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Abstract

This work aimed to model the costs of ammonia production comparing three hydrogen input
technologies (SMR, pyrolysis, & electrolysis) while accounting for irreducible uncertainties
within the calculation framework. This was accomplished through the use of Monte-Carlo
simulations both in @RISK and with proprietary Python scripts producing CNPV distributions
for each design under various carbon tax and discount rate conditions. It was determined that
pyrolysis was the most consistently cost effective hydrogen technology option in the production

of ammonia while incorporating uncertainties.
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Executive Summary

As global energy consumption increases rapidly, compounded by a growing concern with regard
to climate change, alternative energy vectors are highly desirable. Current technological
limitations in long term energy storage mean that renewable energy, such as wind, solar, and
hydroelectric power, are often impractical or prohibitively expensive [5]. Hydrogen is a
promising alternative energy source, producing no CO, at point of use via a hydrogen fuel cell.
Hydrogen requires extreme conditions to transport or store, which makes long term hydrogen
storage expensive and impractical. Ammonia is a potential solution to this, as it can be stored

under much more favorable conditions and could serve as a hydrogen transportation mechanism.

An alternative energy source such as ammonia requires economic favorability to see widespread
uptake. A discounted cash flow model is often used to evaluate the profitability of a project
through calculating its net present value (NPV). However, this analysis does not take into
account the many uncertain aspects of a system, resulting in the “flaw of averages;” the average
value of an economic parameter over time is not truly indicative of the variance and impact of
that parameter, leading to mischaracterization of the parameter, its trends, and its performance
[11]. To overcome the “flaw of averages,” Monte Carlo simulations (MCS) are used by creating
distribution profiles for uncertain inputs and sampling them numerous times (for the purposes of
this paper, 10,000) to create a distribution profile of the analyzed output metric(s). This equips
the decision maker with additional insight into cost probabilities, as well as the impact of each
uncertain parameter on the simulation outcome thus allowing a more informed decision about the

risks associated with the project.

For the purposes of this paper, a cost-net present value (CNPV) will be considered. This is
similar to an NPV, but removes the revenue stream to evaluate only the distribution of associated
project costs. This leaves the complex assessment of market value of the product to the decision
maker to determine profitability, and allows this paper to compare competing technology options

without directly assessing profitability.

The three technology options for ammonia production considered by this paper are steam

methane reforming (SMR), methane pyrolysis, and electrolysis. SMR is the catalytic separation
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of hydrocarbons (coal) in the presence of carbon capture and storage technology (CCS),
representing the most carbon-intensive process considered. Methane pyrolysis is a newer
technology which separates methane into hydrogen and solid carbon. While this does not
produce CO, on its own, this process is often powered by fossil fuel combustion and thus
produces CO,, but to a lesser degree than SMR. Electrolysis involves the decomposition of water
into hydrogen and oxygen. Notably this produces no CO,, but has considerably increased costs

of purchased equipment and energy than the other options considered.

This paper uses MCS to analyze a discounted cash flow model with uncertain inputs. A full
breakdown of the CNPV framework of equations can be found in section 2.1, and a table of all
uncertain inputs can be found in section 2.2. @RISK (a software by Palisade) was used as a

computational platform for performing MCS.

One of the other important endeavors of this work was to replicate the functionalities of the
@RISK software in a suite of proprietary Python scripts, written to conduct the MCS. Further
description of these efforts can be found in sections 1.3 and 2.3. The results of the CNPV
simulations conducted using our Python scripts showed appreciable congruence with the results
procured from @RISK within the same order of magnitude. We can say with a high degree of
certainty the Python scripts used to carry out the simulations presented in this report are
consistently and accurately replicating the @RISK software, and furthermore serve as proof of

concept for the implementation of MCS into higher level platforms.

Below are the pertinent CNPV results describing the base case where the discount rate (r) was
set to 0.16 and the Carbon Tax Multiplier (CTM) was set to 0. Given the significantly higher PE
and OC of electrolysis, its resultant CNPV distribution was of much greater magnitude than the
other technologies. While the PE and OC of SMR and pyrolysis were comparable in magnitude,
SMR remains slightly more cost effective in the absence of significant regulation or tax on

carbon emissions.
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Table i: Pertinent results for base case: r =0.16, CTM = 0

Electrolysis Pyrolysis SMR

PE ($) 1.96 x 10° 9.33x 10° 9.37x 10°

OC (9) 3.90 x 10° 8.09 x 10° 6.23 x 10°

Carbon Intensity (metric 0 1141.6 4246.75
tonne/day)

Ps 5.82 1.69 1.55
Pys 6.90 2.18 2.04
STDEV* 3.29 1.47 1.47
AVG 6.33 1.93 1.78

*All STDEYV are $x10° and all other costs are $x10"

As the CTM was increased over the course of multiple simulations, the impact of carbon
intensity was realized as the SMR distribution shifted far more than did pyrolysis. As CTM was
increased the shifted SMR distribution approached that of electrolysis, thus making electrolysis a
comparatively attractive hydrogen technology option for ammonia production in high carbon
regulation environments. Overall, pyrolysis showed to be the most consistently attractive
technology option in the widest variety of economic situations. Figure (i) depicts CTM

sensitivity analysis findings as described above.

A sensitivity analysis on the discount rate was performed, analyzing rates between 10% and
20%. This analysis shows that as the discount rate increases, the average CNPV, Ps, Py, and
standard deviation decrease for all technology options. As the associated costs are lower for a
higher discount rate, consideration of a higher discount rate could be seen as the risk-tolerant
choice. However, given that the standard deviation also decreases as discount rate increases, a
lower discount rate could be seen as the risk-averse choice, as it narrows the possibilities of
CNPV outcomes. Ultimately, a decision maker must consider both of these aspects in defining

their risk tolerance with regard to discount rate.

A logical extension of this work is to evaluate revenue streams for the considered technologies in
the presence of uncertainty to generate NPV distribution profiles, which would give the decision
maker information about the profitability of the plant instead of purely comparative cost

evaluations.
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1: Introduction

1.1: Preliminaries

The world has undergone tremendous revolutions in technological advancement, urbanization,
and industrialization in the past few decades, while sustaining an ever growing population.
Central to this rapid development is the energy that powers our homes, businesses, and way of
life. Global energy consumption has increased by 46% in the last 20 years, with 80% of energy
being produced from oil, gas, and coal [1][2]. At the current rate of consumption, it is predicted
that all fossil fuels will be exhausted by the year 2090 [3]. Compounded with the growing
concerns over climate change and carbon emissions, development of alternative energy

production vectors has never been more pertinent.

The primary interest in fossil fuel alternatives is renewable energy, namely hydroelectric, wind,
and solar power. These production vectors provide purely renewable energy without the need for
consuming limited natural resources or producing carbon dioxide. However, they have some
limitations as a permanent replacement to fossil fuels. The primary issue faced by these
processes is their intermittency; energy production is limited to current conditions and is not
available to meet dynamic energy needs [4]. Compounding this issue, large scale energy storage
is currently too expensive and impractical to see widespread use [5]. This is what makes fossil
fuels so desirable; energy is physically stored as oil, gas, or coal that can be burned on demand to

meet consumption needs.

Another growing area of interest in the field of energy is hydrogen. From 2000 to 2018, global
demand for hydrogen increased by 46%, as shown in
Figure 1 [6]. Its primary use is as an energy storage
vector in the form of hydrogen fuel cells; hydrogen =«
gas reacts exothermically with oxygen to produce ~
water, making carbon-free energy at point of use. I I
Because of this property, it has been postulated that | I I
11

hydrogen can be used as a storage mechanism for

renewable energy to eliminate the intermittency

I T T T T T T 1
1975 1980 1985 1990 1995 2000 2005 2010 2015 2018e

problem completely carbon-free. However, energy Figure 1: Global hydrogen demand (6



losses in this process are presently too great for renewable energy storage through hydrogen to
see widespread use [7]. Hydrogen has applications beyond renewable energy storage - it can be
produced from coal and natural gas to centralize the carbon production where its impacts can be
mitigated through carbon capture and storage (CCS) systems. Refer to section 1.4 for detailed
descriptions of these hydrogen production pathways. Hydrogen-based energy is a promising

transitional pathway from fossil fuels to renewable energy.

