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Abstract

Visualization systems traditionally focus on building graphical depictions of relation-

ships among information in a human comprehensible format. They tend not to provide

integrated analytical services that could aid users in tackling complex knowledge discov-

ery tasks. Users’ exploration in such traditional visualization environments is usually

impeded due to several problems: 1) Valuable information ishard to discover, when too

much data is visualized on the screen. 2) They have to manage and organize their dis-

coveries off line, due to the lack of any systematic discovery management mechanism

provided as part of visualization system. 3) Their discoveries based on visual exploration

alone may lack accuracy, because perceptual power of human beings is subjective and

may be insensitive to some of the characteristics of the information. 4) They have no

convenient access to the important knowledge learned by other users. To tackle these

problems and provide improved exploration-support service, it has been recognized that

analytical tools must be introduced into visualization systems.

In this thesis, we present a novel analysis-guided exploration system, called the Nugget

Management System (NMS) that aims to tackle the these shortcomings. NMS leverages

the collaborative effort of human comprehensibility and machine computations to facil-

itate users’ visual exploration process. Specifically, NMSfirst extracts the valuable in-

formation (nuggets) hidden in datasets based on the interests of users. Given that similar

nuggets may be re-discovered by different users, NMS consolidates the nugget candidate

set by clustering based on their semantic similarity. To solve the problem of inaccurate

discoveries, data mining techniques are applied to refine the nuggets to best represent the

patterns existing in datasets. Lastly, the resulting well-organized nugget pool is used to

guide users’ exploration. Among the five stages of NMS framework, we pay our main

attention on solving the technical challenges existed in nugget combination and refine-

ment. A critical issue that makes nugget combination difficult is the distance metrics
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between nugget (how can we know whether two nuggets are similar or not). For nugget

refinement, trying to understand what a user is looking for when a nugget was generated

is a difficult job which requires effective ”match” heuristics. In this thesis, we present

solutions to both of these two challenges, and we have conducted user study to carefully

compare the performances of different distance metrics between nuggets. Thus, besides

presenting the general framework of NMS, the contributionsof this thesis also include

the novel solutions to nugget combination and refinement.

To evaluate the effectiveness of NMS, we integrated NMS intoXmdvTool, a freeware

multivariate visualization system that had not offered analytical services. User studies

were performed to compare the users’ efficiency and accuracyof finishing tasks on real

datasets, with and without the help of NMS. Our preliminary evaluations indicate that

NMS may greatly improve users time efficiency and accuracy when solving knowledge

discovery tasks and NMS works in a stable manner during explorations by a sequence of

users.
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Chapter 1

Introduction

Visualization systems traditionally focus on building graphical depictions of relationships

among information in a human comprehensible format. By doing so, they aim to help their

users to better understand the information. This means the users can either learn some

facts that are not easy to discover without the graphical depiction, or the users’ knowledge

to some facts can become deeper or more precise. The usefulness of visualization systems

has been well established [64, 55, 56, 23].

Recently, visual analytics [61] has been employed to solve complex knowledge dis-

covery tasks in many important fields of human society, ranging from homeland security,

credit fraud detection to financial market analysis. Solving such tasks usually requires

analysts to perform complicated and iterative sense-making processes [21, 51]. Thus, it

has been recognized that relying on analysts’ perceptual power alone to conduct visual

exploration may not always be the most effective method to solve these problems.

To fully support visual analytics, visualization systems have to be improved by tack-

ling some key challenges.1) Overloaded Displays:When too much information is visu-

alized on the screen, effective knowledge discovery is difficult. For example, as shown in

Figure 1.1, when a dataset, even with modest numbers of records and dimensions, is visu-
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Figure 1.1: “Cars” dataset visualized
with Parallel Coordinates

Figure 1.2: A complete cluster among
three dimensions of “Cars”

Figure 1.3: One “partial cluster” found
by users

Figure 1.4: Another similar yet not iden-
tical “partial cluster”

alized, overloaded displays make knowledge discovery, such as pattern detection, a time-

consuming process.2) Disorganized Discoveries:Since to date there is no systematical

discovery management mechanism provided by visualizationsystems, users have to man-

age and organize their discoveries off line on their own. Forexample, some users, either

due to rich domain knowledge or after a long time of exploration, may be able to identify

some patterns (e.g., the cluster highlighted in red in Figure 1.2). But unfortunately, she

will not be able to store it in the system nor to easily retrieve it for future exploration.

Even if the systems provide some simple recording functionality, since a pattern may be

repeatedly visited by a single user or even multiple users, redundant recordings may be

generated (e.g., the clusters in Figures 1.3 and 1.4 are verysimilar). Such redundancy

causes information overload that may hinder the future use of those recordings.3) In-

accurate Discoveries:Discoveries found by using their perceptual power alone maybe

inaccurate, because perceptual power of human beings is subjective and may be insensi-

tive to some of the characteristics of the information. For example, the “clusters” found

by users in Figures 1.3 and 1.4 are actually subparts of a complete cluster depicted in
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Figure 1.2. Such inaccurate discoveries may lead to low-quality decision making (i.e.,

this user may miscount the population of the whole cluster, if she works on the “partial

cluster” in Figure 1.3).4) Isolated Knowledge:Even if valuable knowledge may have

already been uncovered, there is no convenient mechanism for users to access and share

it, not to mention conduct collaborative visual analytics.For example, a user interested in

“clusters” in the dataset may spend a lot of time to find the onementioned in Figure 1.2,

although it may have already been previously discovered by other users.

Previous efforts to tackle some of these problems can be roughly classified into two

categories. 1) User-driven: In this category, while the knowledge discovery process still

relies on users’ perceptual power, a variety of visual interaction mechanisms, such as

zooming, filtering, color coding and dynamic querying, are offered by the visualization

systems to facilitate exploration [4, 64]. These techniques mainly help to relieve over-

loaded display. Our framework applies these techniques to allow users to best use their

perceptual power during visual exploration. 2) Data-driven: Data-driven techniques aim

to expediate knowledge discovery with the help of the analytical power of machines. Data

mining algorithms [30, 69, 38], which detect useful patterns or rules in large datasets,

fulfill an important role here. These techniques will be employed in our framework to

improve the accuracy of discoveries.

More recently, some initial efforts have emerged to take advantage of both human

perceptual abilities and computational power of computersto deal with the challenging

process of knowledge discovery [61]. Visual data mining (VDM) [22, 34] involves users

in the mining process itself, rather than being carried out completely by machines. In

VDM, visualizations are utilized to support a specific mining task or display the results

of a mining algorithm, such as association rule mining, and thus enhance user compre-

hension of the results. However, considering the single-task-driven style of VDM (e.g.,

detecting all the patterns of a certain type existing in a dataset), it usually does not support
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an iterative and comprehensive sense-making process. [21]proposed interactive tools to

manage both the existing information and the synthesis of new analytic knowledge for

sense- making in visualization systems. This work so far hasnot paid much attention

on how to consolidate the users’ discoveries. Collaborative visual analytics [51] intro-

duced computational power into the sense-making process with focus on supporting the

exchange of information among team members.

In this work, we design, implement and evaluate a novel analysis-guided exploration

system, called the Nuggets Management System (NMS), which leverages the collabo-

rative effort of human intuition and computational analysis to facilitate the process of

visual analytics. Specifically, NMS first extracts nuggets based on both the explicit and

implicit indication of users’ interest. To eliminate possible redundancy among the col-

lected nuggets, NMS combines similar nuggets by conductingnugget clustering. Then,

data mining techniques are applied to refine the nuggets and thus improve their accuracy

in capturing patterns present in the datasets. We also provide a rich set of functionali-

ties to manage the nuggets. With them, nuggets can be maintained automatically (i.e.,

out-of-date nuggets can be pruned by the system) or by the users (i.e., users can attach

annotations [42] to nuggets to facilitate nugget retrievaland sharing). Lastly, the well-

organized nugget pool will be used to guide users’ visual exploration in both user- and

system-initiated manners.

As a general framework for analysis-guided exploration of multivariate data, NMS

can be incorporated into any multivariate visualization system. To verify the feasibility

of NMS, we have integrated it into XmdvTool [64], a freeware tool developed at WPI for

visual exploration and analysis of multivariate data sets.The main contributions of this

thesis are:

• We introduce a novel framework of analysis-guided visual exploration, which fa-

cilitates visual analytics of multivariate data.
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• We present a nugget combination solution that effectively reduces the potential

redundancy among nuggets. We design a novel distance metricwhich effectively

capture the distances between nuggets, and our user study shows that it matches

well with users’ intuition.

• We present a nugget refinement solution, which utilizes dataanalysis techniques

to improve accuracy of the nuggets in capturing patterns in datasets. This is a novel

approach that leverages the advantages of both human intuition and computational

analysis. It not only improves the accuracy of users discoveries, but also avoids

expensive global data mining process.

• We develop tools for the management and support of visual exploration based on a

learned nugget pool.

• We apply the above techniques of NMS to XmdvTool, a freeware multivariate data

visualization tool.

• We describe user studies evaluating the effectiveness of NMS. The user study demon-

strates that NMS is able to enhance both the efficiency and accuracy of knowledge

discovery tasks.

The remainder of this thesis is organized as follow: In Chapter 2, we will introduce

the overall NMS framework for analysis guided visual exploration, including nugget ex-

traction, combination, refinement, maintenance and nugget-guided exploration. In the

later chapters, we will carefully discuss the technical details and experimental results of

nugget combination and refinement. Specifically, in Chapter3, we will discuss the dis-

tance metrics used in nugget combination (clustering) in details. A user study comparing

different distance metrics will also be described in this chapter. The specific clustering

algorithm we developed for nugget clustering is presented in Chapter 4. Evaluations to
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this algorithm appears in chapter as well. Chapter 5 will discuss the ideas and techniques

utilized in nugget refinement. Chapter 6 shows our user studyassessing the overall func-

tionality of NMS. In Chapter 7, we will introduce the relatedwork. Finally, in Chapter 8,

we draw conclusions and envision our future work.
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Chapter 2

NMS Framework for Analysis Guided

Visual Exploration

In this chapter, we introduce the overall NMS framework for analysis guided visual ex-

ploration, including an overview of its different components and brief introductions to

key ideas used in each component. The specific components are: nugget extraction, com-

bination, refinement, maintenance and nugget-guided exploration.

2.1 Nugget Extraction

2.1.1 Definition of Nuggets

Before introducing nugget extraction techniques, we defineour notion of what we mean

by the term nuggets. Generally, a nugget is some piece of valuable information extracted

from the dataset, typically, some subpart of the whole dataset. A nugget could be a

representative of clusters, outliers, association or any other type of patterns. Additional

attributes of a nugget, such as a name and annotations, can beattached to a nugget as

well. For the purpose of this thesis, a nuggetN is defined by a range queryQ over a
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particular datasetD as well as the result of this query, datasetQ(D). In N-dimension

space, a nugget is a (hyper-)rectangle, whose boundaries are decided the query range on

each dimension. Why we choose range query as the initial typeof nugget we study on

is because 1) Range query is a very common query type that allows users to specifiy the

subpart interested to them in a dataset. 2) An important interaction tool existing in current

visualization system, which is called ”brush”, use the semantic of range queries. A more

extensive range of nugget types will be considered in our future work.

