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Abstract

Semantically rich metadata is foreseen to be pervasive in tomorrow’s cyber world. People

are more willing to store metadata in the hope that such extra information will enable a

wide range of novel business intelligent applications. Provenance is metadata which de-

scribes the derivation history of data. It is considered to have great potential for helping

the reasoning, analyzing, validating, monitoring, integrating and reusing of data.

Although there are a few application-specific systems equipped with some degree of prove-

nance tracking functionality, few formal models of provenance are present. A general pur-

pose, formal model of provenance is desirable not only to widely promote the storage and

inventive usage of provenance, but also to prepare for the emergence of so called prove-

nance management system.

In this thesis, I propose Butterfly, a general purpose provenance model, which offers the

capability to model, store, and query provenance. It consists of a semantic model for

describing provenance, and an extensible algebraic query model for querying provenance.

An initial implementation of the provenance model is also briefly discussed.

Evolution is fascinating to watch. To me it is the most interesting when one can observe

the evolution of a single man.

Shana Alexander

Hominid and human evolution took place over millions and not billions of years, but with

the emergence of language there was a further acceleration of time and the rate of change.

William I. Thompson

The more chaos there is, the more science holds on to abstract systems of control, and the

more chaos is engendered.

William I. Thompson

The task of art today is to bring chaos into order.

Theodor Adorno
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Chapter 1

Introduction

A very small cause which escapes our notice determines a considerable effect that we

cannot fail to see, and then we say that the effect is due to chance.

Jules H. Poincare

1.1 Motivation

With today’s abundant computer storage and powerful processing capability, people be-

come more and more aggressive in collecting extra data: data intentionally generated to

assist the understanding of other data or processes. Simple form of model and query

of such data cannot satisfy non-expert users’ growing appetite for intelligent support in

applications. For example,

• an online catalog vendor wants to track the interaction of customers with the UI to

discover the sequential pattern of operations which ends in purchasing a product;

find the most visited (used) web page (interface) to improve user experience; query

the connection between two visited web pages to better understand user behavior

and enhance cross-selling.

• a scientist wants to log detailed running steps and intermediate results of an ex-

periment saving the opportunity for future inspection or reproduction of the result;

1



Chapter 1: Introduction 2

providing poof to peer scientists about the authenticity of the experiment; contribut-

ing to the pool of experimental recipes for reuse.

• a food manufacturer wants to record the production and distribution process of a

product, so whenever the product is found flawed, it is possible to trace back to the

origin of the problem; map the affected vendors, shops, and regions; estimate the en-

suing loss and compensation; submit report to supervisory authority for conformity

check.

There are some common patterns in the aforementioned scenarios:

• People are interested in collecting transient ancillary information, which is usually

not captured or simply discarded. The form of such information is diverse varying

with domain.

• Ad hoc queries are asked about complex relationship among data. Answers to these

queries can benefit people with insight into the domain.

Having realized the usefulness of ancillary data and having envisioned its popularity, we

have launched the MetaWare project, which aims at providing a general solution to the

management of metadata.

1.2 Butterfly

We are particularly interested in provenance, a special kind of metadata that assists in

understanding how things are related to each other in their derivation history. Inquiry

of provenance is pervasive in everyday life, and a lot of applications (like the previous

examples) profit from the ability to know the provenance of an entity.

However, two obstacles are in the way of managing provenance:

• Before we can store provenance, we need a way to describe them.
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• Once provenance is stored, we need a query language to extract information from

them.

Our solution to the first problem is a semantic model of provenance. Our solution to the

second problem is an algebraic query model. The combination of two is a general purpose

provenance model, which we name Butterfly (named after the butterfly effect). We are

also working on an initial implementation of the provenance model.

Assumptions We believe a provenance model should be agnostic of application domains.

We argue that a provenance management system itself should not be held responsible for

capturing provenance. Instead, users should decide on what and how they capture prove-

nance according to their particular needs and views.

Usage Scenario

We imagine a typical scenario of applying Butterfly would look like this: A programmer

is assigned to build a provenance-aware application for a hospital (e.g., Electronic Health

Record or simply paperless office application). He knows there is a handy middleware

called Butterfly which he can easily integrate into his application for processing prove-

nance. What he needs to do is embed some provenance processing codes into appropriate

places of the business logic. He can decide what interesting events to record and how to

describe them (e.g., granularity) using the semantic model. The provenance processing

codes talk to Butterfly in the definition language. After the host application has run sev-

eral months, a patient revisits the hospital. A doctor opens an editor and composes some

queries to pull out the sequence of treatment the patient has received in the past. Later,

the patient files a complaint. A supervisor queries the provenance base to investigate if

there is any violation of regulation in the sequence of treatment.
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Contributions

Although there are many systems that utilize the idea of keeping track of data provenance,

most of their provenance tracking components are highly coupled to their application

logic (less reusable) and their provided queries are simple. Standardization of a general

purpose provenance model has recently aroused attention from the provenance research

community. For example, [21] is most relevant to our work in terms of its purpose. It

independently proposes the Open Provenance Model (OPM). The fundamental difference

between OPM and our work is mainly trifold: a) OPM classifies causal relationship into five

exact relationships. We use a loose, uniform relationship and leave the exact interpretation

of relationship to varied domains. b) OPM queries are based on logical inference from the

five causal relationships. We use an algebraic approach instead. c) Our goal is to provide

a general purpose, formal, functional model of provenance. In order to do that, we specify

the structural representation of each provenance concept.

More in-depth discussion of contribution can be found in chapter 5.

1.3 Related Work of Data Provenance

Data provenance, also called data lineage, describes how a piece of data was obtained from

its predecessor.

[23] develops taxonomy of provenance techniques to compare nine key provenance systems

based on why they record provenance, what they describe, how they represent and store

provenance, and the methods to disseminate it.

[7] proposes a meta-model for architectures of lineage retrieval systems. The authors

suggest that the meta-model should have three components: workflow model, metadata

model, and lineage retrieval component, and lineage retrieval component should depend

on workflow model and metadata model. Four lineage retrieval prototype systems are

analyzed under the proposed meta-model framework.
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Many projects in data provenance rose from the domain of scientific computing and ex-

periments. In such environment, service-oriented architecture is widely used. A service-

oriented architecture is a network of services in which data consumers and data producers

are connected. The history of data processing can be documented by logging the execu-

tions of each service node and identifying its input and output data sets, or by creating

metadata that describe the produced data sets or invoked executions, then metadata can

be chained together to answer provenance queries. According to the terminology of [23],

the former approach is process-oriented, and the latter one is data-oriented.

The Chimera project [13] proposes explicit representation of computational procedures

and their invocations in a virtual data catalog (VDC), for discovery of available compu-

tational methods, and on demand data generation in the Data Grid environment. With

the provided language, a user can explicitly store declarations of transformations or their

invocations in the VDC. The VDC serves as a resource recipe, and simple queries over the

VDC can be written to find out computational procedures and their invocations.