Despite its potential, hydrogen has some logistical problems as a widespread energy source.
Hydrogen is a highly volatile and flammable gas that requires extreme conditions to transport
and store. Gaseous hydrogen storage requires vessels up to 700 bar, while liquid hydrogen
storage requires cryogenic conditions of -253 °C [8]. The energy required to maintain these
conditions makes hydrogen storage impractical in the long term. One solution to this is to use
ammonia as a hydrogen carrier. Ammonia is gaseous at room temperature, but only requires
conditions of 10 bar or -33 °C to be liquefied. Additionally, ammonia has a higher volumetric
energy density at 14 MJ/L, compared to 10 MJ/L and 6 MJ/L for liquefied and gaseous hydrogen
respectively [8]. Ammonia can be combusted directly for fuel, or hydrogen can be re-evolved
from it, but these processes both induce an energy loss. This energy loss must be weighed against

the high storage and transport costs of hydrogen. Ammonia has added industrial use aside from

Other
Explosives 5%
5%

Direct Application
Fibres 27%

Ammonium Sulfate
3%

Mixed
8%

Ammonium
Hydrogen
Phosphate

9%

Ammonium Nitrate
19%

Urea

14% Fertilisers
80%

Figure 2: Industrial uses of ammonia [10]

the energy sector. Ammonia is used in
explosives, refrigeration, textiles, plastics,
and commercial cleaners, with 150 million
metric tons being produced worldwide in
2022 [9]. Its primary industrial use is in
fertilizers, accounting for 80% of global
ammonia consumption, as shown in Figure 2
[10]. Ammonia is a multi-faceted product
that shows promise as a hydrogen-carrier for
energy production as well as its industrial

applications.



1.2: Pertinent Economic Modelling Techniques

In order for an energy production vector such as ammonia to see widespread uptake, it must have
economic favorability over its competitors. As such, a standardized model for comparing and
quantifying profitability is needed. The commonly used model for this is discounted cash flow
analysis. This method incorporates the time value of money with a discount rate to generate a net
present value (NPV), or the sum of the discounted difference between cash flows in and out over
the lifetime of the plant. For a detailed description of the framework of equations used in this
analysis, see section 2.1. Discounted cash flow analysis is extremely popular for its simplicity

which allows it to be easily modeled in any computational platform such as Excel.

While discounted cash flow analysis is a widely accepted, simple method for comparing and
evaluating economic performance, it has many limitations in the assumptions that must be made
to arrive at an NPV. Many aspects of the plant are uncertain in nature; from the market dependent
cost of raw material, selling price of product, labor costs, tax rates, and many more, the actual
NPV of the plant can vary drastically if these potential variances are not accounted for. From this
stems the “flaw of averages” - the idea that the average value of an economic parameter over
time is not truly indicative of the variance and impact of that parameter. This in turn may lead to
mischaracterization of the parameter, its trends, and its performance [11]. Discounted cash flow
analysis may find that the average NPV of a project is positive, but this is far from a guarantee of
profit. The potential NPVs of the project could extend far into the negatives, meaning a
seemingly profitable project has a substantial chance to actually lose money over its lifetime.
The reverse can also be true; a seemingly mediocre project may have the potential for sizable

profit if its full range of potential NPV are considered.

To overcome the “flaw of averages,” uncertain model inputs must be accounted for in the
discounted cash flow analysis instead of single point estimates. This is accomplished by
representing the uncertain parameters of the model with distributions of potential values. These
distributions consider reasonable ranges of the values determined by experience in the field, or
by sampling historic data. The NPV can then be calculated iteratively, sampling random values
from the distributions of uncertain inputs. Once the desired number of iterations has been

reached (for the purposes of this paper, 10,000 iterations), an NPV distribution profile can be



generated that gives more insight into the likely possibilities for the NPV of the project. This
process is known as a Monte Carlo simulation (MCS). The NPV profile can be used to make
decisions about the project that appeal to the decision maker’s risk tolerance. For instance, a
risk-tolerant decision maker may value the top 5% of profit possible, or the 95th percentile of the
distribution (Ps), while a risk-averse decision maker may be more interested in the bottom 5% of
potential profit (Ps). Additionally, these simulations can be used to analyze the sources of
uncertainty in the model to locate potential cost saving measures or focus resources for
optimization. The use of Monte-Carlo simulations arms the decision makers with the
probabilistic data needed to make a well informed decision, effectively overcoming the “flaw of

averages.”

This paper will utilize a metric that is similar to NPV, but removes the revenue. This leaves a
distribution profile depicting only the associated costs of the project. This metric is referred to as
the cost-net present value (CNPV). This is given as a positive number, which notably reverses
the risk profile; the P5 is now the value at risk, depicting the lowest 5% of costs, and the Py; is the
value at opportunity, depicting the highest 5% of costs. When different production vectors have
equivalent production scales, revenue is the same, so CNPV is able to compare production
methods without directly analyzing profitability. Ammonia selling price fluctuates greatly

according to market conditions. The ammonia market has been particularly volatile in the last

Ammonia Price (5/metric tonne)

2014-12-27 2015-12-27 2016-12-26 2017-12-26 2018-12-26 2019-12-26 2020-12-25 2021-12-25
Date

Figure 3: Historic ammonia pricing [12]



few years, as shown in Figure 3. Ammonia price has shown a large increase in 2021, over

doubling its previous peak [12]. These volatile conditions mean that a simple historic sampling
of ammonia pricing is an incomplete metric for predicting future revenue. Predicting the market
is a complex task that is highly individualized to the risk preferences of the decision maker, and
is well beyond the scope of this paper. By presenting a CNPV, the decision maker is allowed to
incorporate their own market predictions to achieve a better reflection of the profitability of the

project.

1.3: Utilization of Python in Modern Data Analytics

While Excel remains a powerful and popular data analytics tool, it has its limitations in terms of
efficiency when carrying out complex calculations similar to the aforementioned economic
modeling techniques. The use of Python has become an immensely popular choice for
performing advanced computational tasks or manipulating large datasets when efficiency and
speed are of high importance[13]. Python has the added benefit of being significantly easier to
automate than Excel, as well as being easier to integrate into other software. The diverse set of
available modules, packages, and add-ons to the normal Python library make it an attractive
alternative for a breadth of applications where automation and speed are necessary. For instance,
there are modules for performing advanced statistical analyses on large datasets, graphing results
in numerous ways, and saving those results as various file types. This level of automation while
simultaneously performing advanced calculatory tasks would not be possible in Excel with the
same level of efficiency. Also notable is that Python syntax errors are significantly easier to
identify, interpret, and correct than they are in Excel, and in situations where security is of high

importance Python offers more protection against hacking than does Excel [13].

One of the goals of this project was to create a suite of Python scripts to replicate the
performance of @RISK by conducting MCS of the proposed process designs and graphically
representing our findings as cumulative distributions. These efforts would serve as proof of
concept for implementing MCS into higher level platforms with the goal of incorporating these
scripts as supplementaries into commonly used process flow diagram softwares such as Aspen in

future work.



1.4: Hydrogen Production Methods Incorporated into Ammonia Production

The following section will elaborate on the use of three different viable technology options in the
production of hydrogen which will serve as the inputs to the proposed ammonia synthesis design.
Descriptions of the functionality and governing chemical equations of each technology, along

with process diagrams will be provided.

