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Abstract

Visualization systems traditionally focus on building gingcal depictions of relation-
ships among information in a human comprehensible formaeyTend not to provide
integrated analytical services that could aid users inlitaglkcomplex knowledge discov-
ery tasks. Users’ exploration in such traditional visuaii@an environments is usually
impeded due to several problems: 1) Valuable informatidrarsl to discover, when too
much data is visualized on the screen. 2) They have to mamaberganize their dis-
coveries off line, due to the lack of any systematic discpveanagement mechanism
provided as part of visualization system. 3) Their discsebased on visual exploration
alone may lack accuracy, because perceptual power of hueiagsis subjective and
may be insensitive to some of the characteristics of therimédion. 4) They have no
convenient access to the important knowledge learned bsr atbers. To tackle these
problems and provide improved exploration-support servtchas been recognized that
analytical tools must be introduced into visualizationteyss.

In this thesis, we present a novel analysis-guided exptoral/stem, called the Nugget
Management System (NMS) that aims to tackle the these simmgs. NMS leverages
the collaborative effort of human comprehensibility andchiae computations to facil-
itate users’ visual exploration process. Specifically, Nf#& extracts the valuable in-
formation (nuggets) hidden in datasets based on the itnses€asers. Given that similar
nuggets may be re-discovered by different users, NMS catadek the nugget candidate
set by clustering based on their semantic similarity. Toesdhe problem of inaccurate
discoveries, data mining techniques are applied to refia@atiggets to best represent the
patterns existing in datasets. Lastly, the resulting wedlanized nugget pool is used to
guide users’ exploration. Among the five stages of NMS frapr&wwe pay our main
attention on solving the technical challenges existed iggeti combination and refine-

ment. A critical issue that makes nugget combination difficithe distance metrics
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between nugget (how can we know whether two nuggets aressioiilnot). For nugget
refinement, trying to understand what a user is looking foenva nugget was generated
is a difficult job which requires effective "match” heuristi In this thesis, we present
solutions to both of these two challenges, and we have coadwser study to carefully
compare the performances of different distance metriosd® nuggets. Thus, besides
presenting the general framework of NMS, the contributiohthis thesis also include
the novel solutions to nugget combination and refinement.

To evaluate the effectiveness of NMS, we integrated NMSXrtwlvTool, a freeware
multivariate visualization system that had not offeredlyeal services. User studies
were performed to compare the users’ efficiency and accuwhfigishing tasks on real
datasets, with and without the help of NMS. Our preliminavgleations indicate that
NMS may greatly improve users time efficiency and accuracgmséplving knowledge
discovery tasks and NMS works in a stable manner during exfms by a sequence of

users.
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Chapter 1

Introduction

Visualization systems traditionally focus on building gingcal depictions of relationships
among information in a human comprehensible format. Byglem they aim to help their
users to better understand the information. This meansgeescan either learn some
facts that are not easy to discover without the graphicaktiep, or the users’ knowledge
to some facts can become deeper or more precise. The ussolihgsualization systems
has been well established [64, 55, 56, 23].

Recently, visual analytics [61] has been employed to sobveptex knowledge dis-
covery tasks in many important fields of human society, nagiom homeland security,
credit fraud detection to financial market analysis. Sawsnich tasks usually requires
analysts to perform complicated and iterative sense-nggiiacesses [21, 51]. Thus, it
has been recognized that relying on analysts’ perceptuwatpalone to conduct visual
exploration may not always be the most effective method keesthese problems.

To fully support visual analytics, visualization systenasé to be improved by tack-
ling some key challengeg) Overloaded Displays:When too much information is visu-
alized on the screen, effective knowledge discovery isatififi For example, as shown in

Figure 1.1, when a dataset, even with modest numbers ofdeemd dimensions, is visu-



Figure 1.1: “Cars” dataset visualized Figure 1.2: A complete cluster among
with Parallel Coordinates three dimensions of “Cars”

gt R e e o

Figure 1.3: One “partial cluster” found Figure 1.4: Another similar yet not iden-
by users tical “partial cluster”

alized, overloaded displays make knowledge discovery) as@attern detection, a time-
consuming proces®) Disorganized DiscoveriesSince to date there is no systematical
discovery management mechanism provided by visualizaiistems, users have to man-
age and organize their discoveries off line on their own. é&@mple, some users, either
due to rich domain knowledge or after a long time of explamtmay be able to identify
some patterns (e.g., the cluster highlighted in red in EduR). But unfortunately, she
will not be able to store it in the system nor to easily reti@vfor future exploration.
Even if the systems provide some simple recording funclitynaince a pattern may be
repeatedly visited by a single user or even multiple usedymdant recordings may be
generated (e.g., the clusters in Figures 1.3 and 1.4 aresumilar). Such redundancy
causes information overload that may hinder the future @iskase recordings3) In-
accurate Discoveries:Discoveries found by using their perceptual power alone beay
inaccurate, because perceptual power of human beingsjsctivb and may be insensi-
tive to some of the characteristics of the information. Bareple, the “clusters” found

by users in Figures 1.3 and 1.4 are actually subparts of a ledenpluster depicted in



Figure 1.2. Such inaccurate discoveries may lead to loviigudecision making (i.e.,
this user may miscount the population of the whole clustesheé works on the “partial
cluster” in Figure 1.3).4) Isolated Knowledge: Even if valuable knowledge may have
already been uncovered, there is no convenient mechanrsnséeos to access and share
it, not to mention conduct collaborative visual analyti€ésr example, a user interested in
“clusters” in the dataset may spend a lot of time to find the meationed in Figure 1.2,
although it may have already been previously discoveredigraisers.

Previous efforts to tackle some of these problems can behtputpssified into two
categories. 1) User-driven: In this category, while thevideolge discovery process still
relies on users’ perceptual power, a variety of visual edBon mechanisms, such as
zooming, filtering, color coding and dynamic querying, affered by the visualization
systems to facilitate exploration [4, 64]. These technggomainly help to relieve over-
loaded display. Our framework applies these techniquedw aisers to best use their
perceptual power during visual exploration. 2) Data-drivBata-driven techniques aim
to expediate knowledge discovery with the help of the aiadl/power of machines. Data
mining algorithms [30, 69, 38], which detect useful pattean rules in large datasets,
fulfill an important role here. These techniques will be eoyeld in our framework to
improve the accuracy of discoveries.

More recently, some initial efforts have emerged to takeaathge of both human
perceptual abilities and computational power of compuierteal with the challenging
process of knowledge discovery [61]. Visual data mining W22, 34] involves users
in the mining process itself, rather than being carried aumpgletely by machines. In
VDM, visualizations are utilized to support a specific mopitask or display the results
of a mining algorithm, such as association rule mining, dng tenhance user compre-
hension of the results. However, considering the singl&-thaiven style of VDM (e.g.,

detecting all the patterns of a certain type existing in asktd, it usually does not support



an iterative and comprehensive sense-making processpf@ppsed interactive tools to
manage both the existing information and the synthesis wf ar@alytic knowledge for
sense- making in visualization systems. This work so farrspaid much attention
on how to consolidate the users’ discoveries. Collabosatigual analytics [51] intro-
duced computational power into the sense-making procdssfegus on supporting the
exchange of information among team members.

In this work, we design, implement and evaluate a novel amslguided exploration
system, called the Nuggets Management System (NMS), wieidrages the collabo-
rative effort of human intuition and computational anaty® facilitate the process of
visual analytics. Specifically, NMS first extracts nuggedsdx on both the explicit and
implicit indication of users’ interest. To eliminate pdsig redundancy among the col-
lected nuggets, NMS combines similar nuggets by conductugget clustering. Then,
data mining techniques are applied to refine the nuggetsharsdrnprove their accuracy
in capturing patterns present in the datasets. We alsogeavirich set of functionali-
ties to manage the nuggets. With them, nuggets can be nradtautomatically (i.e.,
out-of-date nuggets can be pruned by the system) or by the (ise, users can attach
annotations [42] to nuggets to facilitate nugget retriewad sharing). Lastly, the well-
organized nugget pool will be used to guide users’ visualaggion in both user- and
system-initiated manners.

As a general framework for analysis-guided exploration oftivariate data, NMS
can be incorporated into any multivariate visualizatiosteyn. To verify the feasibility
of NMS, we have integrated it into XmdvTool [64], a freewapeltdeveloped at WPI for
visual exploration and analysis of multivariate data s&tse main contributions of this

thesis are:

e We introduce a novel framework of analysis-guided visuglepation, which fa-

cilitates visual analytics of multivariate data.
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e We present a nugget combination solution that effectiveuces the potential
redundancy among nuggets. We design a novel distance métioct effectively
capture the distances between nuggets, and our user stadsg shat it matches

well with users’ intuition.

e We present a nugget refinement solution, which utilizes datdysis techniques
to improve accuracy of the nuggets in capturing patterngfasets. This is a novel
approach that leverages the advantages of both humanontaitd computational
analysis. It not only improves the accuracy of users diseesebut also avoids

expensive global data mining process.

e We develop tools for the management and support of visudbeagpon based on a

learned nugget pool.

e We apply the above techniques of NMS to XmdvTool, a freewaunttivariate data

visualization tool.

e We describe user studies evaluating the effectiveness & NMe user study demon-
strates that NMS is able to enhance both the efficiency angracyg of knowledge

discovery tasks.

The remainder of this thesis is organized as follow: In Céagt we will introduce
the overall NMS framework for analysis guided visual expt@n, including nugget ex-
traction, combination, refinement, maintenance and nuggieled exploration. In the
later chapters, we will carefully discuss the technicabhdetand experimental results of
nugget combination and refinement. Specifically, in Chapteve will discuss the dis-
tance metrics used in nugget combination (clustering) taitde A user study comparing
different distance metrics will also be described in thiamtler. The specific clustering

algorithm we developed for nugget clustering is presenmte@hiapter 4. Evaluations to



this algorithm appears in chapter as well. Chapter 5 wiltuls the ideas and techniques
utilized in nugget refinement. Chapter 6 shows our user saigdgssing the overall func-
tionality of NMS. In Chapter 7, we will introduce the relatedrk. Finally, in Chapter 8,

we draw conclusions and envision our future work.



Chapter 2

NMS Framework for Analysis Guided

Visual Exploration

In this chapter, we introduce the overall NMS framework foalgsis guided visual ex-
ploration, including an overview of its different compont&and brief introductions to
key ideas used in each component. The specific componentsayget extraction, com-

bination, refinement, maintenance and nugget-guided 0.

2.1 Nugget Extraction

2.1.1 Definition of Nuggets

Before introducing nugget extraction techniques, we defurenotion of what we mean
by the term nuggets. Generally, a nugget is some piece ochbbdunformation extracted
from the dataset, typically, some subpart of the whole @ata® nugget could be a
representative of clusters, outliers, association or dhgraype of patterns. Additional
attributes of a nugget, such as a name and annotations, cattalsbed to a nugget as

well. For the purpose of this thesis, a nuggeéts defined by a range query over a



particular dataseD as well as the result of this query, datagstD). In N-dimension
space, a nugget is a (hyper-)rectangle, whose boundageteaided the query range on
each dimension. Why we choose range query as the initialdfpeigget we study on
is because 1) Range query is a very common query type thatsaileers to specifiy the
subpart interested to them in a dataset. 2) An importantdaotien tool existing in current
visualization system, which is called "brush”, use the seticaf range queries. A more
extensive range of nugget types will be considered in owréuvork.

N ={D,Q,Q(D)}; Q@ = SelectD.A,,, D.A,, ..., D.A, From D WhereD.A,, =
[Ap.by - A by, DA = [Arby  Apby), o, DA, = [An by - Apby]; {D. A, D A, ..., DA} C
attributes ofD, A,.b, and A,.b;, are the lower bound and the upper bound of the query
ranges on attributd,, [A,.b; : A,.by] means “fromA,.b, to A,.b,"; Q(D) C D.

