BIT0); //Flag set with high to low transition (1)

 P2IFG &= ~(BIT0);

 P2IE |= (BIT0); //Enable intterupt

 // Set up the timer B

 TBCTL = TBSSEL_2 + CNTL_0 + MC_1;

 //TBSSEL: sourc SMCLK

 //CNTL: 16 bit

 //MC: upmode to CCR0

 //ID: input CLK divided by 1

 TBCCR0 = 10485; //10485 SMCLK ticks = 0.01 second

 TBCCTL0 = CCIE; //TBCCR0 interrupt enabled

 _BIS_SR(GIE); //Global interrupt enable

}

// **************************** clearLCD ***************************************

void clearLCD(void) // Makes the LCD blank

{ // Clear LCD memory to clear display

 unsigned int iLCD;

 for (iLCD =0; iLCD<20; iLCD++) // Clears all 20 LCD memory segments

 LCD[iLCD] = 0;

}

// *************************** writeLetter ************************************

void writeLetter(int position,char letter) // writes single character on the LCD.

{ // User can specify position as well

 // DO NOT PLAY WITH THE CODE BELOW ---

 if (position == 1) // This is position adjustment for

compatibility

 position = position + 6;

 else

 if ((position > 1) & (position < 8))

 position = ((position * 2) - 1) + 6; // Adjust position

219

 // ---

 switch(letter)

 {

 // Letter // LCDM7 // LCDM8 // End

 case 'A': LCD[position-1] = a + b + c + e; LCD[position] = b + c + g; break;

 case 'B': LCD[position-1] = c + h + e; LCD[position] = b + c + g; break;

 case 'C': LCD[position-1] = a + h; LCD[position] = b + c; break;

 case 'D': LCD[position-1] = b + c + h + e; LCD[position] = c + g; break;

 case 'E': LCD[position-1] = a + h + e; LCD[position] = b + c + g; break;

 // case 'F': LCD[position-1] = a; LCD[position] = b + c + g; break;

 case 'G': LCD[position-1] = a + c + h + e; LCD[position] = b + c; break;

 case 'H': LCD[position-1] = b + c + e; LCD[position] = b + c + g; break;

 case 'I': LCD[position-1] = a + h + f; LCD[position] = d; break;

 // case 'J': LCD[position-1] = b + h + c; LCD[position] = c; break;

 // case 'K': LCD[position-1] = d + g; LCD[position] = b + c + g; break;

 // case 'L': LCD[position-1] = h; LCD[position] = b + c ; break;

 case 'M': LCD[position-1] = b + c + g; LCD[position] = b + c + f; break;

 case 'N': LCD[position-1] = b + c + d; LCD[position] = b + c + f; break;

 case 'O': LCD[position-1] = a + b + c + h; LCD[position] = b + c; break;

 //file:///R|/MQP/HR_ACC_disp_2.txt (5 of 7) [4/23/2008 2:34:10 AM

 //file:///R|/MQP/HR_ACC_disp_2.txt

 case 'P': LCD[position-1] = a + b + e; LCD[position] = b + c + g; break;

// case 'Q': LCD[position-1] = a + b + c + h + d; LCD[position] = b + c; break;

 case 'R': LCD[position-1] = a + b + d + e; LCD[position] = b + c + g; break;

 case 'S': LCD[position-1] = a + c + h + e; LCD[position] = b + g; break;

 case 'T': LCD[position-1] = a + f + b; LCD[position] = d + b; break;

// case 'U': LCD[position-1] = b + c + h; LCD[position] = b + c; break;

// case 'V': LCD[position-1] = g; LCD[position] = b + c + e; break;

 case 'W': LCD[position-1] = b + c + d; LCD[position] = b + c + e; break;

 case 'X': LCD[position-1] = d + g; LCD[position] = e + f; break;

// case 'Y': LCD[position-1] = b + c + h + e; LCD[position] = f; break;

// case 'Z': LCD[position-1] = a + h + g; LCD[position] = e; break;

 // number // LCDM7 // LCDM8 // END

 case '0': LCD[position-1] = a + b + c + h; LCD[position] = b + c; break;

 case '1': LCD[position-1] = b + c; LCD[position] = d & a; break;

 case '2': LCD[position-1] = a + b + e + h; LCD[position] = c + g; break;

 case '3': LCD[position-1] = a + b + c + e + h; LCD[position] = g; break;

 case '4': LCD[position-1] = b + c + e; LCD[position] = b + g; break;

 case '5': LCD[position-1] = a + c + h + e; LCD[position] = b + g; break;

 case '6': LCD[position-1] = a + c + h + e; LCD[position] = b + c + g; break;

 case '7': LCD[position-1] = a + b + c; LCD[position] = d & a; break;

 case '8': LCD[position-1] = a + b + c + e + h; LCD[position] = b + c + g;

break;

 case '9': LCD[position-1] = a + b + c + e ; LCD[position] = b + g; break;

 // others

// case '.': LCD[position] = h; break; // decimal point

// case '^': LCDM2 = c; break; // top arrow

// case '!': LCDM2 = a; break; // bottom arrow

// case '>': LCDM2 = b; break; // right arrow

// case '<': LCDM2 = h; break; // left arrow

// case '+': LCDM20= a; break; // plus sign

// case '-': LCDM20= h; break; // minus sign

// case '&': LCDM2 = d; break; // zero battery

// case '*': LCDM2 = d + f; break; // low battery

// case '(': LCDM2 = d + f + g; break; // medium battery

// case ')': LCDM2 = d + e + f + g; break; // full battery */

 }

}

220

// ****************************** writeWord ***********************************

void writeWord(const char *word) // Displays a word upto 7 characters -- why 7?

 // Words must be in upper case (why?)

{

 unsigned int strLength = 0; // Variable to store length of word

 unsigned int i; // Dummy variable

 strLength = strlen(word); // Get the length of word now

 for (i = 1; i <= strLength; i++) // Display word

 writeLetter(strLength - i + 1,word[i-1]); // Displays each letter in the word

}