1.4.1: Steam Methane Reforming (SMR)

Steam reforming of natural gasses accounts for approximately 98% of worldwide hydrogen
production, with reforming of methane specifically accounting for 48% [14][15]. Given the fact
that it is readily available at relatively low cost, Methane remains an economically attractive
hydrocarbon for use in these types of processes. Steam reforming produces significantly less CO,
per unit H, produced than other more hydrocarbon intensive gasification methods [14]. In
general, steam reforming to produce hydrogen involves the catalytic separation of hydrocarbons
at high temperatures (700-900 °F) in the presence of both steam and specifically a metallic
catalyst. This first catalytic splitting step results in a combination of carbon monoxide (CO) and
hydrogen known as Syngas along with CO, and other byproducts of smaller side reactions. The
reforming step enacts the general chemical equation described below:

CH + nH,0 - nCO + (n+ m/2)H,

The Syngas is then sent through a series of gas-shift reactions in which the CO reacts with the
steam present to produce CO, and H, as shown below.

co +H20 —>C02 + H2

After a series of subsequent separation and purification steps (usually including a Pressure Swing
Adsorption or PSA unit among others), the H, product is isolated with some of the product gas
being recycled back to fuel the reactors earlier in the process. CO,, CH,, and other

Non-Methane-Hydrocarbons are among the predominant emissions from SMR processes [14].

For the purposes of simulations in this report, the H, output from the SMR process would be the
hydrogen input to the Ammonia Synthesis Loop (ASL). An air separation unit (ASU) would be
used to isolate nitrogen gas from the air, and as mentioned, a PSA purifies and isolates the H,
and both are fed into the ASL. A full SMR to NH; process flow diagram (PFD) can be found in
Figure 4.
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Figure 4: Process flow diagram of SMR ammonia production process (adapted from [15][16])

1.4.2: Methane Pyrolysis

As discussed in the previous section, while SMR produces considerably less greenhouse gas
emissions than other gasification methods, it does still emit a considerable amount of CO, per
unit H, produced. Thus, it can be inferred that in an increasingly carbon constrained
environment, SMR could become considerably less cost efficient than other technologies.
Methane pyrolysis is an emerging technology involving the production of H, from methane
without directly producing CO,. The chemical equation describing this process is shown below.

CH4 —>C(S) + 2H2

It is often the case (and will be simulated as such in this report) that the pyrolysis process itself is
powered by fossil fuels which brings about an equivalent CO, emittance for the technology
option. However, that emittance is still significantly less than SMR and other gasification
methods making it more attractive and competitive in the presence of regulatory actions on

carbon release. Also worth noting is the solid carbon produced by this process can be sold in any



number of forms offering another potential stream of revenue for this technology option [17].
However, one of the important caveats with pyrolysis is the management of the solid carbon
produced, which if not correctly removed can more quickly degrade the catalyst(s) used and thus
the efficiency of the process. Thus, operating costs associated with pyrolysis can vary with

improperly handled carbon product.

Typically, pyrolysis works through the use of reactors containing molten metallic catalysts. This
report will simulate a process containing a molten Ni-Bi alloy catalyst as described in the paper
by Parkinson et al. [15], in which further description of the optimization process of reactor size
and conditions to maximize yield while minimizing costs can also be found. After the reactor, a
number of waste heat boilers, separation steps, and another PSA unit are used to isolate both the
solid carbon and the H, gas, which as before will become the input to an identical NH; synthesis

loop as previously described. A full pyrolysis PFD can be found in Figure 5.
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Figure 5: Process flow diagram of pyrolysis ammonia production process (adapted from [15][16])



1.4.3: Electrolysis

It is also worth investigating technology options in which no CO, is emitted at all in the
production of hydrogen. Electrolysis of water is one such method and its governing chemical
equation is shown below:

2H20 © 02 + 2H2

The notable tradeoff in the use of a technology option like this is that while the absence of
emitted CO, is attractive, the required equipment is much greater than for other technologies thus
increasing capital investment into the process to a much higher extent [18]. In general,
electrolysis involves the splitting of water into its components, oxygen and hydrogen when
electrical current is applied. Hydrogen yields are dependent on the strength of the applied
current, which creates another interesting tradeoff as higher current strengths bring lower capital
costs but higher operating costs and vice versa [15]. There are three prominent technology
options for electrolysis, however, this report will specifically simulate the use of a polymer
electrode membrane (PEM) electrolysis technique. Further information on the optimization of
the PEM electrolysis costs can be found in the paper by Parkinson et al. [15]. The electrolysis
process contains five key modules: water delivery systems, power electronics, electrolysis stacks,
and postprocessing of both oxygen and hydrogen. As previously described, the hydrogen output
from electrolysis becomes the input to the identical ammonia synthesis. A full electrolysis to

ammonia PFD can be found in Figure 6.

A few final notes on electrolysis technologies: the power input to the process can come from any
number of places, however this simulation will analyze electrolysis powered solely from
renewable energy resources (wind, solar etc.). This is done to ensure the electrolysis process is
truly carbon neutral, thus avoiding the impacts of carbon taxes or other regulatory measures. It is
sometimes the case that surplus power is created beyond what is necessary to supplement the
process or be held in the energy storage (if energy storage technologies are being implemented).
In these situations there would be the added revenue stream associated with selling excess power

back to the grid.
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Figure 6: Process flow diagram of electrolysis ammonia production process (adapted from [15][16])
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2: Methodology

The overall methodological approach to the Monte Carlo simulations performed in this paper is
depicted in Figure 7 below. Additionally, one of the goals of our work was to replicate the
performance of the MCS in Python in order to facilitate MCS in a higher level platform. This

section details the methodology to accomplish each of these objectives.

Identify a framework of calculations to ascertain FCI, TCI, and CNPV

3

Determine which inputs to the model will be uncertain

¥

Assign distributions of variance to uncertain inputs

¥

Sample random values from distributions and calculate CNPV 10,000
times while correctly resampling uncertain parameters through each
iteration of calculations

¥

Generate CNPV cumulative distributions

Figure 7: Procedural steps for implementation of Monte-Carlo Simulations

2.1: Cost Evaluation Framework

In order to analyze and compare the three ammonia production pathways considered, a sound
framework of equations was needed to calculate the CNPV for each method. This framework
was based upon discounted cash flow analysis. The basic model used here is dependent on many
factors which in this paper are represented as a distribution of values rather than a fixed point
using MCS. These parameters are further discussed and specified in section 2.2. The framework
of equations introduced here will be written for the calculation of CNPV, but the calculation of
NPV simply includes the addition of revenue where indicated in equation 10. CNPV is
calculated by subtracting the initial fixed capital investment (FCI) from the gross present value
(GPV), as shown in Equation 1 below:

CNPV = — (GPV — FCI) (1)
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The negative sign is introduced here to represent CNPV as a positive value, or a cost, rather than
a negative cash flow. Note that this would not be necessary for the calculation of NPV. The GPV
is a total of the discounted cash flows over the lifetime of the plant, discounted by the plant’s

nominal discount rate, as described by Equation 2:

n

GPV i 2
N El (141" 2)

where CF, is the cash flow out (net cash flow for NPV) at year ¢, which is contributed to by the
total product cost (TPC), depreciation, salvage value, working capital, and, in the case of NPV,
revenue. n is the total lifetime of the plant in years, which is 30 for the purposes of this paper. 7 is
the plant’s nominal discount rate, the factor used to devalue money over time according to the
time value of money. The nominal discount rate is determined by the project risks as well as the
overall influence of the economy. For the baseline case in this paper, the discount rate was set at
16%. However, a sensitivity analysis on the discount rate was performed in section 3.2 to

analyze its impact on the CNPV distribution profiles.