As shown in the definition above, for a given dataset, a nuggitst depicted by a
guery that has a selective range on some (or all) of the dimesisHowever, a nugget is
not only defined by the range query itself, but also the regdtta records) of this query.

The concept of nuggets is independent of the display metimoaisiltivariate visual-
ization systems, such as Parallel Coordinates, Scattsr@hal Glyphs [64]. Without loss
of generality, we use Parallel Coordinates [32], which id@dely used method, to demon-
strate the examples in this paper. Thus visually a nuggetapms a blue band across
the axes, which represents the query ranges on each dimeasubthe red (highlighted)
lines that indicate the selected records (result) of theyques shown in Figures 1.2, 1.3
and 1.4, users can specify different queries by adjustieddWwer and upper bounds of
the blue band (selection ranges). Users can also hide samenslions if they are not

interested in them.



2.1.2 Nugget Extraction Based on User Interest

Meta-information extraction can be achieved by observiagrsi exploration process
(user-driven) or by conducting analysis of the patternsteyg in the data (data-driven).
The NMS framework is compatible with the nuggets derivechg®ither of these two
methods. Data mining algorithms for pattern detection Heeen extensively studied in
the KDD community [26, 52, 12]. Any one of these existing noeth if applicable to

mutlivariate datasets could be plugged into our framework.

Here in our prototype of the framework, we instead focus ogget extraction via
user-driven methods. The main benefits of user-driven nastlaoe 1) We can bring
into play the advantage of human perceptual and cognitilgied to identify patterns
in a knowledge discovery process, which is in fact one of tlaénmeasons why people
have developed visualization systems. 1) We only deal \wehriformation that users are
interested in, thus avoid unnecessary effort to produadteethat users are not of interest.

Similar to other systems [21, 51], users can explicitly aadie if a particular piece of
information is of interest. This is done by explicitly sagithe given query and labeling
it by a persistent nugget name. NMS also provides a rich deinationalities to let users
input, edit, and remove the nuggets as further discusse@ctid® 5. A non-intrusive
alternative to explicit indication is implicit indicatiom method found in intelligent sys-
tems [17, 11]. In NMS, nuggets can be extracted automafitgllobserving a user’s
exploration. “Visiting time” is one factor [17] used as thaim indicator of a user’s in-
terest during visual analysis. NMS extracts a nugget if & sigends a long time visiting
(querying over and looking at) a subpart of the dataset. iBpaty, our system monitors
users’ navigation. When it finds that a user is querying owvairlgart of the dataset, and
spending longer than a certain amount (a threshold) of tiosewing this subpart, it ex-
tract a nugget based on the query the user specified. Suchaatext process can also

be caused by repeatedly visitings. That means even if a giligemnever been visited for



longer than the threshold, it can also be extracted as a hifgges repeatedly visited,
and its accumulated visiting time makes it qualified. Fomegke, if a subpart shown in
Figure 1.2 has been visited for a long time by a single usezeatedly visited by one or
more users, NMS will conclude that it is a nugget.

Problems that could be caused by such log mining, such asidaday, inaccuracy,
out-off-date nuggets, and misinterpretation of user®rnests, will be tackled by nuggets

combination (Chapter 2), refinement (Chapter 3) and maames (Chapter 4).

2.2 Nugget Combination

Relying on nuggets extraction alone may suffer from nuggétindancy. This is because
as the users navigate in the datasets by moving the slidect wbntrol the range query
boundaries, rather than by explicitely specifying exactrggs as typically in SQL-type
guery systems [44, 45], many similar nuggets with slightffedent boundaries are very
likely to represent the same data feature. Nugget redugdamses two major problems
to the system:l) A large nugget pool generated during a long explorationogemay
make it more difficult for users to make use of individual netgg because searching
nuggets of potential interest can be quite time-consumingontinuous growth of the
nugget population may also lead to low system performance.

Here we give an example (Figure 2.1) to show that three $jiglifterent nuggets are
actually representing the same pattern in the dataset. &srsin Figure 2.1, nuggets
1, 2, and 3 are capturing a same pattern (a cluster) in th& ‘dataset. So, an efficient
method is needed to keep the nugget pool of a modest size gehigh representative-
ness. Several different techniques, such as samplingf{i®jing [60] and clustering [12]
of nuggets may be employed to achieve this goal. After chgfmparison, we chose

clustering, which groups similar nuggets and generateeseptatives for each group.

10



Clustered Nugget

Figure 2.1: A example of clustering three similar nuggets

This is because, when constructing a representative for gr@up, clustering techniques
consider and combine the features of all the group membdéiite filtering and sampling
techniques tend to just pick an “important” group membehas representative. Since
in many cases, we can hardly tell which nugget is surely moportant than others (even
if we have certain mechanism to express the importance ajetagnuggets with simi-
lar importance may be very common), constructing a reptasee which “speaks” for
every nuggets in a group makes more sense than just pickengford since we can use
importance as the weight in clustering process, the reptatee generated will mainly
reflect the feature of the dominant (supper important) nygig@ere is any. The example
of forming a representative (clustered nugget) for similaggets is also shown in Figure

2.1.

11



2.2.1 Distance Metrics

Clustering aims to group objects based on their similar{te 6]. They require a distance
measure that best expresses the domain specific similatityelen objects. In our work,
one of the main issues we have to tackle is thus the develagpoh@ensuitable distance
metrics for our multi-dimensional nuggets. To solve thebpem, distance metrics are

developed to effectively capture the distance between aimppnuggets.

Query Distance

Nuggets are defined by both queries and their results. Saratigt nuggets that are
defined by similar queries should be considered to be moréasithan those defined by
rather different queries.

Thus our problem can be transformed into the problem of hoguentify the simi-
larity of queries. Fortunately, previous work [65, 67] hagdsed this problem. The major

principle utilized for measuring the query similarity (Q&n be summarized as:

A B
@S B) = S en 0

Here QS(A,B) represents the query similarity between Nuggend Nugget B, and
QA and QB are the qualifiers of these two queries. We adopidke as the basic prin-
ciple for our query similarity measure on individual dimems. We have also studied
several important refinements to this basic idea, which ntadegpable to handle different
types of domains (discrete, continuous, nominal) and ekieto the multi-dimensional
environment. Details of this will be discussed in Chapter 3.

When we've successfully acquired normalized query sintidar (between 0-1), we

12



can now easily calculate the query distances (QD) as showarimula 2.0.

QD(A, B) =1 — QS(A, B) 2)

Data Distance

Our query distance metric effectively measures the siitylaetween two nuggets based
on their query specification. However, nuggets are not oméyacterized by their queries
(profile), but also by the results of the queries obtainedndugplying the queries to a

particular dataset (content). As shown in Figures 2.2 aBdt®0 nuggets generated by

Figure 2.2: A nugget capturing a cluster Figure 2.3: A nugget with no data record
in the “Iris” dataset included

very similar queries may be rather different in terms of attiata content. The former
contains a cluster, while the latter is empty. Clearly, wech®® enhance the capability
of our distance metrics by comparing the “contents” of thggats. Now, the problem
we must solve can be viewed as a general date analysis probléat is, given two
subsets of a multi-dimensional dataset, how could we medbkardistance between them.
Previous works to tackle such problems [8, 20, 48, 19] carebbeglly classified into two
main categories, statistic and transform-cost approadhehis thesis, we introduce our
proposed algorithm, Exact Transformation Measure(ETMijctvis based on extending a
basic transform cost algorithm. The details of this aldmniand comparisons of different
data distance metrics will be discussed in Chapter 3. ETNweilp us to get the Data

Distance(DDI[X,Y]), between two nuggets, where X and Y are two nuggets and A and

13



B are the datasets contained by them respectively.
Finally, we combine the Query Distan(@ D[ X, Y]) and Data DistanceD D[ X, Y])

to present the Nugget Distant® D[ X, Y]) between any pair of nuggets X and Y.
NDX,)Y]=a-QD[X,Y|+ - DD[X,Y] (a+p8=1) (3.0

SinceQ? D andD D are both normalized (between 0 to N will be normalized as well.

2.2.2 Nugget Clustering

Once we have learned the distances between nuggets, anycggostering algorithm
[12, 68] can be applied to conduct nugget clustering. In gatesn, we designed an iter-
ative incremental clustering (11C) algorithm, which prdes real time clustering service

to the nugget pool. We will discuss the details of this algponi in Section Chapter 4.

2.3 Nugget Refinement

2.3.1 Benefit from Nugget Refinement

Data mining techniques applied to the datasets providesrtisef opportunities to im-
prove the quality of nuggets. In this section, we’ll intr@guour solution of using data
mining techniques to refine the nuggets found from users$agh a refinement can be
performed when a nugget is made because users were sedmtsngie identifiable pat-
tern types, such as clusters or outliers. For example, anesesearching for a cluster in
the dataset, however, for some reason, she missed partaguiré 5.1). Then, NMS will
refine the nugget to capture the complete cluster (Figure 5.2

Nugget refinement offers several advantages over both pgraralysis or mining

techniques of the data itself. They aré) Log analysis techniques, for example, the
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Figure 2.4: A nugget which captures the Figyre 2.5: The refined nugget which
main body of a cluster bus misses part of captures the complete cluster
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nugget extraction introduced in Section 1 of Chapter 2,oalysers’ actions only, without
any help from computational analysis of the datasets andpheperties. Thus they may
lack accuracy in nugget specification. While nugget refirgngearantees the accuracy
by exploiting both of them2) Data mining techniques, such as global pattern detection
algorithms, need to be told the specific type of pattern thagex is looking for. Such
information may not be always available, because users miaknow the exact pattern
types that are important to them. While for nuggets refindptae users’ interests have
already been indicated by candidate nuggets, which ardlysu@all subparts of a whole
dataset. Thus the refinement process could run differeal pattern detection algorithms
to figure out what users are looking f&) Even assuming the system knows the specific
pattern type a user is interested in, in many cases the uset $garching for all possible
patterns but only for certain patterns of this type. This esakunning expensive global
pattern detection algorithms not cost effective and utedlpatterns detected may even
cost users more effort to isolate the useful ones.

In this work, we chose density-based clustering [26] anthdise- based outlier de-
tection [39] as our sample pattern detection algorithmschviare popular algorithms
extensively studied in the literature [28, 52]. Howeveheastsearch methods from the

literature could equally be used.
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2.3.2 Techniques for Nugget Refinement

Generally, the actual refinement is divided into two phasalted the match and the refine
phases.

Match phase: In this phase, we aim to match the identified nuggets withepadgt
“around them” within the data space. In other words, our gedb determine which
patterns users were searching for when these specific reuggeé made. Briefly, the
concept of “Match” is used to judge whether some data patterrthe major parts of
these patterns primarily contribute to a nugget. If it is tase, we call the nugget and
these patterns “matched”. Figure 5.1 shows a good exampde“pfatch” between a
nugget and a cluster pattern in the dataset. The specifinitpeds utilized to calculated
how much a nugget is “matched” with the patterns around itlv@ldescribed in Chapter
5.

Refinement Phase:The match phase reveals to us what type of patterns that a user
was searching for. With this knowledge, we can finish nuggitement using the two
steps of splitting (if necessary) and modification. These $teps will make each nugget

a perfect representative of a single pattern. Details ohtban be found in Chapter 5.