N = {D, Q, Q(D)}; Q = SelectD.Am, D.Al, ..., D.An From D WhereD.Am =

[Am.bl : Am.bh], D.Al = [Al.bl : Al.bh], ..., D.An = [An.bl : An.bh]; {D.Am, D.Al, ..., D.An} ⊆

attributes ofD, Ax.bl andAx.bh are the lower bound and the upper bound of the query

ranges on attributeAx, [Ax.bl : Ax.bh] means “fromAx.bl to Ax.bh”; Q(D) ⊆ D.

As shown in the definition above, for a given dataset, a nuggetis first depicted by a

query that has a selective range on some (or all) of the dimensions. However, a nugget is

not only defined by the range query itself, but also the results (data records) of this query.

The concept of nuggets is independent of the display methodsin multivariate visual-

ization systems, such as Parallel Coordinates, Scatterplots and Glyphs [64]. Without loss

of generality, we use Parallel Coordinates [32], which is a widely used method, to demon-

strate the examples in this paper. Thus visually a nugget appears as a blue band across

the axes, which represents the query ranges on each dimension, and the red (highlighted)

lines that indicate the selected records (result) of the query. As shown in Figures 1.2, 1.3

and 1.4, users can specify different queries by adjusting the lower and upper bounds of

the blue band (selection ranges). Users can also hide some dimensions if they are not

interested in them.

8



2.1.2 Nugget Extraction Based on User Interest

Meta-information extraction can be achieved by observing users’ exploration process

(user-driven) or by conducting analysis of the patterns existing in the data (data-driven).

The NMS framework is compatible with the nuggets derived using either of these two

methods. Data mining algorithms for pattern detection havebeen extensively studied in

the KDD community [26, 52, 12]. Any one of these existing methods if applicable to

mutlivariate datasets could be plugged into our framework.

Here in our prototype of the framework, we instead focus on nugget extraction via

user-driven methods. The main benefits of user-driven methods are 1) We can bring

into play the advantage of human perceptual and cognitive abilities to identify patterns

in a knowledge discovery process, which is in fact one of the main reasons why people

have developed visualization systems. 1) We only deal with the information that users are

interested in, thus avoid unnecessary effort to produce results that users are not of interest.

Similar to other systems [21, 51], users can explicitly indicate if a particular piece of

information is of interest. This is done by explicitly saving the given query and labeling

it by a persistent nugget name. NMS also provides a rich set offunctionalities to let users

input, edit, and remove the nuggets as further discussed in Section 5. A non-intrusive

alternative to explicit indication is implicit indication, a method found in intelligent sys-

tems [17, 11]. In NMS, nuggets can be extracted automatically by observing a user’s

exploration. “Visiting time” is one factor [17] used as the main indicator of a user’s in-

terest during visual analysis. NMS extracts a nugget if a user spends a long time visiting

(querying over and looking at) a subpart of the dataset. Specifically, our system monitors

users’ navigation. When it finds that a user is querying over asubpart of the dataset, and

spending longer than a certain amount (a threshold) of time observing this subpart, it ex-

tract a nugget based on the query the user specified. Such a extraction process can also

be caused by repeatedly visitings. That means even if a subpart has never been visited for
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longer than the threshold, it can also be extracted as a nugget if it is repeatedly visited,

and its accumulated visiting time makes it qualified. For example, if a subpart shown in

Figure 1.2 has been visited for a long time by a single user or repeatedly visited by one or

more users, NMS will conclude that it is a nugget.

Problems that could be caused by such log mining, such as redundancy, inaccuracy,

out-off-date nuggets, and misinterpretation of users’ interests, will be tackled by nuggets

combination (Chapter 2), refinement (Chapter 3) and maintenance (Chapter 4).

2.2 Nugget Combination

Relying on nuggets extraction alone may suffer from nugget redundancy. This is because

as the users navigate in the datasets by moving the sliders which control the range query

boundaries, rather than by explicitely specifying exact queries as typically in SQL-type

query systems [44, 45], many similar nuggets with slightly different boundaries are very

likely to represent the same data feature. Nugget redundancy causes two major problems

to the system:1) A large nugget pool generated during a long exploration period may

make it more difficult for users to make use of individual nuggets, because searching

nuggets of potential interest can be quite time-consuming.2) Continuous growth of the

nugget population may also lead to low system performance.

Here we give an example (Figure 2.1) to show that three slightly different nuggets are

actually representing the same pattern in the dataset. As shown in Figure 2.1, nuggets

1, 2, and 3 are capturing a same pattern (a cluster) in the “Iris” dataset. So, an efficient

method is needed to keep the nugget pool of a modest size yet with high representative-

ness. Several different techniques, such as sampling [10],filtering [60] and clustering [12]

of nuggets may be employed to achieve this goal. After careful comparison, we chose

clustering, which groups similar nuggets and generates representatives for each group.
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Figure 2.1: A example of clustering three similar nuggets

This is because, when constructing a representative for each group, clustering techniques

consider and combine the features of all the group members, while filtering and sampling

techniques tend to just pick an “important” group member as their representative. Since

in many cases, we can hardly tell which nugget is surely more important than others (even

if we have certain mechanism to express the importance of nuggets, nuggets with simi-

lar importance may be very common), constructing a representative which “speaks” for

every nuggets in a group makes more sense than just picking one. And since we can use

importance as the weight in clustering process, the representative generated will mainly

reflect the feature of the dominant (supper important) nugget, if there is any. The example

of forming a representative (clustered nugget) for similarnuggets is also shown in Figure

2.1.
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2.2.1 Distance Metrics

Clustering aims to group objects based on their similarities [5, 6]. They require a distance

measure that best expresses the domain specific similarity between objects. In our work,

one of the main issues we have to tackle is thus the development of a suitable distance

metrics for our multi-dimensional nuggets. To solve the problem, distance metrics are

developed to effectively capture the distance between any pair of nuggets.

Query Distance

Nuggets are defined by both queries and their results. So, naturally, nuggets that are

defined by similar queries should be considered to be more similar than those defined by

rather different queries.

Thus our problem can be transformed into the problem of how toquantify the simi-

larity of queries. Fortunately, previous work [65, 67] has studied this problem. The major

principle utilized for measuring the query similarity (QS)can be summarized as:

QS(A, B) =
QA ∩ QB

QA ∪ QB
(1)

Here QS(A,B) represents the query similarity between Nugget A and Nugget B, and

QA and QB are the qualifiers of these two queries. We adopt thisidea as the basic prin-

ciple for our query similarity measure on individual dimensions. We have also studied

several important refinements to this basic idea, which makeit capable to handle different

types of domains (discrete, continuous, nominal) and extend it to the multi-dimensional

environment. Details of this will be discussed in Chapter 3.

When we’ve successfully acquired normalized query similarities (between 0-1), we
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can now easily calculate the query distances (QD) as shown inFormula 2.0.

QD(A, B) = 1 − QS(A, B) (2)

Data Distance

Our query distance metric effectively measures the similarity between two nuggets based

on their query specification. However, nuggets are not only characterized by their queries

(profile), but also by the results of the queries obtained when applying the queries to a

particular dataset (content). As shown in Figures 2.2 and 2.3, two nuggets generated by

Figure 2.2: A nugget capturing a cluster
in the “Iris” dataset

Figure 2.3: A nugget with no data record
included

very similar queries may be rather different in terms of actual data content. The former

contains a cluster, while the latter is empty. Clearly, we need to enhance the capability

of our distance metrics by comparing the “contents” of the nuggets. Now, the problem

we must solve can be viewed as a general date analysis problem. That is, given two

subsets of a multi-dimensional dataset, how could we measure the distance between them.

Previous works to tackle such problems [8, 20, 48, 19] can be generally classified into two

main categories, statistic and transform-cost approaches. In this thesis, we introduce our

proposed algorithm, Exact Transformation Measure(ETM), which is based on extending a

basic transform cost algorithm. The details of this algorithm and comparisons of different

data distance metrics will be discussed in Chapter 3. ETM will help us to get the Data

Distance(DD[X, Y ]), between two nuggets, where X and Y are two nuggets and A and
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B are the datasets contained by them respectively.

Finally, we combine the Query Distance(QD[X, Y ]) and Data Distance(DD[X, Y ])

to present the Nugget Distance(ND[X, Y ]) between any pair of nuggets X and Y.

ND[X, Y ] = α · QD[X, Y ] + β · DD[X, Y ] (α + β = 1) (3.0)

SinceQD andDD are both normalized (between 0 to 1),ND will be normalized as well.

2.2.2 Nugget Clustering

Once we have learned the distances between nuggets, any generic clustering algorithm

[12, 68] can be applied to conduct nugget clustering. In our system, we designed an iter-

ative incremental clustering (IIC) algorithm, which provides real time clustering service

to the nugget pool. We will discuss the details of this algorithm in Section Chapter 4.

2.3 Nugget Refinement

2.3.1 Benefit from Nugget Refinement

Data mining techniques applied to the datasets provides us further opportunities to im-

prove the quality of nuggets. In this section, we’ll introduce our solution of using data

mining techniques to refine the nuggets found from users log.Such a refinement can be

performed when a nugget is made because users were searchingfor some identifiable pat-

tern types, such as clusters or outliers. For example, a userwas searching for a cluster in

the dataset, however, for some reason, she missed part of it (Figure 5.1). Then, NMS will

refine the nugget to capture the complete cluster (Figure 5.2).

Nugget refinement offers several advantages over both pure log analysis or mining

techniques of the data itself. They are:1) Log analysis techniques, for example, the
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Figure 2.4: A nugget which captures the
main body of a cluster bus misses part of
it

Figure 2.5: The refined nugget which
captures the complete cluster

nugget extraction introduced in Section 1 of Chapter 2, relyon users’ actions only, without

any help from computational analysis of the datasets and their properties. Thus they may

lack accuracy in nugget specification. While nugget refinement guarantees the accuracy

by exploiting both of them.2) Data mining techniques, such as global pattern detection

algorithms, need to be told the specific type of pattern that auser is looking for. Such

information may not be always available, because users may not know the exact pattern

types that are important to them. While for nuggets refinement, the users’ interests have

already been indicated by candidate nuggets, which are usually small subparts of a whole

dataset. Thus the refinement process could run different local pattern detection algorithms

to figure out what users are looking for.3) Even assuming the system knows the specific

pattern type a user is interested in, in many cases the user isnot searching for all possible

patterns but only for certain patterns of this type. This makes running expensive global

pattern detection algorithms not cost effective and unrelated patterns detected may even

cost users more effort to isolate the useful ones.

In this work, we chose density-based clustering [26] and distance- based outlier de-

tection [39] as our sample pattern detection algorithms, which are popular algorithms

extensively studied in the literature [28, 52]. However, other search methods from the

literature could equally be used.
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2.3.2 Techniques for Nugget Refinement

Generally, the actual refinement is divided into two phases,called the match and the refine

phases.

Match phase: In this phase, we aim to match the identified nuggets with patterns

“around them” within the data space. In other words, our goalis to determine which

patterns users were searching for when these specific nuggets were made. Briefly, the

concept of “Match” is used to judge whether some data patterns or the major parts of

these patterns primarily contribute to a nugget. If it is thecase, we call the nugget and

these patterns “matched”. Figure 5.1 shows a good example ofa “match” between a

nugget and a cluster pattern in the dataset. The specific techniques utilized to calculated

how much a nugget is “matched” with the patterns around it will be described in Chapter

5.

Refinement Phase:The match phase reveals to us what type of patterns that a user

was searching for. With this knowledge, we can finish nugget refinement using the two

steps of splitting (if necessary) and modification. These two steps will make each nugget

a perfect representative of a single pattern. Details of them can be found in Chapter 5.