Total product cost is estimated as the sum of the production cost (PC) and general expenses
(GE). Each of these expenses are comprised of several smaller expenses, many of which are a
distribution of fractions of a set expense such as TCI. PC is the total of operating cost (OC), CO,
transport and storage costs (CTSC), carbon tax (CT), insurance (INS), patents and royalties (PR),
and plant overhead costs (POC). General expenses are the sum of administrative costs (AC),
marketing costs (MC), research and development costs (RDC), and financing interest costs
(FIC). The distributions used for each of these is shown in Table 1. The calculations for PC and

GE are described below in Equations 4, 5 and 6:

TPC = PC + GE (4)
PC = 0C + CTSC + CT + INS + PR + POC (5)
GE = AC + MC + RDC + FIC (6)

Product cost may include other expenses, such as the delivery cost of the product. In the case of
ammonia, transport does not require extreme pressure or refrigeration conditions (as is the case

with hydrogen), so this expense was assumed to be negligible.
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Depreciation of assets is also factored into the cash flow. Over the course of their lifetime, assets
lose value. In this case, the plant is assumed to have fully depreciated at the end of the recovery
period, 20 years, as is typical for a project such as this. The loss in value due to depreciation is
tax exempt, and thus serves as a tax shield (), calculated by Equation 7:

¥ = DR - FCI -8, (7)

where DR, is the depreciation in year ¢ according to standard convention used by the Internal
Revenue Service, FCI is fixed capital investment, and 0y is the sum of federal and state taxes.
The depreciation method used to determine DR, is the Modified Accelerated Cost Recovery

System (MACRS). The DR, terms are available from the IRS publication 946 [19]. This method
is used over a simpler method such as straight line depreciation as it leverages the time value of
money, depreciating assets more earlier in their lifetime when the value lost is worth more. 0 is
dependent on plant location, and will vary over time. As such, it is represented by a distribution

and can be found in Table 1.

The salvage value is the money recuperated through resale of the plant at the end of its lifetime.
This is dependant on the market and book value of the plant, as well as federal and state taxes, as
described below in Equation 8:

SV = MV — (MV = BV)O (8)

where SV is the salvage value of the plant, MV is the market value, BV is the book value, and 0,
is the sum of federal and state taxes as previously described. As the plant is assumed to be fully
depreciated at the end of the recovery period, the book value of the plant is zero at the end of the
plant’s lifetime. As such, the equation reduces as follows in Equation 9:

SV = MV(1 -8 fs) )

The cash flow incorporates the TPC, ¥,, and SV as well as revenue and federal and state taxes as

described in Equation 10:

(R, — TPC)(1 — 6;5) + W, t # 30
CF, =

(Re—TPC)(1—6) + W, +SV =30 (10)

where CF, is the cash flow in year # and R, is the revenue in year . For the calculation of CNPV,

R, 1s 0 for all years. For the calculation of NPV, revenue would be calculated using Equation 11:
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R =SP -CF - PS (11)
t t t

where SP, is the selling price of product in year ¢ in dollars per metric tonne, CF, is the capacity
factor in year ¢, and PS the production scale of the plant in metric tonnes per year. The capacity
factor is a metric that is often used in these types of economic analyses; it is a percent of the
maximum capacity of the plant at which the plant operates. This may be used to decrease
production when demand is lower, or to simulate lower production during plant start-up. Because
this paper analyzes CNPV, capacity factor is not applicable. The production scale is relevant to
this analysis, as although it does not contribute to revenue, it does have implications in carbon
production, equipment sizing, and raw material cost. The production scale for this analysis was

set to 3850 metric tonnes of ammonia per day.

The fixed capital investment (FCI) is comprised of direct and indirect costs. Direct cost (DC) is
the sum of purchased equipment (PE); installation; instrumentation & controls (I&C); piping
(PIP); electrical (ELEC); buildings, process, and auxiliary (BPA); service facilities and yard
improvements (SFYI); and land. Indirect cost (IC) is the sum of engineering and supervision
(E&S), legal expenses (LE), construction & contractor fee (CCF), and contingency (CONT).

These calculations are detailed below in Equations 12, 13, and 14:

FCI = DC + IC (12)
DC = PE + INST + I&C + PIP + ELEC + BPA + SFYI + LAND  (13)
IC = E&S + LE + CCF + CONT (14)

Purchase equipment excepted, all of these expenses are distributions of fractions multiplied by
either PE, DC, or FCI, as detailed in table 1. Notably, this creates the need for circular
references, as contributions to FCI are multiplied by FCI. This is handled natively in Excel, but
FCI can be solved for algebraically if circular calculations are not supported by the

computational platform.

Purchased equipment is the total of the bare module costs (as installation is accounted for by the
INST distribution) of the major equipment in the plant. The purchased equipment cost was
adapted from the hydrogen techno-economic analyses by Parkinson et al. and modified for the
production of ammonia using case studies from a report by the DOE [15][16]. The adaptation of

these costs required scaling for both inflation over time and production scale. Scaling for
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inflation was accomplished using the Chemical Engineering Plant Cost Index (CEPCI), a value
published by industry experts each year to represent how plant process and construction costs

vary over time [20]. The calculation is executed according to Equation 15 as follows:

CEPCI,
¢, = CEPCI ¢, (15)

where C, is the cost at the present year, C,is the cost at the original year, CEPCI, is the CEPCI at
the present year, and CEPCI, is the CEPCI at the original year. For the purposes of this paper, the

present year was taken to be 2021.

Additionally, the costs needed to be adjusted for the production scale of the plant. This is not as
simple as a linear scale, as the economies of scale dictate that as size increases, costs will
increase more slowly. The industry standard for compensation for production scale is the
six-tenths rule, as shown in Equation 16:

_ PS5 06
¢, = (PSO) - C, (16)

where C, is the cost at the present year, C, is the cost at the reference year, PS, is the desired
production scale, and PS, is the reference production scale. As previously mentioned, the

production scale for this paper is 3850 metric tonnes of ammonia per day.

The operating cost of the plant was taken to be the sum of raw material costs (RM), fixed
operating and manufacturing costs (FO&M), and variable operating and manufacturing costs
(VO&M). FO&M includes expenses such as operating labor, maintenance labor, administrative
costs, and property taxes. VO&M includes maintenance material costs (MM), water utility costs
(WUC), and recurring chemical costs for the consumed catalysts (CHEM). These calculations
are shown in Equations 17 and 18 below:
OC = RM + FO&C + VO&C (17)
Vo&C = MM + WUC + CHEM (18)

The FO&M and RM were adapted from the paper by Parkison et al., adjusted for inflation as
previously described. However, these costs do not benefit from economies of scale like

equipment costs do. As such, these costs were scaled linearly with production scale, rather than

15



using the six-tenths rule. MM is a fixed percent of FCI, and WUC and chemical costs were

adapted from the DOE report case studies on ammonia production [16].

Lastly, the the TCI is the sum of the FCI and working capital (WC), as described by Equation 19:

TClI = FCI + WC (19)
Working capital is an initial investment of raw material and supplies necessary to start running
the plant. It is assumed that the working capital is recovered at the end of the plant’s lifetime; for
example, the last purchase of raw material is not necessary, as current supplies will be used up
instead. This is why when calculating CNPV, FCI is subtracting instead of TCI; the cost is
recovered at the end of the plant’s lifetime. In this paper, working capital is a distribution of

fractions multiplied by TCI, as outlined in Table 1.

2.2: Use of @RISK for Monte-Carlo Simulations

The framework of equations described in section 2.1 allows for an estimation of CNPV for a set
of single-point estimations of parameters. As previously discussed, this type of analysis is often
susceptible to the “flaw of averages;” this type of model with average single-point inputs often

gives unsatisfactory or misleading results. To eliminate the

Unidorm Distributicn

“flaw of averages” and better represent the possible range of
inputs and outputs, Monte Carlo simulations are used with

uncertain model inputs represented as a distribution of

Rt Frohan ity

values. For the CNPV distributions, the primary benchmarks
calculated are the average CNPV, the 5th percentile, the 95th
percentile, and the standard deviation. The Ps represents the

lowest 5% of costs predicted by the model, representing the

risk-tolerant cost, or “value at opportunity.” The Py

\
represents the highest possible 5% of costs according to the /

model, representing the risk-averse cost, or “value at risk.” II
Note that these metrics are inverted from an NPV model. The .
standard deviation gives an indication of the breadth of the f

data, or how far the data strays from the mean. A large Figure 8: Uniform and triangular

L distribution profiles
standard deviation means that costs are less concentrated
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around the average CNPV and are more likely to be further from the average than for a
distribution with a smaller standard deviation. All of these metrics are important for the decision

maker to consider, and are lacking in the fixed-point estimation model.