2.4 Nugget Maintenance

In this section, we will discuss maintenance of the nugget.gover the duration explo-
ration, two potential hazards may leave “bad” nuggets imtingget pool. 1) Out-of-date
Nuggets: Some out-of-date nuggets extracted early on ahshger of interest to users
may become an unnecessary burden. For example, a user wisearaking for patterns
in "Car” dataset mainly paid attention to luxurious cars ia¢ anonth ago. Some nugget
were extracted during her exploration at that time. Howeagrer budget shrinks, her

recent exploration is only of cheap cars. Then, keeping tlggets about the luxurious
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cars will bring no help but more disturbance to her furthgslesation. 2) Misinterpreted
Nuggets: Some nuggets may have been wrongly learned bytersiating users’ inter-
ests.

To exclude these useless nuggets from our nugget pool, welirde the concept of
“vitality”. Generally, the “vitality” of a nugget reflectshe importance of this nugget.
We use accumulated “visiting time” as its main indicator. ifitar idea can be found
in the literature [12, 2]. Specifically, each nugget obtangnitial “vitality” when it is
extracted. This “vitality” fades as users’ explorationipdrincreases. A nugget can also
gain “vitality” through two methods. 1) Being Directly Visid: If a nugget is retrieved
by a user from the nugget pool, the time that this user speittamunts for its “vitality”
increase. 2) Being Indirectly Visited: An existing nuggetndirectly visited if a similar
new nugget is combined into it. Once a new nugget is clustatecan existing nugget,
this existing nugget absorbs its initial “vitality”, whicheans the “vitality” of the existing
nugget will be increased by the same amount of the initiahfity” of the new nugget.
Thus, briefly, nuggets created recently or visited freqyenil have higher “vitalities”,
while those extracted a long time ago and never visited #fienewill have lower ones.
Once the “vitality” of a nugget drops below a certain thrddhthe nugget is retired from
the system.

In NMS, such a natural “evolution” process of nuggets caa béscontrolled by users.
NMS allows users to cease, quicken, or slow down the “ewvatitdy setting different pa-
rameters, such as initial “vitality”, fading rate, and ieasing rate. Besides such macro-
control, users can also directly manipulate any individuajget. For example, users can
mark a nugget as crucial, indicating that it should neverdpéred from the system. They
could also directly delete some useless nuggets. Nuggettenaince leaves many op-
portunities for our future work, including: 1) How to giveqper rights to multiple users

working on the same nugget pool. 2) How to automaticallydesard modify the param-
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eters controlling nugget pool “evolution” during userspéxration. These problems are

important but not selected to be the topic of focus for thests work.

2.5 Nugget-Guided Exploration

Nugget-guided exploration makes use of the nuggets we learaedd to facilitate the
knowledge discovery process. Figure 2.6 shows a screero$lootr prototype system.
As we mentioned earlier, nuggets, as important carrierabfable information, can be
augmented with different kinds of additional attributeseskles “vitality”, names and
annotations are examples of other attributes that canketireemeaning of nuggets. For
example, when exploring a dataset about “arriving passehge border control officer
finds a nugget that represents a cluster existing in dimaagd“nationality”, “arriving
time”, and “criminal records”, she can give the nugget a nregfnl name (i.e., “Suspi-
cious Passengers Group”), and attach an annotation abocbheerns to this passenger
group. Such attached information will not only make it mooaenient to retrieve this
nugget, but also makes her nuggets shareable with othex. ddeanwhile, statistic infor-
mation, such as the number of data records included, avarafjextreme values on each
dimension, can be automatically computed and attachecktoubget.

Nugget-guided exploration can be carried out in both usersgstem-initiated modes.
1) User-initiated: Within this mode, users take the ingthto search and retrieve nuggets
when they desire to. NMS provides functionalities, suchoasreg and querying on statis-
tic information, key word based search on names and anaongtio help users quickly
access the nuggets of interest. 2) System-initiated: NMSalee the initiative also when
guiding users’ exploration. Such guidance will be givendobsn watching the users’ ex-
ploration. For example, when a user is querying a subpaheoflataset that is similar to

one of the existing nuggets, NMS could inform the user thavipus users have already
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found a nugget similar to what she is looking for.

Other sophisticated services, which are not the key foctilsi®thesis work, are also
critical for NMS and will be studied in our future work. Thegdlude: How to build
hierarchical structures among nuggets based on theirétaéion (e.g. some nuggets
may be subparts of a bigger nugget). How to guide users bas#ueo profiles using

collaborative filtering techniques [15].
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Figure 2.6: A screen shot from the NMS prototype when looKorgelusters hidden in
the dataset
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Chapter 3

Distance Metrics Between Nuggets

As we mentioned in Chapter 2, relying on nuggets extractioneamay cause redundant
nuggets. In this chapter, we introduce our solution of ntiggenbination, which keeps
the nugget pool in modest size yet with high representatisen

Several different techniques, such as sampling [10], i¢ef60] and clustering [12]
of nuggets may be employed to achieve this goal. After chosfnparison, we choose
nugget clustering, which groups similar nuggets togethdrgenerates representative for
each group. The reason for this has been explained in Chapter

Clustering aims to group objects based on their similaitiehey require a distance
measure that best expresses the domain specific similatityelen objects. In our work,
one of the main issues we have to tackle is thus the develdpofiensuitable distance
metrics for our multi-dimensional nuggets. To solve thebpem, distance metrics are

developed to effectively capture the distance between ampopnuggets.
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3.1 Query Distance

Nuggets are defined by both queries and their results. Saratigt nuggets that are
defined by similar queries should be considered to be mor#asithan those defined by
rather different queries.

Thus our problem can be transformed into the problem of hoguemntify the simi-
larity of queries. Fortunately, previous work [65, 67] hagdsed this problem. The major
principle utilized for measuring the query similarity (Q&n be summarized as Formula
1,

QRQANQEB

QS(A,B) = 0AUQB (1)

where QS(A,B) represents the query similarity between tuggand Nugget B, and
QA and QB are the qualifiers of these two queries. We adoptbissc idea as starting
point for the design of our similarity measure. Howevergesal/issues have to be refined.
First, we focus our attention on metrics for query similjagh a single dimension. Two

main types of domains are considered:

e Discrete Domains A discrete domain composed of nominal values is easy to han-
dle. Because of the discrete property, a direct use of Farhuhdeed solves the
problem. For example, given two queries over the nominal @omQA: select
* from X where X.origin< Japan, US, Germany}, QB: select * from X where
X.origin={Japan,US, Italy}, we just need to count the number of elements that
fall into the intersection and the union of these two sets thett we gefQA N
QB| = |Japan,US| = 2,|QAU QB| = |Japan,US, Germany, Italy| = 4, and
thus QS(A,B)=2/4=0.5. Clearly, this strategy of countirey kvords can also be

used in numeric discrete domains.
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e Continuous DomainsIntuitively, a straightforward variant of the previousoimnt
method” can also be used for continuous domains. The irtoseand union of
two range queries are no longer expressed by a count of theeets, but rather by
the “length” of overlap and total coverage. For examplegegi@QA: select * from
X where X.height =[5.25:5.85], QB: select * from X where Xigat=[5.45:6.15],
then we have)A N QB = 5.85 — 5.45 = 0.40, QAU QB = 6.15 — 5.25 = 0.9,
QS=0.4/0.9=0.44.

However, although the major principle of Formula 4.0 stdlds for continuous
domains, a more careful consideration regarding the comyinf the domain may
be needed. A problem rises as that in a domain of size from @M®,1if we
decide that two range queries over [1.00:2.00] and [1.50j2respectively have
some similarities, should we assert that two queries ov80[2.00] and [2.00:2.50]
are totally dissimilar just because they do not happen tolayeach other? An
example will illustrate this concern better.

irde ' prea ! v o

T 1 i

Figure 3.1: Query X Figure 3.2: Query Y

As shown in Figures 3.1 and 3.2, queries X and Y on dimensiorigi\t” are
[3051.73:3318.68] and [3327.02:3527.23] respectivelg Mite that even though
they do not overlap, visually the nuggets defined by them are gimilar. So,
in order for our metric to capture the broader semanticsrofiarity, we have de-

veloped a more general algorithm that handles both typeswifaths, while still
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keeping the essence of Formula 1. In this algorithm, the domdl be divided
into discrete bins. If some part of a query falls into a bin,ead the bin an “oc-
cupied bin (ob)” of the query. Finally, we utilize the “ocaag bin count strategy”

(obcs) when comparing two queries.
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Figure 3.3: Overlap case in “Occupied Figure 3.4: non-overlap case in “Occu-
Bin Count Strategy” pied Bin Count Strategy”

As demonstrated in Figures 3.3 and 3.4, now both overlap anebrerlap cases
are handled by our new algorithm. In Figure 384N QB = |QA.obNQB.ob| =
1{b2, b3, 4,15, b6} QAU QB = |QA.obU QB.ob| = |{b1,b2,b3,b4,b5,b6,b7}| =
7,and QS=5/7=7.1. In the Figure 3@AN QB = |QA.obN QB.ob| = |{b6}| =
1,QAU QB = |QA.obU QB.ob| = [{b6}| = 1, QS=1/1=1. In practice, we could
also set QS less then 1 for non-overlap cases, becauselbftezyaare not perfect

matches.

Actually, as we've seen, the “occupied bin count strategyi be used as a uniform

query similarity metric for range queries on a single dinens

_ QA.0bNQB.ob
QSULBy_QAobUQBob (3)

The difference between discrete and continuous domairs éafieat the former uses each

discrete value as its bin, while the latter divides the aardus domain into bins first.
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Nonetheless, in most cases, datasets are multi-dimehsanthso are the queries
defining our nuggets. Thus, we have to extend the previousaaetfined for a single di-
mension to now be applicable for multiple dimensions. Is thork, we adopt minimum
single—dimensional query similarity among all the dimensiof two multi-dimensional
gueries to represent the query similarity between them.uBvantee the “visual similar-
ity” of two nuggets, we choose the minimum but not other cammbon methods, such
as Manhattan Distance or Euclidean Distance [1]. The lagy compromise to large
differences on single dimensions if exist some highly maticbnes. To better explain our
choice, we use a concrete example to demonstrate it. As sindwgures 3.5 and 3.6, al-
though two queries L and K have completely same selectivgeran 13 dimensions (the
second to the fourteenth dimension from left), they are bffgrent on 1 dimension,
which is the first dimension. In this case, if we use ManhaB#stance or Euclidean
Distance, since the query distances on 13 dimensions &gealén if the distance on the
first dimension is huge, the final query distance betweerethes queries will still be
very small. However, as we can see, these two queries aralgctery different because
they are about different "Types” of products. That meansusers who specified them
were interested about the different things and we shouldloster their queries together.
Further more, if our distance metric beleives these twoigasare similar and eventu-
ally cluster them together, another problem may arise. Ehite selective range of the
representative on the first dimension will reflect the "agefaof these two query, and
thus may be the "Type” in the middle which never appeared th bbthem. Then, what
we store in the system is a representative that is very difiteirom both of the original
gueries, and the real interesting queries for users are llostontrast, when we choose
"minimum”, our distance metric will give small similarityf these two queries, because
the minimum similarity among all the dimensions is that oa finst dimension, and it is

obviously small.
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Figure 3.5: Query L Figure 3.6: Query K

Finally, when we've successfully acquired normalized gusemilarities (between O-

1), we can now easily calculate the query distances (QD)@srsin Formula 2.

QD(A,B) =1— QS(A, B) 2)

3.2 Data Distance

Our query distance metric effectively measures the siitylaetween two nuggets based
on their query specification. However, nuggets are not oméyacterized by their queries
(profile), but also by the results of the queries obtainednéggplying the queries to a
particular dataset (content).