2.4 Nugget Maintenance

In this section, we will discuss maintenance of the nugget pool. Over the duration explo-

ration, two potential hazards may leave “bad” nuggets in thenugget pool. 1) Out-of-date

Nuggets: Some out-of-date nuggets extracted early on and nolonger of interest to users

may become an unnecessary burden. For example, a user who wassearching for patterns

in ”Car” dataset mainly paid attention to luxurious cars at one month ago. Some nugget

were extracted during her exploration at that time. However, as her budget shrinks, her

recent exploration is only of cheap cars. Then, keeping the nuggets about the luxurious
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cars will bring no help but more disturbance to her further exploration. 2) Misinterpreted

Nuggets: Some nuggets may have been wrongly learned by misinterpreting users’ inter-

ests.

To exclude these useless nuggets from our nugget pool, we introduce the concept of

“vitality”. Generally, the “vitality” of a nugget reflects the importance of this nugget.

We use accumulated “visiting time” as its main indicator. A similar idea can be found

in the literature [12, 2]. Specifically, each nugget obtainsan initial “vitality” when it is

extracted. This “vitality” fades as users’ exploration period increases. A nugget can also

gain “vitality” through two methods. 1) Being Directly Visited: If a nugget is retrieved

by a user from the nugget pool, the time that this user spent onit counts for its “vitality”

increase. 2) Being Indirectly Visited: An existing nugget is indirectly visited if a similar

new nugget is combined into it. Once a new nugget is clusteredinto an existing nugget,

this existing nugget absorbs its initial “vitality”, whichmeans the “vitality” of the existing

nugget will be increased by the same amount of the initial “vitality” of the new nugget.

Thus, briefly, nuggets created recently or visited frequently will have higher “vitalities”,

while those extracted a long time ago and never visited thereafter will have lower ones.

Once the “vitality” of a nugget drops below a certain threshold, the nugget is retired from

the system.

In NMS, such a natural “evolution” process of nuggets can also be controlled by users.

NMS allows users to cease, quicken, or slow down the “evolution” by setting different pa-

rameters, such as initial “vitality”, fading rate, and increasing rate. Besides such macro-

control, users can also directly manipulate any individualnugget. For example, users can

mark a nugget as crucial, indicating that it should never be expired from the system. They

could also directly delete some useless nuggets. Nugget maintenance leaves many op-

portunities for our future work, including: 1) How to give proper rights to multiple users

working on the same nugget pool. 2) How to automatically learn and modify the param-
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eters controlling nugget pool “evolution” during users’ exploration. These problems are

important but not selected to be the topic of focus for this thesis work.

2.5 Nugget-Guided Exploration

Nugget-guided exploration makes use of the nuggets we have learned to facilitate the

knowledge discovery process. Figure 2.6 shows a screen shotof our prototype system.

As we mentioned earlier, nuggets, as important carriers of valuable information, can be

augmented with different kinds of additional attributes. Besides “vitality”, names and

annotations are examples of other attributes that can enrich the meaning of nuggets. For

example, when exploring a dataset about “arriving passengers”, a border control officer

finds a nugget that represents a cluster existing in dimensions of “nationality”, “arriving

time”, and “criminal records”, she can give the nugget a meaningful name (i.e., “Suspi-

cious Passengers Group”), and attach an annotation about her concerns to this passenger

group. Such attached information will not only make it more convenient to retrieve this

nugget, but also makes her nuggets shareable with other users. Meanwhile, statistic infor-

mation, such as the number of data records included, averageand extreme values on each

dimension, can be automatically computed and attached to the nugget.

Nugget-guided exploration can be carried out in both user- and system-initiated modes.

1) User-initiated: Within this mode, users take the initiated to search and retrieve nuggets

when they desire to. NMS provides functionalities, such as sorting and querying on statis-

tic information, key word based search on names and annotations, to help users quickly

access the nuggets of interest. 2) System-initiated: NMS can take the initiative also when

guiding users’ exploration. Such guidance will be given based on watching the users’ ex-

ploration. For example, when a user is querying a subpart of the dataset that is similar to

one of the existing nuggets, NMS could inform the user that previous users have already
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found a nugget similar to what she is looking for.

Other sophisticated services, which are not the key focus ofthis thesis work, are also

critical for NMS and will be studied in our future work. They include: How to build

hierarchical structures among nuggets based on their interrelation (e.g. some nuggets

may be subparts of a bigger nugget). How to guide users based on their profiles using

collaborative filtering techniques [15].

Figure 2.6: A screen shot from the NMS prototype when lookingfor clusters hidden in
the dataset
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Chapter 3

Distance Metrics Between Nuggets

As we mentioned in Chapter 2, relying on nuggets extraction alone may cause redundant

nuggets. In this chapter, we introduce our solution of nugget combination, which keeps

the nugget pool in modest size yet with high representativeness.

Several different techniques, such as sampling [10], filtering [60] and clustering [12]

of nuggets may be employed to achieve this goal. After careful comparison, we choose

nugget clustering, which groups similar nuggets together and generates representative for

each group. The reason for this has been explained in Chapter2.

Clustering aims to group objects based on their similarities. They require a distance

measure that best expresses the domain specific similarity between objects. In our work,

one of the main issues we have to tackle is thus the development of a suitable distance

metrics for our multi-dimensional nuggets. To solve the problem, distance metrics are

developed to effectively capture the distance between any pair of nuggets.
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3.1 Query Distance

Nuggets are defined by both queries and their results. So, naturally, nuggets that are

defined by similar queries should be considered to be more similar than those defined by

rather different queries.

Thus our problem can be transformed into the problem of how toquantify the simi-

larity of queries. Fortunately, previous work [65, 67] has studied this problem. The major

principle utilized for measuring the query similarity (QS)can be summarized as Formula

1,

QS(A, B) =
QA ∩ QB

QA ∪ QB
(1)

where QS(A,B) represents the query similarity between Nugget A and Nugget B, and

QA and QB are the qualifiers of these two queries. We adopt thisbasic idea as starting

point for the design of our similarity measure. However, several issues have to be refined.

First, we focus our attention on metrics for query similarity on a single dimension. Two

main types of domains are considered:

• Discrete Domains: A discrete domain composed of nominal values is easy to han-

dle. Because of the discrete property, a direct use of Formula 1 indeed solves the

problem. For example, given two queries over the nominal domain, QA: select

* from X where X.origin={Japan, US, Germany}, QB: select * from X where

X.origin={Japan, US, Italy}, we just need to count the number of elements that

fall into the intersection and the union of these two sets andthen we get|QA ∩

QB| = |Japan, US| = 2, |QA ∪ QB| = |Japan, US, Germany, Italy| = 4, and

thus QS(A,B)=2/4=0.5. Clearly, this strategy of counting key words can also be

used in numeric discrete domains.
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• Continuous Domains: Intuitively, a straightforward variant of the previous “count

method” can also be used for continuous domains. The intersection and union of

two range queries are no longer expressed by a count of the elements, but rather by

the “length” of overlap and total coverage. For example, given QA: select * from

X where X.height =[5.25:5.85], QB: select * from X where X.height=[5.45:6.15],

then we haveQA ∩ QB = 5.85 − 5.45 = 0.40, QA ∪ QB = 6.15 − 5.25 = 0.9,

QS=0.4/0.9=0.44.

However, although the major principle of Formula 4.0 still holds for continuous

domains, a more careful consideration regarding the continuity of the domain may

be needed. A problem rises as that in a domain of size from 0 to 1000, if we

decide that two range queries over [1.00:2.00] and [1.50:2.50] respectively have

some similarities, should we assert that two queries over [1.00:2.00] and [2.00:2.50]

are totally dissimilar just because they do not happen to overlap each other? An

example will illustrate this concern better.

Figure 3.1: Query X Figure 3.2: Query Y

As shown in Figures 3.1 and 3.2, queries X and Y on dimension “Weight” are

[3051.73:3318.68] and [3327.02:3527.23] respectively. We note that even though

they do not overlap, visually the nuggets defined by them are quite similar. So,

in order for our metric to capture the broader semantics of similarity, we have de-

veloped a more general algorithm that handles both types of domains, while still
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keeping the essence of Formula 1. In this algorithm, the domain will be divided

into discrete bins. If some part of a query falls into a bin, wecall the bin an “oc-

cupied bin (ob)” of the query. Finally, we utilize the “occupied bin count strategy”

(obcs) when comparing two queries.

Figure 3.3: Overlap case in “Occupied
Bin Count Strategy”

Figure 3.4: non-overlap case in “Occu-
pied Bin Count Strategy”

As demonstrated in Figures 3.3 and 3.4, now both overlap and non-overlap cases

are handled by our new algorithm. In Figure 3.3,QA∩QB = |QA.ob∩QB.ob| =

|{b2, b3, b4, b5, b6}|QA∪QB = |QA.ob∪QB.ob| = |{b1, b2, b3, b4, b5, b6, b7}| =

7,and QS=5/7=7.1. In the Figure 3.4,QA ∩ QB = |QA.ob ∩ QB.ob| = |{b6}| =

1, QA ∪ QB = |QA.ob ∪ QB.ob| = |{b6}| = 1, QS=1/1=1. In practice, we could

also set QS less then 1 for non-overlap cases, because after all they are not perfect

matches.

Actually, as we’ve seen, the “occupied bin count strategy” can be used as a uniform

query similarity metric for range queries on a single dimension.

QS(A, B) =
QA.ob ∩ QB.ob

QA.ob ∪ QB.ob
(3)

The difference between discrete and continuous domain cases is that the former uses each

discrete value as its bin, while the latter divides the continuous domain into bins first.

23



Nonetheless, in most cases, datasets are multi-dimensional, and so are the queries

defining our nuggets. Thus, we have to extend the previous metric defined for a single di-

mension to now be applicable for multiple dimensions. In this work, we adopt minimum

single–dimensional query similarity among all the dimensions of two multi-dimensional

queries to represent the query similarity between them. To guarantee the “visual similar-

ity” of two nuggets, we choose the minimum but not other combination methods, such

as Manhattan Distance or Euclidean Distance [1]. The later may compromise to large

differences on single dimensions if exist some highly matched ones. To better explain our

choice, we use a concrete example to demonstrate it. As shownin Figures 3.5 and 3.6, al-

though two queries L and K have completely same selective range on 13 dimensions (the

second to the fourteenth dimension from left), they are verydifferent on 1 dimension,

which is the first dimension. In this case, if we use ManhattanDistance or Euclidean

Distance, since the query distances on 13 dimensions are all0, even if the distance on the

first dimension is huge, the final query distance between these two queries will still be

very small. However, as we can see, these two queries are actually very different because

they are about different ”Types” of products. That means theusers who specified them

were interested about the different things and we should notcluster their queries together.

Further more, if our distance metric beleives these two queries are similar and eventu-

ally cluster them together, another problem may arise. Thatis the selective range of the

representative on the first dimension will reflect the ”average” of these two query, and

thus may be the ”Type” in the middle which never appeared in both of them. Then, what

we store in the system is a representative that is very different from both of the original

queries, and the real interesting queries for users are lost. In contrast, when we choose

”minimum”, our distance metric will give small similarity for these two queries, because

the minimum similarity among all the dimensions is that on the first dimension, and it is

obviously small.

24



Figure 3.5: Query L Figure 3.6: Query K

Finally, when we’ve successfully acquired normalized query similarities (between 0-

1), we can now easily calculate the query distances (QD) as shown in Formula 2.