There are two types of distributions used in the MCS in this paper: uniform and triangular, as
shown in Figure 8. Uniform distributions have an equal chance of choosing any point within its
bounds. These distributions only require two arguments to be fully defined: the two endpoints of
the distribution. This is the most commonly used distribution type in the model described in this
paper, and is used when there is no indication of bias towards the center or any specific point in
the distribution. Triangular distributions have a concentration towards the mode of the
distribution. Thus, points closer to the mode of the distribution are more likely to be sampled.
This distribution requires three arguments to be defined: the two endpoints and the mode. This
type of distribution is used when there is an indication that points closer to the mode of the

distribution are more likely.

@RISK (a software by Palisade) is a powerful tool for performing MCS. @RISK is an extension
of Excel, which allows for intuitive definitions of distributions and generation of distribution
profiles for outputs such as CNPV in a computational platform that many people are already
familiar with. @RISK was used in this report to set up the framework of equations, define
distributions, run MCS, and analyze results. The distribution profiles used in the framework of
equations are generally agreed upon by industry experts to accurately represent the range of
potential costs for each entry. All of the distributions used throughout the simulation are detailed

below in table 1.
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Table 1: Distribution profiles for uncertain model inputs [21]

Uncertainty Driver Symbol Dist. Type Minimum Mode Maximum | Based on
CO, Transport & Storage Cost ($/metric tonne) CTSC Triangular 9 10 11 -
CO, Tax Rate (year 1) ($/metric tonne) CT Triangular 27 30 33 -
Annual CO, Tax Growth Rate - Triangular 5.4% 6.0% 6.6% -
Combined Federal and State Taxes (8 Triangular 0.0% 6.4% 9.5% -
Ratio for Market Value of the plant after 30 years MV Uniform 13.5% 15% 16.5% FCI
Ratio for Installation INST Uniform 25.0% - 55.0% PE
Ratio for Instrumentation & Controls 1&C Uniform 8.0% - 50% PE
Ratio for Piping PIP Uniform 10.0% - 80.0% PE
Ratio for Electrical ELEC Uniform 10.0% - 40.0% PE
Ratio for Buildings, Process, and Auxiliary BPA Uniform 10.0% - 70.0% PE
Ratio for Service Facilities & Yard Improvements SFYI Uniform 40.0% - 100.0% PE
Ratio for Land LAND Uniform 4.0% - 8.0% PE
Ratio for Engineering & Supervision E&S Uniform 5.0% - 30.0% DC
Ratio for Legal Expenses LE Uniform 1.0% - 3.0% FCI
Ratio for Construction & Contractor’s Fee CCF Uniform 10.0% - 20.0% FCI
Ratio for Contingency CONT Uniform 5.0% - 15.0% FCI
Ratio for Insurance INS Uniform 0.4% - 1.0% FCI
Ratio for Working Capital WC Uniform 10.0% - 20.0% TCI
Ratio for Financing Interest Costs FIC Uniform 6.0% - 10.0% TCI
Ratio for Plant Overhead Costs POC Uniform 5.0% - 15.0% TPC
Ratio for Patents and Royalties PR Uniform 0.0% - 6.0% TPC
Ratio for Administrative Costs AC Uniform 2.0% - 5.0% TPC
Ratio for Marketing Costs MC Uniform 2.0% - 6.0% TPC
Ratio for Research and Development Costs RDC Fixed - 5.0% - TPC
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In the above table, please note the items related to CO, tax: the CO, tax rate in year one and the
annual growth rate. The carbon tax in this simulation was modeled as a distribution of initial tax
rates with a yearly compounding growth, which is also a distribution. This is of particular
relevance as a sensitivity analysis was performed on the carbon tax, which emphasized the
economic differences between the three ammonia production pathways. In performing the
sensitivity analysis, the carbon tax for each year was scaled up by a fixed multiple, and the

effects on the resultant distribution profiles are shown and analyzed.

2.3: Integration of Monte-Carlo Simulations into Python scripts

As previously described, one of the integral goals of this project was to replicate the
functionalities of @RISK in Python as proof of concept for implementing MCS into higher level
platforms with potential for future integration into other commonly used process modeling
softwares. Among the important considerations to note, the most impactful to MCS
implementation in Python were the following:

e As was the case in @RISK, calculations would need to be conducted iteratively to
generate a distribution of CNPV results.

e Python and Excel handle circular references differently. Variables in Python and their
values are parsed in the order they are assigned, and cannot be circularly defined in the
same way they can in Excel. @RISK allows for circular references if the program
settings are adjusted correctly, while Python will overwrite previous values resulting in
incorrect variable values.

e The @RISK program understands when and how to resample distributions for new
randomly assigned values throughout a simulation. In Python however, simply assigning
a distribution to a variable and recalling that variable multiple times throughout a script

does not produce a new randomly assigned value as would be expected.
The following section will describe how these and other intricate aspects of MCS

implementation in Python were addressed, and will highlight the pertinent modules and add-ons

that were amalgamated into our suite of scripts.
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Each of the proposed design processes had a separate script written to independently find CNPVs
for the given process. The structure of the Python files was the same for each process with
different variable values for things like purchased equipment, operating costs, and Hydrogen
production values found in literature and adapted for NH; production using DOE reports
[15][16]. As was the case in
@RISK, different effectuations
of carbon tax were also
considered as they were required
for the particular process design.
To ensure that parameters from
distributions  were  correctly
resampled throughout
simulations, all uncertain
variables were assigned by
calling separate functions which
referenced the corresponding

distribution. Assigning

distributions to variables directly

Figure 9: Excerpted DistFunctions file

in the simulation scripts would

not return new random values with each new reference to the variable. The resampling functions
were stored in a file called DistFunctions which was imported into each of the simulation files,
thus giving them access to the resampling capabilities. Distributions were created in
DistFunctions using the numpy and scipy.stats modules, with uniform and triangular being the

most commonly used. Figure 9 shows an excerpted version of the DistFunctions file.

The Python simulations were constructed similarly to how they were in @RISK, with direct
costs (DC) and FCI being calculated as a function of purchased equipment costs (PE) first. Given
the inability to circularly define variables in terms of their uncertain components, the equations
for DC and FCI were algebraically rearranged to remove the need for circular references. Figure
10 shows the equations for DC and PE as they were in the literature [21] (which can be found

more concisely in equations 13 and 14 above), and Figure 11 is excerpted code showing the
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rearrangement of these equations in terms of explicitly defined variables. Similar algebraic
rearrangements were done throughout the cost evaluation framework to remove circular
references and create an adapted set of equations Python could evaluate.

I. Direct costs
A Equip-
ment + installation + instrumentation + piping + electrical + insulation + painting
1. Purchased equipment
a. WGS reactor
b. HTS catalyst
c. Pd/Au alloy composite membrane
2. Installation (25-55% of purchased equipment)
3. Instrumentation and controls, installed (8-50% of purchased
equipment)
4, Piping, installed {10-80% of purchased equipment)
5. Electrical, installed ( 10-40% of purchased equipment)
B. Buildings, process and auxiliary (10-70% of purchased
equipment)
C. Service facilities and yard improvements (40-100% of
purchased equipment)
D. Land (4-8% of purchased equipment)
II. Indirect costs
A, Engineering and supervision (5-30% of direct cost)
B. Legal expenses [ 1-3% of fixed capital investment)
C. Construction expense and contractor's fee (10-20% of fixed
capital investment)
D. Contingency [5-15% of fixed capital investment)
III. Fixed capital investment (=] +11)
IV. Working capital (10-20% of V)
V. Total capital investment (=I11 + [V}

Figure 10: DC and PE from literature [21]

FN() + AUX_FN() + Facilit

+ Supervision_FN())) / (1 - (Legal_FN() + Constr ion_FN() + Contingency_FN()))

Figure 11: Excerpted code showing rearrangement of PE and DC equations to remove circular references

Discounted cash flow analysis over the 30 year plant lifetime was accomplished through the use
of for loops. TPC, and DCF was determined for each year of the plant’s lifetime. Where
applicable, carbon tax rates were incremented by the CO2_Tax_Growth() function at the end of
each iteration of the loop occuring after year one. The use of the DistFunctions file, as previously
discussed, ensures that uncertain parameters contributing to TPC were resampled correctly in
each year of the loop. In the 30th year, salvage value of the plant was included in the cash flow

analysis as was the case in @RISK. Given the desire for a CNPV distribution, no revenue was
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calculated or included in CF calculations. In compliance with the previously given definition of
NPV, FCI was subtracted from the cumulative 30 year GPV term, and was multiplied by (-1) to
get a CNPV for a given simulation.