As shown in Figures 2.2 and 2.3, two nuggets generated bysierjar queries may
be rather different in terms of actual data content. The &roontains a cluster , while
the latter is empty. Clearly, we need to enhance the capabflour distance metrics by
comparing the “contents” of the nuggets. Now, the problenmwst solve can be viewed
as a general date analysis problem. That is, given two ssilo$et multi-dimensional
dataset, how could we measure the distance between themoudevorks to tackle such
problems [8, 20, 48, 19] can be generally classified into tvanoategories, statistic and
transform-cost approaches. Below, we will explain why weade the latter, and then

introduce a proposed algorithm based on extending a basisfarm cost algorithm.
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3.2.1 Statistic Approach

Since traditional statistic methods, such as average andtas, cannot fully capture the
characteristics of two subsets, a more sophisticated rdethstograms has been devel-
oped, which is called Histogram Difference Measures(HDNDM based on the average
relative error [8] of aggregation is used in data abstraatjoality measure [20], approxi-
mate query processing of databases as well as image stynitegasures [47, 59]. Itrelies
on comparing the histograms of two sets of data, meaningg¢itdes on the distributions
of data points. When measuring multidimensional datadétyl can be carried out by
either an integration of single-dimensional histogrambéya single multi-dimensional
histogram.

However, both histogram methods tend to suffer from difiel®it not ignorable dis-
advantages. For multi-dimensional histograms, the nurabbins grows exponentially
when the number of dimensions increases, thus the compleit easily reach an unaf-
fordable level even with a modest number of bins and dimessid-or example, if we
have 10 dimensions and divide each dimension into 10 binsegd10'° comparisons.
On the other hand, the integration of single-dimensionstiolgrams first compares his-
tograms on each dimension separately and then integraegghlts into a normalized
result. This is similar to what have done for the query disgarit has a linear complexity
O(b*Kk) (with b: number of bins on each dimension, and the k:rthmber of dimensions).
But such integration cannot truly reflect the distributidrlata points in many cases. For
example, dataset{al(length = 1, widthl), a2(length = 10, width = 10)} and dataset
B{bl(length = 1,width = 10),b2(length = 10, width = 1)} will be measured to be
exactly the same by this method, since they have the samibdigin on each individual

dimension. Even though, these two datasets actually hayedifeerent data records.
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3.2.2 Transform Cost Approach

As a general notion, Transform Cost has been shown to betieéien a wide range of
different areas, such as “Edit Distance” in string matcH{#®], and “DIFF” in change
detection to HTML and XML files [19]. In Transform Cost Appia distance be-
tween two objects is expressed as the minimum cost of tremgig one object to an-
other. A well known algorithm that relies on Transform Castiearest Neighbor Mea-
sure (NNM). NNM is used in measuring data abstraction qud] and image quality
[54]. When comparing two datasets, NNM aims to move each patat (record) in
one set to its nearest neighbor in the other set. It then leadsithe accumulative dis-
tance that all the data points have moved. Generally, it iserpeecise than the Statistic
Approach, because it deals with each data point rather thBngeneral statistic infor-
mation of datasets. But unfortunately, NNM appears to wakds for measuring the
quality of representativeness due its n to 1 mapping styatégt us see an example
that shows the deficiency of this method. Given two datasatasétA{al(length =
1), a2(length = 100), a3(length = 100), ..., a99(length = 100), a100(length = 100)}
and dataseB{bl(length = 1),02(length = 100)} would be measured to be exactly
same, for each element in set A finds a 0 distance nearesthoeighset B. In short,
NNM is a population-insensitive algorithm. It may lead ta@l@mparison results in our
case, because comparing nuggets with different popukaisogoing to be the norm in our
work . To solve this problem, we propose a new algorithm dai@act Transformation
Measure (ETM), which not only overcomes the populatiorefrsstivity but also is more
effective in capturing visual similarity of two datasetsefBre discussing the specific
algorithm, let us first formulate the problem:

Given dataseO, |O| = m, and datasets Aand Bl C O,B C O,|A| = a,|B| =
b,0 <a <b<m,|AN B| =1,|B] — |AN B| = n, data points in O can be viewed as

geometrically distributed in the value space based on tiadires in different dimensions,
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we transform A to be exactly equal to B with minimum cost.

Figure 3.7: Dataset A Figure 3.8: Dataset B

To solve such a problem, simply moving data points in A torthearest neighbors in
B will fail in many cases, because it is neither globally oyl nor sensitive to population.
Thus, in order to achieve the transformation with minimurstcae define three types of

operations:
e Move(x, y): giverx € A,y € B, move x to the position where y lies.

e Add(X, y): giverny € B, add a new data point x to A at the same position where y

lies.

By using “Move” and “Add”, we are guaranteed to always be dblgansform A to
B, since A always has a smaller or equal sized populationabdhB. However, simply
relying on “Move” and "Add” will impose “forced matches”, vikh may not always lead
to capture of the real distance between two datasets. FRjA@rehows an example of
two 2-dimensional datasets where moving and adding areudiatient to make a cost
effective transformation plan.

Given dataset A (Figure 3.7) and B (Figure 3.8) as shown imrféi@.9, by using
“Move” and “Add” only, we have to match some data points in Awilata points in B
that are far away from them. While the “Delete” operationpselvould us to achieve a
more cost-effective transformation, as shown in Figur®.3.1

In the worst case, the existence of a few “outlier” data pothat do not have a “near

neighbor” close to them will deprive opportunities for maofyother data points to be

28



g
g
g

Figure 3.9: Trasforming A to B with Figure 3.10: Transforming A to B with,
moving and adding operation only moving, adding and deleting
matched with their real nearest neighbors. To deal with disadvantage of “forced

matches”, we introduce another type of operation, namé&lg|&te”.

e Delete(xX)r € A, delete x from A.

With the help of the “Delete” operation, we no longer needufies from “forced
matches”, because for a given data point in A, “Move” is nogenthe only option for
it. We can choose to “Delete”, if moving it will bring too mugobal cost. However,
how to make an optimal transformation plan, which has theimum cost, is still a
complex problem. In order to tackle this problem, we needuoysthe cost model of

each operation first.

e Cost of Move(x,y) Eost(M |z, y))

Cost of moving a data point x to y is equal to the distance betvweand y. Here, we
adopt the Euclidean Distance(normalized, between 0-1i;wik the most widely

used distance measure between two objects in a multi-dioreispace.

e Cost of Add(x,y) Eost(A[z, y])

Since Cost(A[x,y]) is usually an estimated value rathenthay physical distance,
in most of the Transform Cost works, a single COA (cost of agdwhich is in-
dependent from the position where the point will be addedpsed for each trans-

formation. In this work, we adopt this single COA strategyile developing a
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new method of estimation. Considering that a point is diyeatided to a certain
position, the adding process is composed by two steps: aaere(generating a
point at a random position) and a moving (moving the point tedain position).

Thus, COA can be expressed in the following way:

COA = GC + MC (5)

a) Generating Cost (GC): As mentioned in [63], COA grows asdize of the
original set (dataset A, in our case) decreases. It is nat toasee that generating
a new element for A would cause greater a “mutation” to it, wAas small. For
instance, when A is an empty sed( = 0), generating a new data point for A
will thoroughly change it, while if a=100,000, such a getieracan hardly make a

noticeable difference. So, we correlate GC with the caiiynaf A:

_ MPD

GM
a+1

()

With MPD: the maximum possible distance between two datasetqual to 1. We

add 1 to the divider to handle the case that a=0.)

b) Moving Cost (MC): When a new data point is generated fortAais a random
position. Thus, since we cannot truly calculate its distafiom the position it
should be moved to, we use the average distance between tageti( centroid to

centorid ) to estimate the MC needed for moving it to thisaiarposition.

Generally, COA as an estimated value has a positive asgotiaith the average
distance between two datasets and negative associatiothgitardinality of A. It
should be more expensive than most of the Cost(M[x,y]) iraagformation. For

normalization reason, we set the upper limit 1 to it.
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e Cost of Delete(x)€ost(D[z])

Similar to GC, the change cost of deleting is associated thighcardinality of A

and unrelated to the position where the deleted data pemitTihe difference here
is that we do not need to handle the cases where a=0, becausswelete a data
point only if it exists. So, we use Cost Of Delete (COD) to egw all the Cost

[D(x)] in a transformation:

MPD
a

COD =

(6)

Having defined the cost models of all our transfer operatiaesnow establish our
solution for finding an optimal (most cost-effective) treorsnation plan. We note that
making such an optimal transformation plan is non-triviebrtunately, the Hungarian
Assignment [62, 46] which was designed for finding minimunstdoipartite matches,
provides a good approach to solve this NP- hard-like probfepolynomial time. The
algorithm takes & x n matrix as input. Each row in the matrix represents a datatpoin
in A, and each column represents a data point in B. Then edch isrfilled with the
distance between the row and the column it belongs to. Thogitign returns a minimum
cost match irO(n?) time.

Let us see a simple example of how it works. Given a 2D daté&et(0, 1), a2(0,4), a3(0,7)},
a dataseB3{b,(0, 3), b2(0,6),b3(9,9)}. We know the domain for both dimensions is (O-
10), then the input matrix will be as shown in Figure 3.11.eAl series of matrix manip-
ulations, the output matrix will have exact one “0” in eaclvrand each column, which
stands for the “match” of two data points. For example, indbgut matrix below, since
there’s a “0” appearing at the entey[ b,], data point al should be moved&p (Figure
3.12).

The details of Hungarian Assignment Method can be found2n46].
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b1 b2 b3 b1 b2 b3

0
al 0.4 0.35 0.85 at
a2 0.07 0.14 0.72 az 0
a3 0.28 0.07 0.5 a3 0
Figure 3.11: Input matrix Figure 3.12: Output matrix

As mentioned before, we encountered several issues to bhesseéd. The first one
is that two subsets to be compared do not necessarily hawathe population. Also,
we need to incorporate the adding and deleting actions n@dransformation plan. To
achieve these goals and thus complete the design of ourlgtabaformation plan, two

modifications to the input matrix are needed.

e Dummy Points

When two subsets have different numbers of membets §), an input matrix with
distances between points only would not be a squared matiiined by Hungarian
Assignment Method as input. To deal with this, we add dummpntgdo A to
produce a squared input matrix. The distance between a dymomyd; and any
real data pointin B should be equal to COA, because when ¢jogitdm eventually
makes a match betweeh andb;, then this means a new point will be added to A
at the same position whete lies, and thus it costs COA. For example, if we add
one more point b4 (0, 0) to the above dataset B, then the inptrixawill be as

depicted in Figure 3.13.

¢ Incorporating Adding and Deleting

Recall that adding and deleting actions are essential fmdang a “forced match”.
Thus, we need to consider them comprehensively with mowitigrass when mak-
ing the transformation plan. Specifically, we have to incogbe COA and COD

into the input matrix properly. The key idea here is that whawvinga; to b; is
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bt b2 b3 b4

b1 b2 b3 b4 al 0.4 0.35]083]0.07
al 0.4 035 085 0.07 a2 0.07 0.14 072 0.28
a2 0.7 0.14 072 0.28 a3 028 007 065 0.49
a3 0.8 007 065 049 d! os8 058 058 058
di o058 058 058 0.58
Figure 3.14: Input matrix incor-
Figure 3.13: Input matrix with dummy porated with adding and delet-
points (COA=0.58) ing. Cost(M[al,b3])is replaced by

COA+COD=0.83

even more expensive then deleting it and adding a new daité feoivhere bi lies,
we choose the later “deleting + adding” strategy instead o¥ing. Thus, in the
input matrix, if the original value of an ent§ost(M|a;, b;]) > COA+ COD, we

use COA+COD to replace the original value. The example isvshn Figure 3.14.