QD(A, B) = 1 − QS(A, B) (2)

3.2 Data Distance

Our query distance metric effectively measures the similarity between two nuggets based

on their query specification. However, nuggets are not only characterized by their queries

(profile), but also by the results of the queries obtained when applying the queries to a

particular dataset (content).

As shown in Figures 2.2 and 2.3, two nuggets generated by verysimilar queries may

be rather different in terms of actual data content. The former contains a cluster , while

the latter is empty. Clearly, we need to enhance the capability of our distance metrics by

comparing the “contents” of the nuggets. Now, the problem wemust solve can be viewed

as a general date analysis problem. That is, given two subsets of a multi-dimensional

dataset, how could we measure the distance between them. Previous works to tackle such

problems [8, 20, 48, 19] can be generally classified into two main categories, statistic and

transform-cost approaches. Below, we will explain why we choose the latter, and then

introduce a proposed algorithm based on extending a basic transform cost algorithm.
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3.2.1 Statistic Approach

Since traditional statistic methods, such as average and deviation, cannot fully capture the

characteristics of two subsets, a more sophisticated method, histograms has been devel-

oped, which is called Histogram Difference Measures(HDM).HDM based on the average

relative error [8] of aggregation is used in data abstraction quality measure [20], approxi-

mate query processing of databases as well as image similarity measures [47, 59]. It relies

on comparing the histograms of two sets of data, meaning, it focuses on the distributions

of data points. When measuring multidimensional datasets,NHM can be carried out by

either an integration of single-dimensional histograms orby a single multi-dimensional

histogram.

However, both histogram methods tend to suffer from different but not ignorable dis-

advantages. For multi-dimensional histograms, the numberof bins grows exponentially

when the number of dimensions increases, thus the complexity can easily reach an unaf-

fordable level even with a modest number of bins and dimensions. For example, if we

have 10 dimensions and divide each dimension into 10 bins, weneed1010 comparisons.

On the other hand, the integration of single-dimensional histograms first compares his-

tograms on each dimension separately and then integrates the results into a normalized

result. This is similar to what have done for the query distance. It has a linear complexity

O(b*k) (with b: number of bins on each dimension, and the k: the number of dimensions).

But such integration cannot truly reflect the distribution of data points in many cases. For

example, datasetA{a1(length = 1, width1), a2(length = 10, width = 10)} and dataset

B{b1(length = 1, width = 10), b2(length = 10, width = 1)} will be measured to be

exactly the same by this method, since they have the same distribution on each individual

dimension. Even though, these two datasets actually have very different data records.
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3.2.2 Transform Cost Approach

As a general notion, Transform Cost has been shown to be effective in a wide range of

different areas, such as “Edit Distance” in string matching[48], and “DIFF” in change

detection to HTML and XML files [19]. In Transform Cost Approach, distance be-

tween two objects is expressed as the minimum cost of transforming one object to an-

other. A well known algorithm that relies on Transform Cost is Nearest Neighbor Mea-

sure (NNM). NNM is used in measuring data abstraction quality [20] and image quality

[54]. When comparing two datasets, NNM aims to move each datapoint (record) in

one set to its nearest neighbor in the other set. It then calculates the accumulative dis-

tance that all the data points have moved. Generally, it is more precise than the Statistic

Approach, because it deals with each data point rather than only general statistic infor-

mation of datasets. But unfortunately, NNM appears to work better for measuring the

quality of representativeness due its n to 1 mapping strategy. Let us see an example

that shows the deficiency of this method. Given two dataset: datasetA{a1(length =

1), a2(length = 100), a3(length = 100), ..., a99(length = 100), a100(length = 100)}

and datasetB{b1(length = 1), b2(length = 100)} would be measured to be exactly

same, for each element in set A finds a 0 distance nearest neighbor in set B. In short,

NNM is a population-insensitive algorithm. It may lead to bad comparison results in our

case, because comparing nuggets with different populations is going to be the norm in our

work . To solve this problem, we propose a new algorithm called Exact Transformation

Measure (ETM), which not only overcomes the population-insensitivity but also is more

effective in capturing visual similarity of two datasets. Before discussing the specific

algorithm, let us first formulate the problem:

Given datasetO, |O| = m, and datasets A and B,A ⊆ O, B ⊆ O, |A| = a, |B| =

b, 0 ≤ a ≤ b ≤ m, |A ∩ B| = l, |B| − |A ∩ B| = n, data points in O can be viewed as

geometrically distributed in the value space based on theirvalues in different dimensions,
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we transform A to be exactly equal to B with minimum cost.

Figure 3.7: Dataset A Figure 3.8: Dataset B

To solve such a problem, simply moving data points in A to their nearest neighbors in

B will fail in many cases, because it is neither globally optimal nor sensitive to population.

Thus, in order to achieve the transformation with minimum cost, we define three types of

operations:

• Move(x, y): givenx ∈ A, y ∈ B, move x to the position where y lies.

• Add(x, y): giveny ∈ B, add a new data point x to A at the same position where y

lies.

By using “Move” and “Add”, we are guaranteed to always be ableto transform A to

B, since A always has a smaller or equal sized population to that of B. However, simply

relying on “Move” and ”Add” will impose “forced matches”, which may not always lead

to capture of the real distance between two datasets. Figure3.9 shows an example of

two 2-dimensional datasets where moving and adding are not sufficient to make a cost

effective transformation plan.

Given dataset A (Figure 3.7) and B (Figure 3.8) as shown in Figure 3.9, by using

“Move” and “Add” only, we have to match some data points in A with data points in B

that are far away from them. While the “Delete” operation helps would us to achieve a

more cost-effective transformation, as shown in Figure 3.10.

In the worst case, the existence of a few “outlier” data points that do not have a “near

neighbor” close to them will deprive opportunities for manyof other data points to be
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Figure 3.9: Trasforming A to B with
moving and adding operation only

Figure 3.10: Transforming A to B with,
moving, adding and deleting

matched with their real nearest neighbors. To deal with thisdisadvantage of “forced

matches”, we introduce another type of operation, namely, “Delete”.

• Delete(x)x ∈ A, delete x from A.

With the help of the “Delete” operation, we no longer need to suffer from “forced

matches”, because for a given data point in A, “Move” is no longer the only option for

it. We can choose to “Delete”, if moving it will bring too muchglobal cost. However,

how to make an optimal transformation plan, which has the minimum cost, is still a

complex problem. In order to tackle this problem, we need to study the cost model of

each operation first.

• Cost of Move(x,y) –Cost(M [x, y])

Cost of moving a data point x to y is equal to the distance between x and y. Here, we

adopt the Euclidean Distance(normalized, between 0-1), which is the most widely

used distance measure between two objects in a multi-dimensional space.

• Cost of Add(x,y) –Cost(A[x, y])

Since Cost(A[x,y]) is usually an estimated value rather than any physical distance,

in most of the Transform Cost works, a single COA (cost of adding, which is in-

dependent from the position where the point will be added) isused for each trans-

formation. In this work, we adopt this single COA strategy, while developing a
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new method of estimation. Considering that a point is directly added to a certain

position, the adding process is composed by two steps: a generation (generating a

point at a random position) and a moving (moving the point to acertain position).

Thus, COA can be expressed in the following way:

COA = GC + MC (5)

a) Generating Cost (GC): As mentioned in [63], COA grows as the size of the

original set (dataset A, in our case) decreases. It is not hard to see that generating

a new element for A would cause greater a “mutation” to it, when A is small. For

instance, when A is an empty set (|A| = 0), generating a new data point for A

will thoroughly change it, while if a=100,000, such a generation can hardly make a

noticeable difference. So, we correlate GC with the cardinality of A:

GM =
MPD

a + 1
(5)

With MPD: the maximum possible distance between two datasets is equal to 1. We

add 1 to the divider to handle the case that a=0.)

b) Moving Cost (MC): When a new data point is generated for A, it has a random

position. Thus, since we cannot truly calculate its distance from the position it

should be moved to, we use the average distance between two datasets ( centroid to

centorid ) to estimate the MC needed for moving it to this certain position.

Generally, COA as an estimated value has a positive association with the average

distance between two datasets and negative association with the cardinality of A. It

should be more expensive than most of the Cost(M[x,y]) in a transformation. For

normalization reason, we set the upper limit 1 to it.
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• Cost of Delete(x)–Cost(D[x])

Similar to GC, the change cost of deleting is associated withthe cardinality of A

and unrelated to the position where the deleted data point lies. The difference here

is that we do not need to handle the cases where a=0, because wecan delete a data

point only if it exists. So, we use Cost Of Delete (COD) to express all the Cost

[D(x)] in a transformation:

COD =
MPD

a
(6)

Having defined the cost models of all our transfer operations, we now establish our

solution for finding an optimal (most cost-effective) transformation plan. We note that

making such an optimal transformation plan is non-trivial.Fortunately, the Hungarian

Assignment [62, 46] which was designed for finding minimum cost bipartite matches,

provides a good approach to solve this NP- hard-like problemin polynomial time. The

algorithm takes an × n matrix as input. Each row in the matrix represents a data point

in A, and each column represents a data point in B. Then each entry is filled with the

distance between the row and the column it belongs to. The algorithm returns a minimum

cost match inO(n3) time.

Let us see a simple example of how it works. Given a 2D datasetA{a1(0, 1), a2(0, 4), a3(0, 7)},

a datasetB{b1(0, 3), b2(0, 6), b3(9, 9)}. We know the domain for both dimensions is (0-

10), then the input matrix will be as shown in Figure 3.11. After a series of matrix manip-

ulations, the output matrix will have exact one “0” in each row and each column, which

stands for the “match” of two data points. For example, in theoutput matrix below, since

there’s a “0” appearing at the entry[a1, b1], data point a1 should be moved tob1 (Figure

3.12).

The details of Hungarian Assignment Method can be found in [62, 46].
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Figure 3.11: Input matrix Figure 3.12: Output matrix

As mentioned before, we encountered several issues to be addressed. The first one

is that two subsets to be compared do not necessarily have thesame population. Also,

we need to incorporate the adding and deleting actions into the transformation plan. To

achieve these goals and thus complete the design of our global transformation plan, two

modifications to the input matrix are needed.

• Dummy Points

When two subsets have different numbers of members (a < b), an input matrix with

distances between points only would not be a squared matrix required by Hungarian

Assignment Method as input. To deal with this, we add dummy points to A to

produce a squared input matrix. The distance between a dummypoint di and any

real data point in B should be equal to COA, because when the algorithm eventually

makes a match betweendi andbi, then this means a new point will be added to A

at the same position wherebi lies, and thus it costs COA. For example, if we add

one more point b4 (0, 0) to the above dataset B, then the input matrix will be as

depicted in Figure 3.13.

• Incorporating Adding and Deleting

Recall that adding and deleting actions are essential for avoiding a “forced match”.

Thus, we need to consider them comprehensively with moving actions when mak-

ing the transformation plan. Specifically, we have to incorporate COA and COD

into the input matrix properly. The key idea here is that whenmovingai to bi is
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Figure 3.13: Input matrix with dummy
points (COA=0.58)

Figure 3.14: Input matrix incor-
porated with adding and delet-
ing. Cost(M[a1,b3])is replaced by
COA+COD=0.83

even more expensive then deleting it and adding a new data point to where bi lies,

we choose the later “deleting + adding” strategy instead of moving. Thus, in the

input matrix, if the original value of an entryCost(M [ai, bi]) > COA + COD, we

use COA+COD to replace the original value. The example is shown in Figure 3.14.