With the ability to produce a single CNPV result for each of the three design options, the next
step was to iteratively run simulations and graph results as cumulative distributions. The three
independent files were subsequently imported into a MainSim file to streamline the simulation
process and allow all three to be run simultaneously. Another for loop was used to conduct
10,000 simulations for each process design and append the results to their respective CNPV lists.
Figure 12 is an import map of the Python files showing how they interact with and build off each

other to produce results.

Electrolysis
Simulation

Produces a single
CNPV result per

function call
MainSim
DistFunctions Pyrolysis Simulation Calls 10,000 iterations
. i of each simulation to
Contains functions to Produces a single produce CNPV lists
access new random
| § g CNPV result per
values of uncertain function call Graphically converts
inputs lists to cumulative
distributions

SMR
Simulation

Produces a single
CNPYV result per
function call

Figure 12: Import map of the integrated Python suite of scripts

After the simulations were complete, the CNPV lists were fed into a CreateCumulativeDist()
function which was written to subdivide each list into a defined set of subranges and determine
how many CNPV values were less than or equal to the maximum value in each range, thus
creating a cumulative distribution of CNPV. Matplotlib. and pyplot. are modules that were
imported and used to graph results and format the graphs as desired. Further information on the
syntax of these modules can be found in their documentation [22]. Figure 13 shows the excerpted

portion of the MainSim file which graphs and formats results. Variables a, ¢, and e represent the
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lists of x-values, while b, d, and f are the lists of y-values returned from the cumulative
distribution function. These sets of values were then graphed using the built-in plot() method
followed by axis and legend formatting. Consult the results section of this report to find the

figures generated by these modules, and Appendix A to find a full version of the code.

Figure 13: Excerpted MainSim file showing instantiation of graphs and formatting
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3: Results and Discussion

3.1: Comparison between @RISK and Python

During the development and testing of the Python scripts, the values of important parameters
(FCI, TPC, CNPV etc.) were compared to those of the @RISK simulations. Given the
probabilistic nature of the models, an exact match among results was not expected. However,
agreement within the same order of magnitude was desired. The base case analyzed was a
discount rate (r) of 0.16, and a CTM of 1, with all uncertain inputs represented as described in
Table 1. Table 2 compares the base case average CNPV results across both platforms and they
show appreciable congruence within the same order of magnitude. Thus, we can say with a high
degree of certainty the suite of Python scripts are accurately and consistently replicating the
results of the MCS model as represented in @RISK software.

Table 2: Comparison of pertinent average CNPYV results among simulations methods

CNPVs (9) @RISK Result Python Result
SMR 1.61x10" 1.98x10'"
Pyrolysis 1.70x10" 1.95x10"
Electrolysis 5.27x10'" 6.33x10'"°

Table 3 below gives simulation results for our base case where the discount rate (r) was held at
0.16, and the CTM was set to 0. Please recognize PE and OC were fixed input parameters
(calculated from literature) and did not vary throughout the simulations [21][15][16]. As
previously discussed, electrolysis has considerably higher PE and OC while maintaining no
carbon intensity. SMR and pyrolysis have similarly lesser costs, while SMR has a considerably
higher carbon intensity than pyrolysis. Values of Ps, Pos, STDEV, and AVG were the results from

the Python simulations and were in close agreement with those of @RISK.
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Table 3: Pertinent results for base case: r =0.16, CTM =0

Electrolysis Pyrolysis SMR
PE ($) 1.96 x 10° 9.33x 10® 9.37x 10®
OC () 3.90 x 10° 8.09 x 10° 6.23 x 10*
Carbon Intensity 0 1141.6 4246.75
(metric tonne/day)
P; 5.82 1.69 1.55
Pys 6.90 2.18 2.04
STDEV* 3.29 1.47 1.47
AVG 6.33 1.93 1.78

*All STDEV are $x10° and all other costs are $x10'°

3.2: Discount Rate Sensitivity Analysis

The discount rate is a parameter of the system that is especially difficult to predict. In general, it
is the parameter used to devalue money over time according to the time value of money. In
practice, this is difficult to assign a numerical value to, as it depends on the technological risks of
the project and the state of the economy throughout the plant’s lifetime. As such, it is often more
useful to choose a fixed value for the discount rate, and analyze how the resultant distribution
profile changes when the discount rate is varied over a reasonable range of values. In this
analysis, the base case was a discount rate of 16%, and discount rates between 10% and 20%

were analyzed. Results of this analysis can be found in Table 4:
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Table 4: Results of sensitivity analysis of discount rate on CNPV of each process design

Discount Rate (%)
10 12 14 16 18 20
Electrolysis P; 8.13 7.17 6.41 5.82 5.34 4.96
Pys 9.45 8.39 7.55 6.90 6.36 5.93
STDEV* 4.03 3.71 3.43 3.29 3.09 2.96
AVG 8.77 7.74 6.95 6.33 5.83 5.43
SMR P; 2.42 2.13 1.90 1.74 1.60 1.50
Pys 3.03 2.70 243 2.24 2.08 1.95
STDEV* 1.86 1.72 1.60 1.50 1.43 1.37
AVG 2.71 2.40 2.16 1.97 1.83 1.71
Pyrolysis P; 2.32 2.07 1.87 1.72 1.59 1.49
Pys 2.93 2.62 2.39 2.20 2.05 1.94
STDEV* 1.84 1.69 1.59 1.49 1.43 1.37
AVG 2.61 2.33 2.12 1.95 1.81 1.70

*All STDEYV are $x10° and all other costs are $x10"

The discount rate sensitivity analysis reveals that in general, CNPV decreases as the discount
rate increases, which would indicate that a higher discount rate is beneficial. However, this is a
slightly misleading result. As there is no revenue present in this model, a higher discount rate
decreases the CNPV as it causes the money spent later on in the project to be worth less,
according to the time value of money. In reality, a profit based model would reveal the opposite;
a higher discount rate decreases the profit of the plant, as the money earned is also devalued over

time.

Nonetheless, this analysis is beneficial in analyzing the magnitude of change induced in the
model with each change to the discount rate. At either extreme of the range of analysis, the

model shows a significant shift in CNPV, Ps, and Pys. When the discount rate increases from 16%
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to 20%, the average CNPV, Py, and Py all decrease by approximately 13% for ammonia
production pathways. Likewise, when the discount rate decreases from 16% to 10%, CNPV, P5,
and P95 increase by approximately 35% for all pathways. In this respect, an increased discount
rate could be viewed as incurring higher risks, as assuming a higher discount rate yields lower

costs.

The standard deviation increases as the discount rate decreases. Notably, this is also true for an
NPV analysis, as a lower discount rate increases the magnitude of the analyzed value, whether
that be CNPV or NPV. As the distributions are primarily fractions of other costs, a greater
magnitude of cost correlates with an increased standard deviation. This means that a lower
discount rate widens the overall spread of the CNPV distribution, thereby further polarizing
values at opportunity, and at risk, from the average CNPV. In this respect, a lower discount rate
could be seen as incurring higher risk, as the assumption of a lower discount rate yields a greater
standard deviation, and thus a wider range of possibilities.