Now we've discussed all the techniques needed to make aprgpée matrix that
can lead to an output matrix representing the optimal matcnce the output matrix
has been produced, by simply summing all the values in thet imatrix entries, which
match entry location with a “0” in its output matrix, and diimg the sum by population
of B, we get the Data Distandd D[ X, Y]), between two nuggets, where X and Y are
two nuggets and A and B are the datasets contained by theectasy.

Finally, we combine the Query Distant@ D[ X, Y]) and Data DistanceD D[ X, Y])

to present the Nugget Distant® D[ X, Y]) between any pair of nuggets X and Y.

NDIX,Y]=a-QD[X,Y]+3-DD[X,Y]  (a+3=1)  (6)

SinceQ) D andD D are both normalized (between 0 to N will be normalized as well.
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3.3 Evaluation of Distance Metrics: User Study

Now, we discuss several experimental studies we have ctedit@ compare the effec-

tiveness of different distance metrics introduced in thiapter.

3.3.1 Experimental Setup:

Experimental environment: This user study was carried out in a web-based environ-
ment. A web page which carried the instructions and all thesjons was posted on the
Internet.

Users: Although the user study was posted on the Internet and abtzedsr all
Internet users, it was only advertised to WPl community bypat. So, generally, the
users engaged in this user study were volunteers that arestviRints, faculties or staff.

Datasets: Three real datasets are employed in our user study. Theyar8ris”
dataset (4 dimensions, 150 records); the “Cars” dataset{@rsions, 392 records); and
the “Aaup” dataset (14 dimensions, 1161 records).

Nuggets: We have designed twenty pairs of synthetic nuggets whicbased on the
three real datasets we mentioned above. In particularnsawggets each are based on
“Iris” and “Cars”, and the other six are extracted from “Aduphese synthetic nuggets
are examples of the real nuggets which users could makeirménggations, because they
covered all the pattern types we discussed in this work amd Qdferent sizes. Specif-
ically, the smallest nugget we used in this user study wasdas “Iris” dataset. It had
very short selective range on all the four dimensions antaooad only two data records.
In contrast, the largest one, which was based on “Aaup” datesl large selective range
on all 14 dimensions and contained 543 data records.

Questions: We had twenty questions in the user study. Each of them regjuisers

to give a distance between a pair of nuggets. Particuldiheadistances were scaled by
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the integers from 0 to 10 which were presented by eleven sdalittons. The suggestive
semantics of each integer were also shown under the raditenbu Specifically, O-
1 means “very similar’, 2-4 means “similar’, 5-7 means “umgar’” and 8-10 means
“totally different”. The default answer for all the quesi®was “NULL”, which means
no radius button was initially selected when the questioasevghown to the users. The
sequence of the questions was randomly arranged, but owes iarranged , it was kept
identical for all users.

Results: All the results of the user study were automatically cokedbaded into our
database through the web page.

Experimental Methodology: As mentioned above, this user study was carried out
through Internet. Users volunteered to participate in 8 study and they could choose
to either provide their personal information, includingmg occupation, major (if stu-
dent), and e-mail address, or not. An brief instruction fer tiser study was given before
the specific questions were presented to the user. Thisiatsn introduced the concept
of “nugget” and asked users to answer all the questions lmasir own intuition. Users
were asked to answer all the questions without communicatith any other. However,
they were encouraged to contact us, the user study hodteyitiad any problem at any
stage of the user study both by e-mail or in person. Duringitieg study, users could go
back to reanswer any previously answered question and thdy enswer questions in
any order. However, they had to answer all the twenty questi@fore they could submit
their answers.

When analyzing the final results, we found that 20 usersqypatied in our user study
and all of them left at least part of their personal inforrmati From those personal in-
formation, we learned that they were all WPI students bunfdifferent majors. Five of
the twenty users contacted us in person before answeringuistions in order to fully

understand the instruction. Our communication with thers vestricted to the contents
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of the instruction itself. All such sessions were shortantO minutes each.
Experimental Strategy:We applied each individual distance metric (one query dis-
tance metric QD and three data distances HDM, NNM and ETM)ahithe combined
distance metrics (query distance + data distance: QD+HDDHKNM, QD+ETM) to
compute the distances between the same 20 pairs of nuggaetdlyFwe compare the
distances given by the users with those computed by eacheahtirics. For this, we
introduce a function “Dif”, which is used to express the @i#fnce between the distances
given by a metric versus by a user. For each U5erach distance metrit/ and a certain
pair of nuggetsvV,, N,, we compute Dif+Dy(N,, N,) — Dy(N,, N,)|. In our com-
parison, we first utilize a comparison strategies, which aleAccurate Credits Strategy
(ACS). In ACS, for each pair of nuggets, we assign differenbant of credit, called ac-
curate credit, to each metrics based on the difference leetite distances given by this
metric and by the user. Concretely, we give 3 credits to aiosafrDif=0, and we give 2
creditsto itif Dif = 1 and 1 credit ifDif = 2. If Dif > 2, no credit will be given to
the metric, meaning that the distance metric fails to matith the user’s intuition. For
all 20 pairs of nuggets and all 20 users (totally 400 distargieen), we calculate these
accumulative credits for each of the metrics. Besides ACSuse pie graphs, which
we call “Dif Distribution Graphs” to observe and compare Di¢ distribution of each
metric. For each metric, it will show us the exact number amid@ntage of each “match

category” (Dif=0, Dif=1, and so on).

3.3.2 Experimental Results:

Figure 3.15 shows the accurate credits earned by each metric
Since the distances given by users were based on their owtomt they may be
different for a same pair of nuggets. Actually, we found ttoatall the questions, our

twenty users gave more than one answers. However, as ACS$scallithe “matches”
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Figure 3.15: Accumulative credits earned by each distareteics for all 400 cases

and sums up the Accurate Credit earned by each distancecrfeatall the 400 cases, it
is a fair comparison for all the metrics. Generally, a metnat matches well with more
users in more questions will earn higher accumulative tre&k shown in Figure 3.15,
QD+ETM earns much higher accumulative credit than any atietric. This indicates
that it matches the users intuition best among all the distametrics.

Figures 3.16 to 3.22 show the distribution of “Dif’s for eadiistance metrics. From
them, we can observe that QD+ETM has 128 (32%) “perfect neatctDi f = 0) with
users’ ratings for the 400 distances. It also has 196 (4D%) = 1 matches, 44 (11%)
Dif = 2 matches, while only 32 (8%) “non- matchesD{f > 2). It is much bet-
ter than any other distance metrics in terms of more “goodchest’ and less “non-
matches”, even when compared with the second best one, QDvamkh has 88 (22%)
Dif = 0 matches, 132 (32%pif = 1 matches, 136 (34%p:f = 2 matches, and
44 (11%) “non=matches”fif > 2). Based on the comparison results above, we learn
that QD+ETM captures the distances between nuggets besigaaibthe metrics we

discussed in this work.
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Figure 3.16: Dif distribution of QD
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Figure 3.17: Dif distribution of NNM
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Figure 3.18: Dif distribution of HDM
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Figure 3.19: Dif distribution of ETM

39

ODif=0
mDif=1
ODif=2
ODif>2

ODif=0
mDif=1
ODif==2
ODif>2




ODif=0
mDif=1
ODif==2
Onif>2

Figure 3.20: Dif distribution of QD+NNM
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Figure 3.21: Dif distribution of QD+HDM
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Figure 3.22: Dif distribution of QD+ETM

3.3.3 Approximation to Hungarian Assignment Algorithm

However, the best quality usually comes at the price thedsgtost. Since the Hungarian
Assignment (HA) Algorithm used in ETM hag(n?) complexity, where: is the number
of points that appear in the larger subset but not in the gmallbset, it is not always
practical performance-wise when we try to compare the nisgge#h huge populations.
Figure 3.23 shows the CPU time used by all the distance msetrien measuring dis-
tances for the 20 pairs of nuggets we mentioned earlier. \Wesea that QD+ETM has
highest cost in terms of maximum, minimum and average CP# tised, which means
now we have a metric that is best at capturing users’ intuibiat worst in terms of time
efficiency.

To address this, we now propose to employ a much cheapenapation algorithm
of HA instead of the full-fledged HA algorithm. It is Coupon i&ztion (CC) Algorithm,
which hasO(nin(m)) complexity, where: has the same meaning with that in HA and

m IS the size of the original dataset. By using CC, we do notdamnake global optimal
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Figure 3.23: CPU time cost by different distance metrics

transformation plan by conducting complicated matrix afiens as we did with HA.
Instead, we “move” each non-overlaping data point in onegetitp its nearest neighbor
in another. Once a data point from one nugget has been mowedita point in the other
nugget, the later data point is “occupied” and can no longecépt” moving from any
other data point. Thus, if the nearest neighbor of a datatp®ifoccupied”, this data
point has to be moved to its second nearest neighbor. Ané g¢cond nearest neighbor
is “occupied” also, then we move it to its third nearest nbwh This yielding strategy
continues until a data point find an unoccpupied neighbotherdata point has to be
“deleted” in the transformation plan.

To study the performance and quality of ETM using CC, we run@DM (with two
different implementations of ETM: CC and HA) against 300@paf synthetic nuggets
extracted from 3 different datasets (1000 pairs per dgtaSence, theoretically, HA is
guaranteed to give the minimum distance for ETM, we use otiDtribution Strategy

to compare the distances by QD+ETM (CC) with those compusethulQD+ETM (HA).
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By doing this, we will be able to learn how often and how we# dlistances computed
using QD+ETM (CC) match with those by QD+ETM (HA). If they leagood matches
in most of the cases, we can conclude that CC is a good appatigimfor HA used for

computing ETM.

3% D

4%
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mDif=1
ODif=Z
ODif>Z

58%

Figure 3.24: Dif distribution of CC and HA on 1000 pairs of igegs from “Iris” dataset

As shown in Figures 3.24, 3.25 and 3.26, we observe that QIM-EIC) produces
exactly the same answers as QD+ETM (HA) in around 90 perdetfiectime. And in
only less than 5percent time, the Dif between them is larigan 2. These comparison
results indicate that CC is a very good approximation to HAeirms of capturing the
distances between nuggets.

Further more, to compare the CPU time cost of QD+ETM (CC) il costs by
other distance metrics and also its performance in termsadfimmng users’ intuition, we
use QD+ETM(CC) to measure the distances between the samair80op nuggets we
used in the earlier user study (Section 3.3).

As shown in Figure 3.27, from the maximum, minimum, average aso standard

deviation of CPU time cost, we learn that QD+ETM(CC) is theos®l fastest distance
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Figure 3.25: Dif distribution of CC and HA on 1000 pairs of igags from “Cars” dataset
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Figure 3.26: Dif distribution of CC and HA on 1000 pairs of gegs from “Aaup” dataset
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Figure 3.27: CPU time cost by different distance metrics

metric among all those we have discussed. It costs averagaiynd 75 percent less CPU
time than QD+ETM (HA) and only slightly more than QD only, whiis the cheapest
metric. Here, we also need to point out that, although QD+ETX@) saves much CPU
time in average case compared with QD+ETM (HA), QD+ETM (CEhot guaranteed
to be faster than QD+ETM (HA) in all cases. This is becausectimaplexity of CC,
O(nln(m)), is related to the size of the original datasets, but the dexity of HA,
O(n?), is only related to the non-overlap population in the langaggetn. CC can be
slower than HA whemn is extremely large, while is extremely small, although this is
not likely to happen in most of the cases. So, to be carefulcarechoose to use either
of these two metrics based on comparingm) andn?. If the former wins, we pick
QD+ETM (CC), or we pick QD+ETM (HA).