In the myGrid project [24], semantically rich execution logs [27] are automatically pro-

duced during workflow invocations to record services called, input and output data, etc.

Data and services are annotated using ontologies to allow provenance inference.

CMCS [12] develops an metadata infrastructure which allows the extraction, translation,

and manipulation of metadata. Lineage relationship between data entries can be visual-

ized. In the CMCS metadata schema, the Dublin Core Element Set [1] is used to record

lineage relationship. When files are loaded into the data repository, metadata generators

are executed to create the respective metadata.

ESSW [14] is a script based data management infrastructure for earth science products. It

uses Perl scripts to automatically collect metadata values and lineage information in the

experiments. XML documents are created using collected metadata values and predefined

metadata templates. These XML documents are stored in a relational database. The
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relationship between metadata IDs is stored in a table for tracking lineage. [6] is similar

to [14], where a lineage metadata model is proposed, and metadata is associated to every

constituent of a workflow. Two approaches for composing lineage metadata are discussed,

one using XML metadata documents, the other using Resource Description Framework

(RDF).

Since a relational database query can be thought of as a tree of transforming operators,

provenance (lineage) is also a subject of database research [4,5,8,10]. However, in contrast

to the scientific computing domain, provenance tracking is focused on locating the source

data that is responsible for the production of the result data, rather than the process

of how the result data is obtained. [20] names such type of provenance as input prove-

nance. [9] defines two types of provenance: where-provenance for describing the original

data from which the result data is copied from, and why-provenance for describing the

data that affects the existence of the result data. [4] and [5] use logging to store provenance

information during execution of simple queries. More particularly, [4] logs the causal re-

lationship between output rows and input rows. [5] tags every piece of data (at attribute

level) in the source tables with a unique identifier, and propagates the identifier along with

the data it tags during the query processing. Provenance can be obtained by logging, or

it can be computed on demand in some cases. For example, [10] uses inverse query to

compute the origin of given data on demand. This approach is limited, because, generally

speaking, “inverse query” does not exist [26].

There are other ad hoc systems that store and utilize provenance information for a variety

of application specific needs [3, 17, 25]. For example, in a command line environment,

when commands are executed, their parameters, output files are monitored and their de-

pendency is intercepted and stored. [25] makes use of such provenance information for

result caching. [3] implements the auditing facility in the S system, an interactive pro-

gramming environment for data analysis, by logging to an audit file and creating audit

data structure for query processing.
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Most projects in data provenance are confined to their specific domains. [20] presents and

analyzes use cases from e-science experiments of different disciplines in the hope of de-

termining the technical requirements of a software architecture that supports recording,

storing and using provenance data. Based on the result of [20], project PASOA [15] at-

tempts to provide a general provenance architecture that satisfies the need of applications

whose system architectures are of service oriented type.

Roadmap The rest of this thesis is structured as follows: We introduce the semantic

model in chapter 2, the query model in chapter 3. We briefly discuss the implementation

issues of our provenance model in chapter 4 and conclude with chapter 5.



Chapter 2

Semantic Model of Provenance

What distinguishes a mathematical model from, say, a poem, a song, a portrait or

any other kind of ’model’, is that the mathematical model is an image or picture

of reality painted with logical symbols instead of with words, sounds or watercolors.

These symbols are then strung together in accordance with a set of rules expressed in

a special language, the language of mathematics.

John Casti

Definition 2.0.1: A name space is an infinite countable set, denoted as ℵ.

e.g., the set of all possible ASCII strings is a name space.

Definition 2.0.2: A named value is (name, value-list). name ∈ ℵ. value-list is a list, and

it can be empty.

e.g., (Buyer, (John Green)) is a named value. Note if value-list contains only one element,

we can omit the parentheses of value-list. e.g., (Money, $40k) is also a named value.

Definition 2.0.3: An identifier is a named value.

Two identifiers are equal if and only if their names are equal. For example, (R08, (Data

File MedReport)) is an identifier, and is equal to (R08, ()).

The semantic model provides a tool for describing provenance. Particularly, it defines

8



9 2.1 Application Environment

several essential concepts that we believe are closely related to the modeling of prove-

nance. Our goal in this chapter is to define what are provenance entity and provenance

relationship.

2.1 Application Environment

Definition 2.1: An application environment is

(NSpace, CLK,ADDR,DICT ).

NSpace is a name space. CLK is a set of system-recognizable time (e.g., in the format

of MM-DD-YY). ADDR is a set of system-recognizable addresses (e.g., URI address).

DICT ⊆ NSpace, is a defined vocabulary.

Application environment mandates a minimum integrity constraint on the data, and pro-

vides some degree of interoperability. Note the following concepts are all defined with

respect to an environment.

2.2 Annotation

Definition 2.2: An annotation is a set of named values. Each named value (name, value-

list) is called an entry, and name ∈ DICT .

e.g., {(total-income, $40k), (mortgage-limit, $100k), (mortgage-type, fixed-rate)} could be

an annotation of a mortgage application.

Annotation provides an extensible way to describe something. Due to diversity of domains,

we impose only little restriction upon annotation.
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2.3 Static Entity Record

Defintion 2.3: A static entity record is

(entity-id, entity-address, entity-type, annotation, snapshot-time, record-id).

entity-id is an identifier. entity-address ∈ ADDR. entity-type ∈ DICT . annotation is an

annotation as in Definition 2.2. snapshot-time ∈ CLK. record-id ∈ NSpace.

Static entity record captures some aspects of an entity at a particular moment (snapshot-

time). e.g,

entity-id=(S01, (Aspect,· · · ))
entity-address=100 Inst. Rd
entity-type=Human
annotation={(Income, $40k),· · · }
snapshot-time=11-01-07
record-id=R01

is a static entity record capturing some facts about a person at some moment. Note there

is nontrivial distinction between entity and static entity record. The former one refers

to the evolving physical existence, while the latter one refers to a virtual representation

(as a record) of some aspects of that entity at a particular moment. With that being

mentioned, it is clear that: a) Our model does not intend to manipulate (e.g., store) the

actual entities (e.g., data files, pictures), but our model will manipulate their correspond-

ing representations. b) Theoretically, static entity record is about some facts in the past,

and should not be updated.

entity-id, entity-address, entity-type all refer to an entity. They are self-explanatory. One

example of entity-address is Uniform Resource Identifier (URI). Currently, entity-type is

simply drawn from DICT . We intend to introduce hierarchy of entity types in the future

for richer modeling. Past facts (states) of an entity can be amassed by grouping according

to entity-id (recall the equality definition of identifier). Static entity record with the latest

snapshot-time represents the closest approximation of the corresponding entity. record-id
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uniquely identifies the record itself not the entity.