Now we’ve discussed all the techniques needed to make a proper input matrix that

can lead to an output matrix representing the optimal matches. Once the output matrix

has been produced, by simply summing all the values in the input matrix entries, which

match entry location with a “0” in its output matrix, and dividing the sum by population

of B, we get the Data Distance(DD[X, Y ]), between two nuggets, where X and Y are

two nuggets and A and B are the datasets contained by them respectively.

Finally, we combine the Query Distance(QD[X, Y ]) and Data Distance(DD[X, Y ])

to present the Nugget Distance(ND[X, Y ]) between any pair of nuggets X and Y.

ND[X, Y ] = α · QD[X, Y ] + β · DD[X, Y ] (α + β = 1) (6)

SinceQD andDD are both normalized (between 0 to 1),ND will be normalized as well.
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3.3 Evaluation of Distance Metrics: User Study

Now, we discuss several experimental studies we have conducted to compare the effec-

tiveness of different distance metrics introduced in this chapter.

3.3.1 Experimental Setup:

Experimental environment: This user study was carried out in a web-based environ-

ment. A web page which carried the instructions and all the questions was posted on the

Internet.

Users: Although the user study was posted on the Internet and accessible for all

Internet users, it was only advertised to WPI community by e-mail. So, generally, the

users engaged in this user study were volunteers that are WPIstudents, faculties or staff.

Datasets: Three real datasets are employed in our user study. They are the “Iris”

dataset (4 dimensions, 150 records); the “Cars” dataset (7 dimensions, 392 records); and

the “Aaup” dataset (14 dimensions, 1161 records).

Nuggets:We have designed twenty pairs of synthetic nuggets which arebased on the

three real datasets we mentioned above. In particular, seven nuggets each are based on

“Iris” and “Cars”, and the other six are extracted from “Aaup”. These synthetic nuggets

are examples of the real nuggets which users could make in their navigations, because they

covered all the pattern types we discussed in this work and have different sizes. Specif-

ically, the smallest nugget we used in this user study was based on “Iris” dataset. It had

very short selective range on all the four dimensions and contained only two data records.

In contrast, the largest one, which was based on “Aaup” dataset had large selective range

on all 14 dimensions and contained 543 data records.

Questions: We had twenty questions in the user study. Each of them requires users

to give a distance between a pair of nuggets. Particularly, all the distances were scaled by
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the integers from 0 to 10 which were presented by eleven radius buttons. The suggestive

semantics of each integer were also shown under the radius buttons. Specifically, 0-

1 means “very similar”, 2-4 means “similar”, 5-7 means “unsimilar” and 8-10 means

“totally different”. The default answer for all the questions was “NULL”, which means

no radius button was initially selected when the questions were shown to the users. The

sequence of the questions was randomly arranged, but once itwas arranged , it was kept

identical for all users.

Results:All the results of the user study were automatically collected loaded into our

database through the web page.

Experimental Methodology: As mentioned above, this user study was carried out

through Internet. Users volunteered to participate in the user study and they could choose

to either provide their personal information, including name, occupation, major (if stu-

dent), and e-mail address, or not. An brief instruction for the user study was given before

the specific questions were presented to the user. This instruction introduced the concept

of “nugget” and asked users to answer all the questions basedon their own intuition. Users

were asked to answer all the questions without communication with any other. However,

they were encouraged to contact us, the user study hosts, if they had any problem at any

stage of the user study both by e-mail or in person. During theuser study, users could go

back to reanswer any previously answered question and they could answer questions in

any order. However, they had to answer all the twenty questions before they could submit

their answers.

When analyzing the final results, we found that 20 users participated in our user study

and all of them left at least part of their personal information. From those personal in-

formation, we learned that they were all WPI students but from different majors. Five of

the twenty users contacted us in person before answering thequestions in order to fully

understand the instruction. Our communication with them was restricted to the contents
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of the instruction itself. All such sessions were shorter than 10 minutes each.

Experimental Strategy:We applied each individual distance metric (one query dis-

tance metric QD and three data distances HDM, NNM and ETM) andall the combined

distance metrics (query distance + data distance: QD+HDM, QD+NNM, QD+ETM) to

compute the distances between the same 20 pairs of nuggets. Finally, we compare the

distances given by the users with those computed by each of the metrics. For this, we

introduce a function “Dif”, which is used to express the difference between the distances

given by a metric versus by a user. For each userU , each distance metricM and a certain

pair of nuggetsNx, Ny, we compute Dif=|DU(Nx, Ny) − DM(Nx, Ny)|. In our com-

parison, we first utilize a comparison strategies, which we call Accurate Credits Strategy

(ACS). In ACS, for each pair of nuggets, we assign different amount of credit, called ac-

curate credit, to each metrics based on the difference between the distances given by this

metric and by the user. Concretely, we give 3 credits to a metrics if Dif=0, and we give 2

credits to it ifDif = 1 and 1 credit ifDif = 2. If Dif > 2, no credit will be given to

the metric, meaning that the distance metric fails to match with the user’s intuition. For

all 20 pairs of nuggets and all 20 users (totally 400 distances given), we calculate these

accumulative credits for each of the metrics. Besides ACS, we use pie graphs, which

we call “Dif Distribution Graphs” to observe and compare theDif distribution of each

metric. For each metric, it will show us the exact number and percentage of each “match

category” (Dif=0, Dif=1, and so on).

3.3.2 Experimental Results:

Figure 3.15 shows the accurate credits earned by each metric.

Since the distances given by users were based on their own intution, they may be

different for a same pair of nuggets. Actually, we found thatfor all the questions, our

twenty users gave more than one answers. However, as ACS counts all the “matches”
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Figure 3.15: Accumulative credits earned by each distance metrics for all 400 cases

and sums up the Accurate Credit earned by each distance metric for all the 400 cases, it

is a fair comparison for all the metrics. Generally, a metricthat matches well with more

users in more questions will earn higher accumulative credit. As shown in Figure 3.15,

QD+ETM earns much higher accumulative credit than any othermetric. This indicates

that it matches the users intuition best among all the distance metrics.

Figures 3.16 to 3.22 show the distribution of “Dif”s for eachdistance metrics. From

them, we can observe that QD+ETM has 128 (32%) “perfect matches” (Dif = 0) with

users’ ratings for the 400 distances. It also has 196 (49%)Dif = 1 matches, 44 (11%)

Dif = 2 matches, while only 32 (8%) “non- matches” (Dif > 2). It is much bet-

ter than any other distance metrics in terms of more “good matches” and less “non-

matches”, even when compared with the second best one, QD only, which has 88 (22%)

Dif = 0 matches, 132 (32%)Dif = 1 matches, 136 (34%)Dif = 2 matches, and

44 (11%) “non=matches” (Dif > 2). Based on the comparison results above, we learn

that QD+ETM captures the distances between nuggets best among all the metrics we

discussed in this work.
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Figure 3.16: Dif distribution of QD

Figure 3.17: Dif distribution of NNM
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Figure 3.18: Dif distribution of HDM

Figure 3.19: Dif distribution of ETM
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Figure 3.20: Dif distribution of QD+NNM

Figure 3.21: Dif distribution of QD+HDM
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Figure 3.22: Dif distribution of QD+ETM

3.3.3 Approximation to Hungarian Assignment Algorithm

However, the best quality usually comes at the price the highest cost. Since the Hungarian

Assignment (HA) Algorithm used in ETM hasO(n3) complexity, wheren is the number

of points that appear in the larger subset but not in the smaller subset, it is not always

practical performance-wise when we try to compare the nuggets with huge populations.

Figure 3.23 shows the CPU time used by all the distance metrics when measuring dis-

tances for the 20 pairs of nuggets we mentioned earlier. We can see that QD+ETM has

highest cost in terms of maximum, minimum and average CPU time used, which means

now we have a metric that is best at capturing users’ intuition but worst in terms of time

efficiency.

To address this, we now propose to employ a much cheaper approximation algorithm

of HA instead of the full-fledged HA algorithm. It is Coupon Collection (CC) Algorithm,

which hasO(nln(m)) complexity, wheren has the same meaning with that in HA and

m is the size of the original dataset. By using CC, we do not try to make global optimal
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Figure 3.23: CPU time cost by different distance metrics

transformation plan by conducting complicated matrix operations as we did with HA.

Instead, we “move” each non-overlaping data point in one nugget to its nearest neighbor

in another. Once a data point from one nugget has been moved toa data point in the other

nugget, the later data point is “occupied” and can no longer “accept” moving from any

other data point. Thus, if the nearest neighbor of a data point is “occupied”, this data

point has to be moved to its second nearest neighbor. And if the second nearest neighbor

is “occupied” also, then we move it to its third nearest neighbor. This yielding strategy

continues until a data point find an unoccpupied neighbor, orthe data point has to be

“deleted” in the transformation plan.

To study the performance and quality of ETM using CC, we run QD+ETM (with two

different implementations of ETM: CC and HA) against 3000 pairs of synthetic nuggets

extracted from 3 different datasets (1000 pairs per dataset). Since, theoretically, HA is

guaranteed to give the minimum distance for ETM, we use our Dif Distribution Strategy

to compare the distances by QD+ETM (CC) with those computed using QD+ETM (HA).
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By doing this, we will be able to learn how often and how well the distances computed

using QD+ETM (CC) match with those by QD+ETM (HA). If they have good matches

in most of the cases, we can conclude that CC is a good approximation for HA used for

computing ETM.

Figure 3.24: Dif distribution of CC and HA on 1000 pairs of nuggets from “Iris” dataset

As shown in Figures 3.24, 3.25 and 3.26, we observe that QD+ETM (CC) produces

exactly the same answers as QD+ETM (HA) in around 90 percent of the time. And in

only less than 5percent time, the Dif between them is larger than 2. These comparison

results indicate that CC is a very good approximation to HA interms of capturing the

distances between nuggets.

Further more, to compare the CPU time cost of QD+ETM (CC) withthe costs by

other distance metrics and also its performance in terms of matching users’ intuition, we

use QD+ETM(CC) to measure the distances between the same 20 pairs of nuggets we

used in the earlier user study (Section 3.3).

As shown in Figure 3.27, from the maximum, minimum, average and also standard

deviation of CPU time cost, we learn that QD+ETM(CC) is the second fastest distance
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Figure 3.25: Dif distribution of CC and HA on 1000 pairs of nuggets from “Cars” dataset

Figure 3.26: Dif distribution of CC and HA on 1000 pairs of nuggets from “Aaup” dataset
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Figure 3.27: CPU time cost by different distance metrics

metric among all those we have discussed. It costs averagelyaround 75 percent less CPU

time than QD+ETM (HA) and only slightly more than QD only, which is the cheapest

metric. Here, we also need to point out that, although QD+ETM(CC) saves much CPU

time in average case compared with QD+ETM (HA), QD+ETM (CC) is not guaranteed

to be faster than QD+ETM (HA) in all cases. This is because thecomplexity of CC,

O(nln(m)), is related to the size of the original datasets, but the complexity of HA,

O(n3), is only related to the non-overlap population in the largernuggetn. CC can be

slower than HA whenm is extremely large, whilen is extremely small, although this is

not likely to happen in most of the cases. So, to be careful, wecan choose to use either

of these two metrics based on comparingln(m) andn2. If the former wins, we pick

QD+ETM (CC), or we pick QD+ETM (HA).