When comes to the performance of QD+ETM (CC) in terms of magchsers’ intu-
ition, we found that among all the 20 pairs of nuggets we usedir user study, QD+ETM

(CC) gave exactly same answer with QD+ETM (HA) in 18 pairsham. For the re-
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mained 2 pairs of nuggets, on which the distances given byEJDA(CC) and QD+ETM
(HA) did not completely agree, one of them has a differenagaktp 1 and another has a

difference equal equal to 2.
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Figure 3.28: Accumulative credits earned by each distareteies for all 400 cases

As shown in figure 3.28, the accumulative credits earned byEJIM (CC) are very
close to those of QD+ETM (HA) and much higher than any othetricgee And from
figure 3.29, we can observe that QD+ETM has 110 (28%) “perfetthes” Dif = 0)
with users’ ratings for the 400 distances. It also has 210652:f = 1 matches, 49
(12%) Dif = 2 matches, while only 32 (8%) “non- matcheD{f > 2).

3.3.4 Conclusions on Distance Metrics

Based on the experimental studies we discussed in thisethag draw following con-
clusions:

1) QD+ETM agrees well with users’ intuition on distances betwauggets. Itis thus
the best distance metrics among all we have discussed iwtiksin terms of capturing

nugget distance.
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Figure 3.29: Dif distribution of QD+ETM (CC) on the 20 pairrauggets used in user
study

2) Coupon Selection (CC) algorithm has been shown to be a gopa@&mation
to Hungarian Assignment (HA) algorithm used for computinBMVE It has almost the
same performance with HA in terms of capturing distancesw®en nuggets, and it costs
averagely around 75% less CPU time than HA for the nuggetbiee treal datasets we
employed (“Iris” dataset: 4 dimensions, 150 records; “Cdegaset: 7 dimensions, 392
records; “Aaup” dataset: 14 dimensions, 1161 records).

3) Query Distance (QD) only, as a cheap metrics, works well inyraases.

4) When picking the distance metric, QD can always be carri¢theiore conducting
any data comparison. If two nuggets have huge query distéwecethe data comparison
is on longer necessary, because the two nuggets will beysdisgimilar even without
considering the data they contain. If two nuggets have alsqnaly distance, we may
choose to compute the data distance or not based on how &sjpgréwe want to be
in the process of nugget clustering. If we want to form big amagh clusters in our
nugget pool with little time expense, we can just skip thadamparison and rely on the
results of query comparison only. In contrast, if we needeardafford to be “careful” in

nugget clustering and aim to form as precise clusters asip@sse have to consider data
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distance, meaning that we need to pick QD+ETM (CC) or QD+EHWAX. This choice
can be made by comparirig(m) andn?. If the former wins, we pick QD+ETM (CC),
otherwise we pick QD+ETM (HA).
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Chapter 4

Nugget Clustering

4.1 lterative Incremental Clustering (11C) Algorithm

As we mentioned earlier in Chapter 2, once we have an efeedistance metric to capture
the similarity between nuggets, any generic clusteringradgm can be applied here to
conduct nugget clustering. However, we have to be carefulighicking a suitable clus-
tering algorithm, for the following reasons: 1) Considgrihat nuggets are generated
during users’ exploration, reclustering all the nuggetthatarrival of each new nugget
may tent to be too expensive, especially when the nuggetlaptarge. 2) Reclustering
periodically (for example, once every day) will not only textra storage for nuggets
until the nugget consolidation is under taken but also lbgedpportunity to make real
time modification to the nugget pool. Thus, we adopt an ikgahcremental clustering
(IIC) algorithm to realize high-quality clustering in re@ahe. The main feature that dis-
tinguishes this algorithm from the traditional incremérmastering algorithms [12, 58]
is that it recursively re-inserts the modified nugget bat& the nuggets pool. This aims
to avoid similar nuggets to be kept in the nugget pool ( dstarbetween all nuggets are

larger than a threshold distance). Our proposed IIC algoris given in Figure 4.1.
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IC(P,N): /[P is the current nugget pool
/I N is the new nugget
1 AddToNuggetPooly , P)
2 ReturnP)

AddToNuggetPool(V , P):

1 MinDistance = 1

2 for each existing nuggeY; in P{
3  if (Distance(N;, N) < MinDistance)
4 MinDistance= Distance(N;, N)

5 int Closest=j

6 if (MinDistance < DistThreshold)

7 new nuggetN'=Combine(V, N¢ipsest)

8 RemoveN;yses: from P

9 AddToNuggetsPool{’, P)

10 else

11 Make N’ a new nugget in nugget pool

Combine(Nz , Ny):

1 new nuggetNV
2 for each dimensio# of IV,

IIN, and N, have same dimensions
Ny (k).byxNg.vitality+ Ny (k).byx Ny vitality
3 N(k)bl - Nm.yitality—l—NZ.Uitalityy
4 N(k)bh _ Ny (k).bpx Ny vitality+ Ny (k).byp x Ny vitality
5

N .vitality+ Ny .vitality
N.vitality = Ny.vitality + Ny.vitality
5  N(k).b, and N (k).b, are the lower bound and upper bound of nugjebn
thekth dimension
6 Return N

Figure 4.1: Iterative-incremental clustering (11IC) algjom

50




4.2 Evaluationto lIC

To learn the effectiveness of IIC, we carefully compare ggfigrmance with one of the
more common non-incremental clustering algorithms, K-MeaFirst, we compare the

theoretical characteristics of the two clustering aldons.

Incremental | Real Time | Parameter Required Complexity

- No No K CHI*E *n)
K-Means - ' )

Yes Yes Distance Threshold K *n)
nc )

EK: nnber of clusters. I: munber of iterations. n: number of objects

Figure 4.2: Theoretical characteristics of ICC and K-Means

As shown in Figure 4.2, ICC exhibits two noticeable advaesagpmpared with K-
Means. First, lIC is a real-time clustering algorithm, whincrementally clusters newly
arriving objects into previously formed clusters. While;nikeans would keep all the
newly arriving objects and reclusters them whenever anutusmeeded. This real-time
characteristics of ICC is important for our system, becausat only saves the storage for
all the nuggets generated in history but also allows reaétmodification of the nugget
pool. Second, the complexity of the IIC is much lower than ledvis. Because K-Means
relies on iterative reclustering of all objects, the numbgrtterations (I) may be very
high in many cases. Thus, even if we give up the chance otirealmodification of the
nugget pool, periodically reclustring the whole nuggetlpaih K-means is still quite
time-consuming. For those two reasons, we choose ICC fosysiem.

We perform several experimental studies to compare botéffteeency and quality of
ICC and K-means algorithms when they are used to clusteratagi/e use ICC and K-

Means to cluster three groups of nuggets. The 100 nuggete éifst group are extracted

51



from "Iris” dataset. The second group has 500 nuggets exilaitom "Cars” dataset,
and the third group is composed by 1000 nuggets extracted fAaup” dataset. Our
comparison strategy can be divided into three stép&or a selected group of nuggets,
we run ICC first to cluster them and get the clustering resg)t8Ve run K-Means against
the same group of nuggets several times, but with differefitek K= 1/2 k, K=k, K= 3/2

k, K= 2k, where k is the number of clusters just found by IC&)We compare both the

execution time and the clustering quality of ICC and K-Mewaiith different values of K.
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Figure 4.3: Comparison of CPU execution time by ICC and Kmseaith varying k

As shown in Figure 4.3, ICC is much more efficient than K-Meenterms of CPU
time cost. Actually, ICC takes only 5 seconds to cluster 1008gets. Thus, the time
needed for clustering a newly arriving nugget is usuallyatimeable for users.

Now we discuss the clustering quality of two clustering aipons. As mentioned in
[25, 30], two major criteria are considered when measuiiggduality of clusters. The
first one is“Compactness”: This is a measure of cohesion or uniqueness of objects in
an individual cluster with respect to the other objectsidetthe cluster, e.g., the average

similarity of objects within the cluster. The greater tha#arity, the greater the compact-
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ness. The second one‘isolation”: This is a measure of distinctiveness or separation
between a cluster and the rest of the world, e.g., the sityilaetween a cluster cen-
triod to an object outside the cluster. The smaller the sintyl, the greater the isolation.
Thus, our cluster quality measure can be expressed by theoBticompactness” and
“Isolation”. Specifically, we use the accumulative distabhetween each cluster member
and the cluster centroid to which it belongs to present tlergactness” of clusters. To
present the “isolation”, we use the “closeness penalty’ictvirs given and accumulated

if any nugget is too “close” to the cluster centroid it doe$ belong to. By adding up
the accumulative distance and close penalty, we can exjireSsegative quality” of the

clusters. By simply substract the negative quality from & can finaly acquire the quality

of clusters.
100 Nuggets Extracted From "Cars” Dataset
0.8
0.7 ] ] ] e
0.6 — —
0.5 - M |@Accumilative Distance
0.4 | || |®Penal ty
’ OTotal Negative
0.3 — 1 [OGuality
0.2 — i
0.1 — —

IIC (k=113  EN(K=6) EM(E=11) EM(E=15) EN(E=22)

Figure 4.4: Comparison to quality of clusters (objects: h0@gets extracted for "Cars”
dataset)

From Figures 4.4, 4.5 and 4.6, two facts can be observed: BnWrk, ICC has
equivalent performance with K-Means in terms of quality kfsters. 2) When we de-
crease(half) or increase (double) the value of K, the quafitlusters degenerates. Thus,

we learn that, for our observed cases, ICC can divide nuggetproper number of clus-
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500 Nugzets Extracted From “Iris” Dataset
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Figure 4.5: Comparison to quality of clusters (objects: 50Qgets extracted for "Iris”
dataset)

1000 Mugzets Extracted From “Aaup” Dataset
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Figure 4.6: Comparison to quality of clusters (objects: BO@gets extracted for "Aaup”
dataset)
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ters, and the quality of clusters it achieves is comparalile the K-Means. We thus
conclude that the Iterative Incremental Clustering Algon is an effective method for
nugget clustering, because it not only has the advantageiof bncremental, and thus
very efficient at run-time, but it also achieves comparallster quality with the non-

incremental clustering algorithm.
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Chapter 5

Nugget Refinement

5.1 Benefits from Nugget Refinement

In this section, we’ll introduce our solution of using datanmg techniques to refine the
nuggets found from users’ log. Such a refinement can be peeidwhen a nugget was
made because users were searching for some identifiab&rpatpes, such as clusters
or outliers. For example, assume a user was searching farstéeclin the dataset, and
for some reason, she missed part of it (Figure 5.1). Then, MMSefine the nugget to

capture the complete cluster (Figure 5.2).
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Figure 5.1: A nugget which captures the  Figure 5.2: The refined nugget which
main body of a cluster bus misses part of captures the complete cluster

it

Nugget refinement offers several advantages over both pgraralysis or mining

techniques of the data itself. They aré) Log analysis techniques, for example, the
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nugget extraction introduced in Section 2, rely on usersbas only, without any help
from computational analysis of the datasets and their ptigse Thus they may lack
accuracy in nugget specification. While nugget refinemearantees the accuracy by
exploiting both of them.2) Data mining techniques, such as global pattern detection
algorithms, need to be told the specific type of pattern thagex is looking for. Such
information may not be always available, because users maknmow the exact pat-
tern types that are important to them. While for nuggets esfient, the users’ interests
have already been indicated by candidate nuggets, whichsarally small subparts of
a whole dataset. Thus the refinement process could runettféocal pattern detection
algorithms to figure out what users were most-likely lookiog 3) Even assuming the
system knows the specific pattern type a user is interestednmany cases the user is not
searching for all possible patterns but only for certairtgzas of this type. This makes
running expensive global pattern detection algorithmsahetiys cost effective and un-
related patterns detected may even cost users more effmtltde the useful ones. In
this work, we focus on two important types of patterns, ngmelisers and outlies, and
we chose density-based clustering [26] and distance- bas#dr detection [39] as our
sample pattern detection algorithms, which are popularéigns extensively studied in
the literature [28, 52]. However, other search methods ftieenliterature could equally

be used.