2.4 Activity Record

Definition 2.4.1: An activity type is

(type-name, incoming-list, outgoing-list, annotation).

type-name is an identifier. incoming-list is an ordered list of named values (each named

value in the incoming-list is called an in-pipe). outgoing-list is an ordered list of named

values (each named value in the outgoing-list is called an out-pipe). annotation is an

annotation as in Definition 2.2.

incoming-list declares the roles and types of the contributing entities in an activity. For

example,

((Doctor, Human) (Patient, Human) (X-Ray, Machine))

is an incoming-list, with “Doctor”, “Patient”, “X-Ray” as roles and “Human”, “Machine”

as types. Types should be taken from DICT .

Similarly, outgoing-list specifies the roles and types of the consequential entities in the

activity. For example,

((Radiographic-Image, Image) (Diagnosis, Report))

is an outgoing-list. The types “Image” and “Report” should be taken from DICT as well.

Define a symbol ACT, which denotes a dummy activity type. It symbolizes an insignifi-

cant or unknown activity.

Flexibility Because our model is meant to be simple but still flexible and capable, we

avoid forced detail modeling of activity but reserve the potential for doing that. For ex-

ample, based on grouping by type-name, we can support the concepts of hierarchical view
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and equivalent view of activities as follows: Recall type-name (as in Definition 2.4.1) is an

identifier, with the form of (name, value-list). Let value-list = (event, generality, explana-

tion). Intuitively, event clusters relevant activities of an event. Activities with a smaller

generality value offer a more detailed view of the event. When generality values are the

same, activities with a smaller explanation value are considered a more plausible explana-

tion of the event. Figure 2.1 shows an example. It shows there is a more detailed view of

“Building Caught Fire”. The fire is more likely a result of lightning (explanation=1) than

short-circuiting (explanation=2). There is also a more detailed view of “Firefighters Put

Out Fire”.

Building Caught Fire

Sprinkler Sprayed Water

Firefights Put Out Fire

Lightning Struck

Roof Caught Fire

Wires Short-circuited

Kitchen Caught Fire

Fire Reported

Resources Scheduled

Fire Put out

(1, 1, 1)

(1, 1, 1)

(1, 1, 2)

(1, 1, 2)

(1, 2, 1)

(2, 1, 1)

(3, 2, 1)

(3, 1, 1)

(3, 1, 1)

(3, 1, 1)

Figure 2.1: Flexibility—Grouping of Activities

Definition 2.4.2: An activity record is

(activity-id, activity-type, activity-span, annotation, record-id).

activity-id is an identifier. activity-type is an activity type as in Definition 2.4.1. activity-

span=(start, end), start and end ∈ CLK. annotation is an annotation as in Definition

2.2. record-id ∈ NSpace.

In contrast to static entity record, activity record is used to describe any dynamic element
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of an application system. It is an instance of an activity type, and a representation of

an activity taking place in the physical world (e.g., an invocation of a computing function).

Each component of activity record is self-explanatory. We recommend to store in annota-

tion additional application specific information about the running of an activity.

2.5 Provenance Entity And Relationship

A provenance entity is either a static entity record (Definition 2.3) or an activity record

(Definition 2.4.2).

Definition 2.5.1: A provenance relationship is a relationship between two provenance

entities:

(causal-entity, consequential-entity, role, annotation, relationship-id).

causal-entity, consequential-entity are both provenance entities. role ∈ DICT . annotation

is an annotation as in Definition 2.2. relationship-id ∈ NSpace.

Relationship between causal-entity and consequential-entity can be thought of as a parent-

child relationship. role refines the relationship by supplementing the role that causal-entity

played in the creation of consequential-entity. Compatibility check is required. e.g., when

causal-entity is a static entity record and consequential-entity is an activity record, role

and causal-entity must be meaningful to consequential-entity (e.g., in Figure 2.2, the “buy-

ing” role and “Buyer” type match an in-pipe of activity-type “Closing”).

The semantic model provides a flexible way to describe provenance of both static and

dynamic elements of an application system. Figure 2.2 shows a simplified example of

house mortgage, where a prospective buyer got a house offer through a real estate broker,

applied mortgage from a mortgage company, closed the transaction with the seller and got
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a new house title. There are two activities, one of which is of dummy type and the other

is of “Closing” type. Provenance relationship is shown as directed link from causal-entity

to consequential-entity, with role as the label of the link, annotation and relationship-id

omitted for simplicity.

Figure 2.2: Example—Semantic Model of Provenance



Chapter 3

Query Model of Provenance

The ability to express an idea is well nigh as important as the idea itself.

Bernard Baruch

Intuition becomes increasingly valuable in the new information society precisely be-

cause there is so much data.

John Naisbitt

We have defined the semantics of provenance entity and provenance relationship in chapter

2. In this chapter, our goal is to develop an algebraic query model to manipulate prove-

nance entity and relationship. This query model bases on two sub-models: a content based

model for content based query of provenance and a structure based model for structure

based query of provenance. By combining the power of two sub-models, we can express a

lot of interesting provenance queries. In order to define the content based query model, we

need to first develop two concepts: provenance entity store and provenance relationship

store. They are corresponding to provenance entity and provenance relationship in the

semantic model.

15



Chapter 3: Query Model of Provenance 16

3.1 Content Based Query Formalism

Datum

Definition 3.1.1: A datum D is accessible 1, if there exists a function set F , such that

for any sub-datum d ∈ D, there exists t ∈ F ∗ 2, t(D) = d. F is called an access set of D,

and t is called an access sequence of d.

Generally speaking, a datum can be retrieved either by its “name”, or, if data are ordered,

by its “position”. Let us denote the universal datum set as D, and define two basic

functions for accessing a given datum.

⊙ : D × NAME → D Access By Name

@ : D × INTEGER → D Access By Position

For example, let d be a static entity record as shown below:

d⊙annotation⊙name@1 is an access sequence to retrieve the first name of the seller.

Note the access sequence type that consists of ⊙ and @ is used in our content based model,

as a major way of accessing a given datum. So {⊙, @} is called the general access set.

Definition 3.1.2: Let d1 and d2 be two accessible data, with access set F1, F2 respec-

tively. The combination of d1 and d2, denoted as d1 ⊕ d2, is an accessible datum with

access set of F1 ∪ F2 ∪ {@}, and (d1 ⊕ d2)@1 = d1, (d1 ⊕ d2)@2 = d2.
3

1Atomic datum (i.e., the one without structure) like number, string, ∅, is accessible by definition.
2F ∗ is defined as follows: Let F ′={f(d) : v1 = c1, · · · , vn = cn|f(d, v1, · · · , vn) ∈ F , ci is constant,

1 ≤ i ≤ n}, F ∗ = F ′ ∪ F ′F ′ ∪ F ′F ′F ′ ∪ · · · .
3Specifically, if d1 is a special symbol ǫ, define d1 ⊕ d2 = d2.
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Definition 3.1.3: Let P = {⊙, @,⊕}, P ∗ is called the general projection set. Let d be a

datum, and p ∈ P ∗. The projection p of d is defined as π(d, p) = p(d).