When comes to the performance of QD+ETM (CC) in terms of matching users’ intu-

ition, we found that among all the 20 pairs of nuggets we used in our user study, QD+ETM

(CC) gave exactly same answer with QD+ETM (HA) in 18 pairs of them. For the re-
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mained 2 pairs of nuggets, on which the distances given by QD+ETM (CC) and QD+ETM

(HA) did not completely agree, one of them has a difference equal to 1 and another has a

difference equal equal to 2.

Figure 3.28: Accumulative credits earned by each distance metrics for all 400 cases

As shown in figure 3.28, the accumulative credits earned by QD+ETM (CC) are very

close to those of QD+ETM (HA) and much higher than any other metrics. And from

figure 3.29, we can observe that QD+ETM has 110 (28%) “perfectmatches” (Dif = 0)

with users’ ratings for the 400 distances. It also has 210 (52%) Dif = 1 matches, 49

(12%)Dif = 2 matches, while only 32 (8%) “non- matches” (Dif > 2).

3.3.4 Conclusions on Distance Metrics

Based on the experimental studies we discussed in this chapter, we draw following con-

clusions:

1) QD+ETM agrees well with users’ intuition on distances between nuggets. It is thus

the best distance metrics among all we have discussed in thiswork in terms of capturing

nugget distance.
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Figure 3.29: Dif distribution of QD+ETM (CC) on the 20 pairs of nuggets used in user
study

2) Coupon Selection (CC) algorithm has been shown to be a good approximation

to Hungarian Assignment (HA) algorithm used for computing ETM. It has almost the

same performance with HA in terms of capturing distances between nuggets, and it costs

averagely around 75% less CPU time than HA for the nuggets on three real datasets we

employed (“Iris” dataset: 4 dimensions, 150 records; “Cars” dataset: 7 dimensions, 392

records; “Aaup” dataset: 14 dimensions, 1161 records).

3) Query Distance (QD) only, as a cheap metrics, works well in many cases.

4) When picking the distance metric, QD can always be carried out before conducting

any data comparison. If two nuggets have huge query distancethen the data comparison

is on longer necessary, because the two nuggets will be surely dissimilar even without

considering the data they contain. If two nuggets have a small query distance, we may

choose to compute the data distance or not based on how “aggressive” we want to be

in the process of nugget clustering. If we want to form big andrough clusters in our

nugget pool with little time expense, we can just skip the data comparison and rely on the

results of query comparison only. In contrast, if we need andcan afford to be “careful” in

nugget clustering and aim to form as precise clusters as possible, we have to consider data
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distance, meaning that we need to pick QD+ETM (CC) or QD+ETM (HA). This choice

can be made by comparingln(m) andn2. If the former wins, we pick QD+ETM (CC),

otherwise we pick QD+ETM (HA).
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Chapter 4

Nugget Clustering

4.1 Iterative Incremental Clustering (IIC) Algorithm

As we mentioned earlier in Chapter 2, once we have an effective distance metric to capture

the similarity between nuggets, any generic clustering algorithm can be applied here to

conduct nugget clustering. However, we have to be careful about picking a suitable clus-

tering algorithm, for the following reasons: 1) Considering that nuggets are generated

during users’ exploration, reclustering all the nuggets atthe arrival of each new nugget

may tent to be too expensive, especially when the nuggets pool is large. 2) Reclustering

periodically (for example, once every day) will not only cost extra storage for nuggets

until the nugget consolidation is under taken but also lose the opportunity to make real

time modification to the nugget pool. Thus, we adopt an iterative incremental clustering

(IIC) algorithm to realize high-quality clustering in realtime. The main feature that dis-

tinguishes this algorithm from the traditional incremental clustering algorithms [12, 58]

is that it recursively re-inserts the modified nugget back into the nuggets pool. This aims

to avoid similar nuggets to be kept in the nugget pool ( distances between all nuggets are

larger than a threshold distance). Our proposed IIC algorithm is given in Figure 4.1.
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IIC( P , N): //P is the current nugget pool
// N is the new nugget

1 AddToNuggetPool(N , P )
2 Return(P )

AddToNuggetPool(N , P ):

1 MinDistance = 1
2 for each existing nuggetNj in P{
3 if (Distance(Nj , N) < MinDistance)
4 MinDistance= Distance(Nj , N)
5 int Closest= j
6 if (MinDistance < DistThreshold)
7 new nuggetN ′=Combine(N, NClosest)
8 RemoveNClosest from P
9 AddToNuggetsPool(N ′ , P )
10 else
11 MakeN ′ a new nugget in nugget pool

Combine(Nx , Ny):

1 new nuggetN
2 for each dimensionk of Nx

//Nx andNy have same dimensions
3 N(k).bl = Nx(k).bl∗Nx.vitality+Ny (k).bl∗Ny .vitality

Nx.vitality+Ny .vitality

4 N(k).bh = Nx(k).bh∗Nx.vitality+Ny (k).bh∗Ny .vitality

Nx.vitality+Ny .vitality

5 N.vitality = Nx.vitality + Ny.vitality
5 N(k).bl andN(k).bh are the lower bound and upper bound of nuggetN on

thekth dimension
6 Return N

Figure 4.1: Iterative-incremental clustering (IIC) algorithm
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4.2 Evaluation to IIC

To learn the effectiveness of IIC, we carefully compare its performance with one of the

more common non-incremental clustering algorithms, K-Means. First, we compare the

theoretical characteristics of the two clustering algorithms.

Figure 4.2: Theoretical characteristics of ICC and K-Means

As shown in Figure 4.2, ICC exhibits two noticeable advantages compared with K-

Means. First, IIC is a real-time clustering algorithm, which incrementally clusters newly

arriving objects into previously formed clusters. While, K-means would keep all the

newly arriving objects and reclusters them whenever an output is needed. This real-time

characteristics of ICC is important for our system, becauseit not only saves the storage for

all the nuggets generated in history but also allows real-time modification of the nugget

pool. Second, the complexity of the IIC is much lower than K-Means. Because K-Means

relies on iterative reclustering of all objects, the numberof iterations (I) may be very

high in many cases. Thus, even if we give up the chance of real-time modification of the

nugget pool, periodically reclustring the whole nugget pool with K-means is still quite

time-consuming. For those two reasons, we choose ICC for oursystem.

We perform several experimental studies to compare both theefficiency and quality of

ICC and K-means algorithms when they are used to cluster nuggets. We use ICC and K-

Means to cluster three groups of nuggets. The 100 nuggets of the first group are extracted
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from ”Iris” dataset. The second group has 500 nuggets extracted from ”Cars” dataset,

and the third group is composed by 1000 nuggets extracted from ”Aaup” dataset. Our

comparison strategy can be divided into three steps:1) For a selected group of nuggets,

we run ICC first to cluster them and get the clustering results. 2) We run K-Means against

the same group of nuggets several times, but with different K(I.e, K= 1/2 k, K=k, K= 3/2

k, K= 2k, where k is the number of clusters just found by ICC).3) We compare both the

execution time and the clustering quality of ICC and K-Meanswith different values of K.

Figure 4.3: Comparison of CPU execution time by ICC and K-means with varying k

As shown in Figure 4.3, ICC is much more efficient than K-Meansin terms of CPU

time cost. Actually, ICC takes only 5 seconds to cluster 1000nuggets. Thus, the time

needed for clustering a newly arriving nugget is usually unnoticeable for users.

Now we discuss the clustering quality of two clustering algorithms. As mentioned in

[25, 30], two major criteria are considered when measuring the quality of clusters. The

first one is“Compactness”: This is a measure of cohesion or uniqueness of objects in

an individual cluster with respect to the other objects outside the cluster, e.g., the average

similarity of objects within the cluster. The greater the similarity, the greater the compact-
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ness. The second one is“Isolation”: This is a measure of distinctiveness or separation

between a cluster and the rest of the world, e.g., the similarity between a cluster cen-

triod to an object outside the cluster. The smaller the similarity, the greater the isolation.

Thus, our cluster quality measure can be expressed by the sumof “compactness” and

“isolation”. Specifically, we use the accumulative distance between each cluster member

and the cluster centroid to which it belongs to present the “compactness” of clusters. To

present the “isolation”, we use the “closeness penalty”, which is given and accumulated

if any nugget is too “close” to the cluster centroid it does not belong to. By adding up

the accumulative distance and close penalty, we can expressthe “negative quality” of the

clusters. By simply substract the negative quality from 1, we can finaly acquire the quality

of clusters.

Figure 4.4: Comparison to quality of clusters (objects: 100nuggets extracted for ”Cars”
dataset)

From Figures 4.4, 4.5 and 4.6, two facts can be observed: 1) When K=k, ICC has

equivalent performance with K-Means in terms of quality of clusters. 2) When we de-

crease(half) or increase (double) the value of K, the quality of clusters degenerates. Thus,

we learn that, for our observed cases, ICC can divide nuggetsinto proper number of clus-

53



Figure 4.5: Comparison to quality of clusters (objects: 500nuggets extracted for ”Iris”
dataset)

Figure 4.6: Comparison to quality of clusters (objects: 500nuggets extracted for ”Aaup”
dataset)
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ters, and the quality of clusters it achieves is comparable with the K-Means. We thus

conclude that the Iterative Incremental Clustering Algorithm is an effective method for

nugget clustering, because it not only has the advantage of being incremental, and thus

very efficient at run-time, but it also achieves comparable cluster quality with the non-

incremental clustering algorithm.

55



Chapter 5

Nugget Refinement

5.1 Benefits from Nugget Refinement

In this section, we’ll introduce our solution of using data mining techniques to refine the

nuggets found from users’ log. Such a refinement can be performed when a nugget was

made because users were searching for some identifiable pattern types, such as clusters

or outliers. For example, assume a user was searching for a cluster in the dataset, and

for some reason, she missed part of it (Figure 5.1). Then, NMSwill refine the nugget to

capture the complete cluster (Figure 5.2).

Figure 5.1: A nugget which captures the
main body of a cluster bus misses part of
it

Figure 5.2: The refined nugget which
captures the complete cluster

Nugget refinement offers several advantages over both pure log analysis or mining

techniques of the data itself. They are:1) Log analysis techniques, for example, the
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nugget extraction introduced in Section 2, rely on users’ actions only, without any help

from computational analysis of the datasets and their properties. Thus they may lack

accuracy in nugget specification. While nugget refinement guarantees the accuracy by

exploiting both of them.2) Data mining techniques, such as global pattern detection

algorithms, need to be told the specific type of pattern that auser is looking for. Such

information may not be always available, because users may not know the exact pat-

tern types that are important to them. While for nuggets refinement, the users’ interests

have already been indicated by candidate nuggets, which areusually small subparts of

a whole dataset. Thus the refinement process could run different local pattern detection

algorithms to figure out what users were most-likely lookingfor. 3) Even assuming the

system knows the specific pattern type a user is interested in, in many cases the user is not

searching for all possible patterns but only for certain patterns of this type. This makes

running expensive global pattern detection algorithms notalways cost effective and un-

related patterns detected may even cost users more effort toisolate the useful ones. In

this work, we focus on two important types of patterns, namely, clusers and outlies, and

we chose density-based clustering [26] and distance- basedoutlier detection [39] as our

sample pattern detection algorithms, which are popular algorithms extensively studied in

the literature [28, 52]. However, other search methods fromthe literature could equally

be used.