5.2 Techniques for Nugget Refinement

The refinement process is divided into two phases, callethtteh and refine phases.
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Match phase

In this phase, we aim to match the identified nuggets witrepagt“around them” within
the data space. In other words, our goal is to determine watierns users were search-
ing for when these specific nuggets were made. In this workceoveentrate nuggets
refinement on two important pattern types, clusters andeosil

We first formally define the concept of “Match”. The conceptdfatch” is used to
judge whether some data patterns or the major parts of ttagtesms primarily contribute
to a nugget. If thisis found to be the case, we call the nuggtizese patterns “matched”.
The nuggets may be “matched” with more than one pattern. @lifferently, a nugget
may contain several patterns. Technically, to match a nugdk patterns, we have to

compute two important factors that each represent onetatirecf the match:

e Participation Rateg{ PR) : A pattern P should be matched with a nugget N, only if
most of its members, if not all, participate (are coveredtbg)nugget. For example,
in Figure 5.1, for the cluster at the left side, data point3,2}, 5, 6 are covered by
the nugget. So, we usBR to present how much of a pattern P is covered by a
nugget N.

P.population N N.population

PR(N,P) = (4)

P.population
e Contribution RatéC'R) : Since “match” is two-directional, while PR just expresses
one direction, namely, nugget to pattern, we introduce C&afuure the opposite
direction, from pattern to nugget. This shows how much sepattr a partial pattern
contributes to the nugget. Moreover, because a nuggetideteoy a query and the
results of this query (selected data), the notion of “cwtiiobn” here has a broader
meaning than “covering” of population. Similar to the predol of measuring the
distances between nuggets, we consider both the seleetgdiad data population

of the pattern and the nugget when calculating CR.
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P.area N N.area  P.population N N.population (5)

CR(N,P) =
(N, P) 2 % N.area 2 x N.population

Next we show a specific example of how to calculate PR and Crdagt a nugget and a
cluster (the cluster on the left side in Figure 5.3).

Overap Area Nugget Boundar
Nugget Boundary \ il Y

Overlap A< ﬁ ‘
1@

3
@
! 1 / (@] o0
___{18 _: . Pattem Boundary oQ =)

\-(—-‘j_-_l

P:men{ Boundary
Nugget Area

_ _ Figure 5.4: A nugget which includes
Figure 5.3: A nugget which captures the an outlier (data point 1) and noise (data
main bodies of two clusters point 2)

The covered pattern populatio®.population N N.population) equals 5 (contain-
ing data points 2, 3, 4, 5, 6), and the pattern populatipdpulation) equals 6. So
PR = 5/6 = 0.83. The Nugget Area.area) in this example is the area denoted by
the Nugget Boundary. The Pattern Ardadrea) is indicated by the Pattern Boundary.
Overlap Area P.area N N.area) is the overlap area depicted by the shaded area in the
figure. Let's assume Overlap Area/Nugget Area=0.3. Theepiaf “Area” here extends
to hypervolume when number of dimension increases. We aisw khat the Nugget
Population equals 12. So CR= (0.3+5/12)/2=0.39

Now we use PR and CR to match a nugget with the patterns ardaund/e use
MatchRate(P, N) to express the result of a match between a nugget N and afpsibf
type P that are covered or partially covered by N. Based ométeh results, we classify

nuggets into 3 different categories.

e Clusters

MatchRate(C,N) = Y PR(C;,N)* CR(C;,N) > T (6)

1<i<n
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Where(;’s are all the cluster patterns covered or partially conddngthe nugget.
T is a threshold which decides whether the nugget and therpattmatch. In this
case, a nugget is matched with one or more clusters. In otbedsythe main

components of this nugget are clusters.

e Outliers

Although we still follow the notion of PR and CR as we did in taster cases, the
way we calculate them is a little different. First, since aftlier pattern only has one
data member, the PR for an outlier pattern is always 1. So weittinom Formula
7. Second, the way we present pattern boundaries of oudigems is different
also. As shown in Figure 5.4, the pattern area of an outliar(is/per) square area,
where the distance from it to any boundary equals the maximiistance (among
all the dimensions) between it to its nearest neighbor. KAl vther calculation

processes remain the same as those for the cluster cases.

MatchRate(O,N) = >  CR(O;,N)>T (7)

1<i<n

WhereO;’s are all the outlier patterns covered by the nugget. T istrae thresh-
old we use in Formula 6. In this case, a nugget is matched witoomore outliers.

In other words, the main components of this nugget are ostlie

e No Specific Pattern

It is possible that a nugget will be matched with neither s nor outliers. In
this case, the nugget belongs to the “No Specific Patter@gcay. Expanding the

library of recognized patterns is an important part of owurfe work.

An main assumption in this nugget-pattern-match solusahat Minimum Bounding

Rectangle (MBR) is a suitable method to express the “spatiracteristics of patterns.
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Although MBR has been used in many previous work [50, 49] foiwe the “spatial”
characteristics of objects in multi-dimensional spaces thay be a dangerous assump-
tion when the patterns are in highly irregular shapes anatineber of dimensions goes

extremely high.

Refinement Phase

The match phase reveals to us what type of patterns that anasesearching for. If
a nugget is classified into the first two categories menticaisalve, we finish nugget
refinement using the following two steps, called splittifignécessary) and modification.

Splitting: If a nugget is judged to be “matched” with a certain type ofigrais and
it is composed of more than one pattern of this type, we coplid it into several new
nuggets, each representing one pattern of this type onig. prbcess is straightforward,
because we already know all patterns the users was seafohimagsed on the knowledge
learned from the match phase. The specific splitting procase finished by putting
all the members of each “qualified” pattern in the originagget into a new nugget. The
only thing we need to be careful about is that we only make naygats for those “qual-
ified” patterns but not all those (partially) covered by arg nugget. To be a “qualified
pattern” in the original nuggeV, a pattern” has to havel/ R(P, N) greater than a cer-
tain threshold, which means the major population of thisgoathas to be covered by the
original nugget.

Modification: For the nuggets representing a single pattern only, the frnation
process becomes simple also, because we just need to makeytiet boundaries exactly
the same as the pattern boundaries. Then the nuggets woliizeperfect representatives
of the patterns. In Figures 5.5 and 5.6, we show the new ns@dietr nugget refinement.

Each now represents one pattern only.
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Chapter 6

Users Study On Overall Functionalities

of NMS

In order to show the effectiveness of NMS, we have perfornsat gtudies to compare
users efficiency and accuracy when solving tasks with anftbwitthe help of NMS. Also,

we have observed and analyzed the stability of NMS throughuser studies.

6.1 Experimental Setup

Experimenal Environment:For all the user studies, we use an HP Pavilion laptop com-
puter with 1.6MHz CPU and 512M memory. NMS is integrated indfool 7.0, which
is the latest version of this multivariate visualizatiorstgm [64].

Users: 17 subjects, all WPI students from various majors, parmigg in our user
studies. All users came through a uniform training procédsose in the NMS group
were also given the basic idea of how NMS works and made familith the interfaces
of NMS.

Datasets: Three real datasets are employed in our user studies. Theparlris”
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dataset (4 dimensions, 150 records); the “Cars” dataset{@rsions, 392 records); and
the “Aaup” dataset (14 dimensions, 1161 records).

Tasks: Users are asked to finish five knowledge discovery tasks. Bhtie tasks
requires users to study a dataset and answer a questiontabadataset. The specific
tasks are:

Task 1: How many main clusters exist in the “car” dataset am tbmensions: MPG
Cylinders, Horsepower and Origin?

Task 2: How many records in “Detroit” dataset satisfy thergueft,olice < 274,
unemp < 5.5, 500 < manu — wrkrs < 600, handgun — lcs < 700.

Task 3: In the Detroit dataset, for the record, which has ésglkialue orhundgan —
lcs, what are its corresponding values on dimensfon- police, unemp, andmanu —
wrkrs.

Task 4: In the Iris dataset, two subsets: subpart A: sepal — length < 6, 2.8 <
sepal — width < 4.5, 1 < petal — length < 2, and subpart B4 < sepal — length < 6,
2.8 < sepal — width < 4.5, 5 < petal — length < 6, Which subparts has more records?

Task5: In the car dataset, which origin has highest averagé&®™

All those five tasks were printed out on a single-page tasktstwed given to users

when they were ready to solve the tasks.

6.2 Experimental Methodology

In this user study, we appointed time with each individuairimased on our user grouping
results, which will be discussed later in the section. Dgisach appointed time, one user
participated in our user study. Users were not allowed tomamcate information about
the user study through any other channel except NMS at amy/ligfore, during, or after

the user study. This is to make sure that users can only slodvéasks based on their
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own exploration and the help from NMS (if available). A unifotraining process was
designed to give the basic idea of how NMS works and made iimmiith the interfaces

of NMS. This training process was given by a same user studf; hamely, the author
of this thesis, to each individual user before they starteddlve the tasks. Although
this training process was not given once to all the users @ti@te manner, since it was
well prepared and carried out by a same user study host, weveehat it was helpful

and fair for every user. The training process took 10 to 15uteis for different users,

including question-raising and -answering time. Once sexsifelt ready to start solving
the tasks, we gave them the task sheet and started timingdortask-solving process.
By then, they were no longer allowed to communicate with teer study host. All the

users were encouraged to finish the tasks as quickly andctigrass possible, but there’s
no time limit for them to finish the tasks. Users were asksduhish the tasks in the same
sequence as the tasks appeared on the task sheet. They bandeen finishing each of
the individual task and wrote down the answer on an answetshée user study host

collected all the answer sheets and all the time record$i®ofinal analysis.

6.3 Users’ Time Efficiency

To compare users’ efficiency of finishing this given set oksawith and without help
of NMS, we randomly divide the twelve users into four grougisee per group. Each
user is asked to finish the same five tasks. Among these 4 gresgs of group 1 were
asked to finish the tasks without NMS, while the other thresigs (2- 4) were supported
by NMS. Members of each group were randomly given a sequamoder ranging from
1 to 3, which represents the user’s sequence of solving thielgms in his/her group.
For example, once a user from group 1 receives the sequenaeen2, he/she will be

the second one in group 1 to finish the tasks. Group membess eveouraged to use
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the functionalities of NMS (if available) to manage and shidweir discoveries with later

users. Figure 6.1 shows the time used by each user and grdimistothe tasks. As
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Figure 6.1: Comparison of users’ efficiency in differentpe

shown in Figure 6.1, groups 2, 3, and 4 (with NMS) spent natieless time (around 50
percent) than group 1 (without NMS). Such time savings dudesecond and the third
users, given that the first users all worked from scratchhdlgh NMS did facilitate
their job, managing discoveries needed time. However, dme@uggets were extracted
during the exploration by the first users, the exploratiacpsses of the second and the
third users largely benefited from the nugget pool.

To better support our analysis, we compared the time usetklmgers working from
scratch (three members of group 1, and three first users of @her groups) and by
the other six users working with guidance of the nugget ptha éecond and third users
of groups 2,3 and 4). Figure 6.2 shows that the later six usghsguidance of nugget
pool were working much more efficiently. Specifically, thenmum, maximum, and the

average time spent by these users are all much less tharvthosgorked from scratch.
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The standard deviation is lower too.