Definition 3.1.4: An image of datum is i : D → D. Two special images: An assertion

of datum is a : D → {⊤,⊥}. A valuation of datum is v : D → ORD4.

Intuitively, an image maps a datum into another structure, e.g., atomic number, string,

etc. An assertion checks whether a datum satisfies some condition. Here are two examples:

i(d): if d is not static entity record, produces ∅; else if d⊙ entity-type=Seller, produces

(d ⊙ record-id,S); else produces (d ⊙ record-id,O);

a(d): if d is not static entity record, produces ⊥; else if d ⊙ snapshot-time is before

01-01-08 produces ⊤; else produces ⊥;

Store of Data

Definition 3.1.5: A store of data is defined as follows:

• ∅ is a store.

• If S is a store, d is an accessible datum, d ⊕ S is a store.

Common Operations of Store

I. AGGREGATION

Definition 3.1.6: The general aggregation operation is Σ(S, s, i, +). S is a store, s is a

datum, i : D → D is an image of datum, + : D × D → D is called an adder.

Σ(S, s, i, +) =











s if S = ∅

i(S@1) + Σ(S@2, s, i,+) otherwise

4ORD is a completely ordered set, e.g., the set of real number. So ≤,≥,=, etc. are defined.
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What follow are a few special aggregations:

Definition 3.1.7: The selection of a store S with assertion a, is defined as σ(S, a)=Σ(S, ∅, a′,⊕).

a′(d) =











d if a(d) = ⊤

ǫ otherwise

Definition 3.1.8: The projection of a store S with an access sequence p, is defined as

π(S, p) = Σ(S, ∅, p,⊕).

Definition 3.1.9: The ∃-assertion of a store S with an assertion a, is defined as

∃(S, a) = Σ(S,⊥, a,∨).

The ∀-assertion of a store S with an assertion a, is defined as

∀(S, a) = Σ(S,⊤, a,∧).

The count-assertion of a store S with an assertion a, is defined as

count-assertion(S, a) = Σ(S, 0, a′, arithmetic-plus). a′(d) =











1 if a(d) = ⊤

0 otherwise

The ∈ -assertion of a datum s and store S, is defined as

∈ -assertion(s, S) = ∃(S, a) a(d) : d = s.

The difference of store S1 and S2 is defined as

⊖(S1, S2) = σ(S1, a). a(d) = ¬ ∈ -assertion(d, S2).
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The intersection of store S1 and S2 is defined as

∩(S1, S2) = σ(S1, a). a(d) =∈ -assertion(d, S2).

Definition 3.1.10: The maximum of a store S with a valuation v, is defined as

maximum(S, v) = Σ(S,−∞, v, max5).

II. COMPOSITION

Definition 3.1.11: The ⊕-composition of Store S1 and S2 is defined as

⊕-composition(S1, S2) =











S1 if S2 = ∅

⊕-composition(S2@1⊕ S1, S2@2) otherwise

Definition 3.1.12: The ⊗-composition of Store S1 and S2 is defined as

⊗-composition(S1, S2)

=











∅ if S1 or S2 = ∅

⊕-composition(Σ(S2, ∅, S1@1⊕ ,⊕),⊗-composition(S1@2, S2)) otherwise

3.2 Provenance Entity Store

Recall from chapter 2, in our semantic model, a provenance entity is either a static

entity record (Definition 2.3) or an activity record (Definition 2.4.2). A provenance entity

is accessible. Since there are two types of provenance entity, we can define, in our query

model, a provenance entity as follows:

Definition 3.2.1: A provenance entity is (type, entity). type∈ {S,A}6. If type=S, entity

is a static entity record; If type=A, entity is an activity record.

5Since the range of v is a completely ordered set, max is defined.
6S, A are character constants.
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Definition 3.2.2: A provenance entity store is a store of provenance entities.

Here is an example of provenance entity store:

Example: Operators of Provenance Entity Store

The complete expressive power of content based query is characterized in section 3.1.

Based on the query model in section 3.1, as an example, we point out several manipulat-

ing operators of provenance entity store. These operators are only syntactic sugar of

the general query operations in section 3.1. They are not intended to be exhaustive.

Operator 3.2.1 (filtering by type): application of σ(S,a)

The filtering-by-type operator takes a provenance entity store and a type as input, and

produces a provenance entity store with all and only provenance entities of the type.

σtype(S, t) = σ(S, 7 ⊙ type = t)

For example, we can use this operator to retrieve all activity records in a provenance en-

tity store. The next two operators are used for interfacing with the structure based query

model.

7Underscore “ ” is used as a place holder for the assertion variable.



21 3.3 Provenance Relationship Store

Operator 3.2.2 (filtering by record-id): application of π(σ(⊗-composition(S1,S2),a),p)

The filtering-by-record-id operator takes a provenance entity store and a store of record-

ids as input, and produces a provenance entity store with all and only provenance entities

whose record-ids are in the record-id store. Let us denote filtering-by-record-id as σrid.

σrid(S, R) = π(σ(⊗-composition(S, R), a), @1)8

a(d) : d@1⊙ entity ⊙ record-id = d@2.

Operator 3.2.3 (projecting of record-id): application of π(S,p)

The projecting-record-id operator takes a provenance entity store as input, and produces

a store of record-ids of all the provenance entities in the store. Let us denote projecting-

record-id as πrid.

πrid(S) = π(S,⊙entity ⊙ record-id).

3.3 Provenance Relationship Store

Recall from chapter 2, in our semantic model, a provenance relationship is a relation-

ship between two provenance entities (Definition 2.5.1), and it can be represented as:

(causal-entity, consequential-entity, role, annotation, relationship-id).

Since provenance entities are stored in a provenance entity store, references (i.e. record-

ids) to provenance entities, instead of the entities themselves, are kept in a provenance

relationship. In our query model, a provenance relationship is defined as follows:

Definition 3.3.1: A provenance relationship is

(from, to, role, annotation, relationship-id).

This definition is the same as Definition 2.5.1 except that from is the record-id of the

8It can also be defined as σrid(S, R) = σ(S,∈ -assertion( ⊙ entity ⊙ record-id, R))
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causal-entity, and to is the record-id of the consequential-entity. A provenance relation-

ship is accessible.

Definition 3.3.2: A provenance relationship store is a store of provenance relationships.

Here is an example of provenance relationship store:

Operators of Provenance Relationship Store

The operators of provenance relationship store are similar to those of provenance entity

store. Here we point out two syntactic sugar operators for interfacing the provenance

relationship store with the structure based query model.

Operator 3.3.1 (filtering by relationship-id):

The filtering-by-relationship-id operator takes a provenance relationship store and a store

of relationship-ids as input, and produces a provenance relationship store with all and

only provenance relationships whose relationship-ids are in the relationship-id store.

σrel-id(S, R) = σ(S,∈ -assertion( ⊙ relationship-id, R))

Operator 3.3.2 (projecting of relationship-id):

The projecting-relationship-id operator takes a provenance relationship store as input, and

produces a store of relationship-ids of all the provenance relationships in the store.