5.2 Techniques for Nugget Refinement

The refinement process is divided into two phases, called thematch and refine phases.
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Match phase

In this phase, we aim to match the identified nuggets with patterns “around them” within

the data space. In other words, our goal is to determine whichpatterns users were search-

ing for when these specific nuggets were made. In this work, weconcentrate nuggets

refinement on two important pattern types, clusters and outliers.

We first formally define the concept of “Match”. The concept of“Match” is used to

judge whether some data patterns or the major parts of these patterns primarily contribute

to a nugget. If this is found to be the case, we call the nugget and these patterns “matched”.

The nuggets may be “matched” with more than one pattern. Or, put differently, a nugget

may contain several patterns. Technically, to match a nugget with patterns, we have to

compute two important factors that each represent one direction of the match:

• Participation Rate(PR) : A pattern P should be matched with a nugget N, only if

most of its members, if not all, participate (are covered by)the nugget. For example,

in Figure 5.1, for the cluster at the left side, data points 2,3, 4, 5, 6 are covered by

the nugget. So, we usePR to present how much of a pattern P is covered by a

nugget N.

PR(N, P ) =
P.population ∩ N.population

P.population
(4)

• Contribution Rate(CR) : Since “match” is two-directional, while PR just expresses

one direction, namely, nugget to pattern, we introduce CR tocapture the opposite

direction, from pattern to nugget. This shows how much a pattern or a partial pattern

contributes to the nugget. Moreover, because a nugget is decided by a query and the

results of this query (selected data), the notion of “contribution” here has a broader

meaning than “covering” of population. Similar to the problem of measuring the

distances between nuggets, we consider both the selected area and data population

of the pattern and the nugget when calculating CR.
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CR(N, P ) =
P.area ∩ N.area

2 ∗ N.area
+

P.population ∩ N.population

2 ∗ N.population
(5)

Next we show a specific example of how to calculate PR and CR between a nugget and a

cluster (the cluster on the left side in Figure 5.3).

Figure 5.3: A nugget which captures the
main bodies of two clusters

Figure 5.4: A nugget which includes
an outlier (data point 1) and noise (data
point 2)

The covered pattern population (P.population ∩ N.population) equals 5 (contain-

ing data points 2, 3, 4, 5, 6), and the pattern population (P.population) equals 6. So

PR = 5/6 = 0.83. The Nugget Area (N.area) in this example is the area denoted by

the Nugget Boundary. The Pattern Area (P.area) is indicated by the Pattern Boundary.

Overlap Area (P.area ∩ N.area) is the overlap area depicted by the shaded area in the

figure. Let’s assume Overlap Area/Nugget Area=0.3. The concept of “Area” here extends

to hypervolume when number of dimension increases. We also know that the Nugget

Population equals 12. So CR= (0.3+5/12)/2=0.39

Now we use PR and CR to match a nugget with the patterns around it. We use

MatchRate(P, N) to express the result of a match between a nugget N and all patterns of

type P that are covered or partially covered by N. Based on thematch results, we classify

nuggets into 3 different categories.

• Clusters

MatchRate(C, N) =
∑

1≤i≤n

PR(Ci, N) ∗ CR(Ci, N) > T (6)
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WhereCi’s are all the cluster patterns covered or partially convered by the nugget.

T is a threshold which decides whether the nugget and the patterns match. In this

case, a nugget is matched with one or more clusters. In other words, the main

components of this nugget are clusters.

• Outliers

Although we still follow the notion of PR and CR as we did in thecluster cases, the

way we calculate them is a little different. First, since an outlier pattern only has one

data member, the PR for an outlier pattern is always 1. So we omit it from Formula

7. Second, the way we present pattern boundaries of outlier patterns is different

also. As shown in Figure 5.4, the pattern area of an outlier isa (hyper) square area,

where the distance from it to any boundary equals the maximumdistance (among

all the dimensions) between it to its nearest neighbor. All the other calculation

processes remain the same as those for the cluster cases.

MatchRate(O, N) =
∑

1≤i≤n

CR(Oi, N) > T (7)

WhereOi’s are all the outlier patterns covered by the nugget. T is thesame thresh-

old we use in Formula 6. In this case, a nugget is matched with one or more outliers.

In other words, the main components of this nugget are outliers.

• No Specific Pattern

It is possible that a nugget will be matched with neither clusters nor outliers. In

this case, the nugget belongs to the “No Specific Pattern” category. Expanding the

library of recognized patterns is an important part of our future work.

An main assumption in this nugget-pattern-match solution is that Minimum Bounding

Rectangle (MBR) is a suitable method to express the “spatial” characteristics of patterns.
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Although MBR has been used in many previous work [50, 49] to capture the “spatial”

characteristics of objects in multi-dimensional space, this may be a dangerous assump-

tion when the patterns are in highly irregular shapes and thenumber of dimensions goes

extremely high.

Refinement Phase

The match phase reveals to us what type of patterns that a userwas searching for. If

a nugget is classified into the first two categories mentionedabove, we finish nugget

refinement using the following two steps, called splitting (if necessary) and modification.

Splitting: If a nugget is judged to be “matched” with a certain type of patterns and

it is composed of more than one pattern of this type, we could split it into several new

nuggets, each representing one pattern of this type only. This process is straightforward,

because we already know all patterns the users was searchingfor based on the knowledge

learned from the match phase. The specific splitting processcan be finished by putting

all the members of each “qualified” pattern in the original nugget into a new nugget. The

only thing we need to be careful about is that we only make new nuggets for those “qual-

ified” patterns but not all those (partially) covered by original nugget. To be a “qualified

pattern” in the original nuggetN , a patternP has to haveMR(P, N) greater than a cer-

tain threshold, which means the major population of this pattern has to be covered by the

original nugget.

Modification: For the nuggets representing a single pattern only, the modification

process becomes simple also, because we just need to make thenugget boundaries exactly

the same as the pattern boundaries. Then the nuggets will become perfect representatives

of the patterns. In Figures 5.5 and 5.6, we show the new nuggets after nugget refinement.

Each now represents one pattern only.
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Figure 5.5: The refined nuggets which
each capture a complete cluster

Figure 5.6: The refined nugget which in-
cludes one outlier only
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Chapter 6

Users Study On Overall Functionalities

of NMS

In order to show the effectiveness of NMS, we have performed user studies to compare

users efficiency and accuracy when solving tasks with and without the help of NMS. Also,

we have observed and analyzed the stability of NMS through our user studies.

6.1 Experimental Setup

Experimenal Environment:For all the user studies, we use an HP Pavilion laptop com-

puter with 1.6MHz CPU and 512M memory. NMS is integrated in XmdvTool 7.0, which

is the latest version of this multivariate visualization system [64].

Users: 17 subjects, all WPI students from various majors, participated in our user

studies. All users came through a uniform training process.Those in the NMS group

were also given the basic idea of how NMS works and made familiar with the interfaces

of NMS.

Datasets: Three real datasets are employed in our user studies. They are the “Iris”
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dataset (4 dimensions, 150 records); the “Cars” dataset (7 dimensions, 392 records); and

the “Aaup” dataset (14 dimensions, 1161 records).

Tasks: Users are asked to finish five knowledge discovery tasks. Eachof the tasks

requires users to study a dataset and answer a question aboutthe dataset. The specific

tasks are:

Task 1: How many main clusters exist in the “car” dataset on four dimensions: MPG

Cylinders, Horsepower and Origin?

Task 2: How many records in “Detroit” dataset satisfy the query: ftpolice < 274,

unemp < 5.5, 500 < manu − wrkrs < 600, handgun − lcs < 700.

Task 3: In the Detroit dataset, for the record, which has highest value onhundgan −

lcs, what are its corresponding values on dimensionft − police, unemp, andmanu −

wrkrs.

Task 4: In the Iris dataset, two subsets: subpart A:4 < sepal − length < 6, 2.8 <

sepal − width < 4.5, 1 < petal − length < 2, and subpart B:4 < sepal − length < 6,

2.8 < sepal −width < 4.5, 5 < petal − length < 6, Which subparts has more records?

Task5: In the car dataset, which origin has highest average MPG?

All those five tasks were printed out on a single-page task sheet and given to users

when they were ready to solve the tasks.

6.2 Experimental Methodology

In this user study, we appointed time with each individual user based on our user grouping

results, which will be discussed later in the section. During each appointed time, one user

participated in our user study. Users were not allowed to communicate information about

the user study through any other channel except NMS at any time before, during, or after

the user study. This is to make sure that users can only solve the tasks based on their
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own exploration and the help from NMS (if available). A uniform training process was

designed to give the basic idea of how NMS works and made familiar with the interfaces

of NMS. This training process was given by a same user study host, namely, the author

of this thesis, to each individual user before they started to solve the tasks. Although

this training process was not given once to all the users in a lecture manner, since it was

well prepared and carried out by a same user study host, we believe that it was helpful

and fair for every user. The training process took 10 to 15 minutes for different users,

including question-raising and -answering time. Once the users felt ready to start solving

the tasks, we gave them the task sheet and started timing for their task-solving process.

By then, they were no longer allowed to communicate with the user study host. All the

users were encouraged to finish the tasks as quickly and correctly as possible, but there’s

no time limit for them to finish the tasks. Users were asksed tofinish the tasks in the same

sequence as the tasks appeared on the task sheet. They handedup when finishing each of

the individual task and wrote down the answer on an answer sheet. The user study host

collected all the answer sheets and all the time records for the final analysis.

6.3 Users’ Time Efficiency

To compare users’ efficiency of finishing this given set of tasks with and without help

of NMS, we randomly divide the twelve users into four groups,three per group. Each

user is asked to finish the same five tasks. Among these 4 groups, users of group 1 were

asked to finish the tasks without NMS, while the other three groups (2- 4) were supported

by NMS. Members of each group were randomly given a sequence number ranging from

1 to 3, which represents the user’s sequence of solving the problems in his/her group.

For example, once a user from group 1 receives the sequence number 2, he/she will be

the second one in group 1 to finish the tasks. Group members were encouraged to use
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the functionalities of NMS (if available) to manage and share their discoveries with later

users. Figure 6.1 shows the time used by each user and group tofinish the tasks. As

Figure 6.1: Comparison of users’ efficiency in different groups

shown in Figure 6.1, groups 2, 3, and 4 (with NMS) spent noticeable less time (around 50

percent) than group 1 (without NMS). Such time savings due tothe second and the third

users, given that the first users all worked from scratch. Although NMS did facilitate

their job, managing discoveries needed time. However, oncethe nuggets were extracted

during the exploration by the first users, the exploration processes of the second and the

third users largely benefited from the nugget pool.

To better support our analysis, we compared the time used by six users working from

scratch (three members of group 1, and three first users of each other groups) and by

the other six users working with guidance of the nugget pool (the second and third users

of groups 2,3 and 4). Figure 6.2 shows that the later six userswith guidance of nugget

pool were working much more efficiently. Specifically, the minimum, maximum, and the

average time spent by these users are all much less than thosewho worked from scratch.
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Figure 6.2: Comparison of users’ efficiency with and withoutguidance from nugget pool

The standard deviation is lower too.