This unearths an apparent discrepancy in the risk evaluation of discount rate; a higher discount
rate yields lower costs, but a narrower distribution profile. Ultimately, this equips the decision
maker with additional information. It is up to the individual whether they value the consistency
of a smaller standard deviation at the risk of underestimating the cost, or the safer cost estimation

in exchange for a greater variance in CNPV.
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Table 5: Pertinent results of sensitivity analysis on carbon tax (r held at 0.16)

Carbon Tax Multiplier (CTM)

0 1 5 10 )] 25
Electsrolysi Ps 5.82 5.82 5.83 5.83 5.81 5.82
Pys 6.90 6.90 6.89 6.90 6.90 6.89
STDEV* 3.29 3.29 3.22 3.27 3.29 3.25
AVG 6.33 6.33 6.33 6.34 6.33 6.33

SMR P; 1.55 1.74 2.52 3.48 5.75 6.31
Pys 2.04 2.24 3.05 4.07 6.58 7.22
STDEV* 1.47 1.50 1.59 1.77 2.53 2.76
AVG 1.78 1.97 2.77 3.76 6.16 6.76
Pyrolysis Ps 1.69 1.72 1.79 1.89 2.13 2.18
Pys 2.18 2.20 2.28 2.38 2.63 2.69
STDEV* 1.47 1.49 1.48 1.47 1.51 1.52
AVG 1.93 1.95 2.03 2.13 2.37 242

*All STDEV are $x10° and all other costs are $x10'°
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3.3: Carbon Tax Sensitivity Analysis

A sensitivity analysis was performed on the carbon tax rate using the previously described
Carbon Tax Multiplier (CTM). The CTM was multiplied with the carbon tax distribution (as
described in Table 1) and its effect on CNPV for each technology option was investigated. Our
base case (Table 3) displays that in the absence of carbon tax, SMR is the most cost effective
hydrogen technology option in the production of ammonia. SMR also has lower values at risk
and opportunity than both other options. Worth noting in particular is that in the base case, SMR
has a P; that is $0.14 x 10° lower than pyrolysis and a Pys which is $0.11 x 10° lower. While both
technologies are comparable in costs, it would appear there is a larger difference in “values at
risk” between the two. This trend holds true for increased CTM. Without the presence of carbon
taxes and regulation, we would expect that SMR would be the least expensive option given its
lower purchased equipment and operating costs (see Table3). Given that (under the same
production conditions) SMR has a carbon intensity of 4246.75 metric tonnes per day, and
pyrolysis of 1141.6 metric tonnes per day, we would expect SMR to be affected to a far higher
magnitude by regulatory actions on carbon [15]. This suspicion is confirmed by Figure 14, where
for CTM greater than 1, pyrolysis becomes the comparatively attractive and cost effective
hydrogen technology option in the production of ammonia. In cases of extreme carbon tax (CTM
greater than or equal to 25), SMR becomes the least economically feasible option and more
expensive than electrolysis. Across the scope of our simulations we see pyrolysis is consistently
the most cost efficient technology option, and in all situations is either the least expensive option,

or within approximately 8.5% of the closest technology.

One of the benefits in the use of a probabilistic approach to CNPV calculations, and the
determination of values at “risk” and “opportunity” is the ability for a more nuanced analysis of
the data gathered. Further investigation of the Ps, Pys values for each technology under varying
carbon tax conditions gives the decision maker an increased awareness of the potential cost
outcomes of implementing each technology option under the economic circumstances being
analyzed in the presence of irreducible uncertainty. For instance, in low carbon tax situations
(0.5<CTM<2) it may be found that the values of P5 and Pys for SMR and pyrolysis are similar in
magnitude. The decision maker would need to determine whether the use of slightly more

expensive, lower carbon intensity pyrolysis methods outweighs the use of less expensive, more
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carbon intense SMR. A similar inquiry arises in higher carbon tax environments (20<CTM<25)
as the CNPV distributions, along with values at “risk” and “opportunity” for SMR and
electrolysis approach similar magnitudes. The decision maker would need to determine in the
presence of high or increasing carbon tax, if the slightly more expensive, carbon neutral
electrolysis is more suitable than the carbon intense, less expensive SMR. This level of intricacy
in the analysis of cost outcomes would not be possible with the use of single point estimates or
average values over the analyzed time periods. The implementation of MCS and distributions to
reduce economic uncertainties allows for an increased level of insight in the analysis of cost

probabilities.

3.4: Impact Assessment of Uncertain Parameters on Total Capital Investment

The implemented framework of equations includes a wide array of uncertain parameters.
However, it is unclear to what degree an individual parameter affects the resultant distribution
from the parameter’s distribution alone. To analyze these impacts, tornado diagrams can be
generated, shown in Figures 15 through 17. These diagrams evaluate each parameter at its
minimum and maximum to measure the maximum impact the parameter can have on the system.
These analyses were performed to consider the parameters which had the greatest impact on the

total capital investment of the project for each ammonia production pathway.

Bildings rocess, and Ausiay — T e—
Service facilities & yard improvements 5.88E+09 __ 6.82E+09
Construction & Contractor fee 5.94E+09 _— 6.75E+09
Working Capt sox=o [, -~
Instrumentation & Controls 6.02E+09 _— 6.63E+09
ectical se+oo [ -
Legal Expenses 6.22E+09 -- 6.41E+09
Land 6.28E+09 .. 6.36E+09
5.60E+09 5.80E+09 6.00E+09 6.20E+09 6.40E+09 6.60E+09 6.80E+09 7.00E+09

Figure 15: Tornado diagram for SMR TCI
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Figure 16: Tornado diagram for pyrolysis TCI
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Figure 17: Tornado diagram for electrolysis TCI

These analyses reveal that all ammonia production pathways analyzed have similar large
contributors to uncertainty. Namely, the largest four contributions for all cases are engineering &
supervision; piping; buildings, process, and auxiliary; and service facilities & yard
improvements. These distributions all either have a wide range of possible values or are
multiplied by a large expense. In either case, this gives the decision maker the information

needed to reduce the uncertainty of the system by further researching specifics of these
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categories and refining the range of possibilities in the distributions. For example, a decision
maker could research current costs of piping, the amount of piping required for the plant, and the
material of piping needed to hone in the estimation of piping cost, greatly decreasing its
uncertainty and thus the uncertainty of the system. Additionally, the decision maker can devote
additional resources to these expenses to drive them towards their minimum values, equipped

with the knowledge that variance in these categories are the largest drivers of fluctuation of TCI.
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4: Conclusions and Recommendations

4.1 Concluding Remarks

This work proposed the use of a MCS calculation framework to model the costs of ammonia
production through various hydrogen inputs in the presence of uncertainty. Our framework was
curated from an array of literature sources, and was first implemented in @RISK. Subsequent
design of a suite of Python scripts was conducted with the effort of replicating the @RISK
results in a more efficient manner. A number of challenges had to be overcome in the design and
implementation of these scripts, including but not limited to addressing circular references of
parameters, incorporating iterative calculations, and correctly resampling distributions used to
model uncertain inputs. Rather than a single script, a series of interconnected, interdependent
scripts were created and imported into each other to allow for distributions to be resampled and
functions to be called iteratively to perform necessary calculations. The results of the
calculations performed by the scripts were compared to those of @Risk. It was determined and
shown that the simulation results of the scripts were in close agreement with those of the @RISK
platform. Thus, the results presented herein are those of simulations conducted using these

scripts.

The resultant CNPV distribution profiles were generated and analyzed under a variety of
conditions. Firstly, the discount rate was varied across a range of reasonable values. An increase
in discount rate correlated with a decrease in CNPV, and a decrease in standard deviation of the
profile. This gives the decision maker additional information to decide on an appropriate

discount rate for the specific project based on their personal risk preferences.

Next, the results were analyzed through a sensitivity analysis on the carbon tax. Each ammonia
production pathway had a different carbon intensity, which meant that the carbon tax affected
each method differently. Electrolysis produces no carbon, so an increase in carbon tax has no
effect on its CNPV profile. However, for even very high carbon tax rates, the high purchased
equipment cost prevents it from being competitive compared to the other two methods. SMR has

the lowest purchase equipment cost, but has a high carbon intensity. Only for very low carbon
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tax scenarios (CTM <I1) was SMR less expensive than pyrolysis, which has a slightly higher

purchased equipment cost in exchange for a lesser carbon intensity.

Lastly, the major contributors to uncertainty of total capital investment were analyzed through
generation of tornado diagrams. This analysis showed that all ammonia production pathways had
the same major contributors to uncertainty of TCI: engineering & supervision; piping; building,
process, and auxiliary; and service facilities and yard improvements being the top four. This

allows decision makers to focus resources on these areas to reduce uncertainty and lower costs.