πrel-id(S) = π(S,⊙relationship-id)
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3.4 Content Based Query Model

Definition 3.4: The concepts of accessible datum, data store, provenance entity store,

provenance relationship store, and other assisting concepts together with the defined op-

erations constitute the content based query model of provenance.

Compared with ordinary record data, one distinctive aspect of provenance data, besides

its inherently complex content structure, resides in its implication of complex relationship

structure. For ordinary record data, the main goal of query design is being able to retrieve

the content of data (content-oriented). However, for provenance data, it is also important

to understand the underlying complex relationships (structure-oriented). Because of that,

we divide the query model of provenance into two sub-models: one for complex content

based query and one for structure based query. A provenance query seamlessly integrates

these two sub-models.

Next, we introduce the structure based model of query.

3.5 Structure Based Query Model

Definition 3.5.1: A structure graph of provenance is

(N, E, f), f : E → N × N9

Informally, N ⊆ NSpace, is a set of record-ids of provenance entities. E ⊆ NSpace, is

a set of relationship-ids of provenance relationships. f is a function that specifies the

causal-entity and consequential-entity of a relationship.

Notation: Let S = (N, E, f) be a structure graph. Define

S ⊙ N = N, S ⊙ E = E S ⊙ f = f

9f is a set of ordered triples. ∀t = (e, n1, n2) ∈ f , define t@1 = e, t@2 = n1, t@3 = n2.
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Definition 3.5.2: The general predicate of structure graph is defined as follows: Let S

be a structure graph.

G(e, n1, n2, S) =











⊤ if ∃e, n1, n2 ∈ S⊙f

⊥ otherwise

The general predicate is not very convenient in expressing structure graph properties. We

can define more intuitive forms as follows.

Definition 3.5.3: The primitive function set of structure graph is

{from, to, from−1, to−1, next, last}10.

Let S be a structure graph.

from(e, S11) = {t@2 | ∃t ∈ S ⊙ f , t@1 = e}

to(e, S) = {t@3| ∃t ∈ S ⊙ f , t@1 = e}

from−1(n, S) = {e | ∃e ∈ S⊙E, from(e, S) = n}

to−1(n, S) = {e | ∃e ∈ S⊙E, to(e, S) = n}

next(n, S) = {t@3 | ∃e ∈ S⊙E, ∃t ∈ S⊙f , t@2 = n}

last(n, S) = {t@2 | ∃e ∈ S⊙E, ∃t ∈ S⊙f , t@3 = n}

Intuitively, given an edge e, from (to) retrieves the start (end) node of e. Given a node n,

from−1 (to−1) retrieves the edges that start (end) at n; next (last) retrieves the children

(parents) of n. For example, to express the fact that there is a length-two path from node

10S⊙f is a 3-dimensional relation. It is decomposed into three 2-dimensional relations. Each relation is
represented by two functions.

11When the context is clear, S can be omitted.
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a to node b, in the general predicate form, it is

∃e1, e2, c(G(e1, a, c) ∧ G(e2, c, b)),

in the primitive function set form, it is

∃c(a ∈ last(c) ∧ c ∈ last(b)).

Definition 3.5.4: The general selection operation of structure graph is defined as follows:

Let S = (N, E, f), fn : N → {⊤,⊥}, fe : E → {⊤,⊥}.

σg(S, fn, fe) = S′ = (N ′, E′, f ′)

N ′ = N |fn

12, E′ = E|fe
∩ {t@1|∃t ∈ S⊙f , t@2, t@3 ∈ N ′}, f ′ = f |E′ .

S′ is a structure graph. We can define a few operators using the general selection opera-

tion. For example:

Example 1

Operator 3.5.1 (filtering by record-id): application of σg(S, fn, fe)

The filtering-by-record-id operator takes a structure graph (N, E, f) and a set N ′ of record-

ids as input, and produces a structure graph with N ∩ N ′ as the set of record-ids, and

{e | e ∈ E, and f(e) = (a, b), and a, b ∈ N ∩ N ′} as the set of relationship-ids.

σop3.5.1(S, N ′) = σg(S, ∈ N ′, → ⊤)

Example 2

Operator 3.5.2 (filtering by relationship-id): application of σg(S, fn, fe)

The filtering-by-relationship-id operator takes a structure graph (N, E, f) and a set E′

of relationship-ids as input, and produces a structure graph with E ∩ E′ as the set of

12N |fn
= {a|a ∈ N, fn(a) = ⊤}
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relationship-ids and {n | ∃e ∈ E ∩E′, and f(e) = (n, ∗) or (∗, n)} as the set of record-ids.

σop3.5.2(S, E′) = σg(S, (∃e ∈ E′ ∧ e ∈ (from−1( ) ∪ to−1( ))), ∈ E′)

Example 3

Retrieving nodes within 2 hops starting from nodes in N ′: application of σg(S, fn, fe)

σg(S, fn, → ⊤)

fn : ∃a, b(a ∈ N ′ ∧ ( ∈ next(a) ∨ (b ∈ next(a) ∧ ∈ next(b))))

FOLTC VS. Structure Graph Operations

Because in each of the above examples, fn and fe are expressible in first order logic, it

suffices to express the queries in the relational algebra. However, the expressiveness of first

order logic is limited. For example, it cannot express the fact “node b is reachable from

node a”. First order logic with transitive closure (FOLTC) can express this connectivity

fact. However, it still cannot express the fact “there exists a set E, such that p is a shortest

path from a to b, and all the edges of p are in E”.

Generally speaking, FOLTC, as a query language, has the following limitations:

1. In real life provenance application, fn and fe may be very complex. Thus, it is

impossible or counterintuitive to express the query in FOLTC.

2. The evaluation of FOLTC has been an issue. Users have no access to optimization,

and are unable to take advantage of large set of efficient graph algorithms, known

domain knowledge, as well as suitable storage structure.

The advantage of structure graph operations over FOLTC includes:

1. It offers a higher, and more intuitive level of structure query constructs. “Structure

Graph” becomes the first class member of query. A structure graph operator can be

as complex as necessary, not limited by the expressiveness of FOLTC.
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2. Users can construct a large pool of structure graph operators directly from exist-

ing graph algorithms. The algebraic query architecture makes the introduction of

new operators easy, and the integration of structure graph operators to non struc-

ture based operators seamless. Users can provide different implementations for an

operator, and have full control over the underlying storage structure.

3. The general selection operation σg(S, fn, fe), as a special structure graph operation,

still contains the query power and elegancy of FOLTC. It can wrap and bring FOLTC

into the algebraic query architecture.

We have identified a bunch of structure graph operators that we think are important in

supporting the structure based query of provenance. However, this family of operators are

not intended to be complete.

STRUCTURE BASED QUERY OPERATOR FAMILY

CLASS I: SELECTION

Operators belong to this class filter a structure graph according to some criteria. The

general selection operation σg(S, fn, fe) provides the formalism for this class of operators.