6.4 Accuracy of Accomplished Tasks

We also studied the effect of NMS on the accuracy of the accomplished tasks. Among

the five tasks we mentioned earlier, tasks 2 to 5 are straightforward problems. Users gave

correct answers, although spending different amounts of time on them. However, task 1

is a common but complex knowledge discovery problem. Since not all the clusters can be

easily found, in our user study the answer provided by the users varied. Figure 6.3 shows

the number of clusters found by each user and also the number of clusters that actually

exist. Two facts can be observed from Figure 6.3: 1) The number of clusters correctly

found by users working with NMS are generally closer to the number of actual clusters. 2)

The later users in each group are more likely to find all existing nuggets compared to the

earlier ones. These two facts show the promise of NMS indeed improving the accuracy

of the tasks accomplished by the users.
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Figure 6.3: Comparison of users’ accuracy of finishing complex task with and without
help from NMS

6.5 Stability of NMS

Lastly, we consider NMS’s stability, meaning how well it performs after long-term use.

To give a preliminary evaluation of this, we asked a 7-user group to solve the five tasks

mentioned earlier. We analyzed the population of the nuggetpool after use by each user.

The change of the nugget pool population is shown in Figure 6.4. The comparison of

average number of nuggets identified by the 7 users for each task and the estimated num-

ber of nuggets needed for each task is shown in Figure 6.3. The“Estimated” number

of nuggets is given based on our own experience of how many nuggets are needed for

each task. From Figures 6.3 and 6.4, we observe two facts: One, the average number of

nuggets formed by each user for each question is generally a little higher than estimated

(Figure 6.5). Two, the populations of the nugget pools are relatively stable during users’

exploration (Figure 6.4). Thus although some useless nuggets may be generated during

exploration, they are usually only small portions of the whole nugget pool. Thus, this is
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Figure 6.4: Evolution of nugget populations over time

Figure 6.5: Comparsion of numbers of nuggets generated by users and those are estimated
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indication that the population of the nugget pool is not likely to degenerate dramatically

during a long-term use.
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Chapter 7

Related Work

Illuminating the Path [61], the research and development agenda for visual analytics pub-

lished by National Visualization and Analytics Center, points out that visual analytics is

the science of analytical reasoning facilitated by interactive visual interfaces. People use

visual analytics tools and techniques to synthesize information and derive insights from

different types of data; provide understandable assessments; and communicate assess-

ment effectively for action. This agenda also lists the fourmajor focus areas of visual

analytics, which are: 1) Analytical Reasoning Techniques;2) Visual Presentations and

Interaction Techniques; 3) Data Representations and Transformations and 4) Production,

Presentation, and Dissemination. As a analysis-guided framework for visual exploration,

our NMS framework mainly falls into the first and the second area, which are Analyti-

cal Reasoning Techniques and Visual Presentations and Interaction Techniques. And it is

also related to other two areas, where many important ideas can be borrowed while also

expanded to serve our general framework.
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7.1 Analytical Reasoning Techniques

As described in [14, 40, 16], analytical reasoning usually follows a sense-making loop,

which is iterative and time-consuming. Thus, two of the key goals need to be achieved

by analytical reasoning techniques are: 1) Enabling users to isolate valuable informa-

tion from massive amount of raw data. 2) Providing discoverymanagement mechanisms

which allow users to organize their temporary achievementsand finally develop insights

that directly support assessment, planning, and decision making. The efforts to achieve

the first goal can be classified into three categories, namely, User-Driven, Data-Driven

and Hybrid.

In the User-Driven category, the knowledge discovery process relies on users per-

ceptual power, while a variety of visual interaction mechanisms [4, 64, 18, 3] such as

brushing, and dynamic querying, are offered by the visualization systems to help them

isolate the valuable information. Such techniques work well in many cases, compared

with those explorations without any interaction. While they still suffer from two disadvan-

tages. First, they may be inefficient, because users’ effortto locate valuable information

generally follows a“try-and-see” manner. When the information items need to be isolated

have a huge population or are not easy to identify by human vision, using such techniques

may lead to large investment of users’ time. Second, becausethe whole isolation process

relies on users’ perceptual abilities only, the valuable information found by users may

lack accuracy. This problem has been discussed in the Chapter 5 of this thesis. Thus, in

our framework, we have applied these techniques to allow users to best use their percep-

tual power during visual exploration, while we have introduced computational analysis in

the different stages to improve the accuracy of users’ discoveries.

Data-driven techniques aim to expediate knowledge discovery with the help of the an-

alytical power of machines. Data mining algorithms [29, 68,38, 26, 52, 12], which detect
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useful patterns or rules in large datasets, fulfill an important role here. These techniques

are independent from the visual environment and thus do not bring into play the power of

the human intuition in the pattern detection process. The main limitation of these tech-

niques is that they usually aim to find all the members of a certain pattern type and thus

ignore the interests of users. In many cases the user is not searching for all possible pat-

terns of a certain type but only for a subset of them. For example, for a dataset with 100

dimensions, a user may not be interested in all the clusters existing among all these 100

dimensions. Rather, she may just care about the clusters existing in a small subset of di-

mensions and even small subranges on these dimensions. Thismakes running expensive

global pattern detection algorithms not cost effective andunrelated patterns detected may

even cost users more effort to isolate the useful ones.

The third category is hybrid. The initial effort in this category is called visual data

mining (VDM) [35, 22, 34]. It involves users in the mining process itself, rather than be-

ing carried out completely by machines. In VDM, visualizations are utilized to support a

specific mining task or display the results of a mining algorithm, such as association rule

mining, and thus enhance user comprehension of the results.However, these techniques

still suffer from a major problem. That is they still requireusers to provide the specific

pattern types they are looking for before the detection process can begin. Such informa-

tion, however, may not be always available, because users may not know the exact pattern

types that are important to them. In our NMS framework, we address this problem by

introducing a “match” phase in our nugget refinement stage.

Providing a management mechanism to users’ discoveries is equally important to the

isolation process. Although general knowledge managementmechanisms have been stud-

ied in the literature [9, 41, 36], few attention has been paidto those closely integrated into

visualization systems. [31] provided some recording functions to its users during the

KDD process, while its main focus is on visualizing the KDD process itself. [21] pro-
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posed interactive tools to manage both the existing information and the synthesis of new

analytic knowledge for sense- making in visualization systems. This work so far has not

paid much attention on how to consolidate the users discoveries. However, consolida-

tion to users’ discovery by computational power is one of main contributions of my work.

Collaborative visual analytics [51] introduced computational power into the sense-making

process with focus on supporting the exchange of information among team members.

7.2 Visual Presentations and Interaction Techniques

Visualization systems traditionally focus on building graphical depictions of relationships

among information in a human comprehensible format. By doing so, they usually help

their users to better understand the information. This means the users can either learn

some facts that are not easy to discover without the graphical depiction, or the users’

knowledge to some facts can become deeper or more precise. The usefulness of visual-

ization systems has been well established [64, 55, 56, 23]. Although visual presentation

techniques are not the focus of this work, as a framework thataims to provide useful guid-

ance to users, NMS exploits interaction [13, 14] techniquesbetween system and users.

Our framework are using two important types of interaction techniques.

Filtering and navigation techniques [4, 64, 18, 3] allow users to search and focus their

attention on the information items that are of their interests. So, they are the basis of our

nugget extraction. More sophisticated filtering and navigation techniques will provide us

new opportunities to extend the range of nugget types in our future work.

As we will use the nugget pool to guide users’ exploration, when and how to present

our guidance information will also be a challenging problemfor our future work. Previous

work looked at this problem mainly belong to recommendationsystems [37, 24] and HCI

community [57, 13]. Recommendation systems cluster users into different groups based
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on their profile. Then within the same groups, recommendation systems recommend

a user the information items that have received attention from other uses but not from

herself yet. The key challenge of using this basic idea to ourframework is that, traditional

recommendation systems are mainly working in discrete domain, which mains judging

the similarity between the information items is usually straightforward. However in our

system, judging the similarity between the discoveries found users is a very challenging

job. Although we have given initial solution to this problemin Chapter 4 of this work, as

the new types of nuggets must appears in future, we need to learn more general solutions

to scale the distances between the nuggets. HCI itself as a broad research direction focus

on effective information exchange between humans and computers. By borrowing and

developing the ideas from these areas, we expect to build guidance mechanisms based the

nugget pool, which effectively communicates useful information with users while brings

as few unnecessary interruptions as possible.

7.3 Data Representations and Transformation

As the result of knowledge crystallization, nuggets are important carriers of user’s insights

to the datasets. How to best encapsulate different types of information about a same

pattern into a nugget is an important Data Representations and Transformation problem.

[27] studied on the metadata which provide structures for a global information space that

lends context to support multi-type analysis. Besides the individual nuggets, interrelations

among nuggets is another important aspect that we have to explore. These interrelations

can be hierarchical structures among nuggets, for example,some nuggets may be subparts

of a bigger nugget. Interrelations among nuggets can also beparallel, for example, several

nuggets may all be the evidences for a single knowledge.
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7.4 Production, Presentation and Dissemination

These techniques support production, presentation and dissemination of the results of

an analysis to communicate information in the appropriate context to a variety of audi-

ences. Same as other analytical systems, the ultimate goal of our framework is to make

the nuggets we learned available and understandable to users with different background.

So we have to keep our eyes on these important techniques also. Previous work in this

area includes, [53] , which allows commanders from battalion level and higher to feed

real-time situational awareness into the system and have that information available in text

and graphic representation immediately by fellow commanders and operations officers at

all level; [66, 33] which allow analyst to organize and work with evidence from multiple

perspectives simultaneously. Besides those techniques which mainly aim to help profes-

sional analysts work better, animation techniques [43, 7] are another important aspect

which lets audiences with less proficiency understand the result of analysis better. We

have to study these two aspects to make both the “production”and “consumption” to the

nuggets smoother.
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Chapter 8

Conclusions and Future Work

8.1 Conclusion

In this paper, we introduce a framework for analysis-guidedvisual exploration of multi-

variate data. Our system (NMS) leverages the collaborativeeffort of human intuition and

machine computations to extract, combine, refine and maintain the valuable information

hidden in large datasets. Finally, a well-organized nuggetpool can be used to guide users

exploration. Our preliminary evaluations indicate that NMS may greatly improve users

time efficiency when solving knowledge discovery tasks. It may also be able to enhance

users accuracy of finishing these tasks, although more complicated tasks are needed to

validate this. Lastly, NMS works in a stable manner during explorations by a sequence

of users. This shows its promise of working well during long-term exploration. More

comprehensive user studies which involve more users and more complex tasks will be

one of the directions for our future work.
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8.2 Future Work

Although we have created a general framework for analysis-guided visual exploration of

multivariate data and initially studied on each of the stagein this framework, this thesis

is just the beginning but not end of many important work. For the nugget extraction, a

more extensive range of nugget types will be considered in our future work. This will

go hand in hand with new filtering and navigation techniques.For the nugget refinement

part, expanding the library of recognized patterns is an important task for our future work.

Besides the extension work to these two parts, the focus of our future work will mainly

be concentrated on nugget maintenance and nugget guided exploration. As we mentioned

earlier in each of these two chapters, we will study how to give proper rights to multiple

users working on the same nugget pool and How to automatically learn and modify the

parameters controlling nugget pool evolution during usersexploration, for nugget main-

tenance. And for the nugget guided exploration, future workincludes: 1) How to build

hierarchical structures among nuggets based on their interrelation. (i.e., some nuggets

may be subparts of a bigger nugget) 2) How to organize a knowledge-driven nugget pool

[21] .(i.e., several nuggets may all be the evidences of a single knowledge, thus should

be grouped together) 3) How to guide users based on their profiles using collaborative

filtering techniques. [15] 4) How to extract story lines froma dataset and use animation

techniques to feed back to users. (i.e., there may be some certain visiting sequence among

the nuggets that best reveal some knowledge.)
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