Within the broader context of research surrounding alternative energy technologies, Timmerberg,
Kaltschmitt, and Finkbeiner have conducted a more detailed study comparing the same three
hydrogen production avenues discussed herein, although without the implementation of MCS.
Their study models the use of thorough CCS technologies in conjunction with hydrogen
production and calculated levelized cost of hydrogen for each technology option. They determine
that SMR substantially outperforms pyrolysis and electrolysis economically, with levelized costs
of 1.0 to 1.2 €/kg H,, 1.6 to 2.2 €/kg H,, and 2.5 to 3.0 €/kg H, respectively [23]. This is
contradictory to the findings of this paper, which found that for any reasonable present carbon
tax, pyrolysis is more economically favorable than SMR. This further illustrates the point that
these technologies are developing and changing rapidly, and there are numerous metrics to take
into account when conducting a cost/risk analysis. As discussed, MCS better represents the
uncertainties present in the system, which can offer an insightful alternative to other calculation
frameworks. That said, uncertainties within a process are not the only important aspect to
consider in an economic analysis, emphasizing the decision of which type of model best
represents and characterizes the process in question. In the rapidly changing technological space,
it is imperative to consider current information that best reflects the economic conditions in

which technology options are being evaluated.

4.2: Implementation of Profit Based Analysis

The first logical extension of the work presented in this report is to consider various revenue
streams and thus calculate an NPV distribution containing profit for all three technologies

analyzed. As discussed, there are a number of potential revenue streams even beyond the selling
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of ammonia for each proposed process design; pyrolysis produces solid carbon products which
can be sold in a number of different forms, and at times a portion of the hydrogen produced
through SMR is sold directly to the market thus adding an additional revenue stream beyond the
production of ammonia. It is also sometimes the case that electrolyzers are run at constant power
and excess power is sent back to the grid, which creates another revenue stream [15]. Further
research would be necessary to find reliable and meaningful distributions of selling prices for the
various products, and revenue would be incorporated into the 30 year cash flow analysis as was
shown in equation 11 above. The resulting distributions would be of NPV and would purport to

describe the profitability of these process designs in the presence of uncertainty.

4.3: Incorporation of Design Flexibility in Ammonia Production Processes

Another facet of process design not considered in this report is design flexibility. As presented in
the work by Liang-Chih Ma et al., such a flexibility consideration could involve selective use of
CCS systems to minimize carbon related costs (whether those costs are sustained through taxes
or CCS operation) by turing CCS off when its operational costs would be higher than the carbon
taxes incurred for a given year of process CO, production [24]. In general, incorporating
flexibility into the simulations allows for a more robust management of risks and opportunities
through potentially value-enhancing operational adjustments, and retrofits to the plant
throughout its lifetime. These transient adjustments to the process gives the decision maker more

operational abilities to minimize incurred costs in response to uncertain carbon tax environments.

4.4: Further Considerations for MCS Python Scripts
4.4.1: Significance

Worth acknowledging further is the importance of the aforementioned success in replicating
@Risk MCS performance and results in Python. The design, and successful implementing of
these scripts should not be overlooked as it overcame a number of technical and program specific
challenges and served as proof of concept for incorporating MCS into higher level platforms
beyond Excel. Using Python not only allows multiple technology options to be simulated
simultaneously (something not possible in @Risk), but also reduces simulation runtime in
comparison to Excel. Furthermore, Python presents the prospect of converting our scripts to

executable files designed to run in conjunction with other process modeling software not
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equipped with economic/risk analysis capabilities, thus further consolidating pertinent aspects of
process design into a more succinct and mutable workflow. These advantages made Python an
attractive alternative to an Excel based approach to MCS and risk incorporated economic

analyses.

4.4.2: Further Script Optimization and General Improvements

Another advantage in the use of using Python as an MCS platform is that there is significantly
more room for further optimization of the code's performance both from the perspective of
runtime, and ease of use than there is in Excel. With specific regard to future improvements in
runtime and efficiency, an effort should be made to find more built-in Python functions to
accomplish some of the tasks within the scripts. Many of Python's built-in functions are actually
written behind the scenes in C (another faster language). Thus, built-in functions complete a
given task faster than an equivalent, purely Python method. For instance, the
createCummulativeDist() function was written exclusively for the work in this report due to the
absence of available built-in functionalities to create cumulative distributions. However, if a
built-in functionality was to be found in further research, its amalgamation into our scripts could
reduce runtimes. Likewise, the aforementioned numpy module has built-in data structures that
are faster to search and iterate through which may offer an attractive alternative for storing and
retrieving CNPV values from their respective lists. With regard to ease of use, an effort should be
made to more diligently comment the code throughout the scripts such that their future readers
can more quickly ascertain what each function or sequence of code aims to accomplish in the

bigger picture of the program.

Another logical extension of the presented work is incorporating the ability to resample historical
data representing relevant parameters into the Python scripts. @Risk contains built-in
functionality to fit distributions to datasets and present a number of possible fits to the user who
decides which of them most accurately represents the dataset in question. Our scripts do not
currently have this capability as our research did not procure any viable built-in Python modules
to accomplish this, thus leading to the need for a proprietary set of functions to incorporate

similar capabilities.
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A final note on the prospect of future work: if the scripts presented in this report were to be
incorporated into aspen (and/or like softwares) they would likely be converted to an executable
file, and when run, set to prompt the user to provide an input file for the software being used.
Thus, it would be worth including a more in-depth error analysis system such as an error logger.
Such a logger would contain code to present Python's console errors in a pop-up window with a
more detailed “layman's terms” explanation of the error and possible solutions. Common errors
may include an incorrectly formatted or type of input file, a corrupted or incomplete input file,
and/or not completely specifying the type of simulation desired (NPV, CNPV, number of
uncertain inputs, etc.). This would offer an easier point of entry to our scripts for users not
familiar with Python, its functionalities, or coding in general. With the goal of future integration
into other process modeling software in mind, optimizing runtimes and ease of use of these

scripts will be important as the flow diagrams they are run on increase in size and complexity.

4.5: Limitations

It is worth acknowledging the limitations in the methodology and scope of this study. Firstly,
there are some aspects of the construction of a plant that are not reflected by the framework of
equations. For example, there is often a construction period and startup period associated with a
plant as the infrastructure of the plant is developed, during which production is zero and limited
respectively. While this would have larger impacts on a profit based NPV model, there are still
effects that would manifest in the CNPV model in this paper. A decreased production scale in
certain years would decrease the required raw materials, utilities, and overall operating cost in
those years. Consideration of these factors would decrease the overall CNPV due to the potential

for decreased cost during these years.

Additionally, some system inputs were treated as fixed, whereas consideration of the range of
potential values could more accurately reflect the associated costs. Most notably, the raw
material costs were considered fixed for all three ammonia production technologies. In reality,
this is a relatively large expense, and could contribute substantially to the systems’ uncertainties.
Raw material costs are market dependent, and thus could vary unpredictably, even if historical
price data were resampled. Additionally, the different technology options use different raw

materials in different quantities. As a result, consideration of probabilistic raw material costs may
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disproportionately affect the standard deviations of some technology options. Likewise,
uncertainty in operating cost was also not considered. Operating cost includes similar market and
location dependance in factors such as labor cost and property taxes. The incorporation of
uncertainty in these factors would again increase the standard deviation of the technology
options. In the development of a functional model for a prospective project, it may be useful to
account for these uncertainties once a site location is decided, as a more accurate distribution of

values based on local costs could be used.
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Appendix A: Full Python Code
For a full version of the proprietary Python code used in this report, please see the attached

GitHub link:

pjasminl046/Monte-CarloSimulationFrameworkForEconomicRiskAnalysisOfChemicalProcesse

s: Suite of scripts written to perform a Monte-Carlo simulation of a proposed ammonia plant

design evaluating three different hydrogen inputs in the presence of uncertainty. (github.com)
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