Simple examples include Operator 3.5.1, Operator 3.5.2. Other examples are:

Operator 3.5.3 (descendant)

The descendant operator takes a structure graph (N, E, f) and a set N ′ of record-ids as

input, and produces a structure graph with (N ∩N ′)∪{n | n ∈ N, ∃s ∈ N ∩N ′, and there

is a path from s to n} as the set of record-ids, and {e | e ∈ E, ∃s ∈ N ∩ N ′ and e is on a

path starting from s} as the set of relationship-ids.

Operator 3.5.4 (ancestor)

The ancestor operator takes a structure graph (N, E, f) and a set N ′ of record-ids as

input, and produces a structure graph with (N ∩N ′)∪{n | n ∈ N, ∃d ∈ N ∩N ′, and there
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is a path from n to d} as the set of record-ids, and {e | e ∈ E, ∃d ∈ N ∩ N ′ and e is on a

path ending at d} as the set of relationship-ids.

Operator 3.5.5 (in-betweener)

The in-betweener operator takes a structure graph (N, E, f) and a set N ′ of record-

ids as input, and produces a structure graph with {n | ∃a, b ∈ N ∩ N ′, n ∈

N is on a path from a to b}∪(N ∩N ′) as the set of record-ids, and {e | ∃a, b ∈ N ∩N ′, e ∈

E is on a path from a to b} as the set of relationship-ids.

A Pattern Matching Operator: A slightly more complex example of selection is filter-

ing a structure graph according to a pattern.

Definition 3.5.5: A labeling function is l : NSpace → NSpace. Given a simple path p =

(v1, e1, v2, e2, · · · , en−1, vn), the label of p under l, denoted as l∗(p), is l(v1)l(v2) · · · l(vn) ∈

NSpace∗. A path pattern is a regular expression over the alphabet of NSpace.

Operator 3.5.6 (path matching)

The path-matching operator takes a structure graph S, a labeling function l and a path

pattern P as input, and produces a structure graph S′.

Let E′={e | ∃p, p is a path, l∗(p) ∈ L(P ), and e is an edge on p}.

S′ = σop3.5.2(S, E′)

Figure 3.1 is an example of path pattern matching. The pattern is SX∗CX∗D.
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Figure 3.1: Path Pattern Matching

CLASS II: COMPOSITION

Operator 3.5.7 (union)

The union of two structure graphs S = (N, E, f) and S′ = (N ′, E′, f ′) is

S ∪s S′ = (N ∪ N ′, E ∪ E′, f ∪ f ′)

Operator 3.5.8 (intersection)

The intersection of two structure graphs (N1, E1, f1) and (N2, E2, f2) is

S ∩s S′ = (N, E, f)

N = N1 ∩ N2, f = {t | t ∈ f1, t@1 ∈ E2, t@2, t@3 ∈ N2}, E = dom(f).

CLASS III: ABSTRACTION

The abstraction of a structure graph is a transformation of the original structure graph

into another structure graph which is expected to be conceptually more comprehensible

and revealing than the original one.



Chapter 3: Query Model of Provenance 30

Operator 3.5.9 (abstracting by record-id)

The abstracting-by-record-id operator takes a structure graph (N, E, f) and a set N ′ of

record-ids as input, and produces a structure graph with N ∩ N ′ as the set of record-ids,

and the set of relationship-ids defined as follows: Let C0={(a, b, 0) | a, b ∈ N ∩N ′, ∃e ∈ E,

f(e) = (a, b)}, C1={(a, b, 1) | a, b ∈ N ∩ N ′, there exists a path, with length larger than

1, from a to b, and no intermediate node on the path is in N ∩ N ′}, C = C0 ∪ C1. For

every (a, b, c) ∈ C, if c = 0, then for any e ∈ E with f(e) = (a, b), include e in the set of

relationship-ids ; else if c = 1, generate a new unique relationship-id for (a, b) and include

it in the set of relationship-ids.

Figure 3.2: Reducing A Structure Graph By record-id

Figure 3.2 contrasts three aforementioned operators, which reduce the same structure

graph in different ways13. As an example of application, the abstracting-by-record-id op-

erator can be used to make an “activity” view 14 of the provenance structure.

CLASS IV: NAVIGATION

The navigation of structure graph provides a set of interactive operations for users to nav-

igate the structure graph step by step. The set of navigational operators is corresponding

to the primitive function set (Definition 3.5.3).

13{R1, R3} is the target record-id set.
14i.e. Skip all the “static entities”, while still maintaining the connectivity
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CLASS V: METRICS AND PROPERTIES

Based on the concept of structure graph, it is also possible to define ad hoc operators

that fit particular needs for analysis of provenance structure. For example, a) operator

that returns “shortest path” between two provenance entities. b) operator that returns

the provenance entities that have “out-degree” larger than a number.

Definition 3.5.6: The concept of structure graph and its relevant query operators con-

stitute the structure based query model of provenance.

3.6 Combining Two Sub-models of Query

Figure 3.3 roughly illustrates how the content based model and the structure based model

fit together to carry out provenance query.

Figure 3.3: Query Model of Provenance

A Fictitious Example

We conclude this chapter with an illustrative scenario of food safety tracking. In today’s

globalized economy, the production and consumption of goods are often distributed at

different places. For example, a manufacturer may use parts and material from different

countries, and the final products are shipped around the globe. In this case, it is helpful

to keep track of the provenance of goods for quality assurance, dispute settlement, etc.

Figure 3.4 shows an assumptive workflow of powdered milk production and consumption.
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Powdered milk is produced in country Z, and is exported to country X and country Y.

Some confectionary companies in country X use imported powdered milk from country Z

in their production of chocolate candy. In this scenario, we don’t consider how data is

collected, but focus on the intuition of how provenance queries are used.

Figure 3.4: Powdered Milk Production And Consumption

Q1: Imagine one day, a brand of powdered milk produced in country Z is found contami-

nated. What brands of chocolate candy are affected in country X? How much is the total

worth of the affected products?

S1: a) Find the problematic batch of powdered milk by content based query (by “brand

name”, “address” and “production time”). b) Get the descendants of the problematic

batch by structure based query (the descendant operator). c) Conduct content based

query on the descendants (e.g., “type”=“chocolate candy”, “address”=“country X”) to

get affected brands of chocolate candy in country X. d) Use aggregation to calculate the

total worth.

Q2: How was the problematic batch of powdered milk produced, transported and pro-

cessed to make an affected brand of chocolate candy? Was the powdered milk inspected

both before and after exportation?
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S2: a) Find the problematic batch of powdered milk and the affected brand of chocolate

candy by content based queries. b) Relate the problematic batch of powdered milk and the

affected brand of chocolate candy by using the in-betweener operator. c) In the structure

graph obtained from the previous step, use the path matching operator to check whether

there exists a path matching pattern (inspection)X∗(exportation)X∗(inspection).