6.4 Accuracy of Accomplished Tasks

We also studied the effect of NMS on the accuracy of the actishenl tasks. Among
the five tasks we mentioned earlier, tasks 2 to 5 are straigtdifd problems. Users gave
correct answers, although spending different amountsyad tn them. However, task 1
is a common but complex knowledge discovery problem. Simt¢@lhthe clusters can be
easily found, in our user study the answer provided by thesuseied. Figure 6.3 shows
the number of clusters found by each user and also the nuniloirsters that actually
exist. Two facts can be observed from Figure 6.3: 1) The nurabelusters correctly
found by users working with NMS are generally closer to thenhar of actual clusters. 2)
The later users in each group are more likely to find all exgstiuggets compared to the
earlier ones. These two facts show the promise of NMS indegadaving the accuracy

of the tasks accomplished by the users.
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6.5 Stability of NMS

Lastly, we consider NMS’s stability, meaning how well it flems after long-term use.
To give a preliminary evaluation of this, we asked a 7-useupgrto solve the five tasks
mentioned earlier. We analyzed the population of the nugget after use by each user.
The change of the nugget pool population is shown in Figu4e he comparison of
average number of nuggets identified by the 7 users for egklatad the estimated num-
ber of nuggets needed for each task is shown in Figure 6.3.“H$temated” number
of nuggets is given based on our own experience of how mangetsgre needed for
each task. From Figures 6.3 and 6.4, we observe two facts: tbmaverage number of
nuggets formed by each user for each question is generatljeshigher than estimated
(Figure 6.5). Two, the populations of the nugget pools aaively stable during users’
exploration (Figure 6.4). Thus although some useless risggay be generated during

exploration, they are usually only small portions of the Vehaugget pool. Thus, this is
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indication that the population of the nugget pool is notliyki® degenerate dramatically

during a long-term use.
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Chapter 7

Related Work

llluminating the Path [61], the research and developmeadg for visual analytics pub-
lished by National Visualization and Analytics Center,misiout that visual analytics is
the science of analytical reasoning facilitated by intevacvisual interfaces. People use
visual analytics tools and techniques to synthesize inftion and derive insights from
different types of data; provide understandable assedsmand communicate assess-
ment effectively for action. This agenda also lists the fowgjor focus areas of visual
analytics, which are: 1) Analytical Reasoning Techniqusyisual Presentations and
Interaction Techniques; 3) Data Representations and fimanations and 4) Production,
Presentation, and Dissemination. As a analysis-guideaddwaork for visual exploration,
our NMS framework mainly falls into the first and the seconéaamwhich are Analyti-
cal Reasoning Techniques and Visual Presentations anadtiten Techniques. And it is
also related to other two areas, where many important id@a$e borrowed while also

expanded to serve our general framework.

71



7.1 Analytical Reasoning Techniques

As described in [14, 40, 16], analytical reasoning usuailiofvs a sense-making loop,
which is iterative and time-consuming. Thus, two of the keglg need to be achieved
by analytical reasoning techniques are: 1) Enabling usersalate valuable informa-
tion from massive amount of raw data. 2) Providing discoveanagement mechanisms
which allow users to organize their temporary achievemandtsfinally develop insights
that directly support assessment, planning, and decisaing. The efforts to achieve
the first goal can be classified into three categories, narisgr-Driven, Data-Driven
and Hybrid.

In the User-Driven category, the knowledge discovery pgeaelies on users per-
ceptual power, while a variety of visual interaction medbkars [4, 64, 18, 3] such as
brushing, and dynamic querying, are offered by the visaibn systems to help them
isolate the valuable information. Such techniques work wemany cases, compared
with those explorations without any interaction. Whileptlséll suffer from two disadvan-
tages. First, they may be inefficient, because users’ dfiddcate valuable information
generally follows a“try-and-see” manner. When the infotioraitems need to be isolated
have a huge population or are not easy to identify by humaaryisising such techniques
may lead to large investment of users’ time. Second, bedhesghole isolation process
relies on users’ perceptual abilities only, the valuabferimation found by users may
lack accuracy. This problem has been discussed in the Giapfehis thesis. Thus, in
our framework, we have applied these techniques to allowsusébest use their percep-
tual power during visual exploration, while we have introdd computational analysis in
the different stages to improve the accuracy of users’ desges.

Data-driven techniques aim to expediate knowledge disgavith the help of the an-

alytical power of machines. Data mining algorithms [29, 88, 26, 52, 12], which detect
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useful patterns or rules in large datasets, fulfill an imguatrtole here. These techniques
are independent from the visual environment and thus donnag nto play the power of
the human intuition in the pattern detection process. Thia hmaitation of these tech-
niques is that they usually aim to find all the members of aagepattern type and thus
ignore the interests of users. In many cases the user is aatseg for all possible pat-
terns of a certain type but only for a subset of them. For exenfipr a dataset with 100
dimensions, a user may not be interested in all the clusxstregg among all these 100
dimensions. Rather, she may just care about the clustesirexin a small subset of di-
mensions and even small subranges on these dimensionan@kes running expensive
global pattern detection algorithms not cost effective anmitlated patterns detected may
even cost users more effort to isolate the useful ones.

The third category is hybrid. The initial effort in this cgtey is called visual data
mining (VDM) [35, 22, 34]. It involves users in the mining ess itself, rather than be-
ing carried out completely by machines. In VDM, visualipats are utilized to support a
specific mining task or display the results of a mining altjon, such as association rule
mining, and thus enhance user comprehension of the resldtgever, these techniques
still suffer from a major problem. That is they still requingers to provide the specific
pattern types they are looking for before the detectionggscan begin. Such informa-
tion, however, may not be always available, because usersiat&now the exact pattern
types that are important to them. In our NMS framework, weresisl this problem by
introducing a “match” phase in our nugget refinement stage.

Providing a management mechanism to users’ discoveriepialg important to the
isolation process. Although general knowledge managemeohanisms have been stud-
ied in the literature [9, 41, 36], few attention has been paithose closely integrated into
visualization systems. [31] provided some recording fioms to its users during the

KDD process, while its main focus is on visualizing the KDbgess itself. [21] pro-
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posed interactive tools to manage both the existing inftionand the synthesis of new
analytic knowledge for sense- making in visualization egs. This work so far has not
paid much attention on how to consolidate the users dis@sieHowever, consolida-
tion to users’ discovery by computational power is one ofmzaintributions of my work.
Collaborative visual analytics [51] introduced compudagl power into the sense-making

process with focus on supporting the exchange of informatimong team members.

7.2 Visual Presentations and Interaction Techniques

Visualization systems traditionally focus on building ginécal depictions of relationships
among information in a human comprehensible format. By glasio, they usually help
their users to better understand the information. This mé¢he users can either learn
some facts that are not easy to discover without the grabdegaiction, or the users’
knowledge to some facts can become deeper or more precigeusBfulness of visual-
ization systems has been well established [64, 55, 56, 28h0Agh visual presentation
techniques are not the focus of this work, as a frameworkatinas to provide useful guid-
ance to users, NMS exploits interaction [13, 14] technidusgtsveen system and users.
Our framework are using two important types of interactechniques.

Filtering and navigation techniques [4, 64, 18, 3] allowrsge search and focus their
attention on the information items that are of their inteseSo, they are the basis of our
nugget extraction. More sophisticated filtering and nawigetechniques will provide us
new opportunities to extend the range of nugget types inuturd work.

As we will use the nugget pool to guide users’ explorationewhand how to present
our guidance information will also be a challenging probfermour future work. Previous
work looked at this problem mainly belong to recommendasigstems [37, 24] and HCI

community [57, 13]. Recommendation systems cluster uséodifferent groups based
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on their profile. Then within the same groups, recommendatiystems recommend
a user the information items that have received attentiom fother uses but not from
herself yet. The key challenge of using this basic idea tdramnework is that, traditional
recommendation systems are mainly working in discrete donwehich mains judging
the similarity between the information items is usuallyagghtforward. However in our
system, judging the similarity between the discoverientbusers is a very challenging
job. Although we have given initial solution to this problemChapter 4 of this work, as
the new types of nuggets must appears in future, we needrtorieare general solutions
to scale the distances between the nuggets. HCI itself asaal lbesearch direction focus
on effective information exchange between humans and cterpuBy borrowing and
developing the ideas from these areas, we expect to buitthgae mechanisms based the
nugget pool, which effectively communicates useful infation with users while brings

as few unnecessary interruptions as possible.

7.3 Data Representations and Transformation

As the result of knowledge crystallization, nuggets aredrntgmt carriers of user’s insights
to the datasets. How to best encapsulate different typesfofnnation about a same
pattern into a nugget is an important Data Representatiothd eansformation problem.
[27] studied on the metadata which provide structures fdobal information space that
lends context to support multi-type analysis. Besidesrit&vidual nuggets, interrelations
among nuggets is another important aspect that we have torexdhese interrelations
can be hierarchical structures among nuggets, for exasqiee nuggets may be subparts
of abigger nugget. Interrelations among nuggets can alpataiel, for example, several

nuggets may all be the evidences for a single knowledge.
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7.4 Production, Presentation and Dissemination

These techniques support production, presentation amsérdisation of the results of
an analysis to communicate information in the appropriatgext to a variety of audi-
ences. Same as other analytical systems, the ultimate §oal é&ramework is to make
the nuggets we learned available and understandable te wéardifferent background.
So we have to keep our eyes on these important techniquesRiseious work in this
area includes, [53] , which allows commanders from battalevel and higher to feed
real-time situational awareness into the system and hatétformation available in text
and graphic representation immediately by fellow commasdad operations officers at
all level; [66, 33] which allow analyst to organize and workiwevidence from multiple
perspectives simultaneously. Besides those techniquies wiainly aim to help profes-
sional analysts work better, animation techniques [43,ré&]another important aspect
which lets audiences with less proficiency understand teeltref analysis better. We
have to study these two aspects to make both the “productiot™consumption” to the

nuggets smoother.
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Chapter 8

Conclusions and Future Work

8.1 Conclusion

In this paper, we introduce a framework for analysis-guidisdal exploration of multi-
variate data. Our system (NMS) leverages the collaboraffeet of human intuition and
machine computations to extract, combine, refine and maitha valuable information
hidden in large datasets. Finally, a well-organized nugget can be used to guide users
exploration. Our preliminary evaluations indicate that Sivhay greatly improve users
time efficiency when solving knowledge discovery tasks. dtymalso be able to enhance
users accuracy of finishing these tasks, although more ¢oagdl tasks are needed to
validate this. Lastly, NMS works in a stable manner duringlersations by a sequence
of users. This shows its promise of working well during ladegn exploration. More
comprehensive user studies which involve more users and namplex tasks will be

one of the directions for our future work.
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8.2 Future Work

Although we have created a general framework for analysidegl visual exploration of
multivariate data and initially studied on each of the stagihis framework, this thesis
is just the beginning but not end of many important work. F@ mugget extraction, a
more extensive range of nugget types will be considered ifudure work. This will
go hand in hand with new filtering and navigation techniqus.the nugget refinement
part, expanding the library of recognized patterns is aromamt task for our future work.
Besides the extension work to these two parts, the focus rofubure work will mainly
be concentrated on nugget maintenance and nugget guidkdagign. As we mentioned
earlier in each of these two chapters, we will study how te gixoper rights to multiple
users working on the same nugget pool and How to automatilesgin and modify the
parameters controlling nugget pool evolution during usggsoration, for nugget main-
tenance. And for the nugget guided exploration, future wodkudes: 1) How to build
hierarchical structures among nuggets based on theirétaéon. (i.e., some nuggets
may be subparts of a bigger nugget) 2) How to organize a krunekelriven nugget pool
[21] .(i.e., several nuggets may all be the evidences of @glesiknowledge, thus should
be grouped together) 3) How to guide users based on theilggafsing collaborative
filtering techniques. [15] 4) How to extract story lines frendataset and use animation
techniques to feed back to users. (i.e., there may be sonta@ceisiting sequence among

the nuggets that best reveal some knowledge.)
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