Q3: There are two separate brands of chocolate candy that have received complaints. Do

they share some kind of similarity in their production processes?

S3: a) Find these two brands by content based queries. b) Find the ancestors of each

brand separately (the ancestor operator). c) Compare the results obtained from the pre-

vious step by, e.g., intersection of structure graphs.
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Implementation

Dreams pass into the reality of action. From the actions stems the dream again; and

this interdependence produces the highest form of living.

Anais Nin

4.1 Framework of Implementation

The implementation of Butterfly is still in the initial stage and is not the focus of this

thesis. Figure 4.1 briefly shows the architecture of Butterfly.

Figure 4.1: Butterfly Architectural Stack

34
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We use SECONDO as the development platform for our provenance model. SECONDO

[11] is a generic DBMS developing environment for implementing and experimenting a

wide range of data models and query languages. SECONDO uses BerkeleyDB as the

storage engine. The formal basis of SECONDO is second-order signature (SOS) [16].

SOS uses two coupled signatures to describe a data model and an algebra over that data

model. The first signature declares the types and type constructors. The second signature

specifies available query operations over the types or terms of type constructors in the first

signature. The following is an example of first signature and second signature.

FIRST SIGNATURE

KINDS

TYPE CONSTRUCTORS

→ ProvEnt StaticEntityRecord, ActivityRecord

→ ProvRel ProvRelationship

→ ID Id

→ Val Int, Real, String, Bool

→ PathPattern Pat

Any → Set Set

Any → Store Store

→ StructGraph Simple, Clustered, Topological

SECOND SIGNATURE

QUERY OPERATORS

Store(Any) → Set(Any) store to set #

Set(Any) → Store(Any) set to store #

Store(ProvEnt) × String → Store(ProvEnt) type #

Store(ProvEnt) × (ProvEnt → Bool) → Store(ProvEnt) filter cond # [ ]

Store(ProvEnt) × (ProvEnt → Val) × (Val × Val → Val) → Val

agg # [ ] [ ]

Store(ProvEnt) × Store(ProvEnt) → Store(ProvEnt) union, minus #

Store(ProvEnt) → Store(ID) id #
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Store(ProvEnt) × Store(ID) → Store(ProvEnt) filter id #

StructGraph → Set(ID) record id, relation id #

StructGraph × StructGraph → StructGraph union, intersection, minus #

StructGraph × ID → Set(ID) in edges, out edges #

StructGraph × ID → ID start node, end node #

StructGraph × (ID → ID) × PathPattern → StructGraph path pat # [ ]

StructGraph × Set(ID) → StructGraph

in between, abstract id, filter id, ancestor, descendant #

To implement the provenance algebra module, we need to provide implementation to both

type constructors and query operators, and then register them to the SECONDO system

catalogue. A type constructor is used to validate whether a piece of data is compatible

with the specified type. Query operators call type constructors to validate input data

types, then perform the actual execution of queries. Note in the first signature, Simple,

Clustered, Topological are three physical representations of structure graph. In the second

signature, syntax of query operators can also be specified. For example, “ # ” specifies

two operands are placed around the operator.

4.2 A Uniform Data Structure For Provenance

Provenance model elements vary in form. However, we can use nested list as a uniform

logical data structure for provenance. For example, what follows is a nested list represen-

tation of a static entity record:

( (entity-id (S02, empty) ) (entity-address (125 Mt. Rd) ) (entity-type (Seller) )

(annotation ( (name (Allen Snow) ) ) ) (snapshot-time (11-26-07) ) (record-id (R09) ) ).

The advantage of nested list over other data structures is that it is extensible and there

are already lots of handy, well-defined operations for nested list, for example, iteration,

filtering, and searching.
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4.3 Storage of Structure Graph

In this section, the storage issue of structure graph is discussed. Any file organization of

structure graph must support the following operations:

• Insertion of nodes and edges.

• Retrieval of nodes and edges.

• Finding the incoming edges and outgoing edges of a given node.

• Finding the starting node and ending node of a given edge.

A Simple File Structure

A simple file structure that meets the requirement is as follows:

Figure 4.2: A Simple File Structure

Node key or edge key is automatically generated when a node or an edge is inserted.

Figure 4.3 shows a structure graph stored using the simple file structure.

Figure 4.3: A Structure Graph Stored Using The Simple File Structure

It is easy to verify that the simple file structure satisfies our requirement.
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Reducing Disk I/Os By Clustering

Since the structure graph may become so large that in-memory storage and algorithms

can become infeasible, we need to use a more realistic I/O model which reflects the cost of

accessing the secondary storage. The problem of file organization is studied in [2,18,19,22].

In our scenario, a good file organization must be able to reduce disk I/Os when performing

structure graph traversal. Figure 4.4 shows an example. Layout 1, is a random placement

of edges in blocks. Layout 2, try to keep all out-going edges of a node in a block. To

retrieve the out-going edges of node a, layout 1 needs to read 3 blocks. With layout 2,

if there exists a node index that tells which blocks all out-going edges of a given node

reside, only one block needs to be read. Since retrieving out-going edges of a given node

is a frequent operation in structure graph traversal, layout 2 is better than layout 1.

Figure 4.4: Different Storage Layouts

The lesson learned is to keep relevant information of a node stored closely. Since when

performing graph traversal, both incoming and out-going edges of a given node are fre-

quently accessed, those information should be clustered together. This gives rise to an

alternative file structure discussed below.
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An Alternative File Structure

Figure 4.5 shows an alternative file structure. Each entry includes a node, its list of

incoming-edges, and list of outgoing-edges. In order to retrieve a node efficiently, a node

index is also needed.

Figure 4.5: An Alternative File Structure

So far, we have not considered the relative order of node entries. The intuition is to

store closely node entries that are likely accessed together. We can do this by using any

clustering algorithm (e.g. k-mean) to group the node entries. Node entries in the same

group are placed into the same block. The problem is how to define a distance function

(measure of relevancy) for node entries. One straightforward distance function is to assign

1 for two nodes that are neighbors, and 0 otherwise. Because it may not be feasible to

run the clustering algorithm on the complete set of node entries. The clustering process

needs to be incremental. The node entry placement problem has been studied in [2,18,19].

We have found our approach very similar to [19]. When a node entry is inserted, a block

which contains most of its “neighbors” is chosen. When a block turns full, a minimum

cut of the graph induced by the node entries within the block is computed. The two sets

created by the cut are put into separate blocks. [19] also uses the caching technique to

further reduce access to the secondary storage.
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Conclusion and Future Work

Our enemy is motivated by hatred and will not stop planning more plots against until they

are ultimately defeated. Today was an important and necessary victory in the war, but there

is a long road ahead. We must remain committed if we are to succeed and protect our liberty.

Timothy Murphy

5.1 Provenance Is Complex, We Provide The Solution

Provenance is useful, however it is complex. We find out its complexity reside mostly on

three aspects.

1. Provenance is pervasive phenomenon, but rather elusive and hard to be formalized.

It is difficult to get a realistic, but still manageable semantic model of provenance.

2. Elements of provenance have very complex content structures. “Flat” data model

with limited extensibility and flexibility cannot satisfy growing needs of applications.

3. Complex query on relationships among provenance elements is of great interest.

Some of such queries are counterintuitive or impossible to be formulated in n-th

order logic. The performance of query evaluation needs to be real life.

40
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To address these problems, we offer a general semantic model of provenance, which ab-

stracts an application system as a world composed of static and dynamic elements. Those

elements interact with each other within an environment, playing specific roles. There are

other provenance semantic models, which are either over-realistic towards exact knowledge

representation of provenance at the cost of increasing query complexity and overloading

the users, or over-simplied towards expressing simple written queries at the cost of losing

interesting provenance information. We strike a balance between these two extremes and

propose a semantic model that we think any provenance system should at least support.

We create a query model with clearer semantics by separating it into the content based

query model and the structure based query model. By introducing the concept of accessible

datum and store of data, we offer a flexible and extensible content model for provenance

elements. We also offer a set of general and expressive operations for the content model.

We use structure graph as the major formalism of structure based query. It employs an

algebraic query architecture and uses structure graph as the first class member of query

processing while still elegantly keeping the expressiveness of FOLTC in its formalism. The

advantage of using structure graph as the first class query element is that large set of ef-

ficient graph algorithms can be directly used, and the expressiveness of structure based

query is not limited by FOLTC. The algebraic approach makes it easy for users to choose

different implementations for a graph operation, and to seamlessly integrate graph oper-

ations with other query operations.

5.2 Comparison, Evaluation And Contribution

5.2.1 Comparison of Query Capacity With Existing Systems

We compare to a class of existing systems, instead of comparing to individual sys-

tems. Generally speaking, any provenance investigation can fall into two categories:

a) search/transform provenance data based on some specification on values. b) query
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the structure of provenance among the provenance data.

So what are missing from the existing provenance management systems, but get covered

in our approach, in terms of query capacity?

1. The first one is “generic annotation”, a truly extensible recording mechanism com-

pared with record (recall the definition of datum and store, in contrast to fixed

schemas used in most existing systems), and the ability to access and transform an-

notation in truly general way (recall all those general operations on store and datum,

and the ability to express arbitrary conditions by allowing general functions in the

formalism). The reason why most existing systems cannot support queries based

on complex qualification is that they don’t even store/structure such information in

a machine readable format (i.e., a class of systems do not support flexible content

structure), let along general operations on them.

2. The second one is the ability to express complex structural queries that are not

expressible (or hard to express) in first order logic with transitive closure (or more

generally speaking, in nth order logic). Basically, existing systems use some kind

of transitive closure to find descendants and ancestors. Removing all kinds of dis-

tracting covers of those systems, their query models are relational. For this rea-

son, they cannot even express the following three basic classes of structural queries.

a) Given two provenance entities, return the “shortest” path between these two en-

tities. b) Does a provenance graph satisfy a property? For example, does it contain

a subgraph that conforms to a pattern (e.g., in its simplest form, a path pattern)?

c) Abstraction of provenance graphs (e.g., the abstracting-by-record-id operator).

Relational systems can only do some simple navigational operations (possiblely in

a recursive way). In contrast, our approach keeps the elegancy of first order logic

with transitive closure by using the general selection operation (recall that this op-

eration is itself a structure graph operation, and it can wrap first order logic with

transitive closure into our structure-graph-operation approach) and is not limited by

the expressibility limitation of nth order logic by using structure graph operations
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(i.e., structure graph as first class query member). The following examples show the

differences:

Ex1 (can be answered by both approaches): Get the descendants of a provenance

entity. Even this query can be answered by both approaches (first order logic

with transitive closure or structure graph operation). Relational approach can

only return descendants themselves. How about their relative order on the

paths? By using structure graph operation (the descendant operator), a com-

plete structure graph is returned.

Ex2: Find the “shortest” path between two provenance entities. This query cannot

be formulated by the relational approach. In the algebraic structure graph

approach, simply call a “shortest path” operator that is well implemented based

on some graph traversal algorithm.

Ex3: Find a path that satisfies a pattern. This query cannot be expressed in rela-

tional query. In our approach, just call the path pattern operator.

Note that we still maintain the expressibility of existing systems in our approach by

using the general selection operation.

5.2.2 Comparison of Query Capacity With Existing Models

Although there may be different data models (e.g., relational, XML, graph) that can be

used to address different aspects of the provenance management problem separately, there

is no one solution that addresses them all under the application of provenance manage-

ment, and integrates seamlessly into a query architecture for provenance.

Even separately speaking,

Relational Plus User Defined Functions: It does not support complex structure. Besides,

it does not integrate well with other operations (models).

XML: One criterion that distinguishes a data model from another data model is the

operations that they can offer. We can say our structure graph is different (more
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powerful) from (than) XML, by pointing out a few operations that XML does not

currently support. What goes beyond is that graph is a more natural (or intuitive,

general) abstraction of relationships than XML. And XML mixes the content with

structure, so for relationship modeling, graph is better (clear and more expressive).

Graph: a) It does not support complex content management. b) Graph is a widely used

model for representing relationships. What distinguish a graph model from another

graph model can be thought of as the core sets of algebra (operations) they define.

Our algebra is provenance algebra (i.e. focuses on provenance operations). There

can be another graph algebra that focuses on query of graph property, for example,

retrieve a planar subgraph of the original graph. That is why we call our graph

“structure graph” instead of simply “graph” to stress the difference (connoted by the

operations) from other graph models. We believe our classification and abstraction

of graph operations for provenance is good and useful. c) For the graph operation

part, our approach does not miss the fine-grained expressibility of formal logic. As

far as we know, other query formalisms that use graph, either use a pure algebraic

approach (missing the expressibility of formal logic) or pure logical query approach

(being limited by the expressibility of nth order logic).

5.2.3 Main Contribution

Our approach well defines a minimum semantic model of provenance and a core set of

operations that any provenance management system must support, no matter whether

they adopt Butterfly. As far as we know, no formal work has been done in summarizing and

categorizing the operations that must be supported in provenance management systems.

We also suggest a query architecture (a content based sub-model and a structure based

sub-model; As far as we know, no existing system has separated the structure based query

from the content based query) which is not limited by the expressibility constraint of nth

order logic (but still contains it), and permits users the right to do their own optimization

(e.g., choose their own algorithms and storage schemes) and extend their systems (by

introducing ad-hoc operators into the query algebra).
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5.3 Future Work

Future work includes the following:

1. Implementation of content based operators and structure based operators.

2. Optimization of structure based operators and structure graph storage.

3. Provide language and graphical user interfaces to the query engine. Display query

result in a comprehensible way.

4. Demonstrate novel provenance-driven applications that are based on Butterfly